xref: /openbsd/gnu/llvm/clang/www/diagnostics.html (revision 905646f0)
1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2          "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <meta http-equiv="content-type" content="text/html; charset=iso-8859-1">
6  <title>Clang - Expressive Diagnostics</title>
7  <link type="text/css" rel="stylesheet" href="menu.css">
8  <link type="text/css" rel="stylesheet" href="content.css">
9  <style type="text/css">
10  .loc { font-weight: bold; }
11  .err { color:red; font-weight: bold; }
12  .warn { color:magenta; font-weight: bold; }
13  .note { color:gray; font-weight: bold; }
14  .msg { font-weight: bold; }
15  .cmd { font-style: italic; }
16  .snip { }
17  .point { color:green; font-weight: bold; }
18  </style>
19</head>
20<body>
21
22<!--#include virtual="menu.html.incl"-->
23
24<div id="content">
25
26
27<!--=======================================================================-->
28<h1>Expressive Diagnostics</h1>
29<!--=======================================================================-->
30
31<p>In addition to being fast and functional, we aim to make Clang extremely user
32friendly.  As far as a command-line compiler goes, this basically boils down to
33making the diagnostics (error and warning messages) generated by the compiler
34be as useful as possible.  There are several ways that we do this.  This section
35talks about the experience provided by the command line compiler, contrasting
36Clang output to GCC 4.9's output in some cases.
37</p>
38
39<h2>Column Numbers and Caret Diagnostics</h2>
40
41<p>First, all diagnostics produced by clang include full column number
42information. The clang command-line compiler driver uses this information
43to print "point diagnostics".
44(IDEs can use the information to display in-line error markup.)
45This is nice because it makes it very easy to understand exactly
46what is wrong in a particular piece of code.</p>
47
48<p>The point (the green "^" character) exactly shows where the problem is, even
49inside of a string.  This makes it really easy to jump to the problem and
50helps when multiple instances of the same character occur on a line. (We'll
51revisit this more in following examples.)</p>
52
53<pre>
54  $ <span class="cmd">clang -fsyntax-only format-strings.c</span>
55  <span class="loc">format-strings.c:91:13:</span> <span class="warn">warning:</span> <span class="msg">'.*' specified field precision is missing a matching 'int' argument</span>
56  <span class="snip" >  printf("%.*d");</span>
57  <span class="point">            ^</span>
58</pre>
59
60<p>Note that modern versions of GCC have followed Clang's lead, and are
61now able to give a column for a diagnostic, and include a snippet of source
62text in the result. However, Clang's column number is much more accurate,
63pointing at the problematic format specifier, rather than the <tt>)</tt>
64character the parser had reached when the problem was detected.
65Also, Clang's diagnostic is colored by default, making it easier to
66distinguish from nearby text.</p>
67
68<h2>Range Highlighting for Related Text</h2>
69
70<p>Clang captures and accurately tracks range information for expressions,
71statements, and other constructs in your program and uses this to make
72diagnostics highlight related information.  In the following somewhat
73nonsensical example you can see that you don't even need to see the original source code to
74understand what is wrong based on the Clang error. Because clang prints a
75point, you know exactly <em>which</em> plus it is complaining about.  The range
76information highlights the left and right side of the plus which makes it
77immediately obvious what the compiler is talking about.
78Range information is very useful for
79cases involving precedence issues and many other cases.</p>
80
81<pre>
82  $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
83  t.c: In function 'int f(int, int)':
84  t.c:7:39: error: invalid operands to binary + (have 'int' and 'struct A')
85     return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);
86                                         ^
87  $ <span class="cmd">clang -fsyntax-only t.c</span>
88  <span class="loc">t.c:7:39:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('int' and 'struct A')</span>
89  <span class="snip" >  return y + func(y ? ((SomeA.X + 40) + SomeA) / 42 + SomeA.X : SomeA.X);</span>
90  <span class="point">                       ~~~~~~~~~~~~~~ ^ ~~~~~</span>
91</pre>
92
93<h2>Precision in Wording</h2>
94
95<p>A detail is that we have tried really hard to make the diagnostics that come
96out of clang contain exactly the pertinent information about what is wrong and
97why.  In the example above, we tell you what the inferred types are for
98the left and right hand sides, and we don't repeat what is obvious from the
99point (e.g., that this is a "binary +").</p>
100
101<p>Many other examples abound. In the following example, not only do we tell you
102that there is a problem with the <tt>*</tt>
103and point to it, we say exactly why and tell you what the type is (in case it is
104a complicated subexpression, such as a call to an overloaded function).  This
105sort of attention to detail makes it much easier to understand and fix problems
106quickly.</p>
107
108<pre>
109  $ <span class="cmd">gcc-4.9 -fsyntax-only t.c</span>
110  t.c:5:11: error: invalid type argument of unary '*' (have 'int')
111    return *SomeA.X;
112           ^
113  $ <span class="cmd">clang -fsyntax-only t.c</span>
114  <span class="loc">t.c:5:11:</span> <span class="err">error:</span> <span class="msg">indirection requires pointer operand ('int' invalid)</span>
115  <span class="snip" >  int y = *SomeA.X;</span>
116  <span class="point">          ^~~~~~~~</span>
117</pre>
118
119<h2>Typedef Preservation and Selective Unwrapping</h2>
120
121<p>Many programmers use high-level user defined types, typedefs, and other
122syntactic sugar to refer to types in their program.  This is useful because they
123can abbreviate otherwise very long types and it is useful to preserve the
124typename in diagnostics.  However, sometimes very simple typedefs can wrap
125trivial types and it is important to strip off the typedef to understand what
126is going on.  Clang aims to handle both cases well.<p>
127
128<p>The following example shows where it is important to preserve
129a typedef in C.</p>
130
131<pre>
132  $ <span class="cmd">clang -fsyntax-only t.c</span>
133  <span class="loc">t.c:15:11:</span> <span class="err">error:</span> <span class="msg">can't convert between vector values of different size ('__m128' and 'int const *')</span>
134  <span class="snip">  myvec[1]/P;</span>
135  <span class="point">  ~~~~~~~~^~</span>
136</pre>
137
138<p>The following example shows where it is useful for the compiler to expose
139underlying details of a typedef. If the user was somehow confused about how the
140system "pid_t" typedef is defined, Clang helpfully displays it with "aka".</p>
141
142<pre>
143  $ <span class="cmd">clang -fsyntax-only t.c</span>
144  <span class="loc">t.c:13:9:</span> <span class="err">error:</span> <span class="msg">member reference base type 'pid_t' (aka 'int') is not a structure or union</span>
145  <span class="snip">  myvar = myvar.x;</span>
146  <span class="point">          ~~~~~ ^</span>
147</pre>
148
149<p>In C++, type preservation includes retaining any qualification written into type names. For example, if we take a small snippet of code such as:
150
151<blockquote>
152<pre>
153namespace services {
154  struct WebService {  };
155}
156namespace myapp {
157  namespace servers {
158    struct Server {  };
159  }
160}
161
162using namespace myapp;
163void addHTTPService(servers::Server const &amp;server, ::services::WebService const *http) {
164  server += http;
165}
166</pre>
167</blockquote>
168
169<p>and then compile it, we see that Clang is both providing accurate information and is retaining the types as written by the user (e.g., "servers::Server", "::services::WebService"):
170
171<pre>
172  $ <span class="cmd">clang -fsyntax-only t.cpp</span>
173  <span class="loc">t.cpp:9:10:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('servers::Server const' and '::services::WebService const *')</span>
174    <span class="snip">server += http;</span>
175    <span class="point">~~~~~~ ^  ~~~~</span>
176</pre>
177
178<p>Naturally, type preservation extends to uses of templates, and Clang retains information about how a particular template specialization (like <code>std::vector&lt;Real&gt;</code>) was spelled within the source code. For example:</p>
179
180<pre>
181  $ <span class="cmd">clang -fsyntax-only t.cpp</span>
182  <span class="loc">t.cpp:12:7:</span> <span class="err">error:</span> <span class="msg">incompatible type assigning 'vector&lt;Real&gt;', expected 'std::string' (aka 'class std::basic_string&lt;char&gt;')</span>
183    <span class="snip">str = vec</span>;
184        <span class="point">^ ~~~</span>
185</pre>
186
187<h2>Fix-it Hints</h2>
188
189<p>"Fix-it" hints provide advice for fixing small, localized problems
190in source code. When Clang produces a diagnostic about a particular
191problem that it can work around (e.g., non-standard or redundant
192syntax, missing keywords, common mistakes, etc.), it may also provide
193specific guidance in the form of a code transformation to correct the
194problem. In the following example, Clang warns about the use of a GCC
195extension that has been considered obsolete since 1993. The underlined
196code should be removed, then replaced with the code below the
197point line (".x =" or ".y =", respectively).</p>
198
199<pre>
200  $ <span class="cmd">clang t.c</span>
201  <span class="loc">t.c:5:28:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
202  <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
203                          <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
204                          <span class="snip">.x = </span>
205  <span class="loc">t.c:5:36:</span> <span class="warn">warning:</span> <span class="msg">use of GNU old-style field designator extension</span>
206  <span class="snip">struct point origin = { x: 0.0, y: 0.0 };</span>
207                                  <span class="err">~~</span> <span class="msg"><span class="point">^</span></span>
208                                  <span class="snip">.y = </span>
209</pre>
210
211<p>"Fix-it" hints are most useful for
212working around common user errors and misconceptions. For example, C++ users
213commonly forget the syntax for explicit specialization of class templates,
214as in the error in the following example. Again, after describing the problem,
215Clang provides the fix--add <code>template&lt;&gt;</code>--as part of the
216diagnostic.<p>
217
218<pre>
219  $ <span class="cmd">clang t.cpp</span>
220  <span class="loc">t.cpp:9:3:</span> <span class="err">error:</span> <span class="msg">template specialization requires 'template&lt;&gt;'</span>
221    struct iterator_traits&lt;file_iterator&gt; {
222    <span class="point">^</span>
223    <span class="snip">template&lt;&gt; </span>
224</pre>
225
226<h2>Template Type Diffing</h2>
227
228<p>Templates types can be long and difficult to read.  More so when part of an
229error message.  Instead of just printing out the type name, Clang has enough
230information to remove the common elements and highlight the differences.  To
231show the template structure more clearly, the templated type can also be
232printed as an indented text tree.</p>
233
234Default: template diff with type elision
235<pre>
236<span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;[...], <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;[...], <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
237</pre>
238-fno-elide-type: template diff without elision
239<pre>
240<span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion from 'vector&lt;map&lt;int, <span class="template-highlight">float</span>&gt;&gt;' to 'vector&lt;map&lt;int, <span class="template-highlight">double</span>&gt;&gt;' for 1st argument;
241</pre>
242-fdiagnostics-show-template-tree: template tree printing with elision
243<pre>
244<span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
245  vector&lt;
246    map&lt;
247      [...],
248      [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
249</pre>
250-fdiagnostics-show-template-tree -fno-elide-type: template tree printing with no elision
251<pre>
252<span class="loc">t.cc:4:5:</span> <span class="note">note:</span> candidate function not viable: no known conversion for 1st argument;
253  vector&lt;
254    map&lt;
255      int,
256      [<span class="template-highlight">float</span> != <span class="template-highlight">double</span>]&gt;&gt;
257</pre>
258
259<h2>Automatic Macro Expansion</h2>
260
261<p>Many errors happen in macros that are sometimes deeply nested.  With
262traditional compilers, you need to dig deep into the definition of the macro to
263understand how you got into trouble.  The following simple example shows how
264Clang helps you out by automatically printing instantiation information and
265nested range information for diagnostics as they are instantiated through macros
266and also shows how some of the other pieces work in a bigger example.</p>
267
268<pre>
269  $ <span class="cmd">clang -fsyntax-only t.c</span>
270  <span class="loc">t.c:80:3:</span> <span class="err">error:</span> <span class="msg">invalid operands to binary expression ('typeof(P)' (aka 'struct mystruct') and 'typeof(F)' (aka 'float'))</span>
271  <span class="snip">  X = MYMAX(P, F);</span>
272  <span class="point">      ^~~~~~~~~~~</span>
273  <span class="loc">t.c:76:94:</span> <span class="note">note:</span> expanded from:
274  <span class="snip">#define MYMAX(A,B)    __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) __b = (B); __a &lt; __b ? __b : __a; })</span>
275  <span class="point">                                                                                         ~~~ ^ ~~~</span>
276</pre>
277
278<p>Here's another real world warning that occurs in the "window" Unix package (which
279implements the "wwopen" class of APIs):</p>
280
281<pre>
282  $ <span class="cmd">clang -fsyntax-only t.c</span>
283  <span class="loc">t.c:22:2:</span> <span class="warn">warning:</span> <span class="msg">type specifier missing, defaults to 'int'</span>
284  <span class="snip">        ILPAD();</span>
285  <span class="point">        ^</span>
286  <span class="loc">t.c:17:17:</span> <span class="note">note:</span> expanded from:
287  <span class="snip">#define ILPAD() PAD((NROW - tt.tt_row) * 10)    /* 1 ms per char */</span>
288  <span class="point">                ^</span>
289  <span class="loc">t.c:14:2:</span> <span class="note">note:</span> expanded from:
290  <span class="snip">        register i; \</span>
291  <span class="point">        ^</span>
292</pre>
293
294<p>In practice, we've found that Clang's treatment of macros is actually more useful in multiply nested
295macros than in simple ones.</p>
296
297<h2>Quality of Implementation and Attention to Detail</h2>
298
299<p>Finally, we have put a lot of work polishing the little things, because
300little things add up over time and contribute to a great user experience.</p>
301
302<p>The following example shows that we recover from the simple case of
303forgetting a ; after a struct definition much better than GCC.</p>
304
305<pre>
306  $ <span class="cmd">cat t.cc</span>
307  template&lt;class T&gt;
308  class a {};
309  struct b {}
310  a&lt;int&gt; c;
311  $ <span class="cmd">gcc-4.9 t.cc</span>
312  t.cc:4:8: error: invalid declarator before 'c'
313   a&lt;int&gt; c;
314           ^
315  $ <span class="cmd">clang t.cc</span>
316  <span class="loc">t.cc:3:12:</span> <span class="err">error:</span> <span class="msg">expected ';' after struct</span>
317  <span class="snip" >struct b {}</span>
318  <span class="point">           ^</span>
319  <span class="point">           ;</span>
320</pre>
321
322<p>The following example shows that we diagnose and recover from a missing
323<tt>typename</tt> keyword well, even in complex circumstances where GCC
324cannot cope.</p>
325
326<pre>
327  $ <span class="cmd">cat t.cc</span>
328  template&lt;class T&gt; void f(T::type) { }
329  struct A { };
330  void g()
331  {
332      A a;
333      f&lt;A&gt;(a);
334  }
335  $ <span class="cmd">gcc-4.9 t.cc</span>
336  t.cc:1:33: error: variable or field 'f' declared void
337   template&lt;class T&gt; void f(T::type) { }
338                                   ^
339  t.cc: In function 'void g()':
340  t.cc:6:5: error: 'f' was not declared in this scope
341       f&lt;A&gt;(a);
342       ^
343  t.cc:6:8: error: expected primary-expression before '>' token
344       f&lt;A&gt;(a);
345          ^
346  $ <span class="cmd">clang t.cc</span>
347  <span class="loc">t.cc:1:26:</span> <span class="err">error:</span> <span class="msg">missing 'typename' prior to dependent type name 'T::type'</span>
348  <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
349  <span class="point">                         ^~~~~~~</span>
350  <span class="point">                         typename </span>
351  <span class="loc">t.cc:6:5:</span> <span class="err">error:</span> <span class="msg">no matching function for call to 'f'</span>
352  <span class="snip" >    f&lt;A&gt;(a);</span>
353  <span class="point">    ^~~~</span>
354  <span class="loc">t.cc:1:24:</span> <span class="note">note:</span> <span class="msg">candidate template ignored: substitution failure [with T = A]: no type named 'type' in 'A'</span>
355  <span class="snip" >template&lt;class T&gt; void f(T::type) { }</span>
356  <span class="point">                       ^    ~~~~</span>
357</pre>
358
359
360
361<p>While each of these details is minor, we feel that they all add up to provide
362a much more polished experience.</p>
363
364</div>
365</body>
366</html>
367