1 #include "../include/KaleidoscopeJIT.h" 2 #include "llvm/ADT/APFloat.h" 3 #include "llvm/ADT/STLExtras.h" 4 #include "llvm/IR/BasicBlock.h" 5 #include "llvm/IR/Constants.h" 6 #include "llvm/IR/DerivedTypes.h" 7 #include "llvm/IR/Function.h" 8 #include "llvm/IR/IRBuilder.h" 9 #include "llvm/IR/Instructions.h" 10 #include "llvm/IR/LLVMContext.h" 11 #include "llvm/IR/LegacyPassManager.h" 12 #include "llvm/IR/Module.h" 13 #include "llvm/IR/Type.h" 14 #include "llvm/IR/Verifier.h" 15 #include "llvm/Support/TargetSelect.h" 16 #include "llvm/Target/TargetMachine.h" 17 #include "llvm/Transforms/InstCombine/InstCombine.h" 18 #include "llvm/Transforms/Scalar.h" 19 #include "llvm/Transforms/Scalar/GVN.h" 20 #include "llvm/Transforms/Utils.h" 21 #include <algorithm> 22 #include <cassert> 23 #include <cctype> 24 #include <cstdint> 25 #include <cstdio> 26 #include <cstdlib> 27 #include <map> 28 #include <memory> 29 #include <string> 30 #include <utility> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace llvm::orc; 35 36 //===----------------------------------------------------------------------===// 37 // Lexer 38 //===----------------------------------------------------------------------===// 39 40 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 41 // of these for known things. 42 enum Token { 43 tok_eof = -1, 44 45 // commands 46 tok_def = -2, 47 tok_extern = -3, 48 49 // primary 50 tok_identifier = -4, 51 tok_number = -5, 52 53 // control 54 tok_if = -6, 55 tok_then = -7, 56 tok_else = -8, 57 tok_for = -9, 58 tok_in = -10, 59 60 // operators 61 tok_binary = -11, 62 tok_unary = -12, 63 64 // var definition 65 tok_var = -13 66 }; 67 68 static std::string IdentifierStr; // Filled in if tok_identifier 69 static double NumVal; // Filled in if tok_number 70 71 /// gettok - Return the next token from standard input. 72 static int gettok() { 73 static int LastChar = ' '; 74 75 // Skip any whitespace. 76 while (isspace(LastChar)) 77 LastChar = getchar(); 78 79 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 80 IdentifierStr = LastChar; 81 while (isalnum((LastChar = getchar()))) 82 IdentifierStr += LastChar; 83 84 if (IdentifierStr == "def") 85 return tok_def; 86 if (IdentifierStr == "extern") 87 return tok_extern; 88 if (IdentifierStr == "if") 89 return tok_if; 90 if (IdentifierStr == "then") 91 return tok_then; 92 if (IdentifierStr == "else") 93 return tok_else; 94 if (IdentifierStr == "for") 95 return tok_for; 96 if (IdentifierStr == "in") 97 return tok_in; 98 if (IdentifierStr == "binary") 99 return tok_binary; 100 if (IdentifierStr == "unary") 101 return tok_unary; 102 if (IdentifierStr == "var") 103 return tok_var; 104 return tok_identifier; 105 } 106 107 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 108 std::string NumStr; 109 do { 110 NumStr += LastChar; 111 LastChar = getchar(); 112 } while (isdigit(LastChar) || LastChar == '.'); 113 114 NumVal = strtod(NumStr.c_str(), nullptr); 115 return tok_number; 116 } 117 118 if (LastChar == '#') { 119 // Comment until end of line. 120 do 121 LastChar = getchar(); 122 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 123 124 if (LastChar != EOF) 125 return gettok(); 126 } 127 128 // Check for end of file. Don't eat the EOF. 129 if (LastChar == EOF) 130 return tok_eof; 131 132 // Otherwise, just return the character as its ascii value. 133 int ThisChar = LastChar; 134 LastChar = getchar(); 135 return ThisChar; 136 } 137 138 //===----------------------------------------------------------------------===// 139 // Abstract Syntax Tree (aka Parse Tree) 140 //===----------------------------------------------------------------------===// 141 142 namespace { 143 144 /// ExprAST - Base class for all expression nodes. 145 class ExprAST { 146 public: 147 virtual ~ExprAST() = default; 148 149 virtual Value *codegen() = 0; 150 }; 151 152 /// NumberExprAST - Expression class for numeric literals like "1.0". 153 class NumberExprAST : public ExprAST { 154 double Val; 155 156 public: 157 NumberExprAST(double Val) : Val(Val) {} 158 159 Value *codegen() override; 160 }; 161 162 /// VariableExprAST - Expression class for referencing a variable, like "a". 163 class VariableExprAST : public ExprAST { 164 std::string Name; 165 166 public: 167 VariableExprAST(const std::string &Name) : Name(Name) {} 168 169 Value *codegen() override; 170 const std::string &getName() const { return Name; } 171 }; 172 173 /// UnaryExprAST - Expression class for a unary operator. 174 class UnaryExprAST : public ExprAST { 175 char Opcode; 176 std::unique_ptr<ExprAST> Operand; 177 178 public: 179 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand) 180 : Opcode(Opcode), Operand(std::move(Operand)) {} 181 182 Value *codegen() override; 183 }; 184 185 /// BinaryExprAST - Expression class for a binary operator. 186 class BinaryExprAST : public ExprAST { 187 char Op; 188 std::unique_ptr<ExprAST> LHS, RHS; 189 190 public: 191 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS, 192 std::unique_ptr<ExprAST> RHS) 193 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {} 194 195 Value *codegen() override; 196 }; 197 198 /// CallExprAST - Expression class for function calls. 199 class CallExprAST : public ExprAST { 200 std::string Callee; 201 std::vector<std::unique_ptr<ExprAST>> Args; 202 203 public: 204 CallExprAST(const std::string &Callee, 205 std::vector<std::unique_ptr<ExprAST>> Args) 206 : Callee(Callee), Args(std::move(Args)) {} 207 208 Value *codegen() override; 209 }; 210 211 /// IfExprAST - Expression class for if/then/else. 212 class IfExprAST : public ExprAST { 213 std::unique_ptr<ExprAST> Cond, Then, Else; 214 215 public: 216 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then, 217 std::unique_ptr<ExprAST> Else) 218 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {} 219 220 Value *codegen() override; 221 }; 222 223 /// ForExprAST - Expression class for for/in. 224 class ForExprAST : public ExprAST { 225 std::string VarName; 226 std::unique_ptr<ExprAST> Start, End, Step, Body; 227 228 public: 229 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start, 230 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step, 231 std::unique_ptr<ExprAST> Body) 232 : VarName(VarName), Start(std::move(Start)), End(std::move(End)), 233 Step(std::move(Step)), Body(std::move(Body)) {} 234 235 Value *codegen() override; 236 }; 237 238 /// VarExprAST - Expression class for var/in 239 class VarExprAST : public ExprAST { 240 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; 241 std::unique_ptr<ExprAST> Body; 242 243 public: 244 VarExprAST( 245 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames, 246 std::unique_ptr<ExprAST> Body) 247 : VarNames(std::move(VarNames)), Body(std::move(Body)) {} 248 249 Value *codegen() override; 250 }; 251 252 /// PrototypeAST - This class represents the "prototype" for a function, 253 /// which captures its name, and its argument names (thus implicitly the number 254 /// of arguments the function takes), as well as if it is an operator. 255 class PrototypeAST { 256 std::string Name; 257 std::vector<std::string> Args; 258 bool IsOperator; 259 unsigned Precedence; // Precedence if a binary op. 260 261 public: 262 PrototypeAST(const std::string &Name, std::vector<std::string> Args, 263 bool IsOperator = false, unsigned Prec = 0) 264 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator), 265 Precedence(Prec) {} 266 267 Function *codegen(); 268 const std::string &getName() const { return Name; } 269 270 bool isUnaryOp() const { return IsOperator && Args.size() == 1; } 271 bool isBinaryOp() const { return IsOperator && Args.size() == 2; } 272 273 char getOperatorName() const { 274 assert(isUnaryOp() || isBinaryOp()); 275 return Name[Name.size() - 1]; 276 } 277 278 unsigned getBinaryPrecedence() const { return Precedence; } 279 }; 280 281 /// FunctionAST - This class represents a function definition itself. 282 class FunctionAST { 283 std::unique_ptr<PrototypeAST> Proto; 284 std::unique_ptr<ExprAST> Body; 285 286 public: 287 FunctionAST(std::unique_ptr<PrototypeAST> Proto, 288 std::unique_ptr<ExprAST> Body) 289 : Proto(std::move(Proto)), Body(std::move(Body)) {} 290 291 Function *codegen(); 292 }; 293 294 } // end anonymous namespace 295 296 //===----------------------------------------------------------------------===// 297 // Parser 298 //===----------------------------------------------------------------------===// 299 300 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 301 /// token the parser is looking at. getNextToken reads another token from the 302 /// lexer and updates CurTok with its results. 303 static int CurTok; 304 static int getNextToken() { return CurTok = gettok(); } 305 306 /// BinopPrecedence - This holds the precedence for each binary operator that is 307 /// defined. 308 static std::map<char, int> BinopPrecedence; 309 310 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 311 static int GetTokPrecedence() { 312 if (!isascii(CurTok)) 313 return -1; 314 315 // Make sure it's a declared binop. 316 int TokPrec = BinopPrecedence[CurTok]; 317 if (TokPrec <= 0) 318 return -1; 319 return TokPrec; 320 } 321 322 /// LogError* - These are little helper functions for error handling. 323 std::unique_ptr<ExprAST> LogError(const char *Str) { 324 fprintf(stderr, "Error: %s\n", Str); 325 return nullptr; 326 } 327 328 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) { 329 LogError(Str); 330 return nullptr; 331 } 332 333 static std::unique_ptr<ExprAST> ParseExpression(); 334 335 /// numberexpr ::= number 336 static std::unique_ptr<ExprAST> ParseNumberExpr() { 337 auto Result = std::make_unique<NumberExprAST>(NumVal); 338 getNextToken(); // consume the number 339 return std::move(Result); 340 } 341 342 /// parenexpr ::= '(' expression ')' 343 static std::unique_ptr<ExprAST> ParseParenExpr() { 344 getNextToken(); // eat (. 345 auto V = ParseExpression(); 346 if (!V) 347 return nullptr; 348 349 if (CurTok != ')') 350 return LogError("expected ')'"); 351 getNextToken(); // eat ). 352 return V; 353 } 354 355 /// identifierexpr 356 /// ::= identifier 357 /// ::= identifier '(' expression* ')' 358 static std::unique_ptr<ExprAST> ParseIdentifierExpr() { 359 std::string IdName = IdentifierStr; 360 361 getNextToken(); // eat identifier. 362 363 if (CurTok != '(') // Simple variable ref. 364 return std::make_unique<VariableExprAST>(IdName); 365 366 // Call. 367 getNextToken(); // eat ( 368 std::vector<std::unique_ptr<ExprAST>> Args; 369 if (CurTok != ')') { 370 while (true) { 371 if (auto Arg = ParseExpression()) 372 Args.push_back(std::move(Arg)); 373 else 374 return nullptr; 375 376 if (CurTok == ')') 377 break; 378 379 if (CurTok != ',') 380 return LogError("Expected ')' or ',' in argument list"); 381 getNextToken(); 382 } 383 } 384 385 // Eat the ')'. 386 getNextToken(); 387 388 return std::make_unique<CallExprAST>(IdName, std::move(Args)); 389 } 390 391 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 392 static std::unique_ptr<ExprAST> ParseIfExpr() { 393 getNextToken(); // eat the if. 394 395 // condition. 396 auto Cond = ParseExpression(); 397 if (!Cond) 398 return nullptr; 399 400 if (CurTok != tok_then) 401 return LogError("expected then"); 402 getNextToken(); // eat the then 403 404 auto Then = ParseExpression(); 405 if (!Then) 406 return nullptr; 407 408 if (CurTok != tok_else) 409 return LogError("expected else"); 410 411 getNextToken(); 412 413 auto Else = ParseExpression(); 414 if (!Else) 415 return nullptr; 416 417 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then), 418 std::move(Else)); 419 } 420 421 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 422 static std::unique_ptr<ExprAST> ParseForExpr() { 423 getNextToken(); // eat the for. 424 425 if (CurTok != tok_identifier) 426 return LogError("expected identifier after for"); 427 428 std::string IdName = IdentifierStr; 429 getNextToken(); // eat identifier. 430 431 if (CurTok != '=') 432 return LogError("expected '=' after for"); 433 getNextToken(); // eat '='. 434 435 auto Start = ParseExpression(); 436 if (!Start) 437 return nullptr; 438 if (CurTok != ',') 439 return LogError("expected ',' after for start value"); 440 getNextToken(); 441 442 auto End = ParseExpression(); 443 if (!End) 444 return nullptr; 445 446 // The step value is optional. 447 std::unique_ptr<ExprAST> Step; 448 if (CurTok == ',') { 449 getNextToken(); 450 Step = ParseExpression(); 451 if (!Step) 452 return nullptr; 453 } 454 455 if (CurTok != tok_in) 456 return LogError("expected 'in' after for"); 457 getNextToken(); // eat 'in'. 458 459 auto Body = ParseExpression(); 460 if (!Body) 461 return nullptr; 462 463 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End), 464 std::move(Step), std::move(Body)); 465 } 466 467 /// varexpr ::= 'var' identifier ('=' expression)? 468 // (',' identifier ('=' expression)?)* 'in' expression 469 static std::unique_ptr<ExprAST> ParseVarExpr() { 470 getNextToken(); // eat the var. 471 472 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames; 473 474 // At least one variable name is required. 475 if (CurTok != tok_identifier) 476 return LogError("expected identifier after var"); 477 478 while (true) { 479 std::string Name = IdentifierStr; 480 getNextToken(); // eat identifier. 481 482 // Read the optional initializer. 483 std::unique_ptr<ExprAST> Init = nullptr; 484 if (CurTok == '=') { 485 getNextToken(); // eat the '='. 486 487 Init = ParseExpression(); 488 if (!Init) 489 return nullptr; 490 } 491 492 VarNames.push_back(std::make_pair(Name, std::move(Init))); 493 494 // End of var list, exit loop. 495 if (CurTok != ',') 496 break; 497 getNextToken(); // eat the ','. 498 499 if (CurTok != tok_identifier) 500 return LogError("expected identifier list after var"); 501 } 502 503 // At this point, we have to have 'in'. 504 if (CurTok != tok_in) 505 return LogError("expected 'in' keyword after 'var'"); 506 getNextToken(); // eat 'in'. 507 508 auto Body = ParseExpression(); 509 if (!Body) 510 return nullptr; 511 512 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body)); 513 } 514 515 /// primary 516 /// ::= identifierexpr 517 /// ::= numberexpr 518 /// ::= parenexpr 519 /// ::= ifexpr 520 /// ::= forexpr 521 /// ::= varexpr 522 static std::unique_ptr<ExprAST> ParsePrimary() { 523 switch (CurTok) { 524 default: 525 return LogError("unknown token when expecting an expression"); 526 case tok_identifier: 527 return ParseIdentifierExpr(); 528 case tok_number: 529 return ParseNumberExpr(); 530 case '(': 531 return ParseParenExpr(); 532 case tok_if: 533 return ParseIfExpr(); 534 case tok_for: 535 return ParseForExpr(); 536 case tok_var: 537 return ParseVarExpr(); 538 } 539 } 540 541 /// unary 542 /// ::= primary 543 /// ::= '!' unary 544 static std::unique_ptr<ExprAST> ParseUnary() { 545 // If the current token is not an operator, it must be a primary expr. 546 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 547 return ParsePrimary(); 548 549 // If this is a unary operator, read it. 550 int Opc = CurTok; 551 getNextToken(); 552 if (auto Operand = ParseUnary()) 553 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand)); 554 return nullptr; 555 } 556 557 /// binoprhs 558 /// ::= ('+' unary)* 559 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, 560 std::unique_ptr<ExprAST> LHS) { 561 // If this is a binop, find its precedence. 562 while (true) { 563 int TokPrec = GetTokPrecedence(); 564 565 // If this is a binop that binds at least as tightly as the current binop, 566 // consume it, otherwise we are done. 567 if (TokPrec < ExprPrec) 568 return LHS; 569 570 // Okay, we know this is a binop. 571 int BinOp = CurTok; 572 getNextToken(); // eat binop 573 574 // Parse the unary expression after the binary operator. 575 auto RHS = ParseUnary(); 576 if (!RHS) 577 return nullptr; 578 579 // If BinOp binds less tightly with RHS than the operator after RHS, let 580 // the pending operator take RHS as its LHS. 581 int NextPrec = GetTokPrecedence(); 582 if (TokPrec < NextPrec) { 583 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); 584 if (!RHS) 585 return nullptr; 586 } 587 588 // Merge LHS/RHS. 589 LHS = 590 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS)); 591 } 592 } 593 594 /// expression 595 /// ::= unary binoprhs 596 /// 597 static std::unique_ptr<ExprAST> ParseExpression() { 598 auto LHS = ParseUnary(); 599 if (!LHS) 600 return nullptr; 601 602 return ParseBinOpRHS(0, std::move(LHS)); 603 } 604 605 /// prototype 606 /// ::= id '(' id* ')' 607 /// ::= binary LETTER number? (id, id) 608 /// ::= unary LETTER (id) 609 static std::unique_ptr<PrototypeAST> ParsePrototype() { 610 std::string FnName; 611 612 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 613 unsigned BinaryPrecedence = 30; 614 615 switch (CurTok) { 616 default: 617 return LogErrorP("Expected function name in prototype"); 618 case tok_identifier: 619 FnName = IdentifierStr; 620 Kind = 0; 621 getNextToken(); 622 break; 623 case tok_unary: 624 getNextToken(); 625 if (!isascii(CurTok)) 626 return LogErrorP("Expected unary operator"); 627 FnName = "unary"; 628 FnName += (char)CurTok; 629 Kind = 1; 630 getNextToken(); 631 break; 632 case tok_binary: 633 getNextToken(); 634 if (!isascii(CurTok)) 635 return LogErrorP("Expected binary operator"); 636 FnName = "binary"; 637 FnName += (char)CurTok; 638 Kind = 2; 639 getNextToken(); 640 641 // Read the precedence if present. 642 if (CurTok == tok_number) { 643 if (NumVal < 1 || NumVal > 100) 644 return LogErrorP("Invalid precedence: must be 1..100"); 645 BinaryPrecedence = (unsigned)NumVal; 646 getNextToken(); 647 } 648 break; 649 } 650 651 if (CurTok != '(') 652 return LogErrorP("Expected '(' in prototype"); 653 654 std::vector<std::string> ArgNames; 655 while (getNextToken() == tok_identifier) 656 ArgNames.push_back(IdentifierStr); 657 if (CurTok != ')') 658 return LogErrorP("Expected ')' in prototype"); 659 660 // success. 661 getNextToken(); // eat ')'. 662 663 // Verify right number of names for operator. 664 if (Kind && ArgNames.size() != Kind) 665 return LogErrorP("Invalid number of operands for operator"); 666 667 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0, 668 BinaryPrecedence); 669 } 670 671 /// definition ::= 'def' prototype expression 672 static std::unique_ptr<FunctionAST> ParseDefinition() { 673 getNextToken(); // eat def. 674 auto Proto = ParsePrototype(); 675 if (!Proto) 676 return nullptr; 677 678 if (auto E = ParseExpression()) 679 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E)); 680 return nullptr; 681 } 682 683 /// toplevelexpr ::= expression 684 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() { 685 if (auto E = ParseExpression()) { 686 // Make an anonymous proto. 687 auto Proto = std::make_unique<PrototypeAST>("__anon_expr", 688 std::vector<std::string>()); 689 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E)); 690 } 691 return nullptr; 692 } 693 694 /// external ::= 'extern' prototype 695 static std::unique_ptr<PrototypeAST> ParseExtern() { 696 getNextToken(); // eat extern. 697 return ParsePrototype(); 698 } 699 700 //===----------------------------------------------------------------------===// 701 // Code Generation 702 //===----------------------------------------------------------------------===// 703 704 static LLVMContext TheContext; 705 static IRBuilder<> Builder(TheContext); 706 static std::unique_ptr<Module> TheModule; 707 static std::map<std::string, AllocaInst *> NamedValues; 708 static std::unique_ptr<legacy::FunctionPassManager> TheFPM; 709 static std::unique_ptr<KaleidoscopeJIT> TheJIT; 710 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos; 711 712 Value *LogErrorV(const char *Str) { 713 LogError(Str); 714 return nullptr; 715 } 716 717 Function *getFunction(std::string Name) { 718 // First, see if the function has already been added to the current module. 719 if (auto *F = TheModule->getFunction(Name)) 720 return F; 721 722 // If not, check whether we can codegen the declaration from some existing 723 // prototype. 724 auto FI = FunctionProtos.find(Name); 725 if (FI != FunctionProtos.end()) 726 return FI->second->codegen(); 727 728 // If no existing prototype exists, return null. 729 return nullptr; 730 } 731 732 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 733 /// the function. This is used for mutable variables etc. 734 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 735 StringRef VarName) { 736 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 737 TheFunction->getEntryBlock().begin()); 738 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), nullptr, VarName); 739 } 740 741 Value *NumberExprAST::codegen() { 742 return ConstantFP::get(TheContext, APFloat(Val)); 743 } 744 745 Value *VariableExprAST::codegen() { 746 // Look this variable up in the function. 747 Value *V = NamedValues[Name]; 748 if (!V) 749 return LogErrorV("Unknown variable name"); 750 751 // Load the value. 752 return Builder.CreateLoad(V, Name.c_str()); 753 } 754 755 Value *UnaryExprAST::codegen() { 756 Value *OperandV = Operand->codegen(); 757 if (!OperandV) 758 return nullptr; 759 760 Function *F = getFunction(std::string("unary") + Opcode); 761 if (!F) 762 return LogErrorV("Unknown unary operator"); 763 764 return Builder.CreateCall(F, OperandV, "unop"); 765 } 766 767 Value *BinaryExprAST::codegen() { 768 // Special case '=' because we don't want to emit the LHS as an expression. 769 if (Op == '=') { 770 // Assignment requires the LHS to be an identifier. 771 // This assume we're building without RTTI because LLVM builds that way by 772 // default. If you build LLVM with RTTI this can be changed to a 773 // dynamic_cast for automatic error checking. 774 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get()); 775 if (!LHSE) 776 return LogErrorV("destination of '=' must be a variable"); 777 // Codegen the RHS. 778 Value *Val = RHS->codegen(); 779 if (!Val) 780 return nullptr; 781 782 // Look up the name. 783 Value *Variable = NamedValues[LHSE->getName()]; 784 if (!Variable) 785 return LogErrorV("Unknown variable name"); 786 787 Builder.CreateStore(Val, Variable); 788 return Val; 789 } 790 791 Value *L = LHS->codegen(); 792 Value *R = RHS->codegen(); 793 if (!L || !R) 794 return nullptr; 795 796 switch (Op) { 797 case '+': 798 return Builder.CreateFAdd(L, R, "addtmp"); 799 case '-': 800 return Builder.CreateFSub(L, R, "subtmp"); 801 case '*': 802 return Builder.CreateFMul(L, R, "multmp"); 803 case '<': 804 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 805 // Convert bool 0/1 to double 0.0 or 1.0 806 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); 807 default: 808 break; 809 } 810 811 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 812 // a call to it. 813 Function *F = getFunction(std::string("binary") + Op); 814 assert(F && "binary operator not found!"); 815 816 Value *Ops[] = {L, R}; 817 return Builder.CreateCall(F, Ops, "binop"); 818 } 819 820 Value *CallExprAST::codegen() { 821 // Look up the name in the global module table. 822 Function *CalleeF = getFunction(Callee); 823 if (!CalleeF) 824 return LogErrorV("Unknown function referenced"); 825 826 // If argument mismatch error. 827 if (CalleeF->arg_size() != Args.size()) 828 return LogErrorV("Incorrect # arguments passed"); 829 830 std::vector<Value *> ArgsV; 831 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 832 ArgsV.push_back(Args[i]->codegen()); 833 if (!ArgsV.back()) 834 return nullptr; 835 } 836 837 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 838 } 839 840 Value *IfExprAST::codegen() { 841 Value *CondV = Cond->codegen(); 842 if (!CondV) 843 return nullptr; 844 845 // Convert condition to a bool by comparing non-equal to 0.0. 846 CondV = Builder.CreateFCmpONE( 847 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); 848 849 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 850 851 // Create blocks for the then and else cases. Insert the 'then' block at the 852 // end of the function. 853 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); 854 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); 855 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); 856 857 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 858 859 // Emit then value. 860 Builder.SetInsertPoint(ThenBB); 861 862 Value *ThenV = Then->codegen(); 863 if (!ThenV) 864 return nullptr; 865 866 Builder.CreateBr(MergeBB); 867 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 868 ThenBB = Builder.GetInsertBlock(); 869 870 // Emit else block. 871 TheFunction->getBasicBlockList().push_back(ElseBB); 872 Builder.SetInsertPoint(ElseBB); 873 874 Value *ElseV = Else->codegen(); 875 if (!ElseV) 876 return nullptr; 877 878 Builder.CreateBr(MergeBB); 879 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 880 ElseBB = Builder.GetInsertBlock(); 881 882 // Emit merge block. 883 TheFunction->getBasicBlockList().push_back(MergeBB); 884 Builder.SetInsertPoint(MergeBB); 885 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); 886 887 PN->addIncoming(ThenV, ThenBB); 888 PN->addIncoming(ElseV, ElseBB); 889 return PN; 890 } 891 892 // Output for-loop as: 893 // var = alloca double 894 // ... 895 // start = startexpr 896 // store start -> var 897 // goto loop 898 // loop: 899 // ... 900 // bodyexpr 901 // ... 902 // loopend: 903 // step = stepexpr 904 // endcond = endexpr 905 // 906 // curvar = load var 907 // nextvar = curvar + step 908 // store nextvar -> var 909 // br endcond, loop, endloop 910 // outloop: 911 Value *ForExprAST::codegen() { 912 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 913 914 // Create an alloca for the variable in the entry block. 915 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 916 917 // Emit the start code first, without 'variable' in scope. 918 Value *StartVal = Start->codegen(); 919 if (!StartVal) 920 return nullptr; 921 922 // Store the value into the alloca. 923 Builder.CreateStore(StartVal, Alloca); 924 925 // Make the new basic block for the loop header, inserting after current 926 // block. 927 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); 928 929 // Insert an explicit fall through from the current block to the LoopBB. 930 Builder.CreateBr(LoopBB); 931 932 // Start insertion in LoopBB. 933 Builder.SetInsertPoint(LoopBB); 934 935 // Within the loop, the variable is defined equal to the PHI node. If it 936 // shadows an existing variable, we have to restore it, so save it now. 937 AllocaInst *OldVal = NamedValues[VarName]; 938 NamedValues[VarName] = Alloca; 939 940 // Emit the body of the loop. This, like any other expr, can change the 941 // current BB. Note that we ignore the value computed by the body, but don't 942 // allow an error. 943 if (!Body->codegen()) 944 return nullptr; 945 946 // Emit the step value. 947 Value *StepVal = nullptr; 948 if (Step) { 949 StepVal = Step->codegen(); 950 if (!StepVal) 951 return nullptr; 952 } else { 953 // If not specified, use 1.0. 954 StepVal = ConstantFP::get(TheContext, APFloat(1.0)); 955 } 956 957 // Compute the end condition. 958 Value *EndCond = End->codegen(); 959 if (!EndCond) 960 return nullptr; 961 962 // Reload, increment, and restore the alloca. This handles the case where 963 // the body of the loop mutates the variable. 964 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 965 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 966 Builder.CreateStore(NextVar, Alloca); 967 968 // Convert condition to a bool by comparing non-equal to 0.0. 969 EndCond = Builder.CreateFCmpONE( 970 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); 971 972 // Create the "after loop" block and insert it. 973 BasicBlock *AfterBB = 974 BasicBlock::Create(TheContext, "afterloop", TheFunction); 975 976 // Insert the conditional branch into the end of LoopEndBB. 977 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 978 979 // Any new code will be inserted in AfterBB. 980 Builder.SetInsertPoint(AfterBB); 981 982 // Restore the unshadowed variable. 983 if (OldVal) 984 NamedValues[VarName] = OldVal; 985 else 986 NamedValues.erase(VarName); 987 988 // for expr always returns 0.0. 989 return Constant::getNullValue(Type::getDoubleTy(TheContext)); 990 } 991 992 Value *VarExprAST::codegen() { 993 std::vector<AllocaInst *> OldBindings; 994 995 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 996 997 // Register all variables and emit their initializer. 998 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 999 const std::string &VarName = VarNames[i].first; 1000 ExprAST *Init = VarNames[i].second.get(); 1001 1002 // Emit the initializer before adding the variable to scope, this prevents 1003 // the initializer from referencing the variable itself, and permits stuff 1004 // like this: 1005 // var a = 1 in 1006 // var a = a in ... # refers to outer 'a'. 1007 Value *InitVal; 1008 if (Init) { 1009 InitVal = Init->codegen(); 1010 if (!InitVal) 1011 return nullptr; 1012 } else { // If not specified, use 0.0. 1013 InitVal = ConstantFP::get(TheContext, APFloat(0.0)); 1014 } 1015 1016 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1017 Builder.CreateStore(InitVal, Alloca); 1018 1019 // Remember the old variable binding so that we can restore the binding when 1020 // we unrecurse. 1021 OldBindings.push_back(NamedValues[VarName]); 1022 1023 // Remember this binding. 1024 NamedValues[VarName] = Alloca; 1025 } 1026 1027 // Codegen the body, now that all vars are in scope. 1028 Value *BodyVal = Body->codegen(); 1029 if (!BodyVal) 1030 return nullptr; 1031 1032 // Pop all our variables from scope. 1033 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1034 NamedValues[VarNames[i].first] = OldBindings[i]; 1035 1036 // Return the body computation. 1037 return BodyVal; 1038 } 1039 1040 Function *PrototypeAST::codegen() { 1041 // Make the function type: double(double,double) etc. 1042 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); 1043 FunctionType *FT = 1044 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); 1045 1046 Function *F = 1047 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get()); 1048 1049 // Set names for all arguments. 1050 unsigned Idx = 0; 1051 for (auto &Arg : F->args()) 1052 Arg.setName(Args[Idx++]); 1053 1054 return F; 1055 } 1056 1057 Function *FunctionAST::codegen() { 1058 // Transfer ownership of the prototype to the FunctionProtos map, but keep a 1059 // reference to it for use below. 1060 auto &P = *Proto; 1061 FunctionProtos[Proto->getName()] = std::move(Proto); 1062 Function *TheFunction = getFunction(P.getName()); 1063 if (!TheFunction) 1064 return nullptr; 1065 1066 // If this is an operator, install it. 1067 if (P.isBinaryOp()) 1068 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence(); 1069 1070 // Create a new basic block to start insertion into. 1071 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); 1072 Builder.SetInsertPoint(BB); 1073 1074 // Record the function arguments in the NamedValues map. 1075 NamedValues.clear(); 1076 for (auto &Arg : TheFunction->args()) { 1077 // Create an alloca for this variable. 1078 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName()); 1079 1080 // Store the initial value into the alloca. 1081 Builder.CreateStore(&Arg, Alloca); 1082 1083 // Add arguments to variable symbol table. 1084 NamedValues[std::string(Arg.getName())] = Alloca; 1085 } 1086 1087 if (Value *RetVal = Body->codegen()) { 1088 // Finish off the function. 1089 Builder.CreateRet(RetVal); 1090 1091 // Validate the generated code, checking for consistency. 1092 verifyFunction(*TheFunction); 1093 1094 // Run the optimizer on the function. 1095 TheFPM->run(*TheFunction); 1096 1097 return TheFunction; 1098 } 1099 1100 // Error reading body, remove function. 1101 TheFunction->eraseFromParent(); 1102 1103 if (P.isBinaryOp()) 1104 BinopPrecedence.erase(P.getOperatorName()); 1105 return nullptr; 1106 } 1107 1108 //===----------------------------------------------------------------------===// 1109 // Top-Level parsing and JIT Driver 1110 //===----------------------------------------------------------------------===// 1111 1112 static void InitializeModuleAndPassManager() { 1113 // Open a new module. 1114 TheModule = std::make_unique<Module>("my cool jit", TheContext); 1115 TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout()); 1116 1117 // Create a new pass manager attached to it. 1118 TheFPM = std::make_unique<legacy::FunctionPassManager>(TheModule.get()); 1119 1120 // Promote allocas to registers. 1121 TheFPM->add(createPromoteMemoryToRegisterPass()); 1122 // Do simple "peephole" optimizations and bit-twiddling optzns. 1123 TheFPM->add(createInstructionCombiningPass()); 1124 // Reassociate expressions. 1125 TheFPM->add(createReassociatePass()); 1126 // Eliminate Common SubExpressions. 1127 TheFPM->add(createGVNPass()); 1128 // Simplify the control flow graph (deleting unreachable blocks, etc). 1129 TheFPM->add(createCFGSimplificationPass()); 1130 1131 TheFPM->doInitialization(); 1132 } 1133 1134 static void HandleDefinition() { 1135 if (auto FnAST = ParseDefinition()) { 1136 if (auto *FnIR = FnAST->codegen()) { 1137 fprintf(stderr, "Read function definition:"); 1138 FnIR->print(errs()); 1139 fprintf(stderr, "\n"); 1140 TheJIT->addModule(std::move(TheModule)); 1141 InitializeModuleAndPassManager(); 1142 } 1143 } else { 1144 // Skip token for error recovery. 1145 getNextToken(); 1146 } 1147 } 1148 1149 static void HandleExtern() { 1150 if (auto ProtoAST = ParseExtern()) { 1151 if (auto *FnIR = ProtoAST->codegen()) { 1152 fprintf(stderr, "Read extern: "); 1153 FnIR->print(errs()); 1154 fprintf(stderr, "\n"); 1155 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST); 1156 } 1157 } else { 1158 // Skip token for error recovery. 1159 getNextToken(); 1160 } 1161 } 1162 1163 static void HandleTopLevelExpression() { 1164 // Evaluate a top-level expression into an anonymous function. 1165 if (auto FnAST = ParseTopLevelExpr()) { 1166 if (FnAST->codegen()) { 1167 // JIT the module containing the anonymous expression, keeping a handle so 1168 // we can free it later. 1169 auto H = TheJIT->addModule(std::move(TheModule)); 1170 InitializeModuleAndPassManager(); 1171 1172 // Search the JIT for the __anon_expr symbol. 1173 auto ExprSymbol = TheJIT->findSymbol("__anon_expr"); 1174 assert(ExprSymbol && "Function not found"); 1175 1176 // Get the symbol's address and cast it to the right type (takes no 1177 // arguments, returns a double) so we can call it as a native function. 1178 double (*FP)() = (double (*)())(intptr_t)cantFail(ExprSymbol.getAddress()); 1179 fprintf(stderr, "Evaluated to %f\n", FP()); 1180 1181 // Delete the anonymous expression module from the JIT. 1182 TheJIT->removeModule(H); 1183 } 1184 } else { 1185 // Skip token for error recovery. 1186 getNextToken(); 1187 } 1188 } 1189 1190 /// top ::= definition | external | expression | ';' 1191 static void MainLoop() { 1192 while (true) { 1193 fprintf(stderr, "ready> "); 1194 switch (CurTok) { 1195 case tok_eof: 1196 return; 1197 case ';': // ignore top-level semicolons. 1198 getNextToken(); 1199 break; 1200 case tok_def: 1201 HandleDefinition(); 1202 break; 1203 case tok_extern: 1204 HandleExtern(); 1205 break; 1206 default: 1207 HandleTopLevelExpression(); 1208 break; 1209 } 1210 } 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // "Library" functions that can be "extern'd" from user code. 1215 //===----------------------------------------------------------------------===// 1216 1217 #ifdef _WIN32 1218 #define DLLEXPORT __declspec(dllexport) 1219 #else 1220 #define DLLEXPORT 1221 #endif 1222 1223 /// putchard - putchar that takes a double and returns 0. 1224 extern "C" DLLEXPORT double putchard(double X) { 1225 fputc((char)X, stderr); 1226 return 0; 1227 } 1228 1229 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1230 extern "C" DLLEXPORT double printd(double X) { 1231 fprintf(stderr, "%f\n", X); 1232 return 0; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // Main driver code. 1237 //===----------------------------------------------------------------------===// 1238 1239 int main() { 1240 InitializeNativeTarget(); 1241 InitializeNativeTargetAsmPrinter(); 1242 InitializeNativeTargetAsmParser(); 1243 1244 // Install standard binary operators. 1245 // 1 is lowest precedence. 1246 BinopPrecedence['='] = 2; 1247 BinopPrecedence['<'] = 10; 1248 BinopPrecedence['+'] = 20; 1249 BinopPrecedence['-'] = 20; 1250 BinopPrecedence['*'] = 40; // highest. 1251 1252 // Prime the first token. 1253 fprintf(stderr, "ready> "); 1254 getNextToken(); 1255 1256 TheJIT = std::make_unique<KaleidoscopeJIT>(); 1257 1258 InitializeModuleAndPassManager(); 1259 1260 // Run the main "interpreter loop" now. 1261 MainLoop(); 1262 1263 return 0; 1264 } 1265