1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/ADT/UniqueVector.h"
157 #include "llvm/CodeGen/LexicalScopes.h"
158 #include "llvm/CodeGen/MachineBasicBlock.h"
159 #include "llvm/CodeGen/MachineFrameInfo.h"
160 #include "llvm/CodeGen/MachineFunction.h"
161 #include "llvm/CodeGen/MachineFunctionPass.h"
162 #include "llvm/CodeGen/MachineInstr.h"
163 #include "llvm/CodeGen/MachineInstrBuilder.h"
164 #include "llvm/CodeGen/MachineInstrBundle.h"
165 #include "llvm/CodeGen/MachineMemOperand.h"
166 #include "llvm/CodeGen/MachineOperand.h"
167 #include "llvm/CodeGen/PseudoSourceValue.h"
168 #include "llvm/CodeGen/RegisterScavenging.h"
169 #include "llvm/CodeGen/TargetFrameLowering.h"
170 #include "llvm/CodeGen/TargetInstrInfo.h"
171 #include "llvm/CodeGen/TargetLowering.h"
172 #include "llvm/CodeGen/TargetPassConfig.h"
173 #include "llvm/CodeGen/TargetRegisterInfo.h"
174 #include "llvm/CodeGen/TargetSubtargetInfo.h"
175 #include "llvm/Config/llvm-config.h"
176 #include "llvm/IR/DIBuilder.h"
177 #include "llvm/IR/DebugInfoMetadata.h"
178 #include "llvm/IR/DebugLoc.h"
179 #include "llvm/IR/Function.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/InitializePasses.h"
182 #include "llvm/MC/MCRegisterInfo.h"
183 #include "llvm/Pass.h"
184 #include "llvm/Support/Casting.h"
185 #include "llvm/Support/Compiler.h"
186 #include "llvm/Support/Debug.h"
187 #include "llvm/Support/TypeSize.h"
188 #include "llvm/Support/raw_ostream.h"
189 #include "llvm/Target/TargetMachine.h"
190 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
191 #include <algorithm>
192 #include <cassert>
193 #include <cstdint>
194 #include <functional>
195 #include <queue>
196 #include <tuple>
197 #include <utility>
198 #include <vector>
199 #include <limits.h>
200 #include <limits>
201 
202 #include "LiveDebugValues.h"
203 
204 using namespace llvm;
205 
206 // SSAUpdaterImple sets DEBUG_TYPE, change it.
207 #undef DEBUG_TYPE
208 #define DEBUG_TYPE "livedebugvalues"
209 
210 // Act more like the VarLoc implementation, by propagating some locations too
211 // far and ignoring some transfers.
212 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
213                                    cl::desc("Act like old LiveDebugValues did"),
214                                    cl::init(false));
215 
216 namespace {
217 
218 // The location at which a spilled value resides. It consists of a register and
219 // an offset.
220 struct SpillLoc {
221   unsigned SpillBase;
222   StackOffset SpillOffset;
223   bool operator==(const SpillLoc &Other) const {
224     return std::make_pair(SpillBase, SpillOffset) ==
225            std::make_pair(Other.SpillBase, Other.SpillOffset);
226   }
227   bool operator<(const SpillLoc &Other) const {
228     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
229                     SpillOffset.getScalable()) <
230            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
231                     Other.SpillOffset.getScalable());
232   }
233 };
234 
235 class LocIdx {
236   unsigned Location;
237 
238   // Default constructor is private, initializing to an illegal location number.
239   // Use only for "not an entry" elements in IndexedMaps.
240   LocIdx() : Location(UINT_MAX) { }
241 
242 public:
243   #define NUM_LOC_BITS 24
244   LocIdx(unsigned L) : Location(L) {
245     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
246   }
247 
248   static LocIdx MakeIllegalLoc() {
249     return LocIdx();
250   }
251 
252   bool isIllegal() const {
253     return Location == UINT_MAX;
254   }
255 
256   uint64_t asU64() const {
257     return Location;
258   }
259 
260   bool operator==(unsigned L) const {
261     return Location == L;
262   }
263 
264   bool operator==(const LocIdx &L) const {
265     return Location == L.Location;
266   }
267 
268   bool operator!=(unsigned L) const {
269     return !(*this == L);
270   }
271 
272   bool operator!=(const LocIdx &L) const {
273     return !(*this == L);
274   }
275 
276   bool operator<(const LocIdx &Other) const {
277     return Location < Other.Location;
278   }
279 };
280 
281 class LocIdxToIndexFunctor {
282 public:
283   using argument_type = LocIdx;
284   unsigned operator()(const LocIdx &L) const {
285     return L.asU64();
286   }
287 };
288 
289 /// Unique identifier for a value defined by an instruction, as a value type.
290 /// Casts back and forth to a uint64_t. Probably replacable with something less
291 /// bit-constrained. Each value identifies the instruction and machine location
292 /// where the value is defined, although there may be no corresponding machine
293 /// operand for it (ex: regmasks clobbering values). The instructions are
294 /// one-based, and definitions that are PHIs have instruction number zero.
295 ///
296 /// The obvious limits of a 1M block function or 1M instruction blocks are
297 /// problematic; but by that point we should probably have bailed out of
298 /// trying to analyse the function.
299 class ValueIDNum {
300   uint64_t BlockNo : 20;         /// The block where the def happens.
301   uint64_t InstNo : 20;          /// The Instruction where the def happens.
302                                  /// One based, is distance from start of block.
303   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
304 
305 public:
306   // XXX -- temporarily enabled while the live-in / live-out tables are moved
307   // to something more type-y
308   ValueIDNum() : BlockNo(0xFFFFF),
309                  InstNo(0xFFFFF),
310                  LocNo(0xFFFFFF) { }
311 
312   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
313     : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
314 
315   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
316     : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
317 
318   uint64_t getBlock() const { return BlockNo; }
319   uint64_t getInst() const { return InstNo; }
320   uint64_t getLoc() const { return LocNo; }
321   bool isPHI() const { return InstNo == 0; }
322 
323   uint64_t asU64() const {
324     uint64_t TmpBlock = BlockNo;
325     uint64_t TmpInst = InstNo;
326     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
327   }
328 
329   static ValueIDNum fromU64(uint64_t v) {
330     uint64_t L = (v & 0x3FFF);
331     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
332   }
333 
334   bool operator<(const ValueIDNum &Other) const {
335     return asU64() < Other.asU64();
336   }
337 
338   bool operator==(const ValueIDNum &Other) const {
339     return std::tie(BlockNo, InstNo, LocNo) ==
340            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
341   }
342 
343   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
344 
345   std::string asString(const std::string &mlocname) const {
346     return Twine("Value{bb: ")
347         .concat(Twine(BlockNo).concat(
348             Twine(", inst: ")
349                 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
350                             .concat(Twine(", loc: ").concat(Twine(mlocname)))
351                             .concat(Twine("}")))))
352         .str();
353   }
354 
355   static ValueIDNum EmptyValue;
356 };
357 
358 } // end anonymous namespace
359 
360 namespace {
361 
362 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
363 /// the the value, and Boolean of whether or not it's indirect.
364 class DbgValueProperties {
365 public:
366   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
367       : DIExpr(DIExpr), Indirect(Indirect) {}
368 
369   /// Extract properties from an existing DBG_VALUE instruction.
370   DbgValueProperties(const MachineInstr &MI) {
371     assert(MI.isDebugValue());
372     DIExpr = MI.getDebugExpression();
373     Indirect = MI.getOperand(1).isImm();
374   }
375 
376   bool operator==(const DbgValueProperties &Other) const {
377     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
378   }
379 
380   bool operator!=(const DbgValueProperties &Other) const {
381     return !(*this == Other);
382   }
383 
384   const DIExpression *DIExpr;
385   bool Indirect;
386 };
387 
388 /// Tracker for what values are in machine locations. Listens to the Things
389 /// being Done by various instructions, and maintains a table of what machine
390 /// locations have what values (as defined by a ValueIDNum).
391 ///
392 /// There are potentially a much larger number of machine locations on the
393 /// target machine than the actual working-set size of the function. On x86 for
394 /// example, we're extremely unlikely to want to track values through control
395 /// or debug registers. To avoid doing so, MLocTracker has several layers of
396 /// indirection going on, with two kinds of ``location'':
397 ///  * A LocID uniquely identifies a register or spill location, with a
398 ///    predictable value.
399 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
400 /// Whenever a location is def'd or used by a MachineInstr, we automagically
401 /// create a new LocIdx for a location, but not otherwise. This ensures we only
402 /// account for locations that are actually used or defined. The cost is another
403 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
404 /// fairly cheap, and the compiler tries to reduce the working-set at any one
405 /// time in the function anyway.
406 ///
407 /// Register mask operands completely blow this out of the water; I've just
408 /// piled hacks on top of hacks to get around that.
409 class MLocTracker {
410 public:
411   MachineFunction &MF;
412   const TargetInstrInfo &TII;
413   const TargetRegisterInfo &TRI;
414   const TargetLowering &TLI;
415 
416   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
417   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
418 
419   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
420   /// packed, entries only exist for locations that are being tracked.
421   LocToValueType LocIdxToIDNum;
422 
423   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
424   /// LocIdx key / number for that location. There are always at least as many
425   /// as the number of registers on the target -- if the value in the register
426   /// is not being tracked, then the LocIdx value will be zero. New entries are
427   /// appended if a new spill slot begins being tracked.
428   /// This, and the corresponding reverse map persist for the analysis of the
429   /// whole function, and is necessarying for decoding various vectors of
430   /// values.
431   std::vector<LocIdx> LocIDToLocIdx;
432 
433   /// Inverse map of LocIDToLocIdx.
434   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
435 
436   /// Unique-ification of spill slots. Used to number them -- their LocID
437   /// number is the index in SpillLocs minus one plus NumRegs.
438   UniqueVector<SpillLoc> SpillLocs;
439 
440   // If we discover a new machine location, assign it an mphi with this
441   // block number.
442   unsigned CurBB;
443 
444   /// Cached local copy of the number of registers the target has.
445   unsigned NumRegs;
446 
447   /// Collection of register mask operands that have been observed. Second part
448   /// of pair indicates the instruction that they happened in. Used to
449   /// reconstruct where defs happened if we start tracking a location later
450   /// on.
451   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
452 
453   /// Iterator for locations and the values they contain. Dereferencing
454   /// produces a struct/pair containing the LocIdx key for this location,
455   /// and a reference to the value currently stored. Simplifies the process
456   /// of seeking a particular location.
457   class MLocIterator {
458     LocToValueType &ValueMap;
459     LocIdx Idx;
460 
461   public:
462     class value_type {
463       public:
464       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
465       const LocIdx Idx;  /// Read-only index of this location.
466       ValueIDNum &Value; /// Reference to the stored value at this location.
467     };
468 
469     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
470       : ValueMap(ValueMap), Idx(Idx) { }
471 
472     bool operator==(const MLocIterator &Other) const {
473       assert(&ValueMap == &Other.ValueMap);
474       return Idx == Other.Idx;
475     }
476 
477     bool operator!=(const MLocIterator &Other) const {
478       return !(*this == Other);
479     }
480 
481     void operator++() {
482       Idx = LocIdx(Idx.asU64() + 1);
483     }
484 
485     value_type operator*() {
486       return value_type(Idx, ValueMap[LocIdx(Idx)]);
487     }
488   };
489 
490   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
491               const TargetRegisterInfo &TRI, const TargetLowering &TLI)
492       : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
493         LocIdxToIDNum(ValueIDNum::EmptyValue),
494         LocIdxToLocID(0) {
495     NumRegs = TRI.getNumRegs();
496     reset();
497     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
498     assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
499 
500     // Always track SP. This avoids the implicit clobbering caused by regmasks
501     // from affectings its values. (LiveDebugValues disbelieves calls and
502     // regmasks that claim to clobber SP).
503     Register SP = TLI.getStackPointerRegisterToSaveRestore();
504     if (SP) {
505       unsigned ID = getLocID(SP, false);
506       (void)lookupOrTrackRegister(ID);
507     }
508   }
509 
510   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
511   /// or spill number, and flag for whether it's a spill or not.
512   unsigned getLocID(Register RegOrSpill, bool isSpill) {
513     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
514   }
515 
516   /// Accessor for reading the value at Idx.
517   ValueIDNum getNumAtPos(LocIdx Idx) const {
518     assert(Idx.asU64() < LocIdxToIDNum.size());
519     return LocIdxToIDNum[Idx];
520   }
521 
522   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
523 
524   /// Reset all locations to contain a PHI value at the designated block. Used
525   /// sometimes for actual PHI values, othertimes to indicate the block entry
526   /// value (before any more information is known).
527   void setMPhis(unsigned NewCurBB) {
528     CurBB = NewCurBB;
529     for (auto Location : locations())
530       Location.Value = {CurBB, 0, Location.Idx};
531   }
532 
533   /// Load values for each location from array of ValueIDNums. Take current
534   /// bbnum just in case we read a value from a hitherto untouched register.
535   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
536     CurBB = NewCurBB;
537     // Iterate over all tracked locations, and load each locations live-in
538     // value into our local index.
539     for (auto Location : locations())
540       Location.Value = Locs[Location.Idx.asU64()];
541   }
542 
543   /// Wipe any un-necessary location records after traversing a block.
544   void reset(void) {
545     // We could reset all the location values too; however either loadFromArray
546     // or setMPhis should be called before this object is re-used. Just
547     // clear Masks, they're definitely not needed.
548     Masks.clear();
549   }
550 
551   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
552   /// the information in this pass uninterpretable.
553   void clear(void) {
554     reset();
555     LocIDToLocIdx.clear();
556     LocIdxToLocID.clear();
557     LocIdxToIDNum.clear();
558     //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
559     SpillLocs = decltype(SpillLocs)();
560 
561     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
562   }
563 
564   /// Set a locaiton to a certain value.
565   void setMLoc(LocIdx L, ValueIDNum Num) {
566     assert(L.asU64() < LocIdxToIDNum.size());
567     LocIdxToIDNum[L] = Num;
568   }
569 
570   /// Create a LocIdx for an untracked register ID. Initialize it to either an
571   /// mphi value representing a live-in, or a recent register mask clobber.
572   LocIdx trackRegister(unsigned ID) {
573     assert(ID != 0);
574     LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
575     LocIdxToIDNum.grow(NewIdx);
576     LocIdxToLocID.grow(NewIdx);
577 
578     // Default: it's an mphi.
579     ValueIDNum ValNum = {CurBB, 0, NewIdx};
580     // Was this reg ever touched by a regmask?
581     for (const auto &MaskPair : reverse(Masks)) {
582       if (MaskPair.first->clobbersPhysReg(ID)) {
583         // There was an earlier def we skipped.
584         ValNum = {CurBB, MaskPair.second, NewIdx};
585         break;
586       }
587     }
588 
589     LocIdxToIDNum[NewIdx] = ValNum;
590     LocIdxToLocID[NewIdx] = ID;
591     return NewIdx;
592   }
593 
594   LocIdx lookupOrTrackRegister(unsigned ID) {
595     LocIdx &Index = LocIDToLocIdx[ID];
596     if (Index.isIllegal())
597       Index = trackRegister(ID);
598     return Index;
599   }
600 
601   /// Record a definition of the specified register at the given block / inst.
602   /// This doesn't take a ValueIDNum, because the definition and its location
603   /// are synonymous.
604   void defReg(Register R, unsigned BB, unsigned Inst) {
605     unsigned ID = getLocID(R, false);
606     LocIdx Idx = lookupOrTrackRegister(ID);
607     ValueIDNum ValueID = {BB, Inst, Idx};
608     LocIdxToIDNum[Idx] = ValueID;
609   }
610 
611   /// Set a register to a value number. To be used if the value number is
612   /// known in advance.
613   void setReg(Register R, ValueIDNum ValueID) {
614     unsigned ID = getLocID(R, false);
615     LocIdx Idx = lookupOrTrackRegister(ID);
616     LocIdxToIDNum[Idx] = ValueID;
617   }
618 
619   ValueIDNum readReg(Register R) {
620     unsigned ID = getLocID(R, false);
621     LocIdx Idx = lookupOrTrackRegister(ID);
622     return LocIdxToIDNum[Idx];
623   }
624 
625   /// Reset a register value to zero / empty. Needed to replicate the
626   /// VarLoc implementation where a copy to/from a register effectively
627   /// clears the contents of the source register. (Values can only have one
628   ///  machine location in VarLocBasedImpl).
629   void wipeRegister(Register R) {
630     unsigned ID = getLocID(R, false);
631     LocIdx Idx = LocIDToLocIdx[ID];
632     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
633   }
634 
635   /// Determine the LocIdx of an existing register.
636   LocIdx getRegMLoc(Register R) {
637     unsigned ID = getLocID(R, false);
638     return LocIDToLocIdx[ID];
639   }
640 
641   /// Record a RegMask operand being executed. Defs any register we currently
642   /// track, stores a pointer to the mask in case we have to account for it
643   /// later.
644   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
645     // Ensure SP exists, so that we don't override it later.
646     Register SP = TLI.getStackPointerRegisterToSaveRestore();
647 
648     // Def any register we track have that isn't preserved. The regmask
649     // terminates the liveness of a register, meaning its value can't be
650     // relied upon -- we represent this by giving it a new value.
651     for (auto Location : locations()) {
652       unsigned ID = LocIdxToLocID[Location.Idx];
653       // Don't clobber SP, even if the mask says it's clobbered.
654       if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
655         defReg(ID, CurBB, InstID);
656     }
657     Masks.push_back(std::make_pair(MO, InstID));
658   }
659 
660   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
661   LocIdx getOrTrackSpillLoc(SpillLoc L) {
662     unsigned SpillID = SpillLocs.idFor(L);
663     if (SpillID == 0) {
664       SpillID = SpillLocs.insert(L);
665       unsigned L = getLocID(SpillID, true);
666       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
667       LocIdxToIDNum.grow(Idx);
668       LocIdxToLocID.grow(Idx);
669       LocIDToLocIdx.push_back(Idx);
670       LocIdxToLocID[Idx] = L;
671       return Idx;
672     } else {
673       unsigned L = getLocID(SpillID, true);
674       LocIdx Idx = LocIDToLocIdx[L];
675       return Idx;
676     }
677   }
678 
679   /// Set the value stored in a spill slot.
680   void setSpill(SpillLoc L, ValueIDNum ValueID) {
681     LocIdx Idx = getOrTrackSpillLoc(L);
682     LocIdxToIDNum[Idx] = ValueID;
683   }
684 
685   /// Read whatever value is in a spill slot, or None if it isn't tracked.
686   Optional<ValueIDNum> readSpill(SpillLoc L) {
687     unsigned SpillID = SpillLocs.idFor(L);
688     if (SpillID == 0)
689       return None;
690 
691     unsigned LocID = getLocID(SpillID, true);
692     LocIdx Idx = LocIDToLocIdx[LocID];
693     return LocIdxToIDNum[Idx];
694   }
695 
696   /// Determine the LocIdx of a spill slot. Return None if it previously
697   /// hasn't had a value assigned.
698   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
699     unsigned SpillID = SpillLocs.idFor(L);
700     if (SpillID == 0)
701       return None;
702     unsigned LocNo = getLocID(SpillID, true);
703     return LocIDToLocIdx[LocNo];
704   }
705 
706   /// Return true if Idx is a spill machine location.
707   bool isSpill(LocIdx Idx) const {
708     return LocIdxToLocID[Idx] >= NumRegs;
709   }
710 
711   MLocIterator begin() {
712     return MLocIterator(LocIdxToIDNum, 0);
713   }
714 
715   MLocIterator end() {
716     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
717   }
718 
719   /// Return a range over all locations currently tracked.
720   iterator_range<MLocIterator> locations() {
721     return llvm::make_range(begin(), end());
722   }
723 
724   std::string LocIdxToName(LocIdx Idx) const {
725     unsigned ID = LocIdxToLocID[Idx];
726     if (ID >= NumRegs)
727       return Twine("slot ").concat(Twine(ID - NumRegs)).str();
728     else
729       return TRI.getRegAsmName(ID).str();
730   }
731 
732   std::string IDAsString(const ValueIDNum &Num) const {
733     std::string DefName = LocIdxToName(Num.getLoc());
734     return Num.asString(DefName);
735   }
736 
737   LLVM_DUMP_METHOD
738   void dump() {
739     for (auto Location : locations()) {
740       std::string MLocName = LocIdxToName(Location.Value.getLoc());
741       std::string DefName = Location.Value.asString(MLocName);
742       dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
743     }
744   }
745 
746   LLVM_DUMP_METHOD
747   void dump_mloc_map() {
748     for (auto Location : locations()) {
749       std::string foo = LocIdxToName(Location.Idx);
750       dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
751     }
752   }
753 
754   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
755   /// information in \pProperties, for variable Var. Don't insert it anywhere,
756   /// just return the builder for it.
757   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
758                               const DbgValueProperties &Properties) {
759     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
760                                   Var.getVariable()->getScope(),
761                                   const_cast<DILocation *>(Var.getInlinedAt()));
762     auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
763 
764     const DIExpression *Expr = Properties.DIExpr;
765     if (!MLoc) {
766       // No location -> DBG_VALUE $noreg
767       MIB.addReg(0, RegState::Debug);
768       MIB.addReg(0, RegState::Debug);
769     } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
770       unsigned LocID = LocIdxToLocID[*MLoc];
771       const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
772 
773       auto *TRI = MF.getSubtarget().getRegisterInfo();
774       Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
775                                           Spill.SpillOffset);
776       unsigned Base = Spill.SpillBase;
777       MIB.addReg(Base, RegState::Debug);
778       MIB.addImm(0);
779     } else {
780       unsigned LocID = LocIdxToLocID[*MLoc];
781       MIB.addReg(LocID, RegState::Debug);
782       if (Properties.Indirect)
783         MIB.addImm(0);
784       else
785         MIB.addReg(0, RegState::Debug);
786     }
787 
788     MIB.addMetadata(Var.getVariable());
789     MIB.addMetadata(Expr);
790     return MIB;
791   }
792 };
793 
794 /// Class recording the (high level) _value_ of a variable. Identifies either
795 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
796 /// This class also stores meta-information about how the value is qualified.
797 /// Used to reason about variable values when performing the second
798 /// (DebugVariable specific) dataflow analysis.
799 class DbgValue {
800 public:
801   union {
802     /// If Kind is Def, the value number that this value is based on.
803     ValueIDNum ID;
804     /// If Kind is Const, the MachineOperand defining this value.
805     MachineOperand MO;
806     /// For a NoVal DbgValue, which block it was generated in.
807     unsigned BlockNo;
808   };
809   /// Qualifiers for the ValueIDNum above.
810   DbgValueProperties Properties;
811 
812   typedef enum {
813     Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
814     Def,       // This value is defined by an inst, or is a PHI value.
815     Const,     // A constant value contained in the MachineOperand field.
816     Proposed,  // This is a tentative PHI value, which may be confirmed or
817                // invalidated later.
818     NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
819                // which block this was generated in.
820    } KindT;
821   /// Discriminator for whether this is a constant or an in-program value.
822   KindT Kind;
823 
824   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
825     : ID(Val), Properties(Prop), Kind(Kind) {
826     assert(Kind == Def || Kind == Proposed);
827   }
828 
829   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
830     : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
831     assert(Kind == NoVal);
832   }
833 
834   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
835     : MO(MO), Properties(Prop), Kind(Kind) {
836     assert(Kind == Const);
837   }
838 
839   DbgValue(const DbgValueProperties &Prop, KindT Kind)
840     : Properties(Prop), Kind(Kind) {
841     assert(Kind == Undef &&
842            "Empty DbgValue constructor must pass in Undef kind");
843   }
844 
845   void dump(const MLocTracker *MTrack) const {
846     if (Kind == Const) {
847       MO.dump();
848     } else if (Kind == NoVal) {
849       dbgs() << "NoVal(" << BlockNo << ")";
850     } else if (Kind == Proposed) {
851       dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
852     } else {
853       assert(Kind == Def);
854       dbgs() << MTrack->IDAsString(ID);
855     }
856     if (Properties.Indirect)
857       dbgs() << " indir";
858     if (Properties.DIExpr)
859       dbgs() << " " << *Properties.DIExpr;
860   }
861 
862   bool operator==(const DbgValue &Other) const {
863     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
864       return false;
865     else if (Kind == Proposed && ID != Other.ID)
866       return false;
867     else if (Kind == Def && ID != Other.ID)
868       return false;
869     else if (Kind == NoVal && BlockNo != Other.BlockNo)
870       return false;
871     else if (Kind == Const)
872       return MO.isIdenticalTo(Other.MO);
873 
874     return true;
875   }
876 
877   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
878 };
879 
880 /// Types for recording sets of variable fragments that overlap. For a given
881 /// local variable, we record all other fragments of that variable that could
882 /// overlap it, to reduce search time.
883 using FragmentOfVar =
884     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
885 using OverlapMap =
886     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
887 
888 /// Collection of DBG_VALUEs observed when traversing a block. Records each
889 /// variable and the value the DBG_VALUE refers to. Requires the machine value
890 /// location dataflow algorithm to have run already, so that values can be
891 /// identified.
892 class VLocTracker {
893 public:
894   /// Map DebugVariable to the latest Value it's defined to have.
895   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
896   /// the order in this container.
897   /// We only retain the last DbgValue in each block for each variable, to
898   /// determine the blocks live-out variable value. The Vars container forms the
899   /// transfer function for this block, as part of the dataflow analysis. The
900   /// movement of values between locations inside of a block is handled at a
901   /// much later stage, in the TransferTracker class.
902   MapVector<DebugVariable, DbgValue> Vars;
903   DenseMap<DebugVariable, const DILocation *> Scopes;
904   MachineBasicBlock *MBB;
905 
906 public:
907   VLocTracker() {}
908 
909   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
910               Optional<ValueIDNum> ID) {
911     assert(MI.isDebugValue() || MI.isDebugRef());
912     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
913                       MI.getDebugLoc()->getInlinedAt());
914     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
915                         : DbgValue(Properties, DbgValue::Undef);
916 
917     // Attempt insertion; overwrite if it's already mapped.
918     auto Result = Vars.insert(std::make_pair(Var, Rec));
919     if (!Result.second)
920       Result.first->second = Rec;
921     Scopes[Var] = MI.getDebugLoc().get();
922   }
923 
924   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
925     // Only DBG_VALUEs can define constant-valued variables.
926     assert(MI.isDebugValue());
927     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
928                       MI.getDebugLoc()->getInlinedAt());
929     DbgValueProperties Properties(MI);
930     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
931 
932     // Attempt insertion; overwrite if it's already mapped.
933     auto Result = Vars.insert(std::make_pair(Var, Rec));
934     if (!Result.second)
935       Result.first->second = Rec;
936     Scopes[Var] = MI.getDebugLoc().get();
937   }
938 };
939 
940 /// Tracker for converting machine value locations and variable values into
941 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
942 /// specifying block live-in locations and transfers within blocks.
943 ///
944 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
945 /// and must be initialized with the set of variable values that are live-in to
946 /// the block. The caller then repeatedly calls process(). TransferTracker picks
947 /// out variable locations for the live-in variable values (if there _is_ a
948 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
949 /// stepped through, transfers of values between machine locations are
950 /// identified and if profitable, a DBG_VALUE created.
951 ///
952 /// This is where debug use-before-defs would be resolved: a variable with an
953 /// unavailable value could materialize in the middle of a block, when the
954 /// value becomes available. Or, we could detect clobbers and re-specify the
955 /// variable in a backup location. (XXX these are unimplemented).
956 class TransferTracker {
957 public:
958   const TargetInstrInfo *TII;
959   const TargetLowering *TLI;
960   /// This machine location tracker is assumed to always contain the up-to-date
961   /// value mapping for all machine locations. TransferTracker only reads
962   /// information from it. (XXX make it const?)
963   MLocTracker *MTracker;
964   MachineFunction &MF;
965   bool ShouldEmitDebugEntryValues;
966 
967   /// Record of all changes in variable locations at a block position. Awkwardly
968   /// we allow inserting either before or after the point: MBB != nullptr
969   /// indicates it's before, otherwise after.
970   struct Transfer {
971     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
972     MachineBasicBlock *MBB; /// non-null if we should insert after.
973     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
974   };
975 
976   struct LocAndProperties {
977     LocIdx Loc;
978     DbgValueProperties Properties;
979   };
980 
981   /// Collection of transfers (DBG_VALUEs) to be inserted.
982   SmallVector<Transfer, 32> Transfers;
983 
984   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
985   /// between TransferTrackers view of variable locations and MLocTrackers. For
986   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
987   /// does not.
988   std::vector<ValueIDNum> VarLocs;
989 
990   /// Map from LocIdxes to which DebugVariables are based that location.
991   /// Mantained while stepping through the block. Not accurate if
992   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
993   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
994 
995   /// Map from DebugVariable to it's current location and qualifying meta
996   /// information. To be used in conjunction with ActiveMLocs to construct
997   /// enough information for the DBG_VALUEs for a particular LocIdx.
998   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
999 
1000   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
1001   SmallVector<MachineInstr *, 4> PendingDbgValues;
1002 
1003   /// Record of a use-before-def: created when a value that's live-in to the
1004   /// current block isn't available in any machine location, but it will be
1005   /// defined in this block.
1006   struct UseBeforeDef {
1007     /// Value of this variable, def'd in block.
1008     ValueIDNum ID;
1009     /// Identity of this variable.
1010     DebugVariable Var;
1011     /// Additional variable properties.
1012     DbgValueProperties Properties;
1013   };
1014 
1015   /// Map from instruction index (within the block) to the set of UseBeforeDefs
1016   /// that become defined at that instruction.
1017   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
1018 
1019   /// The set of variables that are in UseBeforeDefs and can become a location
1020   /// once the relevant value is defined. An element being erased from this
1021   /// collection prevents the use-before-def materializing.
1022   DenseSet<DebugVariable> UseBeforeDefVariables;
1023 
1024   const TargetRegisterInfo &TRI;
1025   const BitVector &CalleeSavedRegs;
1026 
1027   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
1028                   MachineFunction &MF, const TargetRegisterInfo &TRI,
1029                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
1030       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1031         CalleeSavedRegs(CalleeSavedRegs) {
1032     TLI = MF.getSubtarget().getTargetLowering();
1033     auto &TM = TPC.getTM<TargetMachine>();
1034     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
1035   }
1036 
1037   /// Load object with live-in variable values. \p mlocs contains the live-in
1038   /// values in each machine location, while \p vlocs the live-in variable
1039   /// values. This method picks variable locations for the live-in variables,
1040   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1041   /// object fields to track variable locations as we step through the block.
1042   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
1043   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1044                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1045                   unsigned NumLocs) {
1046     ActiveMLocs.clear();
1047     ActiveVLocs.clear();
1048     VarLocs.clear();
1049     VarLocs.reserve(NumLocs);
1050     UseBeforeDefs.clear();
1051     UseBeforeDefVariables.clear();
1052 
1053     auto isCalleeSaved = [&](LocIdx L) {
1054       unsigned Reg = MTracker->LocIdxToLocID[L];
1055       if (Reg >= MTracker->NumRegs)
1056         return false;
1057       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1058         if (CalleeSavedRegs.test(*RAI))
1059           return true;
1060       return false;
1061     };
1062 
1063     // Map of the preferred location for each value.
1064     std::map<ValueIDNum, LocIdx> ValueToLoc;
1065 
1066     // Produce a map of value numbers to the current machine locs they live
1067     // in. When emulating VarLocBasedImpl, there should only be one
1068     // location; when not, we get to pick.
1069     for (auto Location : MTracker->locations()) {
1070       LocIdx Idx = Location.Idx;
1071       ValueIDNum &VNum = MLocs[Idx.asU64()];
1072       VarLocs.push_back(VNum);
1073       auto it = ValueToLoc.find(VNum);
1074       // In order of preference, pick:
1075       //  * Callee saved registers,
1076       //  * Other registers,
1077       //  * Spill slots.
1078       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1079           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1080         // Insert, or overwrite if insertion failed.
1081         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1082         if (!PrefLocRes.second)
1083           PrefLocRes.first->second = Idx;
1084       }
1085     }
1086 
1087     // Now map variables to their picked LocIdxes.
1088     for (auto Var : VLocs) {
1089       if (Var.second.Kind == DbgValue::Const) {
1090         PendingDbgValues.push_back(
1091             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1092         continue;
1093       }
1094 
1095       // If the value has no location, we can't make a variable location.
1096       const ValueIDNum &Num = Var.second.ID;
1097       auto ValuesPreferredLoc = ValueToLoc.find(Num);
1098       if (ValuesPreferredLoc == ValueToLoc.end()) {
1099         // If it's a def that occurs in this block, register it as a
1100         // use-before-def to be resolved as we step through the block.
1101         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
1102           addUseBeforeDef(Var.first, Var.second.Properties, Num);
1103         else
1104           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
1105         continue;
1106       }
1107 
1108       LocIdx M = ValuesPreferredLoc->second;
1109       auto NewValue = LocAndProperties{M, Var.second.Properties};
1110       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1111       if (!Result.second)
1112         Result.first->second = NewValue;
1113       ActiveMLocs[M].insert(Var.first);
1114       PendingDbgValues.push_back(
1115           MTracker->emitLoc(M, Var.first, Var.second.Properties));
1116     }
1117     flushDbgValues(MBB.begin(), &MBB);
1118   }
1119 
1120   /// Record that \p Var has value \p ID, a value that becomes available
1121   /// later in the function.
1122   void addUseBeforeDef(const DebugVariable &Var,
1123                        const DbgValueProperties &Properties, ValueIDNum ID) {
1124     UseBeforeDef UBD = {ID, Var, Properties};
1125     UseBeforeDefs[ID.getInst()].push_back(UBD);
1126     UseBeforeDefVariables.insert(Var);
1127   }
1128 
1129   /// After the instruction at index \p Inst and position \p pos has been
1130   /// processed, check whether it defines a variable value in a use-before-def.
1131   /// If so, and the variable value hasn't changed since the start of the
1132   /// block, create a DBG_VALUE.
1133   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
1134     auto MIt = UseBeforeDefs.find(Inst);
1135     if (MIt == UseBeforeDefs.end())
1136       return;
1137 
1138     for (auto &Use : MIt->second) {
1139       LocIdx L = Use.ID.getLoc();
1140 
1141       // If something goes very wrong, we might end up labelling a COPY
1142       // instruction or similar with an instruction number, where it doesn't
1143       // actually define a new value, instead it moves a value. In case this
1144       // happens, discard.
1145       if (MTracker->LocIdxToIDNum[L] != Use.ID)
1146         continue;
1147 
1148       // If a different debug instruction defined the variable value / location
1149       // since the start of the block, don't materialize this use-before-def.
1150       if (!UseBeforeDefVariables.count(Use.Var))
1151         continue;
1152 
1153       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
1154     }
1155     flushDbgValues(pos, nullptr);
1156   }
1157 
1158   /// Helper to move created DBG_VALUEs into Transfers collection.
1159   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1160     if (PendingDbgValues.size() == 0)
1161       return;
1162 
1163     // Pick out the instruction start position.
1164     MachineBasicBlock::instr_iterator BundleStart;
1165     if (MBB && Pos == MBB->begin())
1166       BundleStart = MBB->instr_begin();
1167     else
1168       BundleStart = getBundleStart(Pos->getIterator());
1169 
1170     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
1171     PendingDbgValues.clear();
1172   }
1173 
1174   bool isEntryValueVariable(const DebugVariable &Var,
1175                             const DIExpression *Expr) const {
1176     if (!Var.getVariable()->isParameter())
1177       return false;
1178 
1179     if (Var.getInlinedAt())
1180       return false;
1181 
1182     if (Expr->getNumElements() > 0)
1183       return false;
1184 
1185     return true;
1186   }
1187 
1188   bool isEntryValueValue(const ValueIDNum &Val) const {
1189     // Must be in entry block (block number zero), and be a PHI / live-in value.
1190     if (Val.getBlock() || !Val.isPHI())
1191       return false;
1192 
1193     // Entry values must enter in a register.
1194     if (MTracker->isSpill(Val.getLoc()))
1195       return false;
1196 
1197     Register SP = TLI->getStackPointerRegisterToSaveRestore();
1198     Register FP = TRI.getFrameRegister(MF);
1199     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
1200     return Reg != SP && Reg != FP;
1201   }
1202 
1203   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
1204                            const ValueIDNum &Num) {
1205     // Is this variable location a candidate to be an entry value. First,
1206     // should we be trying this at all?
1207     if (!ShouldEmitDebugEntryValues)
1208       return false;
1209 
1210     // Is the variable appropriate for entry values (i.e., is a parameter).
1211     if (!isEntryValueVariable(Var, Prop.DIExpr))
1212       return false;
1213 
1214     // Is the value assigned to this variable still the entry value?
1215     if (!isEntryValueValue(Num))
1216       return false;
1217 
1218     // Emit a variable location using an entry value expression.
1219     DIExpression *NewExpr =
1220         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
1221     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
1222     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
1223     MO.setIsDebug(true);
1224 
1225     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
1226     return true;
1227   }
1228 
1229   /// Change a variable value after encountering a DBG_VALUE inside a block.
1230   void redefVar(const MachineInstr &MI) {
1231     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1232                       MI.getDebugLoc()->getInlinedAt());
1233     DbgValueProperties Properties(MI);
1234 
1235     const MachineOperand &MO = MI.getOperand(0);
1236 
1237     // Ignore non-register locations, we don't transfer those.
1238     if (!MO.isReg() || MO.getReg() == 0) {
1239       auto It = ActiveVLocs.find(Var);
1240       if (It != ActiveVLocs.end()) {
1241         ActiveMLocs[It->second.Loc].erase(Var);
1242         ActiveVLocs.erase(It);
1243      }
1244       // Any use-before-defs no longer apply.
1245       UseBeforeDefVariables.erase(Var);
1246       return;
1247     }
1248 
1249     Register Reg = MO.getReg();
1250     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1251     redefVar(MI, Properties, NewLoc);
1252   }
1253 
1254   /// Handle a change in variable location within a block. Terminate the
1255   /// variables current location, and record the value it now refers to, so
1256   /// that we can detect location transfers later on.
1257   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1258                 Optional<LocIdx> OptNewLoc) {
1259     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1260                       MI.getDebugLoc()->getInlinedAt());
1261     // Any use-before-defs no longer apply.
1262     UseBeforeDefVariables.erase(Var);
1263 
1264     // Erase any previous location,
1265     auto It = ActiveVLocs.find(Var);
1266     if (It != ActiveVLocs.end())
1267       ActiveMLocs[It->second.Loc].erase(Var);
1268 
1269     // If there _is_ no new location, all we had to do was erase.
1270     if (!OptNewLoc)
1271       return;
1272     LocIdx NewLoc = *OptNewLoc;
1273 
1274     // Check whether our local copy of values-by-location in #VarLocs is out of
1275     // date. Wipe old tracking data for the location if it's been clobbered in
1276     // the meantime.
1277     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1278       for (auto &P : ActiveMLocs[NewLoc]) {
1279         ActiveVLocs.erase(P);
1280       }
1281       ActiveMLocs[NewLoc.asU64()].clear();
1282       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1283     }
1284 
1285     ActiveMLocs[NewLoc].insert(Var);
1286     if (It == ActiveVLocs.end()) {
1287       ActiveVLocs.insert(
1288           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1289     } else {
1290       It->second.Loc = NewLoc;
1291       It->second.Properties = Properties;
1292     }
1293   }
1294 
1295   /// Account for a location \p mloc being clobbered. Examine the variable
1296   /// locations that will be terminated: and try to recover them by using
1297   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
1298   /// explicitly terminate a location if it can't be recovered.
1299   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
1300                    bool MakeUndef = true) {
1301     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1302     if (ActiveMLocIt == ActiveMLocs.end())
1303       return;
1304 
1305     // What was the old variable value?
1306     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
1307     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1308 
1309     // Examine the remaining variable locations: if we can find the same value
1310     // again, we can recover the location.
1311     Optional<LocIdx> NewLoc = None;
1312     for (auto Loc : MTracker->locations())
1313       if (Loc.Value == OldValue)
1314         NewLoc = Loc.Idx;
1315 
1316     // If there is no location, and we weren't asked to make the variable
1317     // explicitly undef, then stop here.
1318     if (!NewLoc && !MakeUndef) {
1319       // Try and recover a few more locations with entry values.
1320       for (auto &Var : ActiveMLocIt->second) {
1321         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
1322         recoverAsEntryValue(Var, Prop, OldValue);
1323       }
1324       flushDbgValues(Pos, nullptr);
1325       return;
1326     }
1327 
1328     // Examine all the variables based on this location.
1329     DenseSet<DebugVariable> NewMLocs;
1330     for (auto &Var : ActiveMLocIt->second) {
1331       auto ActiveVLocIt = ActiveVLocs.find(Var);
1332       // Re-state the variable location: if there's no replacement then NewLoc
1333       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
1334       // identifying the alternative location will be emitted.
1335       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1336       DbgValueProperties Properties(Expr, false);
1337       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
1338 
1339       // Update machine locations <=> variable locations maps. Defer updating
1340       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
1341       if (!NewLoc) {
1342         ActiveVLocs.erase(ActiveVLocIt);
1343       } else {
1344         ActiveVLocIt->second.Loc = *NewLoc;
1345         NewMLocs.insert(Var);
1346       }
1347     }
1348 
1349     // Commit any deferred ActiveMLoc changes.
1350     if (!NewMLocs.empty())
1351       for (auto &Var : NewMLocs)
1352         ActiveMLocs[*NewLoc].insert(Var);
1353 
1354     // We lazily track what locations have which values; if we've found a new
1355     // location for the clobbered value, remember it.
1356     if (NewLoc)
1357       VarLocs[NewLoc->asU64()] = OldValue;
1358 
1359     flushDbgValues(Pos, nullptr);
1360 
1361     ActiveMLocIt->second.clear();
1362   }
1363 
1364   /// Transfer variables based on \p Src to be based on \p Dst. This handles
1365   /// both register copies as well as spills and restores. Creates DBG_VALUEs
1366   /// describing the movement.
1367   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1368     // Does Src still contain the value num we expect? If not, it's been
1369     // clobbered in the meantime, and our variable locations are stale.
1370     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1371       return;
1372 
1373     // assert(ActiveMLocs[Dst].size() == 0);
1374     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1375     ActiveMLocs[Dst] = ActiveMLocs[Src];
1376     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1377 
1378     // For each variable based on Src; create a location at Dst.
1379     for (auto &Var : ActiveMLocs[Src]) {
1380       auto ActiveVLocIt = ActiveVLocs.find(Var);
1381       assert(ActiveVLocIt != ActiveVLocs.end());
1382       ActiveVLocIt->second.Loc = Dst;
1383 
1384       assert(Dst != 0);
1385       MachineInstr *MI =
1386           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1387       PendingDbgValues.push_back(MI);
1388     }
1389     ActiveMLocs[Src].clear();
1390     flushDbgValues(Pos, nullptr);
1391 
1392     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1393     // about the old location.
1394     if (EmulateOldLDV)
1395       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1396   }
1397 
1398   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1399                                 const DebugVariable &Var,
1400                                 const DbgValueProperties &Properties) {
1401     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1402                                   Var.getVariable()->getScope(),
1403                                   const_cast<DILocation *>(Var.getInlinedAt()));
1404     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1405     MIB.add(MO);
1406     if (Properties.Indirect)
1407       MIB.addImm(0);
1408     else
1409       MIB.addReg(0);
1410     MIB.addMetadata(Var.getVariable());
1411     MIB.addMetadata(Properties.DIExpr);
1412     return MIB;
1413   }
1414 };
1415 
1416 class InstrRefBasedLDV : public LDVImpl {
1417 private:
1418   using FragmentInfo = DIExpression::FragmentInfo;
1419   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1420 
1421   // Helper while building OverlapMap, a map of all fragments seen for a given
1422   // DILocalVariable.
1423   using VarToFragments =
1424       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1425 
1426   /// Machine location/value transfer function, a mapping of which locations
1427   /// are assigned which new values.
1428   using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
1429 
1430   /// Live in/out structure for the variable values: a per-block map of
1431   /// variables to their values. XXX, better name?
1432   using LiveIdxT =
1433       DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
1434 
1435   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1436 
1437   /// Type for a live-in value: the predecessor block, and its value.
1438   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1439 
1440   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1441   /// Used as the result type for the variable value dataflow problem.
1442   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1443 
1444   const TargetRegisterInfo *TRI;
1445   const TargetInstrInfo *TII;
1446   const TargetFrameLowering *TFI;
1447   const MachineFrameInfo *MFI;
1448   BitVector CalleeSavedRegs;
1449   LexicalScopes LS;
1450   TargetPassConfig *TPC;
1451 
1452   /// Object to track machine locations as we step through a block. Could
1453   /// probably be a field rather than a pointer, as it's always used.
1454   MLocTracker *MTracker;
1455 
1456   /// Number of the current block LiveDebugValues is stepping through.
1457   unsigned CurBB;
1458 
1459   /// Number of the current instruction LiveDebugValues is evaluating.
1460   unsigned CurInst;
1461 
1462   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1463   /// steps through a block. Reads the values at each location from the
1464   /// MLocTracker object.
1465   VLocTracker *VTracker;
1466 
1467   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1468   /// between locations during stepping, creates new DBG_VALUEs when values move
1469   /// location.
1470   TransferTracker *TTracker;
1471 
1472   /// Blocks which are artificial, i.e. blocks which exclusively contain
1473   /// instructions without DebugLocs, or with line 0 locations.
1474   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1475 
1476   // Mapping of blocks to and from their RPOT order.
1477   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1478   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1479   DenseMap<unsigned, unsigned> BBNumToRPO;
1480 
1481   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1482   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1483   /// Map from debug instruction number to the MachineInstr labelled with that
1484   /// number, and its location within the function. Used to transform
1485   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1486   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1487 
1488   /// Record of where we observed a DBG_PHI instruction.
1489   class DebugPHIRecord {
1490   public:
1491     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
1492     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
1493     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
1494     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
1495 
1496     operator unsigned() const { return InstrNum; }
1497   };
1498 
1499   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1500   /// DBG_PHI read and where. Populated and edited during the machine value
1501   /// location problem -- we use LLVMs SSA Updater to fix changes by
1502   /// optimizations that destroy PHI instructions.
1503   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1504 
1505   // Map of overlapping variable fragments.
1506   OverlapMap OverlapFragments;
1507   VarToFragments SeenFragments;
1508 
1509   /// Tests whether this instruction is a spill to a stack slot.
1510   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1511 
1512   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1513   /// criteria to make this decision:
1514   /// - Is this instruction a store to a spill slot?
1515   /// - Is there a register operand that is both used and killed?
1516   /// TODO: Store optimization can fold spills into other stores (including
1517   /// other spills). We do not handle this yet (more than one memory operand).
1518   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1519                        unsigned &Reg);
1520 
1521   /// If a given instruction is identified as a spill, return the spill slot
1522   /// and set \p Reg to the spilled register.
1523   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1524                                           MachineFunction *MF, unsigned &Reg);
1525 
1526   /// Given a spill instruction, extract the register and offset used to
1527   /// address the spill slot in a target independent way.
1528   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1529 
1530   /// Observe a single instruction while stepping through a block.
1531   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
1532                ValueIDNum **MLiveIns = nullptr);
1533 
1534   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1535   /// \returns true if MI was recognized and processed.
1536   bool transferDebugValue(const MachineInstr &MI);
1537 
1538   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1539   /// \returns true if MI was recognized and processed.
1540   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
1541                              ValueIDNum **MLiveIns);
1542 
1543   /// Stores value-information about where this PHI occurred, and what
1544   /// instruction number is associated with it.
1545   /// \returns true if MI was recognized and processed.
1546   bool transferDebugPHI(MachineInstr &MI);
1547 
1548   /// Examines whether \p MI is copy instruction, and notifies trackers.
1549   /// \returns true if MI was recognized and processed.
1550   bool transferRegisterCopy(MachineInstr &MI);
1551 
1552   /// Examines whether \p MI is stack spill or restore  instruction, and
1553   /// notifies trackers. \returns true if MI was recognized and processed.
1554   bool transferSpillOrRestoreInst(MachineInstr &MI);
1555 
1556   /// Examines \p MI for any registers that it defines, and notifies trackers.
1557   void transferRegisterDef(MachineInstr &MI);
1558 
1559   /// Copy one location to the other, accounting for movement of subregisters
1560   /// too.
1561   void performCopy(Register Src, Register Dst);
1562 
1563   void accumulateFragmentMap(MachineInstr &MI);
1564 
1565   /// Determine the machine value number referred to by (potentially several)
1566   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1567   /// DBG_PHIs, shifting the position where values in registers merge, and
1568   /// forming another mini-ssa problem to solve.
1569   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1570   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1571   /// \returns The machine value number at position Here, or None.
1572   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1573                                       ValueIDNum **MLiveOuts,
1574                                       ValueIDNum **MLiveIns, MachineInstr &Here,
1575                                       uint64_t InstrNum);
1576 
1577   /// Step through the function, recording register definitions and movements
1578   /// in an MLocTracker. Convert the observations into a per-block transfer
1579   /// function in \p MLocTransfer, suitable for using with the machine value
1580   /// location dataflow problem.
1581   void
1582   produceMLocTransferFunction(MachineFunction &MF,
1583                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1584                               unsigned MaxNumBlocks);
1585 
1586   /// Solve the machine value location dataflow problem. Takes as input the
1587   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1588   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1589   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1590   /// number, the inner by LocIdx.
1591   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1592                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1593 
1594   /// Perform a control flow join (lattice value meet) of the values in machine
1595   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1596   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1597   /// from \p InLocs, and assigning the newly computed live ins back into
1598   /// \p InLocs. \returns two bools -- the first indicates whether a change
1599   /// was made, the second whether a lattice downgrade occurred. If the latter
1600   /// is true, revisiting this block is necessary.
1601   std::tuple<bool, bool>
1602   mlocJoin(MachineBasicBlock &MBB,
1603            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1604            ValueIDNum **OutLocs, ValueIDNum *InLocs);
1605 
1606   /// Solve the variable value dataflow problem, for a single lexical scope.
1607   /// Uses the algorithm from the file comment to resolve control flow joins,
1608   /// although there are extra hacks, see vlocJoin. Reads the
1609   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1610   /// mlocDataflow) and reads the variable values transfer function from
1611   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1612   /// with the live-ins permanently stored to \p Output once the fixedpoint is
1613   /// reached.
1614   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1615   /// that we should be tracking.
1616   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1617   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1618   /// through.
1619   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1620                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1621                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1622                     LiveInsT &Output, ValueIDNum **MOutLocs,
1623                     ValueIDNum **MInLocs,
1624                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1625 
1626   /// Compute the live-ins to a block, considering control flow merges according
1627   /// to the method in the file comment. Live out and live in variable values
1628   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1629   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1630   /// are modified.
1631   /// \p InLocsT Output argument, storage for calculated live-ins.
1632   /// \returns two bools -- the first indicates whether a change
1633   /// was made, the second whether a lattice downgrade occurred. If the latter
1634   /// is true, revisiting this block is necessary.
1635   std::tuple<bool, bool>
1636   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1637            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1638            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1639            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1640            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1641            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1642            DenseMap<DebugVariable, DbgValue> &InLocsT);
1643 
1644   /// Continue exploration of the variable-value lattice, as explained in the
1645   /// file-level comment. \p OldLiveInLocation contains the current
1646   /// exploration position, from which we need to descend further. \p Values
1647   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1648   /// the current block, and \p CandidateLocations a set of locations that
1649   /// should be considered as PHI locations, if we reach the bottom of the
1650   /// lattice. \returns true if we should downgrade; the value is the agreeing
1651   /// value number in a non-backedge predecessor.
1652   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1653                             const DbgValue &OldLiveInLocation,
1654                             const SmallVectorImpl<InValueT> &Values,
1655                             unsigned CurBlockRPONum);
1656 
1657   /// For the given block and live-outs feeding into it, try to find a
1658   /// machine location where they all join. If a solution for all predecessors
1659   /// can't be found, a location where all non-backedge-predecessors join
1660   /// will be returned instead. While this method finds a join location, this
1661   /// says nothing as to whether it should be used.
1662   /// \returns Pair of value ID if found, and true when the correct value
1663   /// is available on all predecessor edges, or false if it's only available
1664   /// for non-backedge predecessors.
1665   std::tuple<Optional<ValueIDNum>, bool>
1666   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1667               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1668               ValueIDNum **MInLocs,
1669               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1670 
1671   /// Given the solutions to the two dataflow problems, machine value locations
1672   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1673   /// TransferTracker class over the function to produce live-in and transfer
1674   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1675   /// order given by AllVarsNumbering -- this could be any stable order, but
1676   /// right now "order of appearence in function, when explored in RPO", so
1677   /// that we can compare explictly against VarLocBasedImpl.
1678   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1679                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1680                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
1681                      const TargetPassConfig &TPC);
1682 
1683   /// Boilerplate computation of some initial sets, artifical blocks and
1684   /// RPOT block ordering.
1685   void initialSetup(MachineFunction &MF);
1686 
1687   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1688 
1689 public:
1690   /// Default construct and initialize the pass.
1691   InstrRefBasedLDV();
1692 
1693   LLVM_DUMP_METHOD
1694   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1695 
1696   bool isCalleeSaved(LocIdx L) {
1697     unsigned Reg = MTracker->LocIdxToLocID[L];
1698     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1699       if (CalleeSavedRegs.test(*RAI))
1700         return true;
1701     return false;
1702   }
1703 };
1704 
1705 } // end anonymous namespace
1706 
1707 //===----------------------------------------------------------------------===//
1708 //            Implementation
1709 //===----------------------------------------------------------------------===//
1710 
1711 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1712 
1713 /// Default construct and initialize the pass.
1714 InstrRefBasedLDV::InstrRefBasedLDV() {}
1715 
1716 //===----------------------------------------------------------------------===//
1717 //            Debug Range Extension Implementation
1718 //===----------------------------------------------------------------------===//
1719 
1720 #ifndef NDEBUG
1721 // Something to restore in the future.
1722 // void InstrRefBasedLDV::printVarLocInMBB(..)
1723 #endif
1724 
1725 SpillLoc
1726 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1727   assert(MI.hasOneMemOperand() &&
1728          "Spill instruction does not have exactly one memory operand?");
1729   auto MMOI = MI.memoperands_begin();
1730   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1731   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1732          "Inconsistent memory operand in spill instruction");
1733   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1734   const MachineBasicBlock *MBB = MI.getParent();
1735   Register Reg;
1736   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1737   return {Reg, Offset};
1738 }
1739 
1740 /// End all previous ranges related to @MI and start a new range from @MI
1741 /// if it is a DBG_VALUE instr.
1742 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1743   if (!MI.isDebugValue())
1744     return false;
1745 
1746   const DILocalVariable *Var = MI.getDebugVariable();
1747   const DIExpression *Expr = MI.getDebugExpression();
1748   const DILocation *DebugLoc = MI.getDebugLoc();
1749   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1750   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1751          "Expected inlined-at fields to agree");
1752 
1753   DebugVariable V(Var, Expr, InlinedAt);
1754   DbgValueProperties Properties(MI);
1755 
1756   // If there are no instructions in this lexical scope, do no location tracking
1757   // at all, this variable shouldn't get a legitimate location range.
1758   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1759   if (Scope == nullptr)
1760     return true; // handled it; by doing nothing
1761 
1762   const MachineOperand &MO = MI.getOperand(0);
1763 
1764   // MLocTracker needs to know that this register is read, even if it's only
1765   // read by a debug inst.
1766   if (MO.isReg() && MO.getReg() != 0)
1767     (void)MTracker->readReg(MO.getReg());
1768 
1769   // If we're preparing for the second analysis (variables), the machine value
1770   // locations are already solved, and we report this DBG_VALUE and the value
1771   // it refers to to VLocTracker.
1772   if (VTracker) {
1773     if (MO.isReg()) {
1774       // Feed defVar the new variable location, or if this is a
1775       // DBG_VALUE $noreg, feed defVar None.
1776       if (MO.getReg())
1777         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1778       else
1779         VTracker->defVar(MI, Properties, None);
1780     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1781                MI.getOperand(0).isCImm()) {
1782       VTracker->defVar(MI, MI.getOperand(0));
1783     }
1784   }
1785 
1786   // If performing final tracking of transfers, report this variable definition
1787   // to the TransferTracker too.
1788   if (TTracker)
1789     TTracker->redefVar(MI);
1790   return true;
1791 }
1792 
1793 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1794                                              ValueIDNum **MLiveOuts,
1795                                              ValueIDNum **MLiveIns) {
1796   if (!MI.isDebugRef())
1797     return false;
1798 
1799   // Only handle this instruction when we are building the variable value
1800   // transfer function.
1801   if (!VTracker)
1802     return false;
1803 
1804   unsigned InstNo = MI.getOperand(0).getImm();
1805   unsigned OpNo = MI.getOperand(1).getImm();
1806 
1807   const DILocalVariable *Var = MI.getDebugVariable();
1808   const DIExpression *Expr = MI.getDebugExpression();
1809   const DILocation *DebugLoc = MI.getDebugLoc();
1810   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1811   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1812          "Expected inlined-at fields to agree");
1813 
1814   DebugVariable V(Var, Expr, InlinedAt);
1815 
1816   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1817   if (Scope == nullptr)
1818     return true; // Handled by doing nothing. This variable is never in scope.
1819 
1820   const MachineFunction &MF = *MI.getParent()->getParent();
1821 
1822   // Various optimizations may have happened to the value during codegen,
1823   // recorded in the value substitution table. Apply any substitutions to
1824   // the instruction / operand number in this DBG_INSTR_REF, and collect
1825   // any subregister extractions performed during optimization.
1826 
1827   // Create dummy substitution with Src set, for lookup.
1828   auto SoughtSub =
1829       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1830 
1831   SmallVector<unsigned, 4> SeenSubregs;
1832   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1833   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1834          LowerBoundIt->Src == SoughtSub.Src) {
1835     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1836     SoughtSub.Src = LowerBoundIt->Dest;
1837     if (unsigned Subreg = LowerBoundIt->Subreg)
1838       SeenSubregs.push_back(Subreg);
1839     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1840   }
1841 
1842   // Default machine value number is <None> -- if no instruction defines
1843   // the corresponding value, it must have been optimized out.
1844   Optional<ValueIDNum> NewID = None;
1845 
1846   // Try to lookup the instruction number, and find the machine value number
1847   // that it defines. It could be an instruction, or a PHI.
1848   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1849   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1850                                 DebugPHINumToValue.end(), InstNo);
1851   if (InstrIt != DebugInstrNumToInstr.end()) {
1852     const MachineInstr &TargetInstr = *InstrIt->second.first;
1853     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1854 
1855     // Pick out the designated operand.
1856     assert(OpNo < TargetInstr.getNumOperands());
1857     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1858 
1859     // Today, this can only be a register.
1860     assert(MO.isReg() && MO.isDef());
1861 
1862     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1863     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1864     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1865   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1866     // It's actually a PHI value. Which value it is might not be obvious, use
1867     // the resolver helper to find out.
1868     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1869                            MI, InstNo);
1870   }
1871 
1872   // Apply any subregister extractions, in reverse. We might have seen code
1873   // like this:
1874   //    CALL64 @foo, implicit-def $rax
1875   //    %0:gr64 = COPY $rax
1876   //    %1:gr32 = COPY %0.sub_32bit
1877   //    %2:gr16 = COPY %1.sub_16bit
1878   //    %3:gr8  = COPY %2.sub_8bit
1879   // In which case each copy would have been recorded as a substitution with
1880   // a subregister qualifier. Apply those qualifiers now.
1881   if (NewID && !SeenSubregs.empty()) {
1882     unsigned Offset = 0;
1883     unsigned Size = 0;
1884 
1885     // Look at each subregister that we passed through, and progressively
1886     // narrow in, accumulating any offsets that occur. Substitutions should
1887     // only ever be the same or narrower width than what they read from;
1888     // iterate in reverse order so that we go from wide to small.
1889     for (unsigned Subreg : reverse(SeenSubregs)) {
1890       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1891       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1892       Offset += ThisOffset;
1893       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1894     }
1895 
1896     // If that worked, look for an appropriate subregister with the register
1897     // where the define happens. Don't look at values that were defined during
1898     // a stack write: we can't currently express register locations within
1899     // spills.
1900     LocIdx L = NewID->getLoc();
1901     if (NewID && !MTracker->isSpill(L)) {
1902       // Find the register class for the register where this def happened.
1903       // FIXME: no index for this?
1904       Register Reg = MTracker->LocIdxToLocID[L];
1905       const TargetRegisterClass *TRC = nullptr;
1906       for (auto *TRCI : TRI->regclasses())
1907         if (TRCI->contains(Reg))
1908           TRC = TRCI;
1909       assert(TRC && "Couldn't find target register class?");
1910 
1911       // If the register we have isn't the right size or in the right place,
1912       // Try to find a subregister inside it.
1913       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1914       if (Size != MainRegSize || Offset) {
1915         // Enumerate all subregisters, searching.
1916         Register NewReg = 0;
1917         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1918           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1919           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1920           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1921           if (SubregSize == Size && SubregOffset == Offset) {
1922             NewReg = *SRI;
1923             break;
1924           }
1925         }
1926 
1927         // If we didn't find anything: there's no way to express our value.
1928         if (!NewReg) {
1929           NewID = None;
1930         } else {
1931           // Re-state the value as being defined within the subregister
1932           // that we found.
1933           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1934           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1935         }
1936       }
1937     } else {
1938       // If we can't handle subregisters, unset the new value.
1939       NewID = None;
1940     }
1941   }
1942 
1943   // We, we have a value number or None. Tell the variable value tracker about
1944   // it. The rest of this LiveDebugValues implementation acts exactly the same
1945   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1946   // aren't immediately available).
1947   DbgValueProperties Properties(Expr, false);
1948   VTracker->defVar(MI, Properties, NewID);
1949 
1950   // If we're on the final pass through the function, decompose this INSTR_REF
1951   // into a plain DBG_VALUE.
1952   if (!TTracker)
1953     return true;
1954 
1955   // Pick a location for the machine value number, if such a location exists.
1956   // (This information could be stored in TransferTracker to make it faster).
1957   Optional<LocIdx> FoundLoc = None;
1958   for (auto Location : MTracker->locations()) {
1959     LocIdx CurL = Location.Idx;
1960     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1961     if (NewID && ID == NewID) {
1962       // If this is the first location with that value, pick it. Otherwise,
1963       // consider whether it's a "longer term" location.
1964       if (!FoundLoc) {
1965         FoundLoc = CurL;
1966         continue;
1967       }
1968 
1969       if (MTracker->isSpill(CurL))
1970         FoundLoc = CurL; // Spills are a longer term location.
1971       else if (!MTracker->isSpill(*FoundLoc) &&
1972                !MTracker->isSpill(CurL) &&
1973                !isCalleeSaved(*FoundLoc) &&
1974                isCalleeSaved(CurL))
1975         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1976     }
1977   }
1978 
1979   // Tell transfer tracker that the variable value has changed.
1980   TTracker->redefVar(MI, Properties, FoundLoc);
1981 
1982   // If there was a value with no location; but the value is defined in a
1983   // later instruction in this block, this is a block-local use-before-def.
1984   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1985       NewID->getInst() > CurInst)
1986     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1987 
1988   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1989   // This DBG_VALUE is potentially a $noreg / undefined location, if
1990   // FoundLoc is None.
1991   // (XXX -- could morph the DBG_INSTR_REF in the future).
1992   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1993   TTracker->PendingDbgValues.push_back(DbgMI);
1994   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1995   return true;
1996 }
1997 
1998 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1999   if (!MI.isDebugPHI())
2000     return false;
2001 
2002   // Analyse these only when solving the machine value location problem.
2003   if (VTracker || TTracker)
2004     return true;
2005 
2006   // First operand is the value location, either a stack slot or register.
2007   // Second is the debug instruction number of the original PHI.
2008   const MachineOperand &MO = MI.getOperand(0);
2009   unsigned InstrNum = MI.getOperand(1).getImm();
2010 
2011   if (MO.isReg()) {
2012     // The value is whatever's currently in the register. Read and record it,
2013     // to be analysed later.
2014     Register Reg = MO.getReg();
2015     ValueIDNum Num = MTracker->readReg(Reg);
2016     auto PHIRec = DebugPHIRecord(
2017         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
2018     DebugPHINumToValue.push_back(PHIRec);
2019   } else {
2020     // The value is whatever's in this stack slot.
2021     assert(MO.isFI());
2022     unsigned FI = MO.getIndex();
2023 
2024     // If the stack slot is dead, then this was optimized away.
2025     // FIXME: stack slot colouring should account for slots that get merged.
2026     if (MFI->isDeadObjectIndex(FI))
2027       return true;
2028 
2029     // Identify this spill slot.
2030     Register Base;
2031     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
2032     SpillLoc SL = {Base, Offs};
2033     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
2034 
2035     if (!Num)
2036       // Nothing ever writes to this slot. Curious, but nothing we can do.
2037       return true;
2038 
2039     // Record this DBG_PHI for later analysis.
2040     auto DbgPHI = DebugPHIRecord(
2041         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
2042     DebugPHINumToValue.push_back(DbgPHI);
2043   }
2044 
2045   return true;
2046 }
2047 
2048 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
2049   // Meta Instructions do not affect the debug liveness of any register they
2050   // define.
2051   if (MI.isImplicitDef()) {
2052     // Except when there's an implicit def, and the location it's defining has
2053     // no value number. The whole point of an implicit def is to announce that
2054     // the register is live, without be specific about it's value. So define
2055     // a value if there isn't one already.
2056     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
2057     // Has a legitimate value -> ignore the implicit def.
2058     if (Num.getLoc() != 0)
2059       return;
2060     // Otherwise, def it here.
2061   } else if (MI.isMetaInstruction())
2062     return;
2063 
2064   MachineFunction *MF = MI.getMF();
2065   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2066   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2067 
2068   // Find the regs killed by MI, and find regmasks of preserved regs.
2069   // Max out the number of statically allocated elements in `DeadRegs`, as this
2070   // prevents fallback to std::set::count() operations.
2071   SmallSet<uint32_t, 32> DeadRegs;
2072   SmallVector<const uint32_t *, 4> RegMasks;
2073   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
2074   for (const MachineOperand &MO : MI.operands()) {
2075     // Determine whether the operand is a register def.
2076     if (MO.isReg() && MO.isDef() && MO.getReg() &&
2077         Register::isPhysicalRegister(MO.getReg()) &&
2078         !(MI.isCall() && MO.getReg() == SP)) {
2079       // Remove ranges of all aliased registers.
2080       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
2081         // FIXME: Can we break out of this loop early if no insertion occurs?
2082         DeadRegs.insert(*RAI);
2083     } else if (MO.isRegMask()) {
2084       RegMasks.push_back(MO.getRegMask());
2085       RegMaskPtrs.push_back(&MO);
2086     }
2087   }
2088 
2089   // Tell MLocTracker about all definitions, of regmasks and otherwise.
2090   for (uint32_t DeadReg : DeadRegs)
2091     MTracker->defReg(DeadReg, CurBB, CurInst);
2092 
2093   for (auto *MO : RegMaskPtrs)
2094     MTracker->writeRegMask(MO, CurBB, CurInst);
2095 
2096   if (!TTracker)
2097     return;
2098 
2099   // When committing variable values to locations: tell transfer tracker that
2100   // we've clobbered things. It may be able to recover the variable from a
2101   // different location.
2102 
2103   // Inform TTracker about any direct clobbers.
2104   for (uint32_t DeadReg : DeadRegs) {
2105     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
2106     TTracker->clobberMloc(Loc, MI.getIterator(), false);
2107   }
2108 
2109   // Look for any clobbers performed by a register mask. Only test locations
2110   // that are actually being tracked.
2111   for (auto L : MTracker->locations()) {
2112     // Stack locations can't be clobbered by regmasks.
2113     if (MTracker->isSpill(L.Idx))
2114       continue;
2115 
2116     Register Reg = MTracker->LocIdxToLocID[L.Idx];
2117     for (auto *MO : RegMaskPtrs)
2118       if (MO->clobbersPhysReg(Reg))
2119         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
2120   }
2121 }
2122 
2123 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
2124   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
2125 
2126   MTracker->setReg(DstRegNum, SrcValue);
2127 
2128   // In all circumstances, re-def the super registers. It's definitely a new
2129   // value now. This doesn't uniquely identify the composition of subregs, for
2130   // example, two identical values in subregisters composed in different
2131   // places would not get equal value numbers.
2132   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
2133     MTracker->defReg(*SRI, CurBB, CurInst);
2134 
2135   // If we're emulating VarLocBasedImpl, just define all the subregisters.
2136   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
2137   // through prior copies.
2138   if (EmulateOldLDV) {
2139     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
2140       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
2141     return;
2142   }
2143 
2144   // Otherwise, actually copy subregisters from one location to another.
2145   // XXX: in addition, any subregisters of DstRegNum that don't line up with
2146   // the source register should be def'd.
2147   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
2148     unsigned SrcSubReg = SRI.getSubReg();
2149     unsigned SubRegIdx = SRI.getSubRegIndex();
2150     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
2151     if (!DstSubReg)
2152       continue;
2153 
2154     // Do copy. There are two matching subregisters, the source value should
2155     // have been def'd when the super-reg was, the latter might not be tracked
2156     // yet.
2157     // This will force SrcSubReg to be tracked, if it isn't yet.
2158     (void)MTracker->readReg(SrcSubReg);
2159     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
2160     assert(SrcL.asU64());
2161     (void)MTracker->readReg(DstSubReg);
2162     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
2163     assert(DstL.asU64());
2164     (void)DstL;
2165     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
2166 
2167     MTracker->setReg(DstSubReg, CpyValue);
2168   }
2169 }
2170 
2171 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
2172                                           MachineFunction *MF) {
2173   // TODO: Handle multiple stores folded into one.
2174   if (!MI.hasOneMemOperand())
2175     return false;
2176 
2177   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
2178     return false; // This is not a spill instruction, since no valid size was
2179                   // returned from either function.
2180 
2181   return true;
2182 }
2183 
2184 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
2185                                        MachineFunction *MF, unsigned &Reg) {
2186   if (!isSpillInstruction(MI, MF))
2187     return false;
2188 
2189   int FI;
2190   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
2191   return Reg != 0;
2192 }
2193 
2194 Optional<SpillLoc>
2195 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
2196                                        MachineFunction *MF, unsigned &Reg) {
2197   if (!MI.hasOneMemOperand())
2198     return None;
2199 
2200   // FIXME: Handle folded restore instructions with more than one memory
2201   // operand.
2202   if (MI.getRestoreSize(TII)) {
2203     Reg = MI.getOperand(0).getReg();
2204     return extractSpillBaseRegAndOffset(MI);
2205   }
2206   return None;
2207 }
2208 
2209 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2210   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2211   // limitations under the new model. Therefore, when comparing them, compare
2212   // versions that don't attempt spills or restores at all.
2213   if (EmulateOldLDV)
2214     return false;
2215 
2216   MachineFunction *MF = MI.getMF();
2217   unsigned Reg;
2218   Optional<SpillLoc> Loc;
2219 
2220   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2221 
2222   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2223   // written to, terminate that variable location. The value in memory
2224   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2225   if (isSpillInstruction(MI, MF)) {
2226     Loc = extractSpillBaseRegAndOffset(MI);
2227 
2228     if (TTracker) {
2229       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
2230       if (MLoc) {
2231         // Un-set this location before clobbering, so that we don't salvage
2232         // the variable location back to the same place.
2233         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
2234         TTracker->clobberMloc(*MLoc, MI.getIterator());
2235       }
2236     }
2237   }
2238 
2239   // Try to recognise spill and restore instructions that may transfer a value.
2240   if (isLocationSpill(MI, MF, Reg)) {
2241     Loc = extractSpillBaseRegAndOffset(MI);
2242     auto ValueID = MTracker->readReg(Reg);
2243 
2244     // If the location is empty, produce a phi, signify it's the live-in value.
2245     if (ValueID.getLoc() == 0)
2246       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
2247 
2248     MTracker->setSpill(*Loc, ValueID);
2249     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
2250     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
2251     LocIdx SpillLocIdx = *OptSpillLocIdx;
2252 
2253     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
2254     if (TTracker)
2255       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
2256                               MI.getIterator());
2257   } else {
2258     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
2259       return false;
2260 
2261     // Is there a value to be restored?
2262     auto OptValueID = MTracker->readSpill(*Loc);
2263     if (OptValueID) {
2264       ValueIDNum ValueID = *OptValueID;
2265       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
2266       // XXX -- can we recover sub-registers of this value? Until we can, first
2267       // overwrite all defs of the register being restored to.
2268       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2269         MTracker->defReg(*RAI, CurBB, CurInst);
2270 
2271       // Now override the reg we're restoring to.
2272       MTracker->setReg(Reg, ValueID);
2273 
2274       // Report this restore to the transfer tracker too.
2275       if (TTracker)
2276         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
2277                                 MI.getIterator());
2278     } else {
2279       // There isn't anything in the location; not clear if this is a code path
2280       // that still runs. Def this register anyway just in case.
2281       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2282         MTracker->defReg(*RAI, CurBB, CurInst);
2283 
2284       // Force the spill slot to be tracked.
2285       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
2286 
2287       // Set the restored value to be a machine phi number, signifying that it's
2288       // whatever the spills live-in value is in this block. Definitely has
2289       // a LocIdx due to the setSpill above.
2290       ValueIDNum ValueID = {CurBB, 0, L};
2291       MTracker->setReg(Reg, ValueID);
2292       MTracker->setSpill(*Loc, ValueID);
2293     }
2294   }
2295   return true;
2296 }
2297 
2298 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2299   auto DestSrc = TII->isCopyInstr(MI);
2300   if (!DestSrc)
2301     return false;
2302 
2303   const MachineOperand *DestRegOp = DestSrc->Destination;
2304   const MachineOperand *SrcRegOp = DestSrc->Source;
2305 
2306   auto isCalleeSavedReg = [&](unsigned Reg) {
2307     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2308       if (CalleeSavedRegs.test(*RAI))
2309         return true;
2310     return false;
2311   };
2312 
2313   Register SrcReg = SrcRegOp->getReg();
2314   Register DestReg = DestRegOp->getReg();
2315 
2316   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2317   if (SrcReg == DestReg)
2318     return true;
2319 
2320   // For emulating VarLocBasedImpl:
2321   // We want to recognize instructions where destination register is callee
2322   // saved register. If register that could be clobbered by the call is
2323   // included, there would be a great chance that it is going to be clobbered
2324   // soon. It is more likely that previous register, which is callee saved, is
2325   // going to stay unclobbered longer, even if it is killed.
2326   //
2327   // For InstrRefBasedImpl, we can track multiple locations per value, so
2328   // ignore this condition.
2329   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2330     return false;
2331 
2332   // InstrRefBasedImpl only followed killing copies.
2333   if (EmulateOldLDV && !SrcRegOp->isKill())
2334     return false;
2335 
2336   // Copy MTracker info, including subregs if available.
2337   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2338 
2339   // Only produce a transfer of DBG_VALUE within a block where old LDV
2340   // would have. We might make use of the additional value tracking in some
2341   // other way, later.
2342   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2343     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2344                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2345 
2346   // VarLocBasedImpl would quit tracking the old location after copying.
2347   if (EmulateOldLDV && SrcReg != DestReg)
2348     MTracker->defReg(SrcReg, CurBB, CurInst);
2349 
2350   // Finally, the copy might have clobbered variables based on the destination
2351   // register. Tell TTracker about it, in case a backup location exists.
2352   if (TTracker) {
2353     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2354       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2355       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
2356     }
2357   }
2358 
2359   return true;
2360 }
2361 
2362 /// Accumulate a mapping between each DILocalVariable fragment and other
2363 /// fragments of that DILocalVariable which overlap. This reduces work during
2364 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2365 /// known-to-overlap fragments are present".
2366 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
2367 ///           fragment usage.
2368 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2369   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2370                       MI.getDebugLoc()->getInlinedAt());
2371   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2372 
2373   // If this is the first sighting of this variable, then we are guaranteed
2374   // there are currently no overlapping fragments either. Initialize the set
2375   // of seen fragments, record no overlaps for the current one, and return.
2376   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2377   if (SeenIt == SeenFragments.end()) {
2378     SmallSet<FragmentInfo, 4> OneFragment;
2379     OneFragment.insert(ThisFragment);
2380     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2381 
2382     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2383     return;
2384   }
2385 
2386   // If this particular Variable/Fragment pair already exists in the overlap
2387   // map, it has already been accounted for.
2388   auto IsInOLapMap =
2389       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2390   if (!IsInOLapMap.second)
2391     return;
2392 
2393   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2394   auto &AllSeenFragments = SeenIt->second;
2395 
2396   // Otherwise, examine all other seen fragments for this variable, with "this"
2397   // fragment being a previously unseen fragment. Record any pair of
2398   // overlapping fragments.
2399   for (auto &ASeenFragment : AllSeenFragments) {
2400     // Does this previously seen fragment overlap?
2401     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2402       // Yes: Mark the current fragment as being overlapped.
2403       ThisFragmentsOverlaps.push_back(ASeenFragment);
2404       // Mark the previously seen fragment as being overlapped by the current
2405       // one.
2406       auto ASeenFragmentsOverlaps =
2407           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2408       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2409              "Previously seen var fragment has no vector of overlaps");
2410       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2411     }
2412   }
2413 
2414   AllSeenFragments.insert(ThisFragment);
2415 }
2416 
2417 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
2418                                ValueIDNum **MLiveIns) {
2419   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2420   // none of these should we interpret it's register defs as new value
2421   // definitions.
2422   if (transferDebugValue(MI))
2423     return;
2424   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2425     return;
2426   if (transferDebugPHI(MI))
2427     return;
2428   if (transferRegisterCopy(MI))
2429     return;
2430   if (transferSpillOrRestoreInst(MI))
2431     return;
2432   transferRegisterDef(MI);
2433 }
2434 
2435 void InstrRefBasedLDV::produceMLocTransferFunction(
2436     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2437     unsigned MaxNumBlocks) {
2438   // Because we try to optimize around register mask operands by ignoring regs
2439   // that aren't currently tracked, we set up something ugly for later: RegMask
2440   // operands that are seen earlier than the first use of a register, still need
2441   // to clobber that register in the transfer function. But this information
2442   // isn't actively recorded. Instead, we track each RegMask used in each block,
2443   // and accumulated the clobbered but untracked registers in each block into
2444   // the following bitvector. Later, if new values are tracked, we can add
2445   // appropriate clobbers.
2446   SmallVector<BitVector, 32> BlockMasks;
2447   BlockMasks.resize(MaxNumBlocks);
2448 
2449   // Reserve one bit per register for the masks described above.
2450   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2451   for (auto &BV : BlockMasks)
2452     BV.resize(TRI->getNumRegs(), true);
2453 
2454   // Step through all instructions and inhale the transfer function.
2455   for (auto &MBB : MF) {
2456     // Object fields that are read by trackers to know where we are in the
2457     // function.
2458     CurBB = MBB.getNumber();
2459     CurInst = 1;
2460 
2461     // Set all machine locations to a PHI value. For transfer function
2462     // production only, this signifies the live-in value to the block.
2463     MTracker->reset();
2464     MTracker->setMPhis(CurBB);
2465 
2466     // Step through each instruction in this block.
2467     for (auto &MI : MBB) {
2468       process(MI);
2469       // Also accumulate fragment map.
2470       if (MI.isDebugValue())
2471         accumulateFragmentMap(MI);
2472 
2473       // Create a map from the instruction number (if present) to the
2474       // MachineInstr and its position.
2475       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2476         auto InstrAndPos = std::make_pair(&MI, CurInst);
2477         auto InsertResult =
2478             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2479 
2480         // There should never be duplicate instruction numbers.
2481         assert(InsertResult.second);
2482         (void)InsertResult;
2483       }
2484 
2485       ++CurInst;
2486     }
2487 
2488     // Produce the transfer function, a map of machine location to new value. If
2489     // any machine location has the live-in phi value from the start of the
2490     // block, it's live-through and doesn't need recording in the transfer
2491     // function.
2492     for (auto Location : MTracker->locations()) {
2493       LocIdx Idx = Location.Idx;
2494       ValueIDNum &P = Location.Value;
2495       if (P.isPHI() && P.getLoc() == Idx.asU64())
2496         continue;
2497 
2498       // Insert-or-update.
2499       auto &TransferMap = MLocTransfer[CurBB];
2500       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2501       if (!Result.second)
2502         Result.first->second = P;
2503     }
2504 
2505     // Accumulate any bitmask operands into the clobberred reg mask for this
2506     // block.
2507     for (auto &P : MTracker->Masks) {
2508       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2509     }
2510   }
2511 
2512   // Compute a bitvector of all the registers that are tracked in this block.
2513   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2514   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2515   BitVector UsedRegs(TRI->getNumRegs());
2516   for (auto Location : MTracker->locations()) {
2517     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2518     if (ID >= TRI->getNumRegs() || ID == SP)
2519       continue;
2520     UsedRegs.set(ID);
2521   }
2522 
2523   // Check that any regmask-clobber of a register that gets tracked, is not
2524   // live-through in the transfer function. It needs to be clobbered at the
2525   // very least.
2526   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2527     BitVector &BV = BlockMasks[I];
2528     BV.flip();
2529     BV &= UsedRegs;
2530     // This produces all the bits that we clobber, but also use. Check that
2531     // they're all clobbered or at least set in the designated transfer
2532     // elem.
2533     for (unsigned Bit : BV.set_bits()) {
2534       unsigned ID = MTracker->getLocID(Bit, false);
2535       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2536       auto &TransferMap = MLocTransfer[I];
2537 
2538       // Install a value representing the fact that this location is effectively
2539       // written to in this block. As there's no reserved value, instead use
2540       // a value number that is never generated. Pick the value number for the
2541       // first instruction in the block, def'ing this location, which we know
2542       // this block never used anyway.
2543       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2544       auto Result =
2545         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2546       if (!Result.second) {
2547         ValueIDNum &ValueID = Result.first->second;
2548         if (ValueID.getBlock() == I && ValueID.isPHI())
2549           // It was left as live-through. Set it to clobbered.
2550           ValueID = NotGeneratedNum;
2551       }
2552     }
2553   }
2554 }
2555 
2556 std::tuple<bool, bool>
2557 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2558                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2559                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2560   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2561   bool Changed = false;
2562   bool DowngradeOccurred = false;
2563 
2564   // Collect predecessors that have been visited. Anything that hasn't been
2565   // visited yet is a backedge on the first iteration, and the meet of it's
2566   // lattice value for all locations will be unaffected.
2567   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2568   for (auto Pred : MBB.predecessors()) {
2569     if (Visited.count(Pred)) {
2570       BlockOrders.push_back(Pred);
2571     }
2572   }
2573 
2574   // Visit predecessors in RPOT order.
2575   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2576     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2577   };
2578   llvm::sort(BlockOrders, Cmp);
2579 
2580   // Skip entry block.
2581   if (BlockOrders.size() == 0)
2582     return std::tuple<bool, bool>(false, false);
2583 
2584   // Step through all machine locations, then look at each predecessor and
2585   // detect disagreements.
2586   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2587   for (auto Location : MTracker->locations()) {
2588     LocIdx Idx = Location.Idx;
2589     // Pick out the first predecessors live-out value for this location. It's
2590     // guaranteed to be not a backedge, as we order by RPO.
2591     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2592 
2593     // Some flags for whether there's a disagreement, and whether it's a
2594     // disagreement with a backedge or not.
2595     bool Disagree = false;
2596     bool NonBackEdgeDisagree = false;
2597 
2598     // Loop around everything that wasn't 'base'.
2599     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2600       auto *MBB = BlockOrders[I];
2601       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2602         // Live-out of a predecessor disagrees with the first predecessor.
2603         Disagree = true;
2604 
2605         // Test whether it's a disagreemnt in the backedges or not.
2606         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2607           NonBackEdgeDisagree = true;
2608       }
2609     }
2610 
2611     bool OverRide = false;
2612     if (Disagree && !NonBackEdgeDisagree) {
2613       // Only the backedges disagree. Consider demoting the livein
2614       // lattice value, as per the file level comment. The value we consider
2615       // demoting to is the value that the non-backedge predecessors agree on.
2616       // The order of values is that non-PHIs are \top, a PHI at this block
2617       // \bot, and phis between the two are ordered by their RPO number.
2618       // If there's no agreement, or we've already demoted to this PHI value
2619       // before, replace with a PHI value at this block.
2620 
2621       // Calculate order numbers: zero means normal def, nonzero means RPO
2622       // number.
2623       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2624       if (!BaseVal.isPHI())
2625         BaseBlockRPONum = 0;
2626 
2627       ValueIDNum &InLocID = InLocs[Idx.asU64()];
2628       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2629       if (!InLocID.isPHI())
2630         InLocRPONum = 0;
2631 
2632       // Should we ignore the disagreeing backedges, and override with the
2633       // value the other predecessors agree on (in "base")?
2634       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2635       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2636         // Override.
2637         OverRide = true;
2638         DowngradeOccurred = true;
2639       }
2640     }
2641     // else: if we disagree in the non-backedges, then this is definitely
2642     // a control flow merge where different values merge. Make it a PHI.
2643 
2644     // Generate a phi...
2645     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2646     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2647     if (InLocs[Idx.asU64()] != NewVal) {
2648       Changed |= true;
2649       InLocs[Idx.asU64()] = NewVal;
2650     }
2651   }
2652 
2653   // TODO: Reimplement NumInserted and NumRemoved.
2654   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2655 }
2656 
2657 void InstrRefBasedLDV::mlocDataflow(
2658     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2659     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2660   std::priority_queue<unsigned int, std::vector<unsigned int>,
2661                       std::greater<unsigned int>>
2662       Worklist, Pending;
2663 
2664   // We track what is on the current and pending worklist to avoid inserting
2665   // the same thing twice. We could avoid this with a custom priority queue,
2666   // but this is probably not worth it.
2667   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2668 
2669   // Initialize worklist with every block to be visited.
2670   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2671     Worklist.push(I);
2672     OnWorklist.insert(OrderToBB[I]);
2673   }
2674 
2675   MTracker->reset();
2676 
2677   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2678   // the incoming value to the function.
2679   MTracker->setMPhis(0);
2680   for (auto Location : MTracker->locations())
2681     MInLocs[0][Location.Idx.asU64()] = Location.Value;
2682 
2683   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2684   while (!Worklist.empty() || !Pending.empty()) {
2685     // Vector for storing the evaluated block transfer function.
2686     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2687 
2688     while (!Worklist.empty()) {
2689       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2690       CurBB = MBB->getNumber();
2691       Worklist.pop();
2692 
2693       // Join the values in all predecessor blocks.
2694       bool InLocsChanged, DowngradeOccurred;
2695       std::tie(InLocsChanged, DowngradeOccurred) =
2696           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2697       InLocsChanged |= Visited.insert(MBB).second;
2698 
2699       // If a downgrade occurred, book us in for re-examination on the next
2700       // iteration.
2701       if (DowngradeOccurred && OnPending.insert(MBB).second)
2702         Pending.push(BBToOrder[MBB]);
2703 
2704       // Don't examine transfer function if we've visited this loc at least
2705       // once, and inlocs haven't changed.
2706       if (!InLocsChanged)
2707         continue;
2708 
2709       // Load the current set of live-ins into MLocTracker.
2710       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2711 
2712       // Each element of the transfer function can be a new def, or a read of
2713       // a live-in value. Evaluate each element, and store to "ToRemap".
2714       ToRemap.clear();
2715       for (auto &P : MLocTransfer[CurBB]) {
2716         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2717           // This is a movement of whatever was live in. Read it.
2718           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2719           ToRemap.push_back(std::make_pair(P.first, NewID));
2720         } else {
2721           // It's a def. Just set it.
2722           assert(P.second.getBlock() == CurBB);
2723           ToRemap.push_back(std::make_pair(P.first, P.second));
2724         }
2725       }
2726 
2727       // Commit the transfer function changes into mloc tracker, which
2728       // transforms the contents of the MLocTracker into the live-outs.
2729       for (auto &P : ToRemap)
2730         MTracker->setMLoc(P.first, P.second);
2731 
2732       // Now copy out-locs from mloc tracker into out-loc vector, checking
2733       // whether changes have occurred. These changes can have come from both
2734       // the transfer function, and mlocJoin.
2735       bool OLChanged = false;
2736       for (auto Location : MTracker->locations()) {
2737         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2738         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2739       }
2740 
2741       MTracker->reset();
2742 
2743       // No need to examine successors again if out-locs didn't change.
2744       if (!OLChanged)
2745         continue;
2746 
2747       // All successors should be visited: put any back-edges on the pending
2748       // list for the next dataflow iteration, and any other successors to be
2749       // visited this iteration, if they're not going to be already.
2750       for (auto s : MBB->successors()) {
2751         // Does branching to this successor represent a back-edge?
2752         if (BBToOrder[s] > BBToOrder[MBB]) {
2753           // No: visit it during this dataflow iteration.
2754           if (OnWorklist.insert(s).second)
2755             Worklist.push(BBToOrder[s]);
2756         } else {
2757           // Yes: visit it on the next iteration.
2758           if (OnPending.insert(s).second)
2759             Pending.push(BBToOrder[s]);
2760         }
2761       }
2762     }
2763 
2764     Worklist.swap(Pending);
2765     std::swap(OnPending, OnWorklist);
2766     OnPending.clear();
2767     // At this point, pending must be empty, since it was just the empty
2768     // worklist
2769     assert(Pending.empty() && "Pending should be empty");
2770   }
2771 
2772   // Once all the live-ins don't change on mlocJoin(), we've reached a
2773   // fixedpoint.
2774 }
2775 
2776 bool InstrRefBasedLDV::vlocDowngradeLattice(
2777     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2778     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2779   // Ranking value preference: see file level comment, the highest rank is
2780   // a plain def, followed by PHI values in reverse post-order. Numerically,
2781   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2782   // one, and consider the lowest value the highest ranked.
2783   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2784   if (!OldLiveInLocation.ID.isPHI())
2785     OldLiveInRank = 0;
2786 
2787   // Allow any unresolvable conflict to be over-ridden.
2788   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2789     // Although if it was an unresolvable conflict from _this_ block, then
2790     // all other seeking of downgrades and PHIs must have failed before hand.
2791     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2792       return false;
2793     OldLiveInRank = INT_MIN;
2794   }
2795 
2796   auto &InValue = *Values[0].second;
2797 
2798   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2799     return false;
2800 
2801   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2802   int ThisRank = ThisRPO + 1;
2803   if (!InValue.ID.isPHI())
2804     ThisRank = 0;
2805 
2806   // Too far down the lattice?
2807   if (ThisRPO >= CurBlockRPONum)
2808     return false;
2809 
2810   // Higher in the lattice than what we've already explored?
2811   if (ThisRank <= OldLiveInRank)
2812     return false;
2813 
2814   return true;
2815 }
2816 
2817 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2818     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2819     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2820     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2821   // Collect a set of locations from predecessor where its live-out value can
2822   // be found.
2823   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2824   unsigned NumLocs = MTracker->getNumLocs();
2825   unsigned BackEdgesStart = 0;
2826 
2827   for (auto p : BlockOrders) {
2828     // Pick out where backedges start in the list of predecessors. Relies on
2829     // BlockOrders being sorted by RPO.
2830     if (BBToOrder[p] < BBToOrder[&MBB])
2831       ++BackEdgesStart;
2832 
2833     // For each predecessor, create a new set of locations.
2834     Locs.resize(Locs.size() + 1);
2835     unsigned ThisBBNum = p->getNumber();
2836     auto LiveOutMap = LiveOuts.find(p);
2837     if (LiveOutMap == LiveOuts.end())
2838       // This predecessor isn't in scope, it must have no live-in/live-out
2839       // locations.
2840       continue;
2841 
2842     auto It = LiveOutMap->second->find(Var);
2843     if (It == LiveOutMap->second->end())
2844       // There's no value recorded for this variable in this predecessor,
2845       // leave an empty set of locations.
2846       continue;
2847 
2848     const DbgValue &OutVal = It->second;
2849 
2850     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2851       // Consts and no-values cannot have locations we can join on.
2852       continue;
2853 
2854     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2855     ValueIDNum ValToLookFor = OutVal.ID;
2856 
2857     // Search the live-outs of the predecessor for the specified value.
2858     for (unsigned int I = 0; I < NumLocs; ++I) {
2859       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2860         Locs.back().push_back(LocIdx(I));
2861     }
2862   }
2863 
2864   // If there were no locations at all, return an empty result.
2865   if (Locs.empty())
2866     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2867 
2868   // Lambda for seeking a common location within a range of location-sets.
2869   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2870   auto SeekLocation =
2871       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2872     // Starting with the first set of locations, take the intersection with
2873     // subsequent sets.
2874     SmallVector<LocIdx, 4> base = Locs[0];
2875     for (auto &S : SearchRange) {
2876       SmallVector<LocIdx, 4> new_base;
2877       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2878                             std::inserter(new_base, new_base.begin()));
2879       base = new_base;
2880     }
2881     if (base.empty())
2882       return None;
2883 
2884     // We now have a set of LocIdxes that contain the right output value in
2885     // each of the predecessors. Pick the lowest; if there's a register loc,
2886     // that'll be it.
2887     return *base.begin();
2888   };
2889 
2890   // Search for a common location for all predecessors. If we can't, then fall
2891   // back to only finding a common location between non-backedge predecessors.
2892   bool ValidForAllLocs = true;
2893   auto TheLoc = SeekLocation(Locs);
2894   if (!TheLoc) {
2895     ValidForAllLocs = false;
2896     TheLoc =
2897         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2898   }
2899 
2900   if (!TheLoc)
2901     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2902 
2903   // Return a PHI-value-number for the found location.
2904   LocIdx L = *TheLoc;
2905   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2906   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2907 }
2908 
2909 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2910     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2911     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2912     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2913     ValueIDNum **MInLocs,
2914     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2915     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2916     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2917   bool DowngradeOccurred = false;
2918 
2919   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2920   // _does_ assign a variable value. No live-ins for this scope are transferred
2921   // in though, so we can return immediately.
2922   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2923     if (VLOCVisited)
2924       return std::tuple<bool, bool>(true, false);
2925     return std::tuple<bool, bool>(false, false);
2926   }
2927 
2928   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2929   bool Changed = false;
2930 
2931   // Find any live-ins computed in a prior iteration.
2932   auto ILSIt = VLOCInLocs.find(&MBB);
2933   assert(ILSIt != VLOCInLocs.end());
2934   auto &ILS = *ILSIt->second;
2935 
2936   // Order predecessors by RPOT order, for exploring them in that order.
2937   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2938 
2939   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2940     return BBToOrder[A] < BBToOrder[B];
2941   };
2942 
2943   llvm::sort(BlockOrders, Cmp);
2944 
2945   unsigned CurBlockRPONum = BBToOrder[&MBB];
2946 
2947   // Force a re-visit to loop heads in the first dataflow iteration.
2948   // FIXME: if we could "propose" Const values this wouldn't be needed,
2949   // because they'd need to be confirmed before being emitted.
2950   if (!BlockOrders.empty() &&
2951       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2952       VLOCVisited)
2953     DowngradeOccurred = true;
2954 
2955   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2956     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2957     (void)Result;
2958     assert(Result.second);
2959   };
2960 
2961   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2962     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2963 
2964     ConfirmValue(Var, NoLocPHIVal);
2965   };
2966 
2967   // Attempt to join the values for each variable.
2968   for (auto &Var : AllVars) {
2969     // Collect all the DbgValues for this variable.
2970     SmallVector<InValueT, 8> Values;
2971     bool Bail = false;
2972     unsigned BackEdgesStart = 0;
2973     for (auto p : BlockOrders) {
2974       // If the predecessor isn't in scope / to be explored, we'll never be
2975       // able to join any locations.
2976       if (!BlocksToExplore.contains(p)) {
2977         Bail = true;
2978         break;
2979       }
2980 
2981       // Don't attempt to handle unvisited predecessors: they're implicitly
2982       // "unknown"s in the lattice.
2983       if (VLOCVisited && !VLOCVisited->count(p))
2984         continue;
2985 
2986       // If the predecessors OutLocs is absent, there's not much we can do.
2987       auto OL = VLOCOutLocs.find(p);
2988       if (OL == VLOCOutLocs.end()) {
2989         Bail = true;
2990         break;
2991       }
2992 
2993       // No live-out value for this predecessor also means we can't produce
2994       // a joined value.
2995       auto VIt = OL->second->find(Var);
2996       if (VIt == OL->second->end()) {
2997         Bail = true;
2998         break;
2999       }
3000 
3001       // Keep track of where back-edges begin in the Values vector. Relies on
3002       // BlockOrders being sorted by RPO.
3003       unsigned ThisBBRPONum = BBToOrder[p];
3004       if (ThisBBRPONum < CurBlockRPONum)
3005         ++BackEdgesStart;
3006 
3007       Values.push_back(std::make_pair(p, &VIt->second));
3008     }
3009 
3010     // If there were no values, or one of the predecessors couldn't have a
3011     // value, then give up immediately. It's not safe to produce a live-in
3012     // value.
3013     if (Bail || Values.size() == 0)
3014       continue;
3015 
3016     // Enumeration identifying the current state of the predecessors values.
3017     enum {
3018       Unset = 0,
3019       Agreed,       // All preds agree on the variable value.
3020       PropDisagree, // All preds agree, but the value kind is Proposed in some.
3021       BEDisagree,   // Only back-edges disagree on variable value.
3022       PHINeeded,    // Non-back-edge predecessors have conflicing values.
3023       NoSolution    // Conflicting Value metadata makes solution impossible.
3024     } OurState = Unset;
3025 
3026     // All (non-entry) blocks have at least one non-backedge predecessor.
3027     // Pick the variable value from the first of these, to compare against
3028     // all others.
3029     const DbgValue &FirstVal = *Values[0].second;
3030     const ValueIDNum &FirstID = FirstVal.ID;
3031 
3032     // Scan for variable values that can't be resolved: if they have different
3033     // DIExpressions, different indirectness, or are mixed constants /
3034     // non-constants.
3035     for (auto &V : Values) {
3036       if (V.second->Properties != FirstVal.Properties)
3037         OurState = NoSolution;
3038       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
3039         OurState = NoSolution;
3040     }
3041 
3042     // Flags diagnosing _how_ the values disagree.
3043     bool NonBackEdgeDisagree = false;
3044     bool DisagreeOnPHINess = false;
3045     bool IDDisagree = false;
3046     bool Disagree = false;
3047     if (OurState == Unset) {
3048       for (auto &V : Values) {
3049         if (*V.second == FirstVal)
3050           continue; // No disagreement.
3051 
3052         Disagree = true;
3053 
3054         // Flag whether the value number actually diagrees.
3055         if (V.second->ID != FirstID)
3056           IDDisagree = true;
3057 
3058         // Distinguish whether disagreement happens in backedges or not.
3059         // Relies on Values (and BlockOrders) being sorted by RPO.
3060         unsigned ThisBBRPONum = BBToOrder[V.first];
3061         if (ThisBBRPONum < CurBlockRPONum)
3062           NonBackEdgeDisagree = true;
3063 
3064         // Is there a difference in whether the value is definite or only
3065         // proposed?
3066         if (V.second->Kind != FirstVal.Kind &&
3067             (V.second->Kind == DbgValue::Proposed ||
3068              V.second->Kind == DbgValue::Def) &&
3069             (FirstVal.Kind == DbgValue::Proposed ||
3070              FirstVal.Kind == DbgValue::Def))
3071           DisagreeOnPHINess = true;
3072       }
3073 
3074       // Collect those flags together and determine an overall state for
3075       // what extend the predecessors agree on a live-in value.
3076       if (!Disagree)
3077         OurState = Agreed;
3078       else if (!IDDisagree && DisagreeOnPHINess)
3079         OurState = PropDisagree;
3080       else if (!NonBackEdgeDisagree)
3081         OurState = BEDisagree;
3082       else
3083         OurState = PHINeeded;
3084     }
3085 
3086     // An extra indicator: if we only disagree on whether the value is a
3087     // Def, or proposed, then also flag whether that disagreement happens
3088     // in backedges only.
3089     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
3090                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
3091 
3092     const auto &Properties = FirstVal.Properties;
3093 
3094     auto OldLiveInIt = ILS.find(Var);
3095     const DbgValue *OldLiveInLocation =
3096         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
3097 
3098     bool OverRide = false;
3099     if (OurState == BEDisagree && OldLiveInLocation) {
3100       // Only backedges disagree: we can consider downgrading. If there was a
3101       // previous live-in value, use it to work out whether the current
3102       // incoming value represents a lattice downgrade or not.
3103       OverRide =
3104           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
3105     }
3106 
3107     // Use the current state of predecessor agreement and other flags to work
3108     // out what to do next. Possibilities include:
3109     //  * Accept a value all predecessors agree on, or accept one that
3110     //    represents a step down the exploration lattice,
3111     //  * Use a PHI value number, if one can be found,
3112     //  * Propose a PHI value number, and see if it gets confirmed later,
3113     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
3114     if (OurState == Agreed) {
3115       // Easiest solution: all predecessors agree on the variable value.
3116       ConfirmValue(Var, FirstVal);
3117     } else if (OurState == BEDisagree && OverRide) {
3118       // Only backedges disagree, and the other predecessors have produced
3119       // a new live-in value further down the exploration lattice.
3120       DowngradeOccurred = true;
3121       ConfirmValue(Var, FirstVal);
3122     } else if (OurState == PropDisagree) {
3123       // Predecessors agree on value, but some say it's only a proposed value.
3124       // Propagate it as proposed: unless it was proposed in this block, in
3125       // which case we're able to confirm the value.
3126       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
3127         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3128       } else if (PropOnlyInBEs) {
3129         // If only backedges disagree, a higher (in RPO) block confirmed this
3130         // location, and we need to propagate it into this loop.
3131         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3132       } else {
3133         // Otherwise; a Def meeting a Proposed is still a Proposed.
3134         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
3135       }
3136     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
3137       // Predecessors disagree and can't be downgraded: this can only be
3138       // solved with a PHI. Use pickVPHILoc to go look for one.
3139       Optional<ValueIDNum> VPHI;
3140       bool AllEdgesVPHI = false;
3141       std::tie(VPHI, AllEdgesVPHI) =
3142           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
3143 
3144       if (VPHI && AllEdgesVPHI) {
3145         // There's a PHI value that's valid for all predecessors -- we can use
3146         // it. If any of the non-backedge predecessors have proposed values
3147         // though, this PHI is also only proposed, until the predecessors are
3148         // confirmed.
3149         DbgValue::KindT K = DbgValue::Def;
3150         for (unsigned int I = 0; I < BackEdgesStart; ++I)
3151           if (Values[I].second->Kind == DbgValue::Proposed)
3152             K = DbgValue::Proposed;
3153 
3154         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
3155       } else if (VPHI) {
3156         // There's a PHI value, but it's only legal for backedges. Leave this
3157         // as a proposed PHI value: it might come back on the backedges,
3158         // and allow us to confirm it in the future.
3159         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
3160         ConfirmValue(Var, NoBEValue);
3161       } else {
3162         ConfirmNoVal(Var, Properties);
3163       }
3164     } else {
3165       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
3166       ConfirmNoVal(Var, Properties);
3167     }
3168   }
3169 
3170   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
3171   Changed = ILS != InLocsT;
3172   if (Changed)
3173     ILS = InLocsT;
3174 
3175   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
3176 }
3177 
3178 void InstrRefBasedLDV::vlocDataflow(
3179     const LexicalScope *Scope, const DILocation *DILoc,
3180     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3181     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3182     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
3183     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3184   // This method is much like mlocDataflow: but focuses on a single
3185   // LexicalScope at a time. Pick out a set of blocks and variables that are
3186   // to have their value assignments solved, then run our dataflow algorithm
3187   // until a fixedpoint is reached.
3188   std::priority_queue<unsigned int, std::vector<unsigned int>,
3189                       std::greater<unsigned int>>
3190       Worklist, Pending;
3191   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3192 
3193   // The set of blocks we'll be examining.
3194   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3195 
3196   // The order in which to examine them (RPO).
3197   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3198 
3199   // RPO ordering function.
3200   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3201     return BBToOrder[A] < BBToOrder[B];
3202   };
3203 
3204   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3205 
3206   // A separate container to distinguish "blocks we're exploring" versus
3207   // "blocks that are potentially in scope. See comment at start of vlocJoin.
3208   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
3209 
3210   // Old LiveDebugValues tracks variable locations that come out of blocks
3211   // not in scope, where DBG_VALUEs occur. This is something we could
3212   // legitimately ignore, but lets allow it for now.
3213   if (EmulateOldLDV)
3214     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3215 
3216   // We also need to propagate variable values through any artificial blocks
3217   // that immediately follow blocks in scope.
3218   DenseSet<const MachineBasicBlock *> ToAdd;
3219 
3220   // Helper lambda: For a given block in scope, perform a depth first search
3221   // of all the artificial successors, adding them to the ToAdd collection.
3222   auto AccumulateArtificialBlocks =
3223       [this, &ToAdd, &BlocksToExplore,
3224        &InScopeBlocks](const MachineBasicBlock *MBB) {
3225         // Depth-first-search state: each node is a block and which successor
3226         // we're currently exploring.
3227         SmallVector<std::pair<const MachineBasicBlock *,
3228                               MachineBasicBlock::const_succ_iterator>,
3229                     8>
3230             DFS;
3231 
3232         // Find any artificial successors not already tracked.
3233         for (auto *succ : MBB->successors()) {
3234           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
3235             continue;
3236           if (!ArtificialBlocks.count(succ))
3237             continue;
3238           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
3239           ToAdd.insert(succ);
3240         }
3241 
3242         // Search all those blocks, depth first.
3243         while (!DFS.empty()) {
3244           const MachineBasicBlock *CurBB = DFS.back().first;
3245           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3246           // Walk back if we've explored this blocks successors to the end.
3247           if (CurSucc == CurBB->succ_end()) {
3248             DFS.pop_back();
3249             continue;
3250           }
3251 
3252           // If the current successor is artificial and unexplored, descend into
3253           // it.
3254           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3255             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
3256             ToAdd.insert(*CurSucc);
3257             continue;
3258           }
3259 
3260           ++CurSucc;
3261         }
3262       };
3263 
3264   // Search in-scope blocks and those containing a DBG_VALUE from this scope
3265   // for artificial successors.
3266   for (auto *MBB : BlocksToExplore)
3267     AccumulateArtificialBlocks(MBB);
3268   for (auto *MBB : InScopeBlocks)
3269     AccumulateArtificialBlocks(MBB);
3270 
3271   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3272   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
3273 
3274   // Single block scope: not interesting! No propagation at all. Note that
3275   // this could probably go above ArtificialBlocks without damage, but
3276   // that then produces output differences from original-live-debug-values,
3277   // which propagates from a single block into many artificial ones.
3278   if (BlocksToExplore.size() == 1)
3279     return;
3280 
3281   // Picks out relevants blocks RPO order and sort them.
3282   for (auto *MBB : BlocksToExplore)
3283     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3284 
3285   llvm::sort(BlockOrders, Cmp);
3286   unsigned NumBlocks = BlockOrders.size();
3287 
3288   // Allocate some vectors for storing the live ins and live outs. Large.
3289   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
3290   LiveIns.resize(NumBlocks);
3291   LiveOuts.resize(NumBlocks);
3292 
3293   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3294   // vlocJoin.
3295   LiveIdxT LiveOutIdx, LiveInIdx;
3296   LiveOutIdx.reserve(NumBlocks);
3297   LiveInIdx.reserve(NumBlocks);
3298   for (unsigned I = 0; I < NumBlocks; ++I) {
3299     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3300     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3301   }
3302 
3303   for (auto *MBB : BlockOrders) {
3304     Worklist.push(BBToOrder[MBB]);
3305     OnWorklist.insert(MBB);
3306   }
3307 
3308   // Iterate over all the blocks we selected, propagating variable values.
3309   bool FirstTrip = true;
3310   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
3311   while (!Worklist.empty() || !Pending.empty()) {
3312     while (!Worklist.empty()) {
3313       auto *MBB = OrderToBB[Worklist.top()];
3314       CurBB = MBB->getNumber();
3315       Worklist.pop();
3316 
3317       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
3318 
3319       // Join values from predecessors. Updates LiveInIdx, and writes output
3320       // into JoinedInLocs.
3321       bool InLocsChanged, DowngradeOccurred;
3322       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
3323           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
3324           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
3325           BlocksToExplore, JoinedInLocs);
3326 
3327       bool FirstVisit = VLOCVisited.insert(MBB).second;
3328 
3329       // Always explore transfer function if inlocs changed, or if we've not
3330       // visited this block before.
3331       InLocsChanged |= FirstVisit;
3332 
3333       // If a downgrade occurred, book us in for re-examination on the next
3334       // iteration.
3335       if (DowngradeOccurred && OnPending.insert(MBB).second)
3336         Pending.push(BBToOrder[MBB]);
3337 
3338       if (!InLocsChanged)
3339         continue;
3340 
3341       // Do transfer function.
3342       auto &VTracker = AllTheVLocs[MBB->getNumber()];
3343       for (auto &Transfer : VTracker.Vars) {
3344         // Is this var we're mangling in this scope?
3345         if (VarsWeCareAbout.count(Transfer.first)) {
3346           // Erase on empty transfer (DBG_VALUE $noreg).
3347           if (Transfer.second.Kind == DbgValue::Undef) {
3348             JoinedInLocs.erase(Transfer.first);
3349           } else {
3350             // Insert new variable value; or overwrite.
3351             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
3352             auto Result = JoinedInLocs.insert(NewValuePair);
3353             if (!Result.second)
3354               Result.first->second = Transfer.second;
3355           }
3356         }
3357       }
3358 
3359       // Did the live-out locations change?
3360       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
3361 
3362       // If they haven't changed, there's no need to explore further.
3363       if (!OLChanged)
3364         continue;
3365 
3366       // Commit to the live-out record.
3367       *LiveOutIdx[MBB] = JoinedInLocs;
3368 
3369       // We should visit all successors. Ensure we'll visit any non-backedge
3370       // successors during this dataflow iteration; book backedge successors
3371       // to be visited next time around.
3372       for (auto s : MBB->successors()) {
3373         // Ignore out of scope / not-to-be-explored successors.
3374         if (LiveInIdx.find(s) == LiveInIdx.end())
3375           continue;
3376 
3377         if (BBToOrder[s] > BBToOrder[MBB]) {
3378           if (OnWorklist.insert(s).second)
3379             Worklist.push(BBToOrder[s]);
3380         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3381           Pending.push(BBToOrder[s]);
3382         }
3383       }
3384     }
3385     Worklist.swap(Pending);
3386     std::swap(OnWorklist, OnPending);
3387     OnPending.clear();
3388     assert(Pending.empty());
3389     FirstTrip = false;
3390   }
3391 
3392   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3393   // as being variable-PHIs, because those did not have their machine-PHI
3394   // value confirmed. Such variable values are places that could have been
3395   // PHIs, but are not.
3396   for (auto *MBB : BlockOrders) {
3397     auto &VarMap = *LiveInIdx[MBB];
3398     for (auto &P : VarMap) {
3399       if (P.second.Kind == DbgValue::Proposed ||
3400           P.second.Kind == DbgValue::NoVal)
3401         continue;
3402       Output[MBB->getNumber()].push_back(P);
3403     }
3404   }
3405 
3406   BlockOrders.clear();
3407   BlocksToExplore.clear();
3408 }
3409 
3410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3411 void InstrRefBasedLDV::dump_mloc_transfer(
3412     const MLocTransferMap &mloc_transfer) const {
3413   for (auto &P : mloc_transfer) {
3414     std::string foo = MTracker->LocIdxToName(P.first);
3415     std::string bar = MTracker->IDAsString(P.second);
3416     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3417   }
3418 }
3419 #endif
3420 
3421 void InstrRefBasedLDV::emitLocations(
3422     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
3423     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3424     const TargetPassConfig &TPC) {
3425   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3426   unsigned NumLocs = MTracker->getNumLocs();
3427 
3428   // For each block, load in the machine value locations and variable value
3429   // live-ins, then step through each instruction in the block. New DBG_VALUEs
3430   // to be inserted will be created along the way.
3431   for (MachineBasicBlock &MBB : MF) {
3432     unsigned bbnum = MBB.getNumber();
3433     MTracker->reset();
3434     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3435     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3436                          NumLocs);
3437 
3438     CurBB = bbnum;
3439     CurInst = 1;
3440     for (auto &MI : MBB) {
3441       process(MI, MOutLocs, MInLocs);
3442       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3443       ++CurInst;
3444     }
3445   }
3446 
3447   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3448   // in DWARF in different orders. Use the order that they appear when walking
3449   // through each block / each instruction, stored in AllVarsNumbering.
3450   auto OrderDbgValues = [&](const MachineInstr *A,
3451                             const MachineInstr *B) -> bool {
3452     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3453                        A->getDebugLoc()->getInlinedAt());
3454     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3455                        B->getDebugLoc()->getInlinedAt());
3456     return AllVarsNumbering.find(VarA)->second <
3457            AllVarsNumbering.find(VarB)->second;
3458   };
3459 
3460   // Go through all the transfers recorded in the TransferTracker -- this is
3461   // both the live-ins to a block, and any movements of values that happen
3462   // in the middle.
3463   for (auto &P : TTracker->Transfers) {
3464     // Sort them according to appearance order.
3465     llvm::sort(P.Insts, OrderDbgValues);
3466     // Insert either before or after the designated point...
3467     if (P.MBB) {
3468       MachineBasicBlock &MBB = *P.MBB;
3469       for (auto *MI : P.Insts) {
3470         MBB.insert(P.Pos, MI);
3471       }
3472     } else {
3473       // Terminators, like tail calls, can clobber things. Don't try and place
3474       // transfers after them.
3475       if (P.Pos->isTerminator())
3476         continue;
3477 
3478       MachineBasicBlock &MBB = *P.Pos->getParent();
3479       for (auto *MI : P.Insts) {
3480         MBB.insertAfterBundle(P.Pos, MI);
3481       }
3482     }
3483   }
3484 }
3485 
3486 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3487   // Build some useful data structures.
3488   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3489     if (const DebugLoc &DL = MI.getDebugLoc())
3490       return DL.getLine() != 0;
3491     return false;
3492   };
3493   // Collect a set of all the artificial blocks.
3494   for (auto &MBB : MF)
3495     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3496       ArtificialBlocks.insert(&MBB);
3497 
3498   // Compute mappings of block <=> RPO order.
3499   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3500   unsigned int RPONumber = 0;
3501   for (MachineBasicBlock *MBB : RPOT) {
3502     OrderToBB[RPONumber] = MBB;
3503     BBToOrder[MBB] = RPONumber;
3504     BBNumToRPO[MBB->getNumber()] = RPONumber;
3505     ++RPONumber;
3506   }
3507 
3508   // Order value substitutions by their "source" operand pair, for quick lookup.
3509   llvm::sort(MF.DebugValueSubstitutions);
3510 
3511 #ifdef EXPENSIVE_CHECKS
3512   // As an expensive check, test whether there are any duplicate substitution
3513   // sources in the collection.
3514   if (MF.DebugValueSubstitutions.size() > 2) {
3515     for (auto It = MF.DebugValueSubstitutions.begin();
3516          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3517       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3518                                               "substitution seen");
3519     }
3520   }
3521 #endif
3522 }
3523 
3524 /// Calculate the liveness information for the given machine function and
3525 /// extend ranges across basic blocks.
3526 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3527                                     TargetPassConfig *TPC) {
3528   // No subprogram means this function contains no debuginfo.
3529   if (!MF.getFunction().getSubprogram())
3530     return false;
3531 
3532   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3533   this->TPC = TPC;
3534 
3535   TRI = MF.getSubtarget().getRegisterInfo();
3536   TII = MF.getSubtarget().getInstrInfo();
3537   TFI = MF.getSubtarget().getFrameLowering();
3538   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3539   MFI = &MF.getFrameInfo();
3540   LS.initialize(MF);
3541 
3542   MTracker =
3543       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3544   VTracker = nullptr;
3545   TTracker = nullptr;
3546 
3547   SmallVector<MLocTransferMap, 32> MLocTransfer;
3548   SmallVector<VLocTracker, 8> vlocs;
3549   LiveInsT SavedLiveIns;
3550 
3551   int MaxNumBlocks = -1;
3552   for (auto &MBB : MF)
3553     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3554   assert(MaxNumBlocks >= 0);
3555   ++MaxNumBlocks;
3556 
3557   MLocTransfer.resize(MaxNumBlocks);
3558   vlocs.resize(MaxNumBlocks);
3559   SavedLiveIns.resize(MaxNumBlocks);
3560 
3561   initialSetup(MF);
3562 
3563   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3564 
3565   // Allocate and initialize two array-of-arrays for the live-in and live-out
3566   // machine values. The outer dimension is the block number; while the inner
3567   // dimension is a LocIdx from MLocTracker.
3568   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3569   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3570   unsigned NumLocs = MTracker->getNumLocs();
3571   for (int i = 0; i < MaxNumBlocks; ++i) {
3572     MOutLocs[i] = new ValueIDNum[NumLocs];
3573     MInLocs[i] = new ValueIDNum[NumLocs];
3574   }
3575 
3576   // Solve the machine value dataflow problem using the MLocTransfer function,
3577   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3578   // both live-ins and live-outs for decision making in the variable value
3579   // dataflow problem.
3580   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3581 
3582   // Patch up debug phi numbers, turning unknown block-live-in values into
3583   // either live-through machine values, or PHIs.
3584   for (auto &DBG_PHI : DebugPHINumToValue) {
3585     // Identify unresolved block-live-ins.
3586     ValueIDNum &Num = DBG_PHI.ValueRead;
3587     if (!Num.isPHI())
3588       continue;
3589 
3590     unsigned BlockNo = Num.getBlock();
3591     LocIdx LocNo = Num.getLoc();
3592     Num = MInLocs[BlockNo][LocNo.asU64()];
3593   }
3594   // Later, we'll be looking up ranges of instruction numbers.
3595   llvm::sort(DebugPHINumToValue);
3596 
3597   // Walk back through each block / instruction, collecting DBG_VALUE
3598   // instructions and recording what machine value their operands refer to.
3599   for (auto &OrderPair : OrderToBB) {
3600     MachineBasicBlock &MBB = *OrderPair.second;
3601     CurBB = MBB.getNumber();
3602     VTracker = &vlocs[CurBB];
3603     VTracker->MBB = &MBB;
3604     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3605     CurInst = 1;
3606     for (auto &MI : MBB) {
3607       process(MI, MOutLocs, MInLocs);
3608       ++CurInst;
3609     }
3610     MTracker->reset();
3611   }
3612 
3613   // Number all variables in the order that they appear, to be used as a stable
3614   // insertion order later.
3615   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3616 
3617   // Map from one LexicalScope to all the variables in that scope.
3618   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3619 
3620   // Map from One lexical scope to all blocks in that scope.
3621   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3622       ScopeToBlocks;
3623 
3624   // Store a DILocation that describes a scope.
3625   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3626 
3627   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3628   // the order is unimportant, it just has to be stable.
3629   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3630     auto *MBB = OrderToBB[I];
3631     auto *VTracker = &vlocs[MBB->getNumber()];
3632     // Collect each variable with a DBG_VALUE in this block.
3633     for (auto &idx : VTracker->Vars) {
3634       const auto &Var = idx.first;
3635       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3636       assert(ScopeLoc != nullptr);
3637       auto *Scope = LS.findLexicalScope(ScopeLoc);
3638 
3639       // No insts in scope -> shouldn't have been recorded.
3640       assert(Scope != nullptr);
3641 
3642       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3643       ScopeToVars[Scope].insert(Var);
3644       ScopeToBlocks[Scope].insert(VTracker->MBB);
3645       ScopeToDILocation[Scope] = ScopeLoc;
3646     }
3647   }
3648 
3649   // OK. Iterate over scopes: there might be something to be said for
3650   // ordering them by size/locality, but that's for the future. For each scope,
3651   // solve the variable value problem, producing a map of variables to values
3652   // in SavedLiveIns.
3653   for (auto &P : ScopeToVars) {
3654     vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3655                  ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3656                  vlocs);
3657   }
3658 
3659   // Using the computed value locations and variable values for each block,
3660   // create the DBG_VALUE instructions representing the extended variable
3661   // locations.
3662   emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3663 
3664   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3665     delete[] MOutLocs[Idx];
3666     delete[] MInLocs[Idx];
3667   }
3668   delete[] MOutLocs;
3669   delete[] MInLocs;
3670 
3671   // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3672   bool Changed = TTracker->Transfers.size() != 0;
3673 
3674   delete MTracker;
3675   delete TTracker;
3676   MTracker = nullptr;
3677   VTracker = nullptr;
3678   TTracker = nullptr;
3679 
3680   ArtificialBlocks.clear();
3681   OrderToBB.clear();
3682   BBToOrder.clear();
3683   BBNumToRPO.clear();
3684   DebugInstrNumToInstr.clear();
3685   DebugPHINumToValue.clear();
3686 
3687   return Changed;
3688 }
3689 
3690 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3691   return new InstrRefBasedLDV();
3692 }
3693 
3694 namespace {
3695 class LDVSSABlock;
3696 class LDVSSAUpdater;
3697 
3698 // Pick a type to identify incoming block values as we construct SSA. We
3699 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3700 // expects to zero-initialize the type.
3701 typedef uint64_t BlockValueNum;
3702 
3703 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3704 /// this PHI is in, the value number it would have, and the expected incoming
3705 /// values from parent blocks.
3706 class LDVSSAPhi {
3707 public:
3708   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3709   LDVSSABlock *ParentBlock;
3710   BlockValueNum PHIValNum;
3711   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3712       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3713 
3714   LDVSSABlock *getParent() { return ParentBlock; }
3715 };
3716 
3717 /// Thin wrapper around a block predecessor iterator. Only difference from a
3718 /// normal block iterator is that it dereferences to an LDVSSABlock.
3719 class LDVSSABlockIterator {
3720 public:
3721   MachineBasicBlock::pred_iterator PredIt;
3722   LDVSSAUpdater &Updater;
3723 
3724   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3725                       LDVSSAUpdater &Updater)
3726       : PredIt(PredIt), Updater(Updater) {}
3727 
3728   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3729     return OtherIt.PredIt != PredIt;
3730   }
3731 
3732   LDVSSABlockIterator &operator++() {
3733     ++PredIt;
3734     return *this;
3735   }
3736 
3737   LDVSSABlock *operator*();
3738 };
3739 
3740 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3741 /// we need to track the PHI value(s) that we may have observed as necessary
3742 /// in this block.
3743 class LDVSSABlock {
3744 public:
3745   MachineBasicBlock &BB;
3746   LDVSSAUpdater &Updater;
3747   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3748   /// List of PHIs in this block. There should only ever be one.
3749   PHIListT PHIList;
3750 
3751   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3752       : BB(BB), Updater(Updater) {}
3753 
3754   LDVSSABlockIterator succ_begin() {
3755     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3756   }
3757 
3758   LDVSSABlockIterator succ_end() {
3759     return LDVSSABlockIterator(BB.succ_end(), Updater);
3760   }
3761 
3762   /// SSAUpdater has requested a PHI: create that within this block record.
3763   LDVSSAPhi *newPHI(BlockValueNum Value) {
3764     PHIList.emplace_back(Value, this);
3765     return &PHIList.back();
3766   }
3767 
3768   /// SSAUpdater wishes to know what PHIs already exist in this block.
3769   PHIListT &phis() { return PHIList; }
3770 };
3771 
3772 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3773 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3774 // SSAUpdaterTraits<LDVSSAUpdater>.
3775 class LDVSSAUpdater {
3776 public:
3777   /// Map of value numbers to PHI records.
3778   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3779   /// Map of which blocks generate Undef values -- blocks that are not
3780   /// dominated by any Def.
3781   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3782   /// Map of machine blocks to our own records of them.
3783   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3784   /// Machine location where any PHI must occur.
3785   LocIdx Loc;
3786   /// Table of live-in machine value numbers for blocks / locations.
3787   ValueIDNum **MLiveIns;
3788 
3789   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3790 
3791   void reset() {
3792     for (auto &Block : BlockMap)
3793       delete Block.second;
3794 
3795     PHIs.clear();
3796     UndefMap.clear();
3797     BlockMap.clear();
3798   }
3799 
3800   ~LDVSSAUpdater() { reset(); }
3801 
3802   /// For a given MBB, create a wrapper block for it. Stores it in the
3803   /// LDVSSAUpdater block map.
3804   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3805     auto it = BlockMap.find(BB);
3806     if (it == BlockMap.end()) {
3807       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3808       it = BlockMap.find(BB);
3809     }
3810     return it->second;
3811   }
3812 
3813   /// Find the live-in value number for the given block. Looks up the value at
3814   /// the PHI location on entry.
3815   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3816     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3817   }
3818 };
3819 
3820 LDVSSABlock *LDVSSABlockIterator::operator*() {
3821   return Updater.getSSALDVBlock(*PredIt);
3822 }
3823 
3824 #ifndef NDEBUG
3825 
3826 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3827   out << "SSALDVPHI " << PHI.PHIValNum;
3828   return out;
3829 }
3830 
3831 #endif
3832 
3833 } // namespace
3834 
3835 namespace llvm {
3836 
3837 /// Template specialization to give SSAUpdater access to CFG and value
3838 /// information. SSAUpdater calls methods in these traits, passing in the
3839 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3840 /// It also provides methods to create PHI nodes and track them.
3841 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3842 public:
3843   using BlkT = LDVSSABlock;
3844   using ValT = BlockValueNum;
3845   using PhiT = LDVSSAPhi;
3846   using BlkSucc_iterator = LDVSSABlockIterator;
3847 
3848   // Methods to access block successors -- dereferencing to our wrapper class.
3849   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3850   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3851 
3852   /// Iterator for PHI operands.
3853   class PHI_iterator {
3854   private:
3855     LDVSSAPhi *PHI;
3856     unsigned Idx;
3857 
3858   public:
3859     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3860         : PHI(P), Idx(0) {}
3861     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3862         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3863 
3864     PHI_iterator &operator++() {
3865       Idx++;
3866       return *this;
3867     }
3868     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3869     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3870 
3871     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3872 
3873     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3874   };
3875 
3876   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3877 
3878   static inline PHI_iterator PHI_end(PhiT *PHI) {
3879     return PHI_iterator(PHI, true);
3880   }
3881 
3882   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3883   /// vector.
3884   static void FindPredecessorBlocks(LDVSSABlock *BB,
3885                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3886     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3887                                           E = BB->BB.pred_end();
3888          PI != E; ++PI)
3889       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3890   }
3891 
3892   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3893   /// register. For LiveDebugValues, represents a block identified as not having
3894   /// any DBG_PHI predecessors.
3895   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3896     // Create a value number for this block -- it needs to be unique and in the
3897     // "undef" collection, so that we know it's not real. Use a number
3898     // representing a PHI into this block.
3899     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3900     Updater->UndefMap[&BB->BB] = Num;
3901     return Num;
3902   }
3903 
3904   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3905   /// SSAUpdater will populate it with information about incoming values. The
3906   /// value number of this PHI is whatever the  machine value number problem
3907   /// solution determined it to be. This includes non-phi values if SSAUpdater
3908   /// tries to create a PHI where the incoming values are identical.
3909   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3910                                    LDVSSAUpdater *Updater) {
3911     BlockValueNum PHIValNum = Updater->getValue(BB);
3912     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3913     Updater->PHIs[PHIValNum] = PHI;
3914     return PHIValNum;
3915   }
3916 
3917   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3918   /// the specified predecessor block.
3919   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3920     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3921   }
3922 
3923   /// ValueIsPHI - Check if the instruction that defines the specified value
3924   /// is a PHI instruction.
3925   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3926     auto PHIIt = Updater->PHIs.find(Val);
3927     if (PHIIt == Updater->PHIs.end())
3928       return nullptr;
3929     return PHIIt->second;
3930   }
3931 
3932   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3933   /// operands, i.e., it was just added.
3934   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3935     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3936     if (PHI && PHI->IncomingValues.size() == 0)
3937       return PHI;
3938     return nullptr;
3939   }
3940 
3941   /// GetPHIValue - For the specified PHI instruction, return the value
3942   /// that it defines.
3943   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3944 };
3945 
3946 } // end namespace llvm
3947 
3948 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3949                                                       ValueIDNum **MLiveOuts,
3950                                                       ValueIDNum **MLiveIns,
3951                                                       MachineInstr &Here,
3952                                                       uint64_t InstrNum) {
3953   // Pick out records of DBG_PHI instructions that have been observed. If there
3954   // are none, then we cannot compute a value number.
3955   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3956                                     DebugPHINumToValue.end(), InstrNum);
3957   auto LowerIt = RangePair.first;
3958   auto UpperIt = RangePair.second;
3959 
3960   // No DBG_PHI means there can be no location.
3961   if (LowerIt == UpperIt)
3962     return None;
3963 
3964   // If there's only one DBG_PHI, then that is our value number.
3965   if (std::distance(LowerIt, UpperIt) == 1)
3966     return LowerIt->ValueRead;
3967 
3968   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3969 
3970   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3971   // technically possible for us to merge values in different registers in each
3972   // block, but highly unlikely that LLVM will generate such code after register
3973   // allocation.
3974   LocIdx Loc = LowerIt->ReadLoc;
3975 
3976   // We have several DBG_PHIs, and a use position (the Here inst). All each
3977   // DBG_PHI does is identify a value at a program position. We can treat each
3978   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3979   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3980   // determine which Def is used at the Use, and any PHIs that happen along
3981   // the way.
3982   // Adapted LLVM SSA Updater:
3983   LDVSSAUpdater Updater(Loc, MLiveIns);
3984   // Map of which Def or PHI is the current value in each block.
3985   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3986   // Set of PHIs that we have created along the way.
3987   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3988 
3989   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3990   // for the SSAUpdater.
3991   for (const auto &DBG_PHI : DBGPHIRange) {
3992     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3993     const ValueIDNum &Num = DBG_PHI.ValueRead;
3994     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3995   }
3996 
3997   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3998   const auto &AvailIt = AvailableValues.find(HereBlock);
3999   if (AvailIt != AvailableValues.end()) {
4000     // Actually, we already know what the value is -- the Use is in the same
4001     // block as the Def.
4002     return ValueIDNum::fromU64(AvailIt->second);
4003   }
4004 
4005   // Otherwise, we must use the SSA Updater. It will identify the value number
4006   // that we are to use, and the PHIs that must happen along the way.
4007   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4008   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4009   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4010 
4011   // We have the number for a PHI, or possibly live-through value, to be used
4012   // at this Use. There are a number of things we have to check about it though:
4013   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4014   //    Use was not completely dominated by DBG_PHIs and we should abort.
4015   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4016   //    we've left SSA form. Validate that the inputs to each PHI are the
4017   //    expected values.
4018   //  * Is a PHI we've created actually a merging of values, or are all the
4019   //    predecessor values the same, leading to a non-PHI machine value number?
4020   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4021   //    the ValidatedValues collection below to sort this out.
4022   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4023 
4024   // Define all the input DBG_PHI values in ValidatedValues.
4025   for (const auto &DBG_PHI : DBGPHIRange) {
4026     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4027     const ValueIDNum &Num = DBG_PHI.ValueRead;
4028     ValidatedValues.insert(std::make_pair(Block, Num));
4029   }
4030 
4031   // Sort PHIs to validate into RPO-order.
4032   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4033   for (auto &PHI : CreatedPHIs)
4034     SortedPHIs.push_back(PHI);
4035 
4036   std::sort(
4037       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4038         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4039       });
4040 
4041   for (auto &PHI : SortedPHIs) {
4042     ValueIDNum ThisBlockValueNum =
4043         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4044 
4045     // Are all these things actually defined?
4046     for (auto &PHIIt : PHI->IncomingValues) {
4047       // Any undef input means DBG_PHIs didn't dominate the use point.
4048       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
4049         return None;
4050 
4051       ValueIDNum ValueToCheck;
4052       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4053 
4054       auto VVal = ValidatedValues.find(PHIIt.first);
4055       if (VVal == ValidatedValues.end()) {
4056         // We cross a loop, and this is a backedge. LLVMs tail duplication
4057         // happens so late that DBG_PHI instructions should not be able to
4058         // migrate into loops -- meaning we can only be live-through this
4059         // loop.
4060         ValueToCheck = ThisBlockValueNum;
4061       } else {
4062         // Does the block have as a live-out, in the location we're examining,
4063         // the value that we expect? If not, it's been moved or clobbered.
4064         ValueToCheck = VVal->second;
4065       }
4066 
4067       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4068         return None;
4069     }
4070 
4071     // Record this value as validated.
4072     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4073   }
4074 
4075   // All the PHIs are valid: we can return what the SSAUpdater said our value
4076   // number was.
4077   return Result;
4078 }
4079