1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallSite.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/Constant.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DerivedTypes.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/Intrinsics.h" 70 #include "llvm/IR/IntrinsicsPowerPC.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/Use.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCContext.h" 76 #include "llvm/MC/MCExpr.h" 77 #include "llvm/MC/MCRegisterInfo.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision", 122 cl::desc("enable quad precision float support on ppc"), cl::Hidden); 123 124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 125 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 126 127 STATISTIC(NumTailCalls, "Number of tail calls"); 128 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 129 130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 131 132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 133 134 // FIXME: Remove this once the bug has been fixed! 135 extern cl::opt<bool> ANDIGlueBug; 136 137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 138 const PPCSubtarget &STI) 139 : TargetLowering(TM), Subtarget(STI) { 140 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 141 // arguments are at least 4/8 bytes aligned. 142 bool isPPC64 = Subtarget.isPPC64(); 143 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 144 145 // Set up the register classes. 146 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 147 if (!useSoftFloat()) { 148 if (hasSPE()) { 149 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 150 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 151 } else { 152 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 153 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 154 } 155 } 156 157 // Match BITREVERSE to customized fast code sequence in the td file. 158 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 159 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 160 161 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 162 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 163 164 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 165 for (MVT VT : MVT::integer_valuetypes()) { 166 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 167 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 168 } 169 170 if (Subtarget.isISA3_0()) { 171 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 172 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 173 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 174 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 175 } else { 176 // No extending loads from f16 or HW conversions back and forth. 177 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 178 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 179 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 180 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 181 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 182 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 183 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 184 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 185 } 186 187 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 188 189 // PowerPC has pre-inc load and store's. 190 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 191 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 192 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 193 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 194 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 195 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 196 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 197 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 198 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 199 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 200 if (!Subtarget.hasSPE()) { 201 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 202 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 203 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 204 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 205 } 206 207 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 208 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 209 for (MVT VT : ScalarIntVTs) { 210 setOperationAction(ISD::ADDC, VT, Legal); 211 setOperationAction(ISD::ADDE, VT, Legal); 212 setOperationAction(ISD::SUBC, VT, Legal); 213 setOperationAction(ISD::SUBE, VT, Legal); 214 } 215 216 if (Subtarget.useCRBits()) { 217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 218 219 if (isPPC64 || Subtarget.hasFPCVT()) { 220 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 221 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 222 isPPC64 ? MVT::i64 : MVT::i32); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 224 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 225 isPPC64 ? MVT::i64 : MVT::i32); 226 } else { 227 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 228 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 229 } 230 231 // PowerPC does not support direct load/store of condition registers. 232 setOperationAction(ISD::LOAD, MVT::i1, Custom); 233 setOperationAction(ISD::STORE, MVT::i1, Custom); 234 235 // FIXME: Remove this once the ANDI glue bug is fixed: 236 if (ANDIGlueBug) 237 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 238 239 for (MVT VT : MVT::integer_valuetypes()) { 240 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 241 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 242 setTruncStoreAction(VT, MVT::i1, Expand); 243 } 244 245 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 246 } 247 248 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 249 // PPC (the libcall is not available). 250 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 251 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 252 253 // We do not currently implement these libm ops for PowerPC. 254 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 255 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 256 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 257 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 258 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 259 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 260 261 // PowerPC has no SREM/UREM instructions unless we are on P9 262 // On P9 we may use a hardware instruction to compute the remainder. 263 // The instructions are not legalized directly because in the cases where the 264 // result of both the remainder and the division is required it is more 265 // efficient to compute the remainder from the result of the division rather 266 // than use the remainder instruction. 267 if (Subtarget.isISA3_0()) { 268 setOperationAction(ISD::SREM, MVT::i32, Custom); 269 setOperationAction(ISD::UREM, MVT::i32, Custom); 270 setOperationAction(ISD::SREM, MVT::i64, Custom); 271 setOperationAction(ISD::UREM, MVT::i64, Custom); 272 } else { 273 setOperationAction(ISD::SREM, MVT::i32, Expand); 274 setOperationAction(ISD::UREM, MVT::i32, Expand); 275 setOperationAction(ISD::SREM, MVT::i64, Expand); 276 setOperationAction(ISD::UREM, MVT::i64, Expand); 277 } 278 279 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 280 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 281 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 282 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 283 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 284 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 285 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 288 289 // We don't support sin/cos/sqrt/fmod/pow 290 setOperationAction(ISD::FSIN , MVT::f64, Expand); 291 setOperationAction(ISD::FCOS , MVT::f64, Expand); 292 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 293 setOperationAction(ISD::FREM , MVT::f64, Expand); 294 setOperationAction(ISD::FPOW , MVT::f64, Expand); 295 setOperationAction(ISD::FSIN , MVT::f32, Expand); 296 setOperationAction(ISD::FCOS , MVT::f32, Expand); 297 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 298 setOperationAction(ISD::FREM , MVT::f32, Expand); 299 setOperationAction(ISD::FPOW , MVT::f32, Expand); 300 if (Subtarget.hasSPE()) { 301 setOperationAction(ISD::FMA , MVT::f64, Expand); 302 setOperationAction(ISD::FMA , MVT::f32, Expand); 303 } else { 304 setOperationAction(ISD::FMA , MVT::f64, Legal); 305 setOperationAction(ISD::FMA , MVT::f32, Legal); 306 } 307 308 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 309 310 // If we're enabling GP optimizations, use hardware square root 311 if (!Subtarget.hasFSQRT() && 312 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 313 Subtarget.hasFRE())) 314 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 315 316 if (!Subtarget.hasFSQRT() && 317 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 318 Subtarget.hasFRES())) 319 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 320 321 if (Subtarget.hasFCPSGN()) { 322 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 323 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 324 } else { 325 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 326 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 327 } 328 329 if (Subtarget.hasFPRND()) { 330 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 331 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 332 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 333 setOperationAction(ISD::FROUND, MVT::f64, Legal); 334 335 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 336 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 337 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 338 setOperationAction(ISD::FROUND, MVT::f32, Legal); 339 } 340 341 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 342 // to speed up scalar BSWAP64. 343 // CTPOP or CTTZ were introduced in P8/P9 respectively 344 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 345 if (Subtarget.hasP9Vector()) 346 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 347 else 348 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 349 if (Subtarget.isISA3_0()) { 350 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 351 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 352 } else { 353 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 354 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 355 } 356 357 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 358 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 359 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 360 } else { 361 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 362 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 363 } 364 365 // PowerPC does not have ROTR 366 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 367 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 368 369 if (!Subtarget.useCRBits()) { 370 // PowerPC does not have Select 371 setOperationAction(ISD::SELECT, MVT::i32, Expand); 372 setOperationAction(ISD::SELECT, MVT::i64, Expand); 373 setOperationAction(ISD::SELECT, MVT::f32, Expand); 374 setOperationAction(ISD::SELECT, MVT::f64, Expand); 375 } 376 377 // PowerPC wants to turn select_cc of FP into fsel when possible. 378 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 379 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 380 381 // PowerPC wants to optimize integer setcc a bit 382 if (!Subtarget.useCRBits()) 383 setOperationAction(ISD::SETCC, MVT::i32, Custom); 384 385 // PowerPC does not have BRCOND which requires SetCC 386 if (!Subtarget.useCRBits()) 387 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 388 389 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 390 391 if (Subtarget.hasSPE()) { 392 // SPE has built-in conversions 393 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 394 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 395 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 396 } else { 397 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 398 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 399 400 // PowerPC does not have [U|S]INT_TO_FP 401 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 402 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 403 } 404 405 if (Subtarget.hasDirectMove() && isPPC64) { 406 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 407 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 408 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 409 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 410 if (TM.Options.UnsafeFPMath) { 411 setOperationAction(ISD::LRINT, MVT::f64, Legal); 412 setOperationAction(ISD::LRINT, MVT::f32, Legal); 413 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 414 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 415 setOperationAction(ISD::LROUND, MVT::f64, Legal); 416 setOperationAction(ISD::LROUND, MVT::f32, Legal); 417 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 418 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 419 } 420 } else { 421 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 422 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 423 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 424 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 425 } 426 427 // We cannot sextinreg(i1). Expand to shifts. 428 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 429 430 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 431 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 432 // support continuation, user-level threading, and etc.. As a result, no 433 // other SjLj exception interfaces are implemented and please don't build 434 // your own exception handling based on them. 435 // LLVM/Clang supports zero-cost DWARF exception handling. 436 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 437 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 438 439 // We want to legalize GlobalAddress and ConstantPool nodes into the 440 // appropriate instructions to materialize the address. 441 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 442 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 443 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 444 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 445 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 446 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 447 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 448 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 449 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 450 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 451 452 // TRAP is legal. 453 setOperationAction(ISD::TRAP, MVT::Other, Legal); 454 455 // TRAMPOLINE is custom lowered. 456 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 457 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 458 459 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 460 setOperationAction(ISD::VASTART , MVT::Other, Custom); 461 462 if (Subtarget.is64BitELFABI()) { 463 // VAARG always uses double-word chunks, so promote anything smaller. 464 setOperationAction(ISD::VAARG, MVT::i1, Promote); 465 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 466 setOperationAction(ISD::VAARG, MVT::i8, Promote); 467 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 468 setOperationAction(ISD::VAARG, MVT::i16, Promote); 469 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 470 setOperationAction(ISD::VAARG, MVT::i32, Promote); 471 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 472 setOperationAction(ISD::VAARG, MVT::Other, Expand); 473 } else if (Subtarget.is32BitELFABI()) { 474 // VAARG is custom lowered with the 32-bit SVR4 ABI. 475 setOperationAction(ISD::VAARG, MVT::Other, Custom); 476 setOperationAction(ISD::VAARG, MVT::i64, Custom); 477 } else 478 setOperationAction(ISD::VAARG, MVT::Other, Expand); 479 480 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 481 if (Subtarget.is32BitELFABI()) 482 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 483 else 484 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 485 486 // Use the default implementation. 487 setOperationAction(ISD::VAEND , MVT::Other, Expand); 488 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 489 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 490 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 491 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 492 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 493 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 494 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 495 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 496 497 // We want to custom lower some of our intrinsics. 498 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 499 500 // To handle counter-based loop conditions. 501 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 502 503 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 504 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 505 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 506 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 507 508 // Comparisons that require checking two conditions. 509 if (Subtarget.hasSPE()) { 510 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 511 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 512 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 513 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 514 } 515 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 516 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 517 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 518 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 519 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 520 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 521 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 522 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 523 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 524 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 525 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 526 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 527 528 if (Subtarget.has64BitSupport()) { 529 // They also have instructions for converting between i64 and fp. 530 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 531 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 532 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 533 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 534 // This is just the low 32 bits of a (signed) fp->i64 conversion. 535 // We cannot do this with Promote because i64 is not a legal type. 536 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 537 538 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) 539 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 540 } else { 541 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 542 if (Subtarget.hasSPE()) 543 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 544 else 545 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 546 } 547 548 // With the instructions enabled under FPCVT, we can do everything. 549 if (Subtarget.hasFPCVT()) { 550 if (Subtarget.has64BitSupport()) { 551 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 552 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 553 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 554 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 555 } 556 557 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 558 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 559 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 560 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 561 } 562 563 if (Subtarget.use64BitRegs()) { 564 // 64-bit PowerPC implementations can support i64 types directly 565 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 566 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 567 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 568 // 64-bit PowerPC wants to expand i128 shifts itself. 569 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 570 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 571 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 572 } else { 573 // 32-bit PowerPC wants to expand i64 shifts itself. 574 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 575 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 576 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 577 } 578 579 if (Subtarget.hasVSX()) { 580 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 581 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 582 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 583 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 584 } 585 586 if (Subtarget.hasAltivec()) { 587 // First set operation action for all vector types to expand. Then we 588 // will selectively turn on ones that can be effectively codegen'd. 589 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 590 // add/sub are legal for all supported vector VT's. 591 setOperationAction(ISD::ADD, VT, Legal); 592 setOperationAction(ISD::SUB, VT, Legal); 593 594 // For v2i64, these are only valid with P8Vector. This is corrected after 595 // the loop. 596 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 597 setOperationAction(ISD::SMAX, VT, Legal); 598 setOperationAction(ISD::SMIN, VT, Legal); 599 setOperationAction(ISD::UMAX, VT, Legal); 600 setOperationAction(ISD::UMIN, VT, Legal); 601 } 602 else { 603 setOperationAction(ISD::SMAX, VT, Expand); 604 setOperationAction(ISD::SMIN, VT, Expand); 605 setOperationAction(ISD::UMAX, VT, Expand); 606 setOperationAction(ISD::UMIN, VT, Expand); 607 } 608 609 if (Subtarget.hasVSX()) { 610 setOperationAction(ISD::FMAXNUM, VT, Legal); 611 setOperationAction(ISD::FMINNUM, VT, Legal); 612 } 613 614 // Vector instructions introduced in P8 615 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 616 setOperationAction(ISD::CTPOP, VT, Legal); 617 setOperationAction(ISD::CTLZ, VT, Legal); 618 } 619 else { 620 setOperationAction(ISD::CTPOP, VT, Expand); 621 setOperationAction(ISD::CTLZ, VT, Expand); 622 } 623 624 // Vector instructions introduced in P9 625 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 626 setOperationAction(ISD::CTTZ, VT, Legal); 627 else 628 setOperationAction(ISD::CTTZ, VT, Expand); 629 630 // We promote all shuffles to v16i8. 631 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 632 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 633 634 // We promote all non-typed operations to v4i32. 635 setOperationAction(ISD::AND , VT, Promote); 636 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 637 setOperationAction(ISD::OR , VT, Promote); 638 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 639 setOperationAction(ISD::XOR , VT, Promote); 640 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 641 setOperationAction(ISD::LOAD , VT, Promote); 642 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 643 setOperationAction(ISD::SELECT, VT, Promote); 644 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 645 setOperationAction(ISD::VSELECT, VT, Legal); 646 setOperationAction(ISD::SELECT_CC, VT, Promote); 647 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 648 setOperationAction(ISD::STORE, VT, Promote); 649 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 650 651 // No other operations are legal. 652 setOperationAction(ISD::MUL , VT, Expand); 653 setOperationAction(ISD::SDIV, VT, Expand); 654 setOperationAction(ISD::SREM, VT, Expand); 655 setOperationAction(ISD::UDIV, VT, Expand); 656 setOperationAction(ISD::UREM, VT, Expand); 657 setOperationAction(ISD::FDIV, VT, Expand); 658 setOperationAction(ISD::FREM, VT, Expand); 659 setOperationAction(ISD::FNEG, VT, Expand); 660 setOperationAction(ISD::FSQRT, VT, Expand); 661 setOperationAction(ISD::FLOG, VT, Expand); 662 setOperationAction(ISD::FLOG10, VT, Expand); 663 setOperationAction(ISD::FLOG2, VT, Expand); 664 setOperationAction(ISD::FEXP, VT, Expand); 665 setOperationAction(ISD::FEXP2, VT, Expand); 666 setOperationAction(ISD::FSIN, VT, Expand); 667 setOperationAction(ISD::FCOS, VT, Expand); 668 setOperationAction(ISD::FABS, VT, Expand); 669 setOperationAction(ISD::FFLOOR, VT, Expand); 670 setOperationAction(ISD::FCEIL, VT, Expand); 671 setOperationAction(ISD::FTRUNC, VT, Expand); 672 setOperationAction(ISD::FRINT, VT, Expand); 673 setOperationAction(ISD::FNEARBYINT, VT, Expand); 674 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 675 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 676 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 677 setOperationAction(ISD::MULHU, VT, Expand); 678 setOperationAction(ISD::MULHS, VT, Expand); 679 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 680 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 681 setOperationAction(ISD::UDIVREM, VT, Expand); 682 setOperationAction(ISD::SDIVREM, VT, Expand); 683 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 684 setOperationAction(ISD::FPOW, VT, Expand); 685 setOperationAction(ISD::BSWAP, VT, Expand); 686 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 687 setOperationAction(ISD::ROTL, VT, Expand); 688 setOperationAction(ISD::ROTR, VT, Expand); 689 690 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 691 setTruncStoreAction(VT, InnerVT, Expand); 692 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 693 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 694 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 695 } 696 } 697 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 698 if (!Subtarget.hasP8Vector()) { 699 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 700 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 701 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 702 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 703 } 704 705 for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8}) 706 setOperationAction(ISD::ABS, VT, Custom); 707 708 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 709 // with merges, splats, etc. 710 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 711 712 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 713 // are cheap, so handle them before they get expanded to scalar. 714 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 715 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 716 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 717 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 718 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 719 720 setOperationAction(ISD::AND , MVT::v4i32, Legal); 721 setOperationAction(ISD::OR , MVT::v4i32, Legal); 722 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 723 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 724 setOperationAction(ISD::SELECT, MVT::v4i32, 725 Subtarget.useCRBits() ? Legal : Expand); 726 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 727 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 728 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 729 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 730 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 731 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 732 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 733 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 734 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 735 736 // Without hasP8Altivec set, v2i64 SMAX isn't available. 737 // But ABS custom lowering requires SMAX support. 738 if (!Subtarget.hasP8Altivec()) 739 setOperationAction(ISD::ABS, MVT::v2i64, Expand); 740 741 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 742 if (Subtarget.hasAltivec()) 743 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 744 setOperationAction(ISD::ROTL, VT, Legal); 745 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 746 if (Subtarget.hasP8Altivec()) 747 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 748 749 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 750 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 751 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 752 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 753 754 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 755 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 756 757 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) { 758 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 759 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 760 } 761 762 if (Subtarget.hasP8Altivec()) 763 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 764 else 765 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 766 767 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 768 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 769 770 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 771 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 772 773 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 774 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 775 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 776 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 777 778 // Altivec does not contain unordered floating-point compare instructions 779 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 780 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 781 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 782 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 783 784 if (Subtarget.hasVSX()) { 785 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 786 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 787 if (Subtarget.hasP8Vector()) { 788 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 789 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 790 } 791 if (Subtarget.hasDirectMove() && isPPC64) { 792 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 793 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 794 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 795 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 796 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 797 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 798 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 799 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 800 } 801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 802 803 // The nearbyint variants are not allowed to raise the inexact exception 804 // so we can only code-gen them with unsafe math. 805 if (TM.Options.UnsafeFPMath) { 806 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 807 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 808 } 809 810 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 811 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 812 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 813 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 814 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 815 setOperationAction(ISD::FROUND, MVT::f64, Legal); 816 817 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 818 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 819 setOperationAction(ISD::FROUND, MVT::f32, Legal); 820 821 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 822 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 823 824 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 825 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 826 827 // Share the Altivec comparison restrictions. 828 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 829 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 830 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 831 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 832 833 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 834 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 835 836 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 837 838 if (Subtarget.hasP8Vector()) 839 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 840 841 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 842 843 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 844 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 845 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 846 847 if (Subtarget.hasP8Altivec()) { 848 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 849 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 850 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 851 852 // 128 bit shifts can be accomplished via 3 instructions for SHL and 853 // SRL, but not for SRA because of the instructions available: 854 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 855 // doing 856 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 857 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 858 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 859 860 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 861 } 862 else { 863 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 864 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 865 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 866 867 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 868 869 // VSX v2i64 only supports non-arithmetic operations. 870 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 871 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 872 } 873 874 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 875 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 876 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 877 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 878 879 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 880 881 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 882 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 883 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 884 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 885 886 // Custom handling for partial vectors of integers converted to 887 // floating point. We already have optimal handling for v2i32 through 888 // the DAG combine, so those aren't necessary. 889 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 890 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 891 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 892 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 893 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 894 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 895 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 896 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 897 898 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 899 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 900 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 901 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 902 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 903 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 904 905 if (Subtarget.hasDirectMove()) 906 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 907 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 908 909 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 910 } 911 912 if (Subtarget.hasP8Altivec()) { 913 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 914 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 915 } 916 917 if (Subtarget.hasP9Vector()) { 918 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 919 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 920 921 // 128 bit shifts can be accomplished via 3 instructions for SHL and 922 // SRL, but not for SRA because of the instructions available: 923 // VS{RL} and VS{RL}O. 924 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 925 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 926 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 927 928 if (EnableQuadPrecision) { 929 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 930 setOperationAction(ISD::FADD, MVT::f128, Legal); 931 setOperationAction(ISD::FSUB, MVT::f128, Legal); 932 setOperationAction(ISD::FDIV, MVT::f128, Legal); 933 setOperationAction(ISD::FMUL, MVT::f128, Legal); 934 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 935 // No extending loads to f128 on PPC. 936 for (MVT FPT : MVT::fp_valuetypes()) 937 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 938 setOperationAction(ISD::FMA, MVT::f128, Legal); 939 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 940 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 941 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 942 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 943 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 944 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 945 946 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 947 setOperationAction(ISD::FRINT, MVT::f128, Legal); 948 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 949 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 950 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 951 setOperationAction(ISD::FROUND, MVT::f128, Legal); 952 953 setOperationAction(ISD::SELECT, MVT::f128, Expand); 954 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 955 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 956 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 957 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 958 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 959 // No implementation for these ops for PowerPC. 960 setOperationAction(ISD::FSIN , MVT::f128, Expand); 961 setOperationAction(ISD::FCOS , MVT::f128, Expand); 962 setOperationAction(ISD::FPOW, MVT::f128, Expand); 963 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 964 setOperationAction(ISD::FREM, MVT::f128, Expand); 965 } 966 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 967 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 968 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 969 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 970 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 971 } 972 973 if (Subtarget.hasP9Altivec()) { 974 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 975 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 976 977 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 978 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 979 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 980 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 981 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 982 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 983 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 984 } 985 } 986 987 if (Subtarget.hasQPX()) { 988 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 989 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 990 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 991 setOperationAction(ISD::FREM, MVT::v4f64, Expand); 992 993 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal); 994 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand); 995 996 setOperationAction(ISD::LOAD , MVT::v4f64, Custom); 997 setOperationAction(ISD::STORE , MVT::v4f64, Custom); 998 999 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); 1000 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom); 1001 1002 if (!Subtarget.useCRBits()) 1003 setOperationAction(ISD::SELECT, MVT::v4f64, Expand); 1004 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); 1005 1006 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal); 1007 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand); 1008 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand); 1009 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand); 1010 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom); 1011 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal); 1012 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 1013 1014 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal); 1015 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand); 1016 1017 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal); 1018 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal); 1019 1020 setOperationAction(ISD::FNEG , MVT::v4f64, Legal); 1021 setOperationAction(ISD::FABS , MVT::v4f64, Legal); 1022 setOperationAction(ISD::FSIN , MVT::v4f64, Expand); 1023 setOperationAction(ISD::FCOS , MVT::v4f64, Expand); 1024 setOperationAction(ISD::FPOW , MVT::v4f64, Expand); 1025 setOperationAction(ISD::FLOG , MVT::v4f64, Expand); 1026 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand); 1027 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand); 1028 setOperationAction(ISD::FEXP , MVT::v4f64, Expand); 1029 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand); 1030 1031 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal); 1032 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal); 1033 1034 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal); 1035 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal); 1036 1037 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass); 1038 1039 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 1040 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 1041 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 1042 setOperationAction(ISD::FREM, MVT::v4f32, Expand); 1043 1044 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1045 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand); 1046 1047 setOperationAction(ISD::LOAD , MVT::v4f32, Custom); 1048 setOperationAction(ISD::STORE , MVT::v4f32, Custom); 1049 1050 if (!Subtarget.useCRBits()) 1051 setOperationAction(ISD::SELECT, MVT::v4f32, Expand); 1052 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); 1053 1054 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal); 1055 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand); 1056 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand); 1057 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand); 1058 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom); 1059 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 1060 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 1061 1062 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal); 1063 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand); 1064 1065 setOperationAction(ISD::FNEG , MVT::v4f32, Legal); 1066 setOperationAction(ISD::FABS , MVT::v4f32, Legal); 1067 setOperationAction(ISD::FSIN , MVT::v4f32, Expand); 1068 setOperationAction(ISD::FCOS , MVT::v4f32, Expand); 1069 setOperationAction(ISD::FPOW , MVT::v4f32, Expand); 1070 setOperationAction(ISD::FLOG , MVT::v4f32, Expand); 1071 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand); 1072 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand); 1073 setOperationAction(ISD::FEXP , MVT::v4f32, Expand); 1074 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand); 1075 1076 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 1077 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 1078 1079 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal); 1080 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal); 1081 1082 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass); 1083 1084 setOperationAction(ISD::AND , MVT::v4i1, Legal); 1085 setOperationAction(ISD::OR , MVT::v4i1, Legal); 1086 setOperationAction(ISD::XOR , MVT::v4i1, Legal); 1087 1088 if (!Subtarget.useCRBits()) 1089 setOperationAction(ISD::SELECT, MVT::v4i1, Expand); 1090 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal); 1091 1092 setOperationAction(ISD::LOAD , MVT::v4i1, Custom); 1093 setOperationAction(ISD::STORE , MVT::v4i1, Custom); 1094 1095 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom); 1096 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand); 1097 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand); 1098 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand); 1099 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom); 1100 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand); 1101 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); 1102 1103 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom); 1104 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom); 1105 1106 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass); 1107 1108 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); 1109 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); 1110 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); 1111 setOperationAction(ISD::FROUND, MVT::v4f64, Legal); 1112 1113 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 1114 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 1115 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 1116 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 1117 1118 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand); 1119 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 1120 1121 // These need to set FE_INEXACT, and so cannot be vectorized here. 1122 setOperationAction(ISD::FRINT, MVT::v4f64, Expand); 1123 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 1124 1125 if (TM.Options.UnsafeFPMath) { 1126 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 1127 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 1128 1129 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 1130 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 1131 } else { 1132 setOperationAction(ISD::FDIV, MVT::v4f64, Expand); 1133 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand); 1134 1135 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 1136 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 1137 } 1138 } 1139 1140 if (Subtarget.has64BitSupport()) 1141 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1142 1143 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1144 1145 if (isPPC64) 1146 setMaxAtomicSizeInBitsSupported(64); 1147 else { 1148 setMaxAtomicSizeInBitsSupported(32); 1149 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1150 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1151 } 1152 1153 setBooleanContents(ZeroOrOneBooleanContent); 1154 1155 if (Subtarget.hasAltivec()) { 1156 // Altivec instructions set fields to all zeros or all ones. 1157 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1158 } 1159 1160 if (!isPPC64) { 1161 // These libcalls are not available in 32-bit. 1162 setLibcallName(RTLIB::SHL_I128, nullptr); 1163 setLibcallName(RTLIB::SRL_I128, nullptr); 1164 setLibcallName(RTLIB::SRA_I128, nullptr); 1165 } 1166 1167 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1168 1169 // We have target-specific dag combine patterns for the following nodes: 1170 setTargetDAGCombine(ISD::ADD); 1171 setTargetDAGCombine(ISD::SHL); 1172 setTargetDAGCombine(ISD::SRA); 1173 setTargetDAGCombine(ISD::SRL); 1174 setTargetDAGCombine(ISD::MUL); 1175 setTargetDAGCombine(ISD::SINT_TO_FP); 1176 setTargetDAGCombine(ISD::BUILD_VECTOR); 1177 if (Subtarget.hasFPCVT()) 1178 setTargetDAGCombine(ISD::UINT_TO_FP); 1179 setTargetDAGCombine(ISD::LOAD); 1180 setTargetDAGCombine(ISD::STORE); 1181 setTargetDAGCombine(ISD::BR_CC); 1182 if (Subtarget.useCRBits()) 1183 setTargetDAGCombine(ISD::BRCOND); 1184 setTargetDAGCombine(ISD::BSWAP); 1185 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1186 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1187 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1188 1189 setTargetDAGCombine(ISD::SIGN_EXTEND); 1190 setTargetDAGCombine(ISD::ZERO_EXTEND); 1191 setTargetDAGCombine(ISD::ANY_EXTEND); 1192 1193 setTargetDAGCombine(ISD::TRUNCATE); 1194 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1195 1196 1197 if (Subtarget.useCRBits()) { 1198 setTargetDAGCombine(ISD::TRUNCATE); 1199 setTargetDAGCombine(ISD::SETCC); 1200 setTargetDAGCombine(ISD::SELECT_CC); 1201 } 1202 1203 // Use reciprocal estimates. 1204 if (TM.Options.UnsafeFPMath) { 1205 setTargetDAGCombine(ISD::FDIV); 1206 setTargetDAGCombine(ISD::FSQRT); 1207 } 1208 1209 if (Subtarget.hasP9Altivec()) { 1210 setTargetDAGCombine(ISD::ABS); 1211 setTargetDAGCombine(ISD::VSELECT); 1212 } 1213 1214 // Darwin long double math library functions have $LDBL128 appended. 1215 if (Subtarget.isDarwin()) { 1216 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128"); 1217 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128"); 1218 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128"); 1219 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128"); 1220 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128"); 1221 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128"); 1222 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128"); 1223 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128"); 1224 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128"); 1225 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128"); 1226 } 1227 1228 if (EnableQuadPrecision) { 1229 setLibcallName(RTLIB::LOG_F128, "logf128"); 1230 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1231 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1232 setLibcallName(RTLIB::EXP_F128, "expf128"); 1233 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1234 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1235 setLibcallName(RTLIB::COS_F128, "cosf128"); 1236 setLibcallName(RTLIB::POW_F128, "powf128"); 1237 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1238 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1239 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 1240 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1241 } 1242 1243 // With 32 condition bits, we don't need to sink (and duplicate) compares 1244 // aggressively in CodeGenPrep. 1245 if (Subtarget.useCRBits()) { 1246 setHasMultipleConditionRegisters(); 1247 setJumpIsExpensive(); 1248 } 1249 1250 setMinFunctionAlignment(Align(4)); 1251 if (Subtarget.isDarwin()) 1252 setPrefFunctionAlignment(Align(16)); 1253 1254 switch (Subtarget.getCPUDirective()) { 1255 default: break; 1256 case PPC::DIR_970: 1257 case PPC::DIR_A2: 1258 case PPC::DIR_E500: 1259 case PPC::DIR_E500mc: 1260 case PPC::DIR_E5500: 1261 case PPC::DIR_PWR4: 1262 case PPC::DIR_PWR5: 1263 case PPC::DIR_PWR5X: 1264 case PPC::DIR_PWR6: 1265 case PPC::DIR_PWR6X: 1266 case PPC::DIR_PWR7: 1267 case PPC::DIR_PWR8: 1268 case PPC::DIR_PWR9: 1269 case PPC::DIR_PWR_FUTURE: 1270 setPrefLoopAlignment(Align(16)); 1271 setPrefFunctionAlignment(Align(16)); 1272 break; 1273 } 1274 1275 if (Subtarget.enableMachineScheduler()) 1276 setSchedulingPreference(Sched::Source); 1277 else 1278 setSchedulingPreference(Sched::Hybrid); 1279 1280 computeRegisterProperties(STI.getRegisterInfo()); 1281 1282 // The Freescale cores do better with aggressive inlining of memcpy and 1283 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1284 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1285 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1286 MaxStoresPerMemset = 32; 1287 MaxStoresPerMemsetOptSize = 16; 1288 MaxStoresPerMemcpy = 32; 1289 MaxStoresPerMemcpyOptSize = 8; 1290 MaxStoresPerMemmove = 32; 1291 MaxStoresPerMemmoveOptSize = 8; 1292 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1293 // The A2 also benefits from (very) aggressive inlining of memcpy and 1294 // friends. The overhead of a the function call, even when warm, can be 1295 // over one hundred cycles. 1296 MaxStoresPerMemset = 128; 1297 MaxStoresPerMemcpy = 128; 1298 MaxStoresPerMemmove = 128; 1299 MaxLoadsPerMemcmp = 128; 1300 } else { 1301 MaxLoadsPerMemcmp = 8; 1302 MaxLoadsPerMemcmpOptSize = 4; 1303 } 1304 } 1305 1306 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1307 /// the desired ByVal argument alignment. 1308 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign, 1309 unsigned MaxMaxAlign) { 1310 if (MaxAlign == MaxMaxAlign) 1311 return; 1312 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1313 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256) 1314 MaxAlign = 32; 1315 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16) 1316 MaxAlign = 16; 1317 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1318 unsigned EltAlign = 0; 1319 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1320 if (EltAlign > MaxAlign) 1321 MaxAlign = EltAlign; 1322 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1323 for (auto *EltTy : STy->elements()) { 1324 unsigned EltAlign = 0; 1325 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1326 if (EltAlign > MaxAlign) 1327 MaxAlign = EltAlign; 1328 if (MaxAlign == MaxMaxAlign) 1329 break; 1330 } 1331 } 1332 } 1333 1334 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1335 /// function arguments in the caller parameter area. 1336 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1337 const DataLayout &DL) const { 1338 // Darwin passes everything on 4 byte boundary. 1339 if (Subtarget.isDarwin()) 1340 return 4; 1341 1342 // 16byte and wider vectors are passed on 16byte boundary. 1343 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1344 unsigned Align = Subtarget.isPPC64() ? 8 : 4; 1345 if (Subtarget.hasAltivec() || Subtarget.hasQPX()) 1346 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16); 1347 return Align; 1348 } 1349 1350 bool PPCTargetLowering::useSoftFloat() const { 1351 return Subtarget.useSoftFloat(); 1352 } 1353 1354 bool PPCTargetLowering::hasSPE() const { 1355 return Subtarget.hasSPE(); 1356 } 1357 1358 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1359 return VT.isScalarInteger(); 1360 } 1361 1362 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1363 switch ((PPCISD::NodeType)Opcode) { 1364 case PPCISD::FIRST_NUMBER: break; 1365 case PPCISD::FSEL: return "PPCISD::FSEL"; 1366 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1367 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1368 case PPCISD::FCFID: return "PPCISD::FCFID"; 1369 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1370 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1371 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1372 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1373 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1374 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1375 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1376 case PPCISD::FP_TO_UINT_IN_VSR: 1377 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1378 case PPCISD::FP_TO_SINT_IN_VSR: 1379 return "PPCISD::FP_TO_SINT_IN_VSR"; 1380 case PPCISD::FRE: return "PPCISD::FRE"; 1381 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1382 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1383 case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; 1384 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; 1385 case PPCISD::VPERM: return "PPCISD::VPERM"; 1386 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1387 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1388 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1389 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1390 case PPCISD::CMPB: return "PPCISD::CMPB"; 1391 case PPCISD::Hi: return "PPCISD::Hi"; 1392 case PPCISD::Lo: return "PPCISD::Lo"; 1393 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1394 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1395 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1396 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1397 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1398 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1399 case PPCISD::SRL: return "PPCISD::SRL"; 1400 case PPCISD::SRA: return "PPCISD::SRA"; 1401 case PPCISD::SHL: return "PPCISD::SHL"; 1402 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1403 case PPCISD::CALL: return "PPCISD::CALL"; 1404 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1405 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1406 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1407 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1408 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1409 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1410 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1411 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1412 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1413 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1414 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1415 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1416 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1417 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1418 case PPCISD::ANDI_rec_1_EQ_BIT: 1419 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1420 case PPCISD::ANDI_rec_1_GT_BIT: 1421 return "PPCISD::ANDI_rec_1_GT_BIT"; 1422 case PPCISD::VCMP: return "PPCISD::VCMP"; 1423 case PPCISD::VCMPo: return "PPCISD::VCMPo"; 1424 case PPCISD::LBRX: return "PPCISD::LBRX"; 1425 case PPCISD::STBRX: return "PPCISD::STBRX"; 1426 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1427 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1428 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1429 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1430 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1431 case PPCISD::SExtVElems: return "PPCISD::SExtVElems"; 1432 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1433 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1434 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1435 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1436 case PPCISD::ST_VSR_SCAL_INT: 1437 return "PPCISD::ST_VSR_SCAL_INT"; 1438 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1439 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1440 case PPCISD::BDZ: return "PPCISD::BDZ"; 1441 case PPCISD::MFFS: return "PPCISD::MFFS"; 1442 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1443 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1444 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1445 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1446 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1447 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1448 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1449 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1450 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1451 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1452 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1453 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1454 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1455 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1456 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1457 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1458 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1459 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1460 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1461 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1462 case PPCISD::SC: return "PPCISD::SC"; 1463 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1464 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1465 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1466 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1467 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1468 case PPCISD::VABSD: return "PPCISD::VABSD"; 1469 case PPCISD::QVFPERM: return "PPCISD::QVFPERM"; 1470 case PPCISD::QVGPCI: return "PPCISD::QVGPCI"; 1471 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI"; 1472 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI"; 1473 case PPCISD::QBFLT: return "PPCISD::QBFLT"; 1474 case PPCISD::QVLFSb: return "PPCISD::QVLFSb"; 1475 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1476 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1477 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1478 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1479 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1480 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1481 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1482 } 1483 return nullptr; 1484 } 1485 1486 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1487 EVT VT) const { 1488 if (!VT.isVector()) 1489 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1490 1491 if (Subtarget.hasQPX()) 1492 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements()); 1493 1494 return VT.changeVectorElementTypeToInteger(); 1495 } 1496 1497 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1498 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1499 return true; 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // Node matching predicates, for use by the tblgen matching code. 1504 //===----------------------------------------------------------------------===// 1505 1506 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1507 static bool isFloatingPointZero(SDValue Op) { 1508 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1509 return CFP->getValueAPF().isZero(); 1510 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1511 // Maybe this has already been legalized into the constant pool? 1512 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1513 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1514 return CFP->getValueAPF().isZero(); 1515 } 1516 return false; 1517 } 1518 1519 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1520 /// true if Op is undef or if it matches the specified value. 1521 static bool isConstantOrUndef(int Op, int Val) { 1522 return Op < 0 || Op == Val; 1523 } 1524 1525 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1526 /// VPKUHUM instruction. 1527 /// The ShuffleKind distinguishes between big-endian operations with 1528 /// two different inputs (0), either-endian operations with two identical 1529 /// inputs (1), and little-endian operations with two different inputs (2). 1530 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1531 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1532 SelectionDAG &DAG) { 1533 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1534 if (ShuffleKind == 0) { 1535 if (IsLE) 1536 return false; 1537 for (unsigned i = 0; i != 16; ++i) 1538 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1539 return false; 1540 } else if (ShuffleKind == 2) { 1541 if (!IsLE) 1542 return false; 1543 for (unsigned i = 0; i != 16; ++i) 1544 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1545 return false; 1546 } else if (ShuffleKind == 1) { 1547 unsigned j = IsLE ? 0 : 1; 1548 for (unsigned i = 0; i != 8; ++i) 1549 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1550 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1551 return false; 1552 } 1553 return true; 1554 } 1555 1556 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1557 /// VPKUWUM instruction. 1558 /// The ShuffleKind distinguishes between big-endian operations with 1559 /// two different inputs (0), either-endian operations with two identical 1560 /// inputs (1), and little-endian operations with two different inputs (2). 1561 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1562 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1563 SelectionDAG &DAG) { 1564 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1565 if (ShuffleKind == 0) { 1566 if (IsLE) 1567 return false; 1568 for (unsigned i = 0; i != 16; i += 2) 1569 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1570 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1571 return false; 1572 } else if (ShuffleKind == 2) { 1573 if (!IsLE) 1574 return false; 1575 for (unsigned i = 0; i != 16; i += 2) 1576 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1577 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1578 return false; 1579 } else if (ShuffleKind == 1) { 1580 unsigned j = IsLE ? 0 : 2; 1581 for (unsigned i = 0; i != 8; i += 2) 1582 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1583 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1584 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1585 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1586 return false; 1587 } 1588 return true; 1589 } 1590 1591 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1592 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1593 /// current subtarget. 1594 /// 1595 /// The ShuffleKind distinguishes between big-endian operations with 1596 /// two different inputs (0), either-endian operations with two identical 1597 /// inputs (1), and little-endian operations with two different inputs (2). 1598 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1599 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1600 SelectionDAG &DAG) { 1601 const PPCSubtarget& Subtarget = 1602 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1603 if (!Subtarget.hasP8Vector()) 1604 return false; 1605 1606 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1607 if (ShuffleKind == 0) { 1608 if (IsLE) 1609 return false; 1610 for (unsigned i = 0; i != 16; i += 4) 1611 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1612 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1613 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1614 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1615 return false; 1616 } else if (ShuffleKind == 2) { 1617 if (!IsLE) 1618 return false; 1619 for (unsigned i = 0; i != 16; i += 4) 1620 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1621 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1622 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1623 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1624 return false; 1625 } else if (ShuffleKind == 1) { 1626 unsigned j = IsLE ? 0 : 4; 1627 for (unsigned i = 0; i != 8; i += 4) 1628 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1629 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1630 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1631 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1632 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1633 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1634 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1635 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1636 return false; 1637 } 1638 return true; 1639 } 1640 1641 /// isVMerge - Common function, used to match vmrg* shuffles. 1642 /// 1643 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1644 unsigned LHSStart, unsigned RHSStart) { 1645 if (N->getValueType(0) != MVT::v16i8) 1646 return false; 1647 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1648 "Unsupported merge size!"); 1649 1650 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1651 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1652 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1653 LHSStart+j+i*UnitSize) || 1654 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1655 RHSStart+j+i*UnitSize)) 1656 return false; 1657 } 1658 return true; 1659 } 1660 1661 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1662 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1663 /// The ShuffleKind distinguishes between big-endian merges with two 1664 /// different inputs (0), either-endian merges with two identical inputs (1), 1665 /// and little-endian merges with two different inputs (2). For the latter, 1666 /// the input operands are swapped (see PPCInstrAltivec.td). 1667 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1668 unsigned ShuffleKind, SelectionDAG &DAG) { 1669 if (DAG.getDataLayout().isLittleEndian()) { 1670 if (ShuffleKind == 1) // unary 1671 return isVMerge(N, UnitSize, 0, 0); 1672 else if (ShuffleKind == 2) // swapped 1673 return isVMerge(N, UnitSize, 0, 16); 1674 else 1675 return false; 1676 } else { 1677 if (ShuffleKind == 1) // unary 1678 return isVMerge(N, UnitSize, 8, 8); 1679 else if (ShuffleKind == 0) // normal 1680 return isVMerge(N, UnitSize, 8, 24); 1681 else 1682 return false; 1683 } 1684 } 1685 1686 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1687 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1688 /// The ShuffleKind distinguishes between big-endian merges with two 1689 /// different inputs (0), either-endian merges with two identical inputs (1), 1690 /// and little-endian merges with two different inputs (2). For the latter, 1691 /// the input operands are swapped (see PPCInstrAltivec.td). 1692 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1693 unsigned ShuffleKind, SelectionDAG &DAG) { 1694 if (DAG.getDataLayout().isLittleEndian()) { 1695 if (ShuffleKind == 1) // unary 1696 return isVMerge(N, UnitSize, 8, 8); 1697 else if (ShuffleKind == 2) // swapped 1698 return isVMerge(N, UnitSize, 8, 24); 1699 else 1700 return false; 1701 } else { 1702 if (ShuffleKind == 1) // unary 1703 return isVMerge(N, UnitSize, 0, 0); 1704 else if (ShuffleKind == 0) // normal 1705 return isVMerge(N, UnitSize, 0, 16); 1706 else 1707 return false; 1708 } 1709 } 1710 1711 /** 1712 * Common function used to match vmrgew and vmrgow shuffles 1713 * 1714 * The indexOffset determines whether to look for even or odd words in 1715 * the shuffle mask. This is based on the of the endianness of the target 1716 * machine. 1717 * - Little Endian: 1718 * - Use offset of 0 to check for odd elements 1719 * - Use offset of 4 to check for even elements 1720 * - Big Endian: 1721 * - Use offset of 0 to check for even elements 1722 * - Use offset of 4 to check for odd elements 1723 * A detailed description of the vector element ordering for little endian and 1724 * big endian can be found at 1725 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1726 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1727 * compiler differences mean to you 1728 * 1729 * The mask to the shuffle vector instruction specifies the indices of the 1730 * elements from the two input vectors to place in the result. The elements are 1731 * numbered in array-access order, starting with the first vector. These vectors 1732 * are always of type v16i8, thus each vector will contain 16 elements of size 1733 * 8. More info on the shuffle vector can be found in the 1734 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1735 * Language Reference. 1736 * 1737 * The RHSStartValue indicates whether the same input vectors are used (unary) 1738 * or two different input vectors are used, based on the following: 1739 * - If the instruction uses the same vector for both inputs, the range of the 1740 * indices will be 0 to 15. In this case, the RHSStart value passed should 1741 * be 0. 1742 * - If the instruction has two different vectors then the range of the 1743 * indices will be 0 to 31. In this case, the RHSStart value passed should 1744 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1745 * to 31 specify elements in the second vector). 1746 * 1747 * \param[in] N The shuffle vector SD Node to analyze 1748 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1749 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1750 * vector to the shuffle_vector instruction 1751 * \return true iff this shuffle vector represents an even or odd word merge 1752 */ 1753 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1754 unsigned RHSStartValue) { 1755 if (N->getValueType(0) != MVT::v16i8) 1756 return false; 1757 1758 for (unsigned i = 0; i < 2; ++i) 1759 for (unsigned j = 0; j < 4; ++j) 1760 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 1761 i*RHSStartValue+j+IndexOffset) || 1762 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 1763 i*RHSStartValue+j+IndexOffset+8)) 1764 return false; 1765 return true; 1766 } 1767 1768 /** 1769 * Determine if the specified shuffle mask is suitable for the vmrgew or 1770 * vmrgow instructions. 1771 * 1772 * \param[in] N The shuffle vector SD Node to analyze 1773 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 1774 * \param[in] ShuffleKind Identify the type of merge: 1775 * - 0 = big-endian merge with two different inputs; 1776 * - 1 = either-endian merge with two identical inputs; 1777 * - 2 = little-endian merge with two different inputs (inputs are swapped for 1778 * little-endian merges). 1779 * \param[in] DAG The current SelectionDAG 1780 * \return true iff this shuffle mask 1781 */ 1782 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 1783 unsigned ShuffleKind, SelectionDAG &DAG) { 1784 if (DAG.getDataLayout().isLittleEndian()) { 1785 unsigned indexOffset = CheckEven ? 4 : 0; 1786 if (ShuffleKind == 1) // Unary 1787 return isVMerge(N, indexOffset, 0); 1788 else if (ShuffleKind == 2) // swapped 1789 return isVMerge(N, indexOffset, 16); 1790 else 1791 return false; 1792 } 1793 else { 1794 unsigned indexOffset = CheckEven ? 0 : 4; 1795 if (ShuffleKind == 1) // Unary 1796 return isVMerge(N, indexOffset, 0); 1797 else if (ShuffleKind == 0) // Normal 1798 return isVMerge(N, indexOffset, 16); 1799 else 1800 return false; 1801 } 1802 return false; 1803 } 1804 1805 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 1806 /// amount, otherwise return -1. 1807 /// The ShuffleKind distinguishes between big-endian operations with two 1808 /// different inputs (0), either-endian operations with two identical inputs 1809 /// (1), and little-endian operations with two different inputs (2). For the 1810 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 1811 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 1812 SelectionDAG &DAG) { 1813 if (N->getValueType(0) != MVT::v16i8) 1814 return -1; 1815 1816 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 1817 1818 // Find the first non-undef value in the shuffle mask. 1819 unsigned i; 1820 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 1821 /*search*/; 1822 1823 if (i == 16) return -1; // all undef. 1824 1825 // Otherwise, check to see if the rest of the elements are consecutively 1826 // numbered from this value. 1827 unsigned ShiftAmt = SVOp->getMaskElt(i); 1828 if (ShiftAmt < i) return -1; 1829 1830 ShiftAmt -= i; 1831 bool isLE = DAG.getDataLayout().isLittleEndian(); 1832 1833 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 1834 // Check the rest of the elements to see if they are consecutive. 1835 for (++i; i != 16; ++i) 1836 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 1837 return -1; 1838 } else if (ShuffleKind == 1) { 1839 // Check the rest of the elements to see if they are consecutive. 1840 for (++i; i != 16; ++i) 1841 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 1842 return -1; 1843 } else 1844 return -1; 1845 1846 if (isLE) 1847 ShiftAmt = 16 - ShiftAmt; 1848 1849 return ShiftAmt; 1850 } 1851 1852 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 1853 /// specifies a splat of a single element that is suitable for input to 1854 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 1855 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 1856 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 1857 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 1858 1859 // The consecutive indices need to specify an element, not part of two 1860 // different elements. So abandon ship early if this isn't the case. 1861 if (N->getMaskElt(0) % EltSize != 0) 1862 return false; 1863 1864 // This is a splat operation if each element of the permute is the same, and 1865 // if the value doesn't reference the second vector. 1866 unsigned ElementBase = N->getMaskElt(0); 1867 1868 // FIXME: Handle UNDEF elements too! 1869 if (ElementBase >= 16) 1870 return false; 1871 1872 // Check that the indices are consecutive, in the case of a multi-byte element 1873 // splatted with a v16i8 mask. 1874 for (unsigned i = 1; i != EltSize; ++i) 1875 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 1876 return false; 1877 1878 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 1879 if (N->getMaskElt(i) < 0) continue; 1880 for (unsigned j = 0; j != EltSize; ++j) 1881 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 1882 return false; 1883 } 1884 return true; 1885 } 1886 1887 /// Check that the mask is shuffling N byte elements. Within each N byte 1888 /// element of the mask, the indices could be either in increasing or 1889 /// decreasing order as long as they are consecutive. 1890 /// \param[in] N the shuffle vector SD Node to analyze 1891 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 1892 /// Word/DoubleWord/QuadWord). 1893 /// \param[in] StepLen the delta indices number among the N byte element, if 1894 /// the mask is in increasing/decreasing order then it is 1/-1. 1895 /// \return true iff the mask is shuffling N byte elements. 1896 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 1897 int StepLen) { 1898 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 1899 "Unexpected element width."); 1900 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 1901 1902 unsigned NumOfElem = 16 / Width; 1903 unsigned MaskVal[16]; // Width is never greater than 16 1904 for (unsigned i = 0; i < NumOfElem; ++i) { 1905 MaskVal[0] = N->getMaskElt(i * Width); 1906 if ((StepLen == 1) && (MaskVal[0] % Width)) { 1907 return false; 1908 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 1909 return false; 1910 } 1911 1912 for (unsigned int j = 1; j < Width; ++j) { 1913 MaskVal[j] = N->getMaskElt(i * Width + j); 1914 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 1915 return false; 1916 } 1917 } 1918 } 1919 1920 return true; 1921 } 1922 1923 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1924 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 1925 if (!isNByteElemShuffleMask(N, 4, 1)) 1926 return false; 1927 1928 // Now we look at mask elements 0,4,8,12 1929 unsigned M0 = N->getMaskElt(0) / 4; 1930 unsigned M1 = N->getMaskElt(4) / 4; 1931 unsigned M2 = N->getMaskElt(8) / 4; 1932 unsigned M3 = N->getMaskElt(12) / 4; 1933 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 1934 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 1935 1936 // Below, let H and L be arbitrary elements of the shuffle mask 1937 // where H is in the range [4,7] and L is in the range [0,3]. 1938 // H, 1, 2, 3 or L, 5, 6, 7 1939 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 1940 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 1941 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 1942 InsertAtByte = IsLE ? 12 : 0; 1943 Swap = M0 < 4; 1944 return true; 1945 } 1946 // 0, H, 2, 3 or 4, L, 6, 7 1947 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 1948 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 1949 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 1950 InsertAtByte = IsLE ? 8 : 4; 1951 Swap = M1 < 4; 1952 return true; 1953 } 1954 // 0, 1, H, 3 or 4, 5, L, 7 1955 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 1956 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 1957 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 1958 InsertAtByte = IsLE ? 4 : 8; 1959 Swap = M2 < 4; 1960 return true; 1961 } 1962 // 0, 1, 2, H or 4, 5, 6, L 1963 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 1964 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 1965 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 1966 InsertAtByte = IsLE ? 0 : 12; 1967 Swap = M3 < 4; 1968 return true; 1969 } 1970 1971 // If both vector operands for the shuffle are the same vector, the mask will 1972 // contain only elements from the first one and the second one will be undef. 1973 if (N->getOperand(1).isUndef()) { 1974 ShiftElts = 0; 1975 Swap = true; 1976 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 1977 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 1978 InsertAtByte = IsLE ? 12 : 0; 1979 return true; 1980 } 1981 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 1982 InsertAtByte = IsLE ? 8 : 4; 1983 return true; 1984 } 1985 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 1986 InsertAtByte = IsLE ? 4 : 8; 1987 return true; 1988 } 1989 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 1990 InsertAtByte = IsLE ? 0 : 12; 1991 return true; 1992 } 1993 } 1994 1995 return false; 1996 } 1997 1998 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 1999 bool &Swap, bool IsLE) { 2000 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2001 // Ensure each byte index of the word is consecutive. 2002 if (!isNByteElemShuffleMask(N, 4, 1)) 2003 return false; 2004 2005 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2006 unsigned M0 = N->getMaskElt(0) / 4; 2007 unsigned M1 = N->getMaskElt(4) / 4; 2008 unsigned M2 = N->getMaskElt(8) / 4; 2009 unsigned M3 = N->getMaskElt(12) / 4; 2010 2011 // If both vector operands for the shuffle are the same vector, the mask will 2012 // contain only elements from the first one and the second one will be undef. 2013 if (N->getOperand(1).isUndef()) { 2014 assert(M0 < 4 && "Indexing into an undef vector?"); 2015 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2016 return false; 2017 2018 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2019 Swap = false; 2020 return true; 2021 } 2022 2023 // Ensure each word index of the ShuffleVector Mask is consecutive. 2024 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2025 return false; 2026 2027 if (IsLE) { 2028 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2029 // Input vectors don't need to be swapped if the leading element 2030 // of the result is one of the 3 left elements of the second vector 2031 // (or if there is no shift to be done at all). 2032 Swap = false; 2033 ShiftElts = (8 - M0) % 8; 2034 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2035 // Input vectors need to be swapped if the leading element 2036 // of the result is one of the 3 left elements of the first vector 2037 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2038 Swap = true; 2039 ShiftElts = (4 - M0) % 4; 2040 } 2041 2042 return true; 2043 } else { // BE 2044 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2045 // Input vectors don't need to be swapped if the leading element 2046 // of the result is one of the 4 elements of the first vector. 2047 Swap = false; 2048 ShiftElts = M0; 2049 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2050 // Input vectors need to be swapped if the leading element 2051 // of the result is one of the 4 elements of the right vector. 2052 Swap = true; 2053 ShiftElts = M0 - 4; 2054 } 2055 2056 return true; 2057 } 2058 } 2059 2060 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2061 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2062 2063 if (!isNByteElemShuffleMask(N, Width, -1)) 2064 return false; 2065 2066 for (int i = 0; i < 16; i += Width) 2067 if (N->getMaskElt(i) != i + Width - 1) 2068 return false; 2069 2070 return true; 2071 } 2072 2073 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2074 return isXXBRShuffleMaskHelper(N, 2); 2075 } 2076 2077 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2078 return isXXBRShuffleMaskHelper(N, 4); 2079 } 2080 2081 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2082 return isXXBRShuffleMaskHelper(N, 8); 2083 } 2084 2085 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2086 return isXXBRShuffleMaskHelper(N, 16); 2087 } 2088 2089 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2090 /// if the inputs to the instruction should be swapped and set \p DM to the 2091 /// value for the immediate. 2092 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2093 /// AND element 0 of the result comes from the first input (LE) or second input 2094 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2095 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2096 /// mask. 2097 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2098 bool &Swap, bool IsLE) { 2099 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2100 2101 // Ensure each byte index of the double word is consecutive. 2102 if (!isNByteElemShuffleMask(N, 8, 1)) 2103 return false; 2104 2105 unsigned M0 = N->getMaskElt(0) / 8; 2106 unsigned M1 = N->getMaskElt(8) / 8; 2107 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2108 2109 // If both vector operands for the shuffle are the same vector, the mask will 2110 // contain only elements from the first one and the second one will be undef. 2111 if (N->getOperand(1).isUndef()) { 2112 if ((M0 | M1) < 2) { 2113 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2114 Swap = false; 2115 return true; 2116 } else 2117 return false; 2118 } 2119 2120 if (IsLE) { 2121 if (M0 > 1 && M1 < 2) { 2122 Swap = false; 2123 } else if (M0 < 2 && M1 > 1) { 2124 M0 = (M0 + 2) % 4; 2125 M1 = (M1 + 2) % 4; 2126 Swap = true; 2127 } else 2128 return false; 2129 2130 // Note: if control flow comes here that means Swap is already set above 2131 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2132 return true; 2133 } else { // BE 2134 if (M0 < 2 && M1 > 1) { 2135 Swap = false; 2136 } else if (M0 > 1 && M1 < 2) { 2137 M0 = (M0 + 2) % 4; 2138 M1 = (M1 + 2) % 4; 2139 Swap = true; 2140 } else 2141 return false; 2142 2143 // Note: if control flow comes here that means Swap is already set above 2144 DM = (M0 << 1) + (M1 & 1); 2145 return true; 2146 } 2147 } 2148 2149 2150 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2151 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2152 /// elements are counted from the left of the vector register). 2153 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2154 SelectionDAG &DAG) { 2155 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2156 assert(isSplatShuffleMask(SVOp, EltSize)); 2157 if (DAG.getDataLayout().isLittleEndian()) 2158 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2159 else 2160 return SVOp->getMaskElt(0) / EltSize; 2161 } 2162 2163 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2164 /// by using a vspltis[bhw] instruction of the specified element size, return 2165 /// the constant being splatted. The ByteSize field indicates the number of 2166 /// bytes of each element [124] -> [bhw]. 2167 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2168 SDValue OpVal(nullptr, 0); 2169 2170 // If ByteSize of the splat is bigger than the element size of the 2171 // build_vector, then we have a case where we are checking for a splat where 2172 // multiple elements of the buildvector are folded together into a single 2173 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2174 unsigned EltSize = 16/N->getNumOperands(); 2175 if (EltSize < ByteSize) { 2176 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2177 SDValue UniquedVals[4]; 2178 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2179 2180 // See if all of the elements in the buildvector agree across. 2181 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2182 if (N->getOperand(i).isUndef()) continue; 2183 // If the element isn't a constant, bail fully out. 2184 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2185 2186 if (!UniquedVals[i&(Multiple-1)].getNode()) 2187 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2188 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2189 return SDValue(); // no match. 2190 } 2191 2192 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2193 // either constant or undef values that are identical for each chunk. See 2194 // if these chunks can form into a larger vspltis*. 2195 2196 // Check to see if all of the leading entries are either 0 or -1. If 2197 // neither, then this won't fit into the immediate field. 2198 bool LeadingZero = true; 2199 bool LeadingOnes = true; 2200 for (unsigned i = 0; i != Multiple-1; ++i) { 2201 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2202 2203 LeadingZero &= isNullConstant(UniquedVals[i]); 2204 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2205 } 2206 // Finally, check the least significant entry. 2207 if (LeadingZero) { 2208 if (!UniquedVals[Multiple-1].getNode()) 2209 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2210 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2211 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2212 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2213 } 2214 if (LeadingOnes) { 2215 if (!UniquedVals[Multiple-1].getNode()) 2216 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2217 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2218 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2219 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2220 } 2221 2222 return SDValue(); 2223 } 2224 2225 // Check to see if this buildvec has a single non-undef value in its elements. 2226 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2227 if (N->getOperand(i).isUndef()) continue; 2228 if (!OpVal.getNode()) 2229 OpVal = N->getOperand(i); 2230 else if (OpVal != N->getOperand(i)) 2231 return SDValue(); 2232 } 2233 2234 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2235 2236 unsigned ValSizeInBytes = EltSize; 2237 uint64_t Value = 0; 2238 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2239 Value = CN->getZExtValue(); 2240 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2241 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2242 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2243 } 2244 2245 // If the splat value is larger than the element value, then we can never do 2246 // this splat. The only case that we could fit the replicated bits into our 2247 // immediate field for would be zero, and we prefer to use vxor for it. 2248 if (ValSizeInBytes < ByteSize) return SDValue(); 2249 2250 // If the element value is larger than the splat value, check if it consists 2251 // of a repeated bit pattern of size ByteSize. 2252 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2253 return SDValue(); 2254 2255 // Properly sign extend the value. 2256 int MaskVal = SignExtend32(Value, ByteSize * 8); 2257 2258 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2259 if (MaskVal == 0) return SDValue(); 2260 2261 // Finally, if this value fits in a 5 bit sext field, return it 2262 if (SignExtend32<5>(MaskVal) == MaskVal) 2263 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2264 return SDValue(); 2265 } 2266 2267 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift 2268 /// amount, otherwise return -1. 2269 int PPC::isQVALIGNIShuffleMask(SDNode *N) { 2270 EVT VT = N->getValueType(0); 2271 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1) 2272 return -1; 2273 2274 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2275 2276 // Find the first non-undef value in the shuffle mask. 2277 unsigned i; 2278 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i) 2279 /*search*/; 2280 2281 if (i == 4) return -1; // all undef. 2282 2283 // Otherwise, check to see if the rest of the elements are consecutively 2284 // numbered from this value. 2285 unsigned ShiftAmt = SVOp->getMaskElt(i); 2286 if (ShiftAmt < i) return -1; 2287 ShiftAmt -= i; 2288 2289 // Check the rest of the elements to see if they are consecutive. 2290 for (++i; i != 4; ++i) 2291 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2292 return -1; 2293 2294 return ShiftAmt; 2295 } 2296 2297 //===----------------------------------------------------------------------===// 2298 // Addressing Mode Selection 2299 //===----------------------------------------------------------------------===// 2300 2301 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2302 /// or 64-bit immediate, and if the value can be accurately represented as a 2303 /// sign extension from a 16-bit value. If so, this returns true and the 2304 /// immediate. 2305 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2306 if (!isa<ConstantSDNode>(N)) 2307 return false; 2308 2309 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2310 if (N->getValueType(0) == MVT::i32) 2311 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2312 else 2313 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2314 } 2315 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2316 return isIntS16Immediate(Op.getNode(), Imm); 2317 } 2318 2319 2320 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2321 /// be represented as an indexed [r+r] operation. 2322 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2323 SDValue &Index, 2324 SelectionDAG &DAG) const { 2325 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2326 UI != E; ++UI) { 2327 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2328 if (Memop->getMemoryVT() == MVT::f64) { 2329 Base = N.getOperand(0); 2330 Index = N.getOperand(1); 2331 return true; 2332 } 2333 } 2334 } 2335 return false; 2336 } 2337 2338 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2339 /// can be represented as an indexed [r+r] operation. Returns false if it 2340 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2341 /// non-zero and N can be represented by a base register plus a signed 16-bit 2342 /// displacement, make a more precise judgement by checking (displacement % \p 2343 /// EncodingAlignment). 2344 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base, 2345 SDValue &Index, SelectionDAG &DAG, 2346 unsigned EncodingAlignment) const { 2347 int16_t imm = 0; 2348 if (N.getOpcode() == ISD::ADD) { 2349 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2350 // SPE load/store can only handle 8-bit offsets. 2351 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2352 return true; 2353 if (isIntS16Immediate(N.getOperand(1), imm) && 2354 (!EncodingAlignment || !(imm % EncodingAlignment))) 2355 return false; // r+i 2356 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2357 return false; // r+i 2358 2359 Base = N.getOperand(0); 2360 Index = N.getOperand(1); 2361 return true; 2362 } else if (N.getOpcode() == ISD::OR) { 2363 if (isIntS16Immediate(N.getOperand(1), imm) && 2364 (!EncodingAlignment || !(imm % EncodingAlignment))) 2365 return false; // r+i can fold it if we can. 2366 2367 // If this is an or of disjoint bitfields, we can codegen this as an add 2368 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2369 // disjoint. 2370 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2371 2372 if (LHSKnown.Zero.getBoolValue()) { 2373 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2374 // If all of the bits are known zero on the LHS or RHS, the add won't 2375 // carry. 2376 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2377 Base = N.getOperand(0); 2378 Index = N.getOperand(1); 2379 return true; 2380 } 2381 } 2382 } 2383 2384 return false; 2385 } 2386 2387 // If we happen to be doing an i64 load or store into a stack slot that has 2388 // less than a 4-byte alignment, then the frame-index elimination may need to 2389 // use an indexed load or store instruction (because the offset may not be a 2390 // multiple of 4). The extra register needed to hold the offset comes from the 2391 // register scavenger, and it is possible that the scavenger will need to use 2392 // an emergency spill slot. As a result, we need to make sure that a spill slot 2393 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2394 // stack slot. 2395 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2396 // FIXME: This does not handle the LWA case. 2397 if (VT != MVT::i64) 2398 return; 2399 2400 // NOTE: We'll exclude negative FIs here, which come from argument 2401 // lowering, because there are no known test cases triggering this problem 2402 // using packed structures (or similar). We can remove this exclusion if 2403 // we find such a test case. The reason why this is so test-case driven is 2404 // because this entire 'fixup' is only to prevent crashes (from the 2405 // register scavenger) on not-really-valid inputs. For example, if we have: 2406 // %a = alloca i1 2407 // %b = bitcast i1* %a to i64* 2408 // store i64* a, i64 b 2409 // then the store should really be marked as 'align 1', but is not. If it 2410 // were marked as 'align 1' then the indexed form would have been 2411 // instruction-selected initially, and the problem this 'fixup' is preventing 2412 // won't happen regardless. 2413 if (FrameIdx < 0) 2414 return; 2415 2416 MachineFunction &MF = DAG.getMachineFunction(); 2417 MachineFrameInfo &MFI = MF.getFrameInfo(); 2418 2419 unsigned Align = MFI.getObjectAlignment(FrameIdx); 2420 if (Align >= 4) 2421 return; 2422 2423 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2424 FuncInfo->setHasNonRISpills(); 2425 } 2426 2427 /// Returns true if the address N can be represented by a base register plus 2428 /// a signed 16-bit displacement [r+imm], and if it is not better 2429 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2430 /// displacements that are multiples of that value. 2431 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp, 2432 SDValue &Base, 2433 SelectionDAG &DAG, 2434 unsigned EncodingAlignment) const { 2435 // FIXME dl should come from parent load or store, not from address 2436 SDLoc dl(N); 2437 // If this can be more profitably realized as r+r, fail. 2438 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2439 return false; 2440 2441 if (N.getOpcode() == ISD::ADD) { 2442 int16_t imm = 0; 2443 if (isIntS16Immediate(N.getOperand(1), imm) && 2444 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2445 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2446 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2447 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2448 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2449 } else { 2450 Base = N.getOperand(0); 2451 } 2452 return true; // [r+i] 2453 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2454 // Match LOAD (ADD (X, Lo(G))). 2455 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2456 && "Cannot handle constant offsets yet!"); 2457 Disp = N.getOperand(1).getOperand(0); // The global address. 2458 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2459 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2460 Disp.getOpcode() == ISD::TargetConstantPool || 2461 Disp.getOpcode() == ISD::TargetJumpTable); 2462 Base = N.getOperand(0); 2463 return true; // [&g+r] 2464 } 2465 } else if (N.getOpcode() == ISD::OR) { 2466 int16_t imm = 0; 2467 if (isIntS16Immediate(N.getOperand(1), imm) && 2468 (!EncodingAlignment || (imm % EncodingAlignment) == 0)) { 2469 // If this is an or of disjoint bitfields, we can codegen this as an add 2470 // (for better address arithmetic) if the LHS and RHS of the OR are 2471 // provably disjoint. 2472 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2473 2474 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2475 // If all of the bits are known zero on the LHS or RHS, the add won't 2476 // carry. 2477 if (FrameIndexSDNode *FI = 2478 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2479 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2480 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2481 } else { 2482 Base = N.getOperand(0); 2483 } 2484 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2485 return true; 2486 } 2487 } 2488 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2489 // Loading from a constant address. 2490 2491 // If this address fits entirely in a 16-bit sext immediate field, codegen 2492 // this as "d, 0" 2493 int16_t Imm; 2494 if (isIntS16Immediate(CN, Imm) && 2495 (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) { 2496 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2497 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2498 CN->getValueType(0)); 2499 return true; 2500 } 2501 2502 // Handle 32-bit sext immediates with LIS + addr mode. 2503 if ((CN->getValueType(0) == MVT::i32 || 2504 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2505 (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) { 2506 int Addr = (int)CN->getZExtValue(); 2507 2508 // Otherwise, break this down into an LIS + disp. 2509 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2510 2511 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2512 MVT::i32); 2513 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2514 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2515 return true; 2516 } 2517 } 2518 2519 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2520 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2521 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2522 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2523 } else 2524 Base = N; 2525 return true; // [r+0] 2526 } 2527 2528 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2529 /// represented as an indexed [r+r] operation. 2530 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2531 SDValue &Index, 2532 SelectionDAG &DAG) const { 2533 // Check to see if we can easily represent this as an [r+r] address. This 2534 // will fail if it thinks that the address is more profitably represented as 2535 // reg+imm, e.g. where imm = 0. 2536 if (SelectAddressRegReg(N, Base, Index, DAG)) 2537 return true; 2538 2539 // If the address is the result of an add, we will utilize the fact that the 2540 // address calculation includes an implicit add. However, we can reduce 2541 // register pressure if we do not materialize a constant just for use as the 2542 // index register. We only get rid of the add if it is not an add of a 2543 // value and a 16-bit signed constant and both have a single use. 2544 int16_t imm = 0; 2545 if (N.getOpcode() == ISD::ADD && 2546 (!isIntS16Immediate(N.getOperand(1), imm) || 2547 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2548 Base = N.getOperand(0); 2549 Index = N.getOperand(1); 2550 return true; 2551 } 2552 2553 // Otherwise, do it the hard way, using R0 as the base register. 2554 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2555 N.getValueType()); 2556 Index = N; 2557 return true; 2558 } 2559 2560 /// Returns true if we should use a direct load into vector instruction 2561 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2562 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2563 2564 // If there are any other uses other than scalar to vector, then we should 2565 // keep it as a scalar load -> direct move pattern to prevent multiple 2566 // loads. 2567 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2568 if (!LD) 2569 return false; 2570 2571 EVT MemVT = LD->getMemoryVT(); 2572 if (!MemVT.isSimple()) 2573 return false; 2574 switch(MemVT.getSimpleVT().SimpleTy) { 2575 case MVT::i64: 2576 break; 2577 case MVT::i32: 2578 if (!ST.hasP8Vector()) 2579 return false; 2580 break; 2581 case MVT::i16: 2582 case MVT::i8: 2583 if (!ST.hasP9Vector()) 2584 return false; 2585 break; 2586 default: 2587 return false; 2588 } 2589 2590 SDValue LoadedVal(N, 0); 2591 if (!LoadedVal.hasOneUse()) 2592 return false; 2593 2594 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2595 UI != UE; ++UI) 2596 if (UI.getUse().get().getResNo() == 0 && 2597 UI->getOpcode() != ISD::SCALAR_TO_VECTOR) 2598 return false; 2599 2600 return true; 2601 } 2602 2603 /// getPreIndexedAddressParts - returns true by value, base pointer and 2604 /// offset pointer and addressing mode by reference if the node's address 2605 /// can be legally represented as pre-indexed load / store address. 2606 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2607 SDValue &Offset, 2608 ISD::MemIndexedMode &AM, 2609 SelectionDAG &DAG) const { 2610 if (DisablePPCPreinc) return false; 2611 2612 bool isLoad = true; 2613 SDValue Ptr; 2614 EVT VT; 2615 unsigned Alignment; 2616 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2617 Ptr = LD->getBasePtr(); 2618 VT = LD->getMemoryVT(); 2619 Alignment = LD->getAlignment(); 2620 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2621 Ptr = ST->getBasePtr(); 2622 VT = ST->getMemoryVT(); 2623 Alignment = ST->getAlignment(); 2624 isLoad = false; 2625 } else 2626 return false; 2627 2628 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2629 // instructions because we can fold these into a more efficient instruction 2630 // instead, (such as LXSD). 2631 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2632 return false; 2633 } 2634 2635 // PowerPC doesn't have preinc load/store instructions for vectors (except 2636 // for QPX, which does have preinc r+r forms). 2637 if (VT.isVector()) { 2638 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) { 2639 return false; 2640 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) { 2641 AM = ISD::PRE_INC; 2642 return true; 2643 } 2644 } 2645 2646 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2647 // Common code will reject creating a pre-inc form if the base pointer 2648 // is a frame index, or if N is a store and the base pointer is either 2649 // the same as or a predecessor of the value being stored. Check for 2650 // those situations here, and try with swapped Base/Offset instead. 2651 bool Swap = false; 2652 2653 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2654 Swap = true; 2655 else if (!isLoad) { 2656 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2657 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2658 Swap = true; 2659 } 2660 2661 if (Swap) 2662 std::swap(Base, Offset); 2663 2664 AM = ISD::PRE_INC; 2665 return true; 2666 } 2667 2668 // LDU/STU can only handle immediates that are a multiple of 4. 2669 if (VT != MVT::i64) { 2670 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0)) 2671 return false; 2672 } else { 2673 // LDU/STU need an address with at least 4-byte alignment. 2674 if (Alignment < 4) 2675 return false; 2676 2677 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4)) 2678 return false; 2679 } 2680 2681 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2682 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 2683 // sext i32 to i64 when addr mode is r+i. 2684 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 2685 LD->getExtensionType() == ISD::SEXTLOAD && 2686 isa<ConstantSDNode>(Offset)) 2687 return false; 2688 } 2689 2690 AM = ISD::PRE_INC; 2691 return true; 2692 } 2693 2694 //===----------------------------------------------------------------------===// 2695 // LowerOperation implementation 2696 //===----------------------------------------------------------------------===// 2697 2698 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 2699 /// and LoOpFlags to the target MO flags. 2700 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 2701 unsigned &HiOpFlags, unsigned &LoOpFlags, 2702 const GlobalValue *GV = nullptr) { 2703 HiOpFlags = PPCII::MO_HA; 2704 LoOpFlags = PPCII::MO_LO; 2705 2706 // Don't use the pic base if not in PIC relocation model. 2707 if (IsPIC) { 2708 HiOpFlags |= PPCII::MO_PIC_FLAG; 2709 LoOpFlags |= PPCII::MO_PIC_FLAG; 2710 } 2711 2712 // If this is a reference to a global value that requires a non-lazy-ptr, make 2713 // sure that instruction lowering adds it. 2714 if (GV && Subtarget.hasLazyResolverStub(GV)) { 2715 HiOpFlags |= PPCII::MO_NLP_FLAG; 2716 LoOpFlags |= PPCII::MO_NLP_FLAG; 2717 2718 if (GV->hasHiddenVisibility()) { 2719 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2720 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG; 2721 } 2722 } 2723 } 2724 2725 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 2726 SelectionDAG &DAG) { 2727 SDLoc DL(HiPart); 2728 EVT PtrVT = HiPart.getValueType(); 2729 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 2730 2731 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 2732 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 2733 2734 // With PIC, the first instruction is actually "GR+hi(&G)". 2735 if (isPIC) 2736 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 2737 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 2738 2739 // Generate non-pic code that has direct accesses to the constant pool. 2740 // The address of the global is just (hi(&g)+lo(&g)). 2741 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 2742 } 2743 2744 static void setUsesTOCBasePtr(MachineFunction &MF) { 2745 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2746 FuncInfo->setUsesTOCBasePtr(); 2747 } 2748 2749 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 2750 setUsesTOCBasePtr(DAG.getMachineFunction()); 2751 } 2752 2753 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 2754 SDValue GA) const { 2755 const bool Is64Bit = Subtarget.isPPC64(); 2756 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 2757 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 2758 : Subtarget.isAIXABI() 2759 ? DAG.getRegister(PPC::R2, VT) 2760 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 2761 SDValue Ops[] = { GA, Reg }; 2762 return DAG.getMemIntrinsicNode( 2763 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 2764 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0, 2765 MachineMemOperand::MOLoad); 2766 } 2767 2768 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 2769 SelectionDAG &DAG) const { 2770 EVT PtrVT = Op.getValueType(); 2771 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2772 const Constant *C = CP->getConstVal(); 2773 2774 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2775 // The actual address of the GlobalValue is stored in the TOC. 2776 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2777 setUsesTOCBasePtr(DAG); 2778 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0); 2779 return getTOCEntry(DAG, SDLoc(CP), GA); 2780 } 2781 2782 unsigned MOHiFlag, MOLoFlag; 2783 bool IsPIC = isPositionIndependent(); 2784 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2785 2786 if (IsPIC && Subtarget.isSVR4ABI()) { 2787 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 2788 PPCII::MO_PIC_FLAG); 2789 return getTOCEntry(DAG, SDLoc(CP), GA); 2790 } 2791 2792 SDValue CPIHi = 2793 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag); 2794 SDValue CPILo = 2795 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag); 2796 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 2797 } 2798 2799 // For 64-bit PowerPC, prefer the more compact relative encodings. 2800 // This trades 32 bits per jump table entry for one or two instructions 2801 // on the jump site. 2802 unsigned PPCTargetLowering::getJumpTableEncoding() const { 2803 if (isJumpTableRelative()) 2804 return MachineJumpTableInfo::EK_LabelDifference32; 2805 2806 return TargetLowering::getJumpTableEncoding(); 2807 } 2808 2809 bool PPCTargetLowering::isJumpTableRelative() const { 2810 if (UseAbsoluteJumpTables) 2811 return false; 2812 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 2813 return true; 2814 return TargetLowering::isJumpTableRelative(); 2815 } 2816 2817 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 2818 SelectionDAG &DAG) const { 2819 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2820 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2821 2822 switch (getTargetMachine().getCodeModel()) { 2823 case CodeModel::Small: 2824 case CodeModel::Medium: 2825 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 2826 default: 2827 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 2828 getPointerTy(DAG.getDataLayout())); 2829 } 2830 } 2831 2832 const MCExpr * 2833 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 2834 unsigned JTI, 2835 MCContext &Ctx) const { 2836 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 2837 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2838 2839 switch (getTargetMachine().getCodeModel()) { 2840 case CodeModel::Small: 2841 case CodeModel::Medium: 2842 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 2843 default: 2844 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 2845 } 2846 } 2847 2848 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 2849 EVT PtrVT = Op.getValueType(); 2850 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 2851 2852 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2853 // The actual address of the GlobalValue is stored in the TOC. 2854 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2855 setUsesTOCBasePtr(DAG); 2856 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2857 return getTOCEntry(DAG, SDLoc(JT), GA); 2858 } 2859 2860 unsigned MOHiFlag, MOLoFlag; 2861 bool IsPIC = isPositionIndependent(); 2862 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2863 2864 if (IsPIC && Subtarget.isSVR4ABI()) { 2865 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 2866 PPCII::MO_PIC_FLAG); 2867 return getTOCEntry(DAG, SDLoc(GA), GA); 2868 } 2869 2870 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 2871 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 2872 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 2873 } 2874 2875 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 2876 SelectionDAG &DAG) const { 2877 EVT PtrVT = Op.getValueType(); 2878 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 2879 const BlockAddress *BA = BASDN->getBlockAddress(); 2880 2881 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 2882 // The actual BlockAddress is stored in the TOC. 2883 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 2884 setUsesTOCBasePtr(DAG); 2885 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 2886 return getTOCEntry(DAG, SDLoc(BASDN), GA); 2887 } 2888 2889 // 32-bit position-independent ELF stores the BlockAddress in the .got. 2890 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 2891 return getTOCEntry( 2892 DAG, SDLoc(BASDN), 2893 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 2894 2895 unsigned MOHiFlag, MOLoFlag; 2896 bool IsPIC = isPositionIndependent(); 2897 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 2898 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 2899 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 2900 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 2901 } 2902 2903 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 2904 SelectionDAG &DAG) const { 2905 // FIXME: TLS addresses currently use medium model code sequences, 2906 // which is the most useful form. Eventually support for small and 2907 // large models could be added if users need it, at the cost of 2908 // additional complexity. 2909 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2910 if (DAG.getTarget().useEmulatedTLS()) 2911 return LowerToTLSEmulatedModel(GA, DAG); 2912 2913 SDLoc dl(GA); 2914 const GlobalValue *GV = GA->getGlobal(); 2915 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2916 bool is64bit = Subtarget.isPPC64(); 2917 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 2918 PICLevel::Level picLevel = M->getPICLevel(); 2919 2920 const TargetMachine &TM = getTargetMachine(); 2921 TLSModel::Model Model = TM.getTLSModel(GV); 2922 2923 if (Model == TLSModel::LocalExec) { 2924 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2925 PPCII::MO_TPREL_HA); 2926 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2927 PPCII::MO_TPREL_LO); 2928 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 2929 : DAG.getRegister(PPC::R2, MVT::i32); 2930 2931 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 2932 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 2933 } 2934 2935 if (Model == TLSModel::InitialExec) { 2936 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2937 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 2938 PPCII::MO_TLS); 2939 SDValue GOTPtr; 2940 if (is64bit) { 2941 setUsesTOCBasePtr(DAG); 2942 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2943 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, 2944 PtrVT, GOTReg, TGA); 2945 } else { 2946 if (!TM.isPositionIndependent()) 2947 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 2948 else if (picLevel == PICLevel::SmallPIC) 2949 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2950 else 2951 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2952 } 2953 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, 2954 PtrVT, TGA, GOTPtr); 2955 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 2956 } 2957 2958 if (Model == TLSModel::GeneralDynamic) { 2959 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2960 SDValue GOTPtr; 2961 if (is64bit) { 2962 setUsesTOCBasePtr(DAG); 2963 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2964 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 2965 GOTReg, TGA); 2966 } else { 2967 if (picLevel == PICLevel::SmallPIC) 2968 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2969 else 2970 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2971 } 2972 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 2973 GOTPtr, TGA, TGA); 2974 } 2975 2976 if (Model == TLSModel::LocalDynamic) { 2977 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 2978 SDValue GOTPtr; 2979 if (is64bit) { 2980 setUsesTOCBasePtr(DAG); 2981 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 2982 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 2983 GOTReg, TGA); 2984 } else { 2985 if (picLevel == PICLevel::SmallPIC) 2986 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 2987 else 2988 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 2989 } 2990 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 2991 PtrVT, GOTPtr, TGA, TGA); 2992 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 2993 PtrVT, TLSAddr, TGA); 2994 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 2995 } 2996 2997 llvm_unreachable("Unknown TLS model!"); 2998 } 2999 3000 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3001 SelectionDAG &DAG) const { 3002 EVT PtrVT = Op.getValueType(); 3003 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3004 SDLoc DL(GSDN); 3005 const GlobalValue *GV = GSDN->getGlobal(); 3006 3007 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3008 // The actual address of the GlobalValue is stored in the TOC. 3009 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3010 setUsesTOCBasePtr(DAG); 3011 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3012 return getTOCEntry(DAG, DL, GA); 3013 } 3014 3015 unsigned MOHiFlag, MOLoFlag; 3016 bool IsPIC = isPositionIndependent(); 3017 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3018 3019 if (IsPIC && Subtarget.isSVR4ABI()) { 3020 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3021 GSDN->getOffset(), 3022 PPCII::MO_PIC_FLAG); 3023 return getTOCEntry(DAG, DL, GA); 3024 } 3025 3026 SDValue GAHi = 3027 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3028 SDValue GALo = 3029 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3030 3031 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3032 3033 // If the global reference is actually to a non-lazy-pointer, we have to do an 3034 // extra load to get the address of the global. 3035 if (MOHiFlag & PPCII::MO_NLP_FLAG) 3036 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo()); 3037 return Ptr; 3038 } 3039 3040 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3041 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3042 SDLoc dl(Op); 3043 3044 if (Op.getValueType() == MVT::v2i64) { 3045 // When the operands themselves are v2i64 values, we need to do something 3046 // special because VSX has no underlying comparison operations for these. 3047 if (Op.getOperand(0).getValueType() == MVT::v2i64) { 3048 // Equality can be handled by casting to the legal type for Altivec 3049 // comparisons, everything else needs to be expanded. 3050 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3051 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 3052 DAG.getSetCC(dl, MVT::v4i32, 3053 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)), 3054 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)), 3055 CC)); 3056 } 3057 3058 return SDValue(); 3059 } 3060 3061 // We handle most of these in the usual way. 3062 return Op; 3063 } 3064 3065 // If we're comparing for equality to zero, expose the fact that this is 3066 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3067 // fold the new nodes. 3068 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3069 return V; 3070 3071 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3072 // Leave comparisons against 0 and -1 alone for now, since they're usually 3073 // optimized. FIXME: revisit this when we can custom lower all setcc 3074 // optimizations. 3075 if (C->isAllOnesValue() || C->isNullValue()) 3076 return SDValue(); 3077 } 3078 3079 // If we have an integer seteq/setne, turn it into a compare against zero 3080 // by xor'ing the rhs with the lhs, which is faster than setting a 3081 // condition register, reading it back out, and masking the correct bit. The 3082 // normal approach here uses sub to do this instead of xor. Using xor exposes 3083 // the result to other bit-twiddling opportunities. 3084 EVT LHSVT = Op.getOperand(0).getValueType(); 3085 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3086 EVT VT = Op.getValueType(); 3087 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0), 3088 Op.getOperand(1)); 3089 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3090 } 3091 return SDValue(); 3092 } 3093 3094 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3095 SDNode *Node = Op.getNode(); 3096 EVT VT = Node->getValueType(0); 3097 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3098 SDValue InChain = Node->getOperand(0); 3099 SDValue VAListPtr = Node->getOperand(1); 3100 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3101 SDLoc dl(Node); 3102 3103 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3104 3105 // gpr_index 3106 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3107 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3108 InChain = GprIndex.getValue(1); 3109 3110 if (VT == MVT::i64) { 3111 // Check if GprIndex is even 3112 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3113 DAG.getConstant(1, dl, MVT::i32)); 3114 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3115 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3116 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3117 DAG.getConstant(1, dl, MVT::i32)); 3118 // Align GprIndex to be even if it isn't 3119 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3120 GprIndex); 3121 } 3122 3123 // fpr index is 1 byte after gpr 3124 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3125 DAG.getConstant(1, dl, MVT::i32)); 3126 3127 // fpr 3128 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3129 FprPtr, MachinePointerInfo(SV), MVT::i8); 3130 InChain = FprIndex.getValue(1); 3131 3132 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3133 DAG.getConstant(8, dl, MVT::i32)); 3134 3135 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3136 DAG.getConstant(4, dl, MVT::i32)); 3137 3138 // areas 3139 SDValue OverflowArea = 3140 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3141 InChain = OverflowArea.getValue(1); 3142 3143 SDValue RegSaveArea = 3144 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3145 InChain = RegSaveArea.getValue(1); 3146 3147 // select overflow_area if index > 8 3148 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3149 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3150 3151 // adjustment constant gpr_index * 4/8 3152 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3153 VT.isInteger() ? GprIndex : FprIndex, 3154 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3155 MVT::i32)); 3156 3157 // OurReg = RegSaveArea + RegConstant 3158 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3159 RegConstant); 3160 3161 // Floating types are 32 bytes into RegSaveArea 3162 if (VT.isFloatingPoint()) 3163 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3164 DAG.getConstant(32, dl, MVT::i32)); 3165 3166 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3167 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3168 VT.isInteger() ? GprIndex : FprIndex, 3169 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3170 MVT::i32)); 3171 3172 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3173 VT.isInteger() ? VAListPtr : FprPtr, 3174 MachinePointerInfo(SV), MVT::i8); 3175 3176 // determine if we should load from reg_save_area or overflow_area 3177 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3178 3179 // increase overflow_area by 4/8 if gpr/fpr > 8 3180 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3181 DAG.getConstant(VT.isInteger() ? 4 : 8, 3182 dl, MVT::i32)); 3183 3184 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3185 OverflowAreaPlusN); 3186 3187 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3188 MachinePointerInfo(), MVT::i32); 3189 3190 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3191 } 3192 3193 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3194 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3195 3196 // We have to copy the entire va_list struct: 3197 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3198 return DAG.getMemcpy(Op.getOperand(0), Op, 3199 Op.getOperand(1), Op.getOperand(2), 3200 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true, 3201 false, MachinePointerInfo(), MachinePointerInfo()); 3202 } 3203 3204 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3205 SelectionDAG &DAG) const { 3206 if (Subtarget.isAIXABI()) 3207 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3208 3209 return Op.getOperand(0); 3210 } 3211 3212 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3213 SelectionDAG &DAG) const { 3214 if (Subtarget.isAIXABI()) 3215 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3216 3217 SDValue Chain = Op.getOperand(0); 3218 SDValue Trmp = Op.getOperand(1); // trampoline 3219 SDValue FPtr = Op.getOperand(2); // nested function 3220 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3221 SDLoc dl(Op); 3222 3223 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3224 bool isPPC64 = (PtrVT == MVT::i64); 3225 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3226 3227 TargetLowering::ArgListTy Args; 3228 TargetLowering::ArgListEntry Entry; 3229 3230 Entry.Ty = IntPtrTy; 3231 Entry.Node = Trmp; Args.push_back(Entry); 3232 3233 // TrampSize == (isPPC64 ? 48 : 40); 3234 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3235 isPPC64 ? MVT::i64 : MVT::i32); 3236 Args.push_back(Entry); 3237 3238 Entry.Node = FPtr; Args.push_back(Entry); 3239 Entry.Node = Nest; Args.push_back(Entry); 3240 3241 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3242 TargetLowering::CallLoweringInfo CLI(DAG); 3243 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3244 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3245 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3246 3247 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3248 return CallResult.second; 3249 } 3250 3251 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3252 MachineFunction &MF = DAG.getMachineFunction(); 3253 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3254 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3255 3256 SDLoc dl(Op); 3257 3258 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) { 3259 // vastart just stores the address of the VarArgsFrameIndex slot into the 3260 // memory location argument. 3261 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3262 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3263 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3264 MachinePointerInfo(SV)); 3265 } 3266 3267 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3268 // We suppose the given va_list is already allocated. 3269 // 3270 // typedef struct { 3271 // char gpr; /* index into the array of 8 GPRs 3272 // * stored in the register save area 3273 // * gpr=0 corresponds to r3, 3274 // * gpr=1 to r4, etc. 3275 // */ 3276 // char fpr; /* index into the array of 8 FPRs 3277 // * stored in the register save area 3278 // * fpr=0 corresponds to f1, 3279 // * fpr=1 to f2, etc. 3280 // */ 3281 // char *overflow_arg_area; 3282 // /* location on stack that holds 3283 // * the next overflow argument 3284 // */ 3285 // char *reg_save_area; 3286 // /* where r3:r10 and f1:f8 (if saved) 3287 // * are stored 3288 // */ 3289 // } va_list[1]; 3290 3291 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3292 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3293 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3294 PtrVT); 3295 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3296 PtrVT); 3297 3298 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3299 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3300 3301 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3302 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3303 3304 uint64_t FPROffset = 1; 3305 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3306 3307 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3308 3309 // Store first byte : number of int regs 3310 SDValue firstStore = 3311 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3312 MachinePointerInfo(SV), MVT::i8); 3313 uint64_t nextOffset = FPROffset; 3314 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3315 ConstFPROffset); 3316 3317 // Store second byte : number of float regs 3318 SDValue secondStore = 3319 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3320 MachinePointerInfo(SV, nextOffset), MVT::i8); 3321 nextOffset += StackOffset; 3322 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3323 3324 // Store second word : arguments given on stack 3325 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3326 MachinePointerInfo(SV, nextOffset)); 3327 nextOffset += FrameOffset; 3328 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3329 3330 // Store third word : arguments given in registers 3331 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3332 MachinePointerInfo(SV, nextOffset)); 3333 } 3334 3335 /// FPR - The set of FP registers that should be allocated for arguments 3336 /// on Darwin and AIX. 3337 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3338 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3339 PPC::F11, PPC::F12, PPC::F13}; 3340 3341 /// QFPR - The set of QPX registers that should be allocated for arguments. 3342 static const MCPhysReg QFPR[] = { 3343 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7, 3344 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13}; 3345 3346 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3347 /// the stack. 3348 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3349 unsigned PtrByteSize) { 3350 unsigned ArgSize = ArgVT.getStoreSize(); 3351 if (Flags.isByVal()) 3352 ArgSize = Flags.getByValSize(); 3353 3354 // Round up to multiples of the pointer size, except for array members, 3355 // which are always packed. 3356 if (!Flags.isInConsecutiveRegs()) 3357 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3358 3359 return ArgSize; 3360 } 3361 3362 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3363 /// on the stack. 3364 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3365 ISD::ArgFlagsTy Flags, 3366 unsigned PtrByteSize) { 3367 unsigned Align = PtrByteSize; 3368 3369 // Altivec parameters are padded to a 16 byte boundary. 3370 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3371 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3372 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3373 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3374 Align = 16; 3375 // QPX vector types stored in double-precision are padded to a 32 byte 3376 // boundary. 3377 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1) 3378 Align = 32; 3379 3380 // ByVal parameters are aligned as requested. 3381 if (Flags.isByVal()) { 3382 unsigned BVAlign = Flags.getByValAlign(); 3383 if (BVAlign > PtrByteSize) { 3384 if (BVAlign % PtrByteSize != 0) 3385 llvm_unreachable( 3386 "ByVal alignment is not a multiple of the pointer size"); 3387 3388 Align = BVAlign; 3389 } 3390 } 3391 3392 // Array members are always packed to their original alignment. 3393 if (Flags.isInConsecutiveRegs()) { 3394 // If the array member was split into multiple registers, the first 3395 // needs to be aligned to the size of the full type. (Except for 3396 // ppcf128, which is only aligned as its f64 components.) 3397 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3398 Align = OrigVT.getStoreSize(); 3399 else 3400 Align = ArgVT.getStoreSize(); 3401 } 3402 3403 return Align; 3404 } 3405 3406 /// CalculateStackSlotUsed - Return whether this argument will use its 3407 /// stack slot (instead of being passed in registers). ArgOffset, 3408 /// AvailableFPRs, and AvailableVRs must hold the current argument 3409 /// position, and will be updated to account for this argument. 3410 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, 3411 ISD::ArgFlagsTy Flags, 3412 unsigned PtrByteSize, 3413 unsigned LinkageSize, 3414 unsigned ParamAreaSize, 3415 unsigned &ArgOffset, 3416 unsigned &AvailableFPRs, 3417 unsigned &AvailableVRs, bool HasQPX) { 3418 bool UseMemory = false; 3419 3420 // Respect alignment of argument on the stack. 3421 unsigned Align = 3422 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3423 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3424 // If there's no space left in the argument save area, we must 3425 // use memory (this check also catches zero-sized arguments). 3426 if (ArgOffset >= LinkageSize + ParamAreaSize) 3427 UseMemory = true; 3428 3429 // Allocate argument on the stack. 3430 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3431 if (Flags.isInConsecutiveRegsLast()) 3432 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3433 // If we overran the argument save area, we must use memory 3434 // (this check catches arguments passed partially in memory) 3435 if (ArgOffset > LinkageSize + ParamAreaSize) 3436 UseMemory = true; 3437 3438 // However, if the argument is actually passed in an FPR or a VR, 3439 // we don't use memory after all. 3440 if (!Flags.isByVal()) { 3441 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 || 3442 // QPX registers overlap with the scalar FP registers. 3443 (HasQPX && (ArgVT == MVT::v4f32 || 3444 ArgVT == MVT::v4f64 || 3445 ArgVT == MVT::v4i1))) 3446 if (AvailableFPRs > 0) { 3447 --AvailableFPRs; 3448 return false; 3449 } 3450 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3451 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3452 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3453 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3454 if (AvailableVRs > 0) { 3455 --AvailableVRs; 3456 return false; 3457 } 3458 } 3459 3460 return UseMemory; 3461 } 3462 3463 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3464 /// ensure minimum alignment required for target. 3465 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3466 unsigned NumBytes) { 3467 unsigned TargetAlign = Lowering->getStackAlignment(); 3468 unsigned AlignMask = TargetAlign - 1; 3469 NumBytes = (NumBytes + AlignMask) & ~AlignMask; 3470 return NumBytes; 3471 } 3472 3473 SDValue PPCTargetLowering::LowerFormalArguments( 3474 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3475 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3476 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3477 if (Subtarget.isAIXABI()) 3478 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3479 InVals); 3480 if (Subtarget.is64BitELFABI()) 3481 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3482 InVals); 3483 if (Subtarget.is32BitELFABI()) 3484 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3485 InVals); 3486 3487 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG, 3488 InVals); 3489 } 3490 3491 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3492 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3493 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3494 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3495 3496 // 32-bit SVR4 ABI Stack Frame Layout: 3497 // +-----------------------------------+ 3498 // +--> | Back chain | 3499 // | +-----------------------------------+ 3500 // | | Floating-point register save area | 3501 // | +-----------------------------------+ 3502 // | | General register save area | 3503 // | +-----------------------------------+ 3504 // | | CR save word | 3505 // | +-----------------------------------+ 3506 // | | VRSAVE save word | 3507 // | +-----------------------------------+ 3508 // | | Alignment padding | 3509 // | +-----------------------------------+ 3510 // | | Vector register save area | 3511 // | +-----------------------------------+ 3512 // | | Local variable space | 3513 // | +-----------------------------------+ 3514 // | | Parameter list area | 3515 // | +-----------------------------------+ 3516 // | | LR save word | 3517 // | +-----------------------------------+ 3518 // SP--> +--- | Back chain | 3519 // +-----------------------------------+ 3520 // 3521 // Specifications: 3522 // System V Application Binary Interface PowerPC Processor Supplement 3523 // AltiVec Technology Programming Interface Manual 3524 3525 MachineFunction &MF = DAG.getMachineFunction(); 3526 MachineFrameInfo &MFI = MF.getFrameInfo(); 3527 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3528 3529 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3530 // Potential tail calls could cause overwriting of argument stack slots. 3531 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3532 (CallConv == CallingConv::Fast)); 3533 unsigned PtrByteSize = 4; 3534 3535 // Assign locations to all of the incoming arguments. 3536 SmallVector<CCValAssign, 16> ArgLocs; 3537 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3538 *DAG.getContext()); 3539 3540 // Reserve space for the linkage area on the stack. 3541 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3542 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 3543 if (useSoftFloat()) 3544 CCInfo.PreAnalyzeFormalArguments(Ins); 3545 3546 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 3547 CCInfo.clearWasPPCF128(); 3548 3549 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3550 CCValAssign &VA = ArgLocs[i]; 3551 3552 // Arguments stored in registers. 3553 if (VA.isRegLoc()) { 3554 const TargetRegisterClass *RC; 3555 EVT ValVT = VA.getValVT(); 3556 3557 switch (ValVT.getSimpleVT().SimpleTy) { 3558 default: 3559 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 3560 case MVT::i1: 3561 case MVT::i32: 3562 RC = &PPC::GPRCRegClass; 3563 break; 3564 case MVT::f32: 3565 if (Subtarget.hasP8Vector()) 3566 RC = &PPC::VSSRCRegClass; 3567 else if (Subtarget.hasSPE()) 3568 RC = &PPC::GPRCRegClass; 3569 else 3570 RC = &PPC::F4RCRegClass; 3571 break; 3572 case MVT::f64: 3573 if (Subtarget.hasVSX()) 3574 RC = &PPC::VSFRCRegClass; 3575 else if (Subtarget.hasSPE()) 3576 // SPE passes doubles in GPR pairs. 3577 RC = &PPC::GPRCRegClass; 3578 else 3579 RC = &PPC::F8RCRegClass; 3580 break; 3581 case MVT::v16i8: 3582 case MVT::v8i16: 3583 case MVT::v4i32: 3584 RC = &PPC::VRRCRegClass; 3585 break; 3586 case MVT::v4f32: 3587 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass; 3588 break; 3589 case MVT::v2f64: 3590 case MVT::v2i64: 3591 RC = &PPC::VRRCRegClass; 3592 break; 3593 case MVT::v4f64: 3594 RC = &PPC::QFRCRegClass; 3595 break; 3596 case MVT::v4i1: 3597 RC = &PPC::QBRCRegClass; 3598 break; 3599 } 3600 3601 SDValue ArgValue; 3602 // Transform the arguments stored in physical registers into 3603 // virtual ones. 3604 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 3605 assert(i + 1 < e && "No second half of double precision argument"); 3606 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 3607 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 3608 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 3609 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 3610 if (!Subtarget.isLittleEndian()) 3611 std::swap (ArgValueLo, ArgValueHi); 3612 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 3613 ArgValueHi); 3614 } else { 3615 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3616 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 3617 ValVT == MVT::i1 ? MVT::i32 : ValVT); 3618 if (ValVT == MVT::i1) 3619 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 3620 } 3621 3622 InVals.push_back(ArgValue); 3623 } else { 3624 // Argument stored in memory. 3625 assert(VA.isMemLoc()); 3626 3627 // Get the extended size of the argument type in stack 3628 unsigned ArgSize = VA.getLocVT().getStoreSize(); 3629 // Get the actual size of the argument type 3630 unsigned ObjSize = VA.getValVT().getStoreSize(); 3631 unsigned ArgOffset = VA.getLocMemOffset(); 3632 // Stack objects in PPC32 are right justified. 3633 ArgOffset += ArgSize - ObjSize; 3634 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 3635 3636 // Create load nodes to retrieve arguments from the stack. 3637 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3638 InVals.push_back( 3639 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 3640 } 3641 } 3642 3643 // Assign locations to all of the incoming aggregate by value arguments. 3644 // Aggregates passed by value are stored in the local variable space of the 3645 // caller's stack frame, right above the parameter list area. 3646 SmallVector<CCValAssign, 16> ByValArgLocs; 3647 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 3648 ByValArgLocs, *DAG.getContext()); 3649 3650 // Reserve stack space for the allocations in CCInfo. 3651 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 3652 3653 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 3654 3655 // Area that is at least reserved in the caller of this function. 3656 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 3657 MinReservedArea = std::max(MinReservedArea, LinkageSize); 3658 3659 // Set the size that is at least reserved in caller of this function. Tail 3660 // call optimized function's reserved stack space needs to be aligned so that 3661 // taking the difference between two stack areas will result in an aligned 3662 // stack. 3663 MinReservedArea = 3664 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 3665 FuncInfo->setMinReservedArea(MinReservedArea); 3666 3667 SmallVector<SDValue, 8> MemOps; 3668 3669 // If the function takes variable number of arguments, make a frame index for 3670 // the start of the first vararg value... for expansion of llvm.va_start. 3671 if (isVarArg) { 3672 static const MCPhysReg GPArgRegs[] = { 3673 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 3674 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 3675 }; 3676 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 3677 3678 static const MCPhysReg FPArgRegs[] = { 3679 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 3680 PPC::F8 3681 }; 3682 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 3683 3684 if (useSoftFloat() || hasSPE()) 3685 NumFPArgRegs = 0; 3686 3687 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 3688 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 3689 3690 // Make room for NumGPArgRegs and NumFPArgRegs. 3691 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 3692 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 3693 3694 FuncInfo->setVarArgsStackOffset( 3695 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 3696 CCInfo.getNextStackOffset(), true)); 3697 3698 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false)); 3699 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3700 3701 // The fixed integer arguments of a variadic function are stored to the 3702 // VarArgsFrameIndex on the stack so that they may be loaded by 3703 // dereferencing the result of va_next. 3704 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 3705 // Get an existing live-in vreg, or add a new one. 3706 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 3707 if (!VReg) 3708 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 3709 3710 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3711 SDValue Store = 3712 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3713 MemOps.push_back(Store); 3714 // Increment the address by four for the next argument to store 3715 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 3716 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3717 } 3718 3719 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 3720 // is set. 3721 // The double arguments are stored to the VarArgsFrameIndex 3722 // on the stack. 3723 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 3724 // Get an existing live-in vreg, or add a new one. 3725 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 3726 if (!VReg) 3727 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 3728 3729 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 3730 SDValue Store = 3731 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 3732 MemOps.push_back(Store); 3733 // Increment the address by eight for the next argument to store 3734 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 3735 PtrVT); 3736 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 3737 } 3738 } 3739 3740 if (!MemOps.empty()) 3741 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3742 3743 return Chain; 3744 } 3745 3746 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3747 // value to MVT::i64 and then truncate to the correct register size. 3748 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 3749 EVT ObjectVT, SelectionDAG &DAG, 3750 SDValue ArgVal, 3751 const SDLoc &dl) const { 3752 if (Flags.isSExt()) 3753 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 3754 DAG.getValueType(ObjectVT)); 3755 else if (Flags.isZExt()) 3756 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 3757 DAG.getValueType(ObjectVT)); 3758 3759 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 3760 } 3761 3762 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 3763 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3764 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3765 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3766 // TODO: add description of PPC stack frame format, or at least some docs. 3767 // 3768 bool isELFv2ABI = Subtarget.isELFv2ABI(); 3769 bool isLittleEndian = Subtarget.isLittleEndian(); 3770 MachineFunction &MF = DAG.getMachineFunction(); 3771 MachineFrameInfo &MFI = MF.getFrameInfo(); 3772 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3773 3774 assert(!(CallConv == CallingConv::Fast && isVarArg) && 3775 "fastcc not supported on varargs functions"); 3776 3777 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3778 // Potential tail calls could cause overwriting of argument stack slots. 3779 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3780 (CallConv == CallingConv::Fast)); 3781 unsigned PtrByteSize = 8; 3782 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 3783 3784 static const MCPhysReg GPR[] = { 3785 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 3786 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 3787 }; 3788 static const MCPhysReg VR[] = { 3789 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 3790 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 3791 }; 3792 3793 const unsigned Num_GPR_Regs = array_lengthof(GPR); 3794 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 3795 const unsigned Num_VR_Regs = array_lengthof(VR); 3796 const unsigned Num_QFPR_Regs = Num_FPR_Regs; 3797 3798 // Do a first pass over the arguments to determine whether the ABI 3799 // guarantees that our caller has allocated the parameter save area 3800 // on its stack frame. In the ELFv1 ABI, this is always the case; 3801 // in the ELFv2 ABI, it is true if this is a vararg function or if 3802 // any parameter is located in a stack slot. 3803 3804 bool HasParameterArea = !isELFv2ABI || isVarArg; 3805 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 3806 unsigned NumBytes = LinkageSize; 3807 unsigned AvailableFPRs = Num_FPR_Regs; 3808 unsigned AvailableVRs = Num_VR_Regs; 3809 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 3810 if (Ins[i].Flags.isNest()) 3811 continue; 3812 3813 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 3814 PtrByteSize, LinkageSize, ParamAreaSize, 3815 NumBytes, AvailableFPRs, AvailableVRs, 3816 Subtarget.hasQPX())) 3817 HasParameterArea = true; 3818 } 3819 3820 // Add DAG nodes to load the arguments or copy them out of registers. On 3821 // entry to a function on PPC, the arguments start after the linkage area, 3822 // although the first ones are often in registers. 3823 3824 unsigned ArgOffset = LinkageSize; 3825 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 3826 unsigned &QFPR_idx = FPR_idx; 3827 SmallVector<SDValue, 8> MemOps; 3828 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 3829 unsigned CurArgIdx = 0; 3830 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 3831 SDValue ArgVal; 3832 bool needsLoad = false; 3833 EVT ObjectVT = Ins[ArgNo].VT; 3834 EVT OrigVT = Ins[ArgNo].ArgVT; 3835 unsigned ObjSize = ObjectVT.getStoreSize(); 3836 unsigned ArgSize = ObjSize; 3837 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 3838 if (Ins[ArgNo].isOrigArg()) { 3839 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 3840 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 3841 } 3842 // We re-align the argument offset for each argument, except when using the 3843 // fast calling convention, when we need to make sure we do that only when 3844 // we'll actually use a stack slot. 3845 unsigned CurArgOffset, Align; 3846 auto ComputeArgOffset = [&]() { 3847 /* Respect alignment of argument on the stack. */ 3848 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 3849 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 3850 CurArgOffset = ArgOffset; 3851 }; 3852 3853 if (CallConv != CallingConv::Fast) { 3854 ComputeArgOffset(); 3855 3856 /* Compute GPR index associated with argument offset. */ 3857 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 3858 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 3859 } 3860 3861 // FIXME the codegen can be much improved in some cases. 3862 // We do not have to keep everything in memory. 3863 if (Flags.isByVal()) { 3864 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 3865 3866 if (CallConv == CallingConv::Fast) 3867 ComputeArgOffset(); 3868 3869 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 3870 ObjSize = Flags.getByValSize(); 3871 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3872 // Empty aggregate parameters do not take up registers. Examples: 3873 // struct { } a; 3874 // union { } b; 3875 // int c[0]; 3876 // etc. However, we have to provide a place-holder in InVals, so 3877 // pretend we have an 8-byte item at the current address for that 3878 // purpose. 3879 if (!ObjSize) { 3880 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 3881 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3882 InVals.push_back(FIN); 3883 continue; 3884 } 3885 3886 // Create a stack object covering all stack doublewords occupied 3887 // by the argument. If the argument is (fully or partially) on 3888 // the stack, or if the argument is fully in registers but the 3889 // caller has allocated the parameter save anyway, we can refer 3890 // directly to the caller's stack frame. Otherwise, create a 3891 // local copy in our own frame. 3892 int FI; 3893 if (HasParameterArea || 3894 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 3895 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 3896 else 3897 FI = MFI.CreateStackObject(ArgSize, Align, false); 3898 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3899 3900 // Handle aggregates smaller than 8 bytes. 3901 if (ObjSize < PtrByteSize) { 3902 // The value of the object is its address, which differs from the 3903 // address of the enclosing doubleword on big-endian systems. 3904 SDValue Arg = FIN; 3905 if (!isLittleEndian) { 3906 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 3907 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 3908 } 3909 InVals.push_back(Arg); 3910 3911 if (GPR_idx != Num_GPR_Regs) { 3912 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3913 FuncInfo->addLiveInAttr(VReg, Flags); 3914 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3915 SDValue Store; 3916 3917 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 3918 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 3919 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 3920 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 3921 MachinePointerInfo(&*FuncArg), ObjType); 3922 } else { 3923 // For sizes that don't fit a truncating store (3, 5, 6, 7), 3924 // store the whole register as-is to the parameter save area 3925 // slot. 3926 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 3927 MachinePointerInfo(&*FuncArg)); 3928 } 3929 3930 MemOps.push_back(Store); 3931 } 3932 // Whether we copied from a register or not, advance the offset 3933 // into the parameter save area by a full doubleword. 3934 ArgOffset += PtrByteSize; 3935 continue; 3936 } 3937 3938 // The value of the object is its address, which is the address of 3939 // its first stack doubleword. 3940 InVals.push_back(FIN); 3941 3942 // Store whatever pieces of the object are in registers to memory. 3943 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 3944 if (GPR_idx == Num_GPR_Regs) 3945 break; 3946 3947 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 3948 FuncInfo->addLiveInAttr(VReg, Flags); 3949 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 3950 SDValue Addr = FIN; 3951 if (j) { 3952 SDValue Off = DAG.getConstant(j, dl, PtrVT); 3953 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 3954 } 3955 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 3956 MachinePointerInfo(&*FuncArg, j)); 3957 MemOps.push_back(Store); 3958 ++GPR_idx; 3959 } 3960 ArgOffset += ArgSize; 3961 continue; 3962 } 3963 3964 switch (ObjectVT.getSimpleVT().SimpleTy) { 3965 default: llvm_unreachable("Unhandled argument type!"); 3966 case MVT::i1: 3967 case MVT::i32: 3968 case MVT::i64: 3969 if (Flags.isNest()) { 3970 // The 'nest' parameter, if any, is passed in R11. 3971 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 3972 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3973 3974 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3975 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3976 3977 break; 3978 } 3979 3980 // These can be scalar arguments or elements of an integer array type 3981 // passed directly. Clang may use those instead of "byval" aggregate 3982 // types to avoid forcing arguments to memory unnecessarily. 3983 if (GPR_idx != Num_GPR_Regs) { 3984 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 3985 FuncInfo->addLiveInAttr(VReg, Flags); 3986 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 3987 3988 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 3989 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 3990 // value to MVT::i64 and then truncate to the correct register size. 3991 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 3992 } else { 3993 if (CallConv == CallingConv::Fast) 3994 ComputeArgOffset(); 3995 3996 needsLoad = true; 3997 ArgSize = PtrByteSize; 3998 } 3999 if (CallConv != CallingConv::Fast || needsLoad) 4000 ArgOffset += 8; 4001 break; 4002 4003 case MVT::f32: 4004 case MVT::f64: 4005 // These can be scalar arguments or elements of a float array type 4006 // passed directly. The latter are used to implement ELFv2 homogenous 4007 // float aggregates. 4008 if (FPR_idx != Num_FPR_Regs) { 4009 unsigned VReg; 4010 4011 if (ObjectVT == MVT::f32) 4012 VReg = MF.addLiveIn(FPR[FPR_idx], 4013 Subtarget.hasP8Vector() 4014 ? &PPC::VSSRCRegClass 4015 : &PPC::F4RCRegClass); 4016 else 4017 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4018 ? &PPC::VSFRCRegClass 4019 : &PPC::F8RCRegClass); 4020 4021 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4022 ++FPR_idx; 4023 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4024 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4025 // once we support fp <-> gpr moves. 4026 4027 // This can only ever happen in the presence of f32 array types, 4028 // since otherwise we never run out of FPRs before running out 4029 // of GPRs. 4030 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4031 FuncInfo->addLiveInAttr(VReg, Flags); 4032 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4033 4034 if (ObjectVT == MVT::f32) { 4035 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4036 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4037 DAG.getConstant(32, dl, MVT::i32)); 4038 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4039 } 4040 4041 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4042 } else { 4043 if (CallConv == CallingConv::Fast) 4044 ComputeArgOffset(); 4045 4046 needsLoad = true; 4047 } 4048 4049 // When passing an array of floats, the array occupies consecutive 4050 // space in the argument area; only round up to the next doubleword 4051 // at the end of the array. Otherwise, each float takes 8 bytes. 4052 if (CallConv != CallingConv::Fast || needsLoad) { 4053 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4054 ArgOffset += ArgSize; 4055 if (Flags.isInConsecutiveRegsLast()) 4056 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4057 } 4058 break; 4059 case MVT::v4f32: 4060 case MVT::v4i32: 4061 case MVT::v8i16: 4062 case MVT::v16i8: 4063 case MVT::v2f64: 4064 case MVT::v2i64: 4065 case MVT::v1i128: 4066 case MVT::f128: 4067 if (!Subtarget.hasQPX()) { 4068 // These can be scalar arguments or elements of a vector array type 4069 // passed directly. The latter are used to implement ELFv2 homogenous 4070 // vector aggregates. 4071 if (VR_idx != Num_VR_Regs) { 4072 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4073 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4074 ++VR_idx; 4075 } else { 4076 if (CallConv == CallingConv::Fast) 4077 ComputeArgOffset(); 4078 needsLoad = true; 4079 } 4080 if (CallConv != CallingConv::Fast || needsLoad) 4081 ArgOffset += 16; 4082 break; 4083 } // not QPX 4084 4085 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 && 4086 "Invalid QPX parameter type"); 4087 LLVM_FALLTHROUGH; 4088 4089 case MVT::v4f64: 4090 case MVT::v4i1: 4091 // QPX vectors are treated like their scalar floating-point subregisters 4092 // (except that they're larger). 4093 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32; 4094 if (QFPR_idx != Num_QFPR_Regs) { 4095 const TargetRegisterClass *RC; 4096 switch (ObjectVT.getSimpleVT().SimpleTy) { 4097 case MVT::v4f64: RC = &PPC::QFRCRegClass; break; 4098 case MVT::v4f32: RC = &PPC::QSRCRegClass; break; 4099 default: RC = &PPC::QBRCRegClass; break; 4100 } 4101 4102 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC); 4103 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4104 ++QFPR_idx; 4105 } else { 4106 if (CallConv == CallingConv::Fast) 4107 ComputeArgOffset(); 4108 needsLoad = true; 4109 } 4110 if (CallConv != CallingConv::Fast || needsLoad) 4111 ArgOffset += Sz; 4112 break; 4113 } 4114 4115 // We need to load the argument to a virtual register if we determined 4116 // above that we ran out of physical registers of the appropriate type. 4117 if (needsLoad) { 4118 if (ObjSize < ArgSize && !isLittleEndian) 4119 CurArgOffset += ArgSize - ObjSize; 4120 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4121 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4122 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4123 } 4124 4125 InVals.push_back(ArgVal); 4126 } 4127 4128 // Area that is at least reserved in the caller of this function. 4129 unsigned MinReservedArea; 4130 if (HasParameterArea) 4131 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4132 else 4133 MinReservedArea = LinkageSize; 4134 4135 // Set the size that is at least reserved in caller of this function. Tail 4136 // call optimized functions' reserved stack space needs to be aligned so that 4137 // taking the difference between two stack areas will result in an aligned 4138 // stack. 4139 MinReservedArea = 4140 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4141 FuncInfo->setMinReservedArea(MinReservedArea); 4142 4143 // If the function takes variable number of arguments, make a frame index for 4144 // the start of the first vararg value... for expansion of llvm.va_start. 4145 if (isVarArg) { 4146 int Depth = ArgOffset; 4147 4148 FuncInfo->setVarArgsFrameIndex( 4149 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4150 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4151 4152 // If this function is vararg, store any remaining integer argument regs 4153 // to their spots on the stack so that they may be loaded by dereferencing 4154 // the result of va_next. 4155 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4156 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4157 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4158 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4159 SDValue Store = 4160 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4161 MemOps.push_back(Store); 4162 // Increment the address by four for the next argument to store 4163 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4164 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4165 } 4166 } 4167 4168 if (!MemOps.empty()) 4169 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4170 4171 return Chain; 4172 } 4173 4174 SDValue PPCTargetLowering::LowerFormalArguments_Darwin( 4175 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4176 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4177 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4178 // TODO: add description of PPC stack frame format, or at least some docs. 4179 // 4180 MachineFunction &MF = DAG.getMachineFunction(); 4181 MachineFrameInfo &MFI = MF.getFrameInfo(); 4182 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4183 4184 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4185 bool isPPC64 = PtrVT == MVT::i64; 4186 // Potential tail calls could cause overwriting of argument stack slots. 4187 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4188 (CallConv == CallingConv::Fast)); 4189 unsigned PtrByteSize = isPPC64 ? 8 : 4; 4190 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4191 unsigned ArgOffset = LinkageSize; 4192 // Area that is at least reserved in caller of this function. 4193 unsigned MinReservedArea = ArgOffset; 4194 4195 static const MCPhysReg GPR_32[] = { // 32-bit registers. 4196 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4197 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4198 }; 4199 static const MCPhysReg GPR_64[] = { // 64-bit registers. 4200 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4201 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4202 }; 4203 static const MCPhysReg VR[] = { 4204 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4205 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4206 }; 4207 4208 const unsigned Num_GPR_Regs = array_lengthof(GPR_32); 4209 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4210 const unsigned Num_VR_Regs = array_lengthof( VR); 4211 4212 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4213 4214 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 4215 4216 // In 32-bit non-varargs functions, the stack space for vectors is after the 4217 // stack space for non-vectors. We do not use this space unless we have 4218 // too many vectors to fit in registers, something that only occurs in 4219 // constructed examples:), but we have to walk the arglist to figure 4220 // that out...for the pathological case, compute VecArgOffset as the 4221 // start of the vector parameter area. Computing VecArgOffset is the 4222 // entire point of the following loop. 4223 unsigned VecArgOffset = ArgOffset; 4224 if (!isVarArg && !isPPC64) { 4225 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; 4226 ++ArgNo) { 4227 EVT ObjectVT = Ins[ArgNo].VT; 4228 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4229 4230 if (Flags.isByVal()) { 4231 // ObjSize is the true size, ArgSize rounded up to multiple of regs. 4232 unsigned ObjSize = Flags.getByValSize(); 4233 unsigned ArgSize = 4234 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4235 VecArgOffset += ArgSize; 4236 continue; 4237 } 4238 4239 switch(ObjectVT.getSimpleVT().SimpleTy) { 4240 default: llvm_unreachable("Unhandled argument type!"); 4241 case MVT::i1: 4242 case MVT::i32: 4243 case MVT::f32: 4244 VecArgOffset += 4; 4245 break; 4246 case MVT::i64: // PPC64 4247 case MVT::f64: 4248 // FIXME: We are guaranteed to be !isPPC64 at this point. 4249 // Does MVT::i64 apply? 4250 VecArgOffset += 8; 4251 break; 4252 case MVT::v4f32: 4253 case MVT::v4i32: 4254 case MVT::v8i16: 4255 case MVT::v16i8: 4256 // Nothing to do, we're only looking at Nonvector args here. 4257 break; 4258 } 4259 } 4260 } 4261 // We've found where the vector parameter area in memory is. Skip the 4262 // first 12 parameters; these don't use that memory. 4263 VecArgOffset = ((VecArgOffset+15)/16)*16; 4264 VecArgOffset += 12*16; 4265 4266 // Add DAG nodes to load the arguments or copy them out of registers. On 4267 // entry to a function on PPC, the arguments start after the linkage area, 4268 // although the first ones are often in registers. 4269 4270 SmallVector<SDValue, 8> MemOps; 4271 unsigned nAltivecParamsAtEnd = 0; 4272 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4273 unsigned CurArgIdx = 0; 4274 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4275 SDValue ArgVal; 4276 bool needsLoad = false; 4277 EVT ObjectVT = Ins[ArgNo].VT; 4278 unsigned ObjSize = ObjectVT.getSizeInBits()/8; 4279 unsigned ArgSize = ObjSize; 4280 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4281 if (Ins[ArgNo].isOrigArg()) { 4282 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4283 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4284 } 4285 unsigned CurArgOffset = ArgOffset; 4286 4287 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary. 4288 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 || 4289 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) { 4290 if (isVarArg || isPPC64) { 4291 MinReservedArea = ((MinReservedArea+15)/16)*16; 4292 MinReservedArea += CalculateStackSlotSize(ObjectVT, 4293 Flags, 4294 PtrByteSize); 4295 } else nAltivecParamsAtEnd++; 4296 } else 4297 // Calculate min reserved area. 4298 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT, 4299 Flags, 4300 PtrByteSize); 4301 4302 // FIXME the codegen can be much improved in some cases. 4303 // We do not have to keep everything in memory. 4304 if (Flags.isByVal()) { 4305 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4306 4307 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4308 ObjSize = Flags.getByValSize(); 4309 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4310 // Objects of size 1 and 2 are right justified, everything else is 4311 // left justified. This means the memory address is adjusted forwards. 4312 if (ObjSize==1 || ObjSize==2) { 4313 CurArgOffset = CurArgOffset + (4 - ObjSize); 4314 } 4315 // The value of the object is its address. 4316 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true); 4317 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4318 InVals.push_back(FIN); 4319 if (ObjSize==1 || ObjSize==2) { 4320 if (GPR_idx != Num_GPR_Regs) { 4321 unsigned VReg; 4322 if (isPPC64) 4323 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4324 else 4325 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4326 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4327 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16; 4328 SDValue Store = 4329 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN, 4330 MachinePointerInfo(&*FuncArg), ObjType); 4331 MemOps.push_back(Store); 4332 ++GPR_idx; 4333 } 4334 4335 ArgOffset += PtrByteSize; 4336 4337 continue; 4338 } 4339 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4340 // Store whatever pieces of the object are in registers 4341 // to memory. ArgOffset will be the address of the beginning 4342 // of the object. 4343 if (GPR_idx != Num_GPR_Regs) { 4344 unsigned VReg; 4345 if (isPPC64) 4346 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4347 else 4348 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4349 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4350 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4351 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4352 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4353 MachinePointerInfo(&*FuncArg, j)); 4354 MemOps.push_back(Store); 4355 ++GPR_idx; 4356 ArgOffset += PtrByteSize; 4357 } else { 4358 ArgOffset += ArgSize - (ArgOffset-CurArgOffset); 4359 break; 4360 } 4361 } 4362 continue; 4363 } 4364 4365 switch (ObjectVT.getSimpleVT().SimpleTy) { 4366 default: llvm_unreachable("Unhandled argument type!"); 4367 case MVT::i1: 4368 case MVT::i32: 4369 if (!isPPC64) { 4370 if (GPR_idx != Num_GPR_Regs) { 4371 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4372 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 4373 4374 if (ObjectVT == MVT::i1) 4375 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal); 4376 4377 ++GPR_idx; 4378 } else { 4379 needsLoad = true; 4380 ArgSize = PtrByteSize; 4381 } 4382 // All int arguments reserve stack space in the Darwin ABI. 4383 ArgOffset += PtrByteSize; 4384 break; 4385 } 4386 LLVM_FALLTHROUGH; 4387 case MVT::i64: // PPC64 4388 if (GPR_idx != Num_GPR_Regs) { 4389 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4390 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4391 4392 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4393 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4394 // value to MVT::i64 and then truncate to the correct register size. 4395 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4396 4397 ++GPR_idx; 4398 } else { 4399 needsLoad = true; 4400 ArgSize = PtrByteSize; 4401 } 4402 // All int arguments reserve stack space in the Darwin ABI. 4403 ArgOffset += 8; 4404 break; 4405 4406 case MVT::f32: 4407 case MVT::f64: 4408 // Every 4 bytes of argument space consumes one of the GPRs available for 4409 // argument passing. 4410 if (GPR_idx != Num_GPR_Regs) { 4411 ++GPR_idx; 4412 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) 4413 ++GPR_idx; 4414 } 4415 if (FPR_idx != Num_FPR_Regs) { 4416 unsigned VReg; 4417 4418 if (ObjectVT == MVT::f32) 4419 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass); 4420 else 4421 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass); 4422 4423 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4424 ++FPR_idx; 4425 } else { 4426 needsLoad = true; 4427 } 4428 4429 // All FP arguments reserve stack space in the Darwin ABI. 4430 ArgOffset += isPPC64 ? 8 : ObjSize; 4431 break; 4432 case MVT::v4f32: 4433 case MVT::v4i32: 4434 case MVT::v8i16: 4435 case MVT::v16i8: 4436 // Note that vector arguments in registers don't reserve stack space, 4437 // except in varargs functions. 4438 if (VR_idx != Num_VR_Regs) { 4439 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4440 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4441 if (isVarArg) { 4442 while ((ArgOffset % 16) != 0) { 4443 ArgOffset += PtrByteSize; 4444 if (GPR_idx != Num_GPR_Regs) 4445 GPR_idx++; 4446 } 4447 ArgOffset += 16; 4448 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64? 4449 } 4450 ++VR_idx; 4451 } else { 4452 if (!isVarArg && !isPPC64) { 4453 // Vectors go after all the nonvectors. 4454 CurArgOffset = VecArgOffset; 4455 VecArgOffset += 16; 4456 } else { 4457 // Vectors are aligned. 4458 ArgOffset = ((ArgOffset+15)/16)*16; 4459 CurArgOffset = ArgOffset; 4460 ArgOffset += 16; 4461 } 4462 needsLoad = true; 4463 } 4464 break; 4465 } 4466 4467 // We need to load the argument to a virtual register if we determined above 4468 // that we ran out of physical registers of the appropriate type. 4469 if (needsLoad) { 4470 int FI = MFI.CreateFixedObject(ObjSize, 4471 CurArgOffset + (ArgSize - ObjSize), 4472 isImmutable); 4473 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4474 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4475 } 4476 4477 InVals.push_back(ArgVal); 4478 } 4479 4480 // Allow for Altivec parameters at the end, if needed. 4481 if (nAltivecParamsAtEnd) { 4482 MinReservedArea = ((MinReservedArea+15)/16)*16; 4483 MinReservedArea += 16*nAltivecParamsAtEnd; 4484 } 4485 4486 // Area that is at least reserved in the caller of this function. 4487 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize); 4488 4489 // Set the size that is at least reserved in caller of this function. Tail 4490 // call optimized functions' reserved stack space needs to be aligned so that 4491 // taking the difference between two stack areas will result in an aligned 4492 // stack. 4493 MinReservedArea = 4494 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4495 FuncInfo->setMinReservedArea(MinReservedArea); 4496 4497 // If the function takes variable number of arguments, make a frame index for 4498 // the start of the first vararg value... for expansion of llvm.va_start. 4499 if (isVarArg) { 4500 int Depth = ArgOffset; 4501 4502 FuncInfo->setVarArgsFrameIndex( 4503 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4504 Depth, true)); 4505 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4506 4507 // If this function is vararg, store any remaining integer argument regs 4508 // to their spots on the stack so that they may be loaded by dereferencing 4509 // the result of va_next. 4510 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { 4511 unsigned VReg; 4512 4513 if (isPPC64) 4514 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4515 else 4516 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass); 4517 4518 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4519 SDValue Store = 4520 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4521 MemOps.push_back(Store); 4522 // Increment the address by four for the next argument to store 4523 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4524 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4525 } 4526 } 4527 4528 if (!MemOps.empty()) 4529 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4530 4531 return Chain; 4532 } 4533 4534 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4535 /// adjusted to accommodate the arguments for the tailcall. 4536 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4537 unsigned ParamSize) { 4538 4539 if (!isTailCall) return 0; 4540 4541 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4542 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4543 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4544 // Remember only if the new adjustment is bigger. 4545 if (SPDiff < FI->getTailCallSPDelta()) 4546 FI->setTailCallSPDelta(SPDiff); 4547 4548 return SPDiff; 4549 } 4550 4551 static bool isFunctionGlobalAddress(SDValue Callee); 4552 4553 static bool 4554 callsShareTOCBase(const Function *Caller, SDValue Callee, 4555 const TargetMachine &TM) { 4556 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4557 // don't have enough information to determine if the caller and calle share 4558 // the same TOC base, so we have to pessimistically assume they don't for 4559 // correctness. 4560 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4561 if (!G) 4562 return false; 4563 4564 const GlobalValue *GV = G->getGlobal(); 4565 // The medium and large code models are expected to provide a sufficiently 4566 // large TOC to provide all data addressing needs of a module with a 4567 // single TOC. Since each module will be addressed with a single TOC then we 4568 // only need to check that caller and callee don't cross dso boundaries. 4569 if (CodeModel::Medium == TM.getCodeModel() || 4570 CodeModel::Large == TM.getCodeModel()) 4571 return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV); 4572 4573 // Otherwise we need to ensure callee and caller are in the same section, 4574 // since the linker may allocate multiple TOCs, and we don't know which 4575 // sections will belong to the same TOC base. 4576 4577 if (!GV->isStrongDefinitionForLinker()) 4578 return false; 4579 4580 // Any explicitly-specified sections and section prefixes must also match. 4581 // Also, if we're using -ffunction-sections, then each function is always in 4582 // a different section (the same is true for COMDAT functions). 4583 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4584 GV->getSection() != Caller->getSection()) 4585 return false; 4586 if (const auto *F = dyn_cast<Function>(GV)) { 4587 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4588 return false; 4589 } 4590 4591 // If the callee might be interposed, then we can't assume the ultimate call 4592 // target will be in the same section. Even in cases where we can assume that 4593 // interposition won't happen, in any case where the linker might insert a 4594 // stub to allow for interposition, we must generate code as though 4595 // interposition might occur. To understand why this matters, consider a 4596 // situation where: a -> b -> c where the arrows indicate calls. b and c are 4597 // in the same section, but a is in a different module (i.e. has a different 4598 // TOC base pointer). If the linker allows for interposition between b and c, 4599 // then it will generate a stub for the call edge between b and c which will 4600 // save the TOC pointer into the designated stack slot allocated by b. If we 4601 // return true here, and therefore allow a tail call between b and c, that 4602 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base 4603 // pointer into the stack slot allocated by a (where the a -> b stub saved 4604 // a's TOC base pointer). If we're not considering a tail call, but rather, 4605 // whether a nop is needed after the call instruction in b, because the linker 4606 // will insert a stub, it might complain about a missing nop if we omit it 4607 // (although many don't complain in this case). 4608 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4609 return false; 4610 4611 return true; 4612 } 4613 4614 static bool 4615 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4616 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4617 assert(Subtarget.is64BitELFABI()); 4618 4619 const unsigned PtrByteSize = 8; 4620 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4621 4622 static const MCPhysReg GPR[] = { 4623 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4624 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4625 }; 4626 static const MCPhysReg VR[] = { 4627 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4628 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4629 }; 4630 4631 const unsigned NumGPRs = array_lengthof(GPR); 4632 const unsigned NumFPRs = 13; 4633 const unsigned NumVRs = array_lengthof(VR); 4634 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4635 4636 unsigned NumBytes = LinkageSize; 4637 unsigned AvailableFPRs = NumFPRs; 4638 unsigned AvailableVRs = NumVRs; 4639 4640 for (const ISD::OutputArg& Param : Outs) { 4641 if (Param.Flags.isNest()) continue; 4642 4643 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, 4644 PtrByteSize, LinkageSize, ParamAreaSize, 4645 NumBytes, AvailableFPRs, AvailableVRs, 4646 Subtarget.hasQPX())) 4647 return true; 4648 } 4649 return false; 4650 } 4651 4652 static bool 4653 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) { 4654 if (CS.arg_size() != CallerFn->arg_size()) 4655 return false; 4656 4657 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin(); 4658 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end(); 4659 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4660 4661 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4662 const Value* CalleeArg = *CalleeArgIter; 4663 const Value* CallerArg = &(*CallerArgIter); 4664 if (CalleeArg == CallerArg) 4665 continue; 4666 4667 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4668 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4669 // } 4670 // 1st argument of callee is undef and has the same type as caller. 4671 if (CalleeArg->getType() == CallerArg->getType() && 4672 isa<UndefValue>(CalleeArg)) 4673 continue; 4674 4675 return false; 4676 } 4677 4678 return true; 4679 } 4680 4681 // Returns true if TCO is possible between the callers and callees 4682 // calling conventions. 4683 static bool 4684 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4685 CallingConv::ID CalleeCC) { 4686 // Tail calls are possible with fastcc and ccc. 4687 auto isTailCallableCC = [] (CallingConv::ID CC){ 4688 return CC == CallingConv::C || CC == CallingConv::Fast; 4689 }; 4690 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4691 return false; 4692 4693 // We can safely tail call both fastcc and ccc callees from a c calling 4694 // convention caller. If the caller is fastcc, we may have less stack space 4695 // than a non-fastcc caller with the same signature so disable tail-calls in 4696 // that case. 4697 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4698 } 4699 4700 bool 4701 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4702 SDValue Callee, 4703 CallingConv::ID CalleeCC, 4704 ImmutableCallSite CS, 4705 bool isVarArg, 4706 const SmallVectorImpl<ISD::OutputArg> &Outs, 4707 const SmallVectorImpl<ISD::InputArg> &Ins, 4708 SelectionDAG& DAG) const { 4709 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4710 4711 if (DisableSCO && !TailCallOpt) return false; 4712 4713 // Variadic argument functions are not supported. 4714 if (isVarArg) return false; 4715 4716 auto &Caller = DAG.getMachineFunction().getFunction(); 4717 // Check that the calling conventions are compatible for tco. 4718 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4719 return false; 4720 4721 // Caller contains any byval parameter is not supported. 4722 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4723 return false; 4724 4725 // Callee contains any byval parameter is not supported, too. 4726 // Note: This is a quick work around, because in some cases, e.g. 4727 // caller's stack size > callee's stack size, we are still able to apply 4728 // sibling call optimization. For example, gcc is able to do SCO for caller1 4729 // in the following example, but not for caller2. 4730 // struct test { 4731 // long int a; 4732 // char ary[56]; 4733 // } gTest; 4734 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4735 // b->a = v.a; 4736 // return 0; 4737 // } 4738 // void caller1(struct test a, struct test c, struct test *b) { 4739 // callee(gTest, b); } 4740 // void caller2(struct test *b) { callee(gTest, b); } 4741 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4742 return false; 4743 4744 // If callee and caller use different calling conventions, we cannot pass 4745 // parameters on stack since offsets for the parameter area may be different. 4746 if (Caller.getCallingConv() != CalleeCC && 4747 needStackSlotPassParameters(Subtarget, Outs)) 4748 return false; 4749 4750 // No TCO/SCO on indirect call because Caller have to restore its TOC 4751 if (!isFunctionGlobalAddress(Callee) && 4752 !isa<ExternalSymbolSDNode>(Callee)) 4753 return false; 4754 4755 // If the caller and callee potentially have different TOC bases then we 4756 // cannot tail call since we need to restore the TOC pointer after the call. 4757 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4758 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4759 return false; 4760 4761 // TCO allows altering callee ABI, so we don't have to check further. 4762 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4763 return true; 4764 4765 if (DisableSCO) return false; 4766 4767 // If callee use the same argument list that caller is using, then we can 4768 // apply SCO on this case. If it is not, then we need to check if callee needs 4769 // stack for passing arguments. 4770 if (!hasSameArgumentList(&Caller, CS) && 4771 needStackSlotPassParameters(Subtarget, Outs)) { 4772 return false; 4773 } 4774 4775 return true; 4776 } 4777 4778 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4779 /// for tail call optimization. Targets which want to do tail call 4780 /// optimization should implement this function. 4781 bool 4782 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4783 CallingConv::ID CalleeCC, 4784 bool isVarArg, 4785 const SmallVectorImpl<ISD::InputArg> &Ins, 4786 SelectionDAG& DAG) const { 4787 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4788 return false; 4789 4790 // Variable argument functions are not supported. 4791 if (isVarArg) 4792 return false; 4793 4794 MachineFunction &MF = DAG.getMachineFunction(); 4795 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4796 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4797 // Functions containing by val parameters are not supported. 4798 for (unsigned i = 0; i != Ins.size(); i++) { 4799 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4800 if (Flags.isByVal()) return false; 4801 } 4802 4803 // Non-PIC/GOT tail calls are supported. 4804 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4805 return true; 4806 4807 // At the moment we can only do local tail calls (in same module, hidden 4808 // or protected) if we are generating PIC. 4809 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4810 return G->getGlobal()->hasHiddenVisibility() 4811 || G->getGlobal()->hasProtectedVisibility(); 4812 } 4813 4814 return false; 4815 } 4816 4817 /// isCallCompatibleAddress - Return the immediate to use if the specified 4818 /// 32-bit value is representable in the immediate field of a BxA instruction. 4819 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4820 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4821 if (!C) return nullptr; 4822 4823 int Addr = C->getZExtValue(); 4824 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4825 SignExtend32<26>(Addr) != Addr) 4826 return nullptr; // Top 6 bits have to be sext of immediate. 4827 4828 return DAG 4829 .getConstant( 4830 (int)C->getZExtValue() >> 2, SDLoc(Op), 4831 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4832 .getNode(); 4833 } 4834 4835 namespace { 4836 4837 struct TailCallArgumentInfo { 4838 SDValue Arg; 4839 SDValue FrameIdxOp; 4840 int FrameIdx = 0; 4841 4842 TailCallArgumentInfo() = default; 4843 }; 4844 4845 } // end anonymous namespace 4846 4847 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4848 static void StoreTailCallArgumentsToStackSlot( 4849 SelectionDAG &DAG, SDValue Chain, 4850 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4851 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4852 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4853 SDValue Arg = TailCallArgs[i].Arg; 4854 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4855 int FI = TailCallArgs[i].FrameIdx; 4856 // Store relative to framepointer. 4857 MemOpChains.push_back(DAG.getStore( 4858 Chain, dl, Arg, FIN, 4859 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4860 } 4861 } 4862 4863 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4864 /// the appropriate stack slot for the tail call optimized function call. 4865 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4866 SDValue OldRetAddr, SDValue OldFP, 4867 int SPDiff, const SDLoc &dl) { 4868 if (SPDiff) { 4869 // Calculate the new stack slot for the return address. 4870 MachineFunction &MF = DAG.getMachineFunction(); 4871 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4872 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4873 bool isPPC64 = Subtarget.isPPC64(); 4874 int SlotSize = isPPC64 ? 8 : 4; 4875 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4876 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4877 NewRetAddrLoc, true); 4878 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4879 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4880 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4881 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4882 4883 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack 4884 // slot as the FP is never overwritten. 4885 if (Subtarget.isDarwinABI()) { 4886 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset(); 4887 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc, 4888 true); 4889 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT); 4890 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx, 4891 MachinePointerInfo::getFixedStack( 4892 DAG.getMachineFunction(), NewFPIdx)); 4893 } 4894 } 4895 return Chain; 4896 } 4897 4898 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4899 /// the position of the argument. 4900 static void 4901 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4902 SDValue Arg, int SPDiff, unsigned ArgOffset, 4903 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4904 int Offset = ArgOffset + SPDiff; 4905 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4906 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4907 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4908 SDValue FIN = DAG.getFrameIndex(FI, VT); 4909 TailCallArgumentInfo Info; 4910 Info.Arg = Arg; 4911 Info.FrameIdxOp = FIN; 4912 Info.FrameIdx = FI; 4913 TailCallArguments.push_back(Info); 4914 } 4915 4916 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4917 /// stack slot. Returns the chain as result and the loaded frame pointers in 4918 /// LROpOut/FPOpout. Used when tail calling. 4919 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4920 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4921 SDValue &FPOpOut, const SDLoc &dl) const { 4922 if (SPDiff) { 4923 // Load the LR and FP stack slot for later adjusting. 4924 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 4925 LROpOut = getReturnAddrFrameIndex(DAG); 4926 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 4927 Chain = SDValue(LROpOut.getNode(), 1); 4928 4929 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack 4930 // slot as the FP is never overwritten. 4931 if (Subtarget.isDarwinABI()) { 4932 FPOpOut = getFramePointerFrameIndex(DAG); 4933 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo()); 4934 Chain = SDValue(FPOpOut.getNode(), 1); 4935 } 4936 } 4937 return Chain; 4938 } 4939 4940 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 4941 /// by "Src" to address "Dst" of size "Size". Alignment information is 4942 /// specified by the specific parameter attribute. The copy will be passed as 4943 /// a byval function parameter. 4944 /// Sometimes what we are copying is the end of a larger object, the part that 4945 /// does not fit in registers. 4946 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 4947 SDValue Chain, ISD::ArgFlagsTy Flags, 4948 SelectionDAG &DAG, const SDLoc &dl) { 4949 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 4950 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 4951 false, false, false, MachinePointerInfo(), 4952 MachinePointerInfo()); 4953 } 4954 4955 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 4956 /// tail calls. 4957 static void LowerMemOpCallTo( 4958 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 4959 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 4960 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 4961 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 4962 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 4963 if (!isTailCall) { 4964 if (isVector) { 4965 SDValue StackPtr; 4966 if (isPPC64) 4967 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 4968 else 4969 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 4970 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 4971 DAG.getConstant(ArgOffset, dl, PtrVT)); 4972 } 4973 MemOpChains.push_back( 4974 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 4975 // Calculate and remember argument location. 4976 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 4977 TailCallArguments); 4978 } 4979 4980 static void 4981 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 4982 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 4983 SDValue FPOp, 4984 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 4985 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 4986 // might overwrite each other in case of tail call optimization. 4987 SmallVector<SDValue, 8> MemOpChains2; 4988 // Do not flag preceding copytoreg stuff together with the following stuff. 4989 InFlag = SDValue(); 4990 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 4991 MemOpChains2, dl); 4992 if (!MemOpChains2.empty()) 4993 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 4994 4995 // Store the return address to the appropriate stack slot. 4996 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 4997 4998 // Emit callseq_end just before tailcall node. 4999 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5000 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5001 InFlag = Chain.getValue(1); 5002 } 5003 5004 // Is this global address that of a function that can be called by name? (as 5005 // opposed to something that must hold a descriptor for an indirect call). 5006 static bool isFunctionGlobalAddress(SDValue Callee) { 5007 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5008 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5009 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5010 return false; 5011 5012 return G->getGlobal()->getValueType()->isFunctionTy(); 5013 } 5014 5015 return false; 5016 } 5017 5018 SDValue PPCTargetLowering::LowerCallResult( 5019 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5020 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5021 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5022 SmallVector<CCValAssign, 16> RVLocs; 5023 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5024 *DAG.getContext()); 5025 5026 CCRetInfo.AnalyzeCallResult( 5027 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5028 ? RetCC_PPC_Cold 5029 : RetCC_PPC); 5030 5031 // Copy all of the result registers out of their specified physreg. 5032 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5033 CCValAssign &VA = RVLocs[i]; 5034 assert(VA.isRegLoc() && "Can only return in registers!"); 5035 5036 SDValue Val; 5037 5038 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5039 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5040 InFlag); 5041 Chain = Lo.getValue(1); 5042 InFlag = Lo.getValue(2); 5043 VA = RVLocs[++i]; // skip ahead to next loc 5044 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5045 InFlag); 5046 Chain = Hi.getValue(1); 5047 InFlag = Hi.getValue(2); 5048 if (!Subtarget.isLittleEndian()) 5049 std::swap (Lo, Hi); 5050 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5051 } else { 5052 Val = DAG.getCopyFromReg(Chain, dl, 5053 VA.getLocReg(), VA.getLocVT(), InFlag); 5054 Chain = Val.getValue(1); 5055 InFlag = Val.getValue(2); 5056 } 5057 5058 switch (VA.getLocInfo()) { 5059 default: llvm_unreachable("Unknown loc info!"); 5060 case CCValAssign::Full: break; 5061 case CCValAssign::AExt: 5062 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5063 break; 5064 case CCValAssign::ZExt: 5065 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5066 DAG.getValueType(VA.getValVT())); 5067 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5068 break; 5069 case CCValAssign::SExt: 5070 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5071 DAG.getValueType(VA.getValVT())); 5072 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5073 break; 5074 } 5075 5076 InVals.push_back(Val); 5077 } 5078 5079 return Chain; 5080 } 5081 5082 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5083 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5084 // PatchPoint calls are not indirect. 5085 if (isPatchPoint) 5086 return false; 5087 5088 if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee)) 5089 return false; 5090 5091 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5092 // becuase the immediate function pointer points to a descriptor instead of 5093 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5094 // pointer immediate points to the global entry point, while the BLA would 5095 // need to jump to the local entry point (see rL211174). 5096 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5097 isBLACompatibleAddress(Callee, DAG)) 5098 return false; 5099 5100 return true; 5101 } 5102 5103 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint, 5104 bool isTailCall, const Function &Caller, 5105 const SDValue &Callee, 5106 const PPCSubtarget &Subtarget, 5107 const TargetMachine &TM) { 5108 if (isTailCall) 5109 return PPCISD::TC_RETURN; 5110 5111 // This is a call through a function pointer. 5112 if (isIndirectCall) { 5113 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5114 // indirect calls. The save of the caller's TOC pointer to the stack will be 5115 // inserted into the DAG as part of call lowering. The restore of the TOC 5116 // pointer is modeled by using a pseudo instruction for the call opcode that 5117 // represents the 2 instruction sequence of an indirect branch and link, 5118 // immediately followed by a load of the TOC pointer from the the stack save 5119 // slot into gpr2. 5120 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5121 return PPCISD::BCTRL_LOAD_TOC; 5122 5123 // An indirect call that does not need a TOC restore. 5124 return PPCISD::BCTRL; 5125 } 5126 5127 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5128 // immediately following the call instruction if the caller and callee may 5129 // have different TOC bases. At link time if the linker determines the calls 5130 // may not share a TOC base, the call is redirected to a trampoline inserted 5131 // by the linker. The trampoline will (among other things) save the callers 5132 // TOC pointer at an ABI designated offset in the linkage area and the linker 5133 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5134 // into gpr2. 5135 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5136 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5137 : PPCISD::CALL_NOP; 5138 5139 return PPCISD::CALL; 5140 } 5141 5142 static bool isValidAIXExternalSymSDNode(StringRef SymName) { 5143 return StringSwitch<bool>(SymName) 5144 .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf", 5145 "__moddi3", "__udivdi3", "__umoddi3", true) 5146 .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true) 5147 .Default(false); 5148 } 5149 5150 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5151 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5152 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5153 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5154 return SDValue(Dest, 0); 5155 5156 // Returns true if the callee is local, and false otherwise. 5157 auto isLocalCallee = [&]() { 5158 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5159 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5160 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5161 5162 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5163 !dyn_cast_or_null<GlobalIFunc>(GV); 5164 }; 5165 5166 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5167 // a static relocation model causes some versions of GNU LD (2.17.50, at 5168 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5169 // built with secure-PLT. 5170 bool UsePlt = 5171 Subtarget.is32BitELFABI() && !isLocalCallee() && 5172 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5173 5174 // On AIX, direct function calls reference the symbol for the function's 5175 // entry point, which is named by prepending a "." before the function's 5176 // C-linkage name. 5177 const auto getAIXFuncEntryPointSymbolSDNode = 5178 [&](StringRef FuncName, bool IsDeclaration, 5179 const XCOFF::StorageClass &SC) { 5180 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5181 5182 MCSymbolXCOFF *S = cast<MCSymbolXCOFF>( 5183 Context.getOrCreateSymbol(Twine(".") + Twine(FuncName))); 5184 5185 if (IsDeclaration && !S->hasContainingCsect()) { 5186 // On AIX, an undefined symbol needs to be associated with a 5187 // MCSectionXCOFF to get the correct storage mapping class. 5188 // In this case, XCOFF::XMC_PR. 5189 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5190 S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC, 5191 SectionKind::getMetadata()); 5192 S->setContainingCsect(Sec); 5193 } 5194 5195 MVT PtrVT = 5196 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5197 return DAG.getMCSymbol(S, PtrVT); 5198 }; 5199 5200 if (isFunctionGlobalAddress(Callee)) { 5201 const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee); 5202 const GlobalValue *GV = G->getGlobal(); 5203 5204 if (!Subtarget.isAIXABI()) 5205 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5206 UsePlt ? PPCII::MO_PLT : 0); 5207 5208 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5209 const GlobalObject *GO = cast<GlobalObject>(GV); 5210 const XCOFF::StorageClass SC = 5211 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO); 5212 return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(), 5213 SC); 5214 } 5215 5216 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5217 const char *SymName = S->getSymbol(); 5218 if (!Subtarget.isAIXABI()) 5219 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5220 UsePlt ? PPCII::MO_PLT : 0); 5221 5222 // If there exists a user-declared function whose name is the same as the 5223 // ExternalSymbol's, then we pick up the user-declared version. 5224 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5225 if (const Function *F = 5226 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) { 5227 const XCOFF::StorageClass SC = 5228 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F); 5229 return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(), 5230 SC); 5231 } 5232 5233 // TODO: Remove this when the support for ExternalSymbolSDNode is complete. 5234 if (isValidAIXExternalSymSDNode(SymName)) { 5235 return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT); 5236 } 5237 5238 report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName)); 5239 } 5240 5241 // No transformation needed. 5242 assert(Callee.getNode() && "What no callee?"); 5243 return Callee; 5244 } 5245 5246 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5247 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5248 "Expected a CALLSEQ_STARTSDNode."); 5249 5250 // The last operand is the chain, except when the node has glue. If the node 5251 // has glue, then the last operand is the glue, and the chain is the second 5252 // last operand. 5253 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5254 if (LastValue.getValueType() != MVT::Glue) 5255 return LastValue; 5256 5257 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5258 } 5259 5260 // Creates the node that moves a functions address into the count register 5261 // to prepare for an indirect call instruction. 5262 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5263 SDValue &Glue, SDValue &Chain, 5264 const SDLoc &dl) { 5265 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5266 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5267 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5268 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5269 // The glue is the second value produced. 5270 Glue = Chain.getValue(1); 5271 } 5272 5273 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5274 SDValue &Glue, SDValue &Chain, 5275 SDValue CallSeqStart, 5276 ImmutableCallSite CS, const SDLoc &dl, 5277 bool hasNest, 5278 const PPCSubtarget &Subtarget) { 5279 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5280 // entry point, but to the function descriptor (the function entry point 5281 // address is part of the function descriptor though). 5282 // The function descriptor is a three doubleword structure with the 5283 // following fields: function entry point, TOC base address and 5284 // environment pointer. 5285 // Thus for a call through a function pointer, the following actions need 5286 // to be performed: 5287 // 1. Save the TOC of the caller in the TOC save area of its stack 5288 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5289 // 2. Load the address of the function entry point from the function 5290 // descriptor. 5291 // 3. Load the TOC of the callee from the function descriptor into r2. 5292 // 4. Load the environment pointer from the function descriptor into 5293 // r11. 5294 // 5. Branch to the function entry point address. 5295 // 6. On return of the callee, the TOC of the caller needs to be 5296 // restored (this is done in FinishCall()). 5297 // 5298 // The loads are scheduled at the beginning of the call sequence, and the 5299 // register copies are flagged together to ensure that no other 5300 // operations can be scheduled in between. E.g. without flagging the 5301 // copies together, a TOC access in the caller could be scheduled between 5302 // the assignment of the callee TOC and the branch to the callee, which leads 5303 // to incorrect code. 5304 5305 // Start by loading the function address from the descriptor. 5306 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5307 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5308 ? (MachineMemOperand::MODereferenceable | 5309 MachineMemOperand::MOInvariant) 5310 : MachineMemOperand::MONone; 5311 5312 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr); 5313 5314 // Registers used in building the DAG. 5315 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5316 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5317 5318 // Offsets of descriptor members. 5319 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5320 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5321 5322 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5323 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5324 5325 // One load for the functions entry point address. 5326 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5327 Alignment, MMOFlags); 5328 5329 // One for loading the TOC anchor for the module that contains the called 5330 // function. 5331 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5332 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5333 SDValue TOCPtr = 5334 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5335 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5336 5337 // One for loading the environment pointer. 5338 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5339 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5340 SDValue LoadEnvPtr = 5341 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5342 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5343 5344 5345 // Then copy the newly loaded TOC anchor to the TOC pointer. 5346 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5347 Chain = TOCVal.getValue(0); 5348 Glue = TOCVal.getValue(1); 5349 5350 // If the function call has an explicit 'nest' parameter, it takes the 5351 // place of the environment pointer. 5352 assert((!hasNest || !Subtarget.isAIXABI()) && 5353 "Nest parameter is not supported on AIX."); 5354 if (!hasNest) { 5355 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5356 Chain = EnvVal.getValue(0); 5357 Glue = EnvVal.getValue(1); 5358 } 5359 5360 // The rest of the indirect call sequence is the same as the non-descriptor 5361 // DAG. 5362 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5363 } 5364 5365 static void 5366 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv, 5367 const SDLoc &dl, bool isTailCall, bool isVarArg, 5368 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5369 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5370 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5371 const PPCSubtarget &Subtarget, bool isIndirect) { 5372 const bool IsPPC64 = Subtarget.isPPC64(); 5373 // MVT for a general purpose register. 5374 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5375 5376 // First operand is always the chain. 5377 Ops.push_back(Chain); 5378 5379 // If it's a direct call pass the callee as the second operand. 5380 if (!isIndirect) 5381 Ops.push_back(Callee); 5382 else { 5383 assert(!isPatchPoint && "Patch point call are not indirect."); 5384 5385 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5386 // on the stack (this would have been done in `LowerCall_64SVR4` or 5387 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5388 // represents both the indirect branch and a load that restores the TOC 5389 // pointer from the linkage area. The operand for the TOC restore is an add 5390 // of the TOC save offset to the stack pointer. This must be the second 5391 // operand: after the chain input but before any other variadic arguments. 5392 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 5393 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5394 5395 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5396 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5397 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5398 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5399 Ops.push_back(AddTOC); 5400 } 5401 5402 // Add the register used for the environment pointer. 5403 if (Subtarget.usesFunctionDescriptors() && !hasNest) 5404 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5405 RegVT)); 5406 5407 5408 // Add CTR register as callee so a bctr can be emitted later. 5409 if (isTailCall) 5410 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5411 } 5412 5413 // If this is a tail call add stack pointer delta. 5414 if (isTailCall) 5415 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5416 5417 // Add argument registers to the end of the list so that they are known live 5418 // into the call. 5419 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5420 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5421 RegsToPass[i].second.getValueType())); 5422 5423 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5424 // no way to mark dependencies as implicit here. 5425 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5426 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint) 5427 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5428 5429 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5430 if (isVarArg && Subtarget.is32BitELFABI()) 5431 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5432 5433 // Add a register mask operand representing the call-preserved registers. 5434 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5435 const uint32_t *Mask = 5436 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv); 5437 assert(Mask && "Missing call preserved mask for calling convention"); 5438 Ops.push_back(DAG.getRegisterMask(Mask)); 5439 5440 // If the glue is valid, it is the last operand. 5441 if (Glue.getNode()) 5442 Ops.push_back(Glue); 5443 } 5444 5445 SDValue PPCTargetLowering::FinishCall( 5446 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg, 5447 bool isPatchPoint, bool hasNest, SelectionDAG &DAG, 5448 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5449 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5450 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5451 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const { 5452 5453 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) 5454 setUsesTOCBasePtr(DAG); 5455 5456 const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint); 5457 unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall, 5458 DAG.getMachineFunction().getFunction(), 5459 Callee, Subtarget, DAG.getTarget()); 5460 5461 if (!isIndirect) 5462 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5463 else if (Subtarget.usesFunctionDescriptors()) 5464 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS, 5465 dl, hasNest, Subtarget); 5466 else 5467 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5468 5469 // Build the operand list for the call instruction. 5470 SmallVector<SDValue, 8> Ops; 5471 buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5472 hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff, 5473 Subtarget, isIndirect); 5474 5475 // Emit tail call. 5476 if (isTailCall) { 5477 assert(((Callee.getOpcode() == ISD::Register && 5478 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5479 Callee.getOpcode() == ISD::TargetExternalSymbol || 5480 Callee.getOpcode() == ISD::TargetGlobalAddress || 5481 isa<ConstantSDNode>(Callee)) && 5482 "Expecting a global address, external symbol, absolute value or " 5483 "register"); 5484 assert(CallOpc == PPCISD::TC_RETURN && 5485 "Unexpected call opcode for a tail call."); 5486 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5487 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5488 } 5489 5490 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5491 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5492 Glue = Chain.getValue(1); 5493 5494 // When performing tail call optimization the callee pops its arguments off 5495 // the stack. Account for this here so these bytes can be pushed back on in 5496 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5497 int BytesCalleePops = (CallConv == CallingConv::Fast && 5498 getTargetMachine().Options.GuaranteedTailCallOpt) 5499 ? NumBytes 5500 : 0; 5501 5502 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5503 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5504 Glue, dl); 5505 Glue = Chain.getValue(1); 5506 5507 return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals); 5508 } 5509 5510 SDValue 5511 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5512 SmallVectorImpl<SDValue> &InVals) const { 5513 SelectionDAG &DAG = CLI.DAG; 5514 SDLoc &dl = CLI.DL; 5515 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5516 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5517 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5518 SDValue Chain = CLI.Chain; 5519 SDValue Callee = CLI.Callee; 5520 bool &isTailCall = CLI.IsTailCall; 5521 CallingConv::ID CallConv = CLI.CallConv; 5522 bool isVarArg = CLI.IsVarArg; 5523 bool isPatchPoint = CLI.IsPatchPoint; 5524 ImmutableCallSite CS = CLI.CS; 5525 5526 if (isTailCall) { 5527 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall())) 5528 isTailCall = false; 5529 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5530 isTailCall = 5531 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS, 5532 isVarArg, Outs, Ins, DAG); 5533 else 5534 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5535 Ins, DAG); 5536 if (isTailCall) { 5537 ++NumTailCalls; 5538 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5539 ++NumSiblingCalls; 5540 5541 assert(isa<GlobalAddressSDNode>(Callee) && 5542 "Callee should be an llvm::Function object."); 5543 LLVM_DEBUG( 5544 const GlobalValue *GV = 5545 cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5546 const unsigned Width = 5547 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0"); 5548 dbgs() << "TCO caller: " 5549 << left_justify(DAG.getMachineFunction().getName(), Width) 5550 << ", callee linkage: " << GV->getVisibility() << ", " 5551 << GV->getLinkage() << "\n"); 5552 } 5553 } 5554 5555 if (!isTailCall && CS && CS.isMustTailCall()) 5556 report_fatal_error("failed to perform tail call elimination on a call " 5557 "site marked musttail"); 5558 5559 // When long calls (i.e. indirect calls) are always used, calls are always 5560 // made via function pointer. If we have a function name, first translate it 5561 // into a pointer. 5562 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5563 !isTailCall) 5564 Callee = LowerGlobalAddress(Callee, DAG); 5565 5566 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5567 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg, 5568 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5569 dl, DAG, InVals, CS); 5570 5571 if (Subtarget.isSVR4ABI()) 5572 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg, 5573 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5574 dl, DAG, InVals, CS); 5575 5576 if (Subtarget.isAIXABI()) 5577 return LowerCall_AIX(Chain, Callee, CallConv, isVarArg, 5578 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5579 dl, DAG, InVals, CS); 5580 5581 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg, 5582 isTailCall, isPatchPoint, Outs, OutVals, Ins, 5583 dl, DAG, InVals, CS); 5584 } 5585 5586 SDValue PPCTargetLowering::LowerCall_32SVR4( 5587 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5588 bool isTailCall, bool isPatchPoint, 5589 const SmallVectorImpl<ISD::OutputArg> &Outs, 5590 const SmallVectorImpl<SDValue> &OutVals, 5591 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5592 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5593 ImmutableCallSite CS) const { 5594 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5595 // of the 32-bit SVR4 ABI stack frame layout. 5596 5597 assert((CallConv == CallingConv::C || 5598 CallConv == CallingConv::Cold || 5599 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5600 5601 unsigned PtrByteSize = 4; 5602 5603 MachineFunction &MF = DAG.getMachineFunction(); 5604 5605 // Mark this function as potentially containing a function that contains a 5606 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5607 // and restoring the callers stack pointer in this functions epilog. This is 5608 // done because by tail calling the called function might overwrite the value 5609 // in this function's (MF) stack pointer stack slot 0(SP). 5610 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5611 CallConv == CallingConv::Fast) 5612 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5613 5614 // Count how many bytes are to be pushed on the stack, including the linkage 5615 // area, parameter list area and the part of the local variable space which 5616 // contains copies of aggregates which are passed by value. 5617 5618 // Assign locations to all of the outgoing arguments. 5619 SmallVector<CCValAssign, 16> ArgLocs; 5620 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 5621 5622 // Reserve space for the linkage area on the stack. 5623 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5624 PtrByteSize); 5625 if (useSoftFloat()) 5626 CCInfo.PreAnalyzeCallOperands(Outs); 5627 5628 if (isVarArg) { 5629 // Handle fixed and variable vector arguments differently. 5630 // Fixed vector arguments go into registers as long as registers are 5631 // available. Variable vector arguments always go into memory. 5632 unsigned NumArgs = Outs.size(); 5633 5634 for (unsigned i = 0; i != NumArgs; ++i) { 5635 MVT ArgVT = Outs[i].VT; 5636 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5637 bool Result; 5638 5639 if (Outs[i].IsFixed) { 5640 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5641 CCInfo); 5642 } else { 5643 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5644 ArgFlags, CCInfo); 5645 } 5646 5647 if (Result) { 5648 #ifndef NDEBUG 5649 errs() << "Call operand #" << i << " has unhandled type " 5650 << EVT(ArgVT).getEVTString() << "\n"; 5651 #endif 5652 llvm_unreachable(nullptr); 5653 } 5654 } 5655 } else { 5656 // All arguments are treated the same. 5657 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5658 } 5659 CCInfo.clearWasPPCF128(); 5660 5661 // Assign locations to all of the outgoing aggregate by value arguments. 5662 SmallVector<CCValAssign, 16> ByValArgLocs; 5663 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext()); 5664 5665 // Reserve stack space for the allocations in CCInfo. 5666 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize); 5667 5668 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5669 5670 // Size of the linkage area, parameter list area and the part of the local 5671 // space variable where copies of aggregates which are passed by value are 5672 // stored. 5673 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5674 5675 // Calculate by how many bytes the stack has to be adjusted in case of tail 5676 // call optimization. 5677 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 5678 5679 // Adjust the stack pointer for the new arguments... 5680 // These operations are automatically eliminated by the prolog/epilog pass 5681 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5682 SDValue CallSeqStart = Chain; 5683 5684 // Load the return address and frame pointer so it can be moved somewhere else 5685 // later. 5686 SDValue LROp, FPOp; 5687 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5688 5689 // Set up a copy of the stack pointer for use loading and storing any 5690 // arguments that may not fit in the registers available for argument 5691 // passing. 5692 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5693 5694 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5695 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5696 SmallVector<SDValue, 8> MemOpChains; 5697 5698 bool seenFloatArg = false; 5699 // Walk the register/memloc assignments, inserting copies/loads. 5700 // i - Tracks the index into the list of registers allocated for the call 5701 // RealArgIdx - Tracks the index into the list of actual function arguments 5702 // j - Tracks the index into the list of byval arguments 5703 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5704 i != e; 5705 ++i, ++RealArgIdx) { 5706 CCValAssign &VA = ArgLocs[i]; 5707 SDValue Arg = OutVals[RealArgIdx]; 5708 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5709 5710 if (Flags.isByVal()) { 5711 // Argument is an aggregate which is passed by value, thus we need to 5712 // create a copy of it in the local variable space of the current stack 5713 // frame (which is the stack frame of the caller) and pass the address of 5714 // this copy to the callee. 5715 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5716 CCValAssign &ByValVA = ByValArgLocs[j++]; 5717 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5718 5719 // Memory reserved in the local variable space of the callers stack frame. 5720 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5721 5722 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5723 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5724 StackPtr, PtrOff); 5725 5726 // Create a copy of the argument in the local area of the current 5727 // stack frame. 5728 SDValue MemcpyCall = 5729 CreateCopyOfByValArgument(Arg, PtrOff, 5730 CallSeqStart.getNode()->getOperand(0), 5731 Flags, DAG, dl); 5732 5733 // This must go outside the CALLSEQ_START..END. 5734 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5735 SDLoc(MemcpyCall)); 5736 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5737 NewCallSeqStart.getNode()); 5738 Chain = CallSeqStart = NewCallSeqStart; 5739 5740 // Pass the address of the aggregate copy on the stack either in a 5741 // physical register or in the parameter list area of the current stack 5742 // frame to the callee. 5743 Arg = PtrOff; 5744 } 5745 5746 // When useCRBits() is true, there can be i1 arguments. 5747 // It is because getRegisterType(MVT::i1) => MVT::i1, 5748 // and for other integer types getRegisterType() => MVT::i32. 5749 // Extend i1 and ensure callee will get i32. 5750 if (Arg.getValueType() == MVT::i1) 5751 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5752 dl, MVT::i32, Arg); 5753 5754 if (VA.isRegLoc()) { 5755 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5756 // Put argument in a physical register. 5757 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5758 bool IsLE = Subtarget.isLittleEndian(); 5759 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5760 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5761 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5762 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5763 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5764 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5765 SVal.getValue(0))); 5766 } else 5767 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5768 } else { 5769 // Put argument in the parameter list area of the current stack frame. 5770 assert(VA.isMemLoc()); 5771 unsigned LocMemOffset = VA.getLocMemOffset(); 5772 5773 if (!isTailCall) { 5774 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5775 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5776 StackPtr, PtrOff); 5777 5778 MemOpChains.push_back( 5779 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5780 } else { 5781 // Calculate and remember argument location. 5782 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5783 TailCallArguments); 5784 } 5785 } 5786 } 5787 5788 if (!MemOpChains.empty()) 5789 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5790 5791 // Build a sequence of copy-to-reg nodes chained together with token chain 5792 // and flag operands which copy the outgoing args into the appropriate regs. 5793 SDValue InFlag; 5794 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5795 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5796 RegsToPass[i].second, InFlag); 5797 InFlag = Chain.getValue(1); 5798 } 5799 5800 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5801 // registers. 5802 if (isVarArg) { 5803 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5804 SDValue Ops[] = { Chain, InFlag }; 5805 5806 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5807 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5808 5809 InFlag = Chain.getValue(1); 5810 } 5811 5812 if (isTailCall) 5813 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5814 TailCallArguments); 5815 5816 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 5817 /* unused except on PPC64 ELFv1 */ false, DAG, 5818 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 5819 NumBytes, Ins, InVals, CS); 5820 } 5821 5822 // Copy an argument into memory, being careful to do this outside the 5823 // call sequence for the call to which the argument belongs. 5824 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5825 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5826 SelectionDAG &DAG, const SDLoc &dl) const { 5827 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5828 CallSeqStart.getNode()->getOperand(0), 5829 Flags, DAG, dl); 5830 // The MEMCPY must go outside the CALLSEQ_START..END. 5831 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5832 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5833 SDLoc(MemcpyCall)); 5834 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5835 NewCallSeqStart.getNode()); 5836 return NewCallSeqStart; 5837 } 5838 5839 SDValue PPCTargetLowering::LowerCall_64SVR4( 5840 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 5841 bool isTailCall, bool isPatchPoint, 5842 const SmallVectorImpl<ISD::OutputArg> &Outs, 5843 const SmallVectorImpl<SDValue> &OutVals, 5844 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5845 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5846 ImmutableCallSite CS) const { 5847 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5848 bool isLittleEndian = Subtarget.isLittleEndian(); 5849 unsigned NumOps = Outs.size(); 5850 bool hasNest = false; 5851 bool IsSibCall = false; 5852 5853 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5854 unsigned PtrByteSize = 8; 5855 5856 MachineFunction &MF = DAG.getMachineFunction(); 5857 5858 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5859 IsSibCall = true; 5860 5861 // Mark this function as potentially containing a function that contains a 5862 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5863 // and restoring the callers stack pointer in this functions epilog. This is 5864 // done because by tail calling the called function might overwrite the value 5865 // in this function's (MF) stack pointer stack slot 0(SP). 5866 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5867 CallConv == CallingConv::Fast) 5868 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5869 5870 assert(!(CallConv == CallingConv::Fast && isVarArg) && 5871 "fastcc not supported on varargs functions"); 5872 5873 // Count how many bytes are to be pushed on the stack, including the linkage 5874 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5875 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5876 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5877 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5878 unsigned NumBytes = LinkageSize; 5879 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5880 unsigned &QFPR_idx = FPR_idx; 5881 5882 static const MCPhysReg GPR[] = { 5883 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5884 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5885 }; 5886 static const MCPhysReg VR[] = { 5887 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5888 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5889 }; 5890 5891 const unsigned NumGPRs = array_lengthof(GPR); 5892 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5893 const unsigned NumVRs = array_lengthof(VR); 5894 const unsigned NumQFPRs = NumFPRs; 5895 5896 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5897 // can be passed to the callee in registers. 5898 // For the fast calling convention, there is another check below. 5899 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5900 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast; 5901 if (!HasParameterArea) { 5902 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5903 unsigned AvailableFPRs = NumFPRs; 5904 unsigned AvailableVRs = NumVRs; 5905 unsigned NumBytesTmp = NumBytes; 5906 for (unsigned i = 0; i != NumOps; ++i) { 5907 if (Outs[i].Flags.isNest()) continue; 5908 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5909 PtrByteSize, LinkageSize, ParamAreaSize, 5910 NumBytesTmp, AvailableFPRs, AvailableVRs, 5911 Subtarget.hasQPX())) 5912 HasParameterArea = true; 5913 } 5914 } 5915 5916 // When using the fast calling convention, we don't provide backing for 5917 // arguments that will be in registers. 5918 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5919 5920 // Avoid allocating parameter area for fastcc functions if all the arguments 5921 // can be passed in the registers. 5922 if (CallConv == CallingConv::Fast) 5923 HasParameterArea = false; 5924 5925 // Add up all the space actually used. 5926 for (unsigned i = 0; i != NumOps; ++i) { 5927 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5928 EVT ArgVT = Outs[i].VT; 5929 EVT OrigVT = Outs[i].ArgVT; 5930 5931 if (Flags.isNest()) 5932 continue; 5933 5934 if (CallConv == CallingConv::Fast) { 5935 if (Flags.isByVal()) { 5936 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5937 if (NumGPRsUsed > NumGPRs) 5938 HasParameterArea = true; 5939 } else { 5940 switch (ArgVT.getSimpleVT().SimpleTy) { 5941 default: llvm_unreachable("Unexpected ValueType for argument!"); 5942 case MVT::i1: 5943 case MVT::i32: 5944 case MVT::i64: 5945 if (++NumGPRsUsed <= NumGPRs) 5946 continue; 5947 break; 5948 case MVT::v4i32: 5949 case MVT::v8i16: 5950 case MVT::v16i8: 5951 case MVT::v2f64: 5952 case MVT::v2i64: 5953 case MVT::v1i128: 5954 case MVT::f128: 5955 if (++NumVRsUsed <= NumVRs) 5956 continue; 5957 break; 5958 case MVT::v4f32: 5959 // When using QPX, this is handled like a FP register, otherwise, it 5960 // is an Altivec register. 5961 if (Subtarget.hasQPX()) { 5962 if (++NumFPRsUsed <= NumFPRs) 5963 continue; 5964 } else { 5965 if (++NumVRsUsed <= NumVRs) 5966 continue; 5967 } 5968 break; 5969 case MVT::f32: 5970 case MVT::f64: 5971 case MVT::v4f64: // QPX 5972 case MVT::v4i1: // QPX 5973 if (++NumFPRsUsed <= NumFPRs) 5974 continue; 5975 break; 5976 } 5977 HasParameterArea = true; 5978 } 5979 } 5980 5981 /* Respect alignment of argument on the stack. */ 5982 unsigned Align = 5983 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 5984 NumBytes = ((NumBytes + Align - 1) / Align) * Align; 5985 5986 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 5987 if (Flags.isInConsecutiveRegsLast()) 5988 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 5989 } 5990 5991 unsigned NumBytesActuallyUsed = NumBytes; 5992 5993 // In the old ELFv1 ABI, 5994 // the prolog code of the callee may store up to 8 GPR argument registers to 5995 // the stack, allowing va_start to index over them in memory if its varargs. 5996 // Because we cannot tell if this is needed on the caller side, we have to 5997 // conservatively assume that it is needed. As such, make sure we have at 5998 // least enough stack space for the caller to store the 8 GPRs. 5999 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6000 // really requires memory operands, e.g. a vararg function. 6001 if (HasParameterArea) 6002 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6003 else 6004 NumBytes = LinkageSize; 6005 6006 // Tail call needs the stack to be aligned. 6007 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6008 CallConv == CallingConv::Fast) 6009 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6010 6011 int SPDiff = 0; 6012 6013 // Calculate by how many bytes the stack has to be adjusted in case of tail 6014 // call optimization. 6015 if (!IsSibCall) 6016 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6017 6018 // To protect arguments on the stack from being clobbered in a tail call, 6019 // force all the loads to happen before doing any other lowering. 6020 if (isTailCall) 6021 Chain = DAG.getStackArgumentTokenFactor(Chain); 6022 6023 // Adjust the stack pointer for the new arguments... 6024 // These operations are automatically eliminated by the prolog/epilog pass 6025 if (!IsSibCall) 6026 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6027 SDValue CallSeqStart = Chain; 6028 6029 // Load the return address and frame pointer so it can be move somewhere else 6030 // later. 6031 SDValue LROp, FPOp; 6032 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6033 6034 // Set up a copy of the stack pointer for use loading and storing any 6035 // arguments that may not fit in the registers available for argument 6036 // passing. 6037 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6038 6039 // Figure out which arguments are going to go in registers, and which in 6040 // memory. Also, if this is a vararg function, floating point operations 6041 // must be stored to our stack, and loaded into integer regs as well, if 6042 // any integer regs are available for argument passing. 6043 unsigned ArgOffset = LinkageSize; 6044 6045 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6046 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6047 6048 SmallVector<SDValue, 8> MemOpChains; 6049 for (unsigned i = 0; i != NumOps; ++i) { 6050 SDValue Arg = OutVals[i]; 6051 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6052 EVT ArgVT = Outs[i].VT; 6053 EVT OrigVT = Outs[i].ArgVT; 6054 6055 // PtrOff will be used to store the current argument to the stack if a 6056 // register cannot be found for it. 6057 SDValue PtrOff; 6058 6059 // We re-align the argument offset for each argument, except when using the 6060 // fast calling convention, when we need to make sure we do that only when 6061 // we'll actually use a stack slot. 6062 auto ComputePtrOff = [&]() { 6063 /* Respect alignment of argument on the stack. */ 6064 unsigned Align = 6065 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6066 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align; 6067 6068 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6069 6070 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6071 }; 6072 6073 if (CallConv != CallingConv::Fast) { 6074 ComputePtrOff(); 6075 6076 /* Compute GPR index associated with argument offset. */ 6077 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6078 GPR_idx = std::min(GPR_idx, NumGPRs); 6079 } 6080 6081 // Promote integers to 64-bit values. 6082 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6083 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6084 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6085 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6086 } 6087 6088 // FIXME memcpy is used way more than necessary. Correctness first. 6089 // Note: "by value" is code for passing a structure by value, not 6090 // basic types. 6091 if (Flags.isByVal()) { 6092 // Note: Size includes alignment padding, so 6093 // struct x { short a; char b; } 6094 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6095 // These are the proper values we need for right-justifying the 6096 // aggregate in a parameter register. 6097 unsigned Size = Flags.getByValSize(); 6098 6099 // An empty aggregate parameter takes up no storage and no 6100 // registers. 6101 if (Size == 0) 6102 continue; 6103 6104 if (CallConv == CallingConv::Fast) 6105 ComputePtrOff(); 6106 6107 // All aggregates smaller than 8 bytes must be passed right-justified. 6108 if (Size==1 || Size==2 || Size==4) { 6109 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6110 if (GPR_idx != NumGPRs) { 6111 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6112 MachinePointerInfo(), VT); 6113 MemOpChains.push_back(Load.getValue(1)); 6114 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6115 6116 ArgOffset += PtrByteSize; 6117 continue; 6118 } 6119 } 6120 6121 if (GPR_idx == NumGPRs && Size < 8) { 6122 SDValue AddPtr = PtrOff; 6123 if (!isLittleEndian) { 6124 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6125 PtrOff.getValueType()); 6126 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6127 } 6128 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6129 CallSeqStart, 6130 Flags, DAG, dl); 6131 ArgOffset += PtrByteSize; 6132 continue; 6133 } 6134 // Copy entire object into memory. There are cases where gcc-generated 6135 // code assumes it is there, even if it could be put entirely into 6136 // registers. (This is not what the doc says.) 6137 6138 // FIXME: The above statement is likely due to a misunderstanding of the 6139 // documents. All arguments must be copied into the parameter area BY 6140 // THE CALLEE in the event that the callee takes the address of any 6141 // formal argument. That has not yet been implemented. However, it is 6142 // reasonable to use the stack area as a staging area for the register 6143 // load. 6144 6145 // Skip this for small aggregates, as we will use the same slot for a 6146 // right-justified copy, below. 6147 if (Size >= 8) 6148 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6149 CallSeqStart, 6150 Flags, DAG, dl); 6151 6152 // When a register is available, pass a small aggregate right-justified. 6153 if (Size < 8 && GPR_idx != NumGPRs) { 6154 // The easiest way to get this right-justified in a register 6155 // is to copy the structure into the rightmost portion of a 6156 // local variable slot, then load the whole slot into the 6157 // register. 6158 // FIXME: The memcpy seems to produce pretty awful code for 6159 // small aggregates, particularly for packed ones. 6160 // FIXME: It would be preferable to use the slot in the 6161 // parameter save area instead of a new local variable. 6162 SDValue AddPtr = PtrOff; 6163 if (!isLittleEndian) { 6164 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6165 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6166 } 6167 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6168 CallSeqStart, 6169 Flags, DAG, dl); 6170 6171 // Load the slot into the register. 6172 SDValue Load = 6173 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6174 MemOpChains.push_back(Load.getValue(1)); 6175 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6176 6177 // Done with this argument. 6178 ArgOffset += PtrByteSize; 6179 continue; 6180 } 6181 6182 // For aggregates larger than PtrByteSize, copy the pieces of the 6183 // object that fit into registers from the parameter save area. 6184 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6185 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6186 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6187 if (GPR_idx != NumGPRs) { 6188 SDValue Load = 6189 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6190 MemOpChains.push_back(Load.getValue(1)); 6191 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6192 ArgOffset += PtrByteSize; 6193 } else { 6194 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6195 break; 6196 } 6197 } 6198 continue; 6199 } 6200 6201 switch (Arg.getSimpleValueType().SimpleTy) { 6202 default: llvm_unreachable("Unexpected ValueType for argument!"); 6203 case MVT::i1: 6204 case MVT::i32: 6205 case MVT::i64: 6206 if (Flags.isNest()) { 6207 // The 'nest' parameter, if any, is passed in R11. 6208 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6209 hasNest = true; 6210 break; 6211 } 6212 6213 // These can be scalar arguments or elements of an integer array type 6214 // passed directly. Clang may use those instead of "byval" aggregate 6215 // types to avoid forcing arguments to memory unnecessarily. 6216 if (GPR_idx != NumGPRs) { 6217 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6218 } else { 6219 if (CallConv == CallingConv::Fast) 6220 ComputePtrOff(); 6221 6222 assert(HasParameterArea && 6223 "Parameter area must exist to pass an argument in memory."); 6224 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6225 true, isTailCall, false, MemOpChains, 6226 TailCallArguments, dl); 6227 if (CallConv == CallingConv::Fast) 6228 ArgOffset += PtrByteSize; 6229 } 6230 if (CallConv != CallingConv::Fast) 6231 ArgOffset += PtrByteSize; 6232 break; 6233 case MVT::f32: 6234 case MVT::f64: { 6235 // These can be scalar arguments or elements of a float array type 6236 // passed directly. The latter are used to implement ELFv2 homogenous 6237 // float aggregates. 6238 6239 // Named arguments go into FPRs first, and once they overflow, the 6240 // remaining arguments go into GPRs and then the parameter save area. 6241 // Unnamed arguments for vararg functions always go to GPRs and 6242 // then the parameter save area. For now, put all arguments to vararg 6243 // routines always in both locations (FPR *and* GPR or stack slot). 6244 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs; 6245 bool NeededLoad = false; 6246 6247 // First load the argument into the next available FPR. 6248 if (FPR_idx != NumFPRs) 6249 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6250 6251 // Next, load the argument into GPR or stack slot if needed. 6252 if (!NeedGPROrStack) 6253 ; 6254 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) { 6255 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6256 // once we support fp <-> gpr moves. 6257 6258 // In the non-vararg case, this can only ever happen in the 6259 // presence of f32 array types, since otherwise we never run 6260 // out of FPRs before running out of GPRs. 6261 SDValue ArgVal; 6262 6263 // Double values are always passed in a single GPR. 6264 if (Arg.getValueType() != MVT::f32) { 6265 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6266 6267 // Non-array float values are extended and passed in a GPR. 6268 } else if (!Flags.isInConsecutiveRegs()) { 6269 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6270 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6271 6272 // If we have an array of floats, we collect every odd element 6273 // together with its predecessor into one GPR. 6274 } else if (ArgOffset % PtrByteSize != 0) { 6275 SDValue Lo, Hi; 6276 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6277 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6278 if (!isLittleEndian) 6279 std::swap(Lo, Hi); 6280 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6281 6282 // The final element, if even, goes into the first half of a GPR. 6283 } else if (Flags.isInConsecutiveRegsLast()) { 6284 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6285 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6286 if (!isLittleEndian) 6287 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6288 DAG.getConstant(32, dl, MVT::i32)); 6289 6290 // Non-final even elements are skipped; they will be handled 6291 // together the with subsequent argument on the next go-around. 6292 } else 6293 ArgVal = SDValue(); 6294 6295 if (ArgVal.getNode()) 6296 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6297 } else { 6298 if (CallConv == CallingConv::Fast) 6299 ComputePtrOff(); 6300 6301 // Single-precision floating-point values are mapped to the 6302 // second (rightmost) word of the stack doubleword. 6303 if (Arg.getValueType() == MVT::f32 && 6304 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6305 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6306 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6307 } 6308 6309 assert(HasParameterArea && 6310 "Parameter area must exist to pass an argument in memory."); 6311 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6312 true, isTailCall, false, MemOpChains, 6313 TailCallArguments, dl); 6314 6315 NeededLoad = true; 6316 } 6317 // When passing an array of floats, the array occupies consecutive 6318 // space in the argument area; only round up to the next doubleword 6319 // at the end of the array. Otherwise, each float takes 8 bytes. 6320 if (CallConv != CallingConv::Fast || NeededLoad) { 6321 ArgOffset += (Arg.getValueType() == MVT::f32 && 6322 Flags.isInConsecutiveRegs()) ? 4 : 8; 6323 if (Flags.isInConsecutiveRegsLast()) 6324 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6325 } 6326 break; 6327 } 6328 case MVT::v4f32: 6329 case MVT::v4i32: 6330 case MVT::v8i16: 6331 case MVT::v16i8: 6332 case MVT::v2f64: 6333 case MVT::v2i64: 6334 case MVT::v1i128: 6335 case MVT::f128: 6336 if (!Subtarget.hasQPX()) { 6337 // These can be scalar arguments or elements of a vector array type 6338 // passed directly. The latter are used to implement ELFv2 homogenous 6339 // vector aggregates. 6340 6341 // For a varargs call, named arguments go into VRs or on the stack as 6342 // usual; unnamed arguments always go to the stack or the corresponding 6343 // GPRs when within range. For now, we always put the value in both 6344 // locations (or even all three). 6345 if (isVarArg) { 6346 assert(HasParameterArea && 6347 "Parameter area must exist if we have a varargs call."); 6348 // We could elide this store in the case where the object fits 6349 // entirely in R registers. Maybe later. 6350 SDValue Store = 6351 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6352 MemOpChains.push_back(Store); 6353 if (VR_idx != NumVRs) { 6354 SDValue Load = 6355 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6356 MemOpChains.push_back(Load.getValue(1)); 6357 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6358 } 6359 ArgOffset += 16; 6360 for (unsigned i=0; i<16; i+=PtrByteSize) { 6361 if (GPR_idx == NumGPRs) 6362 break; 6363 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6364 DAG.getConstant(i, dl, PtrVT)); 6365 SDValue Load = 6366 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6367 MemOpChains.push_back(Load.getValue(1)); 6368 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6369 } 6370 break; 6371 } 6372 6373 // Non-varargs Altivec params go into VRs or on the stack. 6374 if (VR_idx != NumVRs) { 6375 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6376 } else { 6377 if (CallConv == CallingConv::Fast) 6378 ComputePtrOff(); 6379 6380 assert(HasParameterArea && 6381 "Parameter area must exist to pass an argument in memory."); 6382 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6383 true, isTailCall, true, MemOpChains, 6384 TailCallArguments, dl); 6385 if (CallConv == CallingConv::Fast) 6386 ArgOffset += 16; 6387 } 6388 6389 if (CallConv != CallingConv::Fast) 6390 ArgOffset += 16; 6391 break; 6392 } // not QPX 6393 6394 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 && 6395 "Invalid QPX parameter type"); 6396 6397 LLVM_FALLTHROUGH; 6398 case MVT::v4f64: 6399 case MVT::v4i1: { 6400 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32; 6401 if (isVarArg) { 6402 assert(HasParameterArea && 6403 "Parameter area must exist if we have a varargs call."); 6404 // We could elide this store in the case where the object fits 6405 // entirely in R registers. Maybe later. 6406 SDValue Store = 6407 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6408 MemOpChains.push_back(Store); 6409 if (QFPR_idx != NumQFPRs) { 6410 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store, 6411 PtrOff, MachinePointerInfo()); 6412 MemOpChains.push_back(Load.getValue(1)); 6413 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load)); 6414 } 6415 ArgOffset += (IsF32 ? 16 : 32); 6416 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) { 6417 if (GPR_idx == NumGPRs) 6418 break; 6419 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6420 DAG.getConstant(i, dl, PtrVT)); 6421 SDValue Load = 6422 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6423 MemOpChains.push_back(Load.getValue(1)); 6424 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6425 } 6426 break; 6427 } 6428 6429 // Non-varargs QPX params go into registers or on the stack. 6430 if (QFPR_idx != NumQFPRs) { 6431 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg)); 6432 } else { 6433 if (CallConv == CallingConv::Fast) 6434 ComputePtrOff(); 6435 6436 assert(HasParameterArea && 6437 "Parameter area must exist to pass an argument in memory."); 6438 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6439 true, isTailCall, true, MemOpChains, 6440 TailCallArguments, dl); 6441 if (CallConv == CallingConv::Fast) 6442 ArgOffset += (IsF32 ? 16 : 32); 6443 } 6444 6445 if (CallConv != CallingConv::Fast) 6446 ArgOffset += (IsF32 ? 16 : 32); 6447 break; 6448 } 6449 } 6450 } 6451 6452 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6453 "mismatch in size of parameter area"); 6454 (void)NumBytesActuallyUsed; 6455 6456 if (!MemOpChains.empty()) 6457 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6458 6459 // Check if this is an indirect call (MTCTR/BCTRL). 6460 // See prepareDescriptorIndirectCall and buildCallOperands for more 6461 // information about calls through function pointers in the 64-bit SVR4 ABI. 6462 if (!isTailCall && !isPatchPoint && 6463 !isFunctionGlobalAddress(Callee) && 6464 !isa<ExternalSymbolSDNode>(Callee)) { 6465 // Load r2 into a virtual register and store it to the TOC save area. 6466 setUsesTOCBasePtr(DAG); 6467 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6468 // TOC save area offset. 6469 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6470 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6471 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6472 Chain = DAG.getStore( 6473 Val.getValue(1), dl, Val, AddPtr, 6474 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 6475 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6476 // This does not mean the MTCTR instruction must use R12; it's easier 6477 // to model this as an extra parameter, so do that. 6478 if (isELFv2ABI && !isPatchPoint) 6479 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6480 } 6481 6482 // Build a sequence of copy-to-reg nodes chained together with token chain 6483 // and flag operands which copy the outgoing args into the appropriate regs. 6484 SDValue InFlag; 6485 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6486 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6487 RegsToPass[i].second, InFlag); 6488 InFlag = Chain.getValue(1); 6489 } 6490 6491 if (isTailCall && !IsSibCall) 6492 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6493 TailCallArguments); 6494 6495 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest, 6496 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee, 6497 SPDiff, NumBytes, Ins, InVals, CS); 6498 } 6499 6500 SDValue PPCTargetLowering::LowerCall_Darwin( 6501 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 6502 bool isTailCall, bool isPatchPoint, 6503 const SmallVectorImpl<ISD::OutputArg> &Outs, 6504 const SmallVectorImpl<SDValue> &OutVals, 6505 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6506 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 6507 ImmutableCallSite CS) const { 6508 unsigned NumOps = Outs.size(); 6509 6510 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6511 bool isPPC64 = PtrVT == MVT::i64; 6512 unsigned PtrByteSize = isPPC64 ? 8 : 4; 6513 6514 MachineFunction &MF = DAG.getMachineFunction(); 6515 6516 // Mark this function as potentially containing a function that contains a 6517 // tail call. As a consequence the frame pointer will be used for dynamicalloc 6518 // and restoring the callers stack pointer in this functions epilog. This is 6519 // done because by tail calling the called function might overwrite the value 6520 // in this function's (MF) stack pointer stack slot 0(SP). 6521 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6522 CallConv == CallingConv::Fast) 6523 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 6524 6525 // Count how many bytes are to be pushed on the stack, including the linkage 6526 // area, and parameter passing area. We start with 24/48 bytes, which is 6527 // prereserved space for [SP][CR][LR][3 x unused]. 6528 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6529 unsigned NumBytes = LinkageSize; 6530 6531 // Add up all the space actually used. 6532 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually 6533 // they all go in registers, but we must reserve stack space for them for 6534 // possible use by the caller. In varargs or 64-bit calls, parameters are 6535 // assigned stack space in order, with padding so Altivec parameters are 6536 // 16-byte aligned. 6537 unsigned nAltivecParamsAtEnd = 0; 6538 for (unsigned i = 0; i != NumOps; ++i) { 6539 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6540 EVT ArgVT = Outs[i].VT; 6541 // Varargs Altivec parameters are padded to a 16 byte boundary. 6542 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 6543 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 6544 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) { 6545 if (!isVarArg && !isPPC64) { 6546 // Non-varargs Altivec parameters go after all the non-Altivec 6547 // parameters; handle those later so we know how much padding we need. 6548 nAltivecParamsAtEnd++; 6549 continue; 6550 } 6551 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary. 6552 NumBytes = ((NumBytes+15)/16)*16; 6553 } 6554 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6555 } 6556 6557 // Allow for Altivec parameters at the end, if needed. 6558 if (nAltivecParamsAtEnd) { 6559 NumBytes = ((NumBytes+15)/16)*16; 6560 NumBytes += 16*nAltivecParamsAtEnd; 6561 } 6562 6563 // The prolog code of the callee may store up to 8 GPR argument registers to 6564 // the stack, allowing va_start to index over them in memory if its varargs. 6565 // Because we cannot tell if this is needed on the caller side, we have to 6566 // conservatively assume that it is needed. As such, make sure we have at 6567 // least enough stack space for the caller to store the 8 GPRs. 6568 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6569 6570 // Tail call needs the stack to be aligned. 6571 if (getTargetMachine().Options.GuaranteedTailCallOpt && 6572 CallConv == CallingConv::Fast) 6573 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6574 6575 // Calculate by how many bytes the stack has to be adjusted in case of tail 6576 // call optimization. 6577 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes); 6578 6579 // To protect arguments on the stack from being clobbered in a tail call, 6580 // force all the loads to happen before doing any other lowering. 6581 if (isTailCall) 6582 Chain = DAG.getStackArgumentTokenFactor(Chain); 6583 6584 // Adjust the stack pointer for the new arguments... 6585 // These operations are automatically eliminated by the prolog/epilog pass 6586 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6587 SDValue CallSeqStart = Chain; 6588 6589 // Load the return address and frame pointer so it can be move somewhere else 6590 // later. 6591 SDValue LROp, FPOp; 6592 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6593 6594 // Set up a copy of the stack pointer for use loading and storing any 6595 // arguments that may not fit in the registers available for argument 6596 // passing. 6597 SDValue StackPtr; 6598 if (isPPC64) 6599 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6600 else 6601 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 6602 6603 // Figure out which arguments are going to go in registers, and which in 6604 // memory. Also, if this is a vararg function, floating point operations 6605 // must be stored to our stack, and loaded into integer regs as well, if 6606 // any integer regs are available for argument passing. 6607 unsigned ArgOffset = LinkageSize; 6608 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 6609 6610 static const MCPhysReg GPR_32[] = { // 32-bit registers. 6611 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6612 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 6613 }; 6614 static const MCPhysReg GPR_64[] = { // 64-bit registers. 6615 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6616 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 6617 }; 6618 static const MCPhysReg VR[] = { 6619 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 6620 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 6621 }; 6622 const unsigned NumGPRs = array_lengthof(GPR_32); 6623 const unsigned NumFPRs = 13; 6624 const unsigned NumVRs = array_lengthof(VR); 6625 6626 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32; 6627 6628 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6629 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6630 6631 SmallVector<SDValue, 8> MemOpChains; 6632 for (unsigned i = 0; i != NumOps; ++i) { 6633 SDValue Arg = OutVals[i]; 6634 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6635 6636 // PtrOff will be used to store the current argument to the stack if a 6637 // register cannot be found for it. 6638 SDValue PtrOff; 6639 6640 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6641 6642 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6643 6644 // On PPC64, promote integers to 64-bit values. 6645 if (isPPC64 && Arg.getValueType() == MVT::i32) { 6646 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6647 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6648 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6649 } 6650 6651 // FIXME memcpy is used way more than necessary. Correctness first. 6652 // Note: "by value" is code for passing a structure by value, not 6653 // basic types. 6654 if (Flags.isByVal()) { 6655 unsigned Size = Flags.getByValSize(); 6656 // Very small objects are passed right-justified. Everything else is 6657 // passed left-justified. 6658 if (Size==1 || Size==2) { 6659 EVT VT = (Size==1) ? MVT::i8 : MVT::i16; 6660 if (GPR_idx != NumGPRs) { 6661 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6662 MachinePointerInfo(), VT); 6663 MemOpChains.push_back(Load.getValue(1)); 6664 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6665 6666 ArgOffset += PtrByteSize; 6667 } else { 6668 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6669 PtrOff.getValueType()); 6670 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6671 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6672 CallSeqStart, 6673 Flags, DAG, dl); 6674 ArgOffset += PtrByteSize; 6675 } 6676 continue; 6677 } 6678 // Copy entire object into memory. There are cases where gcc-generated 6679 // code assumes it is there, even if it could be put entirely into 6680 // registers. (This is not what the doc says.) 6681 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6682 CallSeqStart, 6683 Flags, DAG, dl); 6684 6685 // For small aggregates (Darwin only) and aggregates >= PtrByteSize, 6686 // copy the pieces of the object that fit into registers from the 6687 // parameter save area. 6688 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6689 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6690 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6691 if (GPR_idx != NumGPRs) { 6692 SDValue Load = 6693 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6694 MemOpChains.push_back(Load.getValue(1)); 6695 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6696 ArgOffset += PtrByteSize; 6697 } else { 6698 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6699 break; 6700 } 6701 } 6702 continue; 6703 } 6704 6705 switch (Arg.getSimpleValueType().SimpleTy) { 6706 default: llvm_unreachable("Unexpected ValueType for argument!"); 6707 case MVT::i1: 6708 case MVT::i32: 6709 case MVT::i64: 6710 if (GPR_idx != NumGPRs) { 6711 if (Arg.getValueType() == MVT::i1) 6712 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg); 6713 6714 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6715 } else { 6716 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6717 isPPC64, isTailCall, false, MemOpChains, 6718 TailCallArguments, dl); 6719 } 6720 ArgOffset += PtrByteSize; 6721 break; 6722 case MVT::f32: 6723 case MVT::f64: 6724 if (FPR_idx != NumFPRs) { 6725 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6726 6727 if (isVarArg) { 6728 SDValue Store = 6729 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6730 MemOpChains.push_back(Store); 6731 6732 // Float varargs are always shadowed in available integer registers 6733 if (GPR_idx != NumGPRs) { 6734 SDValue Load = 6735 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6736 MemOpChains.push_back(Load.getValue(1)); 6737 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6738 } 6739 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ 6740 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6741 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6742 SDValue Load = 6743 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo()); 6744 MemOpChains.push_back(Load.getValue(1)); 6745 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6746 } 6747 } else { 6748 // If we have any FPRs remaining, we may also have GPRs remaining. 6749 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available 6750 // GPRs. 6751 if (GPR_idx != NumGPRs) 6752 ++GPR_idx; 6753 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && 6754 !isPPC64) // PPC64 has 64-bit GPR's obviously :) 6755 ++GPR_idx; 6756 } 6757 } else 6758 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6759 isPPC64, isTailCall, false, MemOpChains, 6760 TailCallArguments, dl); 6761 if (isPPC64) 6762 ArgOffset += 8; 6763 else 6764 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; 6765 break; 6766 case MVT::v4f32: 6767 case MVT::v4i32: 6768 case MVT::v8i16: 6769 case MVT::v16i8: 6770 if (isVarArg) { 6771 // These go aligned on the stack, or in the corresponding R registers 6772 // when within range. The Darwin PPC ABI doc claims they also go in 6773 // V registers; in fact gcc does this only for arguments that are 6774 // prototyped, not for those that match the ... We do it for all 6775 // arguments, seems to work. 6776 while (ArgOffset % 16 !=0) { 6777 ArgOffset += PtrByteSize; 6778 if (GPR_idx != NumGPRs) 6779 GPR_idx++; 6780 } 6781 // We could elide this store in the case where the object fits 6782 // entirely in R registers. Maybe later. 6783 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 6784 DAG.getConstant(ArgOffset, dl, PtrVT)); 6785 SDValue Store = 6786 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6787 MemOpChains.push_back(Store); 6788 if (VR_idx != NumVRs) { 6789 SDValue Load = 6790 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6791 MemOpChains.push_back(Load.getValue(1)); 6792 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6793 } 6794 ArgOffset += 16; 6795 for (unsigned i=0; i<16; i+=PtrByteSize) { 6796 if (GPR_idx == NumGPRs) 6797 break; 6798 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6799 DAG.getConstant(i, dl, PtrVT)); 6800 SDValue Load = 6801 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6802 MemOpChains.push_back(Load.getValue(1)); 6803 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6804 } 6805 break; 6806 } 6807 6808 // Non-varargs Altivec params generally go in registers, but have 6809 // stack space allocated at the end. 6810 if (VR_idx != NumVRs) { 6811 // Doesn't have GPR space allocated. 6812 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6813 } else if (nAltivecParamsAtEnd==0) { 6814 // We are emitting Altivec params in order. 6815 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6816 isPPC64, isTailCall, true, MemOpChains, 6817 TailCallArguments, dl); 6818 ArgOffset += 16; 6819 } 6820 break; 6821 } 6822 } 6823 // If all Altivec parameters fit in registers, as they usually do, 6824 // they get stack space following the non-Altivec parameters. We 6825 // don't track this here because nobody below needs it. 6826 // If there are more Altivec parameters than fit in registers emit 6827 // the stores here. 6828 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) { 6829 unsigned j = 0; 6830 // Offset is aligned; skip 1st 12 params which go in V registers. 6831 ArgOffset = ((ArgOffset+15)/16)*16; 6832 ArgOffset += 12*16; 6833 for (unsigned i = 0; i != NumOps; ++i) { 6834 SDValue Arg = OutVals[i]; 6835 EVT ArgType = Outs[i].VT; 6836 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 || 6837 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) { 6838 if (++j > NumVRs) { 6839 SDValue PtrOff; 6840 // We are emitting Altivec params in order. 6841 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6842 isPPC64, isTailCall, true, MemOpChains, 6843 TailCallArguments, dl); 6844 ArgOffset += 16; 6845 } 6846 } 6847 } 6848 } 6849 6850 if (!MemOpChains.empty()) 6851 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6852 6853 // On Darwin, R12 must contain the address of an indirect callee. This does 6854 // not mean the MTCTR instruction must use R12; it's easier to model this as 6855 // an extra parameter, so do that. 6856 if (!isTailCall && 6857 !isFunctionGlobalAddress(Callee) && 6858 !isa<ExternalSymbolSDNode>(Callee) && 6859 !isBLACompatibleAddress(Callee, DAG)) 6860 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 : 6861 PPC::R12), Callee)); 6862 6863 // Build a sequence of copy-to-reg nodes chained together with token chain 6864 // and flag operands which copy the outgoing args into the appropriate regs. 6865 SDValue InFlag; 6866 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6867 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6868 RegsToPass[i].second, InFlag); 6869 InFlag = Chain.getValue(1); 6870 } 6871 6872 if (isTailCall) 6873 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6874 TailCallArguments); 6875 6876 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 6877 /* unused except on PPC64 ELFv1 */ false, DAG, 6878 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff, 6879 NumBytes, Ins, InVals, CS); 6880 } 6881 6882 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6883 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6884 CCState &State) { 6885 6886 if (ValVT == MVT::f128) 6887 report_fatal_error("f128 is unimplemented on AIX."); 6888 6889 if (ArgFlags.isByVal()) 6890 report_fatal_error("Passing structure by value is unimplemented."); 6891 6892 if (ArgFlags.isNest()) 6893 report_fatal_error("Nest arguments are unimplemented."); 6894 6895 if (ValVT.isVector() || LocVT.isVector()) 6896 report_fatal_error("Vector arguments are unimplemented on AIX."); 6897 6898 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6899 State.getMachineFunction().getSubtarget()); 6900 const bool IsPPC64 = Subtarget.isPPC64(); 6901 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6902 6903 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6904 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6905 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6906 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6907 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6908 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6909 6910 // Arguments always reserve parameter save area. 6911 switch (ValVT.SimpleTy) { 6912 default: 6913 report_fatal_error("Unhandled value type for argument."); 6914 case MVT::i64: 6915 // i64 arguments should have been split to i32 for PPC32. 6916 assert(IsPPC64 && "PPC32 should have split i64 values."); 6917 LLVM_FALLTHROUGH; 6918 case MVT::i1: 6919 case MVT::i32: 6920 State.AllocateStack(PtrByteSize, PtrByteSize); 6921 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6922 MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6923 // Promote integers if needed. 6924 if (ValVT.getSizeInBits() < RegVT.getSizeInBits()) 6925 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6926 : CCValAssign::LocInfo::ZExt; 6927 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6928 } 6929 else 6930 report_fatal_error("Handling of placing parameters on the stack is " 6931 "unimplemented!"); 6932 return false; 6933 6934 case MVT::f32: 6935 case MVT::f64: { 6936 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6937 const unsigned StoreSize = LocVT.getStoreSize(); 6938 // Floats are always 4-byte aligned in the PSA on AIX. 6939 // This includes f64 in 64-bit mode for ABI compatibility. 6940 State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4); 6941 if (unsigned Reg = State.AllocateReg(FPR)) 6942 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 6943 else 6944 report_fatal_error("Handling of placing parameters on the stack is " 6945 "unimplemented!"); 6946 6947 // AIX requires that GPRs are reserved for float arguments. 6948 // Successfully reserved GPRs are only initialized for vararg calls. 6949 MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6950 for (unsigned I = 0; I < StoreSize; I += PtrByteSize) { 6951 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6952 if (State.isVarArg()) { 6953 // Custom handling is required for: 6954 // f64 in PPC32 needs to be split into 2 GPRs. 6955 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6956 State.addLoc( 6957 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6958 } 6959 } else if (State.isVarArg()) { 6960 report_fatal_error("Handling of placing parameters on the stack is " 6961 "unimplemented!"); 6962 } 6963 } 6964 6965 return false; 6966 } 6967 } 6968 return true; 6969 } 6970 6971 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6972 bool IsPPC64) { 6973 assert((IsPPC64 || SVT != MVT::i64) && 6974 "i64 should have been split for 32-bit codegen."); 6975 6976 switch (SVT) { 6977 default: 6978 report_fatal_error("Unexpected value type for formal argument"); 6979 case MVT::i1: 6980 case MVT::i32: 6981 case MVT::i64: 6982 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6983 case MVT::f32: 6984 return &PPC::F4RCRegClass; 6985 case MVT::f64: 6986 return &PPC::F8RCRegClass; 6987 } 6988 } 6989 6990 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6991 SelectionDAG &DAG, SDValue ArgValue, 6992 MVT LocVT, const SDLoc &dl) { 6993 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6994 assert(ValVT.getSizeInBits() < LocVT.getSizeInBits()); 6995 6996 if (Flags.isSExt()) 6997 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6998 DAG.getValueType(ValVT)); 6999 else if (Flags.isZExt()) 7000 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 7001 DAG.getValueType(ValVT)); 7002 7003 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 7004 } 7005 7006 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 7007 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 7008 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7009 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 7010 7011 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 7012 CallConv == CallingConv::Fast) && 7013 "Unexpected calling convention!"); 7014 7015 if (isVarArg) 7016 report_fatal_error("This call type is unimplemented on AIX."); 7017 7018 if (getTargetMachine().Options.GuaranteedTailCallOpt) 7019 report_fatal_error("Tail call support is unimplemented on AIX."); 7020 7021 if (useSoftFloat()) 7022 report_fatal_error("Soft float support is unimplemented on AIX."); 7023 7024 const PPCSubtarget &Subtarget = 7025 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 7026 if (Subtarget.hasQPX()) 7027 report_fatal_error("QPX support is not supported on AIX."); 7028 7029 const bool IsPPC64 = Subtarget.isPPC64(); 7030 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7031 7032 // Assign locations to all of the incoming arguments. 7033 SmallVector<CCValAssign, 16> ArgLocs; 7034 MachineFunction &MF = DAG.getMachineFunction(); 7035 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7036 7037 // Reserve space for the linkage area on the stack. 7038 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7039 // On AIX a minimum of 8 words is saved to the parameter save area. 7040 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7041 CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize); 7042 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 7043 7044 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 7045 CCValAssign &VA = ArgLocs[i]; 7046 SDValue ArgValue; 7047 ISD::ArgFlagsTy Flags = Ins[i].Flags; 7048 if (VA.isRegLoc()) { 7049 EVT ValVT = VA.getValVT(); 7050 MVT LocVT = VA.getLocVT(); 7051 MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy; 7052 unsigned VReg = 7053 MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64)); 7054 ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7055 if (ValVT.isScalarInteger() && 7056 (ValVT.getSizeInBits() < LocVT.getSizeInBits())) { 7057 ArgValue = 7058 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7059 } 7060 InVals.push_back(ArgValue); 7061 } else { 7062 report_fatal_error("Handling of formal arguments on the stack is " 7063 "unimplemented!"); 7064 } 7065 } 7066 7067 // Area that is at least reserved in the caller of this function. 7068 unsigned MinReservedArea = CCInfo.getNextStackOffset(); 7069 7070 // Set the size that is at least reserved in caller of this function. Tail 7071 // call optimized function's reserved stack space needs to be aligned so 7072 // that taking the difference between two stack areas will result in an 7073 // aligned stack. 7074 MinReservedArea = 7075 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 7076 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 7077 FuncInfo->setMinReservedArea(MinReservedArea); 7078 7079 return Chain; 7080 } 7081 7082 SDValue PPCTargetLowering::LowerCall_AIX( 7083 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg, 7084 bool isTailCall, bool isPatchPoint, 7085 const SmallVectorImpl<ISD::OutputArg> &Outs, 7086 const SmallVectorImpl<SDValue> &OutVals, 7087 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7088 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7089 ImmutableCallSite CS) const { 7090 7091 assert((CallConv == CallingConv::C || 7092 CallConv == CallingConv::Cold || 7093 CallConv == CallingConv::Fast) && "Unexpected calling convention!"); 7094 7095 if (isPatchPoint) 7096 report_fatal_error("This call type is unimplemented on AIX."); 7097 7098 const PPCSubtarget& Subtarget = 7099 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7100 if (Subtarget.hasQPX()) 7101 report_fatal_error("QPX is not supported on AIX."); 7102 if (Subtarget.hasAltivec()) 7103 report_fatal_error("Altivec support is unimplemented on AIX."); 7104 7105 MachineFunction &MF = DAG.getMachineFunction(); 7106 SmallVector<CCValAssign, 16> ArgLocs; 7107 CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 7108 7109 // Reserve space for the linkage save area (LSA) on the stack. 7110 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7111 // [SP][CR][LR][2 x reserved][TOC]. 7112 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7113 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7114 const bool IsPPC64 = Subtarget.isPPC64(); 7115 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7116 CCInfo.AllocateStack(LinkageSize, PtrByteSize); 7117 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7118 7119 // The prolog code of the callee may store up to 8 GPR argument registers to 7120 // the stack, allowing va_start to index over them in memory if the callee 7121 // is variadic. 7122 // Because we cannot tell if this is needed on the caller side, we have to 7123 // conservatively assume that it is needed. As such, make sure we have at 7124 // least enough stack space for the caller to store the 8 GPRs. 7125 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7126 const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize; 7127 7128 // Adjust the stack pointer for the new arguments... 7129 // These operations are automatically eliminated by the prolog/epilog pass. 7130 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7131 SDValue CallSeqStart = Chain; 7132 7133 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7134 7135 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7136 CCValAssign &VA = ArgLocs[I++]; 7137 7138 if (VA.isMemLoc()) 7139 report_fatal_error("Handling of placing parameters on the stack is " 7140 "unimplemented!"); 7141 if (!VA.isRegLoc()) 7142 report_fatal_error( 7143 "Unexpected non-register location for function call argument."); 7144 7145 SDValue Arg = OutVals[VA.getValNo()]; 7146 7147 if (!VA.needsCustom()) { 7148 switch (VA.getLocInfo()) { 7149 default: 7150 report_fatal_error("Unexpected argument extension type."); 7151 case CCValAssign::Full: 7152 break; 7153 case CCValAssign::ZExt: 7154 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7155 break; 7156 case CCValAssign::SExt: 7157 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7158 break; 7159 } 7160 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7161 7162 continue; 7163 } 7164 7165 // Custom handling is used for GPR initializations for vararg float 7166 // arguments. 7167 assert(isVarArg && VA.getValVT().isFloatingPoint() && 7168 VA.getLocVT().isInteger() && 7169 "Unexpected custom register handling for calling convention."); 7170 7171 SDValue ArgAsInt = 7172 DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg); 7173 7174 if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize()) 7175 // f32 in 32-bit GPR 7176 // f64 in 64-bit GPR 7177 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7178 else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits()) 7179 // f32 in 64-bit GPR. 7180 RegsToPass.push_back(std::make_pair( 7181 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT()))); 7182 else { 7183 // f64 in two 32-bit GPRs 7184 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7185 assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 && 7186 "Unexpected custom register for argument!"); 7187 CCValAssign &GPR1 = VA; 7188 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7189 DAG.getConstant(32, dl, MVT::i8)); 7190 RegsToPass.push_back(std::make_pair( 7191 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7192 assert(I != E && "A second custom GPR is expected!"); 7193 CCValAssign &GPR2 = ArgLocs[I++]; 7194 assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() && 7195 GPR2.needsCustom() && "A second custom GPR is expected!"); 7196 RegsToPass.push_back(std::make_pair( 7197 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7198 } 7199 } 7200 7201 // For indirect calls, we need to save the TOC base to the stack for 7202 // restoration after the call. 7203 if (!isTailCall && !isPatchPoint && 7204 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) { 7205 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7206 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7207 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7208 const unsigned TOCSaveOffset = 7209 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7210 7211 setUsesTOCBasePtr(DAG); 7212 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7213 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7214 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7215 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7216 Chain = DAG.getStore( 7217 Val.getValue(1), dl, Val, AddPtr, 7218 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7219 } 7220 7221 // Build a sequence of copy-to-reg nodes chained together with token chain 7222 // and flag operands which copy the outgoing args into the appropriate regs. 7223 SDValue InFlag; 7224 for (auto Reg : RegsToPass) { 7225 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7226 InFlag = Chain.getValue(1); 7227 } 7228 7229 const int SPDiff = 0; 7230 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, 7231 /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass, 7232 InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, 7233 InVals, CS); 7234 } 7235 7236 bool 7237 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7238 MachineFunction &MF, bool isVarArg, 7239 const SmallVectorImpl<ISD::OutputArg> &Outs, 7240 LLVMContext &Context) const { 7241 SmallVector<CCValAssign, 16> RVLocs; 7242 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7243 return CCInfo.CheckReturn( 7244 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7245 ? RetCC_PPC_Cold 7246 : RetCC_PPC); 7247 } 7248 7249 SDValue 7250 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7251 bool isVarArg, 7252 const SmallVectorImpl<ISD::OutputArg> &Outs, 7253 const SmallVectorImpl<SDValue> &OutVals, 7254 const SDLoc &dl, SelectionDAG &DAG) const { 7255 SmallVector<CCValAssign, 16> RVLocs; 7256 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7257 *DAG.getContext()); 7258 CCInfo.AnalyzeReturn(Outs, 7259 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7260 ? RetCC_PPC_Cold 7261 : RetCC_PPC); 7262 7263 SDValue Flag; 7264 SmallVector<SDValue, 4> RetOps(1, Chain); 7265 7266 // Copy the result values into the output registers. 7267 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7268 CCValAssign &VA = RVLocs[i]; 7269 assert(VA.isRegLoc() && "Can only return in registers!"); 7270 7271 SDValue Arg = OutVals[RealResIdx]; 7272 7273 switch (VA.getLocInfo()) { 7274 default: llvm_unreachable("Unknown loc info!"); 7275 case CCValAssign::Full: break; 7276 case CCValAssign::AExt: 7277 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7278 break; 7279 case CCValAssign::ZExt: 7280 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7281 break; 7282 case CCValAssign::SExt: 7283 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7284 break; 7285 } 7286 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7287 bool isLittleEndian = Subtarget.isLittleEndian(); 7288 // Legalize ret f64 -> ret 2 x i32. 7289 SDValue SVal = 7290 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7291 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7292 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7293 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7294 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7295 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7296 Flag = Chain.getValue(1); 7297 VA = RVLocs[++i]; // skip ahead to next loc 7298 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7299 } else 7300 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7301 Flag = Chain.getValue(1); 7302 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7303 } 7304 7305 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 7306 const MCPhysReg *I = 7307 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction()); 7308 if (I) { 7309 for (; *I; ++I) { 7310 7311 if (PPC::G8RCRegClass.contains(*I)) 7312 RetOps.push_back(DAG.getRegister(*I, MVT::i64)); 7313 else if (PPC::F8RCRegClass.contains(*I)) 7314 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); 7315 else if (PPC::CRRCRegClass.contains(*I)) 7316 RetOps.push_back(DAG.getRegister(*I, MVT::i1)); 7317 else if (PPC::VRRCRegClass.contains(*I)) 7318 RetOps.push_back(DAG.getRegister(*I, MVT::Other)); 7319 else 7320 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 7321 } 7322 } 7323 7324 RetOps[0] = Chain; // Update chain. 7325 7326 // Add the flag if we have it. 7327 if (Flag.getNode()) 7328 RetOps.push_back(Flag); 7329 7330 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7331 } 7332 7333 SDValue 7334 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7335 SelectionDAG &DAG) const { 7336 SDLoc dl(Op); 7337 7338 // Get the correct type for integers. 7339 EVT IntVT = Op.getValueType(); 7340 7341 // Get the inputs. 7342 SDValue Chain = Op.getOperand(0); 7343 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7344 // Build a DYNAREAOFFSET node. 7345 SDValue Ops[2] = {Chain, FPSIdx}; 7346 SDVTList VTs = DAG.getVTList(IntVT); 7347 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7348 } 7349 7350 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7351 SelectionDAG &DAG) const { 7352 // When we pop the dynamic allocation we need to restore the SP link. 7353 SDLoc dl(Op); 7354 7355 // Get the correct type for pointers. 7356 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7357 7358 // Construct the stack pointer operand. 7359 bool isPPC64 = Subtarget.isPPC64(); 7360 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7361 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7362 7363 // Get the operands for the STACKRESTORE. 7364 SDValue Chain = Op.getOperand(0); 7365 SDValue SaveSP = Op.getOperand(1); 7366 7367 // Load the old link SP. 7368 SDValue LoadLinkSP = 7369 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7370 7371 // Restore the stack pointer. 7372 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7373 7374 // Store the old link SP. 7375 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7376 } 7377 7378 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7379 MachineFunction &MF = DAG.getMachineFunction(); 7380 bool isPPC64 = Subtarget.isPPC64(); 7381 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7382 7383 // Get current frame pointer save index. The users of this index will be 7384 // primarily DYNALLOC instructions. 7385 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7386 int RASI = FI->getReturnAddrSaveIndex(); 7387 7388 // If the frame pointer save index hasn't been defined yet. 7389 if (!RASI) { 7390 // Find out what the fix offset of the frame pointer save area. 7391 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7392 // Allocate the frame index for frame pointer save area. 7393 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7394 // Save the result. 7395 FI->setReturnAddrSaveIndex(RASI); 7396 } 7397 return DAG.getFrameIndex(RASI, PtrVT); 7398 } 7399 7400 SDValue 7401 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7402 MachineFunction &MF = DAG.getMachineFunction(); 7403 bool isPPC64 = Subtarget.isPPC64(); 7404 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7405 7406 // Get current frame pointer save index. The users of this index will be 7407 // primarily DYNALLOC instructions. 7408 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7409 int FPSI = FI->getFramePointerSaveIndex(); 7410 7411 // If the frame pointer save index hasn't been defined yet. 7412 if (!FPSI) { 7413 // Find out what the fix offset of the frame pointer save area. 7414 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7415 // Allocate the frame index for frame pointer save area. 7416 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7417 // Save the result. 7418 FI->setFramePointerSaveIndex(FPSI); 7419 } 7420 return DAG.getFrameIndex(FPSI, PtrVT); 7421 } 7422 7423 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7424 SelectionDAG &DAG) const { 7425 // Get the inputs. 7426 SDValue Chain = Op.getOperand(0); 7427 SDValue Size = Op.getOperand(1); 7428 SDLoc dl(Op); 7429 7430 // Get the correct type for pointers. 7431 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7432 // Negate the size. 7433 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7434 DAG.getConstant(0, dl, PtrVT), Size); 7435 // Construct a node for the frame pointer save index. 7436 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7437 // Build a DYNALLOC node. 7438 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7439 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7440 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7441 } 7442 7443 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7444 SelectionDAG &DAG) const { 7445 MachineFunction &MF = DAG.getMachineFunction(); 7446 7447 bool isPPC64 = Subtarget.isPPC64(); 7448 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7449 7450 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7451 return DAG.getFrameIndex(FI, PtrVT); 7452 } 7453 7454 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7455 SelectionDAG &DAG) const { 7456 SDLoc DL(Op); 7457 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7458 DAG.getVTList(MVT::i32, MVT::Other), 7459 Op.getOperand(0), Op.getOperand(1)); 7460 } 7461 7462 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7463 SelectionDAG &DAG) const { 7464 SDLoc DL(Op); 7465 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7466 Op.getOperand(0), Op.getOperand(1)); 7467 } 7468 7469 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7470 if (Op.getValueType().isVector()) 7471 return LowerVectorLoad(Op, DAG); 7472 7473 assert(Op.getValueType() == MVT::i1 && 7474 "Custom lowering only for i1 loads"); 7475 7476 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7477 7478 SDLoc dl(Op); 7479 LoadSDNode *LD = cast<LoadSDNode>(Op); 7480 7481 SDValue Chain = LD->getChain(); 7482 SDValue BasePtr = LD->getBasePtr(); 7483 MachineMemOperand *MMO = LD->getMemOperand(); 7484 7485 SDValue NewLD = 7486 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7487 BasePtr, MVT::i8, MMO); 7488 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7489 7490 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7491 return DAG.getMergeValues(Ops, dl); 7492 } 7493 7494 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7495 if (Op.getOperand(1).getValueType().isVector()) 7496 return LowerVectorStore(Op, DAG); 7497 7498 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7499 "Custom lowering only for i1 stores"); 7500 7501 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7502 7503 SDLoc dl(Op); 7504 StoreSDNode *ST = cast<StoreSDNode>(Op); 7505 7506 SDValue Chain = ST->getChain(); 7507 SDValue BasePtr = ST->getBasePtr(); 7508 SDValue Value = ST->getValue(); 7509 MachineMemOperand *MMO = ST->getMemOperand(); 7510 7511 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7512 Value); 7513 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7514 } 7515 7516 // FIXME: Remove this once the ANDI glue bug is fixed: 7517 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7518 assert(Op.getValueType() == MVT::i1 && 7519 "Custom lowering only for i1 results"); 7520 7521 SDLoc DL(Op); 7522 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7523 } 7524 7525 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7526 SelectionDAG &DAG) const { 7527 7528 // Implements a vector truncate that fits in a vector register as a shuffle. 7529 // We want to legalize vector truncates down to where the source fits in 7530 // a vector register (and target is therefore smaller than vector register 7531 // size). At that point legalization will try to custom lower the sub-legal 7532 // result and get here - where we can contain the truncate as a single target 7533 // operation. 7534 7535 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7536 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7537 // 7538 // We will implement it for big-endian ordering as this (where x denotes 7539 // undefined): 7540 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7541 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7542 // 7543 // The same operation in little-endian ordering will be: 7544 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7545 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7546 7547 assert(Op.getValueType().isVector() && "Vector type expected."); 7548 7549 SDLoc DL(Op); 7550 SDValue N1 = Op.getOperand(0); 7551 unsigned SrcSize = N1.getValueType().getSizeInBits(); 7552 assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector"); 7553 SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7554 7555 EVT TrgVT = Op.getValueType(); 7556 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7557 EVT EltVT = TrgVT.getVectorElementType(); 7558 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7559 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7560 7561 // First list the elements we want to keep. 7562 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7563 SmallVector<int, 16> ShuffV; 7564 if (Subtarget.isLittleEndian()) 7565 for (unsigned i = 0; i < TrgNumElts; ++i) 7566 ShuffV.push_back(i * SizeMult); 7567 else 7568 for (unsigned i = 1; i <= TrgNumElts; ++i) 7569 ShuffV.push_back(i * SizeMult - 1); 7570 7571 // Populate the remaining elements with undefs. 7572 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7573 // ShuffV.push_back(i + WideNumElts); 7574 ShuffV.push_back(WideNumElts + 1); 7575 7576 SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc); 7577 return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV); 7578 } 7579 7580 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7581 /// possible. 7582 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7583 // Not FP? Not a fsel. 7584 if (!Op.getOperand(0).getValueType().isFloatingPoint() || 7585 !Op.getOperand(2).getValueType().isFloatingPoint()) 7586 return Op; 7587 7588 bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath; 7589 bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath; 7590 // We might be able to do better than this under some circumstances, but in 7591 // general, fsel-based lowering of select is a finite-math-only optimization. 7592 // For more information, see section F.3 of the 2.06 ISA specification. 7593 // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the 7594 // presence of infinities. 7595 if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs)) 7596 return Op; 7597 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7598 7599 EVT ResVT = Op.getValueType(); 7600 EVT CmpVT = Op.getOperand(0).getValueType(); 7601 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7602 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7603 SDLoc dl(Op); 7604 7605 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7606 switch (CC) { 7607 default: 7608 // Not a min/max but with finite math, we may still be able to use fsel. 7609 if (HasNoInfs && HasNoNaNs) 7610 break; 7611 return Op; 7612 case ISD::SETOGT: 7613 case ISD::SETGT: 7614 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7615 case ISD::SETOLT: 7616 case ISD::SETLT: 7617 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7618 } 7619 } 7620 7621 // TODO: Propagate flags from the select rather than global settings. 7622 SDNodeFlags Flags; 7623 Flags.setNoInfs(true); 7624 Flags.setNoNaNs(true); 7625 7626 // If the RHS of the comparison is a 0.0, we don't need to do the 7627 // subtraction at all. 7628 SDValue Sel1; 7629 if (isFloatingPointZero(RHS)) 7630 switch (CC) { 7631 default: break; // SETUO etc aren't handled by fsel. 7632 case ISD::SETNE: 7633 std::swap(TV, FV); 7634 LLVM_FALLTHROUGH; 7635 case ISD::SETEQ: 7636 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7637 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7638 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7639 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7640 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7641 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7642 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7643 case ISD::SETULT: 7644 case ISD::SETLT: 7645 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7646 LLVM_FALLTHROUGH; 7647 case ISD::SETOGE: 7648 case ISD::SETGE: 7649 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7650 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7651 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7652 case ISD::SETUGT: 7653 case ISD::SETGT: 7654 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7655 LLVM_FALLTHROUGH; 7656 case ISD::SETOLE: 7657 case ISD::SETLE: 7658 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7659 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7660 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7661 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7662 } 7663 7664 SDValue Cmp; 7665 switch (CC) { 7666 default: break; // SETUO etc aren't handled by fsel. 7667 case ISD::SETNE: 7668 std::swap(TV, FV); 7669 LLVM_FALLTHROUGH; 7670 case ISD::SETEQ: 7671 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7672 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7673 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7674 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7675 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7676 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7677 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7678 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7679 case ISD::SETULT: 7680 case ISD::SETLT: 7681 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7682 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7683 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7684 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7685 case ISD::SETOGE: 7686 case ISD::SETGE: 7687 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7688 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7689 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7690 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7691 case ISD::SETUGT: 7692 case ISD::SETGT: 7693 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7694 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7695 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7696 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7697 case ISD::SETOLE: 7698 case ISD::SETLE: 7699 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7700 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7701 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7702 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7703 } 7704 return Op; 7705 } 7706 7707 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 7708 SelectionDAG &DAG, 7709 const SDLoc &dl) const { 7710 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7711 SDValue Src = Op.getOperand(0); 7712 if (Src.getValueType() == MVT::f32) 7713 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7714 7715 SDValue Tmp; 7716 switch (Op.getSimpleValueType().SimpleTy) { 7717 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7718 case MVT::i32: 7719 Tmp = DAG.getNode( 7720 Op.getOpcode() == ISD::FP_TO_SINT 7721 ? PPCISD::FCTIWZ 7722 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7723 dl, MVT::f64, Src); 7724 break; 7725 case MVT::i64: 7726 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7727 "i64 FP_TO_UINT is supported only with FPCVT"); 7728 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7729 PPCISD::FCTIDUZ, 7730 dl, MVT::f64, Src); 7731 break; 7732 } 7733 7734 // Convert the FP value to an int value through memory. 7735 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 7736 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()); 7737 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 7738 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 7739 MachinePointerInfo MPI = 7740 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 7741 7742 // Emit a store to the stack slot. 7743 SDValue Chain; 7744 unsigned Alignment = DAG.getEVTAlignment(Tmp.getValueType()); 7745 if (i32Stack) { 7746 MachineFunction &MF = DAG.getMachineFunction(); 7747 Alignment = 4; 7748 MachineMemOperand *MMO = 7749 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 7750 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr }; 7751 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 7752 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 7753 } else 7754 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment); 7755 7756 // Result is a load from the stack slot. If loading 4 bytes, make sure to 7757 // add in a bias on big endian. 7758 if (Op.getValueType() == MVT::i32 && !i32Stack) { 7759 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 7760 DAG.getConstant(4, dl, FIPtr.getValueType())); 7761 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 7762 } 7763 7764 RLI.Chain = Chain; 7765 RLI.Ptr = FIPtr; 7766 RLI.MPI = MPI; 7767 RLI.Alignment = Alignment; 7768 } 7769 7770 /// Custom lowers floating point to integer conversions to use 7771 /// the direct move instructions available in ISA 2.07 to avoid the 7772 /// need for load/store combinations. 7773 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 7774 SelectionDAG &DAG, 7775 const SDLoc &dl) const { 7776 assert(Op.getOperand(0).getValueType().isFloatingPoint()); 7777 SDValue Src = Op.getOperand(0); 7778 7779 if (Src.getValueType() == MVT::f32) 7780 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 7781 7782 SDValue Tmp; 7783 switch (Op.getSimpleValueType().SimpleTy) { 7784 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 7785 case MVT::i32: 7786 Tmp = DAG.getNode( 7787 Op.getOpcode() == ISD::FP_TO_SINT 7788 ? PPCISD::FCTIWZ 7789 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ), 7790 dl, MVT::f64, Src); 7791 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp); 7792 break; 7793 case MVT::i64: 7794 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) && 7795 "i64 FP_TO_UINT is supported only with FPCVT"); 7796 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 7797 PPCISD::FCTIDUZ, 7798 dl, MVT::f64, Src); 7799 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp); 7800 break; 7801 } 7802 return Tmp; 7803 } 7804 7805 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 7806 const SDLoc &dl) const { 7807 7808 // FP to INT conversions are legal for f128. 7809 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128)) 7810 return Op; 7811 7812 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 7813 // PPC (the libcall is not available). 7814 if (Op.getOperand(0).getValueType() == MVT::ppcf128) { 7815 if (Op.getValueType() == MVT::i32) { 7816 if (Op.getOpcode() == ISD::FP_TO_SINT) { 7817 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7818 MVT::f64, Op.getOperand(0), 7819 DAG.getIntPtrConstant(0, dl)); 7820 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 7821 MVT::f64, Op.getOperand(0), 7822 DAG.getIntPtrConstant(1, dl)); 7823 7824 // Add the two halves of the long double in round-to-zero mode. 7825 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 7826 7827 // Now use a smaller FP_TO_SINT. 7828 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 7829 } 7830 if (Op.getOpcode() == ISD::FP_TO_UINT) { 7831 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 7832 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 7833 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128); 7834 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 7835 // FIXME: generated code sucks. 7836 // TODO: Are there fast-math-flags to propagate to this FSUB? 7837 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, 7838 Op.getOperand(0), Tmp); 7839 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 7840 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, 7841 DAG.getConstant(0x80000000, dl, MVT::i32)); 7842 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, 7843 Op.getOperand(0)); 7844 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False, 7845 ISD::SETGE); 7846 } 7847 } 7848 7849 return SDValue(); 7850 } 7851 7852 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 7853 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 7854 7855 ReuseLoadInfo RLI; 7856 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7857 7858 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 7859 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 7860 } 7861 7862 // We're trying to insert a regular store, S, and then a load, L. If the 7863 // incoming value, O, is a load, we might just be able to have our load use the 7864 // address used by O. However, we don't know if anything else will store to 7865 // that address before we can load from it. To prevent this situation, we need 7866 // to insert our load, L, into the chain as a peer of O. To do this, we give L 7867 // the same chain operand as O, we create a token factor from the chain results 7868 // of O and L, and we replace all uses of O's chain result with that token 7869 // factor (see spliceIntoChain below for this last part). 7870 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 7871 ReuseLoadInfo &RLI, 7872 SelectionDAG &DAG, 7873 ISD::LoadExtType ET) const { 7874 SDLoc dl(Op); 7875 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 7876 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 7877 if (ET == ISD::NON_EXTLOAD && 7878 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 7879 isOperationLegalOrCustom(Op.getOpcode(), 7880 Op.getOperand(0).getValueType())) { 7881 7882 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 7883 return true; 7884 } 7885 7886 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 7887 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 7888 LD->isNonTemporal()) 7889 return false; 7890 if (LD->getMemoryVT() != MemVT) 7891 return false; 7892 7893 RLI.Ptr = LD->getBasePtr(); 7894 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 7895 assert(LD->getAddressingMode() == ISD::PRE_INC && 7896 "Non-pre-inc AM on PPC?"); 7897 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 7898 LD->getOffset()); 7899 } 7900 7901 RLI.Chain = LD->getChain(); 7902 RLI.MPI = LD->getPointerInfo(); 7903 RLI.IsDereferenceable = LD->isDereferenceable(); 7904 RLI.IsInvariant = LD->isInvariant(); 7905 RLI.Alignment = LD->getAlignment(); 7906 RLI.AAInfo = LD->getAAInfo(); 7907 RLI.Ranges = LD->getRanges(); 7908 7909 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 7910 return true; 7911 } 7912 7913 // Given the head of the old chain, ResChain, insert a token factor containing 7914 // it and NewResChain, and make users of ResChain now be users of that token 7915 // factor. 7916 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 7917 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 7918 SDValue NewResChain, 7919 SelectionDAG &DAG) const { 7920 if (!ResChain) 7921 return; 7922 7923 SDLoc dl(NewResChain); 7924 7925 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 7926 NewResChain, DAG.getUNDEF(MVT::Other)); 7927 assert(TF.getNode() != NewResChain.getNode() && 7928 "A new TF really is required here"); 7929 7930 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 7931 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 7932 } 7933 7934 /// Analyze profitability of direct move 7935 /// prefer float load to int load plus direct move 7936 /// when there is no integer use of int load 7937 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 7938 SDNode *Origin = Op.getOperand(0).getNode(); 7939 if (Origin->getOpcode() != ISD::LOAD) 7940 return true; 7941 7942 // If there is no LXSIBZX/LXSIHZX, like Power8, 7943 // prefer direct move if the memory size is 1 or 2 bytes. 7944 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 7945 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 7946 return true; 7947 7948 for (SDNode::use_iterator UI = Origin->use_begin(), 7949 UE = Origin->use_end(); 7950 UI != UE; ++UI) { 7951 7952 // Only look at the users of the loaded value. 7953 if (UI.getUse().get().getResNo() != 0) 7954 continue; 7955 7956 if (UI->getOpcode() != ISD::SINT_TO_FP && 7957 UI->getOpcode() != ISD::UINT_TO_FP) 7958 return true; 7959 } 7960 7961 return false; 7962 } 7963 7964 /// Custom lowers integer to floating point conversions to use 7965 /// the direct move instructions available in ISA 2.07 to avoid the 7966 /// need for load/store combinations. 7967 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 7968 SelectionDAG &DAG, 7969 const SDLoc &dl) const { 7970 assert((Op.getValueType() == MVT::f32 || 7971 Op.getValueType() == MVT::f64) && 7972 "Invalid floating point type as target of conversion"); 7973 assert(Subtarget.hasFPCVT() && 7974 "Int to FP conversions with direct moves require FPCVT"); 7975 SDValue FP; 7976 SDValue Src = Op.getOperand(0); 7977 bool SinglePrec = Op.getValueType() == MVT::f32; 7978 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 7979 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP; 7980 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) : 7981 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU); 7982 7983 if (WordInt) { 7984 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ, 7985 dl, MVT::f64, Src); 7986 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7987 } 7988 else { 7989 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src); 7990 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP); 7991 } 7992 7993 return FP; 7994 } 7995 7996 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 7997 7998 EVT VecVT = Vec.getValueType(); 7999 assert(VecVT.isVector() && "Expected a vector type."); 8000 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8001 8002 EVT EltVT = VecVT.getVectorElementType(); 8003 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8004 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8005 8006 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8007 SmallVector<SDValue, 16> Ops(NumConcat); 8008 Ops[0] = Vec; 8009 SDValue UndefVec = DAG.getUNDEF(VecVT); 8010 for (unsigned i = 1; i < NumConcat; ++i) 8011 Ops[i] = UndefVec; 8012 8013 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8014 } 8015 8016 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8017 const SDLoc &dl) const { 8018 8019 unsigned Opc = Op.getOpcode(); 8020 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) && 8021 "Unexpected conversion type"); 8022 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8023 "Supports conversions to v2f64/v4f32 only."); 8024 8025 bool SignedConv = Opc == ISD::SINT_TO_FP; 8026 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8027 8028 SDValue Wide = widenVec(DAG, Op.getOperand(0), dl); 8029 EVT WideVT = Wide.getValueType(); 8030 unsigned WideNumElts = WideVT.getVectorNumElements(); 8031 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8032 8033 SmallVector<int, 16> ShuffV; 8034 for (unsigned i = 0; i < WideNumElts; ++i) 8035 ShuffV.push_back(i + WideNumElts); 8036 8037 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8038 int SaveElts = FourEltRes ? 4 : 2; 8039 if (Subtarget.isLittleEndian()) 8040 for (int i = 0; i < SaveElts; i++) 8041 ShuffV[i * Stride] = i; 8042 else 8043 for (int i = 1; i <= SaveElts; i++) 8044 ShuffV[i * Stride - 1] = i - 1; 8045 8046 SDValue ShuffleSrc2 = 8047 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8048 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8049 unsigned ExtendOp = 8050 SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST; 8051 8052 SDValue Extend; 8053 if (!Subtarget.hasP9Altivec() && SignedConv) { 8054 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8055 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8056 DAG.getValueType(Op.getOperand(0).getValueType())); 8057 } else 8058 Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange); 8059 8060 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8061 } 8062 8063 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8064 SelectionDAG &DAG) const { 8065 SDLoc dl(Op); 8066 8067 EVT InVT = Op.getOperand(0).getValueType(); 8068 EVT OutVT = Op.getValueType(); 8069 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8070 isOperationCustom(Op.getOpcode(), InVT)) 8071 return LowerINT_TO_FPVector(Op, DAG, dl); 8072 8073 // Conversions to f128 are legal. 8074 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128)) 8075 return Op; 8076 8077 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) { 8078 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64) 8079 return SDValue(); 8080 8081 SDValue Value = Op.getOperand(0); 8082 // The values are now known to be -1 (false) or 1 (true). To convert this 8083 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 8084 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 8085 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 8086 8087 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 8088 8089 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 8090 8091 if (Op.getValueType() != MVT::v4f64) 8092 Value = DAG.getNode(ISD::FP_ROUND, dl, 8093 Op.getValueType(), Value, 8094 DAG.getIntPtrConstant(1, dl)); 8095 return Value; 8096 } 8097 8098 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8099 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8100 return SDValue(); 8101 8102 if (Op.getOperand(0).getValueType() == MVT::i1) 8103 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0), 8104 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8105 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8106 8107 // If we have direct moves, we can do all the conversion, skip the store/load 8108 // however, without FPCVT we can't do most conversions. 8109 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8110 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8111 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8112 8113 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 8114 "UINT_TO_FP is supported only with FPCVT"); 8115 8116 // If we have FCFIDS, then use it when converting to single-precision. 8117 // Otherwise, convert to double-precision and then round. 8118 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8119 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 8120 : PPCISD::FCFIDS) 8121 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 8122 : PPCISD::FCFID); 8123 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 8124 ? MVT::f32 8125 : MVT::f64; 8126 8127 if (Op.getOperand(0).getValueType() == MVT::i64) { 8128 SDValue SINT = Op.getOperand(0); 8129 // When converting to single-precision, we actually need to convert 8130 // to double-precision first and then round to single-precision. 8131 // To avoid double-rounding effects during that operation, we have 8132 // to prepare the input operand. Bits that might be truncated when 8133 // converting to double-precision are replaced by a bit that won't 8134 // be lost at this stage, but is below the single-precision rounding 8135 // position. 8136 // 8137 // However, if -enable-unsafe-fp-math is in effect, accept double 8138 // rounding to avoid the extra overhead. 8139 if (Op.getValueType() == MVT::f32 && 8140 !Subtarget.hasFPCVT() && 8141 !DAG.getTarget().Options.UnsafeFPMath) { 8142 8143 // Twiddle input to make sure the low 11 bits are zero. (If this 8144 // is the case, we are guaranteed the value will fit into the 53 bit 8145 // mantissa of an IEEE double-precision value without rounding.) 8146 // If any of those low 11 bits were not zero originally, make sure 8147 // bit 12 (value 2048) is set instead, so that the final rounding 8148 // to single-precision gets the correct result. 8149 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8150 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8151 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8152 Round, DAG.getConstant(2047, dl, MVT::i64)); 8153 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8154 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8155 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8156 8157 // However, we cannot use that value unconditionally: if the magnitude 8158 // of the input value is small, the bit-twiddling we did above might 8159 // end up visibly changing the output. Fortunately, in that case, we 8160 // don't need to twiddle bits since the original input will convert 8161 // exactly to double-precision floating-point already. Therefore, 8162 // construct a conditional to use the original value if the top 11 8163 // bits are all sign-bit copies, and use the rounded value computed 8164 // above otherwise. 8165 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8166 SINT, DAG.getConstant(53, dl, MVT::i32)); 8167 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8168 Cond, DAG.getConstant(1, dl, MVT::i64)); 8169 Cond = DAG.getSetCC(dl, MVT::i32, 8170 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8171 8172 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8173 } 8174 8175 ReuseLoadInfo RLI; 8176 SDValue Bits; 8177 8178 MachineFunction &MF = DAG.getMachineFunction(); 8179 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8180 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8181 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8182 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8183 } else if (Subtarget.hasLFIWAX() && 8184 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8185 MachineMemOperand *MMO = 8186 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8187 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8188 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8189 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8190 DAG.getVTList(MVT::f64, MVT::Other), 8191 Ops, MVT::i32, MMO); 8192 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8193 } else if (Subtarget.hasFPCVT() && 8194 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8195 MachineMemOperand *MMO = 8196 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8197 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8198 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8199 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8200 DAG.getVTList(MVT::f64, MVT::Other), 8201 Ops, MVT::i32, MMO); 8202 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8203 } else if (((Subtarget.hasLFIWAX() && 8204 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8205 (Subtarget.hasFPCVT() && 8206 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8207 SINT.getOperand(0).getValueType() == MVT::i32) { 8208 MachineFrameInfo &MFI = MF.getFrameInfo(); 8209 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8210 8211 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8212 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8213 8214 SDValue Store = 8215 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx, 8216 MachinePointerInfo::getFixedStack( 8217 DAG.getMachineFunction(), FrameIdx)); 8218 8219 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8220 "Expected an i32 store"); 8221 8222 RLI.Ptr = FIdx; 8223 RLI.Chain = Store; 8224 RLI.MPI = 8225 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8226 RLI.Alignment = 4; 8227 8228 MachineMemOperand *MMO = 8229 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8230 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8231 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8232 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8233 PPCISD::LFIWZX : PPCISD::LFIWAX, 8234 dl, DAG.getVTList(MVT::f64, MVT::Other), 8235 Ops, MVT::i32, MMO); 8236 } else 8237 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8238 8239 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits); 8240 8241 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8242 FP = DAG.getNode(ISD::FP_ROUND, dl, 8243 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 8244 return FP; 8245 } 8246 8247 assert(Op.getOperand(0).getValueType() == MVT::i32 && 8248 "Unhandled INT_TO_FP type in custom expander!"); 8249 // Since we only generate this in 64-bit mode, we can take advantage of 8250 // 64-bit registers. In particular, sign extend the input value into the 8251 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8252 // then lfd it and fcfid it. 8253 MachineFunction &MF = DAG.getMachineFunction(); 8254 MachineFrameInfo &MFI = MF.getFrameInfo(); 8255 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8256 8257 SDValue Ld; 8258 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8259 ReuseLoadInfo RLI; 8260 bool ReusingLoad; 8261 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI, 8262 DAG))) { 8263 int FrameIdx = MFI.CreateStackObject(4, 4, false); 8264 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8265 8266 SDValue Store = 8267 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 8268 MachinePointerInfo::getFixedStack( 8269 DAG.getMachineFunction(), FrameIdx)); 8270 8271 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8272 "Expected an i32 store"); 8273 8274 RLI.Ptr = FIdx; 8275 RLI.Chain = Store; 8276 RLI.MPI = 8277 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8278 RLI.Alignment = 4; 8279 } 8280 8281 MachineMemOperand *MMO = 8282 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8283 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8284 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8285 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ? 8286 PPCISD::LFIWZX : PPCISD::LFIWAX, 8287 dl, DAG.getVTList(MVT::f64, MVT::Other), 8288 Ops, MVT::i32, MMO); 8289 if (ReusingLoad) 8290 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8291 } else { 8292 assert(Subtarget.isPPC64() && 8293 "i32->FP without LFIWAX supported only on PPC64"); 8294 8295 int FrameIdx = MFI.CreateStackObject(8, 8, false); 8296 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8297 8298 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, 8299 Op.getOperand(0)); 8300 8301 // STD the extended value into the stack slot. 8302 SDValue Store = DAG.getStore( 8303 DAG.getEntryNode(), dl, Ext64, FIdx, 8304 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8305 8306 // Load the value as a double. 8307 Ld = DAG.getLoad( 8308 MVT::f64, dl, Store, FIdx, 8309 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8310 } 8311 8312 // FCFID it and return it. 8313 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld); 8314 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) 8315 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8316 DAG.getIntPtrConstant(0, dl)); 8317 return FP; 8318 } 8319 8320 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8321 SelectionDAG &DAG) const { 8322 SDLoc dl(Op); 8323 /* 8324 The rounding mode is in bits 30:31 of FPSR, and has the following 8325 settings: 8326 00 Round to nearest 8327 01 Round to 0 8328 10 Round to +inf 8329 11 Round to -inf 8330 8331 FLT_ROUNDS, on the other hand, expects the following: 8332 -1 Undefined 8333 0 Round to 0 8334 1 Round to nearest 8335 2 Round to +inf 8336 3 Round to -inf 8337 8338 To perform the conversion, we do: 8339 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8340 */ 8341 8342 MachineFunction &MF = DAG.getMachineFunction(); 8343 EVT VT = Op.getValueType(); 8344 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8345 8346 // Save FP Control Word to register 8347 EVT NodeTys[] = { 8348 MVT::f64, // return register 8349 MVT::Glue // unused in this context 8350 }; 8351 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None); 8352 8353 // Save FP register to stack slot 8354 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false); 8355 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8356 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot, 8357 MachinePointerInfo()); 8358 8359 // Load FP Control Word from low 32 bits of stack slot. 8360 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8361 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8362 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo()); 8363 8364 // Transform as necessary 8365 SDValue CWD1 = 8366 DAG.getNode(ISD::AND, dl, MVT::i32, 8367 CWD, DAG.getConstant(3, dl, MVT::i32)); 8368 SDValue CWD2 = 8369 DAG.getNode(ISD::SRL, dl, MVT::i32, 8370 DAG.getNode(ISD::AND, dl, MVT::i32, 8371 DAG.getNode(ISD::XOR, dl, MVT::i32, 8372 CWD, DAG.getConstant(3, dl, MVT::i32)), 8373 DAG.getConstant(3, dl, MVT::i32)), 8374 DAG.getConstant(1, dl, MVT::i32)); 8375 8376 SDValue RetVal = 8377 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8378 8379 return DAG.getNode((VT.getSizeInBits() < 16 ? 8380 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); 8381 } 8382 8383 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8384 EVT VT = Op.getValueType(); 8385 unsigned BitWidth = VT.getSizeInBits(); 8386 SDLoc dl(Op); 8387 assert(Op.getNumOperands() == 3 && 8388 VT == Op.getOperand(1).getValueType() && 8389 "Unexpected SHL!"); 8390 8391 // Expand into a bunch of logical ops. Note that these ops 8392 // depend on the PPC behavior for oversized shift amounts. 8393 SDValue Lo = Op.getOperand(0); 8394 SDValue Hi = Op.getOperand(1); 8395 SDValue Amt = Op.getOperand(2); 8396 EVT AmtVT = Amt.getValueType(); 8397 8398 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8399 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8400 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8401 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8402 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8403 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8404 DAG.getConstant(-BitWidth, dl, AmtVT)); 8405 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8406 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8407 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8408 SDValue OutOps[] = { OutLo, OutHi }; 8409 return DAG.getMergeValues(OutOps, dl); 8410 } 8411 8412 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8413 EVT VT = Op.getValueType(); 8414 SDLoc dl(Op); 8415 unsigned BitWidth = VT.getSizeInBits(); 8416 assert(Op.getNumOperands() == 3 && 8417 VT == Op.getOperand(1).getValueType() && 8418 "Unexpected SRL!"); 8419 8420 // Expand into a bunch of logical ops. Note that these ops 8421 // depend on the PPC behavior for oversized shift amounts. 8422 SDValue Lo = Op.getOperand(0); 8423 SDValue Hi = Op.getOperand(1); 8424 SDValue Amt = Op.getOperand(2); 8425 EVT AmtVT = Amt.getValueType(); 8426 8427 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8428 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8429 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8430 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8431 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8432 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8433 DAG.getConstant(-BitWidth, dl, AmtVT)); 8434 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8435 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8436 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8437 SDValue OutOps[] = { OutLo, OutHi }; 8438 return DAG.getMergeValues(OutOps, dl); 8439 } 8440 8441 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8442 SDLoc dl(Op); 8443 EVT VT = Op.getValueType(); 8444 unsigned BitWidth = VT.getSizeInBits(); 8445 assert(Op.getNumOperands() == 3 && 8446 VT == Op.getOperand(1).getValueType() && 8447 "Unexpected SRA!"); 8448 8449 // Expand into a bunch of logical ops, followed by a select_cc. 8450 SDValue Lo = Op.getOperand(0); 8451 SDValue Hi = Op.getOperand(1); 8452 SDValue Amt = Op.getOperand(2); 8453 EVT AmtVT = Amt.getValueType(); 8454 8455 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8456 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8457 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8458 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8459 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8460 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8461 DAG.getConstant(-BitWidth, dl, AmtVT)); 8462 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8463 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8464 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8465 Tmp4, Tmp6, ISD::SETLE); 8466 SDValue OutOps[] = { OutLo, OutHi }; 8467 return DAG.getMergeValues(OutOps, dl); 8468 } 8469 8470 //===----------------------------------------------------------------------===// 8471 // Vector related lowering. 8472 // 8473 8474 /// BuildSplatI - Build a canonical splati of Val with an element size of 8475 /// SplatSize. Cast the result to VT. 8476 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT, 8477 SelectionDAG &DAG, const SDLoc &dl) { 8478 static const MVT VTys[] = { // canonical VT to use for each size. 8479 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8480 }; 8481 8482 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8483 8484 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. 8485 if (Val == -1) 8486 SplatSize = 1; 8487 8488 EVT CanonicalVT = VTys[SplatSize-1]; 8489 8490 // Build a canonical splat for this value. 8491 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8492 } 8493 8494 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8495 /// specified intrinsic ID. 8496 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8497 const SDLoc &dl, EVT DestVT = MVT::Other) { 8498 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8499 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8500 DAG.getConstant(IID, dl, MVT::i32), Op); 8501 } 8502 8503 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8504 /// specified intrinsic ID. 8505 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8506 SelectionDAG &DAG, const SDLoc &dl, 8507 EVT DestVT = MVT::Other) { 8508 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8509 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8510 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8511 } 8512 8513 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8514 /// specified intrinsic ID. 8515 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8516 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8517 EVT DestVT = MVT::Other) { 8518 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8519 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8520 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8521 } 8522 8523 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8524 /// amount. The result has the specified value type. 8525 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8526 SelectionDAG &DAG, const SDLoc &dl) { 8527 // Force LHS/RHS to be the right type. 8528 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8529 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8530 8531 int Ops[16]; 8532 for (unsigned i = 0; i != 16; ++i) 8533 Ops[i] = i + Amt; 8534 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8535 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8536 } 8537 8538 /// Do we have an efficient pattern in a .td file for this node? 8539 /// 8540 /// \param V - pointer to the BuildVectorSDNode being matched 8541 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8542 /// 8543 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8544 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8545 /// the opposite is true (expansion is beneficial) are: 8546 /// - The node builds a vector out of integers that are not 32 or 64-bits 8547 /// - The node builds a vector out of constants 8548 /// - The node is a "load-and-splat" 8549 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8550 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8551 bool HasDirectMove, 8552 bool HasP8Vector) { 8553 EVT VecVT = V->getValueType(0); 8554 bool RightType = VecVT == MVT::v2f64 || 8555 (HasP8Vector && VecVT == MVT::v4f32) || 8556 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8557 if (!RightType) 8558 return false; 8559 8560 bool IsSplat = true; 8561 bool IsLoad = false; 8562 SDValue Op0 = V->getOperand(0); 8563 8564 // This function is called in a block that confirms the node is not a constant 8565 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8566 // different constants. 8567 if (V->isConstant()) 8568 return false; 8569 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8570 if (V->getOperand(i).isUndef()) 8571 return false; 8572 // We want to expand nodes that represent load-and-splat even if the 8573 // loaded value is a floating point truncation or conversion to int. 8574 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8575 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8576 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8577 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8578 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8579 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8580 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8581 IsLoad = true; 8582 // If the operands are different or the input is not a load and has more 8583 // uses than just this BV node, then it isn't a splat. 8584 if (V->getOperand(i) != Op0 || 8585 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8586 IsSplat = false; 8587 } 8588 return !(IsSplat && IsLoad); 8589 } 8590 8591 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8592 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 8593 8594 SDLoc dl(Op); 8595 SDValue Op0 = Op->getOperand(0); 8596 8597 if (!EnableQuadPrecision || 8598 (Op.getValueType() != MVT::f128 ) || 8599 (Op0.getOpcode() != ISD::BUILD_PAIR) || 8600 (Op0.getOperand(0).getValueType() != MVT::i64) || 8601 (Op0.getOperand(1).getValueType() != MVT::i64)) 8602 return SDValue(); 8603 8604 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 8605 Op0.getOperand(1)); 8606 } 8607 8608 static const SDValue *getNormalLoadInput(const SDValue &Op) { 8609 const SDValue *InputLoad = &Op; 8610 if (InputLoad->getOpcode() == ISD::BITCAST) 8611 InputLoad = &InputLoad->getOperand(0); 8612 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR) 8613 InputLoad = &InputLoad->getOperand(0); 8614 if (InputLoad->getOpcode() != ISD::LOAD) 8615 return nullptr; 8616 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8617 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 8618 } 8619 8620 // If this is a case we can't handle, return null and let the default 8621 // expansion code take care of it. If we CAN select this case, and if it 8622 // selects to a single instruction, return Op. Otherwise, if we can codegen 8623 // this case more efficiently than a constant pool load, lower it to the 8624 // sequence of ops that should be used. 8625 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 8626 SelectionDAG &DAG) const { 8627 SDLoc dl(Op); 8628 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 8629 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 8630 8631 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) { 8632 // We first build an i32 vector, load it into a QPX register, 8633 // then convert it to a floating-point vector and compare it 8634 // to a zero vector to get the boolean result. 8635 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8636 int FrameIdx = MFI.CreateStackObject(16, 16, false); 8637 MachinePointerInfo PtrInfo = 8638 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8639 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8640 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8641 8642 assert(BVN->getNumOperands() == 4 && 8643 "BUILD_VECTOR for v4i1 does not have 4 operands"); 8644 8645 bool IsConst = true; 8646 for (unsigned i = 0; i < 4; ++i) { 8647 if (BVN->getOperand(i).isUndef()) continue; 8648 if (!isa<ConstantSDNode>(BVN->getOperand(i))) { 8649 IsConst = false; 8650 break; 8651 } 8652 } 8653 8654 if (IsConst) { 8655 Constant *One = 8656 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0); 8657 Constant *NegOne = 8658 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0); 8659 8660 Constant *CV[4]; 8661 for (unsigned i = 0; i < 4; ++i) { 8662 if (BVN->getOperand(i).isUndef()) 8663 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext())); 8664 else if (isNullConstant(BVN->getOperand(i))) 8665 CV[i] = NegOne; 8666 else 8667 CV[i] = One; 8668 } 8669 8670 Constant *CP = ConstantVector::get(CV); 8671 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()), 8672 16 /* alignment */); 8673 8674 SDValue Ops[] = {DAG.getEntryNode(), CPIdx}; 8675 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other}); 8676 return DAG.getMemIntrinsicNode( 8677 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32, 8678 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 8679 } 8680 8681 SmallVector<SDValue, 4> Stores; 8682 for (unsigned i = 0; i < 4; ++i) { 8683 if (BVN->getOperand(i).isUndef()) continue; 8684 8685 unsigned Offset = 4*i; 8686 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 8687 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 8688 8689 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize(); 8690 if (StoreSize > 4) { 8691 Stores.push_back( 8692 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx, 8693 PtrInfo.getWithOffset(Offset), MVT::i32)); 8694 } else { 8695 SDValue StoreValue = BVN->getOperand(i); 8696 if (StoreSize < 4) 8697 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue); 8698 8699 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx, 8700 PtrInfo.getWithOffset(Offset))); 8701 } 8702 } 8703 8704 SDValue StoreChain; 8705 if (!Stores.empty()) 8706 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8707 else 8708 StoreChain = DAG.getEntryNode(); 8709 8710 // Now load from v4i32 into the QPX register; this will extend it to 8711 // v4i64 but not yet convert it to a floating point. Nevertheless, this 8712 // is typed as v4f64 because the QPX register integer states are not 8713 // explicitly represented. 8714 8715 SDValue Ops[] = {StoreChain, 8716 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32), 8717 FIdx}; 8718 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other}); 8719 8720 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, 8721 dl, VTs, Ops, MVT::v4i32, PtrInfo); 8722 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 8723 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32), 8724 LoadedVect); 8725 8726 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64); 8727 8728 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ); 8729 } 8730 8731 // All other QPX vectors are handled by generic code. 8732 if (Subtarget.hasQPX()) 8733 return SDValue(); 8734 8735 // Check if this is a splat of a constant value. 8736 APInt APSplatBits, APSplatUndef; 8737 unsigned SplatBitSize; 8738 bool HasAnyUndefs; 8739 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 8740 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 8741 SplatBitSize > 32) { 8742 8743 const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0)); 8744 // Handle load-and-splat patterns as we have instructions that will do this 8745 // in one go. 8746 if (InputLoad && DAG.isSplatValue(Op, true)) { 8747 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 8748 8749 // We have handling for 4 and 8 byte elements. 8750 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 8751 8752 // Checking for a single use of this load, we have to check for vector 8753 // width (128 bits) / ElementSize uses (since each operand of the 8754 // BUILD_VECTOR is a separate use of the value. 8755 if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) && 8756 ((Subtarget.hasVSX() && ElementSize == 64) || 8757 (Subtarget.hasP9Vector() && ElementSize == 32))) { 8758 SDValue Ops[] = { 8759 LD->getChain(), // Chain 8760 LD->getBasePtr(), // Ptr 8761 DAG.getValueType(Op.getValueType()) // VT 8762 }; 8763 return 8764 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, 8765 DAG.getVTList(Op.getValueType(), MVT::Other), 8766 Ops, LD->getMemoryVT(), LD->getMemOperand()); 8767 } 8768 } 8769 8770 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be 8771 // lowered to VSX instructions under certain conditions. 8772 // Without VSX, there is no pattern more efficient than expanding the node. 8773 if (Subtarget.hasVSX() && 8774 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 8775 Subtarget.hasP8Vector())) 8776 return Op; 8777 return SDValue(); 8778 } 8779 8780 unsigned SplatBits = APSplatBits.getZExtValue(); 8781 unsigned SplatUndef = APSplatUndef.getZExtValue(); 8782 unsigned SplatSize = SplatBitSize / 8; 8783 8784 // First, handle single instruction cases. 8785 8786 // All zeros? 8787 if (SplatBits == 0) { 8788 // Canonicalize all zero vectors to be v4i32. 8789 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 8790 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 8791 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 8792 } 8793 return Op; 8794 } 8795 8796 // We have XXSPLTIB for constant splats one byte wide 8797 // FIXME: SplatBits is an unsigned int being cast to an int while passing it 8798 // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here. 8799 if (Subtarget.hasP9Vector() && SplatSize == 1) 8800 return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl); 8801 8802 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 8803 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 8804 (32-SplatBitSize)); 8805 if (SextVal >= -16 && SextVal <= 15) 8806 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl); 8807 8808 // Two instruction sequences. 8809 8810 // If this value is in the range [-32,30] and is even, use: 8811 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 8812 // If this value is in the range [17,31] and is odd, use: 8813 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 8814 // If this value is in the range [-31,-17] and is odd, use: 8815 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 8816 // Note the last two are three-instruction sequences. 8817 if (SextVal >= -32 && SextVal <= 31) { 8818 // To avoid having these optimizations undone by constant folding, 8819 // we convert to a pseudo that will be expanded later into one of 8820 // the above forms. 8821 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 8822 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 8823 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 8824 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 8825 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 8826 if (VT == Op.getValueType()) 8827 return RetVal; 8828 else 8829 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 8830 } 8831 8832 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 8833 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 8834 // for fneg/fabs. 8835 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 8836 // Make -1 and vspltisw -1: 8837 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl); 8838 8839 // Make the VSLW intrinsic, computing 0x8000_0000. 8840 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 8841 OnesV, DAG, dl); 8842 8843 // xor by OnesV to invert it. 8844 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 8845 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8846 } 8847 8848 // Check to see if this is a wide variety of vsplti*, binop self cases. 8849 static const signed char SplatCsts[] = { 8850 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 8851 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 8852 }; 8853 8854 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 8855 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 8856 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 8857 int i = SplatCsts[idx]; 8858 8859 // Figure out what shift amount will be used by altivec if shifted by i in 8860 // this splat size. 8861 unsigned TypeShiftAmt = i & (SplatBitSize-1); 8862 8863 // vsplti + shl self. 8864 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 8865 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8866 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8867 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 8868 Intrinsic::ppc_altivec_vslw 8869 }; 8870 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8871 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8872 } 8873 8874 // vsplti + srl self. 8875 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8876 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8877 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8878 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 8879 Intrinsic::ppc_altivec_vsrw 8880 }; 8881 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8882 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8883 } 8884 8885 // vsplti + sra self. 8886 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 8887 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8888 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8889 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, 8890 Intrinsic::ppc_altivec_vsraw 8891 }; 8892 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8893 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8894 } 8895 8896 // vsplti + rol self. 8897 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 8898 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 8899 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl); 8900 static const unsigned IIDs[] = { // Intrinsic to use for each size. 8901 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 8902 Intrinsic::ppc_altivec_vrlw 8903 }; 8904 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 8905 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 8906 } 8907 8908 // t = vsplti c, result = vsldoi t, t, 1 8909 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 8910 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8911 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 8912 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8913 } 8914 // t = vsplti c, result = vsldoi t, t, 2 8915 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 8916 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8917 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 8918 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8919 } 8920 // t = vsplti c, result = vsldoi t, t, 3 8921 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 8922 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl); 8923 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 8924 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 8925 } 8926 } 8927 8928 return SDValue(); 8929 } 8930 8931 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 8932 /// the specified operations to build the shuffle. 8933 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 8934 SDValue RHS, SelectionDAG &DAG, 8935 const SDLoc &dl) { 8936 unsigned OpNum = (PFEntry >> 26) & 0x0F; 8937 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 8938 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 8939 8940 enum { 8941 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 8942 OP_VMRGHW, 8943 OP_VMRGLW, 8944 OP_VSPLTISW0, 8945 OP_VSPLTISW1, 8946 OP_VSPLTISW2, 8947 OP_VSPLTISW3, 8948 OP_VSLDOI4, 8949 OP_VSLDOI8, 8950 OP_VSLDOI12 8951 }; 8952 8953 if (OpNum == OP_COPY) { 8954 if (LHSID == (1*9+2)*9+3) return LHS; 8955 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 8956 return RHS; 8957 } 8958 8959 SDValue OpLHS, OpRHS; 8960 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 8961 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 8962 8963 int ShufIdxs[16]; 8964 switch (OpNum) { 8965 default: llvm_unreachable("Unknown i32 permute!"); 8966 case OP_VMRGHW: 8967 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 8968 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 8969 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 8970 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 8971 break; 8972 case OP_VMRGLW: 8973 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 8974 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 8975 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 8976 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 8977 break; 8978 case OP_VSPLTISW0: 8979 for (unsigned i = 0; i != 16; ++i) 8980 ShufIdxs[i] = (i&3)+0; 8981 break; 8982 case OP_VSPLTISW1: 8983 for (unsigned i = 0; i != 16; ++i) 8984 ShufIdxs[i] = (i&3)+4; 8985 break; 8986 case OP_VSPLTISW2: 8987 for (unsigned i = 0; i != 16; ++i) 8988 ShufIdxs[i] = (i&3)+8; 8989 break; 8990 case OP_VSPLTISW3: 8991 for (unsigned i = 0; i != 16; ++i) 8992 ShufIdxs[i] = (i&3)+12; 8993 break; 8994 case OP_VSLDOI4: 8995 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 8996 case OP_VSLDOI8: 8997 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 8998 case OP_VSLDOI12: 8999 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9000 } 9001 EVT VT = OpLHS.getValueType(); 9002 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9003 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9004 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9005 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9006 } 9007 9008 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9009 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9010 /// SDValue. 9011 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9012 SelectionDAG &DAG) const { 9013 const unsigned BytesInVector = 16; 9014 bool IsLE = Subtarget.isLittleEndian(); 9015 SDLoc dl(N); 9016 SDValue V1 = N->getOperand(0); 9017 SDValue V2 = N->getOperand(1); 9018 unsigned ShiftElts = 0, InsertAtByte = 0; 9019 bool Swap = false; 9020 9021 // Shifts required to get the byte we want at element 7. 9022 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9023 0, 15, 14, 13, 12, 11, 10, 9}; 9024 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9025 1, 2, 3, 4, 5, 6, 7, 8}; 9026 9027 ArrayRef<int> Mask = N->getMask(); 9028 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9029 9030 // For each mask element, find out if we're just inserting something 9031 // from V2 into V1 or vice versa. 9032 // Possible permutations inserting an element from V2 into V1: 9033 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9034 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9035 // ... 9036 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9037 // Inserting from V1 into V2 will be similar, except mask range will be 9038 // [16,31]. 9039 9040 bool FoundCandidate = false; 9041 // If both vector operands for the shuffle are the same vector, the mask 9042 // will contain only elements from the first one and the second one will be 9043 // undef. 9044 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9045 // Go through the mask of half-words to find an element that's being moved 9046 // from one vector to the other. 9047 for (unsigned i = 0; i < BytesInVector; ++i) { 9048 unsigned CurrentElement = Mask[i]; 9049 // If 2nd operand is undefined, we should only look for element 7 in the 9050 // Mask. 9051 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9052 continue; 9053 9054 bool OtherElementsInOrder = true; 9055 // Examine the other elements in the Mask to see if they're in original 9056 // order. 9057 for (unsigned j = 0; j < BytesInVector; ++j) { 9058 if (j == i) 9059 continue; 9060 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9061 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9062 // in which we always assume we're always picking from the 1st operand. 9063 int MaskOffset = 9064 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9065 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9066 OtherElementsInOrder = false; 9067 break; 9068 } 9069 } 9070 // If other elements are in original order, we record the number of shifts 9071 // we need to get the element we want into element 7. Also record which byte 9072 // in the vector we should insert into. 9073 if (OtherElementsInOrder) { 9074 // If 2nd operand is undefined, we assume no shifts and no swapping. 9075 if (V2.isUndef()) { 9076 ShiftElts = 0; 9077 Swap = false; 9078 } else { 9079 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9080 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9081 : BigEndianShifts[CurrentElement & 0xF]; 9082 Swap = CurrentElement < BytesInVector; 9083 } 9084 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9085 FoundCandidate = true; 9086 break; 9087 } 9088 } 9089 9090 if (!FoundCandidate) 9091 return SDValue(); 9092 9093 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9094 // optionally with VECSHL if shift is required. 9095 if (Swap) 9096 std::swap(V1, V2); 9097 if (V2.isUndef()) 9098 V2 = V1; 9099 if (ShiftElts) { 9100 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9101 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9102 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9103 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9104 } 9105 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9106 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9107 } 9108 9109 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9110 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9111 /// SDValue. 9112 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9113 SelectionDAG &DAG) const { 9114 const unsigned NumHalfWords = 8; 9115 const unsigned BytesInVector = NumHalfWords * 2; 9116 // Check that the shuffle is on half-words. 9117 if (!isNByteElemShuffleMask(N, 2, 1)) 9118 return SDValue(); 9119 9120 bool IsLE = Subtarget.isLittleEndian(); 9121 SDLoc dl(N); 9122 SDValue V1 = N->getOperand(0); 9123 SDValue V2 = N->getOperand(1); 9124 unsigned ShiftElts = 0, InsertAtByte = 0; 9125 bool Swap = false; 9126 9127 // Shifts required to get the half-word we want at element 3. 9128 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9129 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9130 9131 uint32_t Mask = 0; 9132 uint32_t OriginalOrderLow = 0x1234567; 9133 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9134 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9135 // 32-bit space, only need 4-bit nibbles per element. 9136 for (unsigned i = 0; i < NumHalfWords; ++i) { 9137 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9138 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9139 } 9140 9141 // For each mask element, find out if we're just inserting something 9142 // from V2 into V1 or vice versa. Possible permutations inserting an element 9143 // from V2 into V1: 9144 // X, 1, 2, 3, 4, 5, 6, 7 9145 // 0, X, 2, 3, 4, 5, 6, 7 9146 // 0, 1, X, 3, 4, 5, 6, 7 9147 // 0, 1, 2, X, 4, 5, 6, 7 9148 // 0, 1, 2, 3, X, 5, 6, 7 9149 // 0, 1, 2, 3, 4, X, 6, 7 9150 // 0, 1, 2, 3, 4, 5, X, 7 9151 // 0, 1, 2, 3, 4, 5, 6, X 9152 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9153 9154 bool FoundCandidate = false; 9155 // Go through the mask of half-words to find an element that's being moved 9156 // from one vector to the other. 9157 for (unsigned i = 0; i < NumHalfWords; ++i) { 9158 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9159 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9160 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9161 uint32_t TargetOrder = 0x0; 9162 9163 // If both vector operands for the shuffle are the same vector, the mask 9164 // will contain only elements from the first one and the second one will be 9165 // undef. 9166 if (V2.isUndef()) { 9167 ShiftElts = 0; 9168 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9169 TargetOrder = OriginalOrderLow; 9170 Swap = false; 9171 // Skip if not the correct element or mask of other elements don't equal 9172 // to our expected order. 9173 if (MaskOneElt == VINSERTHSrcElem && 9174 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9175 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9176 FoundCandidate = true; 9177 break; 9178 } 9179 } else { // If both operands are defined. 9180 // Target order is [8,15] if the current mask is between [0,7]. 9181 TargetOrder = 9182 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9183 // Skip if mask of other elements don't equal our expected order. 9184 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9185 // We only need the last 3 bits for the number of shifts. 9186 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9187 : BigEndianShifts[MaskOneElt & 0x7]; 9188 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9189 Swap = MaskOneElt < NumHalfWords; 9190 FoundCandidate = true; 9191 break; 9192 } 9193 } 9194 } 9195 9196 if (!FoundCandidate) 9197 return SDValue(); 9198 9199 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9200 // optionally with VECSHL if shift is required. 9201 if (Swap) 9202 std::swap(V1, V2); 9203 if (V2.isUndef()) 9204 V2 = V1; 9205 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9206 if (ShiftElts) { 9207 // Double ShiftElts because we're left shifting on v16i8 type. 9208 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9209 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9210 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9211 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9212 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9213 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9214 } 9215 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9216 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9217 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9218 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9219 } 9220 9221 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9222 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9223 /// return the code it can be lowered into. Worst case, it can always be 9224 /// lowered into a vperm. 9225 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9226 SelectionDAG &DAG) const { 9227 SDLoc dl(Op); 9228 SDValue V1 = Op.getOperand(0); 9229 SDValue V2 = Op.getOperand(1); 9230 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9231 EVT VT = Op.getValueType(); 9232 bool isLittleEndian = Subtarget.isLittleEndian(); 9233 9234 unsigned ShiftElts, InsertAtByte; 9235 bool Swap = false; 9236 9237 // If this is a load-and-splat, we can do that with a single instruction 9238 // in some cases. However if the load has multiple uses, we don't want to 9239 // combine it because that will just produce multiple loads. 9240 const SDValue *InputLoad = getNormalLoadInput(V1); 9241 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9242 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9243 InputLoad->hasOneUse()) { 9244 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9245 int SplatIdx = 9246 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9247 9248 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9249 // For 4-byte load-and-splat, we need Power9. 9250 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9251 uint64_t Offset = 0; 9252 if (IsFourByte) 9253 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9254 else 9255 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9256 SDValue BasePtr = LD->getBasePtr(); 9257 if (Offset != 0) 9258 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9259 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9260 SDValue Ops[] = { 9261 LD->getChain(), // Chain 9262 BasePtr, // BasePtr 9263 DAG.getValueType(Op.getValueType()) // VT 9264 }; 9265 SDVTList VTL = 9266 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9267 SDValue LdSplt = 9268 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9269 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9270 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9271 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9272 return LdSplt; 9273 } 9274 } 9275 if (Subtarget.hasP9Vector() && 9276 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9277 isLittleEndian)) { 9278 if (Swap) 9279 std::swap(V1, V2); 9280 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9281 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9282 if (ShiftElts) { 9283 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9284 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9285 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9286 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9287 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9288 } 9289 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9290 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9291 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9292 } 9293 9294 if (Subtarget.hasP9Altivec()) { 9295 SDValue NewISDNode; 9296 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9297 return NewISDNode; 9298 9299 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9300 return NewISDNode; 9301 } 9302 9303 if (Subtarget.hasVSX() && 9304 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9305 if (Swap) 9306 std::swap(V1, V2); 9307 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9308 SDValue Conv2 = 9309 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9310 9311 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9312 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9313 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9314 } 9315 9316 if (Subtarget.hasVSX() && 9317 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9318 if (Swap) 9319 std::swap(V1, V2); 9320 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9321 SDValue Conv2 = 9322 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9323 9324 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9325 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9326 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9327 } 9328 9329 if (Subtarget.hasP9Vector()) { 9330 if (PPC::isXXBRHShuffleMask(SVOp)) { 9331 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9332 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9333 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9334 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9335 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9336 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9337 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9338 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9339 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9340 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9341 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9342 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9343 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9344 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9345 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9346 } 9347 } 9348 9349 if (Subtarget.hasVSX()) { 9350 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9351 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9352 9353 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9354 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9355 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9356 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9357 } 9358 9359 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9360 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9361 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9362 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9363 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9364 } 9365 } 9366 9367 if (Subtarget.hasQPX()) { 9368 if (VT.getVectorNumElements() != 4) 9369 return SDValue(); 9370 9371 if (V2.isUndef()) V2 = V1; 9372 9373 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp); 9374 if (AlignIdx != -1) { 9375 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2, 9376 DAG.getConstant(AlignIdx, dl, MVT::i32)); 9377 } else if (SVOp->isSplat()) { 9378 int SplatIdx = SVOp->getSplatIndex(); 9379 if (SplatIdx >= 4) { 9380 std::swap(V1, V2); 9381 SplatIdx -= 4; 9382 } 9383 9384 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1, 9385 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9386 } 9387 9388 // Lower this into a qvgpci/qvfperm pair. 9389 9390 // Compute the qvgpci literal 9391 unsigned idx = 0; 9392 for (unsigned i = 0; i < 4; ++i) { 9393 int m = SVOp->getMaskElt(i); 9394 unsigned mm = m >= 0 ? (unsigned) m : i; 9395 idx |= mm << (3-i)*3; 9396 } 9397 9398 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64, 9399 DAG.getConstant(idx, dl, MVT::i32)); 9400 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3); 9401 } 9402 9403 // Cases that are handled by instructions that take permute immediates 9404 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9405 // selected by the instruction selector. 9406 if (V2.isUndef()) { 9407 if (PPC::isSplatShuffleMask(SVOp, 1) || 9408 PPC::isSplatShuffleMask(SVOp, 2) || 9409 PPC::isSplatShuffleMask(SVOp, 4) || 9410 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9411 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9412 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9413 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9414 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9415 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9416 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9417 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9418 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9419 (Subtarget.hasP8Altivec() && ( 9420 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9421 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9422 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9423 return Op; 9424 } 9425 } 9426 9427 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9428 // and produce a fixed permutation. If any of these match, do not lower to 9429 // VPERM. 9430 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9431 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9432 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9433 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9434 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9435 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9436 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9437 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9438 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9439 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9440 (Subtarget.hasP8Altivec() && ( 9441 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9442 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9443 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9444 return Op; 9445 9446 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9447 // perfect shuffle table to emit an optimal matching sequence. 9448 ArrayRef<int> PermMask = SVOp->getMask(); 9449 9450 unsigned PFIndexes[4]; 9451 bool isFourElementShuffle = true; 9452 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9453 unsigned EltNo = 8; // Start out undef. 9454 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9455 if (PermMask[i*4+j] < 0) 9456 continue; // Undef, ignore it. 9457 9458 unsigned ByteSource = PermMask[i*4+j]; 9459 if ((ByteSource & 3) != j) { 9460 isFourElementShuffle = false; 9461 break; 9462 } 9463 9464 if (EltNo == 8) { 9465 EltNo = ByteSource/4; 9466 } else if (EltNo != ByteSource/4) { 9467 isFourElementShuffle = false; 9468 break; 9469 } 9470 } 9471 PFIndexes[i] = EltNo; 9472 } 9473 9474 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9475 // perfect shuffle vector to determine if it is cost effective to do this as 9476 // discrete instructions, or whether we should use a vperm. 9477 // For now, we skip this for little endian until such time as we have a 9478 // little-endian perfect shuffle table. 9479 if (isFourElementShuffle && !isLittleEndian) { 9480 // Compute the index in the perfect shuffle table. 9481 unsigned PFTableIndex = 9482 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9483 9484 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9485 unsigned Cost = (PFEntry >> 30); 9486 9487 // Determining when to avoid vperm is tricky. Many things affect the cost 9488 // of vperm, particularly how many times the perm mask needs to be computed. 9489 // For example, if the perm mask can be hoisted out of a loop or is already 9490 // used (perhaps because there are multiple permutes with the same shuffle 9491 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9492 // the loop requires an extra register. 9493 // 9494 // As a compromise, we only emit discrete instructions if the shuffle can be 9495 // generated in 3 or fewer operations. When we have loop information 9496 // available, if this block is within a loop, we should avoid using vperm 9497 // for 3-operation perms and use a constant pool load instead. 9498 if (Cost < 3) 9499 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 9500 } 9501 9502 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 9503 // vector that will get spilled to the constant pool. 9504 if (V2.isUndef()) V2 = V1; 9505 9506 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 9507 // that it is in input element units, not in bytes. Convert now. 9508 9509 // For little endian, the order of the input vectors is reversed, and 9510 // the permutation mask is complemented with respect to 31. This is 9511 // necessary to produce proper semantics with the big-endian-biased vperm 9512 // instruction. 9513 EVT EltVT = V1.getValueType().getVectorElementType(); 9514 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 9515 9516 SmallVector<SDValue, 16> ResultMask; 9517 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 9518 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 9519 9520 for (unsigned j = 0; j != BytesPerElement; ++j) 9521 if (isLittleEndian) 9522 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 9523 dl, MVT::i32)); 9524 else 9525 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 9526 MVT::i32)); 9527 } 9528 9529 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 9530 if (isLittleEndian) 9531 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9532 V2, V1, VPermMask); 9533 else 9534 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 9535 V1, V2, VPermMask); 9536 } 9537 9538 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 9539 /// vector comparison. If it is, return true and fill in Opc/isDot with 9540 /// information about the intrinsic. 9541 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 9542 bool &isDot, const PPCSubtarget &Subtarget) { 9543 unsigned IntrinsicID = 9544 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 9545 CompareOpc = -1; 9546 isDot = false; 9547 switch (IntrinsicID) { 9548 default: 9549 return false; 9550 // Comparison predicates. 9551 case Intrinsic::ppc_altivec_vcmpbfp_p: 9552 CompareOpc = 966; 9553 isDot = true; 9554 break; 9555 case Intrinsic::ppc_altivec_vcmpeqfp_p: 9556 CompareOpc = 198; 9557 isDot = true; 9558 break; 9559 case Intrinsic::ppc_altivec_vcmpequb_p: 9560 CompareOpc = 6; 9561 isDot = true; 9562 break; 9563 case Intrinsic::ppc_altivec_vcmpequh_p: 9564 CompareOpc = 70; 9565 isDot = true; 9566 break; 9567 case Intrinsic::ppc_altivec_vcmpequw_p: 9568 CompareOpc = 134; 9569 isDot = true; 9570 break; 9571 case Intrinsic::ppc_altivec_vcmpequd_p: 9572 if (Subtarget.hasP8Altivec()) { 9573 CompareOpc = 199; 9574 isDot = true; 9575 } else 9576 return false; 9577 break; 9578 case Intrinsic::ppc_altivec_vcmpneb_p: 9579 case Intrinsic::ppc_altivec_vcmpneh_p: 9580 case Intrinsic::ppc_altivec_vcmpnew_p: 9581 case Intrinsic::ppc_altivec_vcmpnezb_p: 9582 case Intrinsic::ppc_altivec_vcmpnezh_p: 9583 case Intrinsic::ppc_altivec_vcmpnezw_p: 9584 if (Subtarget.hasP9Altivec()) { 9585 switch (IntrinsicID) { 9586 default: 9587 llvm_unreachable("Unknown comparison intrinsic."); 9588 case Intrinsic::ppc_altivec_vcmpneb_p: 9589 CompareOpc = 7; 9590 break; 9591 case Intrinsic::ppc_altivec_vcmpneh_p: 9592 CompareOpc = 71; 9593 break; 9594 case Intrinsic::ppc_altivec_vcmpnew_p: 9595 CompareOpc = 135; 9596 break; 9597 case Intrinsic::ppc_altivec_vcmpnezb_p: 9598 CompareOpc = 263; 9599 break; 9600 case Intrinsic::ppc_altivec_vcmpnezh_p: 9601 CompareOpc = 327; 9602 break; 9603 case Intrinsic::ppc_altivec_vcmpnezw_p: 9604 CompareOpc = 391; 9605 break; 9606 } 9607 isDot = true; 9608 } else 9609 return false; 9610 break; 9611 case Intrinsic::ppc_altivec_vcmpgefp_p: 9612 CompareOpc = 454; 9613 isDot = true; 9614 break; 9615 case Intrinsic::ppc_altivec_vcmpgtfp_p: 9616 CompareOpc = 710; 9617 isDot = true; 9618 break; 9619 case Intrinsic::ppc_altivec_vcmpgtsb_p: 9620 CompareOpc = 774; 9621 isDot = true; 9622 break; 9623 case Intrinsic::ppc_altivec_vcmpgtsh_p: 9624 CompareOpc = 838; 9625 isDot = true; 9626 break; 9627 case Intrinsic::ppc_altivec_vcmpgtsw_p: 9628 CompareOpc = 902; 9629 isDot = true; 9630 break; 9631 case Intrinsic::ppc_altivec_vcmpgtsd_p: 9632 if (Subtarget.hasP8Altivec()) { 9633 CompareOpc = 967; 9634 isDot = true; 9635 } else 9636 return false; 9637 break; 9638 case Intrinsic::ppc_altivec_vcmpgtub_p: 9639 CompareOpc = 518; 9640 isDot = true; 9641 break; 9642 case Intrinsic::ppc_altivec_vcmpgtuh_p: 9643 CompareOpc = 582; 9644 isDot = true; 9645 break; 9646 case Intrinsic::ppc_altivec_vcmpgtuw_p: 9647 CompareOpc = 646; 9648 isDot = true; 9649 break; 9650 case Intrinsic::ppc_altivec_vcmpgtud_p: 9651 if (Subtarget.hasP8Altivec()) { 9652 CompareOpc = 711; 9653 isDot = true; 9654 } else 9655 return false; 9656 break; 9657 9658 // VSX predicate comparisons use the same infrastructure 9659 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9660 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9661 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9662 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9663 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9664 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9665 if (Subtarget.hasVSX()) { 9666 switch (IntrinsicID) { 9667 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 9668 CompareOpc = 99; 9669 break; 9670 case Intrinsic::ppc_vsx_xvcmpgedp_p: 9671 CompareOpc = 115; 9672 break; 9673 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 9674 CompareOpc = 107; 9675 break; 9676 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 9677 CompareOpc = 67; 9678 break; 9679 case Intrinsic::ppc_vsx_xvcmpgesp_p: 9680 CompareOpc = 83; 9681 break; 9682 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 9683 CompareOpc = 75; 9684 break; 9685 } 9686 isDot = true; 9687 } else 9688 return false; 9689 break; 9690 9691 // Normal Comparisons. 9692 case Intrinsic::ppc_altivec_vcmpbfp: 9693 CompareOpc = 966; 9694 break; 9695 case Intrinsic::ppc_altivec_vcmpeqfp: 9696 CompareOpc = 198; 9697 break; 9698 case Intrinsic::ppc_altivec_vcmpequb: 9699 CompareOpc = 6; 9700 break; 9701 case Intrinsic::ppc_altivec_vcmpequh: 9702 CompareOpc = 70; 9703 break; 9704 case Intrinsic::ppc_altivec_vcmpequw: 9705 CompareOpc = 134; 9706 break; 9707 case Intrinsic::ppc_altivec_vcmpequd: 9708 if (Subtarget.hasP8Altivec()) 9709 CompareOpc = 199; 9710 else 9711 return false; 9712 break; 9713 case Intrinsic::ppc_altivec_vcmpneb: 9714 case Intrinsic::ppc_altivec_vcmpneh: 9715 case Intrinsic::ppc_altivec_vcmpnew: 9716 case Intrinsic::ppc_altivec_vcmpnezb: 9717 case Intrinsic::ppc_altivec_vcmpnezh: 9718 case Intrinsic::ppc_altivec_vcmpnezw: 9719 if (Subtarget.hasP9Altivec()) 9720 switch (IntrinsicID) { 9721 default: 9722 llvm_unreachable("Unknown comparison intrinsic."); 9723 case Intrinsic::ppc_altivec_vcmpneb: 9724 CompareOpc = 7; 9725 break; 9726 case Intrinsic::ppc_altivec_vcmpneh: 9727 CompareOpc = 71; 9728 break; 9729 case Intrinsic::ppc_altivec_vcmpnew: 9730 CompareOpc = 135; 9731 break; 9732 case Intrinsic::ppc_altivec_vcmpnezb: 9733 CompareOpc = 263; 9734 break; 9735 case Intrinsic::ppc_altivec_vcmpnezh: 9736 CompareOpc = 327; 9737 break; 9738 case Intrinsic::ppc_altivec_vcmpnezw: 9739 CompareOpc = 391; 9740 break; 9741 } 9742 else 9743 return false; 9744 break; 9745 case Intrinsic::ppc_altivec_vcmpgefp: 9746 CompareOpc = 454; 9747 break; 9748 case Intrinsic::ppc_altivec_vcmpgtfp: 9749 CompareOpc = 710; 9750 break; 9751 case Intrinsic::ppc_altivec_vcmpgtsb: 9752 CompareOpc = 774; 9753 break; 9754 case Intrinsic::ppc_altivec_vcmpgtsh: 9755 CompareOpc = 838; 9756 break; 9757 case Intrinsic::ppc_altivec_vcmpgtsw: 9758 CompareOpc = 902; 9759 break; 9760 case Intrinsic::ppc_altivec_vcmpgtsd: 9761 if (Subtarget.hasP8Altivec()) 9762 CompareOpc = 967; 9763 else 9764 return false; 9765 break; 9766 case Intrinsic::ppc_altivec_vcmpgtub: 9767 CompareOpc = 518; 9768 break; 9769 case Intrinsic::ppc_altivec_vcmpgtuh: 9770 CompareOpc = 582; 9771 break; 9772 case Intrinsic::ppc_altivec_vcmpgtuw: 9773 CompareOpc = 646; 9774 break; 9775 case Intrinsic::ppc_altivec_vcmpgtud: 9776 if (Subtarget.hasP8Altivec()) 9777 CompareOpc = 711; 9778 else 9779 return false; 9780 break; 9781 } 9782 return true; 9783 } 9784 9785 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 9786 /// lower, do it, otherwise return null. 9787 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 9788 SelectionDAG &DAG) const { 9789 unsigned IntrinsicID = 9790 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9791 9792 SDLoc dl(Op); 9793 9794 if (IntrinsicID == Intrinsic::thread_pointer) { 9795 // Reads the thread pointer register, used for __builtin_thread_pointer. 9796 if (Subtarget.isPPC64()) 9797 return DAG.getRegister(PPC::X13, MVT::i64); 9798 return DAG.getRegister(PPC::R2, MVT::i32); 9799 } 9800 9801 // If this is a lowered altivec predicate compare, CompareOpc is set to the 9802 // opcode number of the comparison. 9803 int CompareOpc; 9804 bool isDot; 9805 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 9806 return SDValue(); // Don't custom lower most intrinsics. 9807 9808 // If this is a non-dot comparison, make the VCMP node and we are done. 9809 if (!isDot) { 9810 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 9811 Op.getOperand(1), Op.getOperand(2), 9812 DAG.getConstant(CompareOpc, dl, MVT::i32)); 9813 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 9814 } 9815 9816 // Create the PPCISD altivec 'dot' comparison node. 9817 SDValue Ops[] = { 9818 Op.getOperand(2), // LHS 9819 Op.getOperand(3), // RHS 9820 DAG.getConstant(CompareOpc, dl, MVT::i32) 9821 }; 9822 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 9823 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 9824 9825 // Now that we have the comparison, emit a copy from the CR to a GPR. 9826 // This is flagged to the above dot comparison. 9827 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 9828 DAG.getRegister(PPC::CR6, MVT::i32), 9829 CompNode.getValue(1)); 9830 9831 // Unpack the result based on how the target uses it. 9832 unsigned BitNo; // Bit # of CR6. 9833 bool InvertBit; // Invert result? 9834 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 9835 default: // Can't happen, don't crash on invalid number though. 9836 case 0: // Return the value of the EQ bit of CR6. 9837 BitNo = 0; InvertBit = false; 9838 break; 9839 case 1: // Return the inverted value of the EQ bit of CR6. 9840 BitNo = 0; InvertBit = true; 9841 break; 9842 case 2: // Return the value of the LT bit of CR6. 9843 BitNo = 2; InvertBit = false; 9844 break; 9845 case 3: // Return the inverted value of the LT bit of CR6. 9846 BitNo = 2; InvertBit = true; 9847 break; 9848 } 9849 9850 // Shift the bit into the low position. 9851 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 9852 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 9853 // Isolate the bit. 9854 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 9855 DAG.getConstant(1, dl, MVT::i32)); 9856 9857 // If we are supposed to, toggle the bit. 9858 if (InvertBit) 9859 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 9860 DAG.getConstant(1, dl, MVT::i32)); 9861 return Flags; 9862 } 9863 9864 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 9865 SelectionDAG &DAG) const { 9866 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 9867 // the beginning of the argument list. 9868 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 9869 SDLoc DL(Op); 9870 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 9871 case Intrinsic::ppc_cfence: { 9872 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 9873 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 9874 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 9875 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 9876 Op.getOperand(ArgStart + 1)), 9877 Op.getOperand(0)), 9878 0); 9879 } 9880 default: 9881 break; 9882 } 9883 return SDValue(); 9884 } 9885 9886 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const { 9887 // Check for a DIV with the same operands as this REM. 9888 for (auto UI : Op.getOperand(1)->uses()) { 9889 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) || 9890 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV)) 9891 if (UI->getOperand(0) == Op.getOperand(0) && 9892 UI->getOperand(1) == Op.getOperand(1)) 9893 return SDValue(); 9894 } 9895 return Op; 9896 } 9897 9898 // Lower scalar BSWAP64 to xxbrd. 9899 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 9900 SDLoc dl(Op); 9901 // MTVSRDD 9902 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 9903 Op.getOperand(0)); 9904 // XXBRD 9905 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 9906 // MFVSRD 9907 int VectorIndex = 0; 9908 if (Subtarget.isLittleEndian()) 9909 VectorIndex = 1; 9910 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 9911 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 9912 return Op; 9913 } 9914 9915 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 9916 // compared to a value that is atomically loaded (atomic loads zero-extend). 9917 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 9918 SelectionDAG &DAG) const { 9919 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 9920 "Expecting an atomic compare-and-swap here."); 9921 SDLoc dl(Op); 9922 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 9923 EVT MemVT = AtomicNode->getMemoryVT(); 9924 if (MemVT.getSizeInBits() >= 32) 9925 return Op; 9926 9927 SDValue CmpOp = Op.getOperand(2); 9928 // If this is already correctly zero-extended, leave it alone. 9929 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 9930 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 9931 return Op; 9932 9933 // Clear the high bits of the compare operand. 9934 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 9935 SDValue NewCmpOp = 9936 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 9937 DAG.getConstant(MaskVal, dl, MVT::i32)); 9938 9939 // Replace the existing compare operand with the properly zero-extended one. 9940 SmallVector<SDValue, 4> Ops; 9941 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 9942 Ops.push_back(AtomicNode->getOperand(i)); 9943 Ops[2] = NewCmpOp; 9944 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 9945 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 9946 auto NodeTy = 9947 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 9948 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 9949 } 9950 9951 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 9952 SelectionDAG &DAG) const { 9953 SDLoc dl(Op); 9954 // Create a stack slot that is 16-byte aligned. 9955 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 9956 int FrameIdx = MFI.CreateStackObject(16, 16, false); 9957 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 9958 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 9959 9960 // Store the input value into Value#0 of the stack slot. 9961 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 9962 MachinePointerInfo()); 9963 // Load it out. 9964 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 9965 } 9966 9967 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 9968 SelectionDAG &DAG) const { 9969 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 9970 "Should only be called for ISD::INSERT_VECTOR_ELT"); 9971 9972 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 9973 // We have legal lowering for constant indices but not for variable ones. 9974 if (!C) 9975 return SDValue(); 9976 9977 EVT VT = Op.getValueType(); 9978 SDLoc dl(Op); 9979 SDValue V1 = Op.getOperand(0); 9980 SDValue V2 = Op.getOperand(1); 9981 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 9982 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 9983 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 9984 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 9985 unsigned InsertAtElement = C->getZExtValue(); 9986 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 9987 if (Subtarget.isLittleEndian()) { 9988 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 9989 } 9990 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 9991 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9992 } 9993 return Op; 9994 } 9995 9996 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 9997 SelectionDAG &DAG) const { 9998 SDLoc dl(Op); 9999 SDNode *N = Op.getNode(); 10000 10001 assert(N->getOperand(0).getValueType() == MVT::v4i1 && 10002 "Unknown extract_vector_elt type"); 10003 10004 SDValue Value = N->getOperand(0); 10005 10006 // The first part of this is like the store lowering except that we don't 10007 // need to track the chain. 10008 10009 // The values are now known to be -1 (false) or 1 (true). To convert this 10010 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10011 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10012 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10013 10014 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10015 // understand how to form the extending load. 10016 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10017 10018 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10019 10020 // Now convert to an integer and store. 10021 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10022 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10023 Value); 10024 10025 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10026 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10027 MachinePointerInfo PtrInfo = 10028 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10029 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10030 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10031 10032 SDValue StoreChain = DAG.getEntryNode(); 10033 SDValue Ops[] = {StoreChain, 10034 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10035 Value, FIdx}; 10036 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10037 10038 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10039 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10040 10041 // Extract the value requested. 10042 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 10043 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10044 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10045 10046 SDValue IntVal = 10047 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset)); 10048 10049 if (!Subtarget.useCRBits()) 10050 return IntVal; 10051 10052 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal); 10053 } 10054 10055 /// Lowering for QPX v4i1 loads 10056 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10057 SelectionDAG &DAG) const { 10058 SDLoc dl(Op); 10059 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10060 SDValue LoadChain = LN->getChain(); 10061 SDValue BasePtr = LN->getBasePtr(); 10062 10063 if (Op.getValueType() == MVT::v4f64 || 10064 Op.getValueType() == MVT::v4f32) { 10065 EVT MemVT = LN->getMemoryVT(); 10066 unsigned Alignment = LN->getAlignment(); 10067 10068 // If this load is properly aligned, then it is legal. 10069 if (Alignment >= MemVT.getStoreSize()) 10070 return Op; 10071 10072 EVT ScalarVT = Op.getValueType().getScalarType(), 10073 ScalarMemVT = MemVT.getScalarType(); 10074 unsigned Stride = ScalarMemVT.getStoreSize(); 10075 10076 SDValue Vals[4], LoadChains[4]; 10077 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10078 SDValue Load; 10079 if (ScalarVT != ScalarMemVT) 10080 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain, 10081 BasePtr, 10082 LN->getPointerInfo().getWithOffset(Idx * Stride), 10083 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10084 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10085 else 10086 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr, 10087 LN->getPointerInfo().getWithOffset(Idx * Stride), 10088 MinAlign(Alignment, Idx * Stride), 10089 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10090 10091 if (Idx == 0 && LN->isIndexed()) { 10092 assert(LN->getAddressingMode() == ISD::PRE_INC && 10093 "Unknown addressing mode on vector load"); 10094 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(), 10095 LN->getAddressingMode()); 10096 } 10097 10098 Vals[Idx] = Load; 10099 LoadChains[Idx] = Load.getValue(1); 10100 10101 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10102 DAG.getConstant(Stride, dl, 10103 BasePtr.getValueType())); 10104 } 10105 10106 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10107 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals); 10108 10109 if (LN->isIndexed()) { 10110 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF }; 10111 return DAG.getMergeValues(RetOps, dl); 10112 } 10113 10114 SDValue RetOps[] = { Value, TF }; 10115 return DAG.getMergeValues(RetOps, dl); 10116 } 10117 10118 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower"); 10119 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported"); 10120 10121 // To lower v4i1 from a byte array, we load the byte elements of the 10122 // vector and then reuse the BUILD_VECTOR logic. 10123 10124 SDValue VectElmts[4], VectElmtChains[4]; 10125 for (unsigned i = 0; i < 4; ++i) { 10126 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10127 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10128 10129 VectElmts[i] = DAG.getExtLoad( 10130 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx, 10131 LN->getPointerInfo().getWithOffset(i), MVT::i8, 10132 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10133 VectElmtChains[i] = VectElmts[i].getValue(1); 10134 } 10135 10136 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains); 10137 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts); 10138 10139 SDValue RVals[] = { Value, LoadChain }; 10140 return DAG.getMergeValues(RVals, dl); 10141 } 10142 10143 /// Lowering for QPX v4i1 stores 10144 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10145 SelectionDAG &DAG) const { 10146 SDLoc dl(Op); 10147 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10148 SDValue StoreChain = SN->getChain(); 10149 SDValue BasePtr = SN->getBasePtr(); 10150 SDValue Value = SN->getValue(); 10151 10152 if (Value.getValueType() == MVT::v4f64 || 10153 Value.getValueType() == MVT::v4f32) { 10154 EVT MemVT = SN->getMemoryVT(); 10155 unsigned Alignment = SN->getAlignment(); 10156 10157 // If this store is properly aligned, then it is legal. 10158 if (Alignment >= MemVT.getStoreSize()) 10159 return Op; 10160 10161 EVT ScalarVT = Value.getValueType().getScalarType(), 10162 ScalarMemVT = MemVT.getScalarType(); 10163 unsigned Stride = ScalarMemVT.getStoreSize(); 10164 10165 SDValue Stores[4]; 10166 for (unsigned Idx = 0; Idx < 4; ++Idx) { 10167 SDValue Ex = DAG.getNode( 10168 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value, 10169 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout()))); 10170 SDValue Store; 10171 if (ScalarVT != ScalarMemVT) 10172 Store = 10173 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr, 10174 SN->getPointerInfo().getWithOffset(Idx * Stride), 10175 ScalarMemVT, MinAlign(Alignment, Idx * Stride), 10176 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10177 else 10178 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr, 10179 SN->getPointerInfo().getWithOffset(Idx * Stride), 10180 MinAlign(Alignment, Idx * Stride), 10181 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10182 10183 if (Idx == 0 && SN->isIndexed()) { 10184 assert(SN->getAddressingMode() == ISD::PRE_INC && 10185 "Unknown addressing mode on vector store"); 10186 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(), 10187 SN->getAddressingMode()); 10188 } 10189 10190 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10191 DAG.getConstant(Stride, dl, 10192 BasePtr.getValueType())); 10193 Stores[Idx] = Store; 10194 } 10195 10196 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10197 10198 if (SN->isIndexed()) { 10199 SDValue RetOps[] = { TF, Stores[0].getValue(1) }; 10200 return DAG.getMergeValues(RetOps, dl); 10201 } 10202 10203 return TF; 10204 } 10205 10206 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported"); 10207 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower"); 10208 10209 // The values are now known to be -1 (false) or 1 (true). To convert this 10210 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5). 10211 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5 10212 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value); 10213 10214 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to 10215 // understand how to form the extending load. 10216 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64); 10217 10218 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs); 10219 10220 // Now convert to an integer and store. 10221 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64, 10222 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32), 10223 Value); 10224 10225 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10226 int FrameIdx = MFI.CreateStackObject(16, 16, false); 10227 MachinePointerInfo PtrInfo = 10228 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 10229 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10230 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10231 10232 SDValue Ops[] = {StoreChain, 10233 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32), 10234 Value, FIdx}; 10235 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other); 10236 10237 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, 10238 dl, VTs, Ops, MVT::v4i32, PtrInfo); 10239 10240 // Move data into the byte array. 10241 SDValue Loads[4], LoadChains[4]; 10242 for (unsigned i = 0; i < 4; ++i) { 10243 unsigned Offset = 4*i; 10244 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType()); 10245 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx); 10246 10247 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx, 10248 PtrInfo.getWithOffset(Offset)); 10249 LoadChains[i] = Loads[i].getValue(1); 10250 } 10251 10252 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10253 10254 SDValue Stores[4]; 10255 for (unsigned i = 0; i < 4; ++i) { 10256 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType()); 10257 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx); 10258 10259 Stores[i] = DAG.getTruncStore( 10260 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i), 10261 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(), 10262 SN->getAAInfo()); 10263 } 10264 10265 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 10266 10267 return StoreChain; 10268 } 10269 10270 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10271 SDLoc dl(Op); 10272 if (Op.getValueType() == MVT::v4i32) { 10273 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10274 10275 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl); 10276 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt. 10277 10278 SDValue RHSSwap = // = vrlw RHS, 16 10279 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10280 10281 // Shrinkify inputs to v8i16. 10282 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10283 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10284 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10285 10286 // Low parts multiplied together, generating 32-bit results (we ignore the 10287 // top parts). 10288 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10289 LHS, RHS, DAG, dl, MVT::v4i32); 10290 10291 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10292 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10293 // Shift the high parts up 16 bits. 10294 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10295 Neg16, DAG, dl); 10296 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10297 } else if (Op.getValueType() == MVT::v8i16) { 10298 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10299 10300 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl); 10301 10302 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, 10303 LHS, RHS, Zero, DAG, dl); 10304 } else if (Op.getValueType() == MVT::v16i8) { 10305 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10306 bool isLittleEndian = Subtarget.isLittleEndian(); 10307 10308 // Multiply the even 8-bit parts, producing 16-bit sums. 10309 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10310 LHS, RHS, DAG, dl, MVT::v8i16); 10311 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10312 10313 // Multiply the odd 8-bit parts, producing 16-bit sums. 10314 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10315 LHS, RHS, DAG, dl, MVT::v8i16); 10316 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10317 10318 // Merge the results together. Because vmuleub and vmuloub are 10319 // instructions with a big-endian bias, we must reverse the 10320 // element numbering and reverse the meaning of "odd" and "even" 10321 // when generating little endian code. 10322 int Ops[16]; 10323 for (unsigned i = 0; i != 8; ++i) { 10324 if (isLittleEndian) { 10325 Ops[i*2 ] = 2*i; 10326 Ops[i*2+1] = 2*i+16; 10327 } else { 10328 Ops[i*2 ] = 2*i+1; 10329 Ops[i*2+1] = 2*i+1+16; 10330 } 10331 } 10332 if (isLittleEndian) 10333 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10334 else 10335 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10336 } else { 10337 llvm_unreachable("Unknown mul to lower!"); 10338 } 10339 } 10340 10341 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { 10342 10343 assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS"); 10344 10345 EVT VT = Op.getValueType(); 10346 assert(VT.isVector() && 10347 "Only set vector abs as custom, scalar abs shouldn't reach here!"); 10348 assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || 10349 VT == MVT::v16i8) && 10350 "Unexpected vector element type!"); 10351 assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) && 10352 "Current subtarget doesn't support smax v2i64!"); 10353 10354 // For vector abs, it can be lowered to: 10355 // abs x 10356 // ==> 10357 // y = -x 10358 // smax(x, y) 10359 10360 SDLoc dl(Op); 10361 SDValue X = Op.getOperand(0); 10362 SDValue Zero = DAG.getConstant(0, dl, VT); 10363 SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X); 10364 10365 // SMAX patch https://reviews.llvm.org/D47332 10366 // hasn't landed yet, so use intrinsic first here. 10367 // TODO: Should use SMAX directly once SMAX patch landed 10368 Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw; 10369 if (VT == MVT::v2i64) 10370 BifID = Intrinsic::ppc_altivec_vmaxsd; 10371 else if (VT == MVT::v8i16) 10372 BifID = Intrinsic::ppc_altivec_vmaxsh; 10373 else if (VT == MVT::v16i8) 10374 BifID = Intrinsic::ppc_altivec_vmaxsb; 10375 10376 return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT); 10377 } 10378 10379 // Custom lowering for fpext vf32 to v2f64 10380 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10381 10382 assert(Op.getOpcode() == ISD::FP_EXTEND && 10383 "Should only be called for ISD::FP_EXTEND"); 10384 10385 // FIXME: handle extends from half precision float vectors on P9. 10386 // We only want to custom lower an extend from v2f32 to v2f64. 10387 if (Op.getValueType() != MVT::v2f64 || 10388 Op.getOperand(0).getValueType() != MVT::v2f32) 10389 return SDValue(); 10390 10391 SDLoc dl(Op); 10392 SDValue Op0 = Op.getOperand(0); 10393 10394 switch (Op0.getOpcode()) { 10395 default: 10396 return SDValue(); 10397 case ISD::EXTRACT_SUBVECTOR: { 10398 assert(Op0.getNumOperands() == 2 && 10399 isa<ConstantSDNode>(Op0->getOperand(1)) && 10400 "Node should have 2 operands with second one being a constant!"); 10401 10402 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10403 return SDValue(); 10404 10405 // Custom lower is only done for high or low doubleword. 10406 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10407 if (Idx % 2 != 0) 10408 return SDValue(); 10409 10410 // Since input is v4f32, at this point Idx is either 0 or 2. 10411 // Shift to get the doubleword position we want. 10412 int DWord = Idx >> 1; 10413 10414 // High and low word positions are different on little endian. 10415 if (Subtarget.isLittleEndian()) 10416 DWord ^= 0x1; 10417 10418 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10419 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10420 } 10421 case ISD::FADD: 10422 case ISD::FMUL: 10423 case ISD::FSUB: { 10424 SDValue NewLoad[2]; 10425 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10426 // Ensure both input are loads. 10427 SDValue LdOp = Op0.getOperand(i); 10428 if (LdOp.getOpcode() != ISD::LOAD) 10429 return SDValue(); 10430 // Generate new load node. 10431 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10432 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10433 NewLoad[i] = DAG.getMemIntrinsicNode( 10434 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10435 LD->getMemoryVT(), LD->getMemOperand()); 10436 } 10437 SDValue NewOp = 10438 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10439 NewLoad[1], Op0.getNode()->getFlags()); 10440 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10441 DAG.getConstant(0, dl, MVT::i32)); 10442 } 10443 case ISD::LOAD: { 10444 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10445 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10446 SDValue NewLd = DAG.getMemIntrinsicNode( 10447 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10448 LD->getMemoryVT(), LD->getMemOperand()); 10449 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10450 DAG.getConstant(0, dl, MVT::i32)); 10451 } 10452 } 10453 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10454 } 10455 10456 /// LowerOperation - Provide custom lowering hooks for some operations. 10457 /// 10458 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10459 switch (Op.getOpcode()) { 10460 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10461 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10462 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10463 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10464 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10465 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10466 case ISD::SETCC: return LowerSETCC(Op, DAG); 10467 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10468 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10469 10470 // Variable argument lowering. 10471 case ISD::VASTART: return LowerVASTART(Op, DAG); 10472 case ISD::VAARG: return LowerVAARG(Op, DAG); 10473 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10474 10475 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10476 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10477 case ISD::GET_DYNAMIC_AREA_OFFSET: 10478 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10479 10480 // Exception handling lowering. 10481 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10482 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10483 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10484 10485 case ISD::LOAD: return LowerLOAD(Op, DAG); 10486 case ISD::STORE: return LowerSTORE(Op, DAG); 10487 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10488 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10489 case ISD::FP_TO_UINT: 10490 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10491 case ISD::UINT_TO_FP: 10492 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10493 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10494 10495 // Lower 64-bit shifts. 10496 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10497 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10498 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10499 10500 // Vector-related lowering. 10501 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10502 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10503 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10504 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10505 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 10506 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10507 case ISD::MUL: return LowerMUL(Op, DAG); 10508 case ISD::ABS: return LowerABS(Op, DAG); 10509 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10510 10511 // For counter-based loop handling. 10512 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10513 10514 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10515 10516 // Frame & Return address. 10517 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10518 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10519 10520 case ISD::INTRINSIC_VOID: 10521 return LowerINTRINSIC_VOID(Op, DAG); 10522 case ISD::SREM: 10523 case ISD::UREM: 10524 return LowerREM(Op, DAG); 10525 case ISD::BSWAP: 10526 return LowerBSWAP(Op, DAG); 10527 case ISD::ATOMIC_CMP_SWAP: 10528 return LowerATOMIC_CMP_SWAP(Op, DAG); 10529 } 10530 } 10531 10532 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10533 SmallVectorImpl<SDValue>&Results, 10534 SelectionDAG &DAG) const { 10535 SDLoc dl(N); 10536 switch (N->getOpcode()) { 10537 default: 10538 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10539 case ISD::READCYCLECOUNTER: { 10540 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10541 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10542 10543 Results.push_back(RTB); 10544 Results.push_back(RTB.getValue(1)); 10545 Results.push_back(RTB.getValue(2)); 10546 break; 10547 } 10548 case ISD::INTRINSIC_W_CHAIN: { 10549 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10550 Intrinsic::loop_decrement) 10551 break; 10552 10553 assert(N->getValueType(0) == MVT::i1 && 10554 "Unexpected result type for CTR decrement intrinsic"); 10555 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10556 N->getValueType(0)); 10557 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10558 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10559 N->getOperand(1)); 10560 10561 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10562 Results.push_back(NewInt.getValue(1)); 10563 break; 10564 } 10565 case ISD::VAARG: { 10566 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10567 return; 10568 10569 EVT VT = N->getValueType(0); 10570 10571 if (VT == MVT::i64) { 10572 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10573 10574 Results.push_back(NewNode); 10575 Results.push_back(NewNode.getValue(1)); 10576 } 10577 return; 10578 } 10579 case ISD::FP_TO_SINT: 10580 case ISD::FP_TO_UINT: 10581 // LowerFP_TO_INT() can only handle f32 and f64. 10582 if (N->getOperand(0).getValueType() == MVT::ppcf128) 10583 return; 10584 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10585 return; 10586 case ISD::TRUNCATE: { 10587 EVT TrgVT = N->getValueType(0); 10588 EVT OpVT = N->getOperand(0).getValueType(); 10589 if (TrgVT.isVector() && 10590 isOperationCustom(N->getOpcode(), TrgVT) && 10591 OpVT.getSizeInBits() <= 128 && 10592 isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits())) 10593 Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG)); 10594 return; 10595 } 10596 case ISD::BITCAST: 10597 // Don't handle bitcast here. 10598 return; 10599 case ISD::FP_EXTEND: 10600 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10601 if (Lowered) 10602 Results.push_back(Lowered); 10603 return; 10604 } 10605 } 10606 10607 //===----------------------------------------------------------------------===// 10608 // Other Lowering Code 10609 //===----------------------------------------------------------------------===// 10610 10611 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) { 10612 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10613 Function *Func = Intrinsic::getDeclaration(M, Id); 10614 return Builder.CreateCall(Func, {}); 10615 } 10616 10617 // The mappings for emitLeading/TrailingFence is taken from 10618 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10619 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 10620 Instruction *Inst, 10621 AtomicOrdering Ord) const { 10622 if (Ord == AtomicOrdering::SequentiallyConsistent) 10623 return callIntrinsic(Builder, Intrinsic::ppc_sync); 10624 if (isReleaseOrStronger(Ord)) 10625 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10626 return nullptr; 10627 } 10628 10629 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 10630 Instruction *Inst, 10631 AtomicOrdering Ord) const { 10632 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 10633 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 10634 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 10635 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 10636 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 10637 return Builder.CreateCall( 10638 Intrinsic::getDeclaration( 10639 Builder.GetInsertBlock()->getParent()->getParent(), 10640 Intrinsic::ppc_cfence, {Inst->getType()}), 10641 {Inst}); 10642 // FIXME: Can use isync for rmw operation. 10643 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 10644 } 10645 return nullptr; 10646 } 10647 10648 MachineBasicBlock * 10649 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 10650 unsigned AtomicSize, 10651 unsigned BinOpcode, 10652 unsigned CmpOpcode, 10653 unsigned CmpPred) const { 10654 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10655 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10656 10657 auto LoadMnemonic = PPC::LDARX; 10658 auto StoreMnemonic = PPC::STDCX; 10659 switch (AtomicSize) { 10660 default: 10661 llvm_unreachable("Unexpected size of atomic entity"); 10662 case 1: 10663 LoadMnemonic = PPC::LBARX; 10664 StoreMnemonic = PPC::STBCX; 10665 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10666 break; 10667 case 2: 10668 LoadMnemonic = PPC::LHARX; 10669 StoreMnemonic = PPC::STHCX; 10670 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 10671 break; 10672 case 4: 10673 LoadMnemonic = PPC::LWARX; 10674 StoreMnemonic = PPC::STWCX; 10675 break; 10676 case 8: 10677 LoadMnemonic = PPC::LDARX; 10678 StoreMnemonic = PPC::STDCX; 10679 break; 10680 } 10681 10682 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10683 MachineFunction *F = BB->getParent(); 10684 MachineFunction::iterator It = ++BB->getIterator(); 10685 10686 Register dest = MI.getOperand(0).getReg(); 10687 Register ptrA = MI.getOperand(1).getReg(); 10688 Register ptrB = MI.getOperand(2).getReg(); 10689 Register incr = MI.getOperand(3).getReg(); 10690 DebugLoc dl = MI.getDebugLoc(); 10691 10692 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10693 MachineBasicBlock *loop2MBB = 10694 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10695 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10696 F->insert(It, loopMBB); 10697 if (CmpOpcode) 10698 F->insert(It, loop2MBB); 10699 F->insert(It, exitMBB); 10700 exitMBB->splice(exitMBB->begin(), BB, 10701 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10702 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10703 10704 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10705 Register TmpReg = (!BinOpcode) ? incr : 10706 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 10707 : &PPC::GPRCRegClass); 10708 10709 // thisMBB: 10710 // ... 10711 // fallthrough --> loopMBB 10712 BB->addSuccessor(loopMBB); 10713 10714 // loopMBB: 10715 // l[wd]arx dest, ptr 10716 // add r0, dest, incr 10717 // st[wd]cx. r0, ptr 10718 // bne- loopMBB 10719 // fallthrough --> exitMBB 10720 10721 // For max/min... 10722 // loopMBB: 10723 // l[wd]arx dest, ptr 10724 // cmpl?[wd] incr, dest 10725 // bgt exitMBB 10726 // loop2MBB: 10727 // st[wd]cx. dest, ptr 10728 // bne- loopMBB 10729 // fallthrough --> exitMBB 10730 10731 BB = loopMBB; 10732 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 10733 .addReg(ptrA).addReg(ptrB); 10734 if (BinOpcode) 10735 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 10736 if (CmpOpcode) { 10737 // Signed comparisons of byte or halfword values must be sign-extended. 10738 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 10739 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 10740 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 10741 ExtReg).addReg(dest); 10742 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10743 .addReg(incr).addReg(ExtReg); 10744 } else 10745 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10746 .addReg(incr).addReg(dest); 10747 10748 BuildMI(BB, dl, TII->get(PPC::BCC)) 10749 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 10750 BB->addSuccessor(loop2MBB); 10751 BB->addSuccessor(exitMBB); 10752 BB = loop2MBB; 10753 } 10754 BuildMI(BB, dl, TII->get(StoreMnemonic)) 10755 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 10756 BuildMI(BB, dl, TII->get(PPC::BCC)) 10757 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 10758 BB->addSuccessor(loopMBB); 10759 BB->addSuccessor(exitMBB); 10760 10761 // exitMBB: 10762 // ... 10763 BB = exitMBB; 10764 return BB; 10765 } 10766 10767 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 10768 MachineInstr &MI, MachineBasicBlock *BB, 10769 bool is8bit, // operation 10770 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 10771 // If we support part-word atomic mnemonics, just use them 10772 if (Subtarget.hasPartwordAtomics()) 10773 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 10774 CmpPred); 10775 10776 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 10777 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10778 // In 64 bit mode we have to use 64 bits for addresses, even though the 10779 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 10780 // registers without caring whether they're 32 or 64, but here we're 10781 // doing actual arithmetic on the addresses. 10782 bool is64bit = Subtarget.isPPC64(); 10783 bool isLittleEndian = Subtarget.isLittleEndian(); 10784 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 10785 10786 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 10787 MachineFunction *F = BB->getParent(); 10788 MachineFunction::iterator It = ++BB->getIterator(); 10789 10790 Register dest = MI.getOperand(0).getReg(); 10791 Register ptrA = MI.getOperand(1).getReg(); 10792 Register ptrB = MI.getOperand(2).getReg(); 10793 Register incr = MI.getOperand(3).getReg(); 10794 DebugLoc dl = MI.getDebugLoc(); 10795 10796 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 10797 MachineBasicBlock *loop2MBB = 10798 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 10799 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 10800 F->insert(It, loopMBB); 10801 if (CmpOpcode) 10802 F->insert(It, loop2MBB); 10803 F->insert(It, exitMBB); 10804 exitMBB->splice(exitMBB->begin(), BB, 10805 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 10806 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 10807 10808 MachineRegisterInfo &RegInfo = F->getRegInfo(); 10809 const TargetRegisterClass *RC = 10810 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 10811 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 10812 10813 Register PtrReg = RegInfo.createVirtualRegister(RC); 10814 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 10815 Register ShiftReg = 10816 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 10817 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 10818 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 10819 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 10820 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 10821 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 10822 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 10823 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 10824 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 10825 Register Ptr1Reg; 10826 Register TmpReg = 10827 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 10828 10829 // thisMBB: 10830 // ... 10831 // fallthrough --> loopMBB 10832 BB->addSuccessor(loopMBB); 10833 10834 // The 4-byte load must be aligned, while a char or short may be 10835 // anywhere in the word. Hence all this nasty bookkeeping code. 10836 // add ptr1, ptrA, ptrB [copy if ptrA==0] 10837 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 10838 // xori shift, shift1, 24 [16] 10839 // rlwinm ptr, ptr1, 0, 0, 29 10840 // slw incr2, incr, shift 10841 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 10842 // slw mask, mask2, shift 10843 // loopMBB: 10844 // lwarx tmpDest, ptr 10845 // add tmp, tmpDest, incr2 10846 // andc tmp2, tmpDest, mask 10847 // and tmp3, tmp, mask 10848 // or tmp4, tmp3, tmp2 10849 // stwcx. tmp4, ptr 10850 // bne- loopMBB 10851 // fallthrough --> exitMBB 10852 // srw dest, tmpDest, shift 10853 if (ptrA != ZeroReg) { 10854 Ptr1Reg = RegInfo.createVirtualRegister(RC); 10855 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 10856 .addReg(ptrA) 10857 .addReg(ptrB); 10858 } else { 10859 Ptr1Reg = ptrB; 10860 } 10861 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 10862 // mode. 10863 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 10864 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 10865 .addImm(3) 10866 .addImm(27) 10867 .addImm(is8bit ? 28 : 27); 10868 if (!isLittleEndian) 10869 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 10870 .addReg(Shift1Reg) 10871 .addImm(is8bit ? 24 : 16); 10872 if (is64bit) 10873 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 10874 .addReg(Ptr1Reg) 10875 .addImm(0) 10876 .addImm(61); 10877 else 10878 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 10879 .addReg(Ptr1Reg) 10880 .addImm(0) 10881 .addImm(0) 10882 .addImm(29); 10883 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 10884 if (is8bit) 10885 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 10886 else { 10887 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 10888 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 10889 .addReg(Mask3Reg) 10890 .addImm(65535); 10891 } 10892 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 10893 .addReg(Mask2Reg) 10894 .addReg(ShiftReg); 10895 10896 BB = loopMBB; 10897 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 10898 .addReg(ZeroReg) 10899 .addReg(PtrReg); 10900 if (BinOpcode) 10901 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 10902 .addReg(Incr2Reg) 10903 .addReg(TmpDestReg); 10904 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 10905 .addReg(TmpDestReg) 10906 .addReg(MaskReg); 10907 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 10908 if (CmpOpcode) { 10909 // For unsigned comparisons, we can directly compare the shifted values. 10910 // For signed comparisons we shift and sign extend. 10911 Register SReg = RegInfo.createVirtualRegister(GPRC); 10912 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 10913 .addReg(TmpDestReg) 10914 .addReg(MaskReg); 10915 unsigned ValueReg = SReg; 10916 unsigned CmpReg = Incr2Reg; 10917 if (CmpOpcode == PPC::CMPW) { 10918 ValueReg = RegInfo.createVirtualRegister(GPRC); 10919 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 10920 .addReg(SReg) 10921 .addReg(ShiftReg); 10922 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 10923 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 10924 .addReg(ValueReg); 10925 ValueReg = ValueSReg; 10926 CmpReg = incr; 10927 } 10928 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 10929 .addReg(CmpReg) 10930 .addReg(ValueReg); 10931 BuildMI(BB, dl, TII->get(PPC::BCC)) 10932 .addImm(CmpPred) 10933 .addReg(PPC::CR0) 10934 .addMBB(exitMBB); 10935 BB->addSuccessor(loop2MBB); 10936 BB->addSuccessor(exitMBB); 10937 BB = loop2MBB; 10938 } 10939 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 10940 BuildMI(BB, dl, TII->get(PPC::STWCX)) 10941 .addReg(Tmp4Reg) 10942 .addReg(ZeroReg) 10943 .addReg(PtrReg); 10944 BuildMI(BB, dl, TII->get(PPC::BCC)) 10945 .addImm(PPC::PRED_NE) 10946 .addReg(PPC::CR0) 10947 .addMBB(loopMBB); 10948 BB->addSuccessor(loopMBB); 10949 BB->addSuccessor(exitMBB); 10950 10951 // exitMBB: 10952 // ... 10953 BB = exitMBB; 10954 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 10955 .addReg(TmpDestReg) 10956 .addReg(ShiftReg); 10957 return BB; 10958 } 10959 10960 llvm::MachineBasicBlock * 10961 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 10962 MachineBasicBlock *MBB) const { 10963 DebugLoc DL = MI.getDebugLoc(); 10964 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 10965 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 10966 10967 MachineFunction *MF = MBB->getParent(); 10968 MachineRegisterInfo &MRI = MF->getRegInfo(); 10969 10970 const BasicBlock *BB = MBB->getBasicBlock(); 10971 MachineFunction::iterator I = ++MBB->getIterator(); 10972 10973 Register DstReg = MI.getOperand(0).getReg(); 10974 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 10975 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 10976 Register mainDstReg = MRI.createVirtualRegister(RC); 10977 Register restoreDstReg = MRI.createVirtualRegister(RC); 10978 10979 MVT PVT = getPointerTy(MF->getDataLayout()); 10980 assert((PVT == MVT::i64 || PVT == MVT::i32) && 10981 "Invalid Pointer Size!"); 10982 // For v = setjmp(buf), we generate 10983 // 10984 // thisMBB: 10985 // SjLjSetup mainMBB 10986 // bl mainMBB 10987 // v_restore = 1 10988 // b sinkMBB 10989 // 10990 // mainMBB: 10991 // buf[LabelOffset] = LR 10992 // v_main = 0 10993 // 10994 // sinkMBB: 10995 // v = phi(main, restore) 10996 // 10997 10998 MachineBasicBlock *thisMBB = MBB; 10999 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11000 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11001 MF->insert(I, mainMBB); 11002 MF->insert(I, sinkMBB); 11003 11004 MachineInstrBuilder MIB; 11005 11006 // Transfer the remainder of BB and its successor edges to sinkMBB. 11007 sinkMBB->splice(sinkMBB->begin(), MBB, 11008 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11009 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11010 11011 // Note that the structure of the jmp_buf used here is not compatible 11012 // with that used by libc, and is not designed to be. Specifically, it 11013 // stores only those 'reserved' registers that LLVM does not otherwise 11014 // understand how to spill. Also, by convention, by the time this 11015 // intrinsic is called, Clang has already stored the frame address in the 11016 // first slot of the buffer and stack address in the third. Following the 11017 // X86 target code, we'll store the jump address in the second slot. We also 11018 // need to save the TOC pointer (R2) to handle jumps between shared 11019 // libraries, and that will be stored in the fourth slot. The thread 11020 // identifier (R13) is not affected. 11021 11022 // thisMBB: 11023 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11024 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11025 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11026 11027 // Prepare IP either in reg. 11028 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11029 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11030 Register BufReg = MI.getOperand(1).getReg(); 11031 11032 if (Subtarget.is64BitELFABI()) { 11033 setUsesTOCBasePtr(*MBB->getParent()); 11034 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11035 .addReg(PPC::X2) 11036 .addImm(TOCOffset) 11037 .addReg(BufReg) 11038 .cloneMemRefs(MI); 11039 } 11040 11041 // Naked functions never have a base pointer, and so we use r1. For all 11042 // other functions, this decision must be delayed until during PEI. 11043 unsigned BaseReg; 11044 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11045 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11046 else 11047 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11048 11049 MIB = BuildMI(*thisMBB, MI, DL, 11050 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11051 .addReg(BaseReg) 11052 .addImm(BPOffset) 11053 .addReg(BufReg) 11054 .cloneMemRefs(MI); 11055 11056 // Setup 11057 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11058 MIB.addRegMask(TRI->getNoPreservedMask()); 11059 11060 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11061 11062 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11063 .addMBB(mainMBB); 11064 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11065 11066 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11067 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11068 11069 // mainMBB: 11070 // mainDstReg = 0 11071 MIB = 11072 BuildMI(mainMBB, DL, 11073 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11074 11075 // Store IP 11076 if (Subtarget.isPPC64()) { 11077 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11078 .addReg(LabelReg) 11079 .addImm(LabelOffset) 11080 .addReg(BufReg); 11081 } else { 11082 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11083 .addReg(LabelReg) 11084 .addImm(LabelOffset) 11085 .addReg(BufReg); 11086 } 11087 MIB.cloneMemRefs(MI); 11088 11089 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11090 mainMBB->addSuccessor(sinkMBB); 11091 11092 // sinkMBB: 11093 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11094 TII->get(PPC::PHI), DstReg) 11095 .addReg(mainDstReg).addMBB(mainMBB) 11096 .addReg(restoreDstReg).addMBB(thisMBB); 11097 11098 MI.eraseFromParent(); 11099 return sinkMBB; 11100 } 11101 11102 MachineBasicBlock * 11103 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11104 MachineBasicBlock *MBB) const { 11105 DebugLoc DL = MI.getDebugLoc(); 11106 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11107 11108 MachineFunction *MF = MBB->getParent(); 11109 MachineRegisterInfo &MRI = MF->getRegInfo(); 11110 11111 MVT PVT = getPointerTy(MF->getDataLayout()); 11112 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11113 "Invalid Pointer Size!"); 11114 11115 const TargetRegisterClass *RC = 11116 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11117 Register Tmp = MRI.createVirtualRegister(RC); 11118 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11119 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11120 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11121 unsigned BP = 11122 (PVT == MVT::i64) 11123 ? PPC::X30 11124 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11125 : PPC::R30); 11126 11127 MachineInstrBuilder MIB; 11128 11129 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11130 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11131 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11132 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11133 11134 Register BufReg = MI.getOperand(0).getReg(); 11135 11136 // Reload FP (the jumped-to function may not have had a 11137 // frame pointer, and if so, then its r31 will be restored 11138 // as necessary). 11139 if (PVT == MVT::i64) { 11140 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11141 .addImm(0) 11142 .addReg(BufReg); 11143 } else { 11144 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11145 .addImm(0) 11146 .addReg(BufReg); 11147 } 11148 MIB.cloneMemRefs(MI); 11149 11150 // Reload IP 11151 if (PVT == MVT::i64) { 11152 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11153 .addImm(LabelOffset) 11154 .addReg(BufReg); 11155 } else { 11156 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11157 .addImm(LabelOffset) 11158 .addReg(BufReg); 11159 } 11160 MIB.cloneMemRefs(MI); 11161 11162 // Reload SP 11163 if (PVT == MVT::i64) { 11164 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11165 .addImm(SPOffset) 11166 .addReg(BufReg); 11167 } else { 11168 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11169 .addImm(SPOffset) 11170 .addReg(BufReg); 11171 } 11172 MIB.cloneMemRefs(MI); 11173 11174 // Reload BP 11175 if (PVT == MVT::i64) { 11176 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11177 .addImm(BPOffset) 11178 .addReg(BufReg); 11179 } else { 11180 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11181 .addImm(BPOffset) 11182 .addReg(BufReg); 11183 } 11184 MIB.cloneMemRefs(MI); 11185 11186 // Reload TOC 11187 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11188 setUsesTOCBasePtr(*MBB->getParent()); 11189 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11190 .addImm(TOCOffset) 11191 .addReg(BufReg) 11192 .cloneMemRefs(MI); 11193 } 11194 11195 // Jump 11196 BuildMI(*MBB, MI, DL, 11197 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11198 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11199 11200 MI.eraseFromParent(); 11201 return MBB; 11202 } 11203 11204 MachineBasicBlock * 11205 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11206 MachineBasicBlock *BB) const { 11207 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11208 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11209 if (Subtarget.is64BitELFABI() && 11210 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11211 // Call lowering should have added an r2 operand to indicate a dependence 11212 // on the TOC base pointer value. It can't however, because there is no 11213 // way to mark the dependence as implicit there, and so the stackmap code 11214 // will confuse it with a regular operand. Instead, add the dependence 11215 // here. 11216 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11217 } 11218 11219 return emitPatchPoint(MI, BB); 11220 } 11221 11222 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11223 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11224 return emitEHSjLjSetJmp(MI, BB); 11225 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11226 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11227 return emitEHSjLjLongJmp(MI, BB); 11228 } 11229 11230 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11231 11232 // To "insert" these instructions we actually have to insert their 11233 // control-flow patterns. 11234 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11235 MachineFunction::iterator It = ++BB->getIterator(); 11236 11237 MachineFunction *F = BB->getParent(); 11238 11239 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11240 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11241 MI.getOpcode() == PPC::SELECT_I8) { 11242 SmallVector<MachineOperand, 2> Cond; 11243 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11244 MI.getOpcode() == PPC::SELECT_CC_I8) 11245 Cond.push_back(MI.getOperand(4)); 11246 else 11247 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11248 Cond.push_back(MI.getOperand(1)); 11249 11250 DebugLoc dl = MI.getDebugLoc(); 11251 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11252 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11253 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11254 MI.getOpcode() == PPC::SELECT_CC_F8 || 11255 MI.getOpcode() == PPC::SELECT_CC_F16 || 11256 MI.getOpcode() == PPC::SELECT_CC_QFRC || 11257 MI.getOpcode() == PPC::SELECT_CC_QSRC || 11258 MI.getOpcode() == PPC::SELECT_CC_QBRC || 11259 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11260 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11261 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11262 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11263 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11264 MI.getOpcode() == PPC::SELECT_CC_SPE || 11265 MI.getOpcode() == PPC::SELECT_F4 || 11266 MI.getOpcode() == PPC::SELECT_F8 || 11267 MI.getOpcode() == PPC::SELECT_F16 || 11268 MI.getOpcode() == PPC::SELECT_QFRC || 11269 MI.getOpcode() == PPC::SELECT_QSRC || 11270 MI.getOpcode() == PPC::SELECT_QBRC || 11271 MI.getOpcode() == PPC::SELECT_SPE || 11272 MI.getOpcode() == PPC::SELECT_SPE4 || 11273 MI.getOpcode() == PPC::SELECT_VRRC || 11274 MI.getOpcode() == PPC::SELECT_VSFRC || 11275 MI.getOpcode() == PPC::SELECT_VSSRC || 11276 MI.getOpcode() == PPC::SELECT_VSRC) { 11277 // The incoming instruction knows the destination vreg to set, the 11278 // condition code register to branch on, the true/false values to 11279 // select between, and a branch opcode to use. 11280 11281 // thisMBB: 11282 // ... 11283 // TrueVal = ... 11284 // cmpTY ccX, r1, r2 11285 // bCC copy1MBB 11286 // fallthrough --> copy0MBB 11287 MachineBasicBlock *thisMBB = BB; 11288 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11289 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11290 DebugLoc dl = MI.getDebugLoc(); 11291 F->insert(It, copy0MBB); 11292 F->insert(It, sinkMBB); 11293 11294 // Transfer the remainder of BB and its successor edges to sinkMBB. 11295 sinkMBB->splice(sinkMBB->begin(), BB, 11296 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11297 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11298 11299 // Next, add the true and fallthrough blocks as its successors. 11300 BB->addSuccessor(copy0MBB); 11301 BB->addSuccessor(sinkMBB); 11302 11303 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11304 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11305 MI.getOpcode() == PPC::SELECT_F16 || 11306 MI.getOpcode() == PPC::SELECT_SPE4 || 11307 MI.getOpcode() == PPC::SELECT_SPE || 11308 MI.getOpcode() == PPC::SELECT_QFRC || 11309 MI.getOpcode() == PPC::SELECT_QSRC || 11310 MI.getOpcode() == PPC::SELECT_QBRC || 11311 MI.getOpcode() == PPC::SELECT_VRRC || 11312 MI.getOpcode() == PPC::SELECT_VSFRC || 11313 MI.getOpcode() == PPC::SELECT_VSSRC || 11314 MI.getOpcode() == PPC::SELECT_VSRC) { 11315 BuildMI(BB, dl, TII->get(PPC::BC)) 11316 .addReg(MI.getOperand(1).getReg()) 11317 .addMBB(sinkMBB); 11318 } else { 11319 unsigned SelectPred = MI.getOperand(4).getImm(); 11320 BuildMI(BB, dl, TII->get(PPC::BCC)) 11321 .addImm(SelectPred) 11322 .addReg(MI.getOperand(1).getReg()) 11323 .addMBB(sinkMBB); 11324 } 11325 11326 // copy0MBB: 11327 // %FalseValue = ... 11328 // # fallthrough to sinkMBB 11329 BB = copy0MBB; 11330 11331 // Update machine-CFG edges 11332 BB->addSuccessor(sinkMBB); 11333 11334 // sinkMBB: 11335 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11336 // ... 11337 BB = sinkMBB; 11338 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11339 .addReg(MI.getOperand(3).getReg()) 11340 .addMBB(copy0MBB) 11341 .addReg(MI.getOperand(2).getReg()) 11342 .addMBB(thisMBB); 11343 } else if (MI.getOpcode() == PPC::ReadTB) { 11344 // To read the 64-bit time-base register on a 32-bit target, we read the 11345 // two halves. Should the counter have wrapped while it was being read, we 11346 // need to try again. 11347 // ... 11348 // readLoop: 11349 // mfspr Rx,TBU # load from TBU 11350 // mfspr Ry,TB # load from TB 11351 // mfspr Rz,TBU # load from TBU 11352 // cmpw crX,Rx,Rz # check if 'old'='new' 11353 // bne readLoop # branch if they're not equal 11354 // ... 11355 11356 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11357 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11358 DebugLoc dl = MI.getDebugLoc(); 11359 F->insert(It, readMBB); 11360 F->insert(It, sinkMBB); 11361 11362 // Transfer the remainder of BB and its successor edges to sinkMBB. 11363 sinkMBB->splice(sinkMBB->begin(), BB, 11364 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11365 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11366 11367 BB->addSuccessor(readMBB); 11368 BB = readMBB; 11369 11370 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11371 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11372 Register LoReg = MI.getOperand(0).getReg(); 11373 Register HiReg = MI.getOperand(1).getReg(); 11374 11375 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 11376 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 11377 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 11378 11379 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11380 11381 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 11382 .addReg(HiReg) 11383 .addReg(ReadAgainReg); 11384 BuildMI(BB, dl, TII->get(PPC::BCC)) 11385 .addImm(PPC::PRED_NE) 11386 .addReg(CmpReg) 11387 .addMBB(readMBB); 11388 11389 BB->addSuccessor(readMBB); 11390 BB->addSuccessor(sinkMBB); 11391 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 11392 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 11393 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 11394 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 11395 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 11396 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 11397 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 11398 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 11399 11400 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 11401 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 11402 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 11403 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 11404 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 11405 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 11406 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 11407 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 11408 11409 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 11410 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 11411 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 11412 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 11413 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 11414 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 11415 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 11416 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 11417 11418 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 11419 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 11420 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 11421 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 11422 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 11423 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 11424 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 11425 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 11426 11427 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 11428 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 11429 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 11430 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 11431 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 11432 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 11433 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 11434 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 11435 11436 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 11437 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 11438 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 11439 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 11440 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 11441 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 11442 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 11443 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 11444 11445 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 11446 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 11447 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 11448 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 11449 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 11450 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 11451 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 11452 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 11453 11454 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 11455 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 11456 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 11457 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 11458 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 11459 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 11460 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 11461 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 11462 11463 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 11464 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 11465 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 11466 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 11467 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 11468 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 11469 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 11470 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 11471 11472 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 11473 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 11474 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 11475 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 11476 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 11477 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 11478 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 11479 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 11480 11481 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 11482 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 11483 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 11484 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 11485 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 11486 BB = EmitAtomicBinary(MI, BB, 4, 0); 11487 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 11488 BB = EmitAtomicBinary(MI, BB, 8, 0); 11489 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 11490 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 11491 (Subtarget.hasPartwordAtomics() && 11492 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 11493 (Subtarget.hasPartwordAtomics() && 11494 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 11495 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 11496 11497 auto LoadMnemonic = PPC::LDARX; 11498 auto StoreMnemonic = PPC::STDCX; 11499 switch (MI.getOpcode()) { 11500 default: 11501 llvm_unreachable("Compare and swap of unknown size"); 11502 case PPC::ATOMIC_CMP_SWAP_I8: 11503 LoadMnemonic = PPC::LBARX; 11504 StoreMnemonic = PPC::STBCX; 11505 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11506 break; 11507 case PPC::ATOMIC_CMP_SWAP_I16: 11508 LoadMnemonic = PPC::LHARX; 11509 StoreMnemonic = PPC::STHCX; 11510 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 11511 break; 11512 case PPC::ATOMIC_CMP_SWAP_I32: 11513 LoadMnemonic = PPC::LWARX; 11514 StoreMnemonic = PPC::STWCX; 11515 break; 11516 case PPC::ATOMIC_CMP_SWAP_I64: 11517 LoadMnemonic = PPC::LDARX; 11518 StoreMnemonic = PPC::STDCX; 11519 break; 11520 } 11521 Register dest = MI.getOperand(0).getReg(); 11522 Register ptrA = MI.getOperand(1).getReg(); 11523 Register ptrB = MI.getOperand(2).getReg(); 11524 Register oldval = MI.getOperand(3).getReg(); 11525 Register newval = MI.getOperand(4).getReg(); 11526 DebugLoc dl = MI.getDebugLoc(); 11527 11528 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11529 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11530 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11531 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11532 F->insert(It, loop1MBB); 11533 F->insert(It, loop2MBB); 11534 F->insert(It, midMBB); 11535 F->insert(It, exitMBB); 11536 exitMBB->splice(exitMBB->begin(), BB, 11537 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11538 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11539 11540 // thisMBB: 11541 // ... 11542 // fallthrough --> loopMBB 11543 BB->addSuccessor(loop1MBB); 11544 11545 // loop1MBB: 11546 // l[bhwd]arx dest, ptr 11547 // cmp[wd] dest, oldval 11548 // bne- midMBB 11549 // loop2MBB: 11550 // st[bhwd]cx. newval, ptr 11551 // bne- loopMBB 11552 // b exitBB 11553 // midMBB: 11554 // st[bhwd]cx. dest, ptr 11555 // exitBB: 11556 BB = loop1MBB; 11557 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 11558 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 11559 .addReg(oldval) 11560 .addReg(dest); 11561 BuildMI(BB, dl, TII->get(PPC::BCC)) 11562 .addImm(PPC::PRED_NE) 11563 .addReg(PPC::CR0) 11564 .addMBB(midMBB); 11565 BB->addSuccessor(loop2MBB); 11566 BB->addSuccessor(midMBB); 11567 11568 BB = loop2MBB; 11569 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11570 .addReg(newval) 11571 .addReg(ptrA) 11572 .addReg(ptrB); 11573 BuildMI(BB, dl, TII->get(PPC::BCC)) 11574 .addImm(PPC::PRED_NE) 11575 .addReg(PPC::CR0) 11576 .addMBB(loop1MBB); 11577 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11578 BB->addSuccessor(loop1MBB); 11579 BB->addSuccessor(exitMBB); 11580 11581 BB = midMBB; 11582 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11583 .addReg(dest) 11584 .addReg(ptrA) 11585 .addReg(ptrB); 11586 BB->addSuccessor(exitMBB); 11587 11588 // exitMBB: 11589 // ... 11590 BB = exitMBB; 11591 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 11592 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 11593 // We must use 64-bit registers for addresses when targeting 64-bit, 11594 // since we're actually doing arithmetic on them. Other registers 11595 // can be 32-bit. 11596 bool is64bit = Subtarget.isPPC64(); 11597 bool isLittleEndian = Subtarget.isLittleEndian(); 11598 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 11599 11600 Register dest = MI.getOperand(0).getReg(); 11601 Register ptrA = MI.getOperand(1).getReg(); 11602 Register ptrB = MI.getOperand(2).getReg(); 11603 Register oldval = MI.getOperand(3).getReg(); 11604 Register newval = MI.getOperand(4).getReg(); 11605 DebugLoc dl = MI.getDebugLoc(); 11606 11607 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 11608 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 11609 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 11610 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11611 F->insert(It, loop1MBB); 11612 F->insert(It, loop2MBB); 11613 F->insert(It, midMBB); 11614 F->insert(It, exitMBB); 11615 exitMBB->splice(exitMBB->begin(), BB, 11616 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11617 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11618 11619 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11620 const TargetRegisterClass *RC = 11621 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11622 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11623 11624 Register PtrReg = RegInfo.createVirtualRegister(RC); 11625 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11626 Register ShiftReg = 11627 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11628 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 11629 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 11630 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 11631 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 11632 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11633 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11634 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11635 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11636 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11637 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11638 Register Ptr1Reg; 11639 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 11640 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11641 // thisMBB: 11642 // ... 11643 // fallthrough --> loopMBB 11644 BB->addSuccessor(loop1MBB); 11645 11646 // The 4-byte load must be aligned, while a char or short may be 11647 // anywhere in the word. Hence all this nasty bookkeeping code. 11648 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11649 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11650 // xori shift, shift1, 24 [16] 11651 // rlwinm ptr, ptr1, 0, 0, 29 11652 // slw newval2, newval, shift 11653 // slw oldval2, oldval,shift 11654 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11655 // slw mask, mask2, shift 11656 // and newval3, newval2, mask 11657 // and oldval3, oldval2, mask 11658 // loop1MBB: 11659 // lwarx tmpDest, ptr 11660 // and tmp, tmpDest, mask 11661 // cmpw tmp, oldval3 11662 // bne- midMBB 11663 // loop2MBB: 11664 // andc tmp2, tmpDest, mask 11665 // or tmp4, tmp2, newval3 11666 // stwcx. tmp4, ptr 11667 // bne- loop1MBB 11668 // b exitBB 11669 // midMBB: 11670 // stwcx. tmpDest, ptr 11671 // exitBB: 11672 // srw dest, tmpDest, shift 11673 if (ptrA != ZeroReg) { 11674 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11675 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11676 .addReg(ptrA) 11677 .addReg(ptrB); 11678 } else { 11679 Ptr1Reg = ptrB; 11680 } 11681 11682 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11683 // mode. 11684 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11685 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11686 .addImm(3) 11687 .addImm(27) 11688 .addImm(is8bit ? 28 : 27); 11689 if (!isLittleEndian) 11690 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11691 .addReg(Shift1Reg) 11692 .addImm(is8bit ? 24 : 16); 11693 if (is64bit) 11694 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11695 .addReg(Ptr1Reg) 11696 .addImm(0) 11697 .addImm(61); 11698 else 11699 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11700 .addReg(Ptr1Reg) 11701 .addImm(0) 11702 .addImm(0) 11703 .addImm(29); 11704 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 11705 .addReg(newval) 11706 .addReg(ShiftReg); 11707 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 11708 .addReg(oldval) 11709 .addReg(ShiftReg); 11710 if (is8bit) 11711 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11712 else { 11713 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11714 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11715 .addReg(Mask3Reg) 11716 .addImm(65535); 11717 } 11718 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11719 .addReg(Mask2Reg) 11720 .addReg(ShiftReg); 11721 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 11722 .addReg(NewVal2Reg) 11723 .addReg(MaskReg); 11724 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 11725 .addReg(OldVal2Reg) 11726 .addReg(MaskReg); 11727 11728 BB = loop1MBB; 11729 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11730 .addReg(ZeroReg) 11731 .addReg(PtrReg); 11732 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 11733 .addReg(TmpDestReg) 11734 .addReg(MaskReg); 11735 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 11736 .addReg(TmpReg) 11737 .addReg(OldVal3Reg); 11738 BuildMI(BB, dl, TII->get(PPC::BCC)) 11739 .addImm(PPC::PRED_NE) 11740 .addReg(PPC::CR0) 11741 .addMBB(midMBB); 11742 BB->addSuccessor(loop2MBB); 11743 BB->addSuccessor(midMBB); 11744 11745 BB = loop2MBB; 11746 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11747 .addReg(TmpDestReg) 11748 .addReg(MaskReg); 11749 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 11750 .addReg(Tmp2Reg) 11751 .addReg(NewVal3Reg); 11752 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11753 .addReg(Tmp4Reg) 11754 .addReg(ZeroReg) 11755 .addReg(PtrReg); 11756 BuildMI(BB, dl, TII->get(PPC::BCC)) 11757 .addImm(PPC::PRED_NE) 11758 .addReg(PPC::CR0) 11759 .addMBB(loop1MBB); 11760 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 11761 BB->addSuccessor(loop1MBB); 11762 BB->addSuccessor(exitMBB); 11763 11764 BB = midMBB; 11765 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11766 .addReg(TmpDestReg) 11767 .addReg(ZeroReg) 11768 .addReg(PtrReg); 11769 BB->addSuccessor(exitMBB); 11770 11771 // exitMBB: 11772 // ... 11773 BB = exitMBB; 11774 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 11775 .addReg(TmpReg) 11776 .addReg(ShiftReg); 11777 } else if (MI.getOpcode() == PPC::FADDrtz) { 11778 // This pseudo performs an FADD with rounding mode temporarily forced 11779 // to round-to-zero. We emit this via custom inserter since the FPSCR 11780 // is not modeled at the SelectionDAG level. 11781 Register Dest = MI.getOperand(0).getReg(); 11782 Register Src1 = MI.getOperand(1).getReg(); 11783 Register Src2 = MI.getOperand(2).getReg(); 11784 DebugLoc dl = MI.getDebugLoc(); 11785 11786 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11787 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11788 11789 // Save FPSCR value. 11790 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 11791 11792 // Set rounding mode to round-to-zero. 11793 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31); 11794 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30); 11795 11796 // Perform addition. 11797 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2); 11798 11799 // Restore FPSCR value. 11800 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 11801 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11802 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 11803 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11804 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 11805 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 11806 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 11807 ? PPC::ANDI8_rec 11808 : PPC::ANDI_rec; 11809 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 11810 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 11811 11812 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11813 Register Dest = RegInfo.createVirtualRegister( 11814 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 11815 11816 DebugLoc Dl = MI.getDebugLoc(); 11817 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 11818 .addReg(MI.getOperand(1).getReg()) 11819 .addImm(1); 11820 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11821 MI.getOperand(0).getReg()) 11822 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 11823 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 11824 DebugLoc Dl = MI.getDebugLoc(); 11825 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11826 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 11827 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 11828 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11829 MI.getOperand(0).getReg()) 11830 .addReg(CRReg); 11831 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 11832 DebugLoc Dl = MI.getDebugLoc(); 11833 unsigned Imm = MI.getOperand(1).getImm(); 11834 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 11835 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 11836 MI.getOperand(0).getReg()) 11837 .addReg(PPC::CR0EQ); 11838 } else if (MI.getOpcode() == PPC::SETRNDi) { 11839 DebugLoc dl = MI.getDebugLoc(); 11840 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11841 11842 // Save FPSCR value. 11843 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11844 11845 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 11846 // the following settings: 11847 // 00 Round to nearest 11848 // 01 Round to 0 11849 // 10 Round to +inf 11850 // 11 Round to -inf 11851 11852 // When the operand is immediate, using the two least significant bits of 11853 // the immediate to set the bits 62:63 of FPSCR. 11854 unsigned Mode = MI.getOperand(1).getImm(); 11855 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 11856 .addImm(31); 11857 11858 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 11859 .addImm(30); 11860 } else if (MI.getOpcode() == PPC::SETRND) { 11861 DebugLoc dl = MI.getDebugLoc(); 11862 11863 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 11864 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 11865 // If the target doesn't have DirectMove, we should use stack to do the 11866 // conversion, because the target doesn't have the instructions like mtvsrd 11867 // or mfvsrd to do this conversion directly. 11868 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 11869 if (Subtarget.hasDirectMove()) { 11870 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 11871 .addReg(SrcReg); 11872 } else { 11873 // Use stack to do the register copy. 11874 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 11875 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11876 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 11877 if (RC == &PPC::F8RCRegClass) { 11878 // Copy register from F8RCRegClass to G8RCRegclass. 11879 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 11880 "Unsupported RegClass."); 11881 11882 StoreOp = PPC::STFD; 11883 LoadOp = PPC::LD; 11884 } else { 11885 // Copy register from G8RCRegClass to F8RCRegclass. 11886 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 11887 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 11888 "Unsupported RegClass."); 11889 } 11890 11891 MachineFrameInfo &MFI = F->getFrameInfo(); 11892 int FrameIdx = MFI.CreateStackObject(8, 8, false); 11893 11894 MachineMemOperand *MMOStore = F->getMachineMemOperand( 11895 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11896 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 11897 MFI.getObjectAlignment(FrameIdx)); 11898 11899 // Store the SrcReg into the stack. 11900 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 11901 .addReg(SrcReg) 11902 .addImm(0) 11903 .addFrameIndex(FrameIdx) 11904 .addMemOperand(MMOStore); 11905 11906 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 11907 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 11908 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 11909 MFI.getObjectAlignment(FrameIdx)); 11910 11911 // Load from the stack where SrcReg is stored, and save to DestReg, 11912 // so we have done the RegClass conversion from RegClass::SrcReg to 11913 // RegClass::DestReg. 11914 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 11915 .addImm(0) 11916 .addFrameIndex(FrameIdx) 11917 .addMemOperand(MMOLoad); 11918 } 11919 }; 11920 11921 Register OldFPSCRReg = MI.getOperand(0).getReg(); 11922 11923 // Save FPSCR value. 11924 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 11925 11926 // When the operand is gprc register, use two least significant bits of the 11927 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 11928 // 11929 // copy OldFPSCRTmpReg, OldFPSCRReg 11930 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 11931 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 11932 // copy NewFPSCRReg, NewFPSCRTmpReg 11933 // mtfsf 255, NewFPSCRReg 11934 MachineOperand SrcOp = MI.getOperand(1); 11935 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11936 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11937 11938 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 11939 11940 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11941 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11942 11943 // The first operand of INSERT_SUBREG should be a register which has 11944 // subregisters, we only care about its RegClass, so we should use an 11945 // IMPLICIT_DEF register. 11946 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 11947 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 11948 .addReg(ImDefReg) 11949 .add(SrcOp) 11950 .addImm(1); 11951 11952 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 11953 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 11954 .addReg(OldFPSCRTmpReg) 11955 .addReg(ExtSrcReg) 11956 .addImm(0) 11957 .addImm(62); 11958 11959 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 11960 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 11961 11962 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 11963 // bits of FPSCR. 11964 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 11965 .addImm(255) 11966 .addReg(NewFPSCRReg) 11967 .addImm(0) 11968 .addImm(0); 11969 } else { 11970 llvm_unreachable("Unexpected instr type to insert"); 11971 } 11972 11973 MI.eraseFromParent(); // The pseudo instruction is gone now. 11974 return BB; 11975 } 11976 11977 //===----------------------------------------------------------------------===// 11978 // Target Optimization Hooks 11979 //===----------------------------------------------------------------------===// 11980 11981 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 11982 // For the estimates, convergence is quadratic, so we essentially double the 11983 // number of digits correct after every iteration. For both FRE and FRSQRTE, 11984 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 11985 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 11986 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 11987 if (VT.getScalarType() == MVT::f64) 11988 RefinementSteps++; 11989 return RefinementSteps; 11990 } 11991 11992 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 11993 int Enabled, int &RefinementSteps, 11994 bool &UseOneConstNR, 11995 bool Reciprocal) const { 11996 EVT VT = Operand.getValueType(); 11997 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 11998 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 11999 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12000 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12001 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12002 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12003 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12004 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12005 12006 // The Newton-Raphson computation with a single constant does not provide 12007 // enough accuracy on some CPUs. 12008 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12009 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12010 } 12011 return SDValue(); 12012 } 12013 12014 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12015 int Enabled, 12016 int &RefinementSteps) const { 12017 EVT VT = Operand.getValueType(); 12018 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12019 (VT == MVT::f64 && Subtarget.hasFRE()) || 12020 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12021 (VT == MVT::v2f64 && Subtarget.hasVSX()) || 12022 (VT == MVT::v4f32 && Subtarget.hasQPX()) || 12023 (VT == MVT::v4f64 && Subtarget.hasQPX())) { 12024 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12025 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12026 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12027 } 12028 return SDValue(); 12029 } 12030 12031 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12032 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12033 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12034 // enabled for division), this functionality is redundant with the default 12035 // combiner logic (once the division -> reciprocal/multiply transformation 12036 // has taken place). As a result, this matters more for older cores than for 12037 // newer ones. 12038 12039 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12040 // reciprocal if there are two or more FDIVs (for embedded cores with only 12041 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12042 switch (Subtarget.getCPUDirective()) { 12043 default: 12044 return 3; 12045 case PPC::DIR_440: 12046 case PPC::DIR_A2: 12047 case PPC::DIR_E500: 12048 case PPC::DIR_E500mc: 12049 case PPC::DIR_E5500: 12050 return 2; 12051 } 12052 } 12053 12054 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12055 // collapsed, and so we need to look through chains of them. 12056 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12057 int64_t& Offset, SelectionDAG &DAG) { 12058 if (DAG.isBaseWithConstantOffset(Loc)) { 12059 Base = Loc.getOperand(0); 12060 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12061 12062 // The base might itself be a base plus an offset, and if so, accumulate 12063 // that as well. 12064 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12065 } 12066 } 12067 12068 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12069 unsigned Bytes, int Dist, 12070 SelectionDAG &DAG) { 12071 if (VT.getSizeInBits() / 8 != Bytes) 12072 return false; 12073 12074 SDValue BaseLoc = Base->getBasePtr(); 12075 if (Loc.getOpcode() == ISD::FrameIndex) { 12076 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12077 return false; 12078 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12079 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12080 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12081 int FS = MFI.getObjectSize(FI); 12082 int BFS = MFI.getObjectSize(BFI); 12083 if (FS != BFS || FS != (int)Bytes) return false; 12084 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12085 } 12086 12087 SDValue Base1 = Loc, Base2 = BaseLoc; 12088 int64_t Offset1 = 0, Offset2 = 0; 12089 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12090 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12091 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12092 return true; 12093 12094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12095 const GlobalValue *GV1 = nullptr; 12096 const GlobalValue *GV2 = nullptr; 12097 Offset1 = 0; 12098 Offset2 = 0; 12099 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12100 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12101 if (isGA1 && isGA2 && GV1 == GV2) 12102 return Offset1 == (Offset2 + Dist*Bytes); 12103 return false; 12104 } 12105 12106 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12107 // not enforce equality of the chain operands. 12108 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12109 unsigned Bytes, int Dist, 12110 SelectionDAG &DAG) { 12111 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12112 EVT VT = LS->getMemoryVT(); 12113 SDValue Loc = LS->getBasePtr(); 12114 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12115 } 12116 12117 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12118 EVT VT; 12119 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12120 default: return false; 12121 case Intrinsic::ppc_qpx_qvlfd: 12122 case Intrinsic::ppc_qpx_qvlfda: 12123 VT = MVT::v4f64; 12124 break; 12125 case Intrinsic::ppc_qpx_qvlfs: 12126 case Intrinsic::ppc_qpx_qvlfsa: 12127 VT = MVT::v4f32; 12128 break; 12129 case Intrinsic::ppc_qpx_qvlfcd: 12130 case Intrinsic::ppc_qpx_qvlfcda: 12131 VT = MVT::v2f64; 12132 break; 12133 case Intrinsic::ppc_qpx_qvlfcs: 12134 case Intrinsic::ppc_qpx_qvlfcsa: 12135 VT = MVT::v2f32; 12136 break; 12137 case Intrinsic::ppc_qpx_qvlfiwa: 12138 case Intrinsic::ppc_qpx_qvlfiwz: 12139 case Intrinsic::ppc_altivec_lvx: 12140 case Intrinsic::ppc_altivec_lvxl: 12141 case Intrinsic::ppc_vsx_lxvw4x: 12142 case Intrinsic::ppc_vsx_lxvw4x_be: 12143 VT = MVT::v4i32; 12144 break; 12145 case Intrinsic::ppc_vsx_lxvd2x: 12146 case Intrinsic::ppc_vsx_lxvd2x_be: 12147 VT = MVT::v2f64; 12148 break; 12149 case Intrinsic::ppc_altivec_lvebx: 12150 VT = MVT::i8; 12151 break; 12152 case Intrinsic::ppc_altivec_lvehx: 12153 VT = MVT::i16; 12154 break; 12155 case Intrinsic::ppc_altivec_lvewx: 12156 VT = MVT::i32; 12157 break; 12158 } 12159 12160 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12161 } 12162 12163 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12164 EVT VT; 12165 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12166 default: return false; 12167 case Intrinsic::ppc_qpx_qvstfd: 12168 case Intrinsic::ppc_qpx_qvstfda: 12169 VT = MVT::v4f64; 12170 break; 12171 case Intrinsic::ppc_qpx_qvstfs: 12172 case Intrinsic::ppc_qpx_qvstfsa: 12173 VT = MVT::v4f32; 12174 break; 12175 case Intrinsic::ppc_qpx_qvstfcd: 12176 case Intrinsic::ppc_qpx_qvstfcda: 12177 VT = MVT::v2f64; 12178 break; 12179 case Intrinsic::ppc_qpx_qvstfcs: 12180 case Intrinsic::ppc_qpx_qvstfcsa: 12181 VT = MVT::v2f32; 12182 break; 12183 case Intrinsic::ppc_qpx_qvstfiw: 12184 case Intrinsic::ppc_qpx_qvstfiwa: 12185 case Intrinsic::ppc_altivec_stvx: 12186 case Intrinsic::ppc_altivec_stvxl: 12187 case Intrinsic::ppc_vsx_stxvw4x: 12188 VT = MVT::v4i32; 12189 break; 12190 case Intrinsic::ppc_vsx_stxvd2x: 12191 VT = MVT::v2f64; 12192 break; 12193 case Intrinsic::ppc_vsx_stxvw4x_be: 12194 VT = MVT::v4i32; 12195 break; 12196 case Intrinsic::ppc_vsx_stxvd2x_be: 12197 VT = MVT::v2f64; 12198 break; 12199 case Intrinsic::ppc_altivec_stvebx: 12200 VT = MVT::i8; 12201 break; 12202 case Intrinsic::ppc_altivec_stvehx: 12203 VT = MVT::i16; 12204 break; 12205 case Intrinsic::ppc_altivec_stvewx: 12206 VT = MVT::i32; 12207 break; 12208 } 12209 12210 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12211 } 12212 12213 return false; 12214 } 12215 12216 // Return true is there is a nearyby consecutive load to the one provided 12217 // (regardless of alignment). We search up and down the chain, looking though 12218 // token factors and other loads (but nothing else). As a result, a true result 12219 // indicates that it is safe to create a new consecutive load adjacent to the 12220 // load provided. 12221 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12222 SDValue Chain = LD->getChain(); 12223 EVT VT = LD->getMemoryVT(); 12224 12225 SmallSet<SDNode *, 16> LoadRoots; 12226 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12227 SmallSet<SDNode *, 16> Visited; 12228 12229 // First, search up the chain, branching to follow all token-factor operands. 12230 // If we find a consecutive load, then we're done, otherwise, record all 12231 // nodes just above the top-level loads and token factors. 12232 while (!Queue.empty()) { 12233 SDNode *ChainNext = Queue.pop_back_val(); 12234 if (!Visited.insert(ChainNext).second) 12235 continue; 12236 12237 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12238 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12239 return true; 12240 12241 if (!Visited.count(ChainLD->getChain().getNode())) 12242 Queue.push_back(ChainLD->getChain().getNode()); 12243 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12244 for (const SDUse &O : ChainNext->ops()) 12245 if (!Visited.count(O.getNode())) 12246 Queue.push_back(O.getNode()); 12247 } else 12248 LoadRoots.insert(ChainNext); 12249 } 12250 12251 // Second, search down the chain, starting from the top-level nodes recorded 12252 // in the first phase. These top-level nodes are the nodes just above all 12253 // loads and token factors. Starting with their uses, recursively look though 12254 // all loads (just the chain uses) and token factors to find a consecutive 12255 // load. 12256 Visited.clear(); 12257 Queue.clear(); 12258 12259 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12260 IE = LoadRoots.end(); I != IE; ++I) { 12261 Queue.push_back(*I); 12262 12263 while (!Queue.empty()) { 12264 SDNode *LoadRoot = Queue.pop_back_val(); 12265 if (!Visited.insert(LoadRoot).second) 12266 continue; 12267 12268 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12269 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12270 return true; 12271 12272 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12273 UE = LoadRoot->use_end(); UI != UE; ++UI) 12274 if (((isa<MemSDNode>(*UI) && 12275 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12276 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12277 Queue.push_back(*UI); 12278 } 12279 } 12280 12281 return false; 12282 } 12283 12284 /// This function is called when we have proved that a SETCC node can be replaced 12285 /// by subtraction (and other supporting instructions) so that the result of 12286 /// comparison is kept in a GPR instead of CR. This function is purely for 12287 /// codegen purposes and has some flags to guide the codegen process. 12288 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12289 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12290 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12291 12292 // Zero extend the operands to the largest legal integer. Originally, they 12293 // must be of a strictly smaller size. 12294 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12295 DAG.getConstant(Size, DL, MVT::i32)); 12296 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12297 DAG.getConstant(Size, DL, MVT::i32)); 12298 12299 // Swap if needed. Depends on the condition code. 12300 if (Swap) 12301 std::swap(Op0, Op1); 12302 12303 // Subtract extended integers. 12304 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12305 12306 // Move the sign bit to the least significant position and zero out the rest. 12307 // Now the least significant bit carries the result of original comparison. 12308 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12309 DAG.getConstant(Size - 1, DL, MVT::i32)); 12310 auto Final = Shifted; 12311 12312 // Complement the result if needed. Based on the condition code. 12313 if (Complement) 12314 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12315 DAG.getConstant(1, DL, MVT::i64)); 12316 12317 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 12318 } 12319 12320 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 12321 DAGCombinerInfo &DCI) const { 12322 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12323 12324 SelectionDAG &DAG = DCI.DAG; 12325 SDLoc DL(N); 12326 12327 // Size of integers being compared has a critical role in the following 12328 // analysis, so we prefer to do this when all types are legal. 12329 if (!DCI.isAfterLegalizeDAG()) 12330 return SDValue(); 12331 12332 // If all users of SETCC extend its value to a legal integer type 12333 // then we replace SETCC with a subtraction 12334 for (SDNode::use_iterator UI = N->use_begin(), 12335 UE = N->use_end(); UI != UE; ++UI) { 12336 if (UI->getOpcode() != ISD::ZERO_EXTEND) 12337 return SDValue(); 12338 } 12339 12340 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12341 auto OpSize = N->getOperand(0).getValueSizeInBits(); 12342 12343 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 12344 12345 if (OpSize < Size) { 12346 switch (CC) { 12347 default: break; 12348 case ISD::SETULT: 12349 return generateEquivalentSub(N, Size, false, false, DL, DAG); 12350 case ISD::SETULE: 12351 return generateEquivalentSub(N, Size, true, true, DL, DAG); 12352 case ISD::SETUGT: 12353 return generateEquivalentSub(N, Size, false, true, DL, DAG); 12354 case ISD::SETUGE: 12355 return generateEquivalentSub(N, Size, true, false, DL, DAG); 12356 } 12357 } 12358 12359 return SDValue(); 12360 } 12361 12362 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 12363 DAGCombinerInfo &DCI) const { 12364 SelectionDAG &DAG = DCI.DAG; 12365 SDLoc dl(N); 12366 12367 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 12368 // If we're tracking CR bits, we need to be careful that we don't have: 12369 // trunc(binary-ops(zext(x), zext(y))) 12370 // or 12371 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 12372 // such that we're unnecessarily moving things into GPRs when it would be 12373 // better to keep them in CR bits. 12374 12375 // Note that trunc here can be an actual i1 trunc, or can be the effective 12376 // truncation that comes from a setcc or select_cc. 12377 if (N->getOpcode() == ISD::TRUNCATE && 12378 N->getValueType(0) != MVT::i1) 12379 return SDValue(); 12380 12381 if (N->getOperand(0).getValueType() != MVT::i32 && 12382 N->getOperand(0).getValueType() != MVT::i64) 12383 return SDValue(); 12384 12385 if (N->getOpcode() == ISD::SETCC || 12386 N->getOpcode() == ISD::SELECT_CC) { 12387 // If we're looking at a comparison, then we need to make sure that the 12388 // high bits (all except for the first) don't matter the result. 12389 ISD::CondCode CC = 12390 cast<CondCodeSDNode>(N->getOperand( 12391 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 12392 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 12393 12394 if (ISD::isSignedIntSetCC(CC)) { 12395 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 12396 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 12397 return SDValue(); 12398 } else if (ISD::isUnsignedIntSetCC(CC)) { 12399 if (!DAG.MaskedValueIsZero(N->getOperand(0), 12400 APInt::getHighBitsSet(OpBits, OpBits-1)) || 12401 !DAG.MaskedValueIsZero(N->getOperand(1), 12402 APInt::getHighBitsSet(OpBits, OpBits-1))) 12403 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 12404 : SDValue()); 12405 } else { 12406 // This is neither a signed nor an unsigned comparison, just make sure 12407 // that the high bits are equal. 12408 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 12409 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 12410 12411 // We don't really care about what is known about the first bit (if 12412 // anything), so clear it in all masks prior to comparing them. 12413 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0); 12414 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0); 12415 12416 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One) 12417 return SDValue(); 12418 } 12419 } 12420 12421 // We now know that the higher-order bits are irrelevant, we just need to 12422 // make sure that all of the intermediate operations are bit operations, and 12423 // all inputs are extensions. 12424 if (N->getOperand(0).getOpcode() != ISD::AND && 12425 N->getOperand(0).getOpcode() != ISD::OR && 12426 N->getOperand(0).getOpcode() != ISD::XOR && 12427 N->getOperand(0).getOpcode() != ISD::SELECT && 12428 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 12429 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 12430 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 12431 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 12432 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 12433 return SDValue(); 12434 12435 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 12436 N->getOperand(1).getOpcode() != ISD::AND && 12437 N->getOperand(1).getOpcode() != ISD::OR && 12438 N->getOperand(1).getOpcode() != ISD::XOR && 12439 N->getOperand(1).getOpcode() != ISD::SELECT && 12440 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 12441 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 12442 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 12443 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 12444 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 12445 return SDValue(); 12446 12447 SmallVector<SDValue, 4> Inputs; 12448 SmallVector<SDValue, 8> BinOps, PromOps; 12449 SmallPtrSet<SDNode *, 16> Visited; 12450 12451 for (unsigned i = 0; i < 2; ++i) { 12452 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12453 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12454 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12455 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12456 isa<ConstantSDNode>(N->getOperand(i))) 12457 Inputs.push_back(N->getOperand(i)); 12458 else 12459 BinOps.push_back(N->getOperand(i)); 12460 12461 if (N->getOpcode() == ISD::TRUNCATE) 12462 break; 12463 } 12464 12465 // Visit all inputs, collect all binary operations (and, or, xor and 12466 // select) that are all fed by extensions. 12467 while (!BinOps.empty()) { 12468 SDValue BinOp = BinOps.back(); 12469 BinOps.pop_back(); 12470 12471 if (!Visited.insert(BinOp.getNode()).second) 12472 continue; 12473 12474 PromOps.push_back(BinOp); 12475 12476 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12477 // The condition of the select is not promoted. 12478 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12479 continue; 12480 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12481 continue; 12482 12483 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12484 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12485 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 12486 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 12487 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12488 Inputs.push_back(BinOp.getOperand(i)); 12489 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12490 BinOp.getOperand(i).getOpcode() == ISD::OR || 12491 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12492 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12493 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 12494 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12495 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 12496 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 12497 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 12498 BinOps.push_back(BinOp.getOperand(i)); 12499 } else { 12500 // We have an input that is not an extension or another binary 12501 // operation; we'll abort this transformation. 12502 return SDValue(); 12503 } 12504 } 12505 } 12506 12507 // Make sure that this is a self-contained cluster of operations (which 12508 // is not quite the same thing as saying that everything has only one 12509 // use). 12510 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12511 if (isa<ConstantSDNode>(Inputs[i])) 12512 continue; 12513 12514 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12515 UE = Inputs[i].getNode()->use_end(); 12516 UI != UE; ++UI) { 12517 SDNode *User = *UI; 12518 if (User != N && !Visited.count(User)) 12519 return SDValue(); 12520 12521 // Make sure that we're not going to promote the non-output-value 12522 // operand(s) or SELECT or SELECT_CC. 12523 // FIXME: Although we could sometimes handle this, and it does occur in 12524 // practice that one of the condition inputs to the select is also one of 12525 // the outputs, we currently can't deal with this. 12526 if (User->getOpcode() == ISD::SELECT) { 12527 if (User->getOperand(0) == Inputs[i]) 12528 return SDValue(); 12529 } else if (User->getOpcode() == ISD::SELECT_CC) { 12530 if (User->getOperand(0) == Inputs[i] || 12531 User->getOperand(1) == Inputs[i]) 12532 return SDValue(); 12533 } 12534 } 12535 } 12536 12537 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12538 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12539 UE = PromOps[i].getNode()->use_end(); 12540 UI != UE; ++UI) { 12541 SDNode *User = *UI; 12542 if (User != N && !Visited.count(User)) 12543 return SDValue(); 12544 12545 // Make sure that we're not going to promote the non-output-value 12546 // operand(s) or SELECT or SELECT_CC. 12547 // FIXME: Although we could sometimes handle this, and it does occur in 12548 // practice that one of the condition inputs to the select is also one of 12549 // the outputs, we currently can't deal with this. 12550 if (User->getOpcode() == ISD::SELECT) { 12551 if (User->getOperand(0) == PromOps[i]) 12552 return SDValue(); 12553 } else if (User->getOpcode() == ISD::SELECT_CC) { 12554 if (User->getOperand(0) == PromOps[i] || 12555 User->getOperand(1) == PromOps[i]) 12556 return SDValue(); 12557 } 12558 } 12559 } 12560 12561 // Replace all inputs with the extension operand. 12562 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12563 // Constants may have users outside the cluster of to-be-promoted nodes, 12564 // and so we need to replace those as we do the promotions. 12565 if (isa<ConstantSDNode>(Inputs[i])) 12566 continue; 12567 else 12568 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 12569 } 12570 12571 std::list<HandleSDNode> PromOpHandles; 12572 for (auto &PromOp : PromOps) 12573 PromOpHandles.emplace_back(PromOp); 12574 12575 // Replace all operations (these are all the same, but have a different 12576 // (i1) return type). DAG.getNode will validate that the types of 12577 // a binary operator match, so go through the list in reverse so that 12578 // we've likely promoted both operands first. Any intermediate truncations or 12579 // extensions disappear. 12580 while (!PromOpHandles.empty()) { 12581 SDValue PromOp = PromOpHandles.back().getValue(); 12582 PromOpHandles.pop_back(); 12583 12584 if (PromOp.getOpcode() == ISD::TRUNCATE || 12585 PromOp.getOpcode() == ISD::SIGN_EXTEND || 12586 PromOp.getOpcode() == ISD::ZERO_EXTEND || 12587 PromOp.getOpcode() == ISD::ANY_EXTEND) { 12588 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 12589 PromOp.getOperand(0).getValueType() != MVT::i1) { 12590 // The operand is not yet ready (see comment below). 12591 PromOpHandles.emplace_front(PromOp); 12592 continue; 12593 } 12594 12595 SDValue RepValue = PromOp.getOperand(0); 12596 if (isa<ConstantSDNode>(RepValue)) 12597 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 12598 12599 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 12600 continue; 12601 } 12602 12603 unsigned C; 12604 switch (PromOp.getOpcode()) { 12605 default: C = 0; break; 12606 case ISD::SELECT: C = 1; break; 12607 case ISD::SELECT_CC: C = 2; break; 12608 } 12609 12610 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12611 PromOp.getOperand(C).getValueType() != MVT::i1) || 12612 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12613 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 12614 // The to-be-promoted operands of this node have not yet been 12615 // promoted (this should be rare because we're going through the 12616 // list backward, but if one of the operands has several users in 12617 // this cluster of to-be-promoted nodes, it is possible). 12618 PromOpHandles.emplace_front(PromOp); 12619 continue; 12620 } 12621 12622 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12623 PromOp.getNode()->op_end()); 12624 12625 // If there are any constant inputs, make sure they're replaced now. 12626 for (unsigned i = 0; i < 2; ++i) 12627 if (isa<ConstantSDNode>(Ops[C+i])) 12628 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 12629 12630 DAG.ReplaceAllUsesOfValueWith(PromOp, 12631 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 12632 } 12633 12634 // Now we're left with the initial truncation itself. 12635 if (N->getOpcode() == ISD::TRUNCATE) 12636 return N->getOperand(0); 12637 12638 // Otherwise, this is a comparison. The operands to be compared have just 12639 // changed type (to i1), but everything else is the same. 12640 return SDValue(N, 0); 12641 } 12642 12643 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 12644 DAGCombinerInfo &DCI) const { 12645 SelectionDAG &DAG = DCI.DAG; 12646 SDLoc dl(N); 12647 12648 // If we're tracking CR bits, we need to be careful that we don't have: 12649 // zext(binary-ops(trunc(x), trunc(y))) 12650 // or 12651 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 12652 // such that we're unnecessarily moving things into CR bits that can more 12653 // efficiently stay in GPRs. Note that if we're not certain that the high 12654 // bits are set as required by the final extension, we still may need to do 12655 // some masking to get the proper behavior. 12656 12657 // This same functionality is important on PPC64 when dealing with 12658 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 12659 // the return values of functions. Because it is so similar, it is handled 12660 // here as well. 12661 12662 if (N->getValueType(0) != MVT::i32 && 12663 N->getValueType(0) != MVT::i64) 12664 return SDValue(); 12665 12666 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 12667 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 12668 return SDValue(); 12669 12670 if (N->getOperand(0).getOpcode() != ISD::AND && 12671 N->getOperand(0).getOpcode() != ISD::OR && 12672 N->getOperand(0).getOpcode() != ISD::XOR && 12673 N->getOperand(0).getOpcode() != ISD::SELECT && 12674 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 12675 return SDValue(); 12676 12677 SmallVector<SDValue, 4> Inputs; 12678 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 12679 SmallPtrSet<SDNode *, 16> Visited; 12680 12681 // Visit all inputs, collect all binary operations (and, or, xor and 12682 // select) that are all fed by truncations. 12683 while (!BinOps.empty()) { 12684 SDValue BinOp = BinOps.back(); 12685 BinOps.pop_back(); 12686 12687 if (!Visited.insert(BinOp.getNode()).second) 12688 continue; 12689 12690 PromOps.push_back(BinOp); 12691 12692 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 12693 // The condition of the select is not promoted. 12694 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 12695 continue; 12696 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 12697 continue; 12698 12699 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 12700 isa<ConstantSDNode>(BinOp.getOperand(i))) { 12701 Inputs.push_back(BinOp.getOperand(i)); 12702 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 12703 BinOp.getOperand(i).getOpcode() == ISD::OR || 12704 BinOp.getOperand(i).getOpcode() == ISD::XOR || 12705 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 12706 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 12707 BinOps.push_back(BinOp.getOperand(i)); 12708 } else { 12709 // We have an input that is not a truncation or another binary 12710 // operation; we'll abort this transformation. 12711 return SDValue(); 12712 } 12713 } 12714 } 12715 12716 // The operands of a select that must be truncated when the select is 12717 // promoted because the operand is actually part of the to-be-promoted set. 12718 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 12719 12720 // Make sure that this is a self-contained cluster of operations (which 12721 // is not quite the same thing as saying that everything has only one 12722 // use). 12723 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12724 if (isa<ConstantSDNode>(Inputs[i])) 12725 continue; 12726 12727 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 12728 UE = Inputs[i].getNode()->use_end(); 12729 UI != UE; ++UI) { 12730 SDNode *User = *UI; 12731 if (User != N && !Visited.count(User)) 12732 return SDValue(); 12733 12734 // If we're going to promote the non-output-value operand(s) or SELECT or 12735 // SELECT_CC, record them for truncation. 12736 if (User->getOpcode() == ISD::SELECT) { 12737 if (User->getOperand(0) == Inputs[i]) 12738 SelectTruncOp[0].insert(std::make_pair(User, 12739 User->getOperand(0).getValueType())); 12740 } else if (User->getOpcode() == ISD::SELECT_CC) { 12741 if (User->getOperand(0) == Inputs[i]) 12742 SelectTruncOp[0].insert(std::make_pair(User, 12743 User->getOperand(0).getValueType())); 12744 if (User->getOperand(1) == Inputs[i]) 12745 SelectTruncOp[1].insert(std::make_pair(User, 12746 User->getOperand(1).getValueType())); 12747 } 12748 } 12749 } 12750 12751 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 12752 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 12753 UE = PromOps[i].getNode()->use_end(); 12754 UI != UE; ++UI) { 12755 SDNode *User = *UI; 12756 if (User != N && !Visited.count(User)) 12757 return SDValue(); 12758 12759 // If we're going to promote the non-output-value operand(s) or SELECT or 12760 // SELECT_CC, record them for truncation. 12761 if (User->getOpcode() == ISD::SELECT) { 12762 if (User->getOperand(0) == PromOps[i]) 12763 SelectTruncOp[0].insert(std::make_pair(User, 12764 User->getOperand(0).getValueType())); 12765 } else if (User->getOpcode() == ISD::SELECT_CC) { 12766 if (User->getOperand(0) == PromOps[i]) 12767 SelectTruncOp[0].insert(std::make_pair(User, 12768 User->getOperand(0).getValueType())); 12769 if (User->getOperand(1) == PromOps[i]) 12770 SelectTruncOp[1].insert(std::make_pair(User, 12771 User->getOperand(1).getValueType())); 12772 } 12773 } 12774 } 12775 12776 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 12777 bool ReallyNeedsExt = false; 12778 if (N->getOpcode() != ISD::ANY_EXTEND) { 12779 // If all of the inputs are not already sign/zero extended, then 12780 // we'll still need to do that at the end. 12781 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12782 if (isa<ConstantSDNode>(Inputs[i])) 12783 continue; 12784 12785 unsigned OpBits = 12786 Inputs[i].getOperand(0).getValueSizeInBits(); 12787 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 12788 12789 if ((N->getOpcode() == ISD::ZERO_EXTEND && 12790 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 12791 APInt::getHighBitsSet(OpBits, 12792 OpBits-PromBits))) || 12793 (N->getOpcode() == ISD::SIGN_EXTEND && 12794 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 12795 (OpBits-(PromBits-1)))) { 12796 ReallyNeedsExt = true; 12797 break; 12798 } 12799 } 12800 } 12801 12802 // Replace all inputs, either with the truncation operand, or a 12803 // truncation or extension to the final output type. 12804 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 12805 // Constant inputs need to be replaced with the to-be-promoted nodes that 12806 // use them because they might have users outside of the cluster of 12807 // promoted nodes. 12808 if (isa<ConstantSDNode>(Inputs[i])) 12809 continue; 12810 12811 SDValue InSrc = Inputs[i].getOperand(0); 12812 if (Inputs[i].getValueType() == N->getValueType(0)) 12813 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 12814 else if (N->getOpcode() == ISD::SIGN_EXTEND) 12815 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12816 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 12817 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12818 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12819 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 12820 else 12821 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 12822 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 12823 } 12824 12825 std::list<HandleSDNode> PromOpHandles; 12826 for (auto &PromOp : PromOps) 12827 PromOpHandles.emplace_back(PromOp); 12828 12829 // Replace all operations (these are all the same, but have a different 12830 // (promoted) return type). DAG.getNode will validate that the types of 12831 // a binary operator match, so go through the list in reverse so that 12832 // we've likely promoted both operands first. 12833 while (!PromOpHandles.empty()) { 12834 SDValue PromOp = PromOpHandles.back().getValue(); 12835 PromOpHandles.pop_back(); 12836 12837 unsigned C; 12838 switch (PromOp.getOpcode()) { 12839 default: C = 0; break; 12840 case ISD::SELECT: C = 1; break; 12841 case ISD::SELECT_CC: C = 2; break; 12842 } 12843 12844 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 12845 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 12846 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 12847 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 12848 // The to-be-promoted operands of this node have not yet been 12849 // promoted (this should be rare because we're going through the 12850 // list backward, but if one of the operands has several users in 12851 // this cluster of to-be-promoted nodes, it is possible). 12852 PromOpHandles.emplace_front(PromOp); 12853 continue; 12854 } 12855 12856 // For SELECT and SELECT_CC nodes, we do a similar check for any 12857 // to-be-promoted comparison inputs. 12858 if (PromOp.getOpcode() == ISD::SELECT || 12859 PromOp.getOpcode() == ISD::SELECT_CC) { 12860 if ((SelectTruncOp[0].count(PromOp.getNode()) && 12861 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 12862 (SelectTruncOp[1].count(PromOp.getNode()) && 12863 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 12864 PromOpHandles.emplace_front(PromOp); 12865 continue; 12866 } 12867 } 12868 12869 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 12870 PromOp.getNode()->op_end()); 12871 12872 // If this node has constant inputs, then they'll need to be promoted here. 12873 for (unsigned i = 0; i < 2; ++i) { 12874 if (!isa<ConstantSDNode>(Ops[C+i])) 12875 continue; 12876 if (Ops[C+i].getValueType() == N->getValueType(0)) 12877 continue; 12878 12879 if (N->getOpcode() == ISD::SIGN_EXTEND) 12880 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12881 else if (N->getOpcode() == ISD::ZERO_EXTEND) 12882 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12883 else 12884 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 12885 } 12886 12887 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 12888 // truncate them again to the original value type. 12889 if (PromOp.getOpcode() == ISD::SELECT || 12890 PromOp.getOpcode() == ISD::SELECT_CC) { 12891 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 12892 if (SI0 != SelectTruncOp[0].end()) 12893 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 12894 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 12895 if (SI1 != SelectTruncOp[1].end()) 12896 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 12897 } 12898 12899 DAG.ReplaceAllUsesOfValueWith(PromOp, 12900 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 12901 } 12902 12903 // Now we're left with the initial extension itself. 12904 if (!ReallyNeedsExt) 12905 return N->getOperand(0); 12906 12907 // To zero extend, just mask off everything except for the first bit (in the 12908 // i1 case). 12909 if (N->getOpcode() == ISD::ZERO_EXTEND) 12910 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 12911 DAG.getConstant(APInt::getLowBitsSet( 12912 N->getValueSizeInBits(0), PromBits), 12913 dl, N->getValueType(0))); 12914 12915 assert(N->getOpcode() == ISD::SIGN_EXTEND && 12916 "Invalid extension type"); 12917 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 12918 SDValue ShiftCst = 12919 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 12920 return DAG.getNode( 12921 ISD::SRA, dl, N->getValueType(0), 12922 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 12923 ShiftCst); 12924 } 12925 12926 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 12927 DAGCombinerInfo &DCI) const { 12928 assert(N->getOpcode() == ISD::SETCC && 12929 "Should be called with a SETCC node"); 12930 12931 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 12932 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 12933 SDValue LHS = N->getOperand(0); 12934 SDValue RHS = N->getOperand(1); 12935 12936 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 12937 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 12938 LHS.hasOneUse()) 12939 std::swap(LHS, RHS); 12940 12941 // x == 0-y --> x+y == 0 12942 // x != 0-y --> x+y != 0 12943 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 12944 RHS.hasOneUse()) { 12945 SDLoc DL(N); 12946 SelectionDAG &DAG = DCI.DAG; 12947 EVT VT = N->getValueType(0); 12948 EVT OpVT = LHS.getValueType(); 12949 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 12950 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 12951 } 12952 } 12953 12954 return DAGCombineTruncBoolExt(N, DCI); 12955 } 12956 12957 // Is this an extending load from an f32 to an f64? 12958 static bool isFPExtLoad(SDValue Op) { 12959 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 12960 return LD->getExtensionType() == ISD::EXTLOAD && 12961 Op.getValueType() == MVT::f64; 12962 return false; 12963 } 12964 12965 /// Reduces the number of fp-to-int conversion when building a vector. 12966 /// 12967 /// If this vector is built out of floating to integer conversions, 12968 /// transform it to a vector built out of floating point values followed by a 12969 /// single floating to integer conversion of the vector. 12970 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 12971 /// becomes (fptosi (build_vector ($A, $B, ...))) 12972 SDValue PPCTargetLowering:: 12973 combineElementTruncationToVectorTruncation(SDNode *N, 12974 DAGCombinerInfo &DCI) const { 12975 assert(N->getOpcode() == ISD::BUILD_VECTOR && 12976 "Should be called with a BUILD_VECTOR node"); 12977 12978 SelectionDAG &DAG = DCI.DAG; 12979 SDLoc dl(N); 12980 12981 SDValue FirstInput = N->getOperand(0); 12982 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 12983 "The input operand must be an fp-to-int conversion."); 12984 12985 // This combine happens after legalization so the fp_to_[su]i nodes are 12986 // already converted to PPCSISD nodes. 12987 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 12988 if (FirstConversion == PPCISD::FCTIDZ || 12989 FirstConversion == PPCISD::FCTIDUZ || 12990 FirstConversion == PPCISD::FCTIWZ || 12991 FirstConversion == PPCISD::FCTIWUZ) { 12992 bool IsSplat = true; 12993 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 12994 FirstConversion == PPCISD::FCTIWUZ; 12995 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 12996 SmallVector<SDValue, 4> Ops; 12997 EVT TargetVT = N->getValueType(0); 12998 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 12999 SDValue NextOp = N->getOperand(i); 13000 if (NextOp.getOpcode() != PPCISD::MFVSR) 13001 return SDValue(); 13002 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13003 if (NextConversion != FirstConversion) 13004 return SDValue(); 13005 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13006 // This is not valid if the input was originally double precision. It is 13007 // also not profitable to do unless this is an extending load in which 13008 // case doing this combine will allow us to combine consecutive loads. 13009 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13010 return SDValue(); 13011 if (N->getOperand(i) != FirstInput) 13012 IsSplat = false; 13013 } 13014 13015 // If this is a splat, we leave it as-is since there will be only a single 13016 // fp-to-int conversion followed by a splat of the integer. This is better 13017 // for 32-bit and smaller ints and neutral for 64-bit ints. 13018 if (IsSplat) 13019 return SDValue(); 13020 13021 // Now that we know we have the right type of node, get its operands 13022 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13023 SDValue In = N->getOperand(i).getOperand(0); 13024 if (Is32Bit) { 13025 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13026 // here, we know that all inputs are extending loads so this is safe). 13027 if (In.isUndef()) 13028 Ops.push_back(DAG.getUNDEF(SrcVT)); 13029 else { 13030 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13031 MVT::f32, In.getOperand(0), 13032 DAG.getIntPtrConstant(1, dl)); 13033 Ops.push_back(Trunc); 13034 } 13035 } else 13036 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13037 } 13038 13039 unsigned Opcode; 13040 if (FirstConversion == PPCISD::FCTIDZ || 13041 FirstConversion == PPCISD::FCTIWZ) 13042 Opcode = ISD::FP_TO_SINT; 13043 else 13044 Opcode = ISD::FP_TO_UINT; 13045 13046 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13047 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13048 return DAG.getNode(Opcode, dl, TargetVT, BV); 13049 } 13050 return SDValue(); 13051 } 13052 13053 /// Reduce the number of loads when building a vector. 13054 /// 13055 /// Building a vector out of multiple loads can be converted to a load 13056 /// of the vector type if the loads are consecutive. If the loads are 13057 /// consecutive but in descending order, a shuffle is added at the end 13058 /// to reorder the vector. 13059 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13060 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13061 "Should be called with a BUILD_VECTOR node"); 13062 13063 SDLoc dl(N); 13064 13065 // Return early for non byte-sized type, as they can't be consecutive. 13066 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13067 return SDValue(); 13068 13069 bool InputsAreConsecutiveLoads = true; 13070 bool InputsAreReverseConsecutive = true; 13071 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13072 SDValue FirstInput = N->getOperand(0); 13073 bool IsRoundOfExtLoad = false; 13074 13075 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13076 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13077 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13078 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13079 } 13080 // Not a build vector of (possibly fp_rounded) loads. 13081 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13082 N->getNumOperands() == 1) 13083 return SDValue(); 13084 13085 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13086 // If any inputs are fp_round(extload), they all must be. 13087 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13088 return SDValue(); 13089 13090 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13091 N->getOperand(i); 13092 if (NextInput.getOpcode() != ISD::LOAD) 13093 return SDValue(); 13094 13095 SDValue PreviousInput = 13096 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13097 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13098 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13099 13100 // If any inputs are fp_round(extload), they all must be. 13101 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13102 return SDValue(); 13103 13104 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13105 InputsAreConsecutiveLoads = false; 13106 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13107 InputsAreReverseConsecutive = false; 13108 13109 // Exit early if the loads are neither consecutive nor reverse consecutive. 13110 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13111 return SDValue(); 13112 } 13113 13114 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13115 "The loads cannot be both consecutive and reverse consecutive."); 13116 13117 SDValue FirstLoadOp = 13118 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13119 SDValue LastLoadOp = 13120 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13121 N->getOperand(N->getNumOperands()-1); 13122 13123 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13124 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13125 if (InputsAreConsecutiveLoads) { 13126 assert(LD1 && "Input needs to be a LoadSDNode."); 13127 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13128 LD1->getBasePtr(), LD1->getPointerInfo(), 13129 LD1->getAlignment()); 13130 } 13131 if (InputsAreReverseConsecutive) { 13132 assert(LDL && "Input needs to be a LoadSDNode."); 13133 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13134 LDL->getBasePtr(), LDL->getPointerInfo(), 13135 LDL->getAlignment()); 13136 SmallVector<int, 16> Ops; 13137 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13138 Ops.push_back(i); 13139 13140 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13141 DAG.getUNDEF(N->getValueType(0)), Ops); 13142 } 13143 return SDValue(); 13144 } 13145 13146 // This function adds the required vector_shuffle needed to get 13147 // the elements of the vector extract in the correct position 13148 // as specified by the CorrectElems encoding. 13149 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13150 SDValue Input, uint64_t Elems, 13151 uint64_t CorrectElems) { 13152 SDLoc dl(N); 13153 13154 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13155 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13156 13157 // Knowing the element indices being extracted from the original 13158 // vector and the order in which they're being inserted, just put 13159 // them at element indices required for the instruction. 13160 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13161 if (DAG.getDataLayout().isLittleEndian()) 13162 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13163 else 13164 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13165 CorrectElems = CorrectElems >> 8; 13166 Elems = Elems >> 8; 13167 } 13168 13169 SDValue Shuffle = 13170 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13171 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13172 13173 EVT Ty = N->getValueType(0); 13174 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle); 13175 return BV; 13176 } 13177 13178 // Look for build vector patterns where input operands come from sign 13179 // extended vector_extract elements of specific indices. If the correct indices 13180 // aren't used, add a vector shuffle to fix up the indices and create a new 13181 // PPCISD:SExtVElems node which selects the vector sign extend instructions 13182 // during instruction selection. 13183 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13184 // This array encodes the indices that the vector sign extend instructions 13185 // extract from when extending from one type to another for both BE and LE. 13186 // The right nibble of each byte corresponds to the LE incides. 13187 // and the left nibble of each byte corresponds to the BE incides. 13188 // For example: 0x3074B8FC byte->word 13189 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13190 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13191 // For example: 0x000070F8 byte->double word 13192 // For LE: the allowed indices are: 0x0,0x8 13193 // For BE: the allowed indices are: 0x7,0xF 13194 uint64_t TargetElems[] = { 13195 0x3074B8FC, // b->w 13196 0x000070F8, // b->d 13197 0x10325476, // h->w 13198 0x00003074, // h->d 13199 0x00001032, // w->d 13200 }; 13201 13202 uint64_t Elems = 0; 13203 int Index; 13204 SDValue Input; 13205 13206 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13207 if (!Op) 13208 return false; 13209 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13210 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13211 return false; 13212 13213 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13214 // of the right width. 13215 SDValue Extract = Op.getOperand(0); 13216 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13217 Extract = Extract.getOperand(0); 13218 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13219 return false; 13220 13221 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13222 if (!ExtOp) 13223 return false; 13224 13225 Index = ExtOp->getZExtValue(); 13226 if (Input && Input != Extract.getOperand(0)) 13227 return false; 13228 13229 if (!Input) 13230 Input = Extract.getOperand(0); 13231 13232 Elems = Elems << 8; 13233 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13234 Elems |= Index; 13235 13236 return true; 13237 }; 13238 13239 // If the build vector operands aren't sign extended vector extracts, 13240 // of the same input vector, then return. 13241 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13242 if (!isSExtOfVecExtract(N->getOperand(i))) { 13243 return SDValue(); 13244 } 13245 } 13246 13247 // If the vector extract indicies are not correct, add the appropriate 13248 // vector_shuffle. 13249 int TgtElemArrayIdx; 13250 int InputSize = Input.getValueType().getScalarSizeInBits(); 13251 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13252 if (InputSize + OutputSize == 40) 13253 TgtElemArrayIdx = 0; 13254 else if (InputSize + OutputSize == 72) 13255 TgtElemArrayIdx = 1; 13256 else if (InputSize + OutputSize == 48) 13257 TgtElemArrayIdx = 2; 13258 else if (InputSize + OutputSize == 80) 13259 TgtElemArrayIdx = 3; 13260 else if (InputSize + OutputSize == 96) 13261 TgtElemArrayIdx = 4; 13262 else 13263 return SDValue(); 13264 13265 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13266 CorrectElems = DAG.getDataLayout().isLittleEndian() 13267 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13268 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13269 if (Elems != CorrectElems) { 13270 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13271 } 13272 13273 // Regular lowering will catch cases where a shuffle is not needed. 13274 return SDValue(); 13275 } 13276 13277 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 13278 DAGCombinerInfo &DCI) const { 13279 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13280 "Should be called with a BUILD_VECTOR node"); 13281 13282 SelectionDAG &DAG = DCI.DAG; 13283 SDLoc dl(N); 13284 13285 if (!Subtarget.hasVSX()) 13286 return SDValue(); 13287 13288 // The target independent DAG combiner will leave a build_vector of 13289 // float-to-int conversions intact. We can generate MUCH better code for 13290 // a float-to-int conversion of a vector of floats. 13291 SDValue FirstInput = N->getOperand(0); 13292 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 13293 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 13294 if (Reduced) 13295 return Reduced; 13296 } 13297 13298 // If we're building a vector out of consecutive loads, just load that 13299 // vector type. 13300 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 13301 if (Reduced) 13302 return Reduced; 13303 13304 // If we're building a vector out of extended elements from another vector 13305 // we have P9 vector integer extend instructions. The code assumes legal 13306 // input types (i.e. it can't handle things like v4i16) so do not run before 13307 // legalization. 13308 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 13309 Reduced = combineBVOfVecSExt(N, DAG); 13310 if (Reduced) 13311 return Reduced; 13312 } 13313 13314 13315 if (N->getValueType(0) != MVT::v2f64) 13316 return SDValue(); 13317 13318 // Looking for: 13319 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 13320 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 13321 FirstInput.getOpcode() != ISD::UINT_TO_FP) 13322 return SDValue(); 13323 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 13324 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 13325 return SDValue(); 13326 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 13327 return SDValue(); 13328 13329 SDValue Ext1 = FirstInput.getOperand(0); 13330 SDValue Ext2 = N->getOperand(1).getOperand(0); 13331 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 13332 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13333 return SDValue(); 13334 13335 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 13336 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 13337 if (!Ext1Op || !Ext2Op) 13338 return SDValue(); 13339 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 13340 Ext1.getOperand(0) != Ext2.getOperand(0)) 13341 return SDValue(); 13342 13343 int FirstElem = Ext1Op->getZExtValue(); 13344 int SecondElem = Ext2Op->getZExtValue(); 13345 int SubvecIdx; 13346 if (FirstElem == 0 && SecondElem == 1) 13347 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 13348 else if (FirstElem == 2 && SecondElem == 3) 13349 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 13350 else 13351 return SDValue(); 13352 13353 SDValue SrcVec = Ext1.getOperand(0); 13354 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 13355 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 13356 return DAG.getNode(NodeType, dl, MVT::v2f64, 13357 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 13358 } 13359 13360 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 13361 DAGCombinerInfo &DCI) const { 13362 assert((N->getOpcode() == ISD::SINT_TO_FP || 13363 N->getOpcode() == ISD::UINT_TO_FP) && 13364 "Need an int -> FP conversion node here"); 13365 13366 if (useSoftFloat() || !Subtarget.has64BitSupport()) 13367 return SDValue(); 13368 13369 SelectionDAG &DAG = DCI.DAG; 13370 SDLoc dl(N); 13371 SDValue Op(N, 0); 13372 13373 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 13374 // from the hardware. 13375 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 13376 return SDValue(); 13377 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 13378 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 13379 return SDValue(); 13380 13381 SDValue FirstOperand(Op.getOperand(0)); 13382 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 13383 (FirstOperand.getValueType() == MVT::i8 || 13384 FirstOperand.getValueType() == MVT::i16); 13385 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 13386 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 13387 bool DstDouble = Op.getValueType() == MVT::f64; 13388 unsigned ConvOp = Signed ? 13389 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 13390 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 13391 SDValue WidthConst = 13392 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 13393 dl, false); 13394 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 13395 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 13396 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 13397 DAG.getVTList(MVT::f64, MVT::Other), 13398 Ops, MVT::i8, LDN->getMemOperand()); 13399 13400 // For signed conversion, we need to sign-extend the value in the VSR 13401 if (Signed) { 13402 SDValue ExtOps[] = { Ld, WidthConst }; 13403 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 13404 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 13405 } else 13406 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 13407 } 13408 13409 13410 // For i32 intermediate values, unfortunately, the conversion functions 13411 // leave the upper 32 bits of the value are undefined. Within the set of 13412 // scalar instructions, we have no method for zero- or sign-extending the 13413 // value. Thus, we cannot handle i32 intermediate values here. 13414 if (Op.getOperand(0).getValueType() == MVT::i32) 13415 return SDValue(); 13416 13417 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 13418 "UINT_TO_FP is supported only with FPCVT"); 13419 13420 // If we have FCFIDS, then use it when converting to single-precision. 13421 // Otherwise, convert to double-precision and then round. 13422 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13423 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 13424 : PPCISD::FCFIDS) 13425 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 13426 : PPCISD::FCFID); 13427 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 13428 ? MVT::f32 13429 : MVT::f64; 13430 13431 // If we're converting from a float, to an int, and back to a float again, 13432 // then we don't need the store/load pair at all. 13433 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 13434 Subtarget.hasFPCVT()) || 13435 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 13436 SDValue Src = Op.getOperand(0).getOperand(0); 13437 if (Src.getValueType() == MVT::f32) { 13438 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 13439 DCI.AddToWorklist(Src.getNode()); 13440 } else if (Src.getValueType() != MVT::f64) { 13441 // Make sure that we don't pick up a ppc_fp128 source value. 13442 return SDValue(); 13443 } 13444 13445 unsigned FCTOp = 13446 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 13447 PPCISD::FCTIDUZ; 13448 13449 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 13450 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 13451 13452 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 13453 FP = DAG.getNode(ISD::FP_ROUND, dl, 13454 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 13455 DCI.AddToWorklist(FP.getNode()); 13456 } 13457 13458 return FP; 13459 } 13460 13461 return SDValue(); 13462 } 13463 13464 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 13465 // builtins) into loads with swaps. 13466 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 13467 DAGCombinerInfo &DCI) const { 13468 SelectionDAG &DAG = DCI.DAG; 13469 SDLoc dl(N); 13470 SDValue Chain; 13471 SDValue Base; 13472 MachineMemOperand *MMO; 13473 13474 switch (N->getOpcode()) { 13475 default: 13476 llvm_unreachable("Unexpected opcode for little endian VSX load"); 13477 case ISD::LOAD: { 13478 LoadSDNode *LD = cast<LoadSDNode>(N); 13479 Chain = LD->getChain(); 13480 Base = LD->getBasePtr(); 13481 MMO = LD->getMemOperand(); 13482 // If the MMO suggests this isn't a load of a full vector, leave 13483 // things alone. For a built-in, we have to make the change for 13484 // correctness, so if there is a size problem that will be a bug. 13485 if (MMO->getSize() < 16) 13486 return SDValue(); 13487 break; 13488 } 13489 case ISD::INTRINSIC_W_CHAIN: { 13490 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13491 Chain = Intrin->getChain(); 13492 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 13493 // us what we want. Get operand 2 instead. 13494 Base = Intrin->getOperand(2); 13495 MMO = Intrin->getMemOperand(); 13496 break; 13497 } 13498 } 13499 13500 MVT VecTy = N->getValueType(0).getSimpleVT(); 13501 13502 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 13503 // aligned and the type is a vector with elements up to 4 bytes 13504 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13505 && VecTy.getScalarSizeInBits() <= 32 ) { 13506 return SDValue(); 13507 } 13508 13509 SDValue LoadOps[] = { Chain, Base }; 13510 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 13511 DAG.getVTList(MVT::v2f64, MVT::Other), 13512 LoadOps, MVT::v2f64, MMO); 13513 13514 DCI.AddToWorklist(Load.getNode()); 13515 Chain = Load.getValue(1); 13516 SDValue Swap = DAG.getNode( 13517 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 13518 DCI.AddToWorklist(Swap.getNode()); 13519 13520 // Add a bitcast if the resulting load type doesn't match v2f64. 13521 if (VecTy != MVT::v2f64) { 13522 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 13523 DCI.AddToWorklist(N.getNode()); 13524 // Package {bitcast value, swap's chain} to match Load's shape. 13525 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 13526 N, Swap.getValue(1)); 13527 } 13528 13529 return Swap; 13530 } 13531 13532 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 13533 // builtins) into stores with swaps. 13534 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 13535 DAGCombinerInfo &DCI) const { 13536 SelectionDAG &DAG = DCI.DAG; 13537 SDLoc dl(N); 13538 SDValue Chain; 13539 SDValue Base; 13540 unsigned SrcOpnd; 13541 MachineMemOperand *MMO; 13542 13543 switch (N->getOpcode()) { 13544 default: 13545 llvm_unreachable("Unexpected opcode for little endian VSX store"); 13546 case ISD::STORE: { 13547 StoreSDNode *ST = cast<StoreSDNode>(N); 13548 Chain = ST->getChain(); 13549 Base = ST->getBasePtr(); 13550 MMO = ST->getMemOperand(); 13551 SrcOpnd = 1; 13552 // If the MMO suggests this isn't a store of a full vector, leave 13553 // things alone. For a built-in, we have to make the change for 13554 // correctness, so if there is a size problem that will be a bug. 13555 if (MMO->getSize() < 16) 13556 return SDValue(); 13557 break; 13558 } 13559 case ISD::INTRINSIC_VOID: { 13560 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 13561 Chain = Intrin->getChain(); 13562 // Intrin->getBasePtr() oddly does not get what we want. 13563 Base = Intrin->getOperand(3); 13564 MMO = Intrin->getMemOperand(); 13565 SrcOpnd = 2; 13566 break; 13567 } 13568 } 13569 13570 SDValue Src = N->getOperand(SrcOpnd); 13571 MVT VecTy = Src.getValueType().getSimpleVT(); 13572 13573 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 13574 // aligned and the type is a vector with elements up to 4 bytes 13575 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16) 13576 && VecTy.getScalarSizeInBits() <= 32 ) { 13577 return SDValue(); 13578 } 13579 13580 // All stores are done as v2f64 and possible bit cast. 13581 if (VecTy != MVT::v2f64) { 13582 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 13583 DCI.AddToWorklist(Src.getNode()); 13584 } 13585 13586 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 13587 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 13588 DCI.AddToWorklist(Swap.getNode()); 13589 Chain = Swap.getValue(1); 13590 SDValue StoreOps[] = { Chain, Swap, Base }; 13591 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 13592 DAG.getVTList(MVT::Other), 13593 StoreOps, VecTy, MMO); 13594 DCI.AddToWorklist(Store.getNode()); 13595 return Store; 13596 } 13597 13598 // Handle DAG combine for STORE (FP_TO_INT F). 13599 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 13600 DAGCombinerInfo &DCI) const { 13601 13602 SelectionDAG &DAG = DCI.DAG; 13603 SDLoc dl(N); 13604 unsigned Opcode = N->getOperand(1).getOpcode(); 13605 13606 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 13607 && "Not a FP_TO_INT Instruction!"); 13608 13609 SDValue Val = N->getOperand(1).getOperand(0); 13610 EVT Op1VT = N->getOperand(1).getValueType(); 13611 EVT ResVT = Val.getValueType(); 13612 13613 // Floating point types smaller than 32 bits are not legal on Power. 13614 if (ResVT.getScalarSizeInBits() < 32) 13615 return SDValue(); 13616 13617 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 13618 bool ValidTypeForStoreFltAsInt = 13619 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 13620 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 13621 13622 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 13623 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 13624 return SDValue(); 13625 13626 // Extend f32 values to f64 13627 if (ResVT.getScalarSizeInBits() == 32) { 13628 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 13629 DCI.AddToWorklist(Val.getNode()); 13630 } 13631 13632 // Set signed or unsigned conversion opcode. 13633 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 13634 PPCISD::FP_TO_SINT_IN_VSR : 13635 PPCISD::FP_TO_UINT_IN_VSR; 13636 13637 Val = DAG.getNode(ConvOpcode, 13638 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 13639 DCI.AddToWorklist(Val.getNode()); 13640 13641 // Set number of bytes being converted. 13642 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 13643 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 13644 DAG.getIntPtrConstant(ByteSize, dl, false), 13645 DAG.getValueType(Op1VT) }; 13646 13647 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 13648 DAG.getVTList(MVT::Other), Ops, 13649 cast<StoreSDNode>(N)->getMemoryVT(), 13650 cast<StoreSDNode>(N)->getMemOperand()); 13651 13652 DCI.AddToWorklist(Val.getNode()); 13653 return Val; 13654 } 13655 13656 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 13657 LSBaseSDNode *LSBase, 13658 DAGCombinerInfo &DCI) const { 13659 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 13660 "Not a reverse memop pattern!"); 13661 13662 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 13663 auto Mask = SVN->getMask(); 13664 int i = 0; 13665 auto I = Mask.rbegin(); 13666 auto E = Mask.rend(); 13667 13668 for (; I != E; ++I) { 13669 if (*I != i) 13670 return false; 13671 i++; 13672 } 13673 return true; 13674 }; 13675 13676 SelectionDAG &DAG = DCI.DAG; 13677 EVT VT = SVN->getValueType(0); 13678 13679 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 13680 return SDValue(); 13681 13682 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 13683 // See comment in PPCVSXSwapRemoval.cpp. 13684 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 13685 if (!Subtarget.hasP9Vector()) 13686 return SDValue(); 13687 13688 if(!IsElementReverse(SVN)) 13689 return SDValue(); 13690 13691 if (LSBase->getOpcode() == ISD::LOAD) { 13692 SDLoc dl(SVN); 13693 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 13694 return DAG.getMemIntrinsicNode( 13695 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 13696 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13697 } 13698 13699 if (LSBase->getOpcode() == ISD::STORE) { 13700 SDLoc dl(LSBase); 13701 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 13702 LSBase->getBasePtr()}; 13703 return DAG.getMemIntrinsicNode( 13704 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 13705 LSBase->getMemoryVT(), LSBase->getMemOperand()); 13706 } 13707 13708 llvm_unreachable("Expected a load or store node here"); 13709 } 13710 13711 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 13712 DAGCombinerInfo &DCI) const { 13713 SelectionDAG &DAG = DCI.DAG; 13714 SDLoc dl(N); 13715 switch (N->getOpcode()) { 13716 default: break; 13717 case ISD::ADD: 13718 return combineADD(N, DCI); 13719 case ISD::SHL: 13720 return combineSHL(N, DCI); 13721 case ISD::SRA: 13722 return combineSRA(N, DCI); 13723 case ISD::SRL: 13724 return combineSRL(N, DCI); 13725 case ISD::MUL: 13726 return combineMUL(N, DCI); 13727 case PPCISD::SHL: 13728 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 13729 return N->getOperand(0); 13730 break; 13731 case PPCISD::SRL: 13732 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 13733 return N->getOperand(0); 13734 break; 13735 case PPCISD::SRA: 13736 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 13737 if (C->isNullValue() || // 0 >>s V -> 0. 13738 C->isAllOnesValue()) // -1 >>s V -> -1. 13739 return N->getOperand(0); 13740 } 13741 break; 13742 case ISD::SIGN_EXTEND: 13743 case ISD::ZERO_EXTEND: 13744 case ISD::ANY_EXTEND: 13745 return DAGCombineExtBoolTrunc(N, DCI); 13746 case ISD::TRUNCATE: 13747 return combineTRUNCATE(N, DCI); 13748 case ISD::SETCC: 13749 if (SDValue CSCC = combineSetCC(N, DCI)) 13750 return CSCC; 13751 LLVM_FALLTHROUGH; 13752 case ISD::SELECT_CC: 13753 return DAGCombineTruncBoolExt(N, DCI); 13754 case ISD::SINT_TO_FP: 13755 case ISD::UINT_TO_FP: 13756 return combineFPToIntToFP(N, DCI); 13757 case ISD::VECTOR_SHUFFLE: 13758 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 13759 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 13760 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 13761 } 13762 break; 13763 case ISD::STORE: { 13764 13765 EVT Op1VT = N->getOperand(1).getValueType(); 13766 unsigned Opcode = N->getOperand(1).getOpcode(); 13767 13768 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 13769 SDValue Val= combineStoreFPToInt(N, DCI); 13770 if (Val) 13771 return Val; 13772 } 13773 13774 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 13775 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 13776 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 13777 if (Val) 13778 return Val; 13779 } 13780 13781 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 13782 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 13783 N->getOperand(1).getNode()->hasOneUse() && 13784 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 13785 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 13786 13787 // STBRX can only handle simple types and it makes no sense to store less 13788 // two bytes in byte-reversed order. 13789 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 13790 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 13791 break; 13792 13793 SDValue BSwapOp = N->getOperand(1).getOperand(0); 13794 // Do an any-extend to 32-bits if this is a half-word input. 13795 if (BSwapOp.getValueType() == MVT::i16) 13796 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 13797 13798 // If the type of BSWAP operand is wider than stored memory width 13799 // it need to be shifted to the right side before STBRX. 13800 if (Op1VT.bitsGT(mVT)) { 13801 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 13802 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 13803 DAG.getConstant(Shift, dl, MVT::i32)); 13804 // Need to truncate if this is a bswap of i64 stored as i32/i16. 13805 if (Op1VT == MVT::i64) 13806 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 13807 } 13808 13809 SDValue Ops[] = { 13810 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 13811 }; 13812 return 13813 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 13814 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 13815 cast<StoreSDNode>(N)->getMemOperand()); 13816 } 13817 13818 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 13819 // So it can increase the chance of CSE constant construction. 13820 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 13821 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 13822 // Need to sign-extended to 64-bits to handle negative values. 13823 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 13824 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 13825 MemVT.getSizeInBits()); 13826 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 13827 13828 // DAG.getTruncStore() can't be used here because it doesn't accept 13829 // the general (base + offset) addressing mode. 13830 // So we use UpdateNodeOperands and setTruncatingStore instead. 13831 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 13832 N->getOperand(3)); 13833 cast<StoreSDNode>(N)->setTruncatingStore(true); 13834 return SDValue(N, 0); 13835 } 13836 13837 // For little endian, VSX stores require generating xxswapd/lxvd2x. 13838 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 13839 if (Op1VT.isSimple()) { 13840 MVT StoreVT = Op1VT.getSimpleVT(); 13841 if (Subtarget.needsSwapsForVSXMemOps() && 13842 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 13843 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 13844 return expandVSXStoreForLE(N, DCI); 13845 } 13846 break; 13847 } 13848 case ISD::LOAD: { 13849 LoadSDNode *LD = cast<LoadSDNode>(N); 13850 EVT VT = LD->getValueType(0); 13851 13852 // For little endian, VSX loads require generating lxvd2x/xxswapd. 13853 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 13854 if (VT.isSimple()) { 13855 MVT LoadVT = VT.getSimpleVT(); 13856 if (Subtarget.needsSwapsForVSXMemOps() && 13857 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 13858 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 13859 return expandVSXLoadForLE(N, DCI); 13860 } 13861 13862 // We sometimes end up with a 64-bit integer load, from which we extract 13863 // two single-precision floating-point numbers. This happens with 13864 // std::complex<float>, and other similar structures, because of the way we 13865 // canonicalize structure copies. However, if we lack direct moves, 13866 // then the final bitcasts from the extracted integer values to the 13867 // floating-point numbers turn into store/load pairs. Even with direct moves, 13868 // just loading the two floating-point numbers is likely better. 13869 auto ReplaceTwoFloatLoad = [&]() { 13870 if (VT != MVT::i64) 13871 return false; 13872 13873 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 13874 LD->isVolatile()) 13875 return false; 13876 13877 // We're looking for a sequence like this: 13878 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 13879 // t16: i64 = srl t13, Constant:i32<32> 13880 // t17: i32 = truncate t16 13881 // t18: f32 = bitcast t17 13882 // t19: i32 = truncate t13 13883 // t20: f32 = bitcast t19 13884 13885 if (!LD->hasNUsesOfValue(2, 0)) 13886 return false; 13887 13888 auto UI = LD->use_begin(); 13889 while (UI.getUse().getResNo() != 0) ++UI; 13890 SDNode *Trunc = *UI++; 13891 while (UI.getUse().getResNo() != 0) ++UI; 13892 SDNode *RightShift = *UI; 13893 if (Trunc->getOpcode() != ISD::TRUNCATE) 13894 std::swap(Trunc, RightShift); 13895 13896 if (Trunc->getOpcode() != ISD::TRUNCATE || 13897 Trunc->getValueType(0) != MVT::i32 || 13898 !Trunc->hasOneUse()) 13899 return false; 13900 if (RightShift->getOpcode() != ISD::SRL || 13901 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 13902 RightShift->getConstantOperandVal(1) != 32 || 13903 !RightShift->hasOneUse()) 13904 return false; 13905 13906 SDNode *Trunc2 = *RightShift->use_begin(); 13907 if (Trunc2->getOpcode() != ISD::TRUNCATE || 13908 Trunc2->getValueType(0) != MVT::i32 || 13909 !Trunc2->hasOneUse()) 13910 return false; 13911 13912 SDNode *Bitcast = *Trunc->use_begin(); 13913 SDNode *Bitcast2 = *Trunc2->use_begin(); 13914 13915 if (Bitcast->getOpcode() != ISD::BITCAST || 13916 Bitcast->getValueType(0) != MVT::f32) 13917 return false; 13918 if (Bitcast2->getOpcode() != ISD::BITCAST || 13919 Bitcast2->getValueType(0) != MVT::f32) 13920 return false; 13921 13922 if (Subtarget.isLittleEndian()) 13923 std::swap(Bitcast, Bitcast2); 13924 13925 // Bitcast has the second float (in memory-layout order) and Bitcast2 13926 // has the first one. 13927 13928 SDValue BasePtr = LD->getBasePtr(); 13929 if (LD->isIndexed()) { 13930 assert(LD->getAddressingMode() == ISD::PRE_INC && 13931 "Non-pre-inc AM on PPC?"); 13932 BasePtr = 13933 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 13934 LD->getOffset()); 13935 } 13936 13937 auto MMOFlags = 13938 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 13939 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 13940 LD->getPointerInfo(), LD->getAlignment(), 13941 MMOFlags, LD->getAAInfo()); 13942 SDValue AddPtr = 13943 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 13944 BasePtr, DAG.getIntPtrConstant(4, dl)); 13945 SDValue FloatLoad2 = DAG.getLoad( 13946 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 13947 LD->getPointerInfo().getWithOffset(4), 13948 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 13949 13950 if (LD->isIndexed()) { 13951 // Note that DAGCombine should re-form any pre-increment load(s) from 13952 // what is produced here if that makes sense. 13953 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 13954 } 13955 13956 DCI.CombineTo(Bitcast2, FloatLoad); 13957 DCI.CombineTo(Bitcast, FloatLoad2); 13958 13959 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 13960 SDValue(FloatLoad2.getNode(), 1)); 13961 return true; 13962 }; 13963 13964 if (ReplaceTwoFloatLoad()) 13965 return SDValue(N, 0); 13966 13967 EVT MemVT = LD->getMemoryVT(); 13968 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 13969 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); 13970 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext()); 13971 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy); 13972 if (LD->isUnindexed() && VT.isVector() && 13973 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 13974 // P8 and later hardware should just use LOAD. 13975 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || 13976 VT == MVT::v4i32 || VT == MVT::v4f32)) || 13977 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) && 13978 LD->getAlignment() >= ScalarABIAlignment)) && 13979 LD->getAlignment() < ABIAlignment) { 13980 // This is a type-legal unaligned Altivec or QPX load. 13981 SDValue Chain = LD->getChain(); 13982 SDValue Ptr = LD->getBasePtr(); 13983 bool isLittleEndian = Subtarget.isLittleEndian(); 13984 13985 // This implements the loading of unaligned vectors as described in 13986 // the venerable Apple Velocity Engine overview. Specifically: 13987 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 13988 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 13989 // 13990 // The general idea is to expand a sequence of one or more unaligned 13991 // loads into an alignment-based permutation-control instruction (lvsl 13992 // or lvsr), a series of regular vector loads (which always truncate 13993 // their input address to an aligned address), and a series of 13994 // permutations. The results of these permutations are the requested 13995 // loaded values. The trick is that the last "extra" load is not taken 13996 // from the address you might suspect (sizeof(vector) bytes after the 13997 // last requested load), but rather sizeof(vector) - 1 bytes after the 13998 // last requested vector. The point of this is to avoid a page fault if 13999 // the base address happened to be aligned. This works because if the 14000 // base address is aligned, then adding less than a full vector length 14001 // will cause the last vector in the sequence to be (re)loaded. 14002 // Otherwise, the next vector will be fetched as you might suspect was 14003 // necessary. 14004 14005 // We might be able to reuse the permutation generation from 14006 // a different base address offset from this one by an aligned amount. 14007 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 14008 // optimization later. 14009 Intrinsic::ID Intr, IntrLD, IntrPerm; 14010 MVT PermCntlTy, PermTy, LDTy; 14011 if (Subtarget.hasAltivec()) { 14012 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : 14013 Intrinsic::ppc_altivec_lvsl; 14014 IntrLD = Intrinsic::ppc_altivec_lvx; 14015 IntrPerm = Intrinsic::ppc_altivec_vperm; 14016 PermCntlTy = MVT::v16i8; 14017 PermTy = MVT::v4i32; 14018 LDTy = MVT::v4i32; 14019 } else { 14020 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld : 14021 Intrinsic::ppc_qpx_qvlpcls; 14022 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd : 14023 Intrinsic::ppc_qpx_qvlfs; 14024 IntrPerm = Intrinsic::ppc_qpx_qvfperm; 14025 PermCntlTy = MVT::v4f64; 14026 PermTy = MVT::v4f64; 14027 LDTy = MemVT.getSimpleVT(); 14028 } 14029 14030 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 14031 14032 // Create the new MMO for the new base load. It is like the original MMO, 14033 // but represents an area in memory almost twice the vector size centered 14034 // on the original address. If the address is unaligned, we might start 14035 // reading up to (sizeof(vector)-1) bytes below the address of the 14036 // original unaligned load. 14037 MachineFunction &MF = DAG.getMachineFunction(); 14038 MachineMemOperand *BaseMMO = 14039 MF.getMachineMemOperand(LD->getMemOperand(), 14040 -(long)MemVT.getStoreSize()+1, 14041 2*MemVT.getStoreSize()-1); 14042 14043 // Create the new base load. 14044 SDValue LDXIntID = 14045 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 14046 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 14047 SDValue BaseLoad = 14048 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14049 DAG.getVTList(PermTy, MVT::Other), 14050 BaseLoadOps, LDTy, BaseMMO); 14051 14052 // Note that the value of IncOffset (which is provided to the next 14053 // load's pointer info offset value, and thus used to calculate the 14054 // alignment), and the value of IncValue (which is actually used to 14055 // increment the pointer value) are different! This is because we 14056 // require the next load to appear to be aligned, even though it 14057 // is actually offset from the base pointer by a lesser amount. 14058 int IncOffset = VT.getSizeInBits() / 8; 14059 int IncValue = IncOffset; 14060 14061 // Walk (both up and down) the chain looking for another load at the real 14062 // (aligned) offset (the alignment of the other load does not matter in 14063 // this case). If found, then do not use the offset reduction trick, as 14064 // that will prevent the loads from being later combined (as they would 14065 // otherwise be duplicates). 14066 if (!findConsecutiveLoad(LD, DAG)) 14067 --IncValue; 14068 14069 SDValue Increment = 14070 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 14071 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 14072 14073 MachineMemOperand *ExtraMMO = 14074 MF.getMachineMemOperand(LD->getMemOperand(), 14075 1, 2*MemVT.getStoreSize()-1); 14076 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 14077 SDValue ExtraLoad = 14078 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 14079 DAG.getVTList(PermTy, MVT::Other), 14080 ExtraLoadOps, LDTy, ExtraMMO); 14081 14082 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 14083 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 14084 14085 // Because vperm has a big-endian bias, we must reverse the order 14086 // of the input vectors and complement the permute control vector 14087 // when generating little endian code. We have already handled the 14088 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 14089 // and ExtraLoad here. 14090 SDValue Perm; 14091 if (isLittleEndian) 14092 Perm = BuildIntrinsicOp(IntrPerm, 14093 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 14094 else 14095 Perm = BuildIntrinsicOp(IntrPerm, 14096 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 14097 14098 if (VT != PermTy) 14099 Perm = Subtarget.hasAltivec() ? 14100 DAG.getNode(ISD::BITCAST, dl, VT, Perm) : 14101 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX 14102 DAG.getTargetConstant(1, dl, MVT::i64)); 14103 // second argument is 1 because this rounding 14104 // is always exact. 14105 14106 // The output of the permutation is our loaded result, the TokenFactor is 14107 // our new chain. 14108 DCI.CombineTo(N, Perm, TF); 14109 return SDValue(N, 0); 14110 } 14111 } 14112 break; 14113 case ISD::INTRINSIC_WO_CHAIN: { 14114 bool isLittleEndian = Subtarget.isLittleEndian(); 14115 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 14116 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 14117 : Intrinsic::ppc_altivec_lvsl); 14118 if ((IID == Intr || 14119 IID == Intrinsic::ppc_qpx_qvlpcld || 14120 IID == Intrinsic::ppc_qpx_qvlpcls) && 14121 N->getOperand(1)->getOpcode() == ISD::ADD) { 14122 SDValue Add = N->getOperand(1); 14123 14124 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ? 14125 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */; 14126 14127 if (DAG.MaskedValueIsZero(Add->getOperand(1), 14128 APInt::getAllOnesValue(Bits /* alignment */) 14129 .zext(Add.getScalarValueSizeInBits()))) { 14130 SDNode *BasePtr = Add->getOperand(0).getNode(); 14131 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14132 UE = BasePtr->use_end(); 14133 UI != UE; ++UI) { 14134 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14135 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) { 14136 // We've found another LVSL/LVSR, and this address is an aligned 14137 // multiple of that one. The results will be the same, so use the 14138 // one we've just found instead. 14139 14140 return SDValue(*UI, 0); 14141 } 14142 } 14143 } 14144 14145 if (isa<ConstantSDNode>(Add->getOperand(1))) { 14146 SDNode *BasePtr = Add->getOperand(0).getNode(); 14147 for (SDNode::use_iterator UI = BasePtr->use_begin(), 14148 UE = BasePtr->use_end(); UI != UE; ++UI) { 14149 if (UI->getOpcode() == ISD::ADD && 14150 isa<ConstantSDNode>(UI->getOperand(1)) && 14151 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 14152 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 14153 (1ULL << Bits) == 0) { 14154 SDNode *OtherAdd = *UI; 14155 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 14156 VE = OtherAdd->use_end(); VI != VE; ++VI) { 14157 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14158 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 14159 return SDValue(*VI, 0); 14160 } 14161 } 14162 } 14163 } 14164 } 14165 } 14166 14167 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 14168 // Expose the vabsduw/h/b opportunity for down stream 14169 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 14170 (IID == Intrinsic::ppc_altivec_vmaxsw || 14171 IID == Intrinsic::ppc_altivec_vmaxsh || 14172 IID == Intrinsic::ppc_altivec_vmaxsb)) { 14173 SDValue V1 = N->getOperand(1); 14174 SDValue V2 = N->getOperand(2); 14175 if ((V1.getSimpleValueType() == MVT::v4i32 || 14176 V1.getSimpleValueType() == MVT::v8i16 || 14177 V1.getSimpleValueType() == MVT::v16i8) && 14178 V1.getSimpleValueType() == V2.getSimpleValueType()) { 14179 // (0-a, a) 14180 if (V1.getOpcode() == ISD::SUB && 14181 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 14182 V1.getOperand(1) == V2) { 14183 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 14184 } 14185 // (a, 0-a) 14186 if (V2.getOpcode() == ISD::SUB && 14187 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 14188 V2.getOperand(1) == V1) { 14189 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14190 } 14191 // (x-y, y-x) 14192 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 14193 V1.getOperand(0) == V2.getOperand(1) && 14194 V1.getOperand(1) == V2.getOperand(0)) { 14195 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 14196 } 14197 } 14198 } 14199 } 14200 14201 break; 14202 case ISD::INTRINSIC_W_CHAIN: 14203 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14204 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14205 if (Subtarget.needsSwapsForVSXMemOps()) { 14206 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14207 default: 14208 break; 14209 case Intrinsic::ppc_vsx_lxvw4x: 14210 case Intrinsic::ppc_vsx_lxvd2x: 14211 return expandVSXLoadForLE(N, DCI); 14212 } 14213 } 14214 break; 14215 case ISD::INTRINSIC_VOID: 14216 // For little endian, VSX stores require generating xxswapd/stxvd2x. 14217 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14218 if (Subtarget.needsSwapsForVSXMemOps()) { 14219 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 14220 default: 14221 break; 14222 case Intrinsic::ppc_vsx_stxvw4x: 14223 case Intrinsic::ppc_vsx_stxvd2x: 14224 return expandVSXStoreForLE(N, DCI); 14225 } 14226 } 14227 break; 14228 case ISD::BSWAP: 14229 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 14230 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 14231 N->getOperand(0).hasOneUse() && 14232 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 14233 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && 14234 N->getValueType(0) == MVT::i64))) { 14235 SDValue Load = N->getOperand(0); 14236 LoadSDNode *LD = cast<LoadSDNode>(Load); 14237 // Create the byte-swapping load. 14238 SDValue Ops[] = { 14239 LD->getChain(), // Chain 14240 LD->getBasePtr(), // Ptr 14241 DAG.getValueType(N->getValueType(0)) // VT 14242 }; 14243 SDValue BSLoad = 14244 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 14245 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 14246 MVT::i64 : MVT::i32, MVT::Other), 14247 Ops, LD->getMemoryVT(), LD->getMemOperand()); 14248 14249 // If this is an i16 load, insert the truncate. 14250 SDValue ResVal = BSLoad; 14251 if (N->getValueType(0) == MVT::i16) 14252 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 14253 14254 // First, combine the bswap away. This makes the value produced by the 14255 // load dead. 14256 DCI.CombineTo(N, ResVal); 14257 14258 // Next, combine the load away, we give it a bogus result value but a real 14259 // chain result. The result value is dead because the bswap is dead. 14260 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 14261 14262 // Return N so it doesn't get rechecked! 14263 return SDValue(N, 0); 14264 } 14265 break; 14266 case PPCISD::VCMP: 14267 // If a VCMPo node already exists with exactly the same operands as this 14268 // node, use its result instead of this node (VCMPo computes both a CR6 and 14269 // a normal output). 14270 // 14271 if (!N->getOperand(0).hasOneUse() && 14272 !N->getOperand(1).hasOneUse() && 14273 !N->getOperand(2).hasOneUse()) { 14274 14275 // Scan all of the users of the LHS, looking for VCMPo's that match. 14276 SDNode *VCMPoNode = nullptr; 14277 14278 SDNode *LHSN = N->getOperand(0).getNode(); 14279 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 14280 UI != E; ++UI) 14281 if (UI->getOpcode() == PPCISD::VCMPo && 14282 UI->getOperand(1) == N->getOperand(1) && 14283 UI->getOperand(2) == N->getOperand(2) && 14284 UI->getOperand(0) == N->getOperand(0)) { 14285 VCMPoNode = *UI; 14286 break; 14287 } 14288 14289 // If there is no VCMPo node, or if the flag value has a single use, don't 14290 // transform this. 14291 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) 14292 break; 14293 14294 // Look at the (necessarily single) use of the flag value. If it has a 14295 // chain, this transformation is more complex. Note that multiple things 14296 // could use the value result, which we should ignore. 14297 SDNode *FlagUser = nullptr; 14298 for (SDNode::use_iterator UI = VCMPoNode->use_begin(); 14299 FlagUser == nullptr; ++UI) { 14300 assert(UI != VCMPoNode->use_end() && "Didn't find user!"); 14301 SDNode *User = *UI; 14302 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 14303 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) { 14304 FlagUser = User; 14305 break; 14306 } 14307 } 14308 } 14309 14310 // If the user is a MFOCRF instruction, we know this is safe. 14311 // Otherwise we give up for right now. 14312 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 14313 return SDValue(VCMPoNode, 0); 14314 } 14315 break; 14316 case ISD::BRCOND: { 14317 SDValue Cond = N->getOperand(1); 14318 SDValue Target = N->getOperand(2); 14319 14320 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14321 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 14322 Intrinsic::loop_decrement) { 14323 14324 // We now need to make the intrinsic dead (it cannot be instruction 14325 // selected). 14326 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 14327 assert(Cond.getNode()->hasOneUse() && 14328 "Counter decrement has more than one use"); 14329 14330 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 14331 N->getOperand(0), Target); 14332 } 14333 } 14334 break; 14335 case ISD::BR_CC: { 14336 // If this is a branch on an altivec predicate comparison, lower this so 14337 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 14338 // lowering is done pre-legalize, because the legalizer lowers the predicate 14339 // compare down to code that is difficult to reassemble. 14340 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 14341 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 14342 14343 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 14344 // value. If so, pass-through the AND to get to the intrinsic. 14345 if (LHS.getOpcode() == ISD::AND && 14346 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 14347 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 14348 Intrinsic::loop_decrement && 14349 isa<ConstantSDNode>(LHS.getOperand(1)) && 14350 !isNullConstant(LHS.getOperand(1))) 14351 LHS = LHS.getOperand(0); 14352 14353 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 14354 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 14355 Intrinsic::loop_decrement && 14356 isa<ConstantSDNode>(RHS)) { 14357 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 14358 "Counter decrement comparison is not EQ or NE"); 14359 14360 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14361 bool isBDNZ = (CC == ISD::SETEQ && Val) || 14362 (CC == ISD::SETNE && !Val); 14363 14364 // We now need to make the intrinsic dead (it cannot be instruction 14365 // selected). 14366 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 14367 assert(LHS.getNode()->hasOneUse() && 14368 "Counter decrement has more than one use"); 14369 14370 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 14371 N->getOperand(0), N->getOperand(4)); 14372 } 14373 14374 int CompareOpc; 14375 bool isDot; 14376 14377 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 14378 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 14379 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 14380 assert(isDot && "Can't compare against a vector result!"); 14381 14382 // If this is a comparison against something other than 0/1, then we know 14383 // that the condition is never/always true. 14384 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 14385 if (Val != 0 && Val != 1) { 14386 if (CC == ISD::SETEQ) // Cond never true, remove branch. 14387 return N->getOperand(0); 14388 // Always !=, turn it into an unconditional branch. 14389 return DAG.getNode(ISD::BR, dl, MVT::Other, 14390 N->getOperand(0), N->getOperand(4)); 14391 } 14392 14393 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 14394 14395 // Create the PPCISD altivec 'dot' comparison node. 14396 SDValue Ops[] = { 14397 LHS.getOperand(2), // LHS of compare 14398 LHS.getOperand(3), // RHS of compare 14399 DAG.getConstant(CompareOpc, dl, MVT::i32) 14400 }; 14401 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 14402 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops); 14403 14404 // Unpack the result based on how the target uses it. 14405 PPC::Predicate CompOpc; 14406 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 14407 default: // Can't happen, don't crash on invalid number though. 14408 case 0: // Branch on the value of the EQ bit of CR6. 14409 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 14410 break; 14411 case 1: // Branch on the inverted value of the EQ bit of CR6. 14412 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 14413 break; 14414 case 2: // Branch on the value of the LT bit of CR6. 14415 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 14416 break; 14417 case 3: // Branch on the inverted value of the LT bit of CR6. 14418 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 14419 break; 14420 } 14421 14422 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 14423 DAG.getConstant(CompOpc, dl, MVT::i32), 14424 DAG.getRegister(PPC::CR6, MVT::i32), 14425 N->getOperand(4), CompNode.getValue(1)); 14426 } 14427 break; 14428 } 14429 case ISD::BUILD_VECTOR: 14430 return DAGCombineBuildVector(N, DCI); 14431 case ISD::ABS: 14432 return combineABS(N, DCI); 14433 case ISD::VSELECT: 14434 return combineVSelect(N, DCI); 14435 } 14436 14437 return SDValue(); 14438 } 14439 14440 SDValue 14441 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 14442 SelectionDAG &DAG, 14443 SmallVectorImpl<SDNode *> &Created) const { 14444 // fold (sdiv X, pow2) 14445 EVT VT = N->getValueType(0); 14446 if (VT == MVT::i64 && !Subtarget.isPPC64()) 14447 return SDValue(); 14448 if ((VT != MVT::i32 && VT != MVT::i64) || 14449 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 14450 return SDValue(); 14451 14452 SDLoc DL(N); 14453 SDValue N0 = N->getOperand(0); 14454 14455 bool IsNegPow2 = (-Divisor).isPowerOf2(); 14456 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 14457 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 14458 14459 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 14460 Created.push_back(Op.getNode()); 14461 14462 if (IsNegPow2) { 14463 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 14464 Created.push_back(Op.getNode()); 14465 } 14466 14467 return Op; 14468 } 14469 14470 //===----------------------------------------------------------------------===// 14471 // Inline Assembly Support 14472 //===----------------------------------------------------------------------===// 14473 14474 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 14475 KnownBits &Known, 14476 const APInt &DemandedElts, 14477 const SelectionDAG &DAG, 14478 unsigned Depth) const { 14479 Known.resetAll(); 14480 switch (Op.getOpcode()) { 14481 default: break; 14482 case PPCISD::LBRX: { 14483 // lhbrx is known to have the top bits cleared out. 14484 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 14485 Known.Zero = 0xFFFF0000; 14486 break; 14487 } 14488 case ISD::INTRINSIC_WO_CHAIN: { 14489 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 14490 default: break; 14491 case Intrinsic::ppc_altivec_vcmpbfp_p: 14492 case Intrinsic::ppc_altivec_vcmpeqfp_p: 14493 case Intrinsic::ppc_altivec_vcmpequb_p: 14494 case Intrinsic::ppc_altivec_vcmpequh_p: 14495 case Intrinsic::ppc_altivec_vcmpequw_p: 14496 case Intrinsic::ppc_altivec_vcmpequd_p: 14497 case Intrinsic::ppc_altivec_vcmpgefp_p: 14498 case Intrinsic::ppc_altivec_vcmpgtfp_p: 14499 case Intrinsic::ppc_altivec_vcmpgtsb_p: 14500 case Intrinsic::ppc_altivec_vcmpgtsh_p: 14501 case Intrinsic::ppc_altivec_vcmpgtsw_p: 14502 case Intrinsic::ppc_altivec_vcmpgtsd_p: 14503 case Intrinsic::ppc_altivec_vcmpgtub_p: 14504 case Intrinsic::ppc_altivec_vcmpgtuh_p: 14505 case Intrinsic::ppc_altivec_vcmpgtuw_p: 14506 case Intrinsic::ppc_altivec_vcmpgtud_p: 14507 Known.Zero = ~1U; // All bits but the low one are known to be zero. 14508 break; 14509 } 14510 } 14511 } 14512 } 14513 14514 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 14515 switch (Subtarget.getCPUDirective()) { 14516 default: break; 14517 case PPC::DIR_970: 14518 case PPC::DIR_PWR4: 14519 case PPC::DIR_PWR5: 14520 case PPC::DIR_PWR5X: 14521 case PPC::DIR_PWR6: 14522 case PPC::DIR_PWR6X: 14523 case PPC::DIR_PWR7: 14524 case PPC::DIR_PWR8: 14525 case PPC::DIR_PWR9: 14526 case PPC::DIR_PWR_FUTURE: { 14527 if (!ML) 14528 break; 14529 14530 if (!DisableInnermostLoopAlign32) { 14531 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 14532 // so that we can decrease cache misses and branch-prediction misses. 14533 // Actual alignment of the loop will depend on the hotness check and other 14534 // logic in alignBlocks. 14535 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 14536 return Align(32); 14537 } 14538 14539 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 14540 14541 // For small loops (between 5 and 8 instructions), align to a 32-byte 14542 // boundary so that the entire loop fits in one instruction-cache line. 14543 uint64_t LoopSize = 0; 14544 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 14545 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 14546 LoopSize += TII->getInstSizeInBytes(*J); 14547 if (LoopSize > 32) 14548 break; 14549 } 14550 14551 if (LoopSize > 16 && LoopSize <= 32) 14552 return Align(32); 14553 14554 break; 14555 } 14556 } 14557 14558 return TargetLowering::getPrefLoopAlignment(ML); 14559 } 14560 14561 /// getConstraintType - Given a constraint, return the type of 14562 /// constraint it is for this target. 14563 PPCTargetLowering::ConstraintType 14564 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 14565 if (Constraint.size() == 1) { 14566 switch (Constraint[0]) { 14567 default: break; 14568 case 'b': 14569 case 'r': 14570 case 'f': 14571 case 'd': 14572 case 'v': 14573 case 'y': 14574 return C_RegisterClass; 14575 case 'Z': 14576 // FIXME: While Z does indicate a memory constraint, it specifically 14577 // indicates an r+r address (used in conjunction with the 'y' modifier 14578 // in the replacement string). Currently, we're forcing the base 14579 // register to be r0 in the asm printer (which is interpreted as zero) 14580 // and forming the complete address in the second register. This is 14581 // suboptimal. 14582 return C_Memory; 14583 } 14584 } else if (Constraint == "wc") { // individual CR bits. 14585 return C_RegisterClass; 14586 } else if (Constraint == "wa" || Constraint == "wd" || 14587 Constraint == "wf" || Constraint == "ws" || 14588 Constraint == "wi" || Constraint == "ww") { 14589 return C_RegisterClass; // VSX registers. 14590 } 14591 return TargetLowering::getConstraintType(Constraint); 14592 } 14593 14594 /// Examine constraint type and operand type and determine a weight value. 14595 /// This object must already have been set up with the operand type 14596 /// and the current alternative constraint selected. 14597 TargetLowering::ConstraintWeight 14598 PPCTargetLowering::getSingleConstraintMatchWeight( 14599 AsmOperandInfo &info, const char *constraint) const { 14600 ConstraintWeight weight = CW_Invalid; 14601 Value *CallOperandVal = info.CallOperandVal; 14602 // If we don't have a value, we can't do a match, 14603 // but allow it at the lowest weight. 14604 if (!CallOperandVal) 14605 return CW_Default; 14606 Type *type = CallOperandVal->getType(); 14607 14608 // Look at the constraint type. 14609 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 14610 return CW_Register; // an individual CR bit. 14611 else if ((StringRef(constraint) == "wa" || 14612 StringRef(constraint) == "wd" || 14613 StringRef(constraint) == "wf") && 14614 type->isVectorTy()) 14615 return CW_Register; 14616 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 14617 return CW_Register; // just hold 64-bit integers data. 14618 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 14619 return CW_Register; 14620 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 14621 return CW_Register; 14622 14623 switch (*constraint) { 14624 default: 14625 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 14626 break; 14627 case 'b': 14628 if (type->isIntegerTy()) 14629 weight = CW_Register; 14630 break; 14631 case 'f': 14632 if (type->isFloatTy()) 14633 weight = CW_Register; 14634 break; 14635 case 'd': 14636 if (type->isDoubleTy()) 14637 weight = CW_Register; 14638 break; 14639 case 'v': 14640 if (type->isVectorTy()) 14641 weight = CW_Register; 14642 break; 14643 case 'y': 14644 weight = CW_Register; 14645 break; 14646 case 'Z': 14647 weight = CW_Memory; 14648 break; 14649 } 14650 return weight; 14651 } 14652 14653 std::pair<unsigned, const TargetRegisterClass *> 14654 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 14655 StringRef Constraint, 14656 MVT VT) const { 14657 if (Constraint.size() == 1) { 14658 // GCC RS6000 Constraint Letters 14659 switch (Constraint[0]) { 14660 case 'b': // R1-R31 14661 if (VT == MVT::i64 && Subtarget.isPPC64()) 14662 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 14663 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 14664 case 'r': // R0-R31 14665 if (VT == MVT::i64 && Subtarget.isPPC64()) 14666 return std::make_pair(0U, &PPC::G8RCRegClass); 14667 return std::make_pair(0U, &PPC::GPRCRegClass); 14668 // 'd' and 'f' constraints are both defined to be "the floating point 14669 // registers", where one is for 32-bit and the other for 64-bit. We don't 14670 // really care overly much here so just give them all the same reg classes. 14671 case 'd': 14672 case 'f': 14673 if (Subtarget.hasSPE()) { 14674 if (VT == MVT::f32 || VT == MVT::i32) 14675 return std::make_pair(0U, &PPC::GPRCRegClass); 14676 if (VT == MVT::f64 || VT == MVT::i64) 14677 return std::make_pair(0U, &PPC::SPERCRegClass); 14678 } else { 14679 if (VT == MVT::f32 || VT == MVT::i32) 14680 return std::make_pair(0U, &PPC::F4RCRegClass); 14681 if (VT == MVT::f64 || VT == MVT::i64) 14682 return std::make_pair(0U, &PPC::F8RCRegClass); 14683 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14684 return std::make_pair(0U, &PPC::QFRCRegClass); 14685 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14686 return std::make_pair(0U, &PPC::QSRCRegClass); 14687 } 14688 break; 14689 case 'v': 14690 if (VT == MVT::v4f64 && Subtarget.hasQPX()) 14691 return std::make_pair(0U, &PPC::QFRCRegClass); 14692 if (VT == MVT::v4f32 && Subtarget.hasQPX()) 14693 return std::make_pair(0U, &PPC::QSRCRegClass); 14694 if (Subtarget.hasAltivec()) 14695 return std::make_pair(0U, &PPC::VRRCRegClass); 14696 break; 14697 case 'y': // crrc 14698 return std::make_pair(0U, &PPC::CRRCRegClass); 14699 } 14700 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 14701 // An individual CR bit. 14702 return std::make_pair(0U, &PPC::CRBITRCRegClass); 14703 } else if ((Constraint == "wa" || Constraint == "wd" || 14704 Constraint == "wf" || Constraint == "wi") && 14705 Subtarget.hasVSX()) { 14706 return std::make_pair(0U, &PPC::VSRCRegClass); 14707 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 14708 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 14709 return std::make_pair(0U, &PPC::VSSRCRegClass); 14710 else 14711 return std::make_pair(0U, &PPC::VSFRCRegClass); 14712 } 14713 14714 // If we name a VSX register, we can't defer to the base class because it 14715 // will not recognize the correct register (their names will be VSL{0-31} 14716 // and V{0-31} so they won't match). So we match them here. 14717 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 14718 int VSNum = atoi(Constraint.data() + 3); 14719 assert(VSNum >= 0 && VSNum <= 63 && 14720 "Attempted to access a vsr out of range"); 14721 if (VSNum < 32) 14722 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 14723 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 14724 } 14725 std::pair<unsigned, const TargetRegisterClass *> R = 14726 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 14727 14728 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 14729 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 14730 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 14731 // register. 14732 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 14733 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 14734 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 14735 PPC::GPRCRegClass.contains(R.first)) 14736 return std::make_pair(TRI->getMatchingSuperReg(R.first, 14737 PPC::sub_32, &PPC::G8RCRegClass), 14738 &PPC::G8RCRegClass); 14739 14740 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 14741 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) { 14742 R.first = PPC::CR0; 14743 R.second = &PPC::CRRCRegClass; 14744 } 14745 14746 return R; 14747 } 14748 14749 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 14750 /// vector. If it is invalid, don't add anything to Ops. 14751 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 14752 std::string &Constraint, 14753 std::vector<SDValue>&Ops, 14754 SelectionDAG &DAG) const { 14755 SDValue Result; 14756 14757 // Only support length 1 constraints. 14758 if (Constraint.length() > 1) return; 14759 14760 char Letter = Constraint[0]; 14761 switch (Letter) { 14762 default: break; 14763 case 'I': 14764 case 'J': 14765 case 'K': 14766 case 'L': 14767 case 'M': 14768 case 'N': 14769 case 'O': 14770 case 'P': { 14771 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 14772 if (!CST) return; // Must be an immediate to match. 14773 SDLoc dl(Op); 14774 int64_t Value = CST->getSExtValue(); 14775 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 14776 // numbers are printed as such. 14777 switch (Letter) { 14778 default: llvm_unreachable("Unknown constraint letter!"); 14779 case 'I': // "I" is a signed 16-bit constant. 14780 if (isInt<16>(Value)) 14781 Result = DAG.getTargetConstant(Value, dl, TCVT); 14782 break; 14783 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 14784 if (isShiftedUInt<16, 16>(Value)) 14785 Result = DAG.getTargetConstant(Value, dl, TCVT); 14786 break; 14787 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 14788 if (isShiftedInt<16, 16>(Value)) 14789 Result = DAG.getTargetConstant(Value, dl, TCVT); 14790 break; 14791 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 14792 if (isUInt<16>(Value)) 14793 Result = DAG.getTargetConstant(Value, dl, TCVT); 14794 break; 14795 case 'M': // "M" is a constant that is greater than 31. 14796 if (Value > 31) 14797 Result = DAG.getTargetConstant(Value, dl, TCVT); 14798 break; 14799 case 'N': // "N" is a positive constant that is an exact power of two. 14800 if (Value > 0 && isPowerOf2_64(Value)) 14801 Result = DAG.getTargetConstant(Value, dl, TCVT); 14802 break; 14803 case 'O': // "O" is the constant zero. 14804 if (Value == 0) 14805 Result = DAG.getTargetConstant(Value, dl, TCVT); 14806 break; 14807 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 14808 if (isInt<16>(-Value)) 14809 Result = DAG.getTargetConstant(Value, dl, TCVT); 14810 break; 14811 } 14812 break; 14813 } 14814 } 14815 14816 if (Result.getNode()) { 14817 Ops.push_back(Result); 14818 return; 14819 } 14820 14821 // Handle standard constraint letters. 14822 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 14823 } 14824 14825 // isLegalAddressingMode - Return true if the addressing mode represented 14826 // by AM is legal for this target, for a load/store of the specified type. 14827 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 14828 const AddrMode &AM, Type *Ty, 14829 unsigned AS, Instruction *I) const { 14830 // PPC does not allow r+i addressing modes for vectors! 14831 if (Ty->isVectorTy() && AM.BaseOffs != 0) 14832 return false; 14833 14834 // PPC allows a sign-extended 16-bit immediate field. 14835 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 14836 return false; 14837 14838 // No global is ever allowed as a base. 14839 if (AM.BaseGV) 14840 return false; 14841 14842 // PPC only support r+r, 14843 switch (AM.Scale) { 14844 case 0: // "r+i" or just "i", depending on HasBaseReg. 14845 break; 14846 case 1: 14847 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 14848 return false; 14849 // Otherwise we have r+r or r+i. 14850 break; 14851 case 2: 14852 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 14853 return false; 14854 // Allow 2*r as r+r. 14855 break; 14856 default: 14857 // No other scales are supported. 14858 return false; 14859 } 14860 14861 return true; 14862 } 14863 14864 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 14865 SelectionDAG &DAG) const { 14866 MachineFunction &MF = DAG.getMachineFunction(); 14867 MachineFrameInfo &MFI = MF.getFrameInfo(); 14868 MFI.setReturnAddressIsTaken(true); 14869 14870 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 14871 return SDValue(); 14872 14873 SDLoc dl(Op); 14874 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14875 14876 // Make sure the function does not optimize away the store of the RA to 14877 // the stack. 14878 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 14879 FuncInfo->setLRStoreRequired(); 14880 bool isPPC64 = Subtarget.isPPC64(); 14881 auto PtrVT = getPointerTy(MF.getDataLayout()); 14882 14883 if (Depth > 0) { 14884 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 14885 SDValue Offset = 14886 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 14887 isPPC64 ? MVT::i64 : MVT::i32); 14888 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 14889 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 14890 MachinePointerInfo()); 14891 } 14892 14893 // Just load the return address off the stack. 14894 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 14895 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 14896 MachinePointerInfo()); 14897 } 14898 14899 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 14900 SelectionDAG &DAG) const { 14901 SDLoc dl(Op); 14902 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 14903 14904 MachineFunction &MF = DAG.getMachineFunction(); 14905 MachineFrameInfo &MFI = MF.getFrameInfo(); 14906 MFI.setFrameAddressIsTaken(true); 14907 14908 EVT PtrVT = getPointerTy(MF.getDataLayout()); 14909 bool isPPC64 = PtrVT == MVT::i64; 14910 14911 // Naked functions never have a frame pointer, and so we use r1. For all 14912 // other functions, this decision must be delayed until during PEI. 14913 unsigned FrameReg; 14914 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 14915 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 14916 else 14917 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 14918 14919 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 14920 PtrVT); 14921 while (Depth--) 14922 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 14923 FrameAddr, MachinePointerInfo()); 14924 return FrameAddr; 14925 } 14926 14927 // FIXME? Maybe this could be a TableGen attribute on some registers and 14928 // this table could be generated automatically from RegInfo. 14929 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 14930 const MachineFunction &MF) const { 14931 bool isPPC64 = Subtarget.isPPC64(); 14932 bool IsDarwinABI = Subtarget.isDarwinABI(); 14933 14934 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 14935 if (!is64Bit && VT != LLT::scalar(32)) 14936 report_fatal_error("Invalid register global variable type"); 14937 14938 Register Reg = StringSwitch<Register>(RegName) 14939 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 14940 .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2) 14941 .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() : 14942 (is64Bit ? PPC::X13 : PPC::R13)) 14943 .Default(Register()); 14944 14945 if (Reg) 14946 return Reg; 14947 report_fatal_error("Invalid register name global variable"); 14948 } 14949 14950 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 14951 // 32-bit SVR4 ABI access everything as got-indirect. 14952 if (Subtarget.is32BitELFABI()) 14953 return true; 14954 14955 // AIX accesses everything indirectly through the TOC, which is similar to 14956 // the GOT. 14957 if (Subtarget.isAIXABI()) 14958 return true; 14959 14960 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 14961 // If it is small or large code model, module locals are accessed 14962 // indirectly by loading their address from .toc/.got. 14963 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 14964 return true; 14965 14966 // JumpTable and BlockAddress are accessed as got-indirect. 14967 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 14968 return true; 14969 14970 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 14971 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 14972 14973 return false; 14974 } 14975 14976 bool 14977 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 14978 // The PowerPC target isn't yet aware of offsets. 14979 return false; 14980 } 14981 14982 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 14983 const CallInst &I, 14984 MachineFunction &MF, 14985 unsigned Intrinsic) const { 14986 switch (Intrinsic) { 14987 case Intrinsic::ppc_qpx_qvlfd: 14988 case Intrinsic::ppc_qpx_qvlfs: 14989 case Intrinsic::ppc_qpx_qvlfcd: 14990 case Intrinsic::ppc_qpx_qvlfcs: 14991 case Intrinsic::ppc_qpx_qvlfiwa: 14992 case Intrinsic::ppc_qpx_qvlfiwz: 14993 case Intrinsic::ppc_altivec_lvx: 14994 case Intrinsic::ppc_altivec_lvxl: 14995 case Intrinsic::ppc_altivec_lvebx: 14996 case Intrinsic::ppc_altivec_lvehx: 14997 case Intrinsic::ppc_altivec_lvewx: 14998 case Intrinsic::ppc_vsx_lxvd2x: 14999 case Intrinsic::ppc_vsx_lxvw4x: { 15000 EVT VT; 15001 switch (Intrinsic) { 15002 case Intrinsic::ppc_altivec_lvebx: 15003 VT = MVT::i8; 15004 break; 15005 case Intrinsic::ppc_altivec_lvehx: 15006 VT = MVT::i16; 15007 break; 15008 case Intrinsic::ppc_altivec_lvewx: 15009 VT = MVT::i32; 15010 break; 15011 case Intrinsic::ppc_vsx_lxvd2x: 15012 VT = MVT::v2f64; 15013 break; 15014 case Intrinsic::ppc_qpx_qvlfd: 15015 VT = MVT::v4f64; 15016 break; 15017 case Intrinsic::ppc_qpx_qvlfs: 15018 VT = MVT::v4f32; 15019 break; 15020 case Intrinsic::ppc_qpx_qvlfcd: 15021 VT = MVT::v2f64; 15022 break; 15023 case Intrinsic::ppc_qpx_qvlfcs: 15024 VT = MVT::v2f32; 15025 break; 15026 default: 15027 VT = MVT::v4i32; 15028 break; 15029 } 15030 15031 Info.opc = ISD::INTRINSIC_W_CHAIN; 15032 Info.memVT = VT; 15033 Info.ptrVal = I.getArgOperand(0); 15034 Info.offset = -VT.getStoreSize()+1; 15035 Info.size = 2*VT.getStoreSize()-1; 15036 Info.align = Align::None(); 15037 Info.flags = MachineMemOperand::MOLoad; 15038 return true; 15039 } 15040 case Intrinsic::ppc_qpx_qvlfda: 15041 case Intrinsic::ppc_qpx_qvlfsa: 15042 case Intrinsic::ppc_qpx_qvlfcda: 15043 case Intrinsic::ppc_qpx_qvlfcsa: 15044 case Intrinsic::ppc_qpx_qvlfiwaa: 15045 case Intrinsic::ppc_qpx_qvlfiwza: { 15046 EVT VT; 15047 switch (Intrinsic) { 15048 case Intrinsic::ppc_qpx_qvlfda: 15049 VT = MVT::v4f64; 15050 break; 15051 case Intrinsic::ppc_qpx_qvlfsa: 15052 VT = MVT::v4f32; 15053 break; 15054 case Intrinsic::ppc_qpx_qvlfcda: 15055 VT = MVT::v2f64; 15056 break; 15057 case Intrinsic::ppc_qpx_qvlfcsa: 15058 VT = MVT::v2f32; 15059 break; 15060 default: 15061 VT = MVT::v4i32; 15062 break; 15063 } 15064 15065 Info.opc = ISD::INTRINSIC_W_CHAIN; 15066 Info.memVT = VT; 15067 Info.ptrVal = I.getArgOperand(0); 15068 Info.offset = 0; 15069 Info.size = VT.getStoreSize(); 15070 Info.align = Align::None(); 15071 Info.flags = MachineMemOperand::MOLoad; 15072 return true; 15073 } 15074 case Intrinsic::ppc_qpx_qvstfd: 15075 case Intrinsic::ppc_qpx_qvstfs: 15076 case Intrinsic::ppc_qpx_qvstfcd: 15077 case Intrinsic::ppc_qpx_qvstfcs: 15078 case Intrinsic::ppc_qpx_qvstfiw: 15079 case Intrinsic::ppc_altivec_stvx: 15080 case Intrinsic::ppc_altivec_stvxl: 15081 case Intrinsic::ppc_altivec_stvebx: 15082 case Intrinsic::ppc_altivec_stvehx: 15083 case Intrinsic::ppc_altivec_stvewx: 15084 case Intrinsic::ppc_vsx_stxvd2x: 15085 case Intrinsic::ppc_vsx_stxvw4x: { 15086 EVT VT; 15087 switch (Intrinsic) { 15088 case Intrinsic::ppc_altivec_stvebx: 15089 VT = MVT::i8; 15090 break; 15091 case Intrinsic::ppc_altivec_stvehx: 15092 VT = MVT::i16; 15093 break; 15094 case Intrinsic::ppc_altivec_stvewx: 15095 VT = MVT::i32; 15096 break; 15097 case Intrinsic::ppc_vsx_stxvd2x: 15098 VT = MVT::v2f64; 15099 break; 15100 case Intrinsic::ppc_qpx_qvstfd: 15101 VT = MVT::v4f64; 15102 break; 15103 case Intrinsic::ppc_qpx_qvstfs: 15104 VT = MVT::v4f32; 15105 break; 15106 case Intrinsic::ppc_qpx_qvstfcd: 15107 VT = MVT::v2f64; 15108 break; 15109 case Intrinsic::ppc_qpx_qvstfcs: 15110 VT = MVT::v2f32; 15111 break; 15112 default: 15113 VT = MVT::v4i32; 15114 break; 15115 } 15116 15117 Info.opc = ISD::INTRINSIC_VOID; 15118 Info.memVT = VT; 15119 Info.ptrVal = I.getArgOperand(1); 15120 Info.offset = -VT.getStoreSize()+1; 15121 Info.size = 2*VT.getStoreSize()-1; 15122 Info.align = Align::None(); 15123 Info.flags = MachineMemOperand::MOStore; 15124 return true; 15125 } 15126 case Intrinsic::ppc_qpx_qvstfda: 15127 case Intrinsic::ppc_qpx_qvstfsa: 15128 case Intrinsic::ppc_qpx_qvstfcda: 15129 case Intrinsic::ppc_qpx_qvstfcsa: 15130 case Intrinsic::ppc_qpx_qvstfiwa: { 15131 EVT VT; 15132 switch (Intrinsic) { 15133 case Intrinsic::ppc_qpx_qvstfda: 15134 VT = MVT::v4f64; 15135 break; 15136 case Intrinsic::ppc_qpx_qvstfsa: 15137 VT = MVT::v4f32; 15138 break; 15139 case Intrinsic::ppc_qpx_qvstfcda: 15140 VT = MVT::v2f64; 15141 break; 15142 case Intrinsic::ppc_qpx_qvstfcsa: 15143 VT = MVT::v2f32; 15144 break; 15145 default: 15146 VT = MVT::v4i32; 15147 break; 15148 } 15149 15150 Info.opc = ISD::INTRINSIC_VOID; 15151 Info.memVT = VT; 15152 Info.ptrVal = I.getArgOperand(1); 15153 Info.offset = 0; 15154 Info.size = VT.getStoreSize(); 15155 Info.align = Align::None(); 15156 Info.flags = MachineMemOperand::MOStore; 15157 return true; 15158 } 15159 default: 15160 break; 15161 } 15162 15163 return false; 15164 } 15165 15166 /// getOptimalMemOpType - Returns the target specific optimal type for load 15167 /// and store operations as a result of memset, memcpy, and memmove 15168 /// lowering. If DstAlign is zero that means it's safe to destination 15169 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 15170 /// means there isn't a need to check it against alignment requirement, 15171 /// probably because the source does not need to be loaded. If 'IsMemset' is 15172 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that 15173 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy 15174 /// source is constant so it does not need to be loaded. 15175 /// It returns EVT::Other if the type should be determined using generic 15176 /// target-independent logic. 15177 EVT PPCTargetLowering::getOptimalMemOpType( 15178 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, 15179 bool ZeroMemset, bool MemcpyStrSrc, 15180 const AttributeList &FuncAttributes) const { 15181 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 15182 // When expanding a memset, require at least two QPX instructions to cover 15183 // the cost of loading the value to be stored from the constant pool. 15184 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) && 15185 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) && 15186 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) { 15187 return MVT::v4f64; 15188 } 15189 15190 // We should use Altivec/VSX loads and stores when available. For unaligned 15191 // addresses, unaligned VSX loads are only fast starting with the P8. 15192 if (Subtarget.hasAltivec() && Size >= 16 && 15193 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) || 15194 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 15195 return MVT::v4i32; 15196 } 15197 15198 if (Subtarget.isPPC64()) { 15199 return MVT::i64; 15200 } 15201 15202 return MVT::i32; 15203 } 15204 15205 /// Returns true if it is beneficial to convert a load of a constant 15206 /// to just the constant itself. 15207 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 15208 Type *Ty) const { 15209 assert(Ty->isIntegerTy()); 15210 15211 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 15212 return !(BitSize == 0 || BitSize > 64); 15213 } 15214 15215 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 15216 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 15217 return false; 15218 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 15219 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 15220 return NumBits1 == 64 && NumBits2 == 32; 15221 } 15222 15223 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 15224 if (!VT1.isInteger() || !VT2.isInteger()) 15225 return false; 15226 unsigned NumBits1 = VT1.getSizeInBits(); 15227 unsigned NumBits2 = VT2.getSizeInBits(); 15228 return NumBits1 == 64 && NumBits2 == 32; 15229 } 15230 15231 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 15232 // Generally speaking, zexts are not free, but they are free when they can be 15233 // folded with other operations. 15234 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 15235 EVT MemVT = LD->getMemoryVT(); 15236 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 15237 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 15238 (LD->getExtensionType() == ISD::NON_EXTLOAD || 15239 LD->getExtensionType() == ISD::ZEXTLOAD)) 15240 return true; 15241 } 15242 15243 // FIXME: Add other cases... 15244 // - 32-bit shifts with a zext to i64 15245 // - zext after ctlz, bswap, etc. 15246 // - zext after and by a constant mask 15247 15248 return TargetLowering::isZExtFree(Val, VT2); 15249 } 15250 15251 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 15252 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 15253 "invalid fpext types"); 15254 // Extending to float128 is not free. 15255 if (DestVT == MVT::f128) 15256 return false; 15257 return true; 15258 } 15259 15260 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 15261 return isInt<16>(Imm) || isUInt<16>(Imm); 15262 } 15263 15264 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 15265 return isInt<16>(Imm) || isUInt<16>(Imm); 15266 } 15267 15268 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 15269 unsigned, 15270 unsigned, 15271 MachineMemOperand::Flags, 15272 bool *Fast) const { 15273 if (DisablePPCUnaligned) 15274 return false; 15275 15276 // PowerPC supports unaligned memory access for simple non-vector types. 15277 // Although accessing unaligned addresses is not as efficient as accessing 15278 // aligned addresses, it is generally more efficient than manual expansion, 15279 // and generally only traps for software emulation when crossing page 15280 // boundaries. 15281 15282 if (!VT.isSimple()) 15283 return false; 15284 15285 if (VT.isFloatingPoint() && !VT.isVector() && 15286 !Subtarget.allowsUnalignedFPAccess()) 15287 return false; 15288 15289 if (VT.getSimpleVT().isVector()) { 15290 if (Subtarget.hasVSX()) { 15291 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 15292 VT != MVT::v4f32 && VT != MVT::v4i32) 15293 return false; 15294 } else { 15295 return false; 15296 } 15297 } 15298 15299 if (VT == MVT::ppcf128) 15300 return false; 15301 15302 if (Subtarget.isTargetOpenBSD()) { 15303 // Traditional PowerPC does not support unaligned memory access 15304 // for floating-point and the OpenBSD kernel does not emulate 15305 // all possible floating-point load and store instructions. 15306 if (VT == MVT::f32 || VT == MVT::f64) 15307 return false; 15308 } 15309 15310 if (Fast) 15311 *Fast = true; 15312 15313 return true; 15314 } 15315 15316 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 15317 EVT VT) const { 15318 VT = VT.getScalarType(); 15319 15320 if (!VT.isSimple()) 15321 return false; 15322 15323 switch (VT.getSimpleVT().SimpleTy) { 15324 case MVT::f32: 15325 case MVT::f64: 15326 return true; 15327 case MVT::f128: 15328 return (EnableQuadPrecision && Subtarget.hasP9Vector()); 15329 default: 15330 break; 15331 } 15332 15333 return false; 15334 } 15335 15336 const MCPhysReg * 15337 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 15338 // LR is a callee-save register, but we must treat it as clobbered by any call 15339 // site. Hence we include LR in the scratch registers, which are in turn added 15340 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 15341 // to CTR, which is used by any indirect call. 15342 static const MCPhysReg ScratchRegs[] = { 15343 PPC::X12, PPC::LR8, PPC::CTR8, 0 15344 }; 15345 15346 return ScratchRegs; 15347 } 15348 15349 unsigned PPCTargetLowering::getExceptionPointerRegister( 15350 const Constant *PersonalityFn) const { 15351 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 15352 } 15353 15354 unsigned PPCTargetLowering::getExceptionSelectorRegister( 15355 const Constant *PersonalityFn) const { 15356 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 15357 } 15358 15359 bool 15360 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 15361 EVT VT , unsigned DefinedValues) const { 15362 if (VT == MVT::v2i64) 15363 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 15364 15365 if (Subtarget.hasVSX() || Subtarget.hasQPX()) 15366 return true; 15367 15368 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 15369 } 15370 15371 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 15372 if (DisableILPPref || Subtarget.enableMachineScheduler()) 15373 return TargetLowering::getSchedulingPreference(N); 15374 15375 return Sched::ILP; 15376 } 15377 15378 // Create a fast isel object. 15379 FastISel * 15380 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 15381 const TargetLibraryInfo *LibInfo) const { 15382 return PPC::createFastISel(FuncInfo, LibInfo); 15383 } 15384 15385 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { 15386 if (Subtarget.isDarwinABI()) return; 15387 if (!Subtarget.isPPC64()) return; 15388 15389 // Update IsSplitCSR in PPCFunctionInfo 15390 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>(); 15391 PFI->setIsSplitCSR(true); 15392 } 15393 15394 void PPCTargetLowering::insertCopiesSplitCSR( 15395 MachineBasicBlock *Entry, 15396 const SmallVectorImpl<MachineBasicBlock *> &Exits) const { 15397 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 15398 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); 15399 if (!IStart) 15400 return; 15401 15402 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 15403 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); 15404 MachineBasicBlock::iterator MBBI = Entry->begin(); 15405 for (const MCPhysReg *I = IStart; *I; ++I) { 15406 const TargetRegisterClass *RC = nullptr; 15407 if (PPC::G8RCRegClass.contains(*I)) 15408 RC = &PPC::G8RCRegClass; 15409 else if (PPC::F8RCRegClass.contains(*I)) 15410 RC = &PPC::F8RCRegClass; 15411 else if (PPC::CRRCRegClass.contains(*I)) 15412 RC = &PPC::CRRCRegClass; 15413 else if (PPC::VRRCRegClass.contains(*I)) 15414 RC = &PPC::VRRCRegClass; 15415 else 15416 llvm_unreachable("Unexpected register class in CSRsViaCopy!"); 15417 15418 Register NewVR = MRI->createVirtualRegister(RC); 15419 // Create copy from CSR to a virtual register. 15420 // FIXME: this currently does not emit CFI pseudo-instructions, it works 15421 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be 15422 // nounwind. If we want to generalize this later, we may need to emit 15423 // CFI pseudo-instructions. 15424 assert(Entry->getParent()->getFunction().hasFnAttribute( 15425 Attribute::NoUnwind) && 15426 "Function should be nounwind in insertCopiesSplitCSR!"); 15427 Entry->addLiveIn(*I); 15428 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) 15429 .addReg(*I); 15430 15431 // Insert the copy-back instructions right before the terminator. 15432 for (auto *Exit : Exits) 15433 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), 15434 TII->get(TargetOpcode::COPY), *I) 15435 .addReg(NewVR); 15436 } 15437 } 15438 15439 // Override to enable LOAD_STACK_GUARD lowering on Linux. 15440 bool PPCTargetLowering::useLoadStackGuardNode() const { 15441 if (!Subtarget.isTargetLinux()) 15442 return TargetLowering::useLoadStackGuardNode(); 15443 return true; 15444 } 15445 15446 // Override to disable global variable loading on Linux. 15447 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 15448 if (!Subtarget.isTargetLinux()) 15449 return TargetLowering::insertSSPDeclarations(M); 15450 } 15451 15452 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 15453 bool ForCodeSize) const { 15454 if (!VT.isSimple() || !Subtarget.hasVSX()) 15455 return false; 15456 15457 switch(VT.getSimpleVT().SimpleTy) { 15458 default: 15459 // For FP types that are currently not supported by PPC backend, return 15460 // false. Examples: f16, f80. 15461 return false; 15462 case MVT::f32: 15463 case MVT::f64: 15464 case MVT::ppcf128: 15465 return Imm.isPosZero(); 15466 } 15467 } 15468 15469 // For vector shift operation op, fold 15470 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 15471 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 15472 SelectionDAG &DAG) { 15473 SDValue N0 = N->getOperand(0); 15474 SDValue N1 = N->getOperand(1); 15475 EVT VT = N0.getValueType(); 15476 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 15477 unsigned Opcode = N->getOpcode(); 15478 unsigned TargetOpcode; 15479 15480 switch (Opcode) { 15481 default: 15482 llvm_unreachable("Unexpected shift operation"); 15483 case ISD::SHL: 15484 TargetOpcode = PPCISD::SHL; 15485 break; 15486 case ISD::SRL: 15487 TargetOpcode = PPCISD::SRL; 15488 break; 15489 case ISD::SRA: 15490 TargetOpcode = PPCISD::SRA; 15491 break; 15492 } 15493 15494 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 15495 N1->getOpcode() == ISD::AND) 15496 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 15497 if (Mask->getZExtValue() == OpSizeInBits - 1) 15498 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 15499 15500 return SDValue(); 15501 } 15502 15503 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 15504 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15505 return Value; 15506 15507 SDValue N0 = N->getOperand(0); 15508 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 15509 if (!Subtarget.isISA3_0() || 15510 N0.getOpcode() != ISD::SIGN_EXTEND || 15511 N0.getOperand(0).getValueType() != MVT::i32 || 15512 CN1 == nullptr || N->getValueType(0) != MVT::i64) 15513 return SDValue(); 15514 15515 // We can't save an operation here if the value is already extended, and 15516 // the existing shift is easier to combine. 15517 SDValue ExtsSrc = N0.getOperand(0); 15518 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 15519 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 15520 return SDValue(); 15521 15522 SDLoc DL(N0); 15523 SDValue ShiftBy = SDValue(CN1, 0); 15524 // We want the shift amount to be i32 on the extswli, but the shift could 15525 // have an i64. 15526 if (ShiftBy.getValueType() == MVT::i64) 15527 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 15528 15529 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 15530 ShiftBy); 15531 } 15532 15533 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 15534 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15535 return Value; 15536 15537 return SDValue(); 15538 } 15539 15540 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 15541 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 15542 return Value; 15543 15544 return SDValue(); 15545 } 15546 15547 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 15548 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 15549 // When C is zero, the equation (addi Z, -C) can be simplified to Z 15550 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 15551 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 15552 const PPCSubtarget &Subtarget) { 15553 if (!Subtarget.isPPC64()) 15554 return SDValue(); 15555 15556 SDValue LHS = N->getOperand(0); 15557 SDValue RHS = N->getOperand(1); 15558 15559 auto isZextOfCompareWithConstant = [](SDValue Op) { 15560 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 15561 Op.getValueType() != MVT::i64) 15562 return false; 15563 15564 SDValue Cmp = Op.getOperand(0); 15565 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 15566 Cmp.getOperand(0).getValueType() != MVT::i64) 15567 return false; 15568 15569 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 15570 int64_t NegConstant = 0 - Constant->getSExtValue(); 15571 // Due to the limitations of the addi instruction, 15572 // -C is required to be [-32768, 32767]. 15573 return isInt<16>(NegConstant); 15574 } 15575 15576 return false; 15577 }; 15578 15579 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 15580 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 15581 15582 // If there is a pattern, canonicalize a zext operand to the RHS. 15583 if (LHSHasPattern && !RHSHasPattern) 15584 std::swap(LHS, RHS); 15585 else if (!LHSHasPattern && !RHSHasPattern) 15586 return SDValue(); 15587 15588 SDLoc DL(N); 15589 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 15590 SDValue Cmp = RHS.getOperand(0); 15591 SDValue Z = Cmp.getOperand(0); 15592 auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1)); 15593 15594 assert(Constant && "Constant Should not be a null pointer."); 15595 int64_t NegConstant = 0 - Constant->getSExtValue(); 15596 15597 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 15598 default: break; 15599 case ISD::SETNE: { 15600 // when C == 0 15601 // --> addze X, (addic Z, -1).carry 15602 // / 15603 // add X, (zext(setne Z, C))-- 15604 // \ when -32768 <= -C <= 32767 && C != 0 15605 // --> addze X, (addic (addi Z, -C), -1).carry 15606 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15607 DAG.getConstant(NegConstant, DL, MVT::i64)); 15608 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15609 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15610 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 15611 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15612 SDValue(Addc.getNode(), 1)); 15613 } 15614 case ISD::SETEQ: { 15615 // when C == 0 15616 // --> addze X, (subfic Z, 0).carry 15617 // / 15618 // add X, (zext(sete Z, C))-- 15619 // \ when -32768 <= -C <= 32767 && C != 0 15620 // --> addze X, (subfic (addi Z, -C), 0).carry 15621 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 15622 DAG.getConstant(NegConstant, DL, MVT::i64)); 15623 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 15624 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 15625 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 15626 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 15627 SDValue(Subc.getNode(), 1)); 15628 } 15629 } 15630 15631 return SDValue(); 15632 } 15633 15634 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 15635 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 15636 return Value; 15637 15638 return SDValue(); 15639 } 15640 15641 // Detect TRUNCATE operations on bitcasts of float128 values. 15642 // What we are looking for here is the situtation where we extract a subset 15643 // of bits from a 128 bit float. 15644 // This can be of two forms: 15645 // 1) BITCAST of f128 feeding TRUNCATE 15646 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 15647 // The reason this is required is because we do not have a legal i128 type 15648 // and so we want to prevent having to store the f128 and then reload part 15649 // of it. 15650 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 15651 DAGCombinerInfo &DCI) const { 15652 // If we are using CRBits then try that first. 15653 if (Subtarget.useCRBits()) { 15654 // Check if CRBits did anything and return that if it did. 15655 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 15656 return CRTruncValue; 15657 } 15658 15659 SDLoc dl(N); 15660 SDValue Op0 = N->getOperand(0); 15661 15662 // Looking for a truncate of i128 to i64. 15663 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 15664 return SDValue(); 15665 15666 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 15667 15668 // SRL feeding TRUNCATE. 15669 if (Op0.getOpcode() == ISD::SRL) { 15670 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 15671 // The right shift has to be by 64 bits. 15672 if (!ConstNode || ConstNode->getZExtValue() != 64) 15673 return SDValue(); 15674 15675 // Switch the element number to extract. 15676 EltToExtract = EltToExtract ? 0 : 1; 15677 // Update Op0 past the SRL. 15678 Op0 = Op0.getOperand(0); 15679 } 15680 15681 // BITCAST feeding a TRUNCATE possibly via SRL. 15682 if (Op0.getOpcode() == ISD::BITCAST && 15683 Op0.getValueType() == MVT::i128 && 15684 Op0.getOperand(0).getValueType() == MVT::f128) { 15685 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 15686 return DCI.DAG.getNode( 15687 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 15688 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 15689 } 15690 return SDValue(); 15691 } 15692 15693 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 15694 SelectionDAG &DAG = DCI.DAG; 15695 15696 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 15697 if (!ConstOpOrElement) 15698 return SDValue(); 15699 15700 // An imul is usually smaller than the alternative sequence for legal type. 15701 if (DAG.getMachineFunction().getFunction().hasMinSize() && 15702 isOperationLegal(ISD::MUL, N->getValueType(0))) 15703 return SDValue(); 15704 15705 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 15706 switch (this->Subtarget.getCPUDirective()) { 15707 default: 15708 // TODO: enhance the condition for subtarget before pwr8 15709 return false; 15710 case PPC::DIR_PWR8: 15711 // type mul add shl 15712 // scalar 4 1 1 15713 // vector 7 2 2 15714 return true; 15715 case PPC::DIR_PWR9: 15716 case PPC::DIR_PWR_FUTURE: 15717 // type mul add shl 15718 // scalar 5 2 2 15719 // vector 7 2 2 15720 15721 // The cycle RATIO of related operations are showed as a table above. 15722 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 15723 // scalar and vector type. For 2 instrs patterns, add/sub + shl 15724 // are 4, it is always profitable; but for 3 instrs patterns 15725 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 15726 // So we should only do it for vector type. 15727 return IsAddOne && IsNeg ? VT.isVector() : true; 15728 } 15729 }; 15730 15731 EVT VT = N->getValueType(0); 15732 SDLoc DL(N); 15733 15734 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 15735 bool IsNeg = MulAmt.isNegative(); 15736 APInt MulAmtAbs = MulAmt.abs(); 15737 15738 if ((MulAmtAbs - 1).isPowerOf2()) { 15739 // (mul x, 2^N + 1) => (add (shl x, N), x) 15740 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 15741 15742 if (!IsProfitable(IsNeg, true, VT)) 15743 return SDValue(); 15744 15745 SDValue Op0 = N->getOperand(0); 15746 SDValue Op1 = 15747 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15748 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 15749 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 15750 15751 if (!IsNeg) 15752 return Res; 15753 15754 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 15755 } else if ((MulAmtAbs + 1).isPowerOf2()) { 15756 // (mul x, 2^N - 1) => (sub (shl x, N), x) 15757 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 15758 15759 if (!IsProfitable(IsNeg, false, VT)) 15760 return SDValue(); 15761 15762 SDValue Op0 = N->getOperand(0); 15763 SDValue Op1 = 15764 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 15765 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 15766 15767 if (!IsNeg) 15768 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 15769 else 15770 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 15771 15772 } else { 15773 return SDValue(); 15774 } 15775 } 15776 15777 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 15778 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 15779 if (!Subtarget.is64BitELFABI()) 15780 return false; 15781 15782 // If not a tail call then no need to proceed. 15783 if (!CI->isTailCall()) 15784 return false; 15785 15786 // If sibling calls have been disabled and tail-calls aren't guaranteed 15787 // there is no reason to duplicate. 15788 auto &TM = getTargetMachine(); 15789 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 15790 return false; 15791 15792 // Can't tail call a function called indirectly, or if it has variadic args. 15793 const Function *Callee = CI->getCalledFunction(); 15794 if (!Callee || Callee->isVarArg()) 15795 return false; 15796 15797 // Make sure the callee and caller calling conventions are eligible for tco. 15798 const Function *Caller = CI->getParent()->getParent(); 15799 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 15800 CI->getCallingConv())) 15801 return false; 15802 15803 // If the function is local then we have a good chance at tail-calling it 15804 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 15805 } 15806 15807 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 15808 if (!Subtarget.hasVSX()) 15809 return false; 15810 if (Subtarget.hasP9Vector() && VT == MVT::f128) 15811 return true; 15812 return VT == MVT::f32 || VT == MVT::f64 || 15813 VT == MVT::v4f32 || VT == MVT::v2f64; 15814 } 15815 15816 bool PPCTargetLowering:: 15817 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 15818 const Value *Mask = AndI.getOperand(1); 15819 // If the mask is suitable for andi. or andis. we should sink the and. 15820 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 15821 // Can't handle constants wider than 64-bits. 15822 if (CI->getBitWidth() > 64) 15823 return false; 15824 int64_t ConstVal = CI->getZExtValue(); 15825 return isUInt<16>(ConstVal) || 15826 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 15827 } 15828 15829 // For non-constant masks, we can always use the record-form and. 15830 return true; 15831 } 15832 15833 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 15834 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 15835 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 15836 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 15837 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 15838 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 15839 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 15840 assert(Subtarget.hasP9Altivec() && 15841 "Only combine this when P9 altivec supported!"); 15842 EVT VT = N->getValueType(0); 15843 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15844 return SDValue(); 15845 15846 SelectionDAG &DAG = DCI.DAG; 15847 SDLoc dl(N); 15848 if (N->getOperand(0).getOpcode() == ISD::SUB) { 15849 // Even for signed integers, if it's known to be positive (as signed 15850 // integer) due to zero-extended inputs. 15851 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 15852 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 15853 if ((SubOpcd0 == ISD::ZERO_EXTEND || 15854 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 15855 (SubOpcd1 == ISD::ZERO_EXTEND || 15856 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 15857 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15858 N->getOperand(0)->getOperand(0), 15859 N->getOperand(0)->getOperand(1), 15860 DAG.getTargetConstant(0, dl, MVT::i32)); 15861 } 15862 15863 // For type v4i32, it can be optimized with xvnegsp + vabsduw 15864 if (N->getOperand(0).getValueType() == MVT::v4i32 && 15865 N->getOperand(0).hasOneUse()) { 15866 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 15867 N->getOperand(0)->getOperand(0), 15868 N->getOperand(0)->getOperand(1), 15869 DAG.getTargetConstant(1, dl, MVT::i32)); 15870 } 15871 } 15872 15873 return SDValue(); 15874 } 15875 15876 // For type v4i32/v8ii16/v16i8, transform 15877 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 15878 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 15879 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 15880 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 15881 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 15882 DAGCombinerInfo &DCI) const { 15883 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 15884 assert(Subtarget.hasP9Altivec() && 15885 "Only combine this when P9 altivec supported!"); 15886 15887 SelectionDAG &DAG = DCI.DAG; 15888 SDLoc dl(N); 15889 SDValue Cond = N->getOperand(0); 15890 SDValue TrueOpnd = N->getOperand(1); 15891 SDValue FalseOpnd = N->getOperand(2); 15892 EVT VT = N->getOperand(1).getValueType(); 15893 15894 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 15895 FalseOpnd.getOpcode() != ISD::SUB) 15896 return SDValue(); 15897 15898 // ABSD only available for type v4i32/v8i16/v16i8 15899 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 15900 return SDValue(); 15901 15902 // At least to save one more dependent computation 15903 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 15904 return SDValue(); 15905 15906 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 15907 15908 // Can only handle unsigned comparison here 15909 switch (CC) { 15910 default: 15911 return SDValue(); 15912 case ISD::SETUGT: 15913 case ISD::SETUGE: 15914 break; 15915 case ISD::SETULT: 15916 case ISD::SETULE: 15917 std::swap(TrueOpnd, FalseOpnd); 15918 break; 15919 } 15920 15921 SDValue CmpOpnd1 = Cond.getOperand(0); 15922 SDValue CmpOpnd2 = Cond.getOperand(1); 15923 15924 // SETCC CmpOpnd1 CmpOpnd2 cond 15925 // TrueOpnd = CmpOpnd1 - CmpOpnd2 15926 // FalseOpnd = CmpOpnd2 - CmpOpnd1 15927 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 15928 TrueOpnd.getOperand(1) == CmpOpnd2 && 15929 FalseOpnd.getOperand(0) == CmpOpnd2 && 15930 FalseOpnd.getOperand(1) == CmpOpnd1) { 15931 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 15932 CmpOpnd1, CmpOpnd2, 15933 DAG.getTargetConstant(0, dl, MVT::i32)); 15934 } 15935 15936 return SDValue(); 15937 } 15938