1 /* .eh_frame section optimization.
2    Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3    Written by Jakub Jelinek <jakub@redhat.com>.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20 
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/dwarf2.h"
26 
27 #define EH_FRAME_HDR_SIZE 8
28 
29 /* If *ITER hasn't reached END yet, read the next byte into *RESULT and
30    move onto the next byte.  Return true on success.  */
31 
32 static inline bfd_boolean
33 read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
34 {
35   if (*iter >= end)
36     return FALSE;
37   *result = *((*iter)++);
38   return TRUE;
39 }
40 
41 /* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
42    Return true it was possible to move LENGTH bytes.  */
43 
44 static inline bfd_boolean
45 skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
46 {
47   if ((bfd_size_type) (end - *iter) < length)
48     {
49       *iter = end;
50       return FALSE;
51     }
52   *iter += length;
53   return TRUE;
54 }
55 
56 /* Move *ITER over an leb128, stopping at END.  Return true if the end
57    of the leb128 was found.  */
58 
59 static bfd_boolean
60 skip_leb128 (bfd_byte **iter, bfd_byte *end)
61 {
62   unsigned char byte;
63   do
64     if (!read_byte (iter, end, &byte))
65       return FALSE;
66   while (byte & 0x80);
67   return TRUE;
68 }
69 
70 /* Like skip_leb128, but treat the leb128 as an unsigned value and
71    store it in *VALUE.  */
72 
73 static bfd_boolean
74 read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
75 {
76   bfd_byte *start, *p;
77 
78   start = *iter;
79   if (!skip_leb128 (iter, end))
80     return FALSE;
81 
82   p = *iter;
83   *value = *--p;
84   while (p > start)
85     *value = (*value << 7) | (*--p & 0x7f);
86 
87   return TRUE;
88 }
89 
90 /* Like read_uleb128, but for signed values.  */
91 
92 static bfd_boolean
93 read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
94 {
95   bfd_byte *start, *p;
96 
97   start = *iter;
98   if (!skip_leb128 (iter, end))
99     return FALSE;
100 
101   p = *iter;
102   *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
103   while (p > start)
104     *value = (*value << 7) | (*--p & 0x7f);
105 
106   return TRUE;
107 }
108 
109 /* Return 0 if either encoding is variable width, or not yet known to bfd.  */
110 
111 static
112 int get_DW_EH_PE_width (int encoding, int ptr_size)
113 {
114   /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
115      was added to bfd.  */
116   if ((encoding & 0x60) == 0x60)
117     return 0;
118 
119   switch (encoding & 7)
120     {
121     case DW_EH_PE_udata2: return 2;
122     case DW_EH_PE_udata4: return 4;
123     case DW_EH_PE_udata8: return 8;
124     case DW_EH_PE_absptr: return ptr_size;
125     default:
126       break;
127     }
128 
129   return 0;
130 }
131 
132 #define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
133 
134 /* Read a width sized value from memory.  */
135 
136 static bfd_vma
137 read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
138 {
139   bfd_vma value;
140 
141   switch (width)
142     {
143     case 2:
144       if (is_signed)
145 	value = bfd_get_signed_16 (abfd, buf);
146       else
147 	value = bfd_get_16 (abfd, buf);
148       break;
149     case 4:
150       if (is_signed)
151 	value = bfd_get_signed_32 (abfd, buf);
152       else
153 	value = bfd_get_32 (abfd, buf);
154       break;
155     case 8:
156       if (is_signed)
157 	value = bfd_get_signed_64 (abfd, buf);
158       else
159 	value = bfd_get_64 (abfd, buf);
160       break;
161     default:
162       BFD_FAIL ();
163       return 0;
164     }
165 
166   return value;
167 }
168 
169 /* Store a width sized value to memory.  */
170 
171 static void
172 write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
173 {
174   switch (width)
175     {
176     case 2: bfd_put_16 (abfd, value, buf); break;
177     case 4: bfd_put_32 (abfd, value, buf); break;
178     case 8: bfd_put_64 (abfd, value, buf); break;
179     default: BFD_FAIL ();
180     }
181 }
182 
183 /* Return zero if C1 and C2 CIEs can be merged.  */
184 
185 static
186 int cie_compare (struct cie *c1, struct cie *c2)
187 {
188   if (c1->hdr.length == c2->hdr.length
189       && c1->version == c2->version
190       && strcmp (c1->augmentation, c2->augmentation) == 0
191       && strcmp (c1->augmentation, "eh") != 0
192       && c1->code_align == c2->code_align
193       && c1->data_align == c2->data_align
194       && c1->ra_column == c2->ra_column
195       && c1->augmentation_size == c2->augmentation_size
196       && c1->personality == c2->personality
197       && c1->per_encoding == c2->per_encoding
198       && c1->lsda_encoding == c2->lsda_encoding
199       && c1->fde_encoding == c2->fde_encoding
200       && c1->initial_insn_length == c2->initial_insn_length
201       && memcmp (c1->initial_instructions,
202 		 c2->initial_instructions,
203 		 c1->initial_insn_length) == 0)
204     return 0;
205 
206   return 1;
207 }
208 
209 /* Return the number of extra bytes that we'll be inserting into
210    ENTRY's augmentation string.  */
211 
212 static INLINE unsigned int
213 extra_augmentation_string_bytes (struct eh_cie_fde *entry)
214 {
215   unsigned int size = 0;
216   if (entry->cie)
217     {
218       if (entry->add_augmentation_size)
219 	size++;
220       if (entry->add_fde_encoding)
221 	size++;
222     }
223   return size;
224 }
225 
226 /* Likewise ENTRY's augmentation data.  */
227 
228 static INLINE unsigned int
229 extra_augmentation_data_bytes (struct eh_cie_fde *entry)
230 {
231   unsigned int size = 0;
232   if (entry->cie)
233     {
234       if (entry->add_augmentation_size)
235 	size++;
236       if (entry->add_fde_encoding)
237 	size++;
238     }
239   else
240     {
241       if (entry->cie_inf->add_augmentation_size)
242 	size++;
243     }
244   return size;
245 }
246 
247 /* Return the size that ENTRY will have in the output.  ALIGNMENT is the
248    required alignment of ENTRY in bytes.  */
249 
250 static unsigned int
251 size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
252 {
253   if (entry->removed)
254     return 0;
255   if (entry->size == 4)
256     return 4;
257   return (entry->size
258 	  + extra_augmentation_string_bytes (entry)
259 	  + extra_augmentation_data_bytes (entry)
260 	  + alignment - 1) & -alignment;
261 }
262 
263 /* Assume that the bytes between *ITER and END are CFA instructions.
264    Try to move *ITER past the first instruction and return true on
265    success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
266 
267 static bfd_boolean
268 skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
269 {
270   bfd_byte op;
271   bfd_vma length;
272 
273   if (!read_byte (iter, end, &op))
274     return FALSE;
275 
276   switch (op & 0x80 ? op & 0xc0 : op)
277     {
278     case DW_CFA_nop:
279     case DW_CFA_advance_loc:
280     case DW_CFA_restore:
281       /* No arguments.  */
282       return TRUE;
283 
284     case DW_CFA_offset:
285     case DW_CFA_restore_extended:
286     case DW_CFA_undefined:
287     case DW_CFA_same_value:
288     case DW_CFA_def_cfa_register:
289     case DW_CFA_def_cfa_offset:
290     case DW_CFA_def_cfa_offset_sf:
291     case DW_CFA_GNU_args_size:
292       /* One leb128 argument.  */
293       return skip_leb128 (iter, end);
294 
295     case DW_CFA_offset_extended:
296     case DW_CFA_register:
297     case DW_CFA_def_cfa:
298     case DW_CFA_offset_extended_sf:
299     case DW_CFA_GNU_negative_offset_extended:
300     case DW_CFA_def_cfa_sf:
301       /* Two leb128 arguments.  */
302       return (skip_leb128 (iter, end)
303 	      && skip_leb128 (iter, end));
304 
305     case DW_CFA_def_cfa_expression:
306       /* A variable-length argument.  */
307       return (read_uleb128 (iter, end, &length)
308 	      && skip_bytes (iter, end, length));
309 
310     case DW_CFA_expression:
311       /* A leb128 followed by a variable-length argument.  */
312       return (skip_leb128 (iter, end)
313 	      && read_uleb128 (iter, end, &length)
314 	      && skip_bytes (iter, end, length));
315 
316     case DW_CFA_set_loc:
317       return skip_bytes (iter, end, encoded_ptr_width);
318 
319     case DW_CFA_advance_loc1:
320       return skip_bytes (iter, end, 1);
321 
322     case DW_CFA_advance_loc2:
323       return skip_bytes (iter, end, 2);
324 
325     case DW_CFA_advance_loc4:
326       return skip_bytes (iter, end, 4);
327 
328     case DW_CFA_MIPS_advance_loc8:
329       return skip_bytes (iter, end, 8);
330 
331     default:
332       return FALSE;
333     }
334 }
335 
336 /* Try to interpret the bytes between BUF and END as CFA instructions.
337    If every byte makes sense, return a pointer to the first DW_CFA_nop
338    padding byte, or END if there is no padding.  Return null otherwise.
339    ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
340 
341 static bfd_byte *
342 skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width)
343 {
344   bfd_byte *last;
345 
346   last = buf;
347   while (buf < end)
348     if (*buf == DW_CFA_nop)
349       buf++;
350     else
351       {
352 	if (!skip_cfa_op (&buf, end, encoded_ptr_width))
353 	  return 0;
354 	last = buf;
355       }
356   return last;
357 }
358 
359 /* This function is called for each input file before the .eh_frame
360    section is relocated.  It discards duplicate CIEs and FDEs for discarded
361    functions.  The function returns TRUE iff any entries have been
362    deleted.  */
363 
364 bfd_boolean
365 _bfd_elf_discard_section_eh_frame
366    (bfd *abfd, struct bfd_link_info *info, asection *sec,
367     bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
368     struct elf_reloc_cookie *cookie)
369 {
370 #define REQUIRE(COND)					\
371   do							\
372     if (!(COND))					\
373       goto free_no_table;				\
374   while (0)
375 
376   bfd_byte *ehbuf = NULL, *buf;
377   bfd_byte *last_cie, *last_fde;
378   struct eh_cie_fde *ent, *last_cie_inf, *this_inf;
379   struct cie_header hdr;
380   struct cie cie;
381   struct elf_link_hash_table *htab;
382   struct eh_frame_hdr_info *hdr_info;
383   struct eh_frame_sec_info *sec_info = NULL;
384   unsigned int cie_usage_count, offset;
385   unsigned int ptr_size;
386 
387   if (sec->size == 0)
388     {
389       /* This file does not contain .eh_frame information.  */
390       return FALSE;
391     }
392 
393   if ((sec->output_section != NULL
394        && bfd_is_abs_section (sec->output_section)))
395     {
396       /* At least one of the sections is being discarded from the
397 	 link, so we should just ignore them.  */
398       return FALSE;
399     }
400 
401   htab = elf_hash_table (info);
402   hdr_info = &htab->eh_info;
403 
404   /* Read the frame unwind information from abfd.  */
405 
406   REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
407 
408   if (sec->size >= 4
409       && bfd_get_32 (abfd, ehbuf) == 0
410       && cookie->rel == cookie->relend)
411     {
412       /* Empty .eh_frame section.  */
413       free (ehbuf);
414       return FALSE;
415     }
416 
417   /* If .eh_frame section size doesn't fit into int, we cannot handle
418      it (it would need to use 64-bit .eh_frame format anyway).  */
419   REQUIRE (sec->size == (unsigned int) sec->size);
420 
421   ptr_size = (get_elf_backend_data (abfd)
422 	      ->elf_backend_eh_frame_address_size (abfd, sec));
423   REQUIRE (ptr_size != 0);
424 
425   buf = ehbuf;
426   last_cie = NULL;
427   last_cie_inf = NULL;
428   memset (&cie, 0, sizeof (cie));
429   cie_usage_count = 0;
430   sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
431 			  + 99 * sizeof (struct eh_cie_fde));
432   REQUIRE (sec_info);
433 
434   sec_info->alloced = 100;
435 
436 #define ENSURE_NO_RELOCS(buf)				\
437   REQUIRE (!(cookie->rel < cookie->relend		\
438 	     && (cookie->rel->r_offset			\
439 		 < (bfd_size_type) ((buf) - ehbuf))	\
440 	     && cookie->rel->r_info != 0))
441 
442 #define SKIP_RELOCS(buf)				\
443   while (cookie->rel < cookie->relend			\
444 	 && (cookie->rel->r_offset			\
445 	     < (bfd_size_type) ((buf) - ehbuf)))	\
446     cookie->rel++
447 
448 #define GET_RELOC(buf)					\
449   ((cookie->rel < cookie->relend			\
450     && (cookie->rel->r_offset				\
451 	== (bfd_size_type) ((buf) - ehbuf)))		\
452    ? cookie->rel : NULL)
453 
454   for (;;)
455     {
456       char *aug;
457       bfd_byte *start, *end, *insns;
458       bfd_size_type length;
459 
460       if (sec_info->count == sec_info->alloced)
461 	{
462 	  struct eh_cie_fde *old_entry = sec_info->entry;
463 	  sec_info = bfd_realloc (sec_info,
464 				  sizeof (struct eh_frame_sec_info)
465 				  + ((sec_info->alloced + 99)
466 				     * sizeof (struct eh_cie_fde)));
467 	  REQUIRE (sec_info);
468 
469 	  memset (&sec_info->entry[sec_info->alloced], 0,
470 		  100 * sizeof (struct eh_cie_fde));
471 	  sec_info->alloced += 100;
472 
473 	  /* Now fix any pointers into the array.  */
474 	  if (last_cie_inf >= old_entry
475 	      && last_cie_inf < old_entry + sec_info->count)
476 	    last_cie_inf = sec_info->entry + (last_cie_inf - old_entry);
477 	}
478 
479       this_inf = sec_info->entry + sec_info->count;
480       last_fde = buf;
481       /* If we are at the end of the section, we still need to decide
482 	 on whether to output or discard last encountered CIE (if any).  */
483       if ((bfd_size_type) (buf - ehbuf) == sec->size)
484 	{
485 	  hdr.length = 0;
486 	  hdr.id = (unsigned int) -1;
487 	  end = buf;
488 	}
489       else
490 	{
491 	  /* Read the length of the entry.  */
492 	  REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
493 	  hdr.length = bfd_get_32 (abfd, buf - 4);
494 
495 	  /* 64-bit .eh_frame is not supported.  */
496 	  REQUIRE (hdr.length != 0xffffffff);
497 
498 	  /* The CIE/FDE must be fully contained in this input section.  */
499 	  REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr.length <= sec->size);
500 	  end = buf + hdr.length;
501 
502 	  this_inf->offset = last_fde - ehbuf;
503 	  this_inf->size = 4 + hdr.length;
504 
505 	  if (hdr.length == 0)
506 	    {
507 	      /* A zero-length CIE should only be found at the end of
508 		 the section.  */
509 	      REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
510 	      ENSURE_NO_RELOCS (buf);
511 	      sec_info->count++;
512 	      /* Now just finish last encountered CIE processing and break
513 		 the loop.  */
514 	      hdr.id = (unsigned int) -1;
515 	    }
516 	  else
517 	    {
518 	      REQUIRE (skip_bytes (&buf, end, 4));
519 	      hdr.id = bfd_get_32 (abfd, buf - 4);
520 	      REQUIRE (hdr.id != (unsigned int) -1);
521 	    }
522 	}
523 
524       if (hdr.id == 0 || hdr.id == (unsigned int) -1)
525 	{
526 	  unsigned int initial_insn_length;
527 
528 	  /* CIE  */
529 	  if (last_cie != NULL)
530 	    {
531 	      /* Now check if this CIE is identical to the last CIE,
532 		 in which case we can remove it provided we adjust
533 		 all FDEs.  Also, it can be removed if we have removed
534 		 all FDEs using it.  */
535 	      if ((!info->relocatable
536 		   && hdr_info->last_cie_sec
537 		   && (sec->output_section
538 		       == hdr_info->last_cie_sec->output_section)
539 		   && cie_compare (&cie, &hdr_info->last_cie) == 0)
540 		  || cie_usage_count == 0)
541 		last_cie_inf->removed = 1;
542 	      else
543 		{
544 		  hdr_info->last_cie = cie;
545 		  hdr_info->last_cie_sec = sec;
546 		  last_cie_inf->make_relative = cie.make_relative;
547 		  last_cie_inf->make_lsda_relative = cie.make_lsda_relative;
548 		  last_cie_inf->per_encoding_relative
549 		    = (cie.per_encoding & 0x70) == DW_EH_PE_pcrel;
550 		}
551 	    }
552 
553 	  if (hdr.id == (unsigned int) -1)
554 	    break;
555 
556 	  last_cie_inf = this_inf;
557 	  this_inf->cie = 1;
558 
559 	  cie_usage_count = 0;
560 	  memset (&cie, 0, sizeof (cie));
561 	  cie.hdr = hdr;
562 	  REQUIRE (read_byte (&buf, end, &cie.version));
563 
564 	  /* Cannot handle unknown versions.  */
565 	  REQUIRE (cie.version == 1 || cie.version == 3);
566 	  REQUIRE (strlen ((char *) buf) < sizeof (cie.augmentation));
567 
568 	  strcpy (cie.augmentation, (char *) buf);
569 	  buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
570 	  ENSURE_NO_RELOCS (buf);
571 	  if (buf[0] == 'e' && buf[1] == 'h')
572 	    {
573 	      /* GCC < 3.0 .eh_frame CIE */
574 	      /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
575 		 is private to each CIE, so we don't need it for anything.
576 		 Just skip it.  */
577 	      REQUIRE (skip_bytes (&buf, end, ptr_size));
578 	      SKIP_RELOCS (buf);
579 	    }
580 	  REQUIRE (read_uleb128 (&buf, end, &cie.code_align));
581 	  REQUIRE (read_sleb128 (&buf, end, &cie.data_align));
582 	  if (cie.version == 1)
583 	    {
584 	      REQUIRE (buf < end);
585 	      cie.ra_column = *buf++;
586 	    }
587 	  else
588 	    REQUIRE (read_uleb128 (&buf, end, &cie.ra_column));
589 	  ENSURE_NO_RELOCS (buf);
590 	  cie.lsda_encoding = DW_EH_PE_omit;
591 	  cie.fde_encoding = DW_EH_PE_omit;
592 	  cie.per_encoding = DW_EH_PE_omit;
593 	  aug = cie.augmentation;
594 	  if (aug[0] != 'e' || aug[1] != 'h')
595 	    {
596 	      if (*aug == 'z')
597 		{
598 		  aug++;
599 		  REQUIRE (read_uleb128 (&buf, end, &cie.augmentation_size));
600 	  	  ENSURE_NO_RELOCS (buf);
601 		}
602 
603 	      while (*aug != '\0')
604 		switch (*aug++)
605 		  {
606 		  case 'L':
607 		    REQUIRE (read_byte (&buf, end, &cie.lsda_encoding));
608 		    ENSURE_NO_RELOCS (buf);
609 		    REQUIRE (get_DW_EH_PE_width (cie.lsda_encoding, ptr_size));
610 		    break;
611 		  case 'R':
612 		    REQUIRE (read_byte (&buf, end, &cie.fde_encoding));
613 		    ENSURE_NO_RELOCS (buf);
614 		    REQUIRE (get_DW_EH_PE_width (cie.fde_encoding, ptr_size));
615 		    break;
616 		  case 'S':
617 		    break;
618 		  case 'P':
619 		    {
620 		      int per_width;
621 
622 		      REQUIRE (read_byte (&buf, end, &cie.per_encoding));
623 		      per_width = get_DW_EH_PE_width (cie.per_encoding,
624 						      ptr_size);
625 		      REQUIRE (per_width);
626 		      if ((cie.per_encoding & 0xf0) == DW_EH_PE_aligned)
627 			{
628 			  length = -(buf - ehbuf) & (per_width - 1);
629 			  REQUIRE (skip_bytes (&buf, end, length));
630 			}
631 		      ENSURE_NO_RELOCS (buf);
632 		      /* Ensure we have a reloc here, against
633 			 a global symbol.  */
634 		      if (GET_RELOC (buf) != NULL)
635 			{
636 			  unsigned long r_symndx;
637 
638 #ifdef BFD64
639 			  if (ptr_size == 8)
640 			    r_symndx = ELF64_R_SYM (cookie->rel->r_info);
641 			  else
642 #endif
643 			    r_symndx = ELF32_R_SYM (cookie->rel->r_info);
644 			  if (r_symndx >= cookie->locsymcount)
645 			    {
646 			      struct elf_link_hash_entry *h;
647 
648 			      r_symndx -= cookie->extsymoff;
649 			      h = cookie->sym_hashes[r_symndx];
650 
651 			      while (h->root.type == bfd_link_hash_indirect
652 				     || h->root.type == bfd_link_hash_warning)
653 				h = (struct elf_link_hash_entry *)
654 				    h->root.u.i.link;
655 
656 			      cie.personality = h;
657 			    }
658 			  /* Cope with MIPS-style composite relocations.  */
659 			  do
660 			    cookie->rel++;
661 			  while (GET_RELOC (buf) != NULL);
662 			}
663 		      REQUIRE (skip_bytes (&buf, end, per_width));
664 		    }
665 		    break;
666 		  default:
667 		    /* Unrecognized augmentation. Better bail out.  */
668 		    goto free_no_table;
669 		  }
670 	    }
671 
672 	  /* For shared libraries, try to get rid of as many RELATIVE relocs
673 	     as possible.  */
674 	  if (info->shared
675 	      && (get_elf_backend_data (abfd)
676 		  ->elf_backend_can_make_relative_eh_frame
677 		  (abfd, info, sec)))
678 	    {
679 	      if ((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr)
680 		cie.make_relative = 1;
681 	      /* If the CIE doesn't already have an 'R' entry, it's fairly
682 		 easy to add one, provided that there's no aligned data
683 		 after the augmentation string.  */
684 	      else if (cie.fde_encoding == DW_EH_PE_omit
685 		       && (cie.per_encoding & 0xf0) != DW_EH_PE_aligned)
686 		{
687 		  if (*cie.augmentation == 0)
688 		    this_inf->add_augmentation_size = 1;
689 		  this_inf->add_fde_encoding = 1;
690 		  cie.make_relative = 1;
691 		}
692 	    }
693 
694 	  if (info->shared
695 	      && (get_elf_backend_data (abfd)
696 		  ->elf_backend_can_make_lsda_relative_eh_frame
697 		  (abfd, info, sec))
698 	      && (cie.lsda_encoding & 0xf0) == DW_EH_PE_absptr)
699 	    cie.make_lsda_relative = 1;
700 
701 	  /* If FDE encoding was not specified, it defaults to
702 	     DW_EH_absptr.  */
703 	  if (cie.fde_encoding == DW_EH_PE_omit)
704 	    cie.fde_encoding = DW_EH_PE_absptr;
705 
706 	  initial_insn_length = end - buf;
707 	  if (initial_insn_length <= 50)
708 	    {
709 	      cie.initial_insn_length = initial_insn_length;
710 	      memcpy (cie.initial_instructions, buf, initial_insn_length);
711 	    }
712 	  insns = buf;
713 	  buf += initial_insn_length;
714 	  ENSURE_NO_RELOCS (buf);
715 	  last_cie = last_fde;
716 	}
717       else
718 	{
719 	  /* Ensure this FDE uses the last CIE encountered.  */
720 	  REQUIRE (last_cie);
721 	  REQUIRE (hdr.id == (unsigned int) (buf - 4 - last_cie));
722 
723 	  ENSURE_NO_RELOCS (buf);
724 	  REQUIRE (GET_RELOC (buf));
725 
726 	  if ((*reloc_symbol_deleted_p) (buf - ehbuf, cookie))
727 	    /* This is a FDE against a discarded section.  It should
728 	       be deleted.  */
729 	    this_inf->removed = 1;
730 	  else
731 	    {
732 	      if (info->shared
733 		  && (((cie.fde_encoding & 0xf0) == DW_EH_PE_absptr
734 		       && cie.make_relative == 0)
735 		      || (cie.fde_encoding & 0xf0) == DW_EH_PE_aligned))
736 		{
737 		  /* If a shared library uses absolute pointers
738 		     which we cannot turn into PC relative,
739 		     don't create the binary search table,
740 		     since it is affected by runtime relocations.  */
741 		  hdr_info->table = FALSE;
742 		}
743 	      cie_usage_count++;
744 	      hdr_info->fde_count++;
745 	    }
746 	  /* Skip the initial location and address range.  */
747 	  start = buf;
748 	  length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
749 	  REQUIRE (skip_bytes (&buf, end, 2 * length));
750 
751 	  /* Skip the augmentation size, if present.  */
752 	  if (cie.augmentation[0] == 'z')
753 	    REQUIRE (read_uleb128 (&buf, end, &length));
754 	  else
755 	    length = 0;
756 
757 	  /* Of the supported augmentation characters above, only 'L'
758 	     adds augmentation data to the FDE.  This code would need to
759 	     be adjusted if any future augmentations do the same thing.  */
760 	  if (cie.lsda_encoding != DW_EH_PE_omit)
761 	    {
762 	      this_inf->lsda_offset = buf - start;
763 	      /* If there's no 'z' augmentation, we don't know where the
764 		 CFA insns begin.  Assume no padding.  */
765 	      if (cie.augmentation[0] != 'z')
766 		length = end - buf;
767 	    }
768 
769 	  /* Skip over the augmentation data.  */
770 	  REQUIRE (skip_bytes (&buf, end, length));
771 	  insns = buf;
772 
773 	  buf = last_fde + 4 + hdr.length;
774 	  SKIP_RELOCS (buf);
775 	}
776 
777       /* Try to interpret the CFA instructions and find the first
778 	 padding nop.  Shrink this_inf's size so that it doesn't
779 	 including the padding.  */
780       length = get_DW_EH_PE_width (cie.fde_encoding, ptr_size);
781       insns = skip_non_nops (insns, end, length);
782       if (insns != 0)
783 	this_inf->size -= end - insns;
784 
785       this_inf->fde_encoding = cie.fde_encoding;
786       this_inf->lsda_encoding = cie.lsda_encoding;
787       sec_info->count++;
788     }
789 
790   elf_section_data (sec)->sec_info = sec_info;
791   sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
792 
793   /* Ok, now we can assign new offsets.  */
794   offset = 0;
795   last_cie_inf = hdr_info->last_cie_inf;
796   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
797     if (!ent->removed)
798       {
799 	if (ent->cie)
800 	  last_cie_inf = ent;
801 	else
802 	  ent->cie_inf = last_cie_inf;
803 	ent->new_offset = offset;
804 	offset += size_of_output_cie_fde (ent, ptr_size);
805       }
806   hdr_info->last_cie_inf = last_cie_inf;
807 
808   /* Resize the sec as needed.  */
809   sec->rawsize = sec->size;
810   sec->size = offset;
811   if (sec->size == 0)
812     sec->flags |= SEC_EXCLUDE;
813 
814   free (ehbuf);
815   return offset != sec->rawsize;
816 
817 free_no_table:
818   if (ehbuf)
819     free (ehbuf);
820   if (sec_info)
821     free (sec_info);
822   hdr_info->table = FALSE;
823   hdr_info->last_cie.hdr.length = 0;
824   return FALSE;
825 
826 #undef REQUIRE
827 }
828 
829 /* This function is called for .eh_frame_hdr section after
830    _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
831    input sections.  It finalizes the size of .eh_frame_hdr section.  */
832 
833 bfd_boolean
834 _bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
835 {
836   struct elf_link_hash_table *htab;
837   struct eh_frame_hdr_info *hdr_info;
838   asection *sec;
839 
840   htab = elf_hash_table (info);
841   hdr_info = &htab->eh_info;
842   sec = hdr_info->hdr_sec;
843   if (sec == NULL)
844     return FALSE;
845 
846   sec->size = EH_FRAME_HDR_SIZE;
847   if (hdr_info->table)
848     sec->size += 4 + hdr_info->fde_count * 8;
849 
850   /* Request program headers to be recalculated.  */
851   elf_tdata (abfd)->program_header_size = 0;
852   elf_tdata (abfd)->eh_frame_hdr = sec;
853   return TRUE;
854 }
855 
856 /* This function is called from size_dynamic_sections.
857    It needs to decide whether .eh_frame_hdr should be output or not,
858    because when the dynamic symbol table has been sized it is too late
859    to strip sections.  */
860 
861 bfd_boolean
862 _bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
863 {
864   asection *o;
865   bfd *abfd;
866   struct elf_link_hash_table *htab;
867   struct eh_frame_hdr_info *hdr_info;
868 
869   htab = elf_hash_table (info);
870   hdr_info = &htab->eh_info;
871   if (hdr_info->hdr_sec == NULL)
872     return TRUE;
873 
874   if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
875     {
876       hdr_info->hdr_sec = NULL;
877       return TRUE;
878     }
879 
880   abfd = NULL;
881   if (info->eh_frame_hdr)
882     for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
883       {
884 	/* Count only sections which have at least a single CIE or FDE.
885 	   There cannot be any CIE or FDE <= 8 bytes.  */
886 	o = bfd_get_section_by_name (abfd, ".eh_frame");
887 	if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
888 	  break;
889       }
890 
891   if (abfd == NULL)
892     {
893       hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
894       hdr_info->hdr_sec = NULL;
895       return TRUE;
896     }
897 
898   hdr_info->table = TRUE;
899   return TRUE;
900 }
901 
902 /* Adjust an address in the .eh_frame section.  Given OFFSET within
903    SEC, this returns the new offset in the adjusted .eh_frame section,
904    or -1 if the address refers to a CIE/FDE which has been removed
905    or to offset with dynamic relocation which is no longer needed.  */
906 
907 bfd_vma
908 _bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
909 				  struct bfd_link_info *info,
910 				  asection *sec,
911 				  bfd_vma offset)
912 {
913   struct eh_frame_sec_info *sec_info;
914   struct elf_link_hash_table *htab;
915   struct eh_frame_hdr_info *hdr_info;
916   unsigned int lo, hi, mid;
917 
918   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
919     return offset;
920   sec_info = elf_section_data (sec)->sec_info;
921 
922   if (offset >= sec->rawsize)
923     return offset - sec->rawsize + sec->size;
924 
925   htab = elf_hash_table (info);
926   hdr_info = &htab->eh_info;
927   if (hdr_info->offsets_adjusted)
928     offset += sec->output_offset;
929 
930   lo = 0;
931   hi = sec_info->count;
932   mid = 0;
933   while (lo < hi)
934     {
935       mid = (lo + hi) / 2;
936       if (offset < sec_info->entry[mid].offset)
937 	hi = mid;
938       else if (offset
939 	       >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
940 	lo = mid + 1;
941       else
942 	break;
943     }
944 
945   BFD_ASSERT (lo < hi);
946 
947   /* FDE or CIE was removed.  */
948   if (sec_info->entry[mid].removed)
949     return (bfd_vma) -1;
950 
951   /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
952      relocation against FDE's initial_location field.  */
953   if (!sec_info->entry[mid].cie
954       && sec_info->entry[mid].cie_inf->make_relative
955       && offset == sec_info->entry[mid].offset + 8)
956     return (bfd_vma) -2;
957 
958   /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
959      for run-time relocation against LSDA field.  */
960   if (!sec_info->entry[mid].cie
961       && sec_info->entry[mid].cie_inf->make_lsda_relative
962       && (offset == (sec_info->entry[mid].offset + 8
963 		     + sec_info->entry[mid].lsda_offset))
964       && (sec_info->entry[mid].cie_inf->need_lsda_relative
965 	  || !hdr_info->offsets_adjusted))
966     {
967       sec_info->entry[mid].cie_inf->need_lsda_relative = 1;
968       return (bfd_vma) -2;
969     }
970 
971   if (hdr_info->offsets_adjusted)
972     offset -= sec->output_offset;
973   /* Any new augmentation bytes go before the first relocation.  */
974   return (offset + sec_info->entry[mid].new_offset
975 	  - sec_info->entry[mid].offset
976 	  + extra_augmentation_string_bytes (sec_info->entry + mid)
977 	  + extra_augmentation_data_bytes (sec_info->entry + mid));
978 }
979 
980 /* Write out .eh_frame section.  This is called with the relocated
981    contents.  */
982 
983 bfd_boolean
984 _bfd_elf_write_section_eh_frame (bfd *abfd,
985 				 struct bfd_link_info *info,
986 				 asection *sec,
987 				 bfd_byte *contents)
988 {
989   struct eh_frame_sec_info *sec_info;
990   struct elf_link_hash_table *htab;
991   struct eh_frame_hdr_info *hdr_info;
992   unsigned int ptr_size;
993   struct eh_cie_fde *ent;
994 
995   if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
996     return bfd_set_section_contents (abfd, sec->output_section, contents,
997 				     sec->output_offset, sec->size);
998 
999   ptr_size = (get_elf_backend_data (abfd)
1000 	      ->elf_backend_eh_frame_address_size (abfd, sec));
1001   BFD_ASSERT (ptr_size != 0);
1002 
1003   sec_info = elf_section_data (sec)->sec_info;
1004   htab = elf_hash_table (info);
1005   hdr_info = &htab->eh_info;
1006 
1007   /* First convert all offsets to output section offsets, so that a
1008      CIE offset is valid if the CIE is used by a FDE from some other
1009      section.  This can happen when duplicate CIEs are deleted in
1010      _bfd_elf_discard_section_eh_frame.  We do all sections here because
1011      this function might not be called on sections in the same order as
1012      _bfd_elf_discard_section_eh_frame.  */
1013   if (!hdr_info->offsets_adjusted)
1014     {
1015       bfd *ibfd;
1016       asection *eh;
1017       struct eh_frame_sec_info *eh_inf;
1018 
1019       for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1020 	{
1021 	  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1022 	      || (ibfd->flags & DYNAMIC) != 0)
1023 	    continue;
1024 
1025 	  eh = bfd_get_section_by_name (ibfd, ".eh_frame");
1026 	  if (eh == NULL || eh->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
1027 	    continue;
1028 
1029 	  eh_inf = elf_section_data (eh)->sec_info;
1030 	  for (ent = eh_inf->entry; ent < eh_inf->entry + eh_inf->count; ++ent)
1031 	    {
1032 	      ent->offset += eh->output_offset;
1033 	      ent->new_offset += eh->output_offset;
1034 	    }
1035 	}
1036       hdr_info->offsets_adjusted = TRUE;
1037     }
1038 
1039   if (hdr_info->table && hdr_info->array == NULL)
1040     hdr_info->array
1041       = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
1042   if (hdr_info->array == NULL)
1043     hdr_info = NULL;
1044 
1045   /* The new offsets can be bigger or smaller than the original offsets.
1046      We therefore need to make two passes over the section: one backward
1047      pass to move entries up and one forward pass to move entries down.
1048      The two passes won't interfere with each other because entries are
1049      not reordered  */
1050   for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
1051     if (!ent->removed && ent->new_offset > ent->offset)
1052       memmove (contents + ent->new_offset - sec->output_offset,
1053 	       contents + ent->offset - sec->output_offset, ent->size);
1054 
1055   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1056     if (!ent->removed && ent->new_offset < ent->offset)
1057       memmove (contents + ent->new_offset - sec->output_offset,
1058 	       contents + ent->offset - sec->output_offset, ent->size);
1059 
1060   for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
1061     {
1062       unsigned char *buf, *end;
1063       unsigned int new_size;
1064 
1065       if (ent->removed)
1066 	continue;
1067 
1068       if (ent->size == 4)
1069 	{
1070 	  /* Any terminating FDE must be at the end of the section.  */
1071 	  BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
1072 	  continue;
1073 	}
1074 
1075       buf = contents + ent->new_offset - sec->output_offset;
1076       end = buf + ent->size;
1077       new_size = size_of_output_cie_fde (ent, ptr_size);
1078 
1079       /* Update the size.  It may be shrinked.  */
1080       bfd_put_32 (abfd, new_size - 4, buf);
1081 
1082       /* Filling the extra bytes with DW_CFA_nops.  */
1083       if (new_size != ent->size)
1084 	memset (end, 0, new_size - ent->size);
1085 
1086       if (ent->cie)
1087 	{
1088 	  /* CIE */
1089 	  if (ent->make_relative
1090 	      || ent->need_lsda_relative
1091 	      || ent->per_encoding_relative)
1092 	    {
1093 	      char *aug;
1094 	      unsigned int action, extra_string, extra_data;
1095 	      unsigned int per_width, per_encoding;
1096 
1097 	      /* Need to find 'R' or 'L' augmentation's argument and modify
1098 		 DW_EH_PE_* value.  */
1099 	      action = ((ent->make_relative ? 1 : 0)
1100 			| (ent->need_lsda_relative ? 2 : 0)
1101 			| (ent->per_encoding_relative ? 4 : 0));
1102 	      extra_string = extra_augmentation_string_bytes (ent);
1103 	      extra_data = extra_augmentation_data_bytes (ent);
1104 
1105 	      /* Skip length, id and version.  */
1106 	      buf += 9;
1107 	      aug = (char *) buf;
1108 	      buf += strlen (aug) + 1;
1109 	      skip_leb128 (&buf, end);
1110 	      skip_leb128 (&buf, end);
1111 	      skip_leb128 (&buf, end);
1112 	      if (*aug == 'z')
1113 		{
1114 		  /* The uleb128 will always be a single byte for the kind
1115 		     of augmentation strings that we're prepared to handle.  */
1116 		  *buf++ += extra_data;
1117 		  aug++;
1118 		}
1119 
1120 	      /* Make room for the new augmentation string and data bytes.  */
1121 	      memmove (buf + extra_string + extra_data, buf, end - buf);
1122 	      memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
1123 	      buf += extra_string;
1124 	      end += extra_string + extra_data;
1125 
1126 	      if (ent->add_augmentation_size)
1127 		{
1128 		  *aug++ = 'z';
1129 		  *buf++ = extra_data - 1;
1130 		}
1131 	      if (ent->add_fde_encoding)
1132 		{
1133 		  BFD_ASSERT (action & 1);
1134 		  *aug++ = 'R';
1135 		  *buf++ = DW_EH_PE_pcrel;
1136 		  action &= ~1;
1137 		}
1138 
1139 	      while (action)
1140 		switch (*aug++)
1141 		  {
1142 		  case 'L':
1143 		    if (action & 2)
1144 		      {
1145 			BFD_ASSERT (*buf == ent->lsda_encoding);
1146 			*buf |= DW_EH_PE_pcrel;
1147 			action &= ~2;
1148 		      }
1149 		    buf++;
1150 		    break;
1151 		  case 'P':
1152 		    per_encoding = *buf++;
1153 		    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
1154 		    BFD_ASSERT (per_width != 0);
1155 		    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
1156 				== ent->per_encoding_relative);
1157 		    if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
1158 		      buf = (contents
1159 			     + ((buf - contents + per_width - 1)
1160 				& ~((bfd_size_type) per_width - 1)));
1161 		    if (action & 4)
1162 		      {
1163 			bfd_vma val;
1164 
1165 			val = read_value (abfd, buf, per_width,
1166 					  get_DW_EH_PE_signed (per_encoding));
1167 			val += ent->offset - ent->new_offset;
1168 			val -= extra_string + extra_data;
1169 			write_value (abfd, buf, val, per_width);
1170 			action &= ~4;
1171 		      }
1172 		    buf += per_width;
1173 		    break;
1174 		  case 'R':
1175 		    if (action & 1)
1176 		      {
1177 			BFD_ASSERT (*buf == ent->fde_encoding);
1178 			*buf |= DW_EH_PE_pcrel;
1179 			action &= ~1;
1180 		      }
1181 		    buf++;
1182 		    break;
1183 		  case 'S':
1184 		    break;
1185 		  default:
1186 		    BFD_FAIL ();
1187 		  }
1188 	    }
1189 	}
1190       else
1191 	{
1192 	  /* FDE */
1193 	  bfd_vma value, address;
1194 	  unsigned int width;
1195 
1196 	  /* Skip length.  */
1197 	  buf += 4;
1198 	  value = ent->new_offset + 4 - ent->cie_inf->new_offset;
1199 	  bfd_put_32 (abfd, value, buf);
1200 	  buf += 4;
1201 	  width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
1202 	  value = read_value (abfd, buf, width,
1203 			      get_DW_EH_PE_signed (ent->fde_encoding));
1204 	  address = value;
1205 	  if (value)
1206 	    {
1207 	      switch (ent->fde_encoding & 0xf0)
1208 		{
1209 		case DW_EH_PE_indirect:
1210 		case DW_EH_PE_textrel:
1211 		  BFD_ASSERT (hdr_info == NULL);
1212 		  break;
1213 		case DW_EH_PE_datarel:
1214 		  {
1215 		    asection *got = bfd_get_section_by_name (abfd, ".got");
1216 
1217 		    BFD_ASSERT (got != NULL);
1218 		    address += got->vma;
1219 		  }
1220 		  break;
1221 		case DW_EH_PE_pcrel:
1222 		  value += ent->offset - ent->new_offset;
1223 		  address += sec->output_section->vma + ent->offset + 8;
1224 		  break;
1225 		}
1226 	      if (ent->cie_inf->make_relative)
1227 		value -= sec->output_section->vma + ent->new_offset + 8;
1228 	      write_value (abfd, buf, value, width);
1229 	    }
1230 
1231 	  if (hdr_info)
1232 	    {
1233 	      hdr_info->array[hdr_info->array_count].initial_loc = address;
1234 	      hdr_info->array[hdr_info->array_count++].fde
1235 		= sec->output_section->vma + ent->new_offset;
1236 	    }
1237 
1238 	  if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
1239 	      || ent->cie_inf->need_lsda_relative)
1240 	    {
1241 	      buf += ent->lsda_offset;
1242 	      width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
1243 	      value = read_value (abfd, buf, width,
1244 				  get_DW_EH_PE_signed (ent->lsda_encoding));
1245 	      if (value)
1246 		{
1247 		  if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
1248 		    value += ent->offset - ent->new_offset;
1249 		  else if (ent->cie_inf->need_lsda_relative)
1250 		    value -= (sec->output_section->vma + ent->new_offset + 8
1251 			      + ent->lsda_offset);
1252 		  write_value (abfd, buf, value, width);
1253 		}
1254 	    }
1255 	  else if (ent->cie_inf->add_augmentation_size)
1256 	    {
1257 	      /* Skip the PC and length and insert a zero byte for the
1258 		 augmentation size.  */
1259 	      buf += width * 2;
1260 	      memmove (buf + 1, buf, end - buf);
1261 	      *buf = 0;
1262 	    }
1263 	}
1264     }
1265 
1266   /* We don't align the section to its section alignment since the
1267      runtime library only expects all CIE/FDE records aligned at
1268      the pointer size. _bfd_elf_discard_section_eh_frame should
1269      have padded CIE/FDE records to multiple of pointer size with
1270      size_of_output_cie_fde.  */
1271   if ((sec->size % ptr_size) != 0)
1272     abort ();
1273 
1274   return bfd_set_section_contents (abfd, sec->output_section,
1275 				   contents, (file_ptr) sec->output_offset,
1276 				   sec->size);
1277 }
1278 
1279 /* Helper function used to sort .eh_frame_hdr search table by increasing
1280    VMA of FDE initial location.  */
1281 
1282 static int
1283 vma_compare (const void *a, const void *b)
1284 {
1285   const struct eh_frame_array_ent *p = a;
1286   const struct eh_frame_array_ent *q = b;
1287   if (p->initial_loc > q->initial_loc)
1288     return 1;
1289   if (p->initial_loc < q->initial_loc)
1290     return -1;
1291   return 0;
1292 }
1293 
1294 /* Write out .eh_frame_hdr section.  This must be called after
1295    _bfd_elf_write_section_eh_frame has been called on all input
1296    .eh_frame sections.
1297    .eh_frame_hdr format:
1298    ubyte version		(currently 1)
1299    ubyte eh_frame_ptr_enc  	(DW_EH_PE_* encoding of pointer to start of
1300 				 .eh_frame section)
1301    ubyte fde_count_enc		(DW_EH_PE_* encoding of total FDE count
1302 				 number (or DW_EH_PE_omit if there is no
1303 				 binary search table computed))
1304    ubyte table_enc		(DW_EH_PE_* encoding of binary search table,
1305 				 or DW_EH_PE_omit if not present.
1306 				 DW_EH_PE_datarel is using address of
1307 				 .eh_frame_hdr section start as base)
1308    [encoded] eh_frame_ptr	(pointer to start of .eh_frame section)
1309    optionally followed by:
1310    [encoded] fde_count		(total number of FDEs in .eh_frame section)
1311    fde_count x [encoded] initial_loc, fde
1312 				(array of encoded pairs containing
1313 				 FDE initial_location field and FDE address,
1314 				 sorted by increasing initial_loc).  */
1315 
1316 bfd_boolean
1317 _bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
1318 {
1319   struct elf_link_hash_table *htab;
1320   struct eh_frame_hdr_info *hdr_info;
1321   asection *sec;
1322   bfd_byte *contents;
1323   asection *eh_frame_sec;
1324   bfd_size_type size;
1325   bfd_boolean retval;
1326   bfd_vma encoded_eh_frame;
1327 
1328   htab = elf_hash_table (info);
1329   hdr_info = &htab->eh_info;
1330   sec = hdr_info->hdr_sec;
1331   if (sec == NULL)
1332     return TRUE;
1333 
1334   size = EH_FRAME_HDR_SIZE;
1335   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1336     size += 4 + hdr_info->fde_count * 8;
1337   contents = bfd_malloc (size);
1338   if (contents == NULL)
1339     return FALSE;
1340 
1341   eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
1342   if (eh_frame_sec == NULL)
1343     {
1344       free (contents);
1345       return FALSE;
1346     }
1347 
1348   memset (contents, 0, EH_FRAME_HDR_SIZE);
1349   contents[0] = 1;				/* Version.  */
1350   contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
1351     (abfd, info, eh_frame_sec, 0, sec, 4,
1352      &encoded_eh_frame);			/* .eh_frame offset.  */
1353 
1354   if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
1355     {
1356       contents[2] = DW_EH_PE_udata4;		/* FDE count encoding.  */
1357       contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc.  */
1358     }
1359   else
1360     {
1361       contents[2] = DW_EH_PE_omit;
1362       contents[3] = DW_EH_PE_omit;
1363     }
1364   bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
1365 
1366   if (contents[2] != DW_EH_PE_omit)
1367     {
1368       unsigned int i;
1369 
1370       bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
1371       qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
1372 	     vma_compare);
1373       for (i = 0; i < hdr_info->fde_count; i++)
1374 	{
1375 	  bfd_put_32 (abfd,
1376 		      hdr_info->array[i].initial_loc
1377 		      - sec->output_section->vma,
1378 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
1379 	  bfd_put_32 (abfd,
1380 		      hdr_info->array[i].fde - sec->output_section->vma,
1381 		      contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
1382 	}
1383     }
1384 
1385   retval = bfd_set_section_contents (abfd, sec->output_section,
1386 				     contents, (file_ptr) sec->output_offset,
1387 				     sec->size);
1388   free (contents);
1389   return retval;
1390 }
1391 
1392 /* Return the width of FDE addresses.  This is the default implementation.  */
1393 
1394 unsigned int
1395 _bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
1396 {
1397   return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
1398 }
1399 
1400 /* Decide whether we can use a PC-relative encoding within the given
1401    EH frame section.  This is the default implementation.  */
1402 
1403 bfd_boolean
1404 _bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
1405 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1406 			    asection *eh_frame_section ATTRIBUTE_UNUSED)
1407 {
1408   return TRUE;
1409 }
1410 
1411 /* Select an encoding for the given address.  Preference is given to
1412    PC-relative addressing modes.  */
1413 
1414 bfd_byte
1415 _bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
1416 			    struct bfd_link_info *info ATTRIBUTE_UNUSED,
1417 			    asection *osec, bfd_vma offset,
1418 			    asection *loc_sec, bfd_vma loc_offset,
1419 			    bfd_vma *encoded)
1420 {
1421   *encoded = osec->vma + offset -
1422     (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
1423   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
1424 }
1425