1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3    2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 
5    Original code by
6 	Center for Software Science
7 	Department of Computer Science
8 	University of Utah
9    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
26 
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE		32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
37 
38 /* In order to gain some understanding of code in this file without
39    knowing all the intricate details of the linker, note the
40    following:
41 
42    Functions named elf32_hppa_* are called by external routines, other
43    functions are only called locally.  elf32_hppa_* functions appear
44    in this file more or less in the order in which they are called
45    from external routines.  eg. elf32_hppa_check_relocs is called
46    early in the link process, elf32_hppa_finish_dynamic_sections is
47    one of the last functions.  */
48 
49 /* We use two hash tables to hold information for linking PA ELF objects.
50 
51    The first is the elf32_hppa_link_hash_table which is derived
52    from the standard ELF linker hash table.  We use this as a place to
53    attach other hash tables and static information.
54 
55    The second is the stub hash table which is derived from the
56    base BFD hash table.  The stub hash table holds the information
57    necessary to build the linker stubs during a link.
58 
59    There are a number of different stubs generated by the linker.
60 
61    Long branch stub:
62    :		ldil LR'X,%r1
63    :		be,n RR'X(%sr4,%r1)
64 
65    PIC long branch stub:
66    :		b,l .+8,%r1
67    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
68    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
69 
70    Import stub to call shared library routine from normal object file
71    (single sub-space version)
72    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
73    :		ldw RR'lt_ptr+ltoff(%r1),%r21
74    :		bv %r0(%r21)
75    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
76 
77    Import stub to call shared library routine from shared library
78    (single sub-space version)
79    :		addil LR'ltoff,%r19		; get procedure entry point
80    :		ldw RR'ltoff(%r1),%r21
81    :		bv %r0(%r21)
82    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
83 
84    Import stub to call shared library routine from normal object file
85    (multiple sub-space support)
86    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
87    :		ldw RR'lt_ptr+ltoff(%r1),%r21
88    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
89    :		ldsid (%r21),%r1
90    :		mtsp %r1,%sr0
91    :		be 0(%sr0,%r21)			; branch to target
92    :		stw %rp,-24(%sp)		; save rp
93 
94    Import stub to call shared library routine from shared library
95    (multiple sub-space support)
96    :		addil LR'ltoff,%r19		; get procedure entry point
97    :		ldw RR'ltoff(%r1),%r21
98    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
99    :		ldsid (%r21),%r1
100    :		mtsp %r1,%sr0
101    :		be 0(%sr0,%r21)			; branch to target
102    :		stw %rp,-24(%sp)		; save rp
103 
104    Export stub to return from shared lib routine (multiple sub-space support)
105    One of these is created for each exported procedure in a shared
106    library (and stored in the shared lib).  Shared lib routines are
107    called via the first instruction in the export stub so that we can
108    do an inter-space return.  Not required for single sub-space.
109    :		bl,n X,%rp			; trap the return
110    :		nop
111    :		ldw -24(%sp),%rp		; restore the original rp
112    :		ldsid (%rp),%r1
113    :		mtsp %r1,%sr0
114    :		be,n 0(%sr0,%rp)		; inter-space return.  */
115 
116 
117 /* Variable names follow a coding style.
118    Please follow this (Apps Hungarian) style:
119 
120    Structure/Variable         		Prefix
121    elf_link_hash_table			"etab"
122    elf_link_hash_entry			"eh"
123 
124    elf32_hppa_link_hash_table		"htab"
125    elf32_hppa_link_hash_entry		"hh"
126 
127    bfd_hash_table			"btab"
128    bfd_hash_entry			"bh"
129 
130    bfd_hash_table containing stubs	"bstab"
131    elf32_hppa_stub_hash_entry		"hsh"
132 
133    elf32_hppa_dyn_reloc_entry		"hdh"
134 
135    Always remember to use GNU Coding Style. */
136 
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140 
141 static const bfd_byte plt_stub[] =
142 {
143   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
144   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
145   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
146 #define PLT_STUB_ENTRY (3*4)
147   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
148   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
149   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
150   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
151 };
152 
153 /* Section name for stubs is the associated section name plus this
154    string.  */
155 #define STUB_SUFFIX ".stub"
156 
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158    into a shared object's dynamic section.  All the relocs of the
159    limited class we are interested in, are absolute.  */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #endif
164 
165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
166    copying dynamic variables from a shared lib into an app's dynbss
167    section, and instead use a dynamic relocation to point into the
168    shared lib.  */
169 #define ELIMINATE_COPY_RELOCS 1
170 
171 enum elf32_hppa_stub_type {
172   hppa_stub_long_branch,
173   hppa_stub_long_branch_shared,
174   hppa_stub_import,
175   hppa_stub_import_shared,
176   hppa_stub_export,
177   hppa_stub_none
178 };
179 
180 struct elf32_hppa_stub_hash_entry {
181 
182   /* Base hash table entry structure.  */
183   struct bfd_hash_entry bh_root;
184 
185   /* The stub section.  */
186   asection *stub_sec;
187 
188   /* Offset within stub_sec of the beginning of this stub.  */
189   bfd_vma stub_offset;
190 
191   /* Given the symbol's value and its section we can determine its final
192      value when building the stubs (so the stub knows where to jump.  */
193   bfd_vma target_value;
194   asection *target_section;
195 
196   enum elf32_hppa_stub_type stub_type;
197 
198   /* The symbol table entry, if any, that this was derived from.  */
199   struct elf32_hppa_link_hash_entry *hh;
200 
201   /* Where this stub is being called from, or, in the case of combined
202      stub sections, the first input section in the group.  */
203   asection *id_sec;
204 };
205 
206 struct elf32_hppa_link_hash_entry {
207 
208   struct elf_link_hash_entry eh;
209 
210   /* A pointer to the most recently used stub hash entry against this
211      symbol.  */
212   struct elf32_hppa_stub_hash_entry *hsh_cache;
213 
214   /* Used to count relocations for delayed sizing of relocation
215      sections.  */
216   struct elf32_hppa_dyn_reloc_entry {
217 
218     /* Next relocation in the chain.  */
219     struct elf32_hppa_dyn_reloc_entry *hdh_next;
220 
221     /* The input section of the reloc.  */
222     asection *sec;
223 
224     /* Number of relocs copied in this section.  */
225     bfd_size_type count;
226 
227 #if RELATIVE_DYNRELOCS
228   /* Number of relative relocs copied for the input section.  */
229     bfd_size_type relative_count;
230 #endif
231   } *dyn_relocs;
232 
233   /* Set if this symbol is used by a plabel reloc.  */
234   unsigned int plabel:1;
235 };
236 
237 struct elf32_hppa_link_hash_table {
238 
239   /* The main hash table.  */
240   struct elf_link_hash_table etab;
241 
242   /* The stub hash table.  */
243   struct bfd_hash_table bstab;
244 
245   /* Linker stub bfd.  */
246   bfd *stub_bfd;
247 
248   /* Linker call-backs.  */
249   asection * (*add_stub_section) (const char *, asection *);
250   void (*layout_sections_again) (void);
251 
252   /* Array to keep track of which stub sections have been created, and
253      information on stub grouping.  */
254   struct map_stub {
255     /* This is the section to which stubs in the group will be
256        attached.  */
257     asection *link_sec;
258     /* The stub section.  */
259     asection *stub_sec;
260   } *stub_group;
261 
262   /* Assorted information used by elf32_hppa_size_stubs.  */
263   unsigned int bfd_count;
264   int top_index;
265   asection **input_list;
266   Elf_Internal_Sym **all_local_syms;
267 
268   /* Short-cuts to get to dynamic linker sections.  */
269   asection *sgot;
270   asection *srelgot;
271   asection *splt;
272   asection *srelplt;
273   asection *sdynbss;
274   asection *srelbss;
275 
276   /* Used during a final link to store the base of the text and data
277      segments so that we can perform SEGREL relocations.  */
278   bfd_vma text_segment_base;
279   bfd_vma data_segment_base;
280 
281   /* Whether we support multiple sub-spaces for shared libs.  */
282   unsigned int multi_subspace:1;
283 
284   /* Flags set when various size branches are detected.  Used to
285      select suitable defaults for the stub group size.  */
286   unsigned int has_12bit_branch:1;
287   unsigned int has_17bit_branch:1;
288   unsigned int has_22bit_branch:1;
289 
290   /* Set if we need a .plt stub to support lazy dynamic linking.  */
291   unsigned int need_plt_stub:1;
292 
293   /* Small local sym to section mapping cache.  */
294   struct sym_sec_cache sym_sec;
295 };
296 
297 /* Various hash macros and functions.  */
298 #define hppa_link_hash_table(p) \
299   ((struct elf32_hppa_link_hash_table *) ((p)->hash))
300 
301 #define hppa_elf_hash_entry(ent) \
302   ((struct elf32_hppa_link_hash_entry *)(ent))
303 
304 #define hppa_stub_hash_entry(ent) \
305   ((struct elf32_hppa_stub_hash_entry *)(ent))
306 
307 #define hppa_stub_hash_lookup(table, string, create, copy) \
308   ((struct elf32_hppa_stub_hash_entry *) \
309    bfd_hash_lookup ((table), (string), (create), (copy)))
310 
311 /* Assorted hash table functions.  */
312 
313 /* Initialize an entry in the stub hash table.  */
314 
315 static struct bfd_hash_entry *
316 stub_hash_newfunc (struct bfd_hash_entry *entry,
317 		   struct bfd_hash_table *table,
318 		   const char *string)
319 {
320   /* Allocate the structure if it has not already been allocated by a
321      subclass.  */
322   if (entry == NULL)
323     {
324       entry = bfd_hash_allocate (table,
325 				 sizeof (struct elf32_hppa_stub_hash_entry));
326       if (entry == NULL)
327 	return entry;
328     }
329 
330   /* Call the allocation method of the superclass.  */
331   entry = bfd_hash_newfunc (entry, table, string);
332   if (entry != NULL)
333     {
334       struct elf32_hppa_stub_hash_entry *hsh;
335 
336       /* Initialize the local fields.  */
337       hsh = hppa_stub_hash_entry (entry);
338       hsh->stub_sec = NULL;
339       hsh->stub_offset = 0;
340       hsh->target_value = 0;
341       hsh->target_section = NULL;
342       hsh->stub_type = hppa_stub_long_branch;
343       hsh->hh = NULL;
344       hsh->id_sec = NULL;
345     }
346 
347   return entry;
348 }
349 
350 /* Initialize an entry in the link hash table.  */
351 
352 static struct bfd_hash_entry *
353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
354 			struct bfd_hash_table *table,
355 			const char *string)
356 {
357   /* Allocate the structure if it has not already been allocated by a
358      subclass.  */
359   if (entry == NULL)
360     {
361       entry = bfd_hash_allocate (table,
362 				 sizeof (struct elf32_hppa_link_hash_entry));
363       if (entry == NULL)
364 	return entry;
365     }
366 
367   /* Call the allocation method of the superclass.  */
368   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
369   if (entry != NULL)
370     {
371       struct elf32_hppa_link_hash_entry *hh;
372 
373       /* Initialize the local fields.  */
374       hh = hppa_elf_hash_entry (entry);
375       hh->hsh_cache = NULL;
376       hh->dyn_relocs = NULL;
377       hh->plabel = 0;
378     }
379 
380   return entry;
381 }
382 
383 /* Create the derived linker hash table.  The PA ELF port uses the derived
384    hash table to keep information specific to the PA ELF linker (without
385    using static variables).  */
386 
387 static struct bfd_link_hash_table *
388 elf32_hppa_link_hash_table_create (bfd *abfd)
389 {
390   struct elf32_hppa_link_hash_table *htab;
391   bfd_size_type amt = sizeof (*htab);
392 
393   htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
394   if (htab == NULL)
395     return NULL;
396 
397   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
398 				      sizeof (struct elf32_hppa_link_hash_entry)))
399     {
400       free (htab);
401       return NULL;
402     }
403 
404   /* Init the stub hash table too.  */
405   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
406 			    sizeof (struct elf32_hppa_stub_hash_entry)))
407     return NULL;
408 
409   htab->stub_bfd = NULL;
410   htab->add_stub_section = NULL;
411   htab->layout_sections_again = NULL;
412   htab->stub_group = NULL;
413   htab->sgot = NULL;
414   htab->srelgot = NULL;
415   htab->splt = NULL;
416   htab->srelplt = NULL;
417   htab->sdynbss = NULL;
418   htab->srelbss = NULL;
419   htab->text_segment_base = (bfd_vma) -1;
420   htab->data_segment_base = (bfd_vma) -1;
421   htab->multi_subspace = 0;
422   htab->has_12bit_branch = 0;
423   htab->has_17bit_branch = 0;
424   htab->has_22bit_branch = 0;
425   htab->need_plt_stub = 0;
426   htab->sym_sec.abfd = NULL;
427 
428   return &htab->etab.root;
429 }
430 
431 /* Free the derived linker hash table.  */
432 
433 static void
434 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
435 {
436   struct elf32_hppa_link_hash_table *htab
437     = (struct elf32_hppa_link_hash_table *) btab;
438 
439   bfd_hash_table_free (&htab->bstab);
440   _bfd_generic_link_hash_table_free (btab);
441 }
442 
443 /* Build a name for an entry in the stub hash table.  */
444 
445 static char *
446 hppa_stub_name (const asection *input_section,
447 		const asection *sym_sec,
448 		const struct elf32_hppa_link_hash_entry *hh,
449 		const Elf_Internal_Rela *rela)
450 {
451   char *stub_name;
452   bfd_size_type len;
453 
454   if (hh)
455     {
456       len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1;
457       stub_name = bfd_malloc (len);
458       if (stub_name != NULL)
459 	{
460 	  sprintf (stub_name, "%08x_%s+%x",
461 		   input_section->id & 0xffffffff,
462 		   hh->eh.root.root.string,
463 		   (int) rela->r_addend & 0xffffffff);
464 	}
465     }
466   else
467     {
468       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
469       stub_name = bfd_malloc (len);
470       if (stub_name != NULL)
471 	{
472 	  sprintf (stub_name, "%08x_%x:%x+%x",
473 		   input_section->id & 0xffffffff,
474 		   sym_sec->id & 0xffffffff,
475 		   (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
476 		   (int) rela->r_addend & 0xffffffff);
477 	}
478     }
479   return stub_name;
480 }
481 
482 /* Look up an entry in the stub hash.  Stub entries are cached because
483    creating the stub name takes a bit of time.  */
484 
485 static struct elf32_hppa_stub_hash_entry *
486 hppa_get_stub_entry (const asection *input_section,
487 		     const asection *sym_sec,
488 		     struct elf32_hppa_link_hash_entry *hh,
489 		     const Elf_Internal_Rela *rela,
490 		     struct elf32_hppa_link_hash_table *htab)
491 {
492   struct elf32_hppa_stub_hash_entry *hsh_entry;
493   const asection *id_sec;
494 
495   /* If this input section is part of a group of sections sharing one
496      stub section, then use the id of the first section in the group.
497      Stub names need to include a section id, as there may well be
498      more than one stub used to reach say, printf, and we need to
499      distinguish between them.  */
500   id_sec = htab->stub_group[input_section->id].link_sec;
501 
502   if (hh != NULL && hh->hsh_cache != NULL
503       && hh->hsh_cache->hh == hh
504       && hh->hsh_cache->id_sec == id_sec)
505     {
506       hsh_entry = hh->hsh_cache;
507     }
508   else
509     {
510       char *stub_name;
511 
512       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
513       if (stub_name == NULL)
514 	return NULL;
515 
516       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
517 					  stub_name, FALSE, FALSE);
518       if (hh != NULL)
519 	hh->hsh_cache = hsh_entry;
520 
521       free (stub_name);
522     }
523 
524   return hsh_entry;
525 }
526 
527 /* Add a new stub entry to the stub hash.  Not all fields of the new
528    stub entry are initialised.  */
529 
530 static struct elf32_hppa_stub_hash_entry *
531 hppa_add_stub (const char *stub_name,
532 	       asection *section,
533 	       struct elf32_hppa_link_hash_table *htab)
534 {
535   asection *link_sec;
536   asection *stub_sec;
537   struct elf32_hppa_stub_hash_entry *hsh;
538 
539   link_sec = htab->stub_group[section->id].link_sec;
540   stub_sec = htab->stub_group[section->id].stub_sec;
541   if (stub_sec == NULL)
542     {
543       stub_sec = htab->stub_group[link_sec->id].stub_sec;
544       if (stub_sec == NULL)
545 	{
546 	  size_t namelen;
547 	  bfd_size_type len;
548 	  char *s_name;
549 
550 	  namelen = strlen (link_sec->name);
551 	  len = namelen + sizeof (STUB_SUFFIX);
552 	  s_name = bfd_alloc (htab->stub_bfd, len);
553 	  if (s_name == NULL)
554 	    return NULL;
555 
556 	  memcpy (s_name, link_sec->name, namelen);
557 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
558 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
559 	  if (stub_sec == NULL)
560 	    return NULL;
561 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
562 	}
563       htab->stub_group[section->id].stub_sec = stub_sec;
564     }
565 
566   /* Enter this entry into the linker stub hash table.  */
567   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
568 				      TRUE, FALSE);
569   if (hsh == NULL)
570     {
571       (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
572 			     section->owner,
573 			     stub_name);
574       return NULL;
575     }
576 
577   hsh->stub_sec = stub_sec;
578   hsh->stub_offset = 0;
579   hsh->id_sec = link_sec;
580   return hsh;
581 }
582 
583 /* Determine the type of stub needed, if any, for a call.  */
584 
585 static enum elf32_hppa_stub_type
586 hppa_type_of_stub (asection *input_sec,
587 		   const Elf_Internal_Rela *rela,
588 		   struct elf32_hppa_link_hash_entry *hh,
589 		   bfd_vma destination,
590 		   struct bfd_link_info *info)
591 {
592   bfd_vma location;
593   bfd_vma branch_offset;
594   bfd_vma max_branch_offset;
595   unsigned int r_type;
596 
597   if (hh != NULL
598       && hh->eh.plt.offset != (bfd_vma) -1
599       && hh->eh.dynindx != -1
600       && !hh->plabel
601       && (info->shared
602 	  || !hh->eh.def_regular
603 	  || hh->eh.root.type == bfd_link_hash_defweak))
604     {
605       /* We need an import stub.  Decide between hppa_stub_import
606 	 and hppa_stub_import_shared later.  */
607       return hppa_stub_import;
608     }
609 
610   /* Determine where the call point is.  */
611   location = (input_sec->output_offset
612 	      + input_sec->output_section->vma
613 	      + rela->r_offset);
614 
615   branch_offset = destination - location - 8;
616   r_type = ELF32_R_TYPE (rela->r_info);
617 
618   /* Determine if a long branch stub is needed.  parisc branch offsets
619      are relative to the second instruction past the branch, ie. +8
620      bytes on from the branch instruction location.  The offset is
621      signed and counts in units of 4 bytes.  */
622   if (r_type == (unsigned int) R_PARISC_PCREL17F)
623     {
624       max_branch_offset = (1 << (17-1)) << 2;
625     }
626   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
627     {
628       max_branch_offset = (1 << (12-1)) << 2;
629     }
630   else /* R_PARISC_PCREL22F.  */
631     {
632       max_branch_offset = (1 << (22-1)) << 2;
633     }
634 
635   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
636     return hppa_stub_long_branch;
637 
638   return hppa_stub_none;
639 }
640 
641 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
642    IN_ARG contains the link info pointer.  */
643 
644 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
645 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
646 
647 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
648 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
649 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
650 
651 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
652 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
653 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
654 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
655 
656 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
657 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
658 
659 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
660 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
661 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
662 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
663 
664 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
665 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
666 #define NOP		0x08000240	/* nop				*/
667 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
668 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
669 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
670 
671 #ifndef R19_STUBS
672 #define R19_STUBS 1
673 #endif
674 
675 #if R19_STUBS
676 #define LDW_R1_DLT	LDW_R1_R19
677 #else
678 #define LDW_R1_DLT	LDW_R1_DP
679 #endif
680 
681 static bfd_boolean
682 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
683 {
684   struct elf32_hppa_stub_hash_entry *hsh;
685   struct bfd_link_info *info;
686   struct elf32_hppa_link_hash_table *htab;
687   asection *stub_sec;
688   bfd *stub_bfd;
689   bfd_byte *loc;
690   bfd_vma sym_value;
691   bfd_vma insn;
692   bfd_vma off;
693   int val;
694   int size;
695 
696   /* Massage our args to the form they really have.  */
697   hsh = hppa_stub_hash_entry (bh);
698   info = (struct bfd_link_info *)in_arg;
699 
700   htab = hppa_link_hash_table (info);
701   stub_sec = hsh->stub_sec;
702 
703   /* Make a note of the offset within the stubs for this entry.  */
704   hsh->stub_offset = stub_sec->size;
705   loc = stub_sec->contents + hsh->stub_offset;
706 
707   stub_bfd = stub_sec->owner;
708 
709   switch (hsh->stub_type)
710     {
711     case hppa_stub_long_branch:
712       /* Create the long branch.  A long branch is formed with "ldil"
713 	 loading the upper bits of the target address into a register,
714 	 then branching with "be" which adds in the lower bits.
715 	 The "be" has its delay slot nullified.  */
716       sym_value = (hsh->target_value
717 		   + hsh->target_section->output_offset
718 		   + hsh->target_section->output_section->vma);
719 
720       val = hppa_field_adjust (sym_value, 0, e_lrsel);
721       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
722       bfd_put_32 (stub_bfd, insn, loc);
723 
724       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
725       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
726       bfd_put_32 (stub_bfd, insn, loc + 4);
727 
728       size = 8;
729       break;
730 
731     case hppa_stub_long_branch_shared:
732       /* Branches are relative.  This is where we are going to.  */
733       sym_value = (hsh->target_value
734 		   + hsh->target_section->output_offset
735 		   + hsh->target_section->output_section->vma);
736 
737       /* And this is where we are coming from, more or less.  */
738       sym_value -= (hsh->stub_offset
739 		    + stub_sec->output_offset
740 		    + stub_sec->output_section->vma);
741 
742       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
743       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
744       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
745       bfd_put_32 (stub_bfd, insn, loc + 4);
746 
747       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
748       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
749       bfd_put_32 (stub_bfd, insn, loc + 8);
750       size = 12;
751       break;
752 
753     case hppa_stub_import:
754     case hppa_stub_import_shared:
755       off = hsh->hh->eh.plt.offset;
756       if (off >= (bfd_vma) -2)
757 	abort ();
758 
759       off &= ~ (bfd_vma) 1;
760       sym_value = (off
761 		   + htab->splt->output_offset
762 		   + htab->splt->output_section->vma
763 		   - elf_gp (htab->splt->output_section->owner));
764 
765       insn = ADDIL_DP;
766 #if R19_STUBS
767       if (hsh->stub_type == hppa_stub_import_shared)
768 	insn = ADDIL_R19;
769 #endif
770       val = hppa_field_adjust (sym_value, 0, e_lrsel),
771       insn = hppa_rebuild_insn ((int) insn, val, 21);
772       bfd_put_32 (stub_bfd, insn, loc);
773 
774       /* It is critical to use lrsel/rrsel here because we are using
775 	 two different offsets (+0 and +4) from sym_value.  If we use
776 	 lsel/rsel then with unfortunate sym_values we will round
777 	 sym_value+4 up to the next 2k block leading to a mis-match
778 	 between the lsel and rsel value.  */
779       val = hppa_field_adjust (sym_value, 0, e_rrsel);
780       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
781       bfd_put_32 (stub_bfd, insn, loc + 4);
782 
783       if (htab->multi_subspace)
784 	{
785 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
786 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
787 	  bfd_put_32 (stub_bfd, insn, loc + 8);
788 
789 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
790 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
791 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
792 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
793 
794 	  size = 28;
795 	}
796       else
797 	{
798 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
799 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
800 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
801 	  bfd_put_32 (stub_bfd, insn, loc + 12);
802 
803 	  size = 16;
804 	}
805 
806       break;
807 
808     case hppa_stub_export:
809       /* Branches are relative.  This is where we are going to.  */
810       sym_value = (hsh->target_value
811 		   + hsh->target_section->output_offset
812 		   + hsh->target_section->output_section->vma);
813 
814       /* And this is where we are coming from.  */
815       sym_value -= (hsh->stub_offset
816 		    + stub_sec->output_offset
817 		    + stub_sec->output_section->vma);
818 
819       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
820 	  && (!htab->has_22bit_branch
821 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
822 	{
823 	  (*_bfd_error_handler)
824 	    (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
825 	     hsh->target_section->owner,
826 	     stub_sec,
827 	     (long) hsh->stub_offset,
828 	     hsh->bh_root.string);
829 	  bfd_set_error (bfd_error_bad_value);
830 	  return FALSE;
831 	}
832 
833       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
834       if (!htab->has_22bit_branch)
835 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
836       else
837 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
838       bfd_put_32 (stub_bfd, insn, loc);
839 
840       bfd_put_32 (stub_bfd, (bfd_vma) NOP,         loc + 4);
841       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
842       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
843       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
844       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
845 
846       /* Point the function symbol at the stub.  */
847       hsh->hh->eh.root.u.def.section = stub_sec;
848       hsh->hh->eh.root.u.def.value = stub_sec->size;
849 
850       size = 24;
851       break;
852 
853     default:
854       BFD_FAIL ();
855       return FALSE;
856     }
857 
858   stub_sec->size += size;
859   return TRUE;
860 }
861 
862 #undef LDIL_R1
863 #undef BE_SR4_R1
864 #undef BL_R1
865 #undef ADDIL_R1
866 #undef DEPI_R1
867 #undef LDW_R1_R21
868 #undef LDW_R1_DLT
869 #undef LDW_R1_R19
870 #undef ADDIL_R19
871 #undef LDW_R1_DP
872 #undef LDSID_R21_R1
873 #undef MTSP_R1
874 #undef BE_SR0_R21
875 #undef STW_RP
876 #undef BV_R0_R21
877 #undef BL_RP
878 #undef NOP
879 #undef LDW_RP
880 #undef LDSID_RP_R1
881 #undef BE_SR0_RP
882 
883 /* As above, but don't actually build the stub.  Just bump offset so
884    we know stub section sizes.  */
885 
886 static bfd_boolean
887 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
888 {
889   struct elf32_hppa_stub_hash_entry *hsh;
890   struct elf32_hppa_link_hash_table *htab;
891   int size;
892 
893   /* Massage our args to the form they really have.  */
894   hsh = hppa_stub_hash_entry (bh);
895   htab = in_arg;
896 
897   if (hsh->stub_type == hppa_stub_long_branch)
898     size = 8;
899   else if (hsh->stub_type == hppa_stub_long_branch_shared)
900     size = 12;
901   else if (hsh->stub_type == hppa_stub_export)
902     size = 24;
903   else /* hppa_stub_import or hppa_stub_import_shared.  */
904     {
905       if (htab->multi_subspace)
906 	size = 28;
907       else
908 	size = 16;
909     }
910 
911   hsh->stub_sec->size += size;
912   return TRUE;
913 }
914 
915 /* Return nonzero if ABFD represents an HPPA ELF32 file.
916    Additionally we set the default architecture and machine.  */
917 
918 static bfd_boolean
919 elf32_hppa_object_p (bfd *abfd)
920 {
921   Elf_Internal_Ehdr * i_ehdrp;
922   unsigned int flags;
923 
924   i_ehdrp = elf_elfheader (abfd);
925   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
926     {
927       /* GCC on hppa-linux produces binaries with OSABI=Linux,
928 	 but the kernel produces corefiles with OSABI=SysV.  */
929       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
930 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
931 	return FALSE;
932     }
933   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
934     {
935       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
936 	 but the kernel produces corefiles with OSABI=SysV.  */
937       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
938 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
939 	return FALSE;
940     }
941   else
942     {
943       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
944 	return FALSE;
945     }
946 
947   flags = i_ehdrp->e_flags;
948   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
949     {
950     case EFA_PARISC_1_0:
951       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
952     case EFA_PARISC_1_1:
953       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
954     case EFA_PARISC_2_0:
955       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
956     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
957       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
958     }
959   return TRUE;
960 }
961 
962 /* Create the .plt and .got sections, and set up our hash table
963    short-cuts to various dynamic sections.  */
964 
965 static bfd_boolean
966 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
967 {
968   struct elf32_hppa_link_hash_table *htab;
969   struct elf_link_hash_entry *eh;
970 
971   /* Don't try to create the .plt and .got twice.  */
972   htab = hppa_link_hash_table (info);
973   if (htab->splt != NULL)
974     return TRUE;
975 
976   /* Call the generic code to do most of the work.  */
977   if (! _bfd_elf_create_dynamic_sections (abfd, info))
978     return FALSE;
979 
980   htab->splt = bfd_get_section_by_name (abfd, ".plt");
981   htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
982 
983   htab->sgot = bfd_get_section_by_name (abfd, ".got");
984   htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got",
985 					       (SEC_ALLOC
986 						| SEC_LOAD
987 						| SEC_HAS_CONTENTS
988 						| SEC_IN_MEMORY
989 						| SEC_LINKER_CREATED
990 						| SEC_READONLY));
991   if (htab->srelgot == NULL
992       || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
993     return FALSE;
994 
995   htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
996   htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
997 
998   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
999      application, because __canonicalize_funcptr_for_compare needs it.  */
1000   eh = elf_hash_table (info)->hgot;
1001   eh->forced_local = 0;
1002   eh->other = STV_DEFAULT;
1003   return bfd_elf_link_record_dynamic_symbol (info, eh);
1004 }
1005 
1006 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1007 
1008 static void
1009 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1010 				 struct elf_link_hash_entry *eh_dir,
1011 				 struct elf_link_hash_entry *eh_ind)
1012 {
1013   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1014 
1015   hh_dir = hppa_elf_hash_entry (eh_dir);
1016   hh_ind = hppa_elf_hash_entry (eh_ind);
1017 
1018   if (hh_ind->dyn_relocs != NULL)
1019     {
1020       if (hh_dir->dyn_relocs != NULL)
1021 	{
1022 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1023 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1024 
1025 	  /* Add reloc counts against the indirect sym to the direct sym
1026 	     list.  Merge any entries against the same section.  */
1027 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1028 	    {
1029 	      struct elf32_hppa_dyn_reloc_entry *hdh_q;
1030 
1031 	      for (hdh_q = hh_dir->dyn_relocs;
1032 		   hdh_q != NULL;
1033 		   hdh_q = hdh_q->hdh_next)
1034 		if (hdh_q->sec == hdh_p->sec)
1035 		  {
1036 #if RELATIVE_DYNRELOCS
1037 		    hdh_q->relative_count += hdh_p->relative_count;
1038 #endif
1039 		    hdh_q->count += hdh_p->count;
1040 		    *hdh_pp = hdh_p->hdh_next;
1041 		    break;
1042 		  }
1043 	      if (hdh_q == NULL)
1044 		hdh_pp = &hdh_p->hdh_next;
1045 	    }
1046 	  *hdh_pp = hh_dir->dyn_relocs;
1047 	}
1048 
1049       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1050       hh_ind->dyn_relocs = NULL;
1051     }
1052 
1053   if (ELIMINATE_COPY_RELOCS
1054       && eh_ind->root.type != bfd_link_hash_indirect
1055       && eh_dir->dynamic_adjusted)
1056     {
1057       /* If called to transfer flags for a weakdef during processing
1058 	 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1059 	 We clear it ourselves for ELIMINATE_COPY_RELOCS.  */
1060       eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061       eh_dir->ref_regular |= eh_ind->ref_regular;
1062       eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063       eh_dir->needs_plt |= eh_ind->needs_plt;
1064     }
1065   else
1066    _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1067 }
1068 
1069 /* Look through the relocs for a section during the first phase, and
1070    calculate needed space in the global offset table, procedure linkage
1071    table, and dynamic reloc sections.  At this point we haven't
1072    necessarily read all the input files.  */
1073 
1074 static bfd_boolean
1075 elf32_hppa_check_relocs (bfd *abfd,
1076 			 struct bfd_link_info *info,
1077 			 asection *sec,
1078 			 const Elf_Internal_Rela *relocs)
1079 {
1080   Elf_Internal_Shdr *symtab_hdr;
1081   struct elf_link_hash_entry **eh_syms;
1082   const Elf_Internal_Rela *rela;
1083   const Elf_Internal_Rela *rela_end;
1084   struct elf32_hppa_link_hash_table *htab;
1085   asection *sreloc;
1086   asection *stubreloc;
1087 
1088   if (info->relocatable)
1089     return TRUE;
1090 
1091   htab = hppa_link_hash_table (info);
1092   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093   eh_syms = elf_sym_hashes (abfd);
1094   sreloc = NULL;
1095   stubreloc = NULL;
1096 
1097   rela_end = relocs + sec->reloc_count;
1098   for (rela = relocs; rela < rela_end; rela++)
1099     {
1100       enum {
1101 	NEED_GOT = 1,
1102 	NEED_PLT = 2,
1103 	NEED_DYNREL = 4,
1104 	PLT_PLABEL = 8
1105       };
1106 
1107       unsigned int r_symndx, r_type;
1108       struct elf32_hppa_link_hash_entry *hh;
1109       int need_entry = 0;
1110 
1111       r_symndx = ELF32_R_SYM (rela->r_info);
1112 
1113       if (r_symndx < symtab_hdr->sh_info)
1114 	hh = NULL;
1115       else
1116 	{
1117 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1118 	  while (hh->eh.root.type == bfd_link_hash_indirect
1119 		 || hh->eh.root.type == bfd_link_hash_warning)
1120 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1121 	}
1122 
1123       r_type = ELF32_R_TYPE (rela->r_info);
1124 
1125       switch (r_type)
1126 	{
1127 	case R_PARISC_DLTIND14F:
1128 	case R_PARISC_DLTIND14R:
1129 	case R_PARISC_DLTIND21L:
1130 	  /* This symbol requires a global offset table entry.  */
1131 	  need_entry = NEED_GOT;
1132 	  break;
1133 
1134 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1135 	case R_PARISC_PLABEL21L:
1136 	case R_PARISC_PLABEL32:
1137 	  /* If the addend is non-zero, we break badly.  */
1138 	  if (rela->r_addend != 0)
1139 	    abort ();
1140 
1141 	  /* If we are creating a shared library, then we need to
1142 	     create a PLT entry for all PLABELs, because PLABELs with
1143 	     local symbols may be passed via a pointer to another
1144 	     object.  Additionally, output a dynamic relocation
1145 	     pointing to the PLT entry.
1146 
1147 	     For executables, the original 32-bit ABI allowed two
1148 	     different styles of PLABELs (function pointers):  For
1149 	     global functions, the PLABEL word points into the .plt
1150 	     two bytes past a (function address, gp) pair, and for
1151 	     local functions the PLABEL points directly at the
1152 	     function.  The magic +2 for the first type allows us to
1153 	     differentiate between the two.  As you can imagine, this
1154 	     is a real pain when it comes to generating code to call
1155 	     functions indirectly or to compare function pointers.
1156 	     We avoid the mess by always pointing a PLABEL into the
1157 	     .plt, even for local functions.  */
1158 	  need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1159 	  break;
1160 
1161 	case R_PARISC_PCREL12F:
1162 	  htab->has_12bit_branch = 1;
1163 	  goto branch_common;
1164 
1165 	case R_PARISC_PCREL17C:
1166 	case R_PARISC_PCREL17F:
1167 	  htab->has_17bit_branch = 1;
1168 	  goto branch_common;
1169 
1170 	case R_PARISC_PCREL22F:
1171 	  htab->has_22bit_branch = 1;
1172 	branch_common:
1173 	  /* Function calls might need to go through the .plt, and
1174 	     might require long branch stubs.  */
1175 	  if (hh == NULL)
1176 	    {
1177 	      /* We know local syms won't need a .plt entry, and if
1178 		 they need a long branch stub we can't guarantee that
1179 		 we can reach the stub.  So just flag an error later
1180 		 if we're doing a shared link and find we need a long
1181 		 branch stub.  */
1182 	      continue;
1183 	    }
1184 	  else
1185 	    {
1186 	      /* Global symbols will need a .plt entry if they remain
1187 		 global, and in most cases won't need a long branch
1188 		 stub.  Unfortunately, we have to cater for the case
1189 		 where a symbol is forced local by versioning, or due
1190 		 to symbolic linking, and we lose the .plt entry.  */
1191 	      need_entry = NEED_PLT;
1192 	      if (hh->eh.type == STT_PARISC_MILLI)
1193 		need_entry = 0;
1194 	    }
1195 	  break;
1196 
1197 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1198 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1199 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1200 	case R_PARISC_PCREL14R:
1201 	case R_PARISC_PCREL17R: /* External branches.  */
1202 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1203 	case R_PARISC_PCREL32:
1204 	  /* We don't need to propagate the relocation if linking a
1205 	     shared object since these are section relative.  */
1206 	  continue;
1207 
1208 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1209 	case R_PARISC_DPREL14R:
1210 	case R_PARISC_DPREL21L:
1211 	  if (info->shared)
1212 	    {
1213 	      (*_bfd_error_handler)
1214 		(_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1215 		 abfd,
1216 		 elf_hppa_howto_table[r_type].name);
1217 	      bfd_set_error (bfd_error_bad_value);
1218 	      return FALSE;
1219 	    }
1220 	  /* Fall through.  */
1221 
1222 	case R_PARISC_DIR17F: /* Used for external branches.  */
1223 	case R_PARISC_DIR17R:
1224 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1225 	case R_PARISC_DIR14R:
1226 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1227 	case R_PARISC_DIR32: /* .word relocs.  */
1228 	  /* We may want to output a dynamic relocation later.  */
1229 	  need_entry = NEED_DYNREL;
1230 	  break;
1231 
1232 	  /* This relocation describes the C++ object vtable hierarchy.
1233 	     Reconstruct it for later use during GC.  */
1234 	case R_PARISC_GNU_VTINHERIT:
1235 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1236 	    return FALSE;
1237 	  continue;
1238 
1239 	  /* This relocation describes which C++ vtable entries are actually
1240 	     used.  Record for later use during GC.  */
1241 	case R_PARISC_GNU_VTENTRY:
1242 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1243 	    return FALSE;
1244 	  continue;
1245 
1246 	default:
1247 	  continue;
1248 	}
1249 
1250       /* Now carry out our orders.  */
1251       if (need_entry & NEED_GOT)
1252 	{
1253 	  /* Allocate space for a GOT entry, as well as a dynamic
1254 	     relocation for this entry.  */
1255 	  if (htab->sgot == NULL)
1256 	    {
1257 	      if (htab->etab.dynobj == NULL)
1258 		htab->etab.dynobj = abfd;
1259 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1260 		return FALSE;
1261 	    }
1262 
1263 	  if (hh != NULL)
1264 	    {
1265 	      hh->eh.got.refcount += 1;
1266 	    }
1267 	  else
1268 	    {
1269 	      bfd_signed_vma *local_got_refcounts;
1270               /* This is a global offset table entry for a local symbol.  */
1271 	      local_got_refcounts = elf_local_got_refcounts (abfd);
1272 	      if (local_got_refcounts == NULL)
1273 		{
1274 		  bfd_size_type size;
1275 
1276 		  /* Allocate space for local got offsets and local
1277 		     plt offsets.  Done this way to save polluting
1278 		     elf_obj_tdata with another target specific
1279 		     pointer.  */
1280 		  size = symtab_hdr->sh_info;
1281 		  size *= 2 * sizeof (bfd_signed_vma);
1282 		  local_got_refcounts = bfd_zalloc (abfd, size);
1283 		  if (local_got_refcounts == NULL)
1284 		    return FALSE;
1285 		  elf_local_got_refcounts (abfd) = local_got_refcounts;
1286 		}
1287 	      local_got_refcounts[r_symndx] += 1;
1288 	    }
1289 	}
1290 
1291       if (need_entry & NEED_PLT)
1292 	{
1293 	  /* If we are creating a shared library, and this is a reloc
1294 	     against a weak symbol or a global symbol in a dynamic
1295 	     object, then we will be creating an import stub and a
1296 	     .plt entry for the symbol.  Similarly, on a normal link
1297 	     to symbols defined in a dynamic object we'll need the
1298 	     import stub and a .plt entry.  We don't know yet whether
1299 	     the symbol is defined or not, so make an entry anyway and
1300 	     clean up later in adjust_dynamic_symbol.  */
1301 	  if ((sec->flags & SEC_ALLOC) != 0)
1302 	    {
1303 	      if (hh != NULL)
1304 		{
1305 		  hh->eh.needs_plt = 1;
1306 		  hh->eh.plt.refcount += 1;
1307 
1308 		  /* If this .plt entry is for a plabel, mark it so
1309 		     that adjust_dynamic_symbol will keep the entry
1310 		     even if it appears to be local.  */
1311 		  if (need_entry & PLT_PLABEL)
1312 		    hh->plabel = 1;
1313 		}
1314 	      else if (need_entry & PLT_PLABEL)
1315 		{
1316 		  bfd_signed_vma *local_got_refcounts;
1317 		  bfd_signed_vma *local_plt_refcounts;
1318 
1319 		  local_got_refcounts = elf_local_got_refcounts (abfd);
1320 		  if (local_got_refcounts == NULL)
1321 		    {
1322 		      bfd_size_type size;
1323 
1324 		      /* Allocate space for local got offsets and local
1325 			 plt offsets.  */
1326 		      size = symtab_hdr->sh_info;
1327 		      size *= 2 * sizeof (bfd_signed_vma);
1328 		      local_got_refcounts = bfd_zalloc (abfd, size);
1329 		      if (local_got_refcounts == NULL)
1330 			return FALSE;
1331 		      elf_local_got_refcounts (abfd) = local_got_refcounts;
1332 		    }
1333 		  local_plt_refcounts = (local_got_refcounts
1334 					 + symtab_hdr->sh_info);
1335 		  local_plt_refcounts[r_symndx] += 1;
1336 		}
1337 	    }
1338 	}
1339 
1340       if (need_entry & NEED_DYNREL)
1341 	{
1342 	  /* Flag this symbol as having a non-got, non-plt reference
1343 	     so that we generate copy relocs if it turns out to be
1344 	     dynamic.  */
1345 	  if (hh != NULL && !info->shared)
1346 	    hh->eh.non_got_ref = 1;
1347 
1348 	  /* If we are creating a shared library then we need to copy
1349 	     the reloc into the shared library.  However, if we are
1350 	     linking with -Bsymbolic, we need only copy absolute
1351 	     relocs or relocs against symbols that are not defined in
1352 	     an object we are including in the link.  PC- or DP- or
1353 	     DLT-relative relocs against any local sym or global sym
1354 	     with DEF_REGULAR set, can be discarded.  At this point we
1355 	     have not seen all the input files, so it is possible that
1356 	     DEF_REGULAR is not set now but will be set later (it is
1357 	     never cleared).  We account for that possibility below by
1358 	     storing information in the dyn_relocs field of the
1359 	     hash table entry.
1360 
1361 	     A similar situation to the -Bsymbolic case occurs when
1362 	     creating shared libraries and symbol visibility changes
1363 	     render the symbol local.
1364 
1365 	     As it turns out, all the relocs we will be creating here
1366 	     are absolute, so we cannot remove them on -Bsymbolic
1367 	     links or visibility changes anyway.  A STUB_REL reloc
1368 	     is absolute too, as in that case it is the reloc in the
1369 	     stub we will be creating, rather than copying the PCREL
1370 	     reloc in the branch.
1371 
1372 	     If on the other hand, we are creating an executable, we
1373 	     may need to keep relocations for symbols satisfied by a
1374 	     dynamic library if we manage to avoid copy relocs for the
1375 	     symbol.  */
1376 	  if ((info->shared
1377 	       && (sec->flags & SEC_ALLOC) != 0
1378 	       && (IS_ABSOLUTE_RELOC (r_type)
1379 		   || (hh != NULL
1380 		       && (!info->symbolic
1381 			   || hh->eh.root.type == bfd_link_hash_defweak
1382 			   || !hh->eh.def_regular))))
1383 	      || (ELIMINATE_COPY_RELOCS
1384 		  && !info->shared
1385 		  && (sec->flags & SEC_ALLOC) != 0
1386 		  && hh != NULL
1387 		  && (hh->eh.root.type == bfd_link_hash_defweak
1388 		      || !hh->eh.def_regular)))
1389 	    {
1390 	      struct elf32_hppa_dyn_reloc_entry *hdh_p;
1391 	      struct elf32_hppa_dyn_reloc_entry **hdh_head;
1392 
1393 	      /* Create a reloc section in dynobj and make room for
1394 		 this reloc.  */
1395 	      if (sreloc == NULL)
1396 		{
1397 		  char *name;
1398 		  bfd *dynobj;
1399 
1400 		  name = (bfd_elf_string_from_elf_section
1401 			  (abfd,
1402 			   elf_elfheader (abfd)->e_shstrndx,
1403 			   elf_section_data (sec)->rel_hdr.sh_name));
1404 		  if (name == NULL)
1405 		    {
1406 		      (*_bfd_error_handler)
1407 			(_("Could not find relocation section for %s"),
1408 			 sec->name);
1409 		      bfd_set_error (bfd_error_bad_value);
1410 		      return FALSE;
1411 		    }
1412 
1413 		  if (htab->etab.dynobj == NULL)
1414 		    htab->etab.dynobj = abfd;
1415 
1416 		  dynobj = htab->etab.dynobj;
1417 		  sreloc = bfd_get_section_by_name (dynobj, name);
1418 		  if (sreloc == NULL)
1419 		    {
1420 		      flagword flags;
1421 
1422 		      flags = (SEC_HAS_CONTENTS | SEC_READONLY
1423 			       | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1424 		      if ((sec->flags & SEC_ALLOC) != 0)
1425 			flags |= SEC_ALLOC | SEC_LOAD;
1426 		      sreloc = bfd_make_section_with_flags (dynobj,
1427 							    name,
1428 							    flags);
1429 		      if (sreloc == NULL
1430 			  || !bfd_set_section_alignment (dynobj, sreloc, 2))
1431 			return FALSE;
1432 		    }
1433 
1434 		  elf_section_data (sec)->sreloc = sreloc;
1435 		}
1436 
1437 	      /* If this is a global symbol, we count the number of
1438 		 relocations we need for this symbol.  */
1439 	      if (hh != NULL)
1440 		{
1441 		  hdh_head = &hh->dyn_relocs;
1442 		}
1443 	      else
1444 		{
1445 		  /* Track dynamic relocs needed for local syms too.
1446 		     We really need local syms available to do this
1447 		     easily.  Oh well.  */
1448 
1449 		  asection *sr;
1450 		  void *vpp;
1451 
1452 		  sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1453 						       sec, r_symndx);
1454 		  if (sr == NULL)
1455 		    return FALSE;
1456 
1457 		  vpp = &elf_section_data (sr)->local_dynrel;
1458 		  hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1459 		}
1460 
1461 	      hdh_p = *hdh_head;
1462 	      if (hdh_p == NULL || hdh_p->sec != sec)
1463 		{
1464 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1465 		  if (hdh_p == NULL)
1466 		    return FALSE;
1467 		  hdh_p->hdh_next = *hdh_head;
1468 		  *hdh_head = hdh_p;
1469 		  hdh_p->sec = sec;
1470 		  hdh_p->count = 0;
1471 #if RELATIVE_DYNRELOCS
1472 		  hdh_p->relative_count = 0;
1473 #endif
1474 		}
1475 
1476 	      hdh_p->count += 1;
1477 #if RELATIVE_DYNRELOCS
1478 	      if (!IS_ABSOLUTE_RELOC (rtype))
1479 		hdh_p->relative_count += 1;
1480 #endif
1481 	    }
1482 	}
1483     }
1484 
1485   return TRUE;
1486 }
1487 
1488 /* Return the section that should be marked against garbage collection
1489    for a given relocation.  */
1490 
1491 static asection *
1492 elf32_hppa_gc_mark_hook (asection *sec,
1493 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1494 			 Elf_Internal_Rela *rela,
1495 			 struct elf_link_hash_entry *hh,
1496 			 Elf_Internal_Sym *sym)
1497 {
1498   if (hh != NULL)
1499     {
1500       switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1501 	{
1502 	case R_PARISC_GNU_VTINHERIT:
1503 	case R_PARISC_GNU_VTENTRY:
1504 	  break;
1505 
1506 	default:
1507 	  switch (hh->root.type)
1508 	    {
1509 	    case bfd_link_hash_defined:
1510 	    case bfd_link_hash_defweak:
1511 	      return hh->root.u.def.section;
1512 
1513 	    case bfd_link_hash_common:
1514 	      return hh->root.u.c.p->section;
1515 
1516 	    default:
1517 	      break;
1518 	    }
1519 	}
1520     }
1521   else
1522     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1523 
1524   return NULL;
1525 }
1526 
1527 /* Update the got and plt entry reference counts for the section being
1528    removed.  */
1529 
1530 static bfd_boolean
1531 elf32_hppa_gc_sweep_hook (bfd *abfd,
1532 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1533 			  asection *sec,
1534 			  const Elf_Internal_Rela *relocs)
1535 {
1536   Elf_Internal_Shdr *symtab_hdr;
1537   struct elf_link_hash_entry **eh_syms;
1538   bfd_signed_vma *local_got_refcounts;
1539   bfd_signed_vma *local_plt_refcounts;
1540   const Elf_Internal_Rela *rela, *relend;
1541 
1542   elf_section_data (sec)->local_dynrel = NULL;
1543 
1544   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1545   eh_syms = elf_sym_hashes (abfd);
1546   local_got_refcounts = elf_local_got_refcounts (abfd);
1547   local_plt_refcounts = local_got_refcounts;
1548   if (local_plt_refcounts != NULL)
1549     local_plt_refcounts += symtab_hdr->sh_info;
1550 
1551   relend = relocs + sec->reloc_count;
1552   for (rela = relocs; rela < relend; rela++)
1553     {
1554       unsigned long r_symndx;
1555       unsigned int r_type;
1556       struct elf_link_hash_entry *eh = NULL;
1557 
1558       r_symndx = ELF32_R_SYM (rela->r_info);
1559       if (r_symndx >= symtab_hdr->sh_info)
1560 	{
1561 	  struct elf32_hppa_link_hash_entry *hh;
1562 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1563 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
1564 
1565 	  eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1566 	  while (eh->root.type == bfd_link_hash_indirect
1567 		 || eh->root.type == bfd_link_hash_warning)
1568 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1569 	  hh = hppa_elf_hash_entry (eh);
1570 
1571 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1572 	    if (hdh_p->sec == sec)
1573 	      {
1574 		/* Everything must go for SEC.  */
1575 		*hdh_pp = hdh_p->hdh_next;
1576 		break;
1577 	      }
1578 	}
1579 
1580       r_type = ELF32_R_TYPE (rela->r_info);
1581       switch (r_type)
1582 	{
1583 	case R_PARISC_DLTIND14F:
1584 	case R_PARISC_DLTIND14R:
1585 	case R_PARISC_DLTIND21L:
1586 	  if (eh != NULL)
1587 	    {
1588 	      if (eh->got.refcount > 0)
1589 		eh->got.refcount -= 1;
1590 	    }
1591 	  else if (local_got_refcounts != NULL)
1592 	    {
1593 	      if (local_got_refcounts[r_symndx] > 0)
1594 		local_got_refcounts[r_symndx] -= 1;
1595 	    }
1596 	  break;
1597 
1598 	case R_PARISC_PCREL12F:
1599 	case R_PARISC_PCREL17C:
1600 	case R_PARISC_PCREL17F:
1601 	case R_PARISC_PCREL22F:
1602 	  if (eh != NULL)
1603 	    {
1604 	      if (eh->plt.refcount > 0)
1605 		eh->plt.refcount -= 1;
1606 	    }
1607 	  break;
1608 
1609 	case R_PARISC_PLABEL14R:
1610 	case R_PARISC_PLABEL21L:
1611 	case R_PARISC_PLABEL32:
1612 	  if (eh != NULL)
1613 	    {
1614 	      if (eh->plt.refcount > 0)
1615 		eh->plt.refcount -= 1;
1616 	    }
1617 	  else if (local_plt_refcounts != NULL)
1618 	    {
1619 	      if (local_plt_refcounts[r_symndx] > 0)
1620 		local_plt_refcounts[r_symndx] -= 1;
1621 	    }
1622 	  break;
1623 
1624 	default:
1625 	  break;
1626 	}
1627     }
1628 
1629   return TRUE;
1630 }
1631 
1632 /* Support for core dump NOTE sections.  */
1633 
1634 static bfd_boolean
1635 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1636 {
1637   int offset;
1638   size_t size;
1639 
1640   switch (note->descsz)
1641     {
1642       default:
1643 	return FALSE;
1644 
1645       case 396:		/* Linux/hppa */
1646 	/* pr_cursig */
1647 	elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1648 
1649 	/* pr_pid */
1650 	elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1651 
1652 	/* pr_reg */
1653 	offset = 72;
1654 	size = 320;
1655 
1656 	break;
1657     }
1658 
1659   /* Make a ".reg/999" section.  */
1660   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1661 					  size, note->descpos + offset);
1662 }
1663 
1664 static bfd_boolean
1665 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1666 {
1667   switch (note->descsz)
1668     {
1669       default:
1670 	return FALSE;
1671 
1672       case 124:		/* Linux/hppa elf_prpsinfo.  */
1673 	elf_tdata (abfd)->core_program
1674 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1675 	elf_tdata (abfd)->core_command
1676 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1677     }
1678 
1679   /* Note that for some reason, a spurious space is tacked
1680      onto the end of the args in some (at least one anyway)
1681      implementations, so strip it off if it exists.  */
1682   {
1683     char *command = elf_tdata (abfd)->core_command;
1684     int n = strlen (command);
1685 
1686     if (0 < n && command[n - 1] == ' ')
1687       command[n - 1] = '\0';
1688   }
1689 
1690   return TRUE;
1691 }
1692 
1693 /* Our own version of hide_symbol, so that we can keep plt entries for
1694    plabels.  */
1695 
1696 static void
1697 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1698 			struct elf_link_hash_entry *eh,
1699 			bfd_boolean force_local)
1700 {
1701   if (force_local)
1702     {
1703       eh->forced_local = 1;
1704       if (eh->dynindx != -1)
1705 	{
1706 	  eh->dynindx = -1;
1707 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1708 				  eh->dynstr_index);
1709 	}
1710     }
1711 
1712   if (! hppa_elf_hash_entry(eh)->plabel)
1713     {
1714       eh->needs_plt = 0;
1715       eh->plt = elf_hash_table (info)->init_plt_refcount;
1716     }
1717 }
1718 
1719 /* Adjust a symbol defined by a dynamic object and referenced by a
1720    regular object.  The current definition is in some section of the
1721    dynamic object, but we're not including those sections.  We have to
1722    change the definition to something the rest of the link can
1723    understand.  */
1724 
1725 static bfd_boolean
1726 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1727 				  struct elf_link_hash_entry *eh)
1728 {
1729   struct elf32_hppa_link_hash_table *htab;
1730   asection *sec;
1731   unsigned int power_of_two;
1732 
1733   /* If this is a function, put it in the procedure linkage table.  We
1734      will fill in the contents of the procedure linkage table later.  */
1735   if (eh->type == STT_FUNC
1736       || eh->needs_plt)
1737     {
1738       if (eh->plt.refcount <= 0
1739 	  || (eh->def_regular
1740 	      && eh->root.type != bfd_link_hash_defweak
1741 	      && ! hppa_elf_hash_entry (eh)->plabel
1742 	      && (!info->shared || info->symbolic)))
1743 	{
1744 	  /* The .plt entry is not needed when:
1745 	     a) Garbage collection has removed all references to the
1746 	     symbol, or
1747 	     b) We know for certain the symbol is defined in this
1748 	     object, and it's not a weak definition, nor is the symbol
1749 	     used by a plabel relocation.  Either this object is the
1750 	     application or we are doing a shared symbolic link.  */
1751 
1752 	  eh->plt.offset = (bfd_vma) -1;
1753 	  eh->needs_plt = 0;
1754 	}
1755 
1756       return TRUE;
1757     }
1758   else
1759     eh->plt.offset = (bfd_vma) -1;
1760 
1761   /* If this is a weak symbol, and there is a real definition, the
1762      processor independent code will have arranged for us to see the
1763      real definition first, and we can just use the same value.  */
1764   if (eh->u.weakdef != NULL)
1765     {
1766       if (eh->u.weakdef->root.type != bfd_link_hash_defined
1767 	  && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1768 	abort ();
1769       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1770       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1771       if (ELIMINATE_COPY_RELOCS)
1772 	eh->non_got_ref = eh->u.weakdef->non_got_ref;
1773       return TRUE;
1774     }
1775 
1776   /* This is a reference to a symbol defined by a dynamic object which
1777      is not a function.  */
1778 
1779   /* If we are creating a shared library, we must presume that the
1780      only references to the symbol are via the global offset table.
1781      For such cases we need not do anything here; the relocations will
1782      be handled correctly by relocate_section.  */
1783   if (info->shared)
1784     return TRUE;
1785 
1786   /* If there are no references to this symbol that do not use the
1787      GOT, we don't need to generate a copy reloc.  */
1788   if (!eh->non_got_ref)
1789     return TRUE;
1790 
1791   if (ELIMINATE_COPY_RELOCS)
1792     {
1793       struct elf32_hppa_link_hash_entry *hh;
1794       struct elf32_hppa_dyn_reloc_entry *hdh_p;
1795 
1796       hh = hppa_elf_hash_entry (eh);
1797       for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1798 	{
1799 	  sec = hdh_p->sec->output_section;
1800 	  if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1801 	    break;
1802 	}
1803 
1804       /* If we didn't find any dynamic relocs in read-only sections, then
1805 	 we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1806       if (hdh_p == NULL)
1807 	{
1808 	  eh->non_got_ref = 0;
1809 	  return TRUE;
1810 	}
1811     }
1812 
1813   if (eh->size == 0)
1814     {
1815       (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1816 			     eh->root.root.string);
1817       return TRUE;
1818     }
1819 
1820   /* We must allocate the symbol in our .dynbss section, which will
1821      become part of the .bss section of the executable.  There will be
1822      an entry for this symbol in the .dynsym section.  The dynamic
1823      object will contain position independent code, so all references
1824      from the dynamic object to this symbol will go through the global
1825      offset table.  The dynamic linker will use the .dynsym entry to
1826      determine the address it must put in the global offset table, so
1827      both the dynamic object and the regular object will refer to the
1828      same memory location for the variable.  */
1829 
1830   htab = hppa_link_hash_table (info);
1831 
1832   /* We must generate a COPY reloc to tell the dynamic linker to
1833      copy the initial value out of the dynamic object and into the
1834      runtime process image.  */
1835   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0)
1836     {
1837       htab->srelbss->size += sizeof (Elf32_External_Rela);
1838       eh->needs_copy = 1;
1839     }
1840 
1841   /* We need to figure out the alignment required for this symbol.  I
1842      have no idea how other ELF linkers handle this.  */
1843 
1844   power_of_two = bfd_log2 (eh->size);
1845   if (power_of_two > 3)
1846     power_of_two = 3;
1847 
1848   /* Apply the required alignment.  */
1849   sec = htab->sdynbss;
1850   sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two));
1851   if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec))
1852     {
1853       if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two))
1854 	return FALSE;
1855     }
1856 
1857   /* Define the symbol as being at this point in the section.  */
1858   eh->root.u.def.section = sec;
1859   eh->root.u.def.value = sec->size;
1860 
1861   /* Increment the section size to make room for the symbol.  */
1862   sec->size += eh->size;
1863 
1864   return TRUE;
1865 }
1866 
1867 /* Allocate space in the .plt for entries that won't have relocations.
1868    ie. plabel entries.  */
1869 
1870 static bfd_boolean
1871 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1872 {
1873   struct bfd_link_info *info;
1874   struct elf32_hppa_link_hash_table *htab;
1875   struct elf32_hppa_link_hash_entry *hh;
1876   asection *sec;
1877 
1878   if (eh->root.type == bfd_link_hash_indirect)
1879     return TRUE;
1880 
1881   if (eh->root.type == bfd_link_hash_warning)
1882     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1883 
1884   info = (struct bfd_link_info *) inf;
1885   hh = hppa_elf_hash_entry(eh);
1886   htab = hppa_link_hash_table (info);
1887   if (htab->etab.dynamic_sections_created
1888       && eh->plt.refcount > 0)
1889     {
1890       /* Make sure this symbol is output as a dynamic symbol.
1891 	 Undefined weak syms won't yet be marked as dynamic.  */
1892       if (eh->dynindx == -1
1893 	  && !eh->forced_local
1894 	  && eh->type != STT_PARISC_MILLI)
1895 	{
1896 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1897 	    return FALSE;
1898 	}
1899 
1900       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1901 	{
1902 	  /* Allocate these later.  From this point on, h->plabel
1903 	     means that the plt entry is only used by a plabel.
1904 	     We'll be using a normal plt entry for this symbol, so
1905 	     clear the plabel indicator.  */
1906 
1907 	  hh->plabel = 0;
1908 	}
1909       else if (hh->plabel)
1910 	{
1911 	  /* Make an entry in the .plt section for plabel references
1912 	     that won't have a .plt entry for other reasons.  */
1913 	  sec = htab->splt;
1914 	  eh->plt.offset = sec->size;
1915 	  sec->size += PLT_ENTRY_SIZE;
1916 	}
1917       else
1918 	{
1919 	  /* No .plt entry needed.  */
1920 	  eh->plt.offset = (bfd_vma) -1;
1921 	  eh->needs_plt = 0;
1922 	}
1923     }
1924   else
1925     {
1926       eh->plt.offset = (bfd_vma) -1;
1927       eh->needs_plt = 0;
1928     }
1929 
1930   return TRUE;
1931 }
1932 
1933 /* Allocate space in .plt, .got and associated reloc sections for
1934    global syms.  */
1935 
1936 static bfd_boolean
1937 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1938 {
1939   struct bfd_link_info *info;
1940   struct elf32_hppa_link_hash_table *htab;
1941   asection *sec;
1942   struct elf32_hppa_link_hash_entry *hh;
1943   struct elf32_hppa_dyn_reloc_entry *hdh_p;
1944 
1945   if (eh->root.type == bfd_link_hash_indirect)
1946     return TRUE;
1947 
1948   if (eh->root.type == bfd_link_hash_warning)
1949     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1950 
1951   info = inf;
1952   htab = hppa_link_hash_table (info);
1953   hh = hppa_elf_hash_entry (eh);
1954 
1955   if (htab->etab.dynamic_sections_created
1956       && eh->plt.offset != (bfd_vma) -1
1957       && !hh->plabel
1958       && eh->plt.refcount > 0)
1959     {
1960       /* Make an entry in the .plt section.  */
1961       sec = htab->splt;
1962       eh->plt.offset = sec->size;
1963       sec->size += PLT_ENTRY_SIZE;
1964 
1965       /* We also need to make an entry in the .rela.plt section.  */
1966       htab->srelplt->size += sizeof (Elf32_External_Rela);
1967       htab->need_plt_stub = 1;
1968     }
1969 
1970   if (eh->got.refcount > 0)
1971     {
1972       /* Make sure this symbol is output as a dynamic symbol.
1973 	 Undefined weak syms won't yet be marked as dynamic.  */
1974       if (eh->dynindx == -1
1975 	  && !eh->forced_local
1976 	  && eh->type != STT_PARISC_MILLI)
1977 	{
1978 	  if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1979 	    return FALSE;
1980 	}
1981 
1982       sec = htab->sgot;
1983       eh->got.offset = sec->size;
1984       sec->size += GOT_ENTRY_SIZE;
1985       if (htab->etab.dynamic_sections_created
1986 	  && (info->shared
1987 	      || (eh->dynindx != -1
1988 		  && !eh->forced_local)))
1989 	{
1990 	  htab->srelgot->size += sizeof (Elf32_External_Rela);
1991 	}
1992     }
1993   else
1994     eh->got.offset = (bfd_vma) -1;
1995 
1996   if (hh->dyn_relocs == NULL)
1997     return TRUE;
1998 
1999   /* If this is a -Bsymbolic shared link, then we need to discard all
2000      space allocated for dynamic pc-relative relocs against symbols
2001      defined in a regular object.  For the normal shared case, discard
2002      space for relocs that have become local due to symbol visibility
2003      changes.  */
2004   if (info->shared)
2005     {
2006 #if RELATIVE_DYNRELOCS
2007       if (SYMBOL_CALLS_LOCAL (info, eh))
2008 	{
2009 	  struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2010 
2011 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2012 	    {
2013 	      hdh_p->count -= hdh_p->relative_count;
2014 	      hdh_p->relative_count = 0;
2015 	      if (hdh_p->count == 0)
2016 		*hdh_pp = hdh_p->hdh_next;
2017 	      else
2018 		hdh_pp = &hdh_p->hdh_next;
2019 	    }
2020 	}
2021 #endif
2022 
2023       /* Also discard relocs on undefined weak syms with non-default
2024 	 visibility.  */
2025       if (hh->dyn_relocs != NULL
2026 	  && eh->root.type == bfd_link_hash_undefweak)
2027 	{
2028 	  if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2029 	    hh->dyn_relocs = NULL;
2030 
2031 	  /* Make sure undefined weak symbols are output as a dynamic
2032 	     symbol in PIEs.  */
2033 	  else if (eh->dynindx == -1
2034 		   && !eh->forced_local)
2035 	    {
2036 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2037 		return FALSE;
2038 	    }
2039 	}
2040     }
2041   else
2042     {
2043       /* For the non-shared case, discard space for relocs against
2044 	 symbols which turn out to need copy relocs or are not
2045 	 dynamic.  */
2046 
2047       if (!eh->non_got_ref
2048 	  && ((ELIMINATE_COPY_RELOCS
2049 	       && eh->def_dynamic
2050 	       && !eh->def_regular)
2051 	       || (htab->etab.dynamic_sections_created
2052 		   && (eh->root.type == bfd_link_hash_undefweak
2053 		       || eh->root.type == bfd_link_hash_undefined))))
2054 	{
2055 	  /* Make sure this symbol is output as a dynamic symbol.
2056 	     Undefined weak syms won't yet be marked as dynamic.  */
2057 	  if (eh->dynindx == -1
2058 	      && !eh->forced_local
2059 	      && eh->type != STT_PARISC_MILLI)
2060 	    {
2061 	      if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2062 		return FALSE;
2063 	    }
2064 
2065 	  /* If that succeeded, we know we'll be keeping all the
2066 	     relocs.  */
2067 	  if (eh->dynindx != -1)
2068 	    goto keep;
2069 	}
2070 
2071       hh->dyn_relocs = NULL;
2072       return TRUE;
2073 
2074     keep: ;
2075     }
2076 
2077   /* Finally, allocate space.  */
2078   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2079     {
2080       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2081       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2082     }
2083 
2084   return TRUE;
2085 }
2086 
2087 /* This function is called via elf_link_hash_traverse to force
2088    millicode symbols local so they do not end up as globals in the
2089    dynamic symbol table.  We ought to be able to do this in
2090    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2091    for all dynamic symbols.  Arguably, this is a bug in
2092    elf_adjust_dynamic_symbol.  */
2093 
2094 static bfd_boolean
2095 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2096 			   struct bfd_link_info *info)
2097 {
2098   if (eh->root.type == bfd_link_hash_warning)
2099     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2100 
2101   if (eh->type == STT_PARISC_MILLI
2102       && !eh->forced_local)
2103     {
2104       elf32_hppa_hide_symbol (info, eh, TRUE);
2105     }
2106   return TRUE;
2107 }
2108 
2109 /* Find any dynamic relocs that apply to read-only sections.  */
2110 
2111 static bfd_boolean
2112 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2113 {
2114   struct elf32_hppa_link_hash_entry *hh;
2115   struct elf32_hppa_dyn_reloc_entry *hdh_p;
2116 
2117   if (eh->root.type == bfd_link_hash_warning)
2118     eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
2119 
2120   hh = hppa_elf_hash_entry (eh);
2121   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2122     {
2123       asection *sec = hdh_p->sec->output_section;
2124 
2125       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2126 	{
2127 	  struct bfd_link_info *info = inf;
2128 
2129 	  info->flags |= DF_TEXTREL;
2130 
2131 	  /* Not an error, just cut short the traversal.  */
2132 	  return FALSE;
2133 	}
2134     }
2135   return TRUE;
2136 }
2137 
2138 /* Set the sizes of the dynamic sections.  */
2139 
2140 static bfd_boolean
2141 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2142 				  struct bfd_link_info *info)
2143 {
2144   struct elf32_hppa_link_hash_table *htab;
2145   bfd *dynobj;
2146   bfd *ibfd;
2147   asection *sec;
2148   bfd_boolean relocs;
2149 
2150   htab = hppa_link_hash_table (info);
2151   dynobj = htab->etab.dynobj;
2152   if (dynobj == NULL)
2153     abort ();
2154 
2155   if (htab->etab.dynamic_sections_created)
2156     {
2157       /* Set the contents of the .interp section to the interpreter.  */
2158       if (info->executable && !info->static_link)
2159 	{
2160 	  sec = bfd_get_section_by_name (dynobj, ".interp");
2161 	  if (sec == NULL)
2162 	    abort ();
2163 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2164 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2165 	}
2166 
2167       /* Force millicode symbols local.  */
2168       elf_link_hash_traverse (&htab->etab,
2169 			      clobber_millicode_symbols,
2170 			      info);
2171     }
2172 
2173   /* Set up .got and .plt offsets for local syms, and space for local
2174      dynamic relocs.  */
2175   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2176     {
2177       bfd_signed_vma *local_got;
2178       bfd_signed_vma *end_local_got;
2179       bfd_signed_vma *local_plt;
2180       bfd_signed_vma *end_local_plt;
2181       bfd_size_type locsymcount;
2182       Elf_Internal_Shdr *symtab_hdr;
2183       asection *srel;
2184 
2185       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2186 	continue;
2187 
2188       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2189 	{
2190 	  struct elf32_hppa_dyn_reloc_entry *hdh_p;
2191 
2192 	  for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2193 		    elf_section_data (sec)->local_dynrel);
2194 	       hdh_p != NULL;
2195 	       hdh_p = hdh_p->hdh_next)
2196 	    {
2197 	      if (!bfd_is_abs_section (hdh_p->sec)
2198 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2199 		{
2200 		  /* Input section has been discarded, either because
2201 		     it is a copy of a linkonce section or due to
2202 		     linker script /DISCARD/, so we'll be discarding
2203 		     the relocs too.  */
2204 		}
2205 	      else if (hdh_p->count != 0)
2206 		{
2207 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2208 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2209 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2210 		    info->flags |= DF_TEXTREL;
2211 		}
2212 	    }
2213 	}
2214 
2215       local_got = elf_local_got_refcounts (ibfd);
2216       if (!local_got)
2217 	continue;
2218 
2219       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2220       locsymcount = symtab_hdr->sh_info;
2221       end_local_got = local_got + locsymcount;
2222       sec = htab->sgot;
2223       srel = htab->srelgot;
2224       for (; local_got < end_local_got; ++local_got)
2225 	{
2226 	  if (*local_got > 0)
2227 	    {
2228 	      *local_got = sec->size;
2229 	      sec->size += GOT_ENTRY_SIZE;
2230 	      if (info->shared)
2231 		srel->size += sizeof (Elf32_External_Rela);
2232 	    }
2233 	  else
2234 	    *local_got = (bfd_vma) -1;
2235 	}
2236 
2237       local_plt = end_local_got;
2238       end_local_plt = local_plt + locsymcount;
2239       if (! htab->etab.dynamic_sections_created)
2240 	{
2241 	  /* Won't be used, but be safe.  */
2242 	  for (; local_plt < end_local_plt; ++local_plt)
2243 	    *local_plt = (bfd_vma) -1;
2244 	}
2245       else
2246 	{
2247 	  sec = htab->splt;
2248 	  srel = htab->srelplt;
2249 	  for (; local_plt < end_local_plt; ++local_plt)
2250 	    {
2251 	      if (*local_plt > 0)
2252 		{
2253 		  *local_plt = sec->size;
2254 		  sec->size += PLT_ENTRY_SIZE;
2255 		  if (info->shared)
2256 		    srel->size += sizeof (Elf32_External_Rela);
2257 		}
2258 	      else
2259 		*local_plt = (bfd_vma) -1;
2260 	    }
2261 	}
2262     }
2263 
2264   /* Do all the .plt entries without relocs first.  The dynamic linker
2265      uses the last .plt reloc to find the end of the .plt (and hence
2266      the start of the .got) for lazy linking.  */
2267   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2268 
2269   /* Allocate global sym .plt and .got entries, and space for global
2270      sym dynamic relocs.  */
2271   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2272 
2273   /* The check_relocs and adjust_dynamic_symbol entry points have
2274      determined the sizes of the various dynamic sections.  Allocate
2275      memory for them.  */
2276   relocs = FALSE;
2277   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2278     {
2279       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2280 	continue;
2281 
2282       if (sec == htab->splt)
2283 	{
2284 	  if (htab->need_plt_stub)
2285 	    {
2286 	      /* Make space for the plt stub at the end of the .plt
2287 		 section.  We want this stub right at the end, up
2288 		 against the .got section.  */
2289 	      int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2290 	      int pltalign = bfd_section_alignment (dynobj, sec);
2291 	      bfd_size_type mask;
2292 
2293 	      if (gotalign > pltalign)
2294 		bfd_set_section_alignment (dynobj, sec, gotalign);
2295 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2296 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2297 	    }
2298 	}
2299       else if (sec == htab->sgot
2300 	       || sec == htab->sdynbss)
2301 	;
2302       else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0)
2303 	{
2304 	  if (sec->size != 0)
2305 	    {
2306 	      /* Remember whether there are any reloc sections other
2307 		 than .rela.plt.  */
2308 	      if (sec != htab->srelplt)
2309 		relocs = TRUE;
2310 
2311 	      /* We use the reloc_count field as a counter if we need
2312 		 to copy relocs into the output file.  */
2313 	      sec->reloc_count = 0;
2314 	    }
2315 	}
2316       else
2317 	{
2318 	  /* It's not one of our sections, so don't allocate space.  */
2319 	  continue;
2320 	}
2321 
2322       if (sec->size == 0)
2323 	{
2324 	  /* If we don't need this section, strip it from the
2325 	     output file.  This is mostly to handle .rela.bss and
2326 	     .rela.plt.  We must create both sections in
2327 	     create_dynamic_sections, because they must be created
2328 	     before the linker maps input sections to output
2329 	     sections.  The linker does that before
2330 	     adjust_dynamic_symbol is called, and it is that
2331 	     function which decides whether anything needs to go
2332 	     into these sections.  */
2333 	  sec->flags |= SEC_EXCLUDE;
2334 	  continue;
2335 	}
2336 
2337       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2338 	continue;
2339 
2340       /* Allocate memory for the section contents.  Zero it, because
2341 	 we may not fill in all the reloc sections.  */
2342       sec->contents = bfd_zalloc (dynobj, sec->size);
2343       if (sec->contents == NULL)
2344 	return FALSE;
2345     }
2346 
2347   if (htab->etab.dynamic_sections_created)
2348     {
2349       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2350 	 actually has nothing to do with the PLT, it is how we
2351 	 communicate the LTP value of a load module to the dynamic
2352 	 linker.  */
2353 #define add_dynamic_entry(TAG, VAL) \
2354   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2355 
2356       if (!add_dynamic_entry (DT_PLTGOT, 0))
2357 	return FALSE;
2358 
2359       /* Add some entries to the .dynamic section.  We fill in the
2360 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2361 	 must add the entries now so that we get the correct size for
2362 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2363 	 dynamic linker and used by the debugger.  */
2364       if (info->executable)
2365 	{
2366 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2367 	    return FALSE;
2368 	}
2369 
2370       if (htab->srelplt->size != 0)
2371 	{
2372 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2373 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2374 	      || !add_dynamic_entry (DT_JMPREL, 0))
2375 	    return FALSE;
2376 	}
2377 
2378       if (relocs)
2379 	{
2380 	  if (!add_dynamic_entry (DT_RELA, 0)
2381 	      || !add_dynamic_entry (DT_RELASZ, 0)
2382 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2383 	    return FALSE;
2384 
2385 	  /* If any dynamic relocs apply to a read-only section,
2386 	     then we need a DT_TEXTREL entry.  */
2387 	  if ((info->flags & DF_TEXTREL) == 0)
2388 	    elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2389 
2390 	  if ((info->flags & DF_TEXTREL) != 0)
2391 	    {
2392 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2393 		return FALSE;
2394 	    }
2395 	}
2396     }
2397 #undef add_dynamic_entry
2398 
2399   return TRUE;
2400 }
2401 
2402 /* External entry points for sizing and building linker stubs.  */
2403 
2404 /* Set up various things so that we can make a list of input sections
2405    for each output section included in the link.  Returns -1 on error,
2406    0 when no stubs will be needed, and 1 on success.  */
2407 
2408 int
2409 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2410 {
2411   bfd *input_bfd;
2412   unsigned int bfd_count;
2413   int top_id, top_index;
2414   asection *section;
2415   asection **input_list, **list;
2416   bfd_size_type amt;
2417   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2418 
2419   /* Count the number of input BFDs and find the top input section id.  */
2420   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2421        input_bfd != NULL;
2422        input_bfd = input_bfd->link_next)
2423     {
2424       bfd_count += 1;
2425       for (section = input_bfd->sections;
2426 	   section != NULL;
2427 	   section = section->next)
2428 	{
2429 	  if (top_id < section->id)
2430 	    top_id = section->id;
2431 	}
2432     }
2433   htab->bfd_count = bfd_count;
2434 
2435   amt = sizeof (struct map_stub) * (top_id + 1);
2436   htab->stub_group = bfd_zmalloc (amt);
2437   if (htab->stub_group == NULL)
2438     return -1;
2439 
2440   /* We can't use output_bfd->section_count here to find the top output
2441      section index as some sections may have been removed, and
2442      strip_excluded_output_sections doesn't renumber the indices.  */
2443   for (section = output_bfd->sections, top_index = 0;
2444        section != NULL;
2445        section = section->next)
2446     {
2447       if (top_index < section->index)
2448 	top_index = section->index;
2449     }
2450 
2451   htab->top_index = top_index;
2452   amt = sizeof (asection *) * (top_index + 1);
2453   input_list = bfd_malloc (amt);
2454   htab->input_list = input_list;
2455   if (input_list == NULL)
2456     return -1;
2457 
2458   /* For sections we aren't interested in, mark their entries with a
2459      value we can check later.  */
2460   list = input_list + top_index;
2461   do
2462     *list = bfd_abs_section_ptr;
2463   while (list-- != input_list);
2464 
2465   for (section = output_bfd->sections;
2466        section != NULL;
2467        section = section->next)
2468     {
2469       if ((section->flags & SEC_CODE) != 0)
2470 	input_list[section->index] = NULL;
2471     }
2472 
2473   return 1;
2474 }
2475 
2476 /* The linker repeatedly calls this function for each input section,
2477    in the order that input sections are linked into output sections.
2478    Build lists of input sections to determine groupings between which
2479    we may insert linker stubs.  */
2480 
2481 void
2482 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2483 {
2484   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2485 
2486   if (isec->output_section->index <= htab->top_index)
2487     {
2488       asection **list = htab->input_list + isec->output_section->index;
2489       if (*list != bfd_abs_section_ptr)
2490 	{
2491 	  /* Steal the link_sec pointer for our list.  */
2492 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2493 	  /* This happens to make the list in reverse order,
2494 	     which is what we want.  */
2495 	  PREV_SEC (isec) = *list;
2496 	  *list = isec;
2497 	}
2498     }
2499 }
2500 
2501 /* See whether we can group stub sections together.  Grouping stub
2502    sections may result in fewer stubs.  More importantly, we need to
2503    put all .init* and .fini* stubs at the beginning of the .init or
2504    .fini output sections respectively, because glibc splits the
2505    _init and _fini functions into multiple parts.  Putting a stub in
2506    the middle of a function is not a good idea.  */
2507 
2508 static void
2509 group_sections (struct elf32_hppa_link_hash_table *htab,
2510 		bfd_size_type stub_group_size,
2511 		bfd_boolean stubs_always_before_branch)
2512 {
2513   asection **list = htab->input_list + htab->top_index;
2514   do
2515     {
2516       asection *tail = *list;
2517       if (tail == bfd_abs_section_ptr)
2518 	continue;
2519       while (tail != NULL)
2520 	{
2521 	  asection *curr;
2522 	  asection *prev;
2523 	  bfd_size_type total;
2524 	  bfd_boolean big_sec;
2525 
2526 	  curr = tail;
2527 	  total = tail->size;
2528 	  big_sec = total >= stub_group_size;
2529 
2530 	  while ((prev = PREV_SEC (curr)) != NULL
2531 		 && ((total += curr->output_offset - prev->output_offset)
2532 		     < stub_group_size))
2533 	    curr = prev;
2534 
2535 	  /* OK, the size from the start of CURR to the end is less
2536 	     than 240000 bytes and thus can be handled by one stub
2537 	     section.  (or the tail section is itself larger than
2538 	     240000 bytes, in which case we may be toast.)
2539 	     We should really be keeping track of the total size of
2540 	     stubs added here, as stubs contribute to the final output
2541 	     section size.  That's a little tricky, and this way will
2542 	     only break if stubs added total more than 22144 bytes, or
2543 	     2768 long branch stubs.  It seems unlikely for more than
2544 	     2768 different functions to be called, especially from
2545 	     code only 240000 bytes long.  This limit used to be
2546 	     250000, but c++ code tends to generate lots of little
2547 	     functions, and sometimes violated the assumption.  */
2548 	  do
2549 	    {
2550 	      prev = PREV_SEC (tail);
2551 	      /* Set up this stub group.  */
2552 	      htab->stub_group[tail->id].link_sec = curr;
2553 	    }
2554 	  while (tail != curr && (tail = prev) != NULL);
2555 
2556 	  /* But wait, there's more!  Input sections up to 240000
2557 	     bytes before the stub section can be handled by it too.
2558 	     Don't do this if we have a really large section after the
2559 	     stubs, as adding more stubs increases the chance that
2560 	     branches may not reach into the stub section.  */
2561 	  if (!stubs_always_before_branch && !big_sec)
2562 	    {
2563 	      total = 0;
2564 	      while (prev != NULL
2565 		     && ((total += tail->output_offset - prev->output_offset)
2566 			 < stub_group_size))
2567 		{
2568 		  tail = prev;
2569 		  prev = PREV_SEC (tail);
2570 		  htab->stub_group[tail->id].link_sec = curr;
2571 		}
2572 	    }
2573 	  tail = prev;
2574 	}
2575     }
2576   while (list-- != htab->input_list);
2577   free (htab->input_list);
2578 #undef PREV_SEC
2579 }
2580 
2581 /* Read in all local syms for all input bfds, and create hash entries
2582    for export stubs if we are building a multi-subspace shared lib.
2583    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2584 
2585 static int
2586 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2587 {
2588   unsigned int bfd_indx;
2589   Elf_Internal_Sym *local_syms, **all_local_syms;
2590   int stub_changed = 0;
2591   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2592 
2593   /* We want to read in symbol extension records only once.  To do this
2594      we need to read in the local symbols in parallel and save them for
2595      later use; so hold pointers to the local symbols in an array.  */
2596   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2597   all_local_syms = bfd_zmalloc (amt);
2598   htab->all_local_syms = all_local_syms;
2599   if (all_local_syms == NULL)
2600     return -1;
2601 
2602   /* Walk over all the input BFDs, swapping in local symbols.
2603      If we are creating a shared library, create hash entries for the
2604      export stubs.  */
2605   for (bfd_indx = 0;
2606        input_bfd != NULL;
2607        input_bfd = input_bfd->link_next, bfd_indx++)
2608     {
2609       Elf_Internal_Shdr *symtab_hdr;
2610 
2611       /* We'll need the symbol table in a second.  */
2612       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2613       if (symtab_hdr->sh_info == 0)
2614 	continue;
2615 
2616       /* We need an array of the local symbols attached to the input bfd.  */
2617       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2618       if (local_syms == NULL)
2619 	{
2620 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2621 					     symtab_hdr->sh_info, 0,
2622 					     NULL, NULL, NULL);
2623 	  /* Cache them for elf_link_input_bfd.  */
2624 	  symtab_hdr->contents = (unsigned char *) local_syms;
2625 	}
2626       if (local_syms == NULL)
2627 	return -1;
2628 
2629       all_local_syms[bfd_indx] = local_syms;
2630 
2631       if (info->shared && htab->multi_subspace)
2632 	{
2633 	  struct elf_link_hash_entry **eh_syms;
2634 	  struct elf_link_hash_entry **eh_symend;
2635 	  unsigned int symcount;
2636 
2637 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2638 		      - symtab_hdr->sh_info);
2639 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2640 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2641 
2642 	  /* Look through the global syms for functions;  We need to
2643 	     build export stubs for all globally visible functions.  */
2644 	  for (; eh_syms < eh_symend; eh_syms++)
2645 	    {
2646 	      struct elf32_hppa_link_hash_entry *hh;
2647 
2648 	      hh = hppa_elf_hash_entry (*eh_syms);
2649 
2650 	      while (hh->eh.root.type == bfd_link_hash_indirect
2651 		     || hh->eh.root.type == bfd_link_hash_warning)
2652 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2653 
2654 	      /* At this point in the link, undefined syms have been
2655 		 resolved, so we need to check that the symbol was
2656 		 defined in this BFD.  */
2657 	      if ((hh->eh.root.type == bfd_link_hash_defined
2658 		   || hh->eh.root.type == bfd_link_hash_defweak)
2659 		  && hh->eh.type == STT_FUNC
2660 		  && hh->eh.root.u.def.section->output_section != NULL
2661 		  && (hh->eh.root.u.def.section->output_section->owner
2662 		      == output_bfd)
2663 		  && hh->eh.root.u.def.section->owner == input_bfd
2664 		  && hh->eh.def_regular
2665 		  && !hh->eh.forced_local
2666 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2667 		{
2668 		  asection *sec;
2669 		  const char *stub_name;
2670 		  struct elf32_hppa_stub_hash_entry *hsh;
2671 
2672 		  sec = hh->eh.root.u.def.section;
2673 		  stub_name = hh->eh.root.root.string;
2674 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2675 						      stub_name,
2676 						      FALSE, FALSE);
2677 		  if (hsh == NULL)
2678 		    {
2679 		      hsh = hppa_add_stub (stub_name, sec, htab);
2680 		      if (!hsh)
2681 			return -1;
2682 
2683 		      hsh->target_value = hh->eh.root.u.def.value;
2684 		      hsh->target_section = hh->eh.root.u.def.section;
2685 		      hsh->stub_type = hppa_stub_export;
2686 		      hsh->hh = hh;
2687 		      stub_changed = 1;
2688 		    }
2689 		  else
2690 		    {
2691 		      (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2692 					     input_bfd,
2693 					     stub_name);
2694 		    }
2695 		}
2696 	    }
2697 	}
2698     }
2699 
2700   return stub_changed;
2701 }
2702 
2703 /* Determine and set the size of the stub section for a final link.
2704 
2705    The basic idea here is to examine all the relocations looking for
2706    PC-relative calls to a target that is unreachable with a "bl"
2707    instruction.  */
2708 
2709 bfd_boolean
2710 elf32_hppa_size_stubs
2711   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2712    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2713    asection * (*add_stub_section) (const char *, asection *),
2714    void (*layout_sections_again) (void))
2715 {
2716   bfd_size_type stub_group_size;
2717   bfd_boolean stubs_always_before_branch;
2718   bfd_boolean stub_changed;
2719   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2720 
2721   /* Stash our params away.  */
2722   htab->stub_bfd = stub_bfd;
2723   htab->multi_subspace = multi_subspace;
2724   htab->add_stub_section = add_stub_section;
2725   htab->layout_sections_again = layout_sections_again;
2726   stubs_always_before_branch = group_size < 0;
2727   if (group_size < 0)
2728     stub_group_size = -group_size;
2729   else
2730     stub_group_size = group_size;
2731   if (stub_group_size == 1)
2732     {
2733       /* Default values.  */
2734       if (stubs_always_before_branch)
2735 	{
2736 	  stub_group_size = 7680000;
2737 	  if (htab->has_17bit_branch || htab->multi_subspace)
2738 	    stub_group_size = 240000;
2739 	  if (htab->has_12bit_branch)
2740 	    stub_group_size = 7500;
2741 	}
2742       else
2743 	{
2744 	  stub_group_size = 6971392;
2745 	  if (htab->has_17bit_branch || htab->multi_subspace)
2746 	    stub_group_size = 217856;
2747 	  if (htab->has_12bit_branch)
2748 	    stub_group_size = 6808;
2749 	}
2750     }
2751 
2752   group_sections (htab, stub_group_size, stubs_always_before_branch);
2753 
2754   switch (get_local_syms (output_bfd, info->input_bfds, info))
2755     {
2756     default:
2757       if (htab->all_local_syms)
2758 	goto error_ret_free_local;
2759       return FALSE;
2760 
2761     case 0:
2762       stub_changed = FALSE;
2763       break;
2764 
2765     case 1:
2766       stub_changed = TRUE;
2767       break;
2768     }
2769 
2770   while (1)
2771     {
2772       bfd *input_bfd;
2773       unsigned int bfd_indx;
2774       asection *stub_sec;
2775 
2776       for (input_bfd = info->input_bfds, bfd_indx = 0;
2777 	   input_bfd != NULL;
2778 	   input_bfd = input_bfd->link_next, bfd_indx++)
2779 	{
2780 	  Elf_Internal_Shdr *symtab_hdr;
2781 	  asection *section;
2782 	  Elf_Internal_Sym *local_syms;
2783 
2784 	  /* We'll need the symbol table in a second.  */
2785 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2786 	  if (symtab_hdr->sh_info == 0)
2787 	    continue;
2788 
2789 	  local_syms = htab->all_local_syms[bfd_indx];
2790 
2791 	  /* Walk over each section attached to the input bfd.  */
2792 	  for (section = input_bfd->sections;
2793 	       section != NULL;
2794 	       section = section->next)
2795 	    {
2796 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2797 
2798 	      /* If there aren't any relocs, then there's nothing more
2799 		 to do.  */
2800 	      if ((section->flags & SEC_RELOC) == 0
2801 		  || section->reloc_count == 0)
2802 		continue;
2803 
2804 	      /* If this section is a link-once section that will be
2805 		 discarded, then don't create any stubs.  */
2806 	      if (section->output_section == NULL
2807 		  || section->output_section->owner != output_bfd)
2808 		continue;
2809 
2810 	      /* Get the relocs.  */
2811 	      internal_relocs
2812 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2813 					     info->keep_memory);
2814 	      if (internal_relocs == NULL)
2815 		goto error_ret_free_local;
2816 
2817 	      /* Now examine each relocation.  */
2818 	      irela = internal_relocs;
2819 	      irelaend = irela + section->reloc_count;
2820 	      for (; irela < irelaend; irela++)
2821 		{
2822 		  unsigned int r_type, r_indx;
2823 		  enum elf32_hppa_stub_type stub_type;
2824 		  struct elf32_hppa_stub_hash_entry *hsh;
2825 		  asection *sym_sec;
2826 		  bfd_vma sym_value;
2827 		  bfd_vma destination;
2828 		  struct elf32_hppa_link_hash_entry *hh;
2829 		  char *stub_name;
2830 		  const asection *id_sec;
2831 
2832 		  r_type = ELF32_R_TYPE (irela->r_info);
2833 		  r_indx = ELF32_R_SYM (irela->r_info);
2834 
2835 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2836 		    {
2837 		      bfd_set_error (bfd_error_bad_value);
2838 		    error_ret_free_internal:
2839 		      if (elf_section_data (section)->relocs == NULL)
2840 			free (internal_relocs);
2841 		      goto error_ret_free_local;
2842 		    }
2843 
2844 		  /* Only look for stubs on call instructions.  */
2845 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2846 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2847 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2848 		    continue;
2849 
2850 		  /* Now determine the call target, its name, value,
2851 		     section.  */
2852 		  sym_sec = NULL;
2853 		  sym_value = 0;
2854 		  destination = 0;
2855 		  hh = NULL;
2856 		  if (r_indx < symtab_hdr->sh_info)
2857 		    {
2858 		      /* It's a local symbol.  */
2859 		      Elf_Internal_Sym *sym;
2860 		      Elf_Internal_Shdr *hdr;
2861 
2862 		      sym = local_syms + r_indx;
2863 		      hdr = elf_elfsections (input_bfd)[sym->st_shndx];
2864 		      sym_sec = hdr->bfd_section;
2865 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2866 			sym_value = sym->st_value;
2867 		      destination = (sym_value + irela->r_addend
2868 				     + sym_sec->output_offset
2869 				     + sym_sec->output_section->vma);
2870 		    }
2871 		  else
2872 		    {
2873 		      /* It's an external symbol.  */
2874 		      int e_indx;
2875 
2876 		      e_indx = r_indx - symtab_hdr->sh_info;
2877 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2878 
2879 		      while (hh->eh.root.type == bfd_link_hash_indirect
2880 			     || hh->eh.root.type == bfd_link_hash_warning)
2881 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2882 
2883 		      if (hh->eh.root.type == bfd_link_hash_defined
2884 			  || hh->eh.root.type == bfd_link_hash_defweak)
2885 			{
2886 			  sym_sec = hh->eh.root.u.def.section;
2887 			  sym_value = hh->eh.root.u.def.value;
2888 			  if (sym_sec->output_section != NULL)
2889 			    destination = (sym_value + irela->r_addend
2890 					   + sym_sec->output_offset
2891 					   + sym_sec->output_section->vma);
2892 			}
2893 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
2894 			{
2895 			  if (! info->shared)
2896 			    continue;
2897 			}
2898 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
2899 			{
2900 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
2901 				 && (ELF_ST_VISIBILITY (hh->eh.other)
2902 				     == STV_DEFAULT)
2903 				 && hh->eh.type != STT_PARISC_MILLI))
2904 			    continue;
2905 			}
2906 		      else
2907 			{
2908 			  bfd_set_error (bfd_error_bad_value);
2909 			  goto error_ret_free_internal;
2910 			}
2911 		    }
2912 
2913 		  /* Determine what (if any) linker stub is needed.  */
2914 		  stub_type = hppa_type_of_stub (section, irela, hh,
2915 						 destination, info);
2916 		  if (stub_type == hppa_stub_none)
2917 		    continue;
2918 
2919 		  /* Support for grouping stub sections.  */
2920 		  id_sec = htab->stub_group[section->id].link_sec;
2921 
2922 		  /* Get the name of this stub.  */
2923 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2924 		  if (!stub_name)
2925 		    goto error_ret_free_internal;
2926 
2927 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2928 						      stub_name,
2929 						      FALSE, FALSE);
2930 		  if (hsh != NULL)
2931 		    {
2932 		      /* The proper stub has already been created.  */
2933 		      free (stub_name);
2934 		      continue;
2935 		    }
2936 
2937 		  hsh = hppa_add_stub (stub_name, section, htab);
2938 		  if (hsh == NULL)
2939 		    {
2940 		      free (stub_name);
2941 		      goto error_ret_free_internal;
2942 		    }
2943 
2944 		  hsh->target_value = sym_value;
2945 		  hsh->target_section = sym_sec;
2946 		  hsh->stub_type = stub_type;
2947 		  if (info->shared)
2948 		    {
2949 		      if (stub_type == hppa_stub_import)
2950 			hsh->stub_type = hppa_stub_import_shared;
2951 		      else if (stub_type == hppa_stub_long_branch)
2952 			hsh->stub_type = hppa_stub_long_branch_shared;
2953 		    }
2954 		  hsh->hh = hh;
2955 		  stub_changed = TRUE;
2956 		}
2957 
2958 	      /* We're done with the internal relocs, free them.  */
2959 	      if (elf_section_data (section)->relocs == NULL)
2960 		free (internal_relocs);
2961 	    }
2962 	}
2963 
2964       if (!stub_changed)
2965 	break;
2966 
2967       /* OK, we've added some stubs.  Find out the new size of the
2968 	 stub sections.  */
2969       for (stub_sec = htab->stub_bfd->sections;
2970 	   stub_sec != NULL;
2971 	   stub_sec = stub_sec->next)
2972 	stub_sec->size = 0;
2973 
2974       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2975 
2976       /* Ask the linker to do its stuff.  */
2977       (*htab->layout_sections_again) ();
2978       stub_changed = FALSE;
2979     }
2980 
2981   free (htab->all_local_syms);
2982   return TRUE;
2983 
2984  error_ret_free_local:
2985   free (htab->all_local_syms);
2986   return FALSE;
2987 }
2988 
2989 /* For a final link, this function is called after we have sized the
2990    stubs to provide a value for __gp.  */
2991 
2992 bfd_boolean
2993 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2994 {
2995   struct bfd_link_hash_entry *h;
2996   asection *sec = NULL;
2997   bfd_vma gp_val = 0;
2998   struct elf32_hppa_link_hash_table *htab;
2999 
3000   htab = hppa_link_hash_table (info);
3001   h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3002 
3003   if (h != NULL
3004       && (h->type == bfd_link_hash_defined
3005 	  || h->type == bfd_link_hash_defweak))
3006     {
3007       gp_val = h->u.def.value;
3008       sec = h->u.def.section;
3009     }
3010   else
3011     {
3012       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3013       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3014 
3015       /* Choose to point our LTP at, in this order, one of .plt, .got,
3016 	 or .data, if these sections exist.  In the case of choosing
3017 	 .plt try to make the LTP ideal for addressing anywhere in the
3018 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3019 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3020 	 if either the .plt or .got is larger than 0x2000.  If both
3021 	 the .plt and .got are smaller than 0x2000, choose the end of
3022 	 the .plt section.  */
3023       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3024 	  ? NULL : splt;
3025       if (sec != NULL)
3026 	{
3027 	  gp_val = sec->size;
3028 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3029 	    {
3030 	      gp_val = 0x2000;
3031 	    }
3032 	}
3033       else
3034 	{
3035 	  sec = sgot;
3036 	  if (sec != NULL)
3037 	    {
3038 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3039 		{
3040 	          /* We know we don't have a .plt.  If .got is large,
3041 		     offset our LTP.  */
3042 	          if (sec->size > 0x2000)
3043 		    gp_val = 0x2000;
3044 		}
3045 	    }
3046 	  else
3047 	    {
3048 	      /* No .plt or .got.  Who cares what the LTP is?  */
3049 	      sec = bfd_get_section_by_name (abfd, ".data");
3050 	    }
3051 	}
3052 
3053       if (h != NULL)
3054 	{
3055 	  h->type = bfd_link_hash_defined;
3056 	  h->u.def.value = gp_val;
3057 	  if (sec != NULL)
3058 	    h->u.def.section = sec;
3059 	  else
3060 	    h->u.def.section = bfd_abs_section_ptr;
3061 	}
3062     }
3063 
3064   if (sec != NULL && sec->output_section != NULL)
3065     gp_val += sec->output_section->vma + sec->output_offset;
3066 
3067   elf_gp (abfd) = gp_val;
3068   return TRUE;
3069 }
3070 
3071 /* Build all the stubs associated with the current output file.  The
3072    stubs are kept in a hash table attached to the main linker hash
3073    table.  We also set up the .plt entries for statically linked PIC
3074    functions here.  This function is called via hppaelf_finish in the
3075    linker.  */
3076 
3077 bfd_boolean
3078 elf32_hppa_build_stubs (struct bfd_link_info *info)
3079 {
3080   asection *stub_sec;
3081   struct bfd_hash_table *table;
3082   struct elf32_hppa_link_hash_table *htab;
3083 
3084   htab = hppa_link_hash_table (info);
3085 
3086   for (stub_sec = htab->stub_bfd->sections;
3087        stub_sec != NULL;
3088        stub_sec = stub_sec->next)
3089     {
3090       bfd_size_type size;
3091 
3092       /* Allocate memory to hold the linker stubs.  */
3093       size = stub_sec->size;
3094       stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3095       if (stub_sec->contents == NULL && size != 0)
3096 	return FALSE;
3097       stub_sec->size = 0;
3098     }
3099 
3100   /* Build the stubs as directed by the stub hash table.  */
3101   table = &htab->bstab;
3102   bfd_hash_traverse (table, hppa_build_one_stub, info);
3103 
3104   return TRUE;
3105 }
3106 
3107 /* Perform a final link.  */
3108 
3109 static bfd_boolean
3110 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3111 {
3112   /* Invoke the regular ELF linker to do all the work.  */
3113   if (!bfd_elf_final_link (abfd, info))
3114     return FALSE;
3115 
3116   /* If we're producing a final executable, sort the contents of the
3117      unwind section.  */
3118   return elf_hppa_sort_unwind (abfd);
3119 }
3120 
3121 /* Record the lowest address for the data and text segments.  */
3122 
3123 static void
3124 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED,
3125 			  asection *section,
3126 			  void *data)
3127 {
3128   struct elf32_hppa_link_hash_table *htab;
3129 
3130   htab = (struct elf32_hppa_link_hash_table*) data;
3131 
3132   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3133     {
3134       bfd_vma value = section->vma - section->filepos;
3135 
3136       if ((section->flags & SEC_READONLY) != 0)
3137 	{
3138 	  if (value < htab->text_segment_base)
3139 	    htab->text_segment_base = value;
3140 	}
3141       else
3142 	{
3143 	  if (value < htab->data_segment_base)
3144 	    htab->data_segment_base = value;
3145 	}
3146     }
3147 }
3148 
3149 /* Perform a relocation as part of a final link.  */
3150 
3151 static bfd_reloc_status_type
3152 final_link_relocate (asection *input_section,
3153 		     bfd_byte *contents,
3154 		     const Elf_Internal_Rela *rela,
3155 		     bfd_vma value,
3156 		     struct elf32_hppa_link_hash_table *htab,
3157 		     asection *sym_sec,
3158 		     struct elf32_hppa_link_hash_entry *hh,
3159 		     struct bfd_link_info *info)
3160 {
3161   int insn;
3162   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3163   unsigned int orig_r_type = r_type;
3164   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3165   int r_format = howto->bitsize;
3166   enum hppa_reloc_field_selector_type_alt r_field;
3167   bfd *input_bfd = input_section->owner;
3168   bfd_vma offset = rela->r_offset;
3169   bfd_vma max_branch_offset = 0;
3170   bfd_byte *hit_data = contents + offset;
3171   bfd_signed_vma addend = rela->r_addend;
3172   bfd_vma location;
3173   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3174   int val;
3175 
3176   if (r_type == R_PARISC_NONE)
3177     return bfd_reloc_ok;
3178 
3179   insn = bfd_get_32 (input_bfd, hit_data);
3180 
3181   /* Find out where we are and where we're going.  */
3182   location = (offset +
3183 	      input_section->output_offset +
3184 	      input_section->output_section->vma);
3185 
3186   /* If we are not building a shared library, convert DLTIND relocs to
3187      DPREL relocs.  */
3188   if (!info->shared)
3189     {
3190       switch (r_type)
3191 	{
3192 	  case R_PARISC_DLTIND21L:
3193 	    r_type = R_PARISC_DPREL21L;
3194 	    break;
3195 
3196 	  case R_PARISC_DLTIND14R:
3197 	    r_type = R_PARISC_DPREL14R;
3198 	    break;
3199 
3200 	  case R_PARISC_DLTIND14F:
3201 	    r_type = R_PARISC_DPREL14F;
3202 	    break;
3203 	}
3204     }
3205 
3206   switch (r_type)
3207     {
3208     case R_PARISC_PCREL12F:
3209     case R_PARISC_PCREL17F:
3210     case R_PARISC_PCREL22F:
3211       /* If this call should go via the plt, find the import stub in
3212 	 the stub hash.  */
3213       if (sym_sec == NULL
3214 	  || sym_sec->output_section == NULL
3215 	  || (hh != NULL
3216 	      && hh->eh.plt.offset != (bfd_vma) -1
3217 	      && hh->eh.dynindx != -1
3218 	      && !hh->plabel
3219 	      && (info->shared
3220 		  || !hh->eh.def_regular
3221 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3222 	{
3223 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3224 					    hh, rela, htab);
3225 	  if (hsh != NULL)
3226 	    {
3227 	      value = (hsh->stub_offset
3228 		       + hsh->stub_sec->output_offset
3229 		       + hsh->stub_sec->output_section->vma);
3230 	      addend = 0;
3231 	    }
3232 	  else if (sym_sec == NULL && hh != NULL
3233 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3234 	    {
3235 	      /* It's OK if undefined weak.  Calls to undefined weak
3236 		 symbols behave as if the "called" function
3237 		 immediately returns.  We can thus call to a weak
3238 		 function without first checking whether the function
3239 		 is defined.  */
3240 	      value = location;
3241 	      addend = 8;
3242 	    }
3243 	  else
3244 	    return bfd_reloc_undefined;
3245 	}
3246       /* Fall thru.  */
3247 
3248     case R_PARISC_PCREL21L:
3249     case R_PARISC_PCREL17C:
3250     case R_PARISC_PCREL17R:
3251     case R_PARISC_PCREL14R:
3252     case R_PARISC_PCREL14F:
3253     case R_PARISC_PCREL32:
3254       /* Make it a pc relative offset.  */
3255       value -= location;
3256       addend -= 8;
3257       break;
3258 
3259     case R_PARISC_DPREL21L:
3260     case R_PARISC_DPREL14R:
3261     case R_PARISC_DPREL14F:
3262       /* Convert instructions that use the linkage table pointer (r19) to
3263 	 instructions that use the global data pointer (dp).  This is the
3264 	 most efficient way of using PIC code in an incomplete executable,
3265 	 but the user must follow the standard runtime conventions for
3266 	 accessing data for this to work.  */
3267       if (orig_r_type == R_PARISC_DLTIND21L)
3268 	{
3269 	  /* Convert addil instructions if the original reloc was a
3270 	     DLTIND21L.  GCC sometimes uses a register other than r19 for
3271 	     the operation, so we must convert any addil instruction
3272 	     that uses this relocation.  */
3273 	  if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3274 	    insn = ADDIL_DP;
3275 	  else
3276 	    /* We must have a ldil instruction.  It's too hard to find
3277 	       and convert the associated add instruction, so issue an
3278 	       error.  */
3279 	    (*_bfd_error_handler)
3280 	      (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3281 	       input_bfd,
3282 	       input_section,
3283 	       offset,
3284 	       howto->name,
3285 	       insn);
3286 	}
3287       else if (orig_r_type == R_PARISC_DLTIND14F)
3288 	{
3289 	  /* This must be a format 1 load/store.  Change the base
3290 	     register to dp.  */
3291 	  insn = (insn & 0xfc1ffff) | (27 << 21);
3292 	}
3293 
3294     /* For all the DP relative relocations, we need to examine the symbol's
3295        section.  If it has no section or if it's a code section, then
3296        "data pointer relative" makes no sense.  In that case we don't
3297        adjust the "value", and for 21 bit addil instructions, we change the
3298        source addend register from %dp to %r0.  This situation commonly
3299        arises for undefined weak symbols and when a variable's "constness"
3300        is declared differently from the way the variable is defined.  For
3301        instance: "extern int foo" with foo defined as "const int foo".  */
3302       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3303 	{
3304 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3305 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3306 	    {
3307 	      insn &= ~ (0x1f << 21);
3308 	    }
3309 	  /* Now try to make things easy for the dynamic linker.  */
3310 
3311 	  break;
3312 	}
3313       /* Fall thru.  */
3314 
3315     case R_PARISC_DLTIND21L:
3316     case R_PARISC_DLTIND14R:
3317     case R_PARISC_DLTIND14F:
3318       value -= elf_gp (input_section->output_section->owner);
3319       break;
3320 
3321     case R_PARISC_SEGREL32:
3322       if ((sym_sec->flags & SEC_CODE) != 0)
3323 	value -= htab->text_segment_base;
3324       else
3325 	value -= htab->data_segment_base;
3326       break;
3327 
3328     default:
3329       break;
3330     }
3331 
3332   switch (r_type)
3333     {
3334     case R_PARISC_DIR32:
3335     case R_PARISC_DIR14F:
3336     case R_PARISC_DIR17F:
3337     case R_PARISC_PCREL17C:
3338     case R_PARISC_PCREL14F:
3339     case R_PARISC_PCREL32:
3340     case R_PARISC_DPREL14F:
3341     case R_PARISC_PLABEL32:
3342     case R_PARISC_DLTIND14F:
3343     case R_PARISC_SEGBASE:
3344     case R_PARISC_SEGREL32:
3345       r_field = e_fsel;
3346       break;
3347 
3348     case R_PARISC_DLTIND21L:
3349     case R_PARISC_PCREL21L:
3350     case R_PARISC_PLABEL21L:
3351       r_field = e_lsel;
3352       break;
3353 
3354     case R_PARISC_DIR21L:
3355     case R_PARISC_DPREL21L:
3356       r_field = e_lrsel;
3357       break;
3358 
3359     case R_PARISC_PCREL17R:
3360     case R_PARISC_PCREL14R:
3361     case R_PARISC_PLABEL14R:
3362     case R_PARISC_DLTIND14R:
3363       r_field = e_rsel;
3364       break;
3365 
3366     case R_PARISC_DIR17R:
3367     case R_PARISC_DIR14R:
3368     case R_PARISC_DPREL14R:
3369       r_field = e_rrsel;
3370       break;
3371 
3372     case R_PARISC_PCREL12F:
3373     case R_PARISC_PCREL17F:
3374     case R_PARISC_PCREL22F:
3375       r_field = e_fsel;
3376 
3377       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3378 	{
3379 	  max_branch_offset = (1 << (17-1)) << 2;
3380 	}
3381       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3382 	{
3383 	  max_branch_offset = (1 << (12-1)) << 2;
3384 	}
3385       else
3386 	{
3387 	  max_branch_offset = (1 << (22-1)) << 2;
3388 	}
3389 
3390       /* sym_sec is NULL on undefined weak syms or when shared on
3391 	 undefined syms.  We've already checked for a stub for the
3392 	 shared undefined case.  */
3393       if (sym_sec == NULL)
3394 	break;
3395 
3396       /* If the branch is out of reach, then redirect the
3397 	 call to the local stub for this function.  */
3398       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3399 	{
3400 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3401 					    hh, rela, htab);
3402 	  if (hsh == NULL)
3403 	    return bfd_reloc_undefined;
3404 
3405 	  /* Munge up the value and addend so that we call the stub
3406 	     rather than the procedure directly.  */
3407 	  value = (hsh->stub_offset
3408 		   + hsh->stub_sec->output_offset
3409 		   + hsh->stub_sec->output_section->vma
3410 		   - location);
3411 	  addend = -8;
3412 	}
3413       break;
3414 
3415     /* Something we don't know how to handle.  */
3416     default:
3417       return bfd_reloc_notsupported;
3418     }
3419 
3420   /* Make sure we can reach the stub.  */
3421   if (max_branch_offset != 0
3422       && value + addend + max_branch_offset >= 2*max_branch_offset)
3423     {
3424       (*_bfd_error_handler)
3425 	(_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3426 	 input_bfd,
3427 	 input_section,
3428 	 offset,
3429 	 hsh->bh_root.string);
3430       bfd_set_error (bfd_error_bad_value);
3431       return bfd_reloc_notsupported;
3432     }
3433 
3434   val = hppa_field_adjust (value, addend, r_field);
3435 
3436   switch (r_type)
3437     {
3438     case R_PARISC_PCREL12F:
3439     case R_PARISC_PCREL17C:
3440     case R_PARISC_PCREL17F:
3441     case R_PARISC_PCREL17R:
3442     case R_PARISC_PCREL22F:
3443     case R_PARISC_DIR17F:
3444     case R_PARISC_DIR17R:
3445       /* This is a branch.  Divide the offset by four.
3446 	 Note that we need to decide whether it's a branch or
3447 	 otherwise by inspecting the reloc.  Inspecting insn won't
3448 	 work as insn might be from a .word directive.  */
3449       val >>= 2;
3450       break;
3451 
3452     default:
3453       break;
3454     }
3455 
3456   insn = hppa_rebuild_insn (insn, val, r_format);
3457 
3458   /* Update the instruction word.  */
3459   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3460   return bfd_reloc_ok;
3461 }
3462 
3463 /* Relocate an HPPA ELF section.  */
3464 
3465 static bfd_boolean
3466 elf32_hppa_relocate_section (bfd *output_bfd,
3467 			     struct bfd_link_info *info,
3468 			     bfd *input_bfd,
3469 			     asection *input_section,
3470 			     bfd_byte *contents,
3471 			     Elf_Internal_Rela *relocs,
3472 			     Elf_Internal_Sym *local_syms,
3473 			     asection **local_sections)
3474 {
3475   bfd_vma *local_got_offsets;
3476   struct elf32_hppa_link_hash_table *htab;
3477   Elf_Internal_Shdr *symtab_hdr;
3478   Elf_Internal_Rela *rela;
3479   Elf_Internal_Rela *relend;
3480 
3481   if (info->relocatable)
3482     return TRUE;
3483 
3484   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3485 
3486   htab = hppa_link_hash_table (info);
3487   local_got_offsets = elf_local_got_offsets (input_bfd);
3488 
3489   rela = relocs;
3490   relend = relocs + input_section->reloc_count;
3491   for (; rela < relend; rela++)
3492     {
3493       unsigned int r_type;
3494       reloc_howto_type *howto;
3495       unsigned int r_symndx;
3496       struct elf32_hppa_link_hash_entry *hh;
3497       Elf_Internal_Sym *sym;
3498       asection *sym_sec;
3499       bfd_vma relocation;
3500       bfd_reloc_status_type rstatus;
3501       const char *sym_name;
3502       bfd_boolean plabel;
3503       bfd_boolean warned_undef;
3504 
3505       r_type = ELF32_R_TYPE (rela->r_info);
3506       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3507 	{
3508 	  bfd_set_error (bfd_error_bad_value);
3509 	  return FALSE;
3510 	}
3511       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3512 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3513 	continue;
3514 
3515       /* This is a final link.  */
3516       r_symndx = ELF32_R_SYM (rela->r_info);
3517       hh = NULL;
3518       sym = NULL;
3519       sym_sec = NULL;
3520       warned_undef = FALSE;
3521       if (r_symndx < symtab_hdr->sh_info)
3522 	{
3523 	  /* This is a local symbol, h defaults to NULL.  */
3524 	  sym = local_syms + r_symndx;
3525 	  sym_sec = local_sections[r_symndx];
3526 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3527 	}
3528       else
3529 	{
3530 	  struct elf_link_hash_entry *eh;
3531 	  bfd_boolean unresolved_reloc;
3532 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3533 
3534 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3535 				   r_symndx, symtab_hdr, sym_hashes,
3536 				   eh, sym_sec, relocation,
3537 				   unresolved_reloc, warned_undef);
3538 
3539 	  if (relocation == 0
3540 	      && eh->root.type != bfd_link_hash_defined
3541 	      && eh->root.type != bfd_link_hash_defweak
3542 	      && eh->root.type != bfd_link_hash_undefweak)
3543 	    {
3544 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3545 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3546 		  && eh->type == STT_PARISC_MILLI)
3547 		{
3548 		  if (! info->callbacks->undefined_symbol
3549 		      (info, eh->root.root.string, input_bfd,
3550 		       input_section, rela->r_offset, FALSE))
3551 		    return FALSE;
3552 		  warned_undef = TRUE;
3553 		}
3554 	    }
3555 	  hh = hppa_elf_hash_entry (eh);
3556 	}
3557 
3558       /* Do any required modifications to the relocation value, and
3559 	 determine what types of dynamic info we need to output, if
3560 	 any.  */
3561       plabel = 0;
3562       switch (r_type)
3563 	{
3564 	case R_PARISC_DLTIND14F:
3565 	case R_PARISC_DLTIND14R:
3566 	case R_PARISC_DLTIND21L:
3567 	  {
3568 	    bfd_vma off;
3569 	    bfd_boolean do_got = 0;
3570 
3571 	    /* Relocation is to the entry for this symbol in the
3572 	       global offset table.  */
3573 	    if (hh != NULL)
3574 	      {
3575 		bfd_boolean dyn;
3576 
3577 		off = hh->eh.got.offset;
3578 		dyn = htab->etab.dynamic_sections_created;
3579 		if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3580 						       &hh->eh))
3581 		  {
3582 		    /* If we aren't going to call finish_dynamic_symbol,
3583 		       then we need to handle initialisation of the .got
3584 		       entry and create needed relocs here.  Since the
3585 		       offset must always be a multiple of 4, we use the
3586 		       least significant bit to record whether we have
3587 		       initialised it already.  */
3588 		    if ((off & 1) != 0)
3589 		      off &= ~1;
3590 		    else
3591 		      {
3592 			hh->eh.got.offset |= 1;
3593 			do_got = 1;
3594 		      }
3595 		  }
3596 	      }
3597 	    else
3598 	      {
3599 		/* Local symbol case.  */
3600 		if (local_got_offsets == NULL)
3601 		  abort ();
3602 
3603 		off = local_got_offsets[r_symndx];
3604 
3605 		/* The offset must always be a multiple of 4.  We use
3606 		   the least significant bit to record whether we have
3607 		   already generated the necessary reloc.  */
3608 		if ((off & 1) != 0)
3609 		  off &= ~1;
3610 		else
3611 		  {
3612 		    local_got_offsets[r_symndx] |= 1;
3613 		    do_got = 1;
3614 		  }
3615 	      }
3616 
3617 	    if (do_got)
3618 	      {
3619 		if (info->shared)
3620 		  {
3621 		    /* Output a dynamic relocation for this GOT entry.
3622 		       In this case it is relative to the base of the
3623 		       object because the symbol index is zero.  */
3624 		    Elf_Internal_Rela outrel;
3625 		    bfd_byte *loc;
3626 		    asection *sec = htab->srelgot;
3627 
3628 		    outrel.r_offset = (off
3629 				       + htab->sgot->output_offset
3630 				       + htab->sgot->output_section->vma);
3631 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3632 		    outrel.r_addend = relocation;
3633 		    loc = sec->contents;
3634 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3635 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3636 		  }
3637 		else
3638 		  bfd_put_32 (output_bfd, relocation,
3639 			      htab->sgot->contents + off);
3640 	      }
3641 
3642 	    if (off >= (bfd_vma) -2)
3643 	      abort ();
3644 
3645 	    /* Add the base of the GOT to the relocation value.  */
3646 	    relocation = (off
3647 			  + htab->sgot->output_offset
3648 			  + htab->sgot->output_section->vma);
3649 	  }
3650 	  break;
3651 
3652 	case R_PARISC_SEGREL32:
3653 	  /* If this is the first SEGREL relocation, then initialize
3654 	     the segment base values.  */
3655 	  if (htab->text_segment_base == (bfd_vma) -1)
3656 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3657 	  break;
3658 
3659 	case R_PARISC_PLABEL14R:
3660 	case R_PARISC_PLABEL21L:
3661 	case R_PARISC_PLABEL32:
3662 	  if (htab->etab.dynamic_sections_created)
3663 	    {
3664 	      bfd_vma off;
3665 	      bfd_boolean do_plt = 0;
3666 	      /* If we have a global symbol with a PLT slot, then
3667 		 redirect this relocation to it.  */
3668 	      if (hh != NULL)
3669 		{
3670 		  off = hh->eh.plt.offset;
3671 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3672 							 &hh->eh))
3673 		    {
3674 		      /* In a non-shared link, adjust_dynamic_symbols
3675 			 isn't called for symbols forced local.  We
3676 			 need to write out the plt entry here.  */
3677 		      if ((off & 1) != 0)
3678 			off &= ~1;
3679 		      else
3680 			{
3681 			  hh->eh.plt.offset |= 1;
3682 			  do_plt = 1;
3683 			}
3684 		    }
3685 		}
3686 	      else
3687 		{
3688 		  bfd_vma *local_plt_offsets;
3689 
3690 		  if (local_got_offsets == NULL)
3691 		    abort ();
3692 
3693 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3694 		  off = local_plt_offsets[r_symndx];
3695 
3696 		  /* As for the local .got entry case, we use the last
3697 		     bit to record whether we've already initialised
3698 		     this local .plt entry.  */
3699 		  if ((off & 1) != 0)
3700 		    off &= ~1;
3701 		  else
3702 		    {
3703 		      local_plt_offsets[r_symndx] |= 1;
3704 		      do_plt = 1;
3705 		    }
3706 		}
3707 
3708 	      if (do_plt)
3709 		{
3710 		  if (info->shared)
3711 		    {
3712 		      /* Output a dynamic IPLT relocation for this
3713 			 PLT entry.  */
3714 		      Elf_Internal_Rela outrel;
3715 		      bfd_byte *loc;
3716 		      asection *s = htab->srelplt;
3717 
3718 		      outrel.r_offset = (off
3719 					 + htab->splt->output_offset
3720 					 + htab->splt->output_section->vma);
3721 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3722 		      outrel.r_addend = relocation;
3723 		      loc = s->contents;
3724 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3725 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3726 		    }
3727 		  else
3728 		    {
3729 		      bfd_put_32 (output_bfd,
3730 				  relocation,
3731 				  htab->splt->contents + off);
3732 		      bfd_put_32 (output_bfd,
3733 				  elf_gp (htab->splt->output_section->owner),
3734 				  htab->splt->contents + off + 4);
3735 		    }
3736 		}
3737 
3738 	      if (off >= (bfd_vma) -2)
3739 		abort ();
3740 
3741 	      /* PLABELs contain function pointers.  Relocation is to
3742 		 the entry for the function in the .plt.  The magic +2
3743 		 offset signals to $$dyncall that the function pointer
3744 		 is in the .plt and thus has a gp pointer too.
3745 		 Exception:  Undefined PLABELs should have a value of
3746 		 zero.  */
3747 	      if (hh == NULL
3748 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3749 		      && hh->eh.root.type != bfd_link_hash_undefined))
3750 		{
3751 		  relocation = (off
3752 				+ htab->splt->output_offset
3753 				+ htab->splt->output_section->vma
3754 				+ 2);
3755 		}
3756 	      plabel = 1;
3757 	    }
3758 	  /* Fall through and possibly emit a dynamic relocation.  */
3759 
3760 	case R_PARISC_DIR17F:
3761 	case R_PARISC_DIR17R:
3762 	case R_PARISC_DIR14F:
3763 	case R_PARISC_DIR14R:
3764 	case R_PARISC_DIR21L:
3765 	case R_PARISC_DPREL14F:
3766 	case R_PARISC_DPREL14R:
3767 	case R_PARISC_DPREL21L:
3768 	case R_PARISC_DIR32:
3769 	  /* r_symndx will be zero only for relocs against symbols
3770 	     from removed linkonce sections, or sections discarded by
3771 	     a linker script.  */
3772 	  if (r_symndx == 0
3773 	      || (input_section->flags & SEC_ALLOC) == 0)
3774 	    break;
3775 
3776 	  /* The reloc types handled here and this conditional
3777 	     expression must match the code in ..check_relocs and
3778 	     allocate_dynrelocs.  ie. We need exactly the same condition
3779 	     as in ..check_relocs, with some extra conditions (dynindx
3780 	     test in this case) to cater for relocs removed by
3781 	     allocate_dynrelocs.  If you squint, the non-shared test
3782 	     here does indeed match the one in ..check_relocs, the
3783 	     difference being that here we test DEF_DYNAMIC as well as
3784 	     !DEF_REGULAR.  All common syms end up with !DEF_REGULAR,
3785 	     which is why we can't use just that test here.
3786 	     Conversely, DEF_DYNAMIC can't be used in check_relocs as
3787 	     there all files have not been loaded.  */
3788 	  if ((info->shared
3789 	       && (hh == NULL
3790 		   || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3791 		   || hh->eh.root.type != bfd_link_hash_undefweak)
3792 	       && (IS_ABSOLUTE_RELOC (r_type)
3793 		   || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3794 	      || (!info->shared
3795 		  && hh != NULL
3796 		  && hh->eh.dynindx != -1
3797 		  && !hh->eh.non_got_ref
3798 		  && ((ELIMINATE_COPY_RELOCS
3799 		       && hh->eh.def_dynamic
3800 		       && !hh->eh.def_regular)
3801 		      || hh->eh.root.type == bfd_link_hash_undefweak
3802 		      || hh->eh.root.type == bfd_link_hash_undefined)))
3803 	    {
3804 	      Elf_Internal_Rela outrel;
3805 	      bfd_boolean skip;
3806 	      asection *sreloc;
3807 	      bfd_byte *loc;
3808 
3809 	      /* When generating a shared object, these relocations
3810 		 are copied into the output file to be resolved at run
3811 		 time.  */
3812 
3813 	      outrel.r_addend = rela->r_addend;
3814 	      outrel.r_offset =
3815 		_bfd_elf_section_offset (output_bfd, info, input_section,
3816 					 rela->r_offset);
3817 	      skip = (outrel.r_offset == (bfd_vma) -1
3818 		      || outrel.r_offset == (bfd_vma) -2);
3819 	      outrel.r_offset += (input_section->output_offset
3820 				  + input_section->output_section->vma);
3821 
3822 	      if (skip)
3823 		{
3824 		  memset (&outrel, 0, sizeof (outrel));
3825 		}
3826 	      else if (hh != NULL
3827 		       && hh->eh.dynindx != -1
3828 		       && (plabel
3829 			   || !IS_ABSOLUTE_RELOC (r_type)
3830 			   || !info->shared
3831 			   || !info->symbolic
3832 			   || !hh->eh.def_regular))
3833 		{
3834 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3835 		}
3836 	      else /* It's a local symbol, or one marked to become local.  */
3837 		{
3838 		  int indx = 0;
3839 
3840 		  /* Add the absolute offset of the symbol.  */
3841 		  outrel.r_addend += relocation;
3842 
3843 		  /* Global plabels need to be processed by the
3844 		     dynamic linker so that functions have at most one
3845 		     fptr.  For this reason, we need to differentiate
3846 		     between global and local plabels, which we do by
3847 		     providing the function symbol for a global plabel
3848 		     reloc, and no symbol for local plabels.  */
3849 		  if (! plabel
3850 		      && sym_sec != NULL
3851 		      && sym_sec->output_section != NULL
3852 		      && ! bfd_is_abs_section (sym_sec))
3853 		    {
3854 		      /* Skip this relocation if the output section has
3855 			 been discarded.  */
3856 		      if (bfd_is_abs_section (sym_sec->output_section))
3857 			break;
3858 
3859 		      indx = elf_section_data (sym_sec->output_section)->dynindx;
3860 		      /* We are turning this relocation into one
3861 			 against a section symbol, so subtract out the
3862 			 output section's address but not the offset
3863 			 of the input section in the output section.  */
3864 		      outrel.r_addend -= sym_sec->output_section->vma;
3865 		    }
3866 
3867 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
3868 		}
3869 	      sreloc = elf_section_data (input_section)->sreloc;
3870 	      if (sreloc == NULL)
3871 		abort ();
3872 
3873 	      loc = sreloc->contents;
3874 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3875 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3876 	    }
3877 	  break;
3878 
3879 	default:
3880 	  break;
3881 	}
3882 
3883       rstatus = final_link_relocate (input_section, contents, rela, relocation,
3884 			       htab, sym_sec, hh, info);
3885 
3886       if (rstatus == bfd_reloc_ok)
3887 	continue;
3888 
3889       if (hh != NULL)
3890 	sym_name = hh->eh.root.root.string;
3891       else
3892 	{
3893 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
3894 						      symtab_hdr->sh_link,
3895 						      sym->st_name);
3896 	  if (sym_name == NULL)
3897 	    return FALSE;
3898 	  if (*sym_name == '\0')
3899 	    sym_name = bfd_section_name (input_bfd, sym_sec);
3900 	}
3901 
3902       howto = elf_hppa_howto_table + r_type;
3903 
3904       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
3905 	{
3906 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
3907 	    {
3908 	      (*_bfd_error_handler)
3909 		(_("%B(%A+0x%lx): cannot handle %s for %s"),
3910 		 input_bfd,
3911 		 input_section,
3912 		 (long) rela->r_offset,
3913 		 howto->name,
3914 		 sym_name);
3915 	      bfd_set_error (bfd_error_bad_value);
3916 	      return FALSE;
3917 	    }
3918 	}
3919       else
3920 	{
3921 	  if (!((*info->callbacks->reloc_overflow)
3922 		(info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
3923 		 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
3924 	    return FALSE;
3925 	}
3926     }
3927 
3928   return TRUE;
3929 }
3930 
3931 /* Finish up dynamic symbol handling.  We set the contents of various
3932    dynamic sections here.  */
3933 
3934 static bfd_boolean
3935 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
3936 				  struct bfd_link_info *info,
3937 				  struct elf_link_hash_entry *eh,
3938 				  Elf_Internal_Sym *sym)
3939 {
3940   struct elf32_hppa_link_hash_table *htab;
3941   Elf_Internal_Rela rela;
3942   bfd_byte *loc;
3943 
3944   htab = hppa_link_hash_table (info);
3945 
3946   if (eh->plt.offset != (bfd_vma) -1)
3947     {
3948       bfd_vma value;
3949 
3950       if (eh->plt.offset & 1)
3951 	abort ();
3952 
3953       /* This symbol has an entry in the procedure linkage table.  Set
3954 	 it up.
3955 
3956 	 The format of a plt entry is
3957 	 <funcaddr>
3958 	 <__gp>
3959       */
3960       value = 0;
3961       if (eh->root.type == bfd_link_hash_defined
3962 	  || eh->root.type == bfd_link_hash_defweak)
3963 	{
3964 	  value = eh->root.u.def.value;
3965 	  if (eh->root.u.def.section->output_section != NULL)
3966 	    value += (eh->root.u.def.section->output_offset
3967 		      + eh->root.u.def.section->output_section->vma);
3968 	}
3969 
3970       /* Create a dynamic IPLT relocation for this entry.  */
3971       rela.r_offset = (eh->plt.offset
3972 		      + htab->splt->output_offset
3973 		      + htab->splt->output_section->vma);
3974       if (eh->dynindx != -1)
3975 	{
3976 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
3977 	  rela.r_addend = 0;
3978 	}
3979       else
3980 	{
3981 	  /* This symbol has been marked to become local, and is
3982 	     used by a plabel so must be kept in the .plt.  */
3983 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3984 	  rela.r_addend = value;
3985 	}
3986 
3987       loc = htab->srelplt->contents;
3988       loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
3989       bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
3990 
3991       if (!eh->def_regular)
3992 	{
3993 	  /* Mark the symbol as undefined, rather than as defined in
3994 	     the .plt section.  Leave the value alone.  */
3995 	  sym->st_shndx = SHN_UNDEF;
3996 	}
3997     }
3998 
3999   if (eh->got.offset != (bfd_vma) -1)
4000     {
4001       /* This symbol has an entry in the global offset table.  Set it
4002 	 up.  */
4003 
4004       rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4005 		      + htab->sgot->output_offset
4006 		      + htab->sgot->output_section->vma);
4007 
4008       /* If this is a -Bsymbolic link and the symbol is defined
4009 	 locally or was forced to be local because of a version file,
4010 	 we just want to emit a RELATIVE reloc.  The entry in the
4011 	 global offset table will already have been initialized in the
4012 	 relocate_section function.  */
4013       if (info->shared
4014 	  && (info->symbolic || eh->dynindx == -1)
4015 	  && eh->def_regular)
4016 	{
4017 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4018 	  rela.r_addend = (eh->root.u.def.value
4019 			  + eh->root.u.def.section->output_offset
4020 			  + eh->root.u.def.section->output_section->vma);
4021 	}
4022       else
4023 	{
4024 	  if ((eh->got.offset & 1) != 0)
4025 	    abort ();
4026 
4027 	  bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4028 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4029 	  rela.r_addend = 0;
4030 	}
4031 
4032       loc = htab->srelgot->contents;
4033       loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4034       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4035     }
4036 
4037   if (eh->needs_copy)
4038     {
4039       asection *sec;
4040 
4041       /* This symbol needs a copy reloc.  Set it up.  */
4042 
4043       if (! (eh->dynindx != -1
4044 	     && (eh->root.type == bfd_link_hash_defined
4045 		 || eh->root.type == bfd_link_hash_defweak)))
4046 	abort ();
4047 
4048       sec = htab->srelbss;
4049 
4050       rela.r_offset = (eh->root.u.def.value
4051 		      + eh->root.u.def.section->output_offset
4052 		      + eh->root.u.def.section->output_section->vma);
4053       rela.r_addend = 0;
4054       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4055       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4056       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4057     }
4058 
4059   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4060   if (eh->root.root.string[0] == '_'
4061       && (strcmp (eh->root.root.string, "_DYNAMIC") == 0
4062 	  || eh == htab->etab.hgot))
4063     {
4064       sym->st_shndx = SHN_ABS;
4065     }
4066 
4067   return TRUE;
4068 }
4069 
4070 /* Used to decide how to sort relocs in an optimal manner for the
4071    dynamic linker, before writing them out.  */
4072 
4073 static enum elf_reloc_type_class
4074 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4075 {
4076   if (ELF32_R_SYM (rela->r_info) == 0)
4077     return reloc_class_relative;
4078 
4079   switch ((int) ELF32_R_TYPE (rela->r_info))
4080     {
4081     case R_PARISC_IPLT:
4082       return reloc_class_plt;
4083     case R_PARISC_COPY:
4084       return reloc_class_copy;
4085     default:
4086       return reloc_class_normal;
4087     }
4088 }
4089 
4090 /* Finish up the dynamic sections.  */
4091 
4092 static bfd_boolean
4093 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4094 				    struct bfd_link_info *info)
4095 {
4096   bfd *dynobj;
4097   struct elf32_hppa_link_hash_table *htab;
4098   asection *sdyn;
4099 
4100   htab = hppa_link_hash_table (info);
4101   dynobj = htab->etab.dynobj;
4102 
4103   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4104 
4105   if (htab->etab.dynamic_sections_created)
4106     {
4107       Elf32_External_Dyn *dyncon, *dynconend;
4108 
4109       if (sdyn == NULL)
4110 	abort ();
4111 
4112       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4113       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4114       for (; dyncon < dynconend; dyncon++)
4115 	{
4116 	  Elf_Internal_Dyn dyn;
4117 	  asection *s;
4118 
4119 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4120 
4121 	  switch (dyn.d_tag)
4122 	    {
4123 	    default:
4124 	      continue;
4125 
4126 	    case DT_PLTGOT:
4127 	      /* Use PLTGOT to set the GOT register.  */
4128 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4129 	      break;
4130 
4131 	    case DT_JMPREL:
4132 	      s = htab->srelplt;
4133 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4134 	      break;
4135 
4136 	    case DT_PLTRELSZ:
4137 	      s = htab->srelplt;
4138 	      dyn.d_un.d_val = s->size;
4139 	      break;
4140 
4141 	    case DT_RELASZ:
4142 	      /* Don't count procedure linkage table relocs in the
4143 		 overall reloc count.  */
4144 	      s = htab->srelplt;
4145 	      if (s == NULL)
4146 		continue;
4147 	      dyn.d_un.d_val -= s->size;
4148 	      break;
4149 
4150 	    case DT_RELA:
4151 	      /* We may not be using the standard ELF linker script.
4152 		 If .rela.plt is the first .rela section, we adjust
4153 		 DT_RELA to not include it.  */
4154 	      s = htab->srelplt;
4155 	      if (s == NULL)
4156 		continue;
4157 	      if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4158 		continue;
4159 	      dyn.d_un.d_ptr += s->size;
4160 	      break;
4161 	    }
4162 
4163 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4164 	}
4165     }
4166 
4167   if (htab->sgot != NULL && htab->sgot->size != 0)
4168     {
4169       /* Fill in the first entry in the global offset table.
4170 	 We use it to point to our dynamic section, if we have one.  */
4171       bfd_put_32 (output_bfd,
4172 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4173 		  htab->sgot->contents);
4174 
4175       /* The second entry is reserved for use by the dynamic linker.  */
4176       memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4177 
4178       /* Set .got entry size.  */
4179       elf_section_data (htab->sgot->output_section)
4180 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4181     }
4182 
4183   if (htab->splt != NULL && htab->splt->size != 0)
4184     {
4185       /* Set plt entry size.  */
4186       elf_section_data (htab->splt->output_section)
4187 	->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4188 
4189       if (htab->need_plt_stub)
4190 	{
4191 	  /* Set up the .plt stub.  */
4192 	  memcpy (htab->splt->contents
4193 		  + htab->splt->size - sizeof (plt_stub),
4194 		  plt_stub, sizeof (plt_stub));
4195 
4196 	  if ((htab->splt->output_offset
4197 	       + htab->splt->output_section->vma
4198 	       + htab->splt->size)
4199 	      != (htab->sgot->output_offset
4200 		  + htab->sgot->output_section->vma))
4201 	    {
4202 	      (*_bfd_error_handler)
4203 		(_(".got section not immediately after .plt section"));
4204 	      return FALSE;
4205 	    }
4206 	}
4207     }
4208 
4209   return TRUE;
4210 }
4211 
4212 /* Tweak the OSABI field of the elf header.  */
4213 
4214 static void
4215 elf32_hppa_post_process_headers (bfd *abfd,
4216 				 struct bfd_link_info *info ATTRIBUTE_UNUSED)
4217 {
4218   Elf_Internal_Ehdr * i_ehdrp;
4219 
4220   i_ehdrp = elf_elfheader (abfd);
4221 
4222   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4223     {
4224       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4225     }
4226   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
4227     {
4228       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD;
4229     }
4230   else
4231     {
4232       i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4233     }
4234 }
4235 
4236 /* Called when writing out an object file to decide the type of a
4237    symbol.  */
4238 static int
4239 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4240 {
4241   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4242     return STT_PARISC_MILLI;
4243   else
4244     return type;
4245 }
4246 
4247 /* Misc BFD support code.  */
4248 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4249 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4250 #define elf_info_to_howto		     elf_hppa_info_to_howto
4251 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4252 
4253 /* Stuff for the BFD linker.  */
4254 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4255 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4256 #define bfd_elf32_bfd_link_hash_table_free   elf32_hppa_link_hash_table_free
4257 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4258 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4259 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4260 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4261 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4262 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4263 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4264 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4265 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4266 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4267 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4268 #define elf_backend_gc_sweep_hook	     elf32_hppa_gc_sweep_hook
4269 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4270 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4271 #define elf_backend_object_p		     elf32_hppa_object_p
4272 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4273 #define elf_backend_post_process_headers     elf32_hppa_post_process_headers
4274 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4275 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4276 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4277 
4278 #define elf_backend_can_gc_sections	     1
4279 #define elf_backend_can_refcount	     1
4280 #define elf_backend_plt_alignment	     2
4281 #define elf_backend_want_got_plt	     0
4282 #define elf_backend_plt_readonly	     0
4283 #define elf_backend_want_plt_sym	     0
4284 #define elf_backend_got_header_size	     8
4285 #define elf_backend_rela_normal		     1
4286 
4287 #define TARGET_BIG_SYM		bfd_elf32_hppa_vec
4288 #define TARGET_BIG_NAME		"elf32-hppa"
4289 #define ELF_ARCH		bfd_arch_hppa
4290 #define ELF_MACHINE_CODE	EM_PARISC
4291 #define ELF_MAXPAGESIZE		0x1000
4292 
4293 #include "elf32-target.h"
4294 
4295 #undef TARGET_BIG_SYM
4296 #define TARGET_BIG_SYM			bfd_elf32_hppa_linux_vec
4297 #undef TARGET_BIG_NAME
4298 #define TARGET_BIG_NAME			"elf32-hppa-linux"
4299 
4300 #define INCLUDED_TARGET_FILE 1
4301 #include "elf32-target.h"
4302 
4303 #undef TARGET_BIG_SYM
4304 #define TARGET_BIG_SYM			bfd_elf32_hppa_nbsd_vec
4305 #undef TARGET_BIG_NAME
4306 #define TARGET_BIG_NAME			"elf32-hppa-netbsd"
4307 
4308 #include "elf32-target.h"
4309