1 /* BFD back-end for HP PA-RISC ELF files. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001, 3 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. 4 5 Original code by 6 Center for Software Science 7 Department of Computer Science 8 University of Utah 9 Largely rewritten by Alan Modra <alan@linuxcare.com.au> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 2 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 26 27 #include "bfd.h" 28 #include "sysdep.h" 29 #include "libbfd.h" 30 #include "elf-bfd.h" 31 #include "elf/hppa.h" 32 #include "libhppa.h" 33 #include "elf32-hppa.h" 34 #define ARCH_SIZE 32 35 #include "elf32-hppa.h" 36 #include "elf-hppa.h" 37 38 /* In order to gain some understanding of code in this file without 39 knowing all the intricate details of the linker, note the 40 following: 41 42 Functions named elf32_hppa_* are called by external routines, other 43 functions are only called locally. elf32_hppa_* functions appear 44 in this file more or less in the order in which they are called 45 from external routines. eg. elf32_hppa_check_relocs is called 46 early in the link process, elf32_hppa_finish_dynamic_sections is 47 one of the last functions. */ 48 49 /* We use two hash tables to hold information for linking PA ELF objects. 50 51 The first is the elf32_hppa_link_hash_table which is derived 52 from the standard ELF linker hash table. We use this as a place to 53 attach other hash tables and static information. 54 55 The second is the stub hash table which is derived from the 56 base BFD hash table. The stub hash table holds the information 57 necessary to build the linker stubs during a link. 58 59 There are a number of different stubs generated by the linker. 60 61 Long branch stub: 62 : ldil LR'X,%r1 63 : be,n RR'X(%sr4,%r1) 64 65 PIC long branch stub: 66 : b,l .+8,%r1 67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1 68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) 69 70 Import stub to call shared library routine from normal object file 71 (single sub-space version) 72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 73 : ldw RR'lt_ptr+ltoff(%r1),%r21 74 : bv %r0(%r21) 75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 76 77 Import stub to call shared library routine from shared library 78 (single sub-space version) 79 : addil LR'ltoff,%r19 ; get procedure entry point 80 : ldw RR'ltoff(%r1),%r21 81 : bv %r0(%r21) 82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 83 84 Import stub to call shared library routine from normal object file 85 (multiple sub-space support) 86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 87 : ldw RR'lt_ptr+ltoff(%r1),%r21 88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 89 : ldsid (%r21),%r1 90 : mtsp %r1,%sr0 91 : be 0(%sr0,%r21) ; branch to target 92 : stw %rp,-24(%sp) ; save rp 93 94 Import stub to call shared library routine from shared library 95 (multiple sub-space support) 96 : addil LR'ltoff,%r19 ; get procedure entry point 97 : ldw RR'ltoff(%r1),%r21 98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 99 : ldsid (%r21),%r1 100 : mtsp %r1,%sr0 101 : be 0(%sr0,%r21) ; branch to target 102 : stw %rp,-24(%sp) ; save rp 103 104 Export stub to return from shared lib routine (multiple sub-space support) 105 One of these is created for each exported procedure in a shared 106 library (and stored in the shared lib). Shared lib routines are 107 called via the first instruction in the export stub so that we can 108 do an inter-space return. Not required for single sub-space. 109 : bl,n X,%rp ; trap the return 110 : nop 111 : ldw -24(%sp),%rp ; restore the original rp 112 : ldsid (%rp),%r1 113 : mtsp %r1,%sr0 114 : be,n 0(%sr0,%rp) ; inter-space return. */ 115 116 117 /* Variable names follow a coding style. 118 Please follow this (Apps Hungarian) style: 119 120 Structure/Variable Prefix 121 elf_link_hash_table "etab" 122 elf_link_hash_entry "eh" 123 124 elf32_hppa_link_hash_table "htab" 125 elf32_hppa_link_hash_entry "hh" 126 127 bfd_hash_table "btab" 128 bfd_hash_entry "bh" 129 130 bfd_hash_table containing stubs "bstab" 131 elf32_hppa_stub_hash_entry "hsh" 132 133 elf32_hppa_dyn_reloc_entry "hdh" 134 135 Always remember to use GNU Coding Style. */ 136 137 #define PLT_ENTRY_SIZE 8 138 #define GOT_ENTRY_SIZE 4 139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 140 141 static const bfd_byte plt_stub[] = 142 { 143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ 144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ 145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ 146 #define PLT_STUB_ENTRY (3*4) 147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ 148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ 149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ 150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ 151 }; 152 153 /* Section name for stubs is the associated section name plus this 154 string. */ 155 #define STUB_SUFFIX ".stub" 156 157 /* We don't need to copy certain PC- or GP-relative dynamic relocs 158 into a shared object's dynamic section. All the relocs of the 159 limited class we are interested in, are absolute. */ 160 #ifndef RELATIVE_DYNRELOCS 161 #define RELATIVE_DYNRELOCS 0 162 #define IS_ABSOLUTE_RELOC(r_type) 1 163 #endif 164 165 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 166 copying dynamic variables from a shared lib into an app's dynbss 167 section, and instead use a dynamic relocation to point into the 168 shared lib. */ 169 #define ELIMINATE_COPY_RELOCS 1 170 171 enum elf32_hppa_stub_type { 172 hppa_stub_long_branch, 173 hppa_stub_long_branch_shared, 174 hppa_stub_import, 175 hppa_stub_import_shared, 176 hppa_stub_export, 177 hppa_stub_none 178 }; 179 180 struct elf32_hppa_stub_hash_entry { 181 182 /* Base hash table entry structure. */ 183 struct bfd_hash_entry bh_root; 184 185 /* The stub section. */ 186 asection *stub_sec; 187 188 /* Offset within stub_sec of the beginning of this stub. */ 189 bfd_vma stub_offset; 190 191 /* Given the symbol's value and its section we can determine its final 192 value when building the stubs (so the stub knows where to jump. */ 193 bfd_vma target_value; 194 asection *target_section; 195 196 enum elf32_hppa_stub_type stub_type; 197 198 /* The symbol table entry, if any, that this was derived from. */ 199 struct elf32_hppa_link_hash_entry *hh; 200 201 /* Where this stub is being called from, or, in the case of combined 202 stub sections, the first input section in the group. */ 203 asection *id_sec; 204 }; 205 206 struct elf32_hppa_link_hash_entry { 207 208 struct elf_link_hash_entry eh; 209 210 /* A pointer to the most recently used stub hash entry against this 211 symbol. */ 212 struct elf32_hppa_stub_hash_entry *hsh_cache; 213 214 /* Used to count relocations for delayed sizing of relocation 215 sections. */ 216 struct elf32_hppa_dyn_reloc_entry { 217 218 /* Next relocation in the chain. */ 219 struct elf32_hppa_dyn_reloc_entry *hdh_next; 220 221 /* The input section of the reloc. */ 222 asection *sec; 223 224 /* Number of relocs copied in this section. */ 225 bfd_size_type count; 226 227 #if RELATIVE_DYNRELOCS 228 /* Number of relative relocs copied for the input section. */ 229 bfd_size_type relative_count; 230 #endif 231 } *dyn_relocs; 232 233 /* Set if this symbol is used by a plabel reloc. */ 234 unsigned int plabel:1; 235 }; 236 237 struct elf32_hppa_link_hash_table { 238 239 /* The main hash table. */ 240 struct elf_link_hash_table etab; 241 242 /* The stub hash table. */ 243 struct bfd_hash_table bstab; 244 245 /* Linker stub bfd. */ 246 bfd *stub_bfd; 247 248 /* Linker call-backs. */ 249 asection * (*add_stub_section) (const char *, asection *); 250 void (*layout_sections_again) (void); 251 252 /* Array to keep track of which stub sections have been created, and 253 information on stub grouping. */ 254 struct map_stub { 255 /* This is the section to which stubs in the group will be 256 attached. */ 257 asection *link_sec; 258 /* The stub section. */ 259 asection *stub_sec; 260 } *stub_group; 261 262 /* Assorted information used by elf32_hppa_size_stubs. */ 263 unsigned int bfd_count; 264 int top_index; 265 asection **input_list; 266 Elf_Internal_Sym **all_local_syms; 267 268 /* Short-cuts to get to dynamic linker sections. */ 269 asection *sgot; 270 asection *srelgot; 271 asection *splt; 272 asection *srelplt; 273 asection *sdynbss; 274 asection *srelbss; 275 276 /* Used during a final link to store the base of the text and data 277 segments so that we can perform SEGREL relocations. */ 278 bfd_vma text_segment_base; 279 bfd_vma data_segment_base; 280 281 /* Whether we support multiple sub-spaces for shared libs. */ 282 unsigned int multi_subspace:1; 283 284 /* Flags set when various size branches are detected. Used to 285 select suitable defaults for the stub group size. */ 286 unsigned int has_12bit_branch:1; 287 unsigned int has_17bit_branch:1; 288 unsigned int has_22bit_branch:1; 289 290 /* Set if we need a .plt stub to support lazy dynamic linking. */ 291 unsigned int need_plt_stub:1; 292 293 /* Small local sym to section mapping cache. */ 294 struct sym_sec_cache sym_sec; 295 }; 296 297 /* Various hash macros and functions. */ 298 #define hppa_link_hash_table(p) \ 299 ((struct elf32_hppa_link_hash_table *) ((p)->hash)) 300 301 #define hppa_elf_hash_entry(ent) \ 302 ((struct elf32_hppa_link_hash_entry *)(ent)) 303 304 #define hppa_stub_hash_entry(ent) \ 305 ((struct elf32_hppa_stub_hash_entry *)(ent)) 306 307 #define hppa_stub_hash_lookup(table, string, create, copy) \ 308 ((struct elf32_hppa_stub_hash_entry *) \ 309 bfd_hash_lookup ((table), (string), (create), (copy))) 310 311 /* Assorted hash table functions. */ 312 313 /* Initialize an entry in the stub hash table. */ 314 315 static struct bfd_hash_entry * 316 stub_hash_newfunc (struct bfd_hash_entry *entry, 317 struct bfd_hash_table *table, 318 const char *string) 319 { 320 /* Allocate the structure if it has not already been allocated by a 321 subclass. */ 322 if (entry == NULL) 323 { 324 entry = bfd_hash_allocate (table, 325 sizeof (struct elf32_hppa_stub_hash_entry)); 326 if (entry == NULL) 327 return entry; 328 } 329 330 /* Call the allocation method of the superclass. */ 331 entry = bfd_hash_newfunc (entry, table, string); 332 if (entry != NULL) 333 { 334 struct elf32_hppa_stub_hash_entry *hsh; 335 336 /* Initialize the local fields. */ 337 hsh = hppa_stub_hash_entry (entry); 338 hsh->stub_sec = NULL; 339 hsh->stub_offset = 0; 340 hsh->target_value = 0; 341 hsh->target_section = NULL; 342 hsh->stub_type = hppa_stub_long_branch; 343 hsh->hh = NULL; 344 hsh->id_sec = NULL; 345 } 346 347 return entry; 348 } 349 350 /* Initialize an entry in the link hash table. */ 351 352 static struct bfd_hash_entry * 353 hppa_link_hash_newfunc (struct bfd_hash_entry *entry, 354 struct bfd_hash_table *table, 355 const char *string) 356 { 357 /* Allocate the structure if it has not already been allocated by a 358 subclass. */ 359 if (entry == NULL) 360 { 361 entry = bfd_hash_allocate (table, 362 sizeof (struct elf32_hppa_link_hash_entry)); 363 if (entry == NULL) 364 return entry; 365 } 366 367 /* Call the allocation method of the superclass. */ 368 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 369 if (entry != NULL) 370 { 371 struct elf32_hppa_link_hash_entry *hh; 372 373 /* Initialize the local fields. */ 374 hh = hppa_elf_hash_entry (entry); 375 hh->hsh_cache = NULL; 376 hh->dyn_relocs = NULL; 377 hh->plabel = 0; 378 } 379 380 return entry; 381 } 382 383 /* Create the derived linker hash table. The PA ELF port uses the derived 384 hash table to keep information specific to the PA ELF linker (without 385 using static variables). */ 386 387 static struct bfd_link_hash_table * 388 elf32_hppa_link_hash_table_create (bfd *abfd) 389 { 390 struct elf32_hppa_link_hash_table *htab; 391 bfd_size_type amt = sizeof (*htab); 392 393 htab = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt); 394 if (htab == NULL) 395 return NULL; 396 397 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, 398 sizeof (struct elf32_hppa_link_hash_entry))) 399 { 400 free (htab); 401 return NULL; 402 } 403 404 /* Init the stub hash table too. */ 405 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, 406 sizeof (struct elf32_hppa_stub_hash_entry))) 407 return NULL; 408 409 htab->stub_bfd = NULL; 410 htab->add_stub_section = NULL; 411 htab->layout_sections_again = NULL; 412 htab->stub_group = NULL; 413 htab->sgot = NULL; 414 htab->srelgot = NULL; 415 htab->splt = NULL; 416 htab->srelplt = NULL; 417 htab->sdynbss = NULL; 418 htab->srelbss = NULL; 419 htab->text_segment_base = (bfd_vma) -1; 420 htab->data_segment_base = (bfd_vma) -1; 421 htab->multi_subspace = 0; 422 htab->has_12bit_branch = 0; 423 htab->has_17bit_branch = 0; 424 htab->has_22bit_branch = 0; 425 htab->need_plt_stub = 0; 426 htab->sym_sec.abfd = NULL; 427 428 return &htab->etab.root; 429 } 430 431 /* Free the derived linker hash table. */ 432 433 static void 434 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab) 435 { 436 struct elf32_hppa_link_hash_table *htab 437 = (struct elf32_hppa_link_hash_table *) btab; 438 439 bfd_hash_table_free (&htab->bstab); 440 _bfd_generic_link_hash_table_free (btab); 441 } 442 443 /* Build a name for an entry in the stub hash table. */ 444 445 static char * 446 hppa_stub_name (const asection *input_section, 447 const asection *sym_sec, 448 const struct elf32_hppa_link_hash_entry *hh, 449 const Elf_Internal_Rela *rela) 450 { 451 char *stub_name; 452 bfd_size_type len; 453 454 if (hh) 455 { 456 len = 8 + 1 + strlen (hh->eh.root.root.string) + 1 + 8 + 1; 457 stub_name = bfd_malloc (len); 458 if (stub_name != NULL) 459 { 460 sprintf (stub_name, "%08x_%s+%x", 461 input_section->id & 0xffffffff, 462 hh->eh.root.root.string, 463 (int) rela->r_addend & 0xffffffff); 464 } 465 } 466 else 467 { 468 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; 469 stub_name = bfd_malloc (len); 470 if (stub_name != NULL) 471 { 472 sprintf (stub_name, "%08x_%x:%x+%x", 473 input_section->id & 0xffffffff, 474 sym_sec->id & 0xffffffff, 475 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, 476 (int) rela->r_addend & 0xffffffff); 477 } 478 } 479 return stub_name; 480 } 481 482 /* Look up an entry in the stub hash. Stub entries are cached because 483 creating the stub name takes a bit of time. */ 484 485 static struct elf32_hppa_stub_hash_entry * 486 hppa_get_stub_entry (const asection *input_section, 487 const asection *sym_sec, 488 struct elf32_hppa_link_hash_entry *hh, 489 const Elf_Internal_Rela *rela, 490 struct elf32_hppa_link_hash_table *htab) 491 { 492 struct elf32_hppa_stub_hash_entry *hsh_entry; 493 const asection *id_sec; 494 495 /* If this input section is part of a group of sections sharing one 496 stub section, then use the id of the first section in the group. 497 Stub names need to include a section id, as there may well be 498 more than one stub used to reach say, printf, and we need to 499 distinguish between them. */ 500 id_sec = htab->stub_group[input_section->id].link_sec; 501 502 if (hh != NULL && hh->hsh_cache != NULL 503 && hh->hsh_cache->hh == hh 504 && hh->hsh_cache->id_sec == id_sec) 505 { 506 hsh_entry = hh->hsh_cache; 507 } 508 else 509 { 510 char *stub_name; 511 512 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); 513 if (stub_name == NULL) 514 return NULL; 515 516 hsh_entry = hppa_stub_hash_lookup (&htab->bstab, 517 stub_name, FALSE, FALSE); 518 if (hh != NULL) 519 hh->hsh_cache = hsh_entry; 520 521 free (stub_name); 522 } 523 524 return hsh_entry; 525 } 526 527 /* Add a new stub entry to the stub hash. Not all fields of the new 528 stub entry are initialised. */ 529 530 static struct elf32_hppa_stub_hash_entry * 531 hppa_add_stub (const char *stub_name, 532 asection *section, 533 struct elf32_hppa_link_hash_table *htab) 534 { 535 asection *link_sec; 536 asection *stub_sec; 537 struct elf32_hppa_stub_hash_entry *hsh; 538 539 link_sec = htab->stub_group[section->id].link_sec; 540 stub_sec = htab->stub_group[section->id].stub_sec; 541 if (stub_sec == NULL) 542 { 543 stub_sec = htab->stub_group[link_sec->id].stub_sec; 544 if (stub_sec == NULL) 545 { 546 size_t namelen; 547 bfd_size_type len; 548 char *s_name; 549 550 namelen = strlen (link_sec->name); 551 len = namelen + sizeof (STUB_SUFFIX); 552 s_name = bfd_alloc (htab->stub_bfd, len); 553 if (s_name == NULL) 554 return NULL; 555 556 memcpy (s_name, link_sec->name, namelen); 557 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 558 stub_sec = (*htab->add_stub_section) (s_name, link_sec); 559 if (stub_sec == NULL) 560 return NULL; 561 htab->stub_group[link_sec->id].stub_sec = stub_sec; 562 } 563 htab->stub_group[section->id].stub_sec = stub_sec; 564 } 565 566 /* Enter this entry into the linker stub hash table. */ 567 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, 568 TRUE, FALSE); 569 if (hsh == NULL) 570 { 571 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), 572 section->owner, 573 stub_name); 574 return NULL; 575 } 576 577 hsh->stub_sec = stub_sec; 578 hsh->stub_offset = 0; 579 hsh->id_sec = link_sec; 580 return hsh; 581 } 582 583 /* Determine the type of stub needed, if any, for a call. */ 584 585 static enum elf32_hppa_stub_type 586 hppa_type_of_stub (asection *input_sec, 587 const Elf_Internal_Rela *rela, 588 struct elf32_hppa_link_hash_entry *hh, 589 bfd_vma destination, 590 struct bfd_link_info *info) 591 { 592 bfd_vma location; 593 bfd_vma branch_offset; 594 bfd_vma max_branch_offset; 595 unsigned int r_type; 596 597 if (hh != NULL 598 && hh->eh.plt.offset != (bfd_vma) -1 599 && hh->eh.dynindx != -1 600 && !hh->plabel 601 && (info->shared 602 || !hh->eh.def_regular 603 || hh->eh.root.type == bfd_link_hash_defweak)) 604 { 605 /* We need an import stub. Decide between hppa_stub_import 606 and hppa_stub_import_shared later. */ 607 return hppa_stub_import; 608 } 609 610 /* Determine where the call point is. */ 611 location = (input_sec->output_offset 612 + input_sec->output_section->vma 613 + rela->r_offset); 614 615 branch_offset = destination - location - 8; 616 r_type = ELF32_R_TYPE (rela->r_info); 617 618 /* Determine if a long branch stub is needed. parisc branch offsets 619 are relative to the second instruction past the branch, ie. +8 620 bytes on from the branch instruction location. The offset is 621 signed and counts in units of 4 bytes. */ 622 if (r_type == (unsigned int) R_PARISC_PCREL17F) 623 { 624 max_branch_offset = (1 << (17-1)) << 2; 625 } 626 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 627 { 628 max_branch_offset = (1 << (12-1)) << 2; 629 } 630 else /* R_PARISC_PCREL22F. */ 631 { 632 max_branch_offset = (1 << (22-1)) << 2; 633 } 634 635 if (branch_offset + max_branch_offset >= 2*max_branch_offset) 636 return hppa_stub_long_branch; 637 638 return hppa_stub_none; 639 } 640 641 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. 642 IN_ARG contains the link info pointer. */ 643 644 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ 645 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ 646 647 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ 648 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ 649 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ 650 651 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ 652 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ 653 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ 654 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ 655 656 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ 657 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ 658 659 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ 660 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ 661 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ 662 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ 663 664 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ 665 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ 666 #define NOP 0x08000240 /* nop */ 667 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ 668 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ 669 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ 670 671 #ifndef R19_STUBS 672 #define R19_STUBS 1 673 #endif 674 675 #if R19_STUBS 676 #define LDW_R1_DLT LDW_R1_R19 677 #else 678 #define LDW_R1_DLT LDW_R1_DP 679 #endif 680 681 static bfd_boolean 682 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) 683 { 684 struct elf32_hppa_stub_hash_entry *hsh; 685 struct bfd_link_info *info; 686 struct elf32_hppa_link_hash_table *htab; 687 asection *stub_sec; 688 bfd *stub_bfd; 689 bfd_byte *loc; 690 bfd_vma sym_value; 691 bfd_vma insn; 692 bfd_vma off; 693 int val; 694 int size; 695 696 /* Massage our args to the form they really have. */ 697 hsh = hppa_stub_hash_entry (bh); 698 info = (struct bfd_link_info *)in_arg; 699 700 htab = hppa_link_hash_table (info); 701 stub_sec = hsh->stub_sec; 702 703 /* Make a note of the offset within the stubs for this entry. */ 704 hsh->stub_offset = stub_sec->size; 705 loc = stub_sec->contents + hsh->stub_offset; 706 707 stub_bfd = stub_sec->owner; 708 709 switch (hsh->stub_type) 710 { 711 case hppa_stub_long_branch: 712 /* Create the long branch. A long branch is formed with "ldil" 713 loading the upper bits of the target address into a register, 714 then branching with "be" which adds in the lower bits. 715 The "be" has its delay slot nullified. */ 716 sym_value = (hsh->target_value 717 + hsh->target_section->output_offset 718 + hsh->target_section->output_section->vma); 719 720 val = hppa_field_adjust (sym_value, 0, e_lrsel); 721 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); 722 bfd_put_32 (stub_bfd, insn, loc); 723 724 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; 725 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 726 bfd_put_32 (stub_bfd, insn, loc + 4); 727 728 size = 8; 729 break; 730 731 case hppa_stub_long_branch_shared: 732 /* Branches are relative. This is where we are going to. */ 733 sym_value = (hsh->target_value 734 + hsh->target_section->output_offset 735 + hsh->target_section->output_section->vma); 736 737 /* And this is where we are coming from, more or less. */ 738 sym_value -= (hsh->stub_offset 739 + stub_sec->output_offset 740 + stub_sec->output_section->vma); 741 742 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); 743 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); 744 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); 745 bfd_put_32 (stub_bfd, insn, loc + 4); 746 747 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; 748 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 749 bfd_put_32 (stub_bfd, insn, loc + 8); 750 size = 12; 751 break; 752 753 case hppa_stub_import: 754 case hppa_stub_import_shared: 755 off = hsh->hh->eh.plt.offset; 756 if (off >= (bfd_vma) -2) 757 abort (); 758 759 off &= ~ (bfd_vma) 1; 760 sym_value = (off 761 + htab->splt->output_offset 762 + htab->splt->output_section->vma 763 - elf_gp (htab->splt->output_section->owner)); 764 765 insn = ADDIL_DP; 766 #if R19_STUBS 767 if (hsh->stub_type == hppa_stub_import_shared) 768 insn = ADDIL_R19; 769 #endif 770 val = hppa_field_adjust (sym_value, 0, e_lrsel), 771 insn = hppa_rebuild_insn ((int) insn, val, 21); 772 bfd_put_32 (stub_bfd, insn, loc); 773 774 /* It is critical to use lrsel/rrsel here because we are using 775 two different offsets (+0 and +4) from sym_value. If we use 776 lsel/rsel then with unfortunate sym_values we will round 777 sym_value+4 up to the next 2k block leading to a mis-match 778 between the lsel and rsel value. */ 779 val = hppa_field_adjust (sym_value, 0, e_rrsel); 780 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); 781 bfd_put_32 (stub_bfd, insn, loc + 4); 782 783 if (htab->multi_subspace) 784 { 785 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 786 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 787 bfd_put_32 (stub_bfd, insn, loc + 8); 788 789 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); 790 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 791 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); 792 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); 793 794 size = 28; 795 } 796 else 797 { 798 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); 799 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 800 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 801 bfd_put_32 (stub_bfd, insn, loc + 12); 802 803 size = 16; 804 } 805 806 break; 807 808 case hppa_stub_export: 809 /* Branches are relative. This is where we are going to. */ 810 sym_value = (hsh->target_value 811 + hsh->target_section->output_offset 812 + hsh->target_section->output_section->vma); 813 814 /* And this is where we are coming from. */ 815 sym_value -= (hsh->stub_offset 816 + stub_sec->output_offset 817 + stub_sec->output_section->vma); 818 819 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) 820 && (!htab->has_22bit_branch 821 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) 822 { 823 (*_bfd_error_handler) 824 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), 825 hsh->target_section->owner, 826 stub_sec, 827 (long) hsh->stub_offset, 828 hsh->bh_root.string); 829 bfd_set_error (bfd_error_bad_value); 830 return FALSE; 831 } 832 833 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; 834 if (!htab->has_22bit_branch) 835 insn = hppa_rebuild_insn ((int) BL_RP, val, 17); 836 else 837 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); 838 bfd_put_32 (stub_bfd, insn, loc); 839 840 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); 841 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); 842 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); 843 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 844 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); 845 846 /* Point the function symbol at the stub. */ 847 hsh->hh->eh.root.u.def.section = stub_sec; 848 hsh->hh->eh.root.u.def.value = stub_sec->size; 849 850 size = 24; 851 break; 852 853 default: 854 BFD_FAIL (); 855 return FALSE; 856 } 857 858 stub_sec->size += size; 859 return TRUE; 860 } 861 862 #undef LDIL_R1 863 #undef BE_SR4_R1 864 #undef BL_R1 865 #undef ADDIL_R1 866 #undef DEPI_R1 867 #undef LDW_R1_R21 868 #undef LDW_R1_DLT 869 #undef LDW_R1_R19 870 #undef ADDIL_R19 871 #undef LDW_R1_DP 872 #undef LDSID_R21_R1 873 #undef MTSP_R1 874 #undef BE_SR0_R21 875 #undef STW_RP 876 #undef BV_R0_R21 877 #undef BL_RP 878 #undef NOP 879 #undef LDW_RP 880 #undef LDSID_RP_R1 881 #undef BE_SR0_RP 882 883 /* As above, but don't actually build the stub. Just bump offset so 884 we know stub section sizes. */ 885 886 static bfd_boolean 887 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) 888 { 889 struct elf32_hppa_stub_hash_entry *hsh; 890 struct elf32_hppa_link_hash_table *htab; 891 int size; 892 893 /* Massage our args to the form they really have. */ 894 hsh = hppa_stub_hash_entry (bh); 895 htab = in_arg; 896 897 if (hsh->stub_type == hppa_stub_long_branch) 898 size = 8; 899 else if (hsh->stub_type == hppa_stub_long_branch_shared) 900 size = 12; 901 else if (hsh->stub_type == hppa_stub_export) 902 size = 24; 903 else /* hppa_stub_import or hppa_stub_import_shared. */ 904 { 905 if (htab->multi_subspace) 906 size = 28; 907 else 908 size = 16; 909 } 910 911 hsh->stub_sec->size += size; 912 return TRUE; 913 } 914 915 /* Return nonzero if ABFD represents an HPPA ELF32 file. 916 Additionally we set the default architecture and machine. */ 917 918 static bfd_boolean 919 elf32_hppa_object_p (bfd *abfd) 920 { 921 Elf_Internal_Ehdr * i_ehdrp; 922 unsigned int flags; 923 924 i_ehdrp = elf_elfheader (abfd); 925 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) 926 { 927 /* GCC on hppa-linux produces binaries with OSABI=Linux, 928 but the kernel produces corefiles with OSABI=SysV. */ 929 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX && 930 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 931 return FALSE; 932 } 933 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) 934 { 935 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, 936 but the kernel produces corefiles with OSABI=SysV. */ 937 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && 938 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 939 return FALSE; 940 } 941 else 942 { 943 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) 944 return FALSE; 945 } 946 947 flags = i_ehdrp->e_flags; 948 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) 949 { 950 case EFA_PARISC_1_0: 951 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); 952 case EFA_PARISC_1_1: 953 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); 954 case EFA_PARISC_2_0: 955 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); 956 case EFA_PARISC_2_0 | EF_PARISC_WIDE: 957 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); 958 } 959 return TRUE; 960 } 961 962 /* Create the .plt and .got sections, and set up our hash table 963 short-cuts to various dynamic sections. */ 964 965 static bfd_boolean 966 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 967 { 968 struct elf32_hppa_link_hash_table *htab; 969 struct elf_link_hash_entry *eh; 970 971 /* Don't try to create the .plt and .got twice. */ 972 htab = hppa_link_hash_table (info); 973 if (htab->splt != NULL) 974 return TRUE; 975 976 /* Call the generic code to do most of the work. */ 977 if (! _bfd_elf_create_dynamic_sections (abfd, info)) 978 return FALSE; 979 980 htab->splt = bfd_get_section_by_name (abfd, ".plt"); 981 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); 982 983 htab->sgot = bfd_get_section_by_name (abfd, ".got"); 984 htab->srelgot = bfd_make_section_with_flags (abfd, ".rela.got", 985 (SEC_ALLOC 986 | SEC_LOAD 987 | SEC_HAS_CONTENTS 988 | SEC_IN_MEMORY 989 | SEC_LINKER_CREATED 990 | SEC_READONLY)); 991 if (htab->srelgot == NULL 992 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2)) 993 return FALSE; 994 995 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); 996 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); 997 998 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main 999 application, because __canonicalize_funcptr_for_compare needs it. */ 1000 eh = elf_hash_table (info)->hgot; 1001 eh->forced_local = 0; 1002 eh->other = STV_DEFAULT; 1003 return bfd_elf_link_record_dynamic_symbol (info, eh); 1004 } 1005 1006 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 1007 1008 static void 1009 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, 1010 struct elf_link_hash_entry *eh_dir, 1011 struct elf_link_hash_entry *eh_ind) 1012 { 1013 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; 1014 1015 hh_dir = hppa_elf_hash_entry (eh_dir); 1016 hh_ind = hppa_elf_hash_entry (eh_ind); 1017 1018 if (hh_ind->dyn_relocs != NULL) 1019 { 1020 if (hh_dir->dyn_relocs != NULL) 1021 { 1022 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 1023 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1024 1025 /* Add reloc counts against the indirect sym to the direct sym 1026 list. Merge any entries against the same section. */ 1027 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 1028 { 1029 struct elf32_hppa_dyn_reloc_entry *hdh_q; 1030 1031 for (hdh_q = hh_dir->dyn_relocs; 1032 hdh_q != NULL; 1033 hdh_q = hdh_q->hdh_next) 1034 if (hdh_q->sec == hdh_p->sec) 1035 { 1036 #if RELATIVE_DYNRELOCS 1037 hdh_q->relative_count += hdh_p->relative_count; 1038 #endif 1039 hdh_q->count += hdh_p->count; 1040 *hdh_pp = hdh_p->hdh_next; 1041 break; 1042 } 1043 if (hdh_q == NULL) 1044 hdh_pp = &hdh_p->hdh_next; 1045 } 1046 *hdh_pp = hh_dir->dyn_relocs; 1047 } 1048 1049 hh_dir->dyn_relocs = hh_ind->dyn_relocs; 1050 hh_ind->dyn_relocs = NULL; 1051 } 1052 1053 if (ELIMINATE_COPY_RELOCS 1054 && eh_ind->root.type != bfd_link_hash_indirect 1055 && eh_dir->dynamic_adjusted) 1056 { 1057 /* If called to transfer flags for a weakdef during processing 1058 of elf_adjust_dynamic_symbol, don't copy non_got_ref. 1059 We clear it ourselves for ELIMINATE_COPY_RELOCS. */ 1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic; 1061 eh_dir->ref_regular |= eh_ind->ref_regular; 1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak; 1063 eh_dir->needs_plt |= eh_ind->needs_plt; 1064 } 1065 else 1066 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); 1067 } 1068 1069 /* Look through the relocs for a section during the first phase, and 1070 calculate needed space in the global offset table, procedure linkage 1071 table, and dynamic reloc sections. At this point we haven't 1072 necessarily read all the input files. */ 1073 1074 static bfd_boolean 1075 elf32_hppa_check_relocs (bfd *abfd, 1076 struct bfd_link_info *info, 1077 asection *sec, 1078 const Elf_Internal_Rela *relocs) 1079 { 1080 Elf_Internal_Shdr *symtab_hdr; 1081 struct elf_link_hash_entry **eh_syms; 1082 const Elf_Internal_Rela *rela; 1083 const Elf_Internal_Rela *rela_end; 1084 struct elf32_hppa_link_hash_table *htab; 1085 asection *sreloc; 1086 asection *stubreloc; 1087 1088 if (info->relocatable) 1089 return TRUE; 1090 1091 htab = hppa_link_hash_table (info); 1092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1093 eh_syms = elf_sym_hashes (abfd); 1094 sreloc = NULL; 1095 stubreloc = NULL; 1096 1097 rela_end = relocs + sec->reloc_count; 1098 for (rela = relocs; rela < rela_end; rela++) 1099 { 1100 enum { 1101 NEED_GOT = 1, 1102 NEED_PLT = 2, 1103 NEED_DYNREL = 4, 1104 PLT_PLABEL = 8 1105 }; 1106 1107 unsigned int r_symndx, r_type; 1108 struct elf32_hppa_link_hash_entry *hh; 1109 int need_entry = 0; 1110 1111 r_symndx = ELF32_R_SYM (rela->r_info); 1112 1113 if (r_symndx < symtab_hdr->sh_info) 1114 hh = NULL; 1115 else 1116 { 1117 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); 1118 while (hh->eh.root.type == bfd_link_hash_indirect 1119 || hh->eh.root.type == bfd_link_hash_warning) 1120 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 1121 } 1122 1123 r_type = ELF32_R_TYPE (rela->r_info); 1124 1125 switch (r_type) 1126 { 1127 case R_PARISC_DLTIND14F: 1128 case R_PARISC_DLTIND14R: 1129 case R_PARISC_DLTIND21L: 1130 /* This symbol requires a global offset table entry. */ 1131 need_entry = NEED_GOT; 1132 break; 1133 1134 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ 1135 case R_PARISC_PLABEL21L: 1136 case R_PARISC_PLABEL32: 1137 /* If the addend is non-zero, we break badly. */ 1138 if (rela->r_addend != 0) 1139 abort (); 1140 1141 /* If we are creating a shared library, then we need to 1142 create a PLT entry for all PLABELs, because PLABELs with 1143 local symbols may be passed via a pointer to another 1144 object. Additionally, output a dynamic relocation 1145 pointing to the PLT entry. 1146 1147 For executables, the original 32-bit ABI allowed two 1148 different styles of PLABELs (function pointers): For 1149 global functions, the PLABEL word points into the .plt 1150 two bytes past a (function address, gp) pair, and for 1151 local functions the PLABEL points directly at the 1152 function. The magic +2 for the first type allows us to 1153 differentiate between the two. As you can imagine, this 1154 is a real pain when it comes to generating code to call 1155 functions indirectly or to compare function pointers. 1156 We avoid the mess by always pointing a PLABEL into the 1157 .plt, even for local functions. */ 1158 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL; 1159 break; 1160 1161 case R_PARISC_PCREL12F: 1162 htab->has_12bit_branch = 1; 1163 goto branch_common; 1164 1165 case R_PARISC_PCREL17C: 1166 case R_PARISC_PCREL17F: 1167 htab->has_17bit_branch = 1; 1168 goto branch_common; 1169 1170 case R_PARISC_PCREL22F: 1171 htab->has_22bit_branch = 1; 1172 branch_common: 1173 /* Function calls might need to go through the .plt, and 1174 might require long branch stubs. */ 1175 if (hh == NULL) 1176 { 1177 /* We know local syms won't need a .plt entry, and if 1178 they need a long branch stub we can't guarantee that 1179 we can reach the stub. So just flag an error later 1180 if we're doing a shared link and find we need a long 1181 branch stub. */ 1182 continue; 1183 } 1184 else 1185 { 1186 /* Global symbols will need a .plt entry if they remain 1187 global, and in most cases won't need a long branch 1188 stub. Unfortunately, we have to cater for the case 1189 where a symbol is forced local by versioning, or due 1190 to symbolic linking, and we lose the .plt entry. */ 1191 need_entry = NEED_PLT; 1192 if (hh->eh.type == STT_PARISC_MILLI) 1193 need_entry = 0; 1194 } 1195 break; 1196 1197 case R_PARISC_SEGBASE: /* Used to set segment base. */ 1198 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ 1199 case R_PARISC_PCREL14F: /* PC relative load/store. */ 1200 case R_PARISC_PCREL14R: 1201 case R_PARISC_PCREL17R: /* External branches. */ 1202 case R_PARISC_PCREL21L: /* As above, and for load/store too. */ 1203 case R_PARISC_PCREL32: 1204 /* We don't need to propagate the relocation if linking a 1205 shared object since these are section relative. */ 1206 continue; 1207 1208 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ 1209 case R_PARISC_DPREL14R: 1210 case R_PARISC_DPREL21L: 1211 if (info->shared) 1212 { 1213 (*_bfd_error_handler) 1214 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"), 1215 abfd, 1216 elf_hppa_howto_table[r_type].name); 1217 bfd_set_error (bfd_error_bad_value); 1218 return FALSE; 1219 } 1220 /* Fall through. */ 1221 1222 case R_PARISC_DIR17F: /* Used for external branches. */ 1223 case R_PARISC_DIR17R: 1224 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ 1225 case R_PARISC_DIR14R: 1226 case R_PARISC_DIR21L: /* As above, and for ext branches too. */ 1227 case R_PARISC_DIR32: /* .word relocs. */ 1228 /* We may want to output a dynamic relocation later. */ 1229 need_entry = NEED_DYNREL; 1230 break; 1231 1232 /* This relocation describes the C++ object vtable hierarchy. 1233 Reconstruct it for later use during GC. */ 1234 case R_PARISC_GNU_VTINHERIT: 1235 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) 1236 return FALSE; 1237 continue; 1238 1239 /* This relocation describes which C++ vtable entries are actually 1240 used. Record for later use during GC. */ 1241 case R_PARISC_GNU_VTENTRY: 1242 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) 1243 return FALSE; 1244 continue; 1245 1246 default: 1247 continue; 1248 } 1249 1250 /* Now carry out our orders. */ 1251 if (need_entry & NEED_GOT) 1252 { 1253 /* Allocate space for a GOT entry, as well as a dynamic 1254 relocation for this entry. */ 1255 if (htab->sgot == NULL) 1256 { 1257 if (htab->etab.dynobj == NULL) 1258 htab->etab.dynobj = abfd; 1259 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) 1260 return FALSE; 1261 } 1262 1263 if (hh != NULL) 1264 { 1265 hh->eh.got.refcount += 1; 1266 } 1267 else 1268 { 1269 bfd_signed_vma *local_got_refcounts; 1270 /* This is a global offset table entry for a local symbol. */ 1271 local_got_refcounts = elf_local_got_refcounts (abfd); 1272 if (local_got_refcounts == NULL) 1273 { 1274 bfd_size_type size; 1275 1276 /* Allocate space for local got offsets and local 1277 plt offsets. Done this way to save polluting 1278 elf_obj_tdata with another target specific 1279 pointer. */ 1280 size = symtab_hdr->sh_info; 1281 size *= 2 * sizeof (bfd_signed_vma); 1282 local_got_refcounts = bfd_zalloc (abfd, size); 1283 if (local_got_refcounts == NULL) 1284 return FALSE; 1285 elf_local_got_refcounts (abfd) = local_got_refcounts; 1286 } 1287 local_got_refcounts[r_symndx] += 1; 1288 } 1289 } 1290 1291 if (need_entry & NEED_PLT) 1292 { 1293 /* If we are creating a shared library, and this is a reloc 1294 against a weak symbol or a global symbol in a dynamic 1295 object, then we will be creating an import stub and a 1296 .plt entry for the symbol. Similarly, on a normal link 1297 to symbols defined in a dynamic object we'll need the 1298 import stub and a .plt entry. We don't know yet whether 1299 the symbol is defined or not, so make an entry anyway and 1300 clean up later in adjust_dynamic_symbol. */ 1301 if ((sec->flags & SEC_ALLOC) != 0) 1302 { 1303 if (hh != NULL) 1304 { 1305 hh->eh.needs_plt = 1; 1306 hh->eh.plt.refcount += 1; 1307 1308 /* If this .plt entry is for a plabel, mark it so 1309 that adjust_dynamic_symbol will keep the entry 1310 even if it appears to be local. */ 1311 if (need_entry & PLT_PLABEL) 1312 hh->plabel = 1; 1313 } 1314 else if (need_entry & PLT_PLABEL) 1315 { 1316 bfd_signed_vma *local_got_refcounts; 1317 bfd_signed_vma *local_plt_refcounts; 1318 1319 local_got_refcounts = elf_local_got_refcounts (abfd); 1320 if (local_got_refcounts == NULL) 1321 { 1322 bfd_size_type size; 1323 1324 /* Allocate space for local got offsets and local 1325 plt offsets. */ 1326 size = symtab_hdr->sh_info; 1327 size *= 2 * sizeof (bfd_signed_vma); 1328 local_got_refcounts = bfd_zalloc (abfd, size); 1329 if (local_got_refcounts == NULL) 1330 return FALSE; 1331 elf_local_got_refcounts (abfd) = local_got_refcounts; 1332 } 1333 local_plt_refcounts = (local_got_refcounts 1334 + symtab_hdr->sh_info); 1335 local_plt_refcounts[r_symndx] += 1; 1336 } 1337 } 1338 } 1339 1340 if (need_entry & NEED_DYNREL) 1341 { 1342 /* Flag this symbol as having a non-got, non-plt reference 1343 so that we generate copy relocs if it turns out to be 1344 dynamic. */ 1345 if (hh != NULL && !info->shared) 1346 hh->eh.non_got_ref = 1; 1347 1348 /* If we are creating a shared library then we need to copy 1349 the reloc into the shared library. However, if we are 1350 linking with -Bsymbolic, we need only copy absolute 1351 relocs or relocs against symbols that are not defined in 1352 an object we are including in the link. PC- or DP- or 1353 DLT-relative relocs against any local sym or global sym 1354 with DEF_REGULAR set, can be discarded. At this point we 1355 have not seen all the input files, so it is possible that 1356 DEF_REGULAR is not set now but will be set later (it is 1357 never cleared). We account for that possibility below by 1358 storing information in the dyn_relocs field of the 1359 hash table entry. 1360 1361 A similar situation to the -Bsymbolic case occurs when 1362 creating shared libraries and symbol visibility changes 1363 render the symbol local. 1364 1365 As it turns out, all the relocs we will be creating here 1366 are absolute, so we cannot remove them on -Bsymbolic 1367 links or visibility changes anyway. A STUB_REL reloc 1368 is absolute too, as in that case it is the reloc in the 1369 stub we will be creating, rather than copying the PCREL 1370 reloc in the branch. 1371 1372 If on the other hand, we are creating an executable, we 1373 may need to keep relocations for symbols satisfied by a 1374 dynamic library if we manage to avoid copy relocs for the 1375 symbol. */ 1376 if ((info->shared 1377 && (sec->flags & SEC_ALLOC) != 0 1378 && (IS_ABSOLUTE_RELOC (r_type) 1379 || (hh != NULL 1380 && (!info->symbolic 1381 || hh->eh.root.type == bfd_link_hash_defweak 1382 || !hh->eh.def_regular)))) 1383 || (ELIMINATE_COPY_RELOCS 1384 && !info->shared 1385 && (sec->flags & SEC_ALLOC) != 0 1386 && hh != NULL 1387 && (hh->eh.root.type == bfd_link_hash_defweak 1388 || !hh->eh.def_regular))) 1389 { 1390 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1391 struct elf32_hppa_dyn_reloc_entry **hdh_head; 1392 1393 /* Create a reloc section in dynobj and make room for 1394 this reloc. */ 1395 if (sreloc == NULL) 1396 { 1397 char *name; 1398 bfd *dynobj; 1399 1400 name = (bfd_elf_string_from_elf_section 1401 (abfd, 1402 elf_elfheader (abfd)->e_shstrndx, 1403 elf_section_data (sec)->rel_hdr.sh_name)); 1404 if (name == NULL) 1405 { 1406 (*_bfd_error_handler) 1407 (_("Could not find relocation section for %s"), 1408 sec->name); 1409 bfd_set_error (bfd_error_bad_value); 1410 return FALSE; 1411 } 1412 1413 if (htab->etab.dynobj == NULL) 1414 htab->etab.dynobj = abfd; 1415 1416 dynobj = htab->etab.dynobj; 1417 sreloc = bfd_get_section_by_name (dynobj, name); 1418 if (sreloc == NULL) 1419 { 1420 flagword flags; 1421 1422 flags = (SEC_HAS_CONTENTS | SEC_READONLY 1423 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 1424 if ((sec->flags & SEC_ALLOC) != 0) 1425 flags |= SEC_ALLOC | SEC_LOAD; 1426 sreloc = bfd_make_section_with_flags (dynobj, 1427 name, 1428 flags); 1429 if (sreloc == NULL 1430 || !bfd_set_section_alignment (dynobj, sreloc, 2)) 1431 return FALSE; 1432 } 1433 1434 elf_section_data (sec)->sreloc = sreloc; 1435 } 1436 1437 /* If this is a global symbol, we count the number of 1438 relocations we need for this symbol. */ 1439 if (hh != NULL) 1440 { 1441 hdh_head = &hh->dyn_relocs; 1442 } 1443 else 1444 { 1445 /* Track dynamic relocs needed for local syms too. 1446 We really need local syms available to do this 1447 easily. Oh well. */ 1448 1449 asection *sr; 1450 void *vpp; 1451 1452 sr = bfd_section_from_r_symndx (abfd, &htab->sym_sec, 1453 sec, r_symndx); 1454 if (sr == NULL) 1455 return FALSE; 1456 1457 vpp = &elf_section_data (sr)->local_dynrel; 1458 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp; 1459 } 1460 1461 hdh_p = *hdh_head; 1462 if (hdh_p == NULL || hdh_p->sec != sec) 1463 { 1464 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); 1465 if (hdh_p == NULL) 1466 return FALSE; 1467 hdh_p->hdh_next = *hdh_head; 1468 *hdh_head = hdh_p; 1469 hdh_p->sec = sec; 1470 hdh_p->count = 0; 1471 #if RELATIVE_DYNRELOCS 1472 hdh_p->relative_count = 0; 1473 #endif 1474 } 1475 1476 hdh_p->count += 1; 1477 #if RELATIVE_DYNRELOCS 1478 if (!IS_ABSOLUTE_RELOC (rtype)) 1479 hdh_p->relative_count += 1; 1480 #endif 1481 } 1482 } 1483 } 1484 1485 return TRUE; 1486 } 1487 1488 /* Return the section that should be marked against garbage collection 1489 for a given relocation. */ 1490 1491 static asection * 1492 elf32_hppa_gc_mark_hook (asection *sec, 1493 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1494 Elf_Internal_Rela *rela, 1495 struct elf_link_hash_entry *hh, 1496 Elf_Internal_Sym *sym) 1497 { 1498 if (hh != NULL) 1499 { 1500 switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) 1501 { 1502 case R_PARISC_GNU_VTINHERIT: 1503 case R_PARISC_GNU_VTENTRY: 1504 break; 1505 1506 default: 1507 switch (hh->root.type) 1508 { 1509 case bfd_link_hash_defined: 1510 case bfd_link_hash_defweak: 1511 return hh->root.u.def.section; 1512 1513 case bfd_link_hash_common: 1514 return hh->root.u.c.p->section; 1515 1516 default: 1517 break; 1518 } 1519 } 1520 } 1521 else 1522 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 1523 1524 return NULL; 1525 } 1526 1527 /* Update the got and plt entry reference counts for the section being 1528 removed. */ 1529 1530 static bfd_boolean 1531 elf32_hppa_gc_sweep_hook (bfd *abfd, 1532 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1533 asection *sec, 1534 const Elf_Internal_Rela *relocs) 1535 { 1536 Elf_Internal_Shdr *symtab_hdr; 1537 struct elf_link_hash_entry **eh_syms; 1538 bfd_signed_vma *local_got_refcounts; 1539 bfd_signed_vma *local_plt_refcounts; 1540 const Elf_Internal_Rela *rela, *relend; 1541 1542 elf_section_data (sec)->local_dynrel = NULL; 1543 1544 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1545 eh_syms = elf_sym_hashes (abfd); 1546 local_got_refcounts = elf_local_got_refcounts (abfd); 1547 local_plt_refcounts = local_got_refcounts; 1548 if (local_plt_refcounts != NULL) 1549 local_plt_refcounts += symtab_hdr->sh_info; 1550 1551 relend = relocs + sec->reloc_count; 1552 for (rela = relocs; rela < relend; rela++) 1553 { 1554 unsigned long r_symndx; 1555 unsigned int r_type; 1556 struct elf_link_hash_entry *eh = NULL; 1557 1558 r_symndx = ELF32_R_SYM (rela->r_info); 1559 if (r_symndx >= symtab_hdr->sh_info) 1560 { 1561 struct elf32_hppa_link_hash_entry *hh; 1562 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 1563 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1564 1565 eh = eh_syms[r_symndx - symtab_hdr->sh_info]; 1566 while (eh->root.type == bfd_link_hash_indirect 1567 || eh->root.type == bfd_link_hash_warning) 1568 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 1569 hh = hppa_elf_hash_entry (eh); 1570 1571 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next) 1572 if (hdh_p->sec == sec) 1573 { 1574 /* Everything must go for SEC. */ 1575 *hdh_pp = hdh_p->hdh_next; 1576 break; 1577 } 1578 } 1579 1580 r_type = ELF32_R_TYPE (rela->r_info); 1581 switch (r_type) 1582 { 1583 case R_PARISC_DLTIND14F: 1584 case R_PARISC_DLTIND14R: 1585 case R_PARISC_DLTIND21L: 1586 if (eh != NULL) 1587 { 1588 if (eh->got.refcount > 0) 1589 eh->got.refcount -= 1; 1590 } 1591 else if (local_got_refcounts != NULL) 1592 { 1593 if (local_got_refcounts[r_symndx] > 0) 1594 local_got_refcounts[r_symndx] -= 1; 1595 } 1596 break; 1597 1598 case R_PARISC_PCREL12F: 1599 case R_PARISC_PCREL17C: 1600 case R_PARISC_PCREL17F: 1601 case R_PARISC_PCREL22F: 1602 if (eh != NULL) 1603 { 1604 if (eh->plt.refcount > 0) 1605 eh->plt.refcount -= 1; 1606 } 1607 break; 1608 1609 case R_PARISC_PLABEL14R: 1610 case R_PARISC_PLABEL21L: 1611 case R_PARISC_PLABEL32: 1612 if (eh != NULL) 1613 { 1614 if (eh->plt.refcount > 0) 1615 eh->plt.refcount -= 1; 1616 } 1617 else if (local_plt_refcounts != NULL) 1618 { 1619 if (local_plt_refcounts[r_symndx] > 0) 1620 local_plt_refcounts[r_symndx] -= 1; 1621 } 1622 break; 1623 1624 default: 1625 break; 1626 } 1627 } 1628 1629 return TRUE; 1630 } 1631 1632 /* Support for core dump NOTE sections. */ 1633 1634 static bfd_boolean 1635 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 1636 { 1637 int offset; 1638 size_t size; 1639 1640 switch (note->descsz) 1641 { 1642 default: 1643 return FALSE; 1644 1645 case 396: /* Linux/hppa */ 1646 /* pr_cursig */ 1647 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); 1648 1649 /* pr_pid */ 1650 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); 1651 1652 /* pr_reg */ 1653 offset = 72; 1654 size = 320; 1655 1656 break; 1657 } 1658 1659 /* Make a ".reg/999" section. */ 1660 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 1661 size, note->descpos + offset); 1662 } 1663 1664 static bfd_boolean 1665 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 1666 { 1667 switch (note->descsz) 1668 { 1669 default: 1670 return FALSE; 1671 1672 case 124: /* Linux/hppa elf_prpsinfo. */ 1673 elf_tdata (abfd)->core_program 1674 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 1675 elf_tdata (abfd)->core_command 1676 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 1677 } 1678 1679 /* Note that for some reason, a spurious space is tacked 1680 onto the end of the args in some (at least one anyway) 1681 implementations, so strip it off if it exists. */ 1682 { 1683 char *command = elf_tdata (abfd)->core_command; 1684 int n = strlen (command); 1685 1686 if (0 < n && command[n - 1] == ' ') 1687 command[n - 1] = '\0'; 1688 } 1689 1690 return TRUE; 1691 } 1692 1693 /* Our own version of hide_symbol, so that we can keep plt entries for 1694 plabels. */ 1695 1696 static void 1697 elf32_hppa_hide_symbol (struct bfd_link_info *info, 1698 struct elf_link_hash_entry *eh, 1699 bfd_boolean force_local) 1700 { 1701 if (force_local) 1702 { 1703 eh->forced_local = 1; 1704 if (eh->dynindx != -1) 1705 { 1706 eh->dynindx = -1; 1707 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 1708 eh->dynstr_index); 1709 } 1710 } 1711 1712 if (! hppa_elf_hash_entry(eh)->plabel) 1713 { 1714 eh->needs_plt = 0; 1715 eh->plt = elf_hash_table (info)->init_plt_refcount; 1716 } 1717 } 1718 1719 /* Adjust a symbol defined by a dynamic object and referenced by a 1720 regular object. The current definition is in some section of the 1721 dynamic object, but we're not including those sections. We have to 1722 change the definition to something the rest of the link can 1723 understand. */ 1724 1725 static bfd_boolean 1726 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, 1727 struct elf_link_hash_entry *eh) 1728 { 1729 struct elf32_hppa_link_hash_table *htab; 1730 asection *sec; 1731 unsigned int power_of_two; 1732 1733 /* If this is a function, put it in the procedure linkage table. We 1734 will fill in the contents of the procedure linkage table later. */ 1735 if (eh->type == STT_FUNC 1736 || eh->needs_plt) 1737 { 1738 if (eh->plt.refcount <= 0 1739 || (eh->def_regular 1740 && eh->root.type != bfd_link_hash_defweak 1741 && ! hppa_elf_hash_entry (eh)->plabel 1742 && (!info->shared || info->symbolic))) 1743 { 1744 /* The .plt entry is not needed when: 1745 a) Garbage collection has removed all references to the 1746 symbol, or 1747 b) We know for certain the symbol is defined in this 1748 object, and it's not a weak definition, nor is the symbol 1749 used by a plabel relocation. Either this object is the 1750 application or we are doing a shared symbolic link. */ 1751 1752 eh->plt.offset = (bfd_vma) -1; 1753 eh->needs_plt = 0; 1754 } 1755 1756 return TRUE; 1757 } 1758 else 1759 eh->plt.offset = (bfd_vma) -1; 1760 1761 /* If this is a weak symbol, and there is a real definition, the 1762 processor independent code will have arranged for us to see the 1763 real definition first, and we can just use the same value. */ 1764 if (eh->u.weakdef != NULL) 1765 { 1766 if (eh->u.weakdef->root.type != bfd_link_hash_defined 1767 && eh->u.weakdef->root.type != bfd_link_hash_defweak) 1768 abort (); 1769 eh->root.u.def.section = eh->u.weakdef->root.u.def.section; 1770 eh->root.u.def.value = eh->u.weakdef->root.u.def.value; 1771 if (ELIMINATE_COPY_RELOCS) 1772 eh->non_got_ref = eh->u.weakdef->non_got_ref; 1773 return TRUE; 1774 } 1775 1776 /* This is a reference to a symbol defined by a dynamic object which 1777 is not a function. */ 1778 1779 /* If we are creating a shared library, we must presume that the 1780 only references to the symbol are via the global offset table. 1781 For such cases we need not do anything here; the relocations will 1782 be handled correctly by relocate_section. */ 1783 if (info->shared) 1784 return TRUE; 1785 1786 /* If there are no references to this symbol that do not use the 1787 GOT, we don't need to generate a copy reloc. */ 1788 if (!eh->non_got_ref) 1789 return TRUE; 1790 1791 if (ELIMINATE_COPY_RELOCS) 1792 { 1793 struct elf32_hppa_link_hash_entry *hh; 1794 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1795 1796 hh = hppa_elf_hash_entry (eh); 1797 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 1798 { 1799 sec = hdh_p->sec->output_section; 1800 if (sec != NULL && (sec->flags & SEC_READONLY) != 0) 1801 break; 1802 } 1803 1804 /* If we didn't find any dynamic relocs in read-only sections, then 1805 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 1806 if (hdh_p == NULL) 1807 { 1808 eh->non_got_ref = 0; 1809 return TRUE; 1810 } 1811 } 1812 1813 if (eh->size == 0) 1814 { 1815 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), 1816 eh->root.root.string); 1817 return TRUE; 1818 } 1819 1820 /* We must allocate the symbol in our .dynbss section, which will 1821 become part of the .bss section of the executable. There will be 1822 an entry for this symbol in the .dynsym section. The dynamic 1823 object will contain position independent code, so all references 1824 from the dynamic object to this symbol will go through the global 1825 offset table. The dynamic linker will use the .dynsym entry to 1826 determine the address it must put in the global offset table, so 1827 both the dynamic object and the regular object will refer to the 1828 same memory location for the variable. */ 1829 1830 htab = hppa_link_hash_table (info); 1831 1832 /* We must generate a COPY reloc to tell the dynamic linker to 1833 copy the initial value out of the dynamic object and into the 1834 runtime process image. */ 1835 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0) 1836 { 1837 htab->srelbss->size += sizeof (Elf32_External_Rela); 1838 eh->needs_copy = 1; 1839 } 1840 1841 /* We need to figure out the alignment required for this symbol. I 1842 have no idea how other ELF linkers handle this. */ 1843 1844 power_of_two = bfd_log2 (eh->size); 1845 if (power_of_two > 3) 1846 power_of_two = 3; 1847 1848 /* Apply the required alignment. */ 1849 sec = htab->sdynbss; 1850 sec->size = BFD_ALIGN (sec->size, (bfd_size_type) (1 << power_of_two)); 1851 if (power_of_two > bfd_get_section_alignment (htab->etab.dynobj, sec)) 1852 { 1853 if (! bfd_set_section_alignment (htab->etab.dynobj, sec, power_of_two)) 1854 return FALSE; 1855 } 1856 1857 /* Define the symbol as being at this point in the section. */ 1858 eh->root.u.def.section = sec; 1859 eh->root.u.def.value = sec->size; 1860 1861 /* Increment the section size to make room for the symbol. */ 1862 sec->size += eh->size; 1863 1864 return TRUE; 1865 } 1866 1867 /* Allocate space in the .plt for entries that won't have relocations. 1868 ie. plabel entries. */ 1869 1870 static bfd_boolean 1871 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) 1872 { 1873 struct bfd_link_info *info; 1874 struct elf32_hppa_link_hash_table *htab; 1875 struct elf32_hppa_link_hash_entry *hh; 1876 asection *sec; 1877 1878 if (eh->root.type == bfd_link_hash_indirect) 1879 return TRUE; 1880 1881 if (eh->root.type == bfd_link_hash_warning) 1882 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 1883 1884 info = (struct bfd_link_info *) inf; 1885 hh = hppa_elf_hash_entry(eh); 1886 htab = hppa_link_hash_table (info); 1887 if (htab->etab.dynamic_sections_created 1888 && eh->plt.refcount > 0) 1889 { 1890 /* Make sure this symbol is output as a dynamic symbol. 1891 Undefined weak syms won't yet be marked as dynamic. */ 1892 if (eh->dynindx == -1 1893 && !eh->forced_local 1894 && eh->type != STT_PARISC_MILLI) 1895 { 1896 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 1897 return FALSE; 1898 } 1899 1900 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh)) 1901 { 1902 /* Allocate these later. From this point on, h->plabel 1903 means that the plt entry is only used by a plabel. 1904 We'll be using a normal plt entry for this symbol, so 1905 clear the plabel indicator. */ 1906 1907 hh->plabel = 0; 1908 } 1909 else if (hh->plabel) 1910 { 1911 /* Make an entry in the .plt section for plabel references 1912 that won't have a .plt entry for other reasons. */ 1913 sec = htab->splt; 1914 eh->plt.offset = sec->size; 1915 sec->size += PLT_ENTRY_SIZE; 1916 } 1917 else 1918 { 1919 /* No .plt entry needed. */ 1920 eh->plt.offset = (bfd_vma) -1; 1921 eh->needs_plt = 0; 1922 } 1923 } 1924 else 1925 { 1926 eh->plt.offset = (bfd_vma) -1; 1927 eh->needs_plt = 0; 1928 } 1929 1930 return TRUE; 1931 } 1932 1933 /* Allocate space in .plt, .got and associated reloc sections for 1934 global syms. */ 1935 1936 static bfd_boolean 1937 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) 1938 { 1939 struct bfd_link_info *info; 1940 struct elf32_hppa_link_hash_table *htab; 1941 asection *sec; 1942 struct elf32_hppa_link_hash_entry *hh; 1943 struct elf32_hppa_dyn_reloc_entry *hdh_p; 1944 1945 if (eh->root.type == bfd_link_hash_indirect) 1946 return TRUE; 1947 1948 if (eh->root.type == bfd_link_hash_warning) 1949 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 1950 1951 info = inf; 1952 htab = hppa_link_hash_table (info); 1953 hh = hppa_elf_hash_entry (eh); 1954 1955 if (htab->etab.dynamic_sections_created 1956 && eh->plt.offset != (bfd_vma) -1 1957 && !hh->plabel 1958 && eh->plt.refcount > 0) 1959 { 1960 /* Make an entry in the .plt section. */ 1961 sec = htab->splt; 1962 eh->plt.offset = sec->size; 1963 sec->size += PLT_ENTRY_SIZE; 1964 1965 /* We also need to make an entry in the .rela.plt section. */ 1966 htab->srelplt->size += sizeof (Elf32_External_Rela); 1967 htab->need_plt_stub = 1; 1968 } 1969 1970 if (eh->got.refcount > 0) 1971 { 1972 /* Make sure this symbol is output as a dynamic symbol. 1973 Undefined weak syms won't yet be marked as dynamic. */ 1974 if (eh->dynindx == -1 1975 && !eh->forced_local 1976 && eh->type != STT_PARISC_MILLI) 1977 { 1978 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 1979 return FALSE; 1980 } 1981 1982 sec = htab->sgot; 1983 eh->got.offset = sec->size; 1984 sec->size += GOT_ENTRY_SIZE; 1985 if (htab->etab.dynamic_sections_created 1986 && (info->shared 1987 || (eh->dynindx != -1 1988 && !eh->forced_local))) 1989 { 1990 htab->srelgot->size += sizeof (Elf32_External_Rela); 1991 } 1992 } 1993 else 1994 eh->got.offset = (bfd_vma) -1; 1995 1996 if (hh->dyn_relocs == NULL) 1997 return TRUE; 1998 1999 /* If this is a -Bsymbolic shared link, then we need to discard all 2000 space allocated for dynamic pc-relative relocs against symbols 2001 defined in a regular object. For the normal shared case, discard 2002 space for relocs that have become local due to symbol visibility 2003 changes. */ 2004 if (info->shared) 2005 { 2006 #if RELATIVE_DYNRELOCS 2007 if (SYMBOL_CALLS_LOCAL (info, eh)) 2008 { 2009 struct elf32_hppa_dyn_reloc_entry **hdh_pp; 2010 2011 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 2012 { 2013 hdh_p->count -= hdh_p->relative_count; 2014 hdh_p->relative_count = 0; 2015 if (hdh_p->count == 0) 2016 *hdh_pp = hdh_p->hdh_next; 2017 else 2018 hdh_pp = &hdh_p->hdh_next; 2019 } 2020 } 2021 #endif 2022 2023 /* Also discard relocs on undefined weak syms with non-default 2024 visibility. */ 2025 if (hh->dyn_relocs != NULL 2026 && eh->root.type == bfd_link_hash_undefweak) 2027 { 2028 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) 2029 hh->dyn_relocs = NULL; 2030 2031 /* Make sure undefined weak symbols are output as a dynamic 2032 symbol in PIEs. */ 2033 else if (eh->dynindx == -1 2034 && !eh->forced_local) 2035 { 2036 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 2037 return FALSE; 2038 } 2039 } 2040 } 2041 else 2042 { 2043 /* For the non-shared case, discard space for relocs against 2044 symbols which turn out to need copy relocs or are not 2045 dynamic. */ 2046 2047 if (!eh->non_got_ref 2048 && ((ELIMINATE_COPY_RELOCS 2049 && eh->def_dynamic 2050 && !eh->def_regular) 2051 || (htab->etab.dynamic_sections_created 2052 && (eh->root.type == bfd_link_hash_undefweak 2053 || eh->root.type == bfd_link_hash_undefined)))) 2054 { 2055 /* Make sure this symbol is output as a dynamic symbol. 2056 Undefined weak syms won't yet be marked as dynamic. */ 2057 if (eh->dynindx == -1 2058 && !eh->forced_local 2059 && eh->type != STT_PARISC_MILLI) 2060 { 2061 if (! bfd_elf_link_record_dynamic_symbol (info, eh)) 2062 return FALSE; 2063 } 2064 2065 /* If that succeeded, we know we'll be keeping all the 2066 relocs. */ 2067 if (eh->dynindx != -1) 2068 goto keep; 2069 } 2070 2071 hh->dyn_relocs = NULL; 2072 return TRUE; 2073 2074 keep: ; 2075 } 2076 2077 /* Finally, allocate space. */ 2078 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 2079 { 2080 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; 2081 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); 2082 } 2083 2084 return TRUE; 2085 } 2086 2087 /* This function is called via elf_link_hash_traverse to force 2088 millicode symbols local so they do not end up as globals in the 2089 dynamic symbol table. We ought to be able to do this in 2090 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called 2091 for all dynamic symbols. Arguably, this is a bug in 2092 elf_adjust_dynamic_symbol. */ 2093 2094 static bfd_boolean 2095 clobber_millicode_symbols (struct elf_link_hash_entry *eh, 2096 struct bfd_link_info *info) 2097 { 2098 if (eh->root.type == bfd_link_hash_warning) 2099 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 2100 2101 if (eh->type == STT_PARISC_MILLI 2102 && !eh->forced_local) 2103 { 2104 elf32_hppa_hide_symbol (info, eh, TRUE); 2105 } 2106 return TRUE; 2107 } 2108 2109 /* Find any dynamic relocs that apply to read-only sections. */ 2110 2111 static bfd_boolean 2112 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf) 2113 { 2114 struct elf32_hppa_link_hash_entry *hh; 2115 struct elf32_hppa_dyn_reloc_entry *hdh_p; 2116 2117 if (eh->root.type == bfd_link_hash_warning) 2118 eh = (struct elf_link_hash_entry *) eh->root.u.i.link; 2119 2120 hh = hppa_elf_hash_entry (eh); 2121 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next) 2122 { 2123 asection *sec = hdh_p->sec->output_section; 2124 2125 if (sec != NULL && (sec->flags & SEC_READONLY) != 0) 2126 { 2127 struct bfd_link_info *info = inf; 2128 2129 info->flags |= DF_TEXTREL; 2130 2131 /* Not an error, just cut short the traversal. */ 2132 return FALSE; 2133 } 2134 } 2135 return TRUE; 2136 } 2137 2138 /* Set the sizes of the dynamic sections. */ 2139 2140 static bfd_boolean 2141 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 2142 struct bfd_link_info *info) 2143 { 2144 struct elf32_hppa_link_hash_table *htab; 2145 bfd *dynobj; 2146 bfd *ibfd; 2147 asection *sec; 2148 bfd_boolean relocs; 2149 2150 htab = hppa_link_hash_table (info); 2151 dynobj = htab->etab.dynobj; 2152 if (dynobj == NULL) 2153 abort (); 2154 2155 if (htab->etab.dynamic_sections_created) 2156 { 2157 /* Set the contents of the .interp section to the interpreter. */ 2158 if (info->executable && !info->static_link) 2159 { 2160 sec = bfd_get_section_by_name (dynobj, ".interp"); 2161 if (sec == NULL) 2162 abort (); 2163 sec->size = sizeof ELF_DYNAMIC_INTERPRETER; 2164 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 2165 } 2166 2167 /* Force millicode symbols local. */ 2168 elf_link_hash_traverse (&htab->etab, 2169 clobber_millicode_symbols, 2170 info); 2171 } 2172 2173 /* Set up .got and .plt offsets for local syms, and space for local 2174 dynamic relocs. */ 2175 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2176 { 2177 bfd_signed_vma *local_got; 2178 bfd_signed_vma *end_local_got; 2179 bfd_signed_vma *local_plt; 2180 bfd_signed_vma *end_local_plt; 2181 bfd_size_type locsymcount; 2182 Elf_Internal_Shdr *symtab_hdr; 2183 asection *srel; 2184 2185 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 2186 continue; 2187 2188 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 2189 { 2190 struct elf32_hppa_dyn_reloc_entry *hdh_p; 2191 2192 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *) 2193 elf_section_data (sec)->local_dynrel); 2194 hdh_p != NULL; 2195 hdh_p = hdh_p->hdh_next) 2196 { 2197 if (!bfd_is_abs_section (hdh_p->sec) 2198 && bfd_is_abs_section (hdh_p->sec->output_section)) 2199 { 2200 /* Input section has been discarded, either because 2201 it is a copy of a linkonce section or due to 2202 linker script /DISCARD/, so we'll be discarding 2203 the relocs too. */ 2204 } 2205 else if (hdh_p->count != 0) 2206 { 2207 srel = elf_section_data (hdh_p->sec)->sreloc; 2208 srel->size += hdh_p->count * sizeof (Elf32_External_Rela); 2209 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) 2210 info->flags |= DF_TEXTREL; 2211 } 2212 } 2213 } 2214 2215 local_got = elf_local_got_refcounts (ibfd); 2216 if (!local_got) 2217 continue; 2218 2219 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; 2220 locsymcount = symtab_hdr->sh_info; 2221 end_local_got = local_got + locsymcount; 2222 sec = htab->sgot; 2223 srel = htab->srelgot; 2224 for (; local_got < end_local_got; ++local_got) 2225 { 2226 if (*local_got > 0) 2227 { 2228 *local_got = sec->size; 2229 sec->size += GOT_ENTRY_SIZE; 2230 if (info->shared) 2231 srel->size += sizeof (Elf32_External_Rela); 2232 } 2233 else 2234 *local_got = (bfd_vma) -1; 2235 } 2236 2237 local_plt = end_local_got; 2238 end_local_plt = local_plt + locsymcount; 2239 if (! htab->etab.dynamic_sections_created) 2240 { 2241 /* Won't be used, but be safe. */ 2242 for (; local_plt < end_local_plt; ++local_plt) 2243 *local_plt = (bfd_vma) -1; 2244 } 2245 else 2246 { 2247 sec = htab->splt; 2248 srel = htab->srelplt; 2249 for (; local_plt < end_local_plt; ++local_plt) 2250 { 2251 if (*local_plt > 0) 2252 { 2253 *local_plt = sec->size; 2254 sec->size += PLT_ENTRY_SIZE; 2255 if (info->shared) 2256 srel->size += sizeof (Elf32_External_Rela); 2257 } 2258 else 2259 *local_plt = (bfd_vma) -1; 2260 } 2261 } 2262 } 2263 2264 /* Do all the .plt entries without relocs first. The dynamic linker 2265 uses the last .plt reloc to find the end of the .plt (and hence 2266 the start of the .got) for lazy linking. */ 2267 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); 2268 2269 /* Allocate global sym .plt and .got entries, and space for global 2270 sym dynamic relocs. */ 2271 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); 2272 2273 /* The check_relocs and adjust_dynamic_symbol entry points have 2274 determined the sizes of the various dynamic sections. Allocate 2275 memory for them. */ 2276 relocs = FALSE; 2277 for (sec = dynobj->sections; sec != NULL; sec = sec->next) 2278 { 2279 if ((sec->flags & SEC_LINKER_CREATED) == 0) 2280 continue; 2281 2282 if (sec == htab->splt) 2283 { 2284 if (htab->need_plt_stub) 2285 { 2286 /* Make space for the plt stub at the end of the .plt 2287 section. We want this stub right at the end, up 2288 against the .got section. */ 2289 int gotalign = bfd_section_alignment (dynobj, htab->sgot); 2290 int pltalign = bfd_section_alignment (dynobj, sec); 2291 bfd_size_type mask; 2292 2293 if (gotalign > pltalign) 2294 bfd_set_section_alignment (dynobj, sec, gotalign); 2295 mask = ((bfd_size_type) 1 << gotalign) - 1; 2296 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; 2297 } 2298 } 2299 else if (sec == htab->sgot 2300 || sec == htab->sdynbss) 2301 ; 2302 else if (strncmp (bfd_get_section_name (dynobj, sec), ".rela", 5) == 0) 2303 { 2304 if (sec->size != 0) 2305 { 2306 /* Remember whether there are any reloc sections other 2307 than .rela.plt. */ 2308 if (sec != htab->srelplt) 2309 relocs = TRUE; 2310 2311 /* We use the reloc_count field as a counter if we need 2312 to copy relocs into the output file. */ 2313 sec->reloc_count = 0; 2314 } 2315 } 2316 else 2317 { 2318 /* It's not one of our sections, so don't allocate space. */ 2319 continue; 2320 } 2321 2322 if (sec->size == 0) 2323 { 2324 /* If we don't need this section, strip it from the 2325 output file. This is mostly to handle .rela.bss and 2326 .rela.plt. We must create both sections in 2327 create_dynamic_sections, because they must be created 2328 before the linker maps input sections to output 2329 sections. The linker does that before 2330 adjust_dynamic_symbol is called, and it is that 2331 function which decides whether anything needs to go 2332 into these sections. */ 2333 sec->flags |= SEC_EXCLUDE; 2334 continue; 2335 } 2336 2337 if ((sec->flags & SEC_HAS_CONTENTS) == 0) 2338 continue; 2339 2340 /* Allocate memory for the section contents. Zero it, because 2341 we may not fill in all the reloc sections. */ 2342 sec->contents = bfd_zalloc (dynobj, sec->size); 2343 if (sec->contents == NULL) 2344 return FALSE; 2345 } 2346 2347 if (htab->etab.dynamic_sections_created) 2348 { 2349 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It 2350 actually has nothing to do with the PLT, it is how we 2351 communicate the LTP value of a load module to the dynamic 2352 linker. */ 2353 #define add_dynamic_entry(TAG, VAL) \ 2354 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 2355 2356 if (!add_dynamic_entry (DT_PLTGOT, 0)) 2357 return FALSE; 2358 2359 /* Add some entries to the .dynamic section. We fill in the 2360 values later, in elf32_hppa_finish_dynamic_sections, but we 2361 must add the entries now so that we get the correct size for 2362 the .dynamic section. The DT_DEBUG entry is filled in by the 2363 dynamic linker and used by the debugger. */ 2364 if (info->executable) 2365 { 2366 if (!add_dynamic_entry (DT_DEBUG, 0)) 2367 return FALSE; 2368 } 2369 2370 if (htab->srelplt->size != 0) 2371 { 2372 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 2373 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 2374 || !add_dynamic_entry (DT_JMPREL, 0)) 2375 return FALSE; 2376 } 2377 2378 if (relocs) 2379 { 2380 if (!add_dynamic_entry (DT_RELA, 0) 2381 || !add_dynamic_entry (DT_RELASZ, 0) 2382 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 2383 return FALSE; 2384 2385 /* If any dynamic relocs apply to a read-only section, 2386 then we need a DT_TEXTREL entry. */ 2387 if ((info->flags & DF_TEXTREL) == 0) 2388 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info); 2389 2390 if ((info->flags & DF_TEXTREL) != 0) 2391 { 2392 if (!add_dynamic_entry (DT_TEXTREL, 0)) 2393 return FALSE; 2394 } 2395 } 2396 } 2397 #undef add_dynamic_entry 2398 2399 return TRUE; 2400 } 2401 2402 /* External entry points for sizing and building linker stubs. */ 2403 2404 /* Set up various things so that we can make a list of input sections 2405 for each output section included in the link. Returns -1 on error, 2406 0 when no stubs will be needed, and 1 on success. */ 2407 2408 int 2409 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) 2410 { 2411 bfd *input_bfd; 2412 unsigned int bfd_count; 2413 int top_id, top_index; 2414 asection *section; 2415 asection **input_list, **list; 2416 bfd_size_type amt; 2417 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2418 2419 /* Count the number of input BFDs and find the top input section id. */ 2420 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 2421 input_bfd != NULL; 2422 input_bfd = input_bfd->link_next) 2423 { 2424 bfd_count += 1; 2425 for (section = input_bfd->sections; 2426 section != NULL; 2427 section = section->next) 2428 { 2429 if (top_id < section->id) 2430 top_id = section->id; 2431 } 2432 } 2433 htab->bfd_count = bfd_count; 2434 2435 amt = sizeof (struct map_stub) * (top_id + 1); 2436 htab->stub_group = bfd_zmalloc (amt); 2437 if (htab->stub_group == NULL) 2438 return -1; 2439 2440 /* We can't use output_bfd->section_count here to find the top output 2441 section index as some sections may have been removed, and 2442 strip_excluded_output_sections doesn't renumber the indices. */ 2443 for (section = output_bfd->sections, top_index = 0; 2444 section != NULL; 2445 section = section->next) 2446 { 2447 if (top_index < section->index) 2448 top_index = section->index; 2449 } 2450 2451 htab->top_index = top_index; 2452 amt = sizeof (asection *) * (top_index + 1); 2453 input_list = bfd_malloc (amt); 2454 htab->input_list = input_list; 2455 if (input_list == NULL) 2456 return -1; 2457 2458 /* For sections we aren't interested in, mark their entries with a 2459 value we can check later. */ 2460 list = input_list + top_index; 2461 do 2462 *list = bfd_abs_section_ptr; 2463 while (list-- != input_list); 2464 2465 for (section = output_bfd->sections; 2466 section != NULL; 2467 section = section->next) 2468 { 2469 if ((section->flags & SEC_CODE) != 0) 2470 input_list[section->index] = NULL; 2471 } 2472 2473 return 1; 2474 } 2475 2476 /* The linker repeatedly calls this function for each input section, 2477 in the order that input sections are linked into output sections. 2478 Build lists of input sections to determine groupings between which 2479 we may insert linker stubs. */ 2480 2481 void 2482 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) 2483 { 2484 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2485 2486 if (isec->output_section->index <= htab->top_index) 2487 { 2488 asection **list = htab->input_list + isec->output_section->index; 2489 if (*list != bfd_abs_section_ptr) 2490 { 2491 /* Steal the link_sec pointer for our list. */ 2492 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 2493 /* This happens to make the list in reverse order, 2494 which is what we want. */ 2495 PREV_SEC (isec) = *list; 2496 *list = isec; 2497 } 2498 } 2499 } 2500 2501 /* See whether we can group stub sections together. Grouping stub 2502 sections may result in fewer stubs. More importantly, we need to 2503 put all .init* and .fini* stubs at the beginning of the .init or 2504 .fini output sections respectively, because glibc splits the 2505 _init and _fini functions into multiple parts. Putting a stub in 2506 the middle of a function is not a good idea. */ 2507 2508 static void 2509 group_sections (struct elf32_hppa_link_hash_table *htab, 2510 bfd_size_type stub_group_size, 2511 bfd_boolean stubs_always_before_branch) 2512 { 2513 asection **list = htab->input_list + htab->top_index; 2514 do 2515 { 2516 asection *tail = *list; 2517 if (tail == bfd_abs_section_ptr) 2518 continue; 2519 while (tail != NULL) 2520 { 2521 asection *curr; 2522 asection *prev; 2523 bfd_size_type total; 2524 bfd_boolean big_sec; 2525 2526 curr = tail; 2527 total = tail->size; 2528 big_sec = total >= stub_group_size; 2529 2530 while ((prev = PREV_SEC (curr)) != NULL 2531 && ((total += curr->output_offset - prev->output_offset) 2532 < stub_group_size)) 2533 curr = prev; 2534 2535 /* OK, the size from the start of CURR to the end is less 2536 than 240000 bytes and thus can be handled by one stub 2537 section. (or the tail section is itself larger than 2538 240000 bytes, in which case we may be toast.) 2539 We should really be keeping track of the total size of 2540 stubs added here, as stubs contribute to the final output 2541 section size. That's a little tricky, and this way will 2542 only break if stubs added total more than 22144 bytes, or 2543 2768 long branch stubs. It seems unlikely for more than 2544 2768 different functions to be called, especially from 2545 code only 240000 bytes long. This limit used to be 2546 250000, but c++ code tends to generate lots of little 2547 functions, and sometimes violated the assumption. */ 2548 do 2549 { 2550 prev = PREV_SEC (tail); 2551 /* Set up this stub group. */ 2552 htab->stub_group[tail->id].link_sec = curr; 2553 } 2554 while (tail != curr && (tail = prev) != NULL); 2555 2556 /* But wait, there's more! Input sections up to 240000 2557 bytes before the stub section can be handled by it too. 2558 Don't do this if we have a really large section after the 2559 stubs, as adding more stubs increases the chance that 2560 branches may not reach into the stub section. */ 2561 if (!stubs_always_before_branch && !big_sec) 2562 { 2563 total = 0; 2564 while (prev != NULL 2565 && ((total += tail->output_offset - prev->output_offset) 2566 < stub_group_size)) 2567 { 2568 tail = prev; 2569 prev = PREV_SEC (tail); 2570 htab->stub_group[tail->id].link_sec = curr; 2571 } 2572 } 2573 tail = prev; 2574 } 2575 } 2576 while (list-- != htab->input_list); 2577 free (htab->input_list); 2578 #undef PREV_SEC 2579 } 2580 2581 /* Read in all local syms for all input bfds, and create hash entries 2582 for export stubs if we are building a multi-subspace shared lib. 2583 Returns -1 on error, 1 if export stubs created, 0 otherwise. */ 2584 2585 static int 2586 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) 2587 { 2588 unsigned int bfd_indx; 2589 Elf_Internal_Sym *local_syms, **all_local_syms; 2590 int stub_changed = 0; 2591 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2592 2593 /* We want to read in symbol extension records only once. To do this 2594 we need to read in the local symbols in parallel and save them for 2595 later use; so hold pointers to the local symbols in an array. */ 2596 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; 2597 all_local_syms = bfd_zmalloc (amt); 2598 htab->all_local_syms = all_local_syms; 2599 if (all_local_syms == NULL) 2600 return -1; 2601 2602 /* Walk over all the input BFDs, swapping in local symbols. 2603 If we are creating a shared library, create hash entries for the 2604 export stubs. */ 2605 for (bfd_indx = 0; 2606 input_bfd != NULL; 2607 input_bfd = input_bfd->link_next, bfd_indx++) 2608 { 2609 Elf_Internal_Shdr *symtab_hdr; 2610 2611 /* We'll need the symbol table in a second. */ 2612 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2613 if (symtab_hdr->sh_info == 0) 2614 continue; 2615 2616 /* We need an array of the local symbols attached to the input bfd. */ 2617 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 2618 if (local_syms == NULL) 2619 { 2620 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 2621 symtab_hdr->sh_info, 0, 2622 NULL, NULL, NULL); 2623 /* Cache them for elf_link_input_bfd. */ 2624 symtab_hdr->contents = (unsigned char *) local_syms; 2625 } 2626 if (local_syms == NULL) 2627 return -1; 2628 2629 all_local_syms[bfd_indx] = local_syms; 2630 2631 if (info->shared && htab->multi_subspace) 2632 { 2633 struct elf_link_hash_entry **eh_syms; 2634 struct elf_link_hash_entry **eh_symend; 2635 unsigned int symcount; 2636 2637 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2638 - symtab_hdr->sh_info); 2639 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); 2640 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); 2641 2642 /* Look through the global syms for functions; We need to 2643 build export stubs for all globally visible functions. */ 2644 for (; eh_syms < eh_symend; eh_syms++) 2645 { 2646 struct elf32_hppa_link_hash_entry *hh; 2647 2648 hh = hppa_elf_hash_entry (*eh_syms); 2649 2650 while (hh->eh.root.type == bfd_link_hash_indirect 2651 || hh->eh.root.type == bfd_link_hash_warning) 2652 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2653 2654 /* At this point in the link, undefined syms have been 2655 resolved, so we need to check that the symbol was 2656 defined in this BFD. */ 2657 if ((hh->eh.root.type == bfd_link_hash_defined 2658 || hh->eh.root.type == bfd_link_hash_defweak) 2659 && hh->eh.type == STT_FUNC 2660 && hh->eh.root.u.def.section->output_section != NULL 2661 && (hh->eh.root.u.def.section->output_section->owner 2662 == output_bfd) 2663 && hh->eh.root.u.def.section->owner == input_bfd 2664 && hh->eh.def_regular 2665 && !hh->eh.forced_local 2666 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) 2667 { 2668 asection *sec; 2669 const char *stub_name; 2670 struct elf32_hppa_stub_hash_entry *hsh; 2671 2672 sec = hh->eh.root.u.def.section; 2673 stub_name = hh->eh.root.root.string; 2674 hsh = hppa_stub_hash_lookup (&htab->bstab, 2675 stub_name, 2676 FALSE, FALSE); 2677 if (hsh == NULL) 2678 { 2679 hsh = hppa_add_stub (stub_name, sec, htab); 2680 if (!hsh) 2681 return -1; 2682 2683 hsh->target_value = hh->eh.root.u.def.value; 2684 hsh->target_section = hh->eh.root.u.def.section; 2685 hsh->stub_type = hppa_stub_export; 2686 hsh->hh = hh; 2687 stub_changed = 1; 2688 } 2689 else 2690 { 2691 (*_bfd_error_handler) (_("%B: duplicate export stub %s"), 2692 input_bfd, 2693 stub_name); 2694 } 2695 } 2696 } 2697 } 2698 } 2699 2700 return stub_changed; 2701 } 2702 2703 /* Determine and set the size of the stub section for a final link. 2704 2705 The basic idea here is to examine all the relocations looking for 2706 PC-relative calls to a target that is unreachable with a "bl" 2707 instruction. */ 2708 2709 bfd_boolean 2710 elf32_hppa_size_stubs 2711 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, 2712 bfd_boolean multi_subspace, bfd_signed_vma group_size, 2713 asection * (*add_stub_section) (const char *, asection *), 2714 void (*layout_sections_again) (void)) 2715 { 2716 bfd_size_type stub_group_size; 2717 bfd_boolean stubs_always_before_branch; 2718 bfd_boolean stub_changed; 2719 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2720 2721 /* Stash our params away. */ 2722 htab->stub_bfd = stub_bfd; 2723 htab->multi_subspace = multi_subspace; 2724 htab->add_stub_section = add_stub_section; 2725 htab->layout_sections_again = layout_sections_again; 2726 stubs_always_before_branch = group_size < 0; 2727 if (group_size < 0) 2728 stub_group_size = -group_size; 2729 else 2730 stub_group_size = group_size; 2731 if (stub_group_size == 1) 2732 { 2733 /* Default values. */ 2734 if (stubs_always_before_branch) 2735 { 2736 stub_group_size = 7680000; 2737 if (htab->has_17bit_branch || htab->multi_subspace) 2738 stub_group_size = 240000; 2739 if (htab->has_12bit_branch) 2740 stub_group_size = 7500; 2741 } 2742 else 2743 { 2744 stub_group_size = 6971392; 2745 if (htab->has_17bit_branch || htab->multi_subspace) 2746 stub_group_size = 217856; 2747 if (htab->has_12bit_branch) 2748 stub_group_size = 6808; 2749 } 2750 } 2751 2752 group_sections (htab, stub_group_size, stubs_always_before_branch); 2753 2754 switch (get_local_syms (output_bfd, info->input_bfds, info)) 2755 { 2756 default: 2757 if (htab->all_local_syms) 2758 goto error_ret_free_local; 2759 return FALSE; 2760 2761 case 0: 2762 stub_changed = FALSE; 2763 break; 2764 2765 case 1: 2766 stub_changed = TRUE; 2767 break; 2768 } 2769 2770 while (1) 2771 { 2772 bfd *input_bfd; 2773 unsigned int bfd_indx; 2774 asection *stub_sec; 2775 2776 for (input_bfd = info->input_bfds, bfd_indx = 0; 2777 input_bfd != NULL; 2778 input_bfd = input_bfd->link_next, bfd_indx++) 2779 { 2780 Elf_Internal_Shdr *symtab_hdr; 2781 asection *section; 2782 Elf_Internal_Sym *local_syms; 2783 2784 /* We'll need the symbol table in a second. */ 2785 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2786 if (symtab_hdr->sh_info == 0) 2787 continue; 2788 2789 local_syms = htab->all_local_syms[bfd_indx]; 2790 2791 /* Walk over each section attached to the input bfd. */ 2792 for (section = input_bfd->sections; 2793 section != NULL; 2794 section = section->next) 2795 { 2796 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 2797 2798 /* If there aren't any relocs, then there's nothing more 2799 to do. */ 2800 if ((section->flags & SEC_RELOC) == 0 2801 || section->reloc_count == 0) 2802 continue; 2803 2804 /* If this section is a link-once section that will be 2805 discarded, then don't create any stubs. */ 2806 if (section->output_section == NULL 2807 || section->output_section->owner != output_bfd) 2808 continue; 2809 2810 /* Get the relocs. */ 2811 internal_relocs 2812 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, 2813 info->keep_memory); 2814 if (internal_relocs == NULL) 2815 goto error_ret_free_local; 2816 2817 /* Now examine each relocation. */ 2818 irela = internal_relocs; 2819 irelaend = irela + section->reloc_count; 2820 for (; irela < irelaend; irela++) 2821 { 2822 unsigned int r_type, r_indx; 2823 enum elf32_hppa_stub_type stub_type; 2824 struct elf32_hppa_stub_hash_entry *hsh; 2825 asection *sym_sec; 2826 bfd_vma sym_value; 2827 bfd_vma destination; 2828 struct elf32_hppa_link_hash_entry *hh; 2829 char *stub_name; 2830 const asection *id_sec; 2831 2832 r_type = ELF32_R_TYPE (irela->r_info); 2833 r_indx = ELF32_R_SYM (irela->r_info); 2834 2835 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 2836 { 2837 bfd_set_error (bfd_error_bad_value); 2838 error_ret_free_internal: 2839 if (elf_section_data (section)->relocs == NULL) 2840 free (internal_relocs); 2841 goto error_ret_free_local; 2842 } 2843 2844 /* Only look for stubs on call instructions. */ 2845 if (r_type != (unsigned int) R_PARISC_PCREL12F 2846 && r_type != (unsigned int) R_PARISC_PCREL17F 2847 && r_type != (unsigned int) R_PARISC_PCREL22F) 2848 continue; 2849 2850 /* Now determine the call target, its name, value, 2851 section. */ 2852 sym_sec = NULL; 2853 sym_value = 0; 2854 destination = 0; 2855 hh = NULL; 2856 if (r_indx < symtab_hdr->sh_info) 2857 { 2858 /* It's a local symbol. */ 2859 Elf_Internal_Sym *sym; 2860 Elf_Internal_Shdr *hdr; 2861 2862 sym = local_syms + r_indx; 2863 hdr = elf_elfsections (input_bfd)[sym->st_shndx]; 2864 sym_sec = hdr->bfd_section; 2865 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 2866 sym_value = sym->st_value; 2867 destination = (sym_value + irela->r_addend 2868 + sym_sec->output_offset 2869 + sym_sec->output_section->vma); 2870 } 2871 else 2872 { 2873 /* It's an external symbol. */ 2874 int e_indx; 2875 2876 e_indx = r_indx - symtab_hdr->sh_info; 2877 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); 2878 2879 while (hh->eh.root.type == bfd_link_hash_indirect 2880 || hh->eh.root.type == bfd_link_hash_warning) 2881 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2882 2883 if (hh->eh.root.type == bfd_link_hash_defined 2884 || hh->eh.root.type == bfd_link_hash_defweak) 2885 { 2886 sym_sec = hh->eh.root.u.def.section; 2887 sym_value = hh->eh.root.u.def.value; 2888 if (sym_sec->output_section != NULL) 2889 destination = (sym_value + irela->r_addend 2890 + sym_sec->output_offset 2891 + sym_sec->output_section->vma); 2892 } 2893 else if (hh->eh.root.type == bfd_link_hash_undefweak) 2894 { 2895 if (! info->shared) 2896 continue; 2897 } 2898 else if (hh->eh.root.type == bfd_link_hash_undefined) 2899 { 2900 if (! (info->unresolved_syms_in_objects == RM_IGNORE 2901 && (ELF_ST_VISIBILITY (hh->eh.other) 2902 == STV_DEFAULT) 2903 && hh->eh.type != STT_PARISC_MILLI)) 2904 continue; 2905 } 2906 else 2907 { 2908 bfd_set_error (bfd_error_bad_value); 2909 goto error_ret_free_internal; 2910 } 2911 } 2912 2913 /* Determine what (if any) linker stub is needed. */ 2914 stub_type = hppa_type_of_stub (section, irela, hh, 2915 destination, info); 2916 if (stub_type == hppa_stub_none) 2917 continue; 2918 2919 /* Support for grouping stub sections. */ 2920 id_sec = htab->stub_group[section->id].link_sec; 2921 2922 /* Get the name of this stub. */ 2923 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); 2924 if (!stub_name) 2925 goto error_ret_free_internal; 2926 2927 hsh = hppa_stub_hash_lookup (&htab->bstab, 2928 stub_name, 2929 FALSE, FALSE); 2930 if (hsh != NULL) 2931 { 2932 /* The proper stub has already been created. */ 2933 free (stub_name); 2934 continue; 2935 } 2936 2937 hsh = hppa_add_stub (stub_name, section, htab); 2938 if (hsh == NULL) 2939 { 2940 free (stub_name); 2941 goto error_ret_free_internal; 2942 } 2943 2944 hsh->target_value = sym_value; 2945 hsh->target_section = sym_sec; 2946 hsh->stub_type = stub_type; 2947 if (info->shared) 2948 { 2949 if (stub_type == hppa_stub_import) 2950 hsh->stub_type = hppa_stub_import_shared; 2951 else if (stub_type == hppa_stub_long_branch) 2952 hsh->stub_type = hppa_stub_long_branch_shared; 2953 } 2954 hsh->hh = hh; 2955 stub_changed = TRUE; 2956 } 2957 2958 /* We're done with the internal relocs, free them. */ 2959 if (elf_section_data (section)->relocs == NULL) 2960 free (internal_relocs); 2961 } 2962 } 2963 2964 if (!stub_changed) 2965 break; 2966 2967 /* OK, we've added some stubs. Find out the new size of the 2968 stub sections. */ 2969 for (stub_sec = htab->stub_bfd->sections; 2970 stub_sec != NULL; 2971 stub_sec = stub_sec->next) 2972 stub_sec->size = 0; 2973 2974 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); 2975 2976 /* Ask the linker to do its stuff. */ 2977 (*htab->layout_sections_again) (); 2978 stub_changed = FALSE; 2979 } 2980 2981 free (htab->all_local_syms); 2982 return TRUE; 2983 2984 error_ret_free_local: 2985 free (htab->all_local_syms); 2986 return FALSE; 2987 } 2988 2989 /* For a final link, this function is called after we have sized the 2990 stubs to provide a value for __gp. */ 2991 2992 bfd_boolean 2993 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) 2994 { 2995 struct bfd_link_hash_entry *h; 2996 asection *sec = NULL; 2997 bfd_vma gp_val = 0; 2998 struct elf32_hppa_link_hash_table *htab; 2999 3000 htab = hppa_link_hash_table (info); 3001 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE); 3002 3003 if (h != NULL 3004 && (h->type == bfd_link_hash_defined 3005 || h->type == bfd_link_hash_defweak)) 3006 { 3007 gp_val = h->u.def.value; 3008 sec = h->u.def.section; 3009 } 3010 else 3011 { 3012 asection *splt = bfd_get_section_by_name (abfd, ".plt"); 3013 asection *sgot = bfd_get_section_by_name (abfd, ".got"); 3014 3015 /* Choose to point our LTP at, in this order, one of .plt, .got, 3016 or .data, if these sections exist. In the case of choosing 3017 .plt try to make the LTP ideal for addressing anywhere in the 3018 .plt or .got with a 14 bit signed offset. Typically, the end 3019 of the .plt is the start of the .got, so choose .plt + 0x2000 3020 if either the .plt or .got is larger than 0x2000. If both 3021 the .plt and .got are smaller than 0x2000, choose the end of 3022 the .plt section. */ 3023 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 3024 ? NULL : splt; 3025 if (sec != NULL) 3026 { 3027 gp_val = sec->size; 3028 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) 3029 { 3030 gp_val = 0x2000; 3031 } 3032 } 3033 else 3034 { 3035 sec = sgot; 3036 if (sec != NULL) 3037 { 3038 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) 3039 { 3040 /* We know we don't have a .plt. If .got is large, 3041 offset our LTP. */ 3042 if (sec->size > 0x2000) 3043 gp_val = 0x2000; 3044 } 3045 } 3046 else 3047 { 3048 /* No .plt or .got. Who cares what the LTP is? */ 3049 sec = bfd_get_section_by_name (abfd, ".data"); 3050 } 3051 } 3052 3053 if (h != NULL) 3054 { 3055 h->type = bfd_link_hash_defined; 3056 h->u.def.value = gp_val; 3057 if (sec != NULL) 3058 h->u.def.section = sec; 3059 else 3060 h->u.def.section = bfd_abs_section_ptr; 3061 } 3062 } 3063 3064 if (sec != NULL && sec->output_section != NULL) 3065 gp_val += sec->output_section->vma + sec->output_offset; 3066 3067 elf_gp (abfd) = gp_val; 3068 return TRUE; 3069 } 3070 3071 /* Build all the stubs associated with the current output file. The 3072 stubs are kept in a hash table attached to the main linker hash 3073 table. We also set up the .plt entries for statically linked PIC 3074 functions here. This function is called via hppaelf_finish in the 3075 linker. */ 3076 3077 bfd_boolean 3078 elf32_hppa_build_stubs (struct bfd_link_info *info) 3079 { 3080 asection *stub_sec; 3081 struct bfd_hash_table *table; 3082 struct elf32_hppa_link_hash_table *htab; 3083 3084 htab = hppa_link_hash_table (info); 3085 3086 for (stub_sec = htab->stub_bfd->sections; 3087 stub_sec != NULL; 3088 stub_sec = stub_sec->next) 3089 { 3090 bfd_size_type size; 3091 3092 /* Allocate memory to hold the linker stubs. */ 3093 size = stub_sec->size; 3094 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); 3095 if (stub_sec->contents == NULL && size != 0) 3096 return FALSE; 3097 stub_sec->size = 0; 3098 } 3099 3100 /* Build the stubs as directed by the stub hash table. */ 3101 table = &htab->bstab; 3102 bfd_hash_traverse (table, hppa_build_one_stub, info); 3103 3104 return TRUE; 3105 } 3106 3107 /* Perform a final link. */ 3108 3109 static bfd_boolean 3110 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) 3111 { 3112 /* Invoke the regular ELF linker to do all the work. */ 3113 if (!bfd_elf_final_link (abfd, info)) 3114 return FALSE; 3115 3116 /* If we're producing a final executable, sort the contents of the 3117 unwind section. */ 3118 return elf_hppa_sort_unwind (abfd); 3119 } 3120 3121 /* Record the lowest address for the data and text segments. */ 3122 3123 static void 3124 hppa_record_segment_addr (bfd *abfd ATTRIBUTE_UNUSED, 3125 asection *section, 3126 void *data) 3127 { 3128 struct elf32_hppa_link_hash_table *htab; 3129 3130 htab = (struct elf32_hppa_link_hash_table*) data; 3131 3132 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) 3133 { 3134 bfd_vma value = section->vma - section->filepos; 3135 3136 if ((section->flags & SEC_READONLY) != 0) 3137 { 3138 if (value < htab->text_segment_base) 3139 htab->text_segment_base = value; 3140 } 3141 else 3142 { 3143 if (value < htab->data_segment_base) 3144 htab->data_segment_base = value; 3145 } 3146 } 3147 } 3148 3149 /* Perform a relocation as part of a final link. */ 3150 3151 static bfd_reloc_status_type 3152 final_link_relocate (asection *input_section, 3153 bfd_byte *contents, 3154 const Elf_Internal_Rela *rela, 3155 bfd_vma value, 3156 struct elf32_hppa_link_hash_table *htab, 3157 asection *sym_sec, 3158 struct elf32_hppa_link_hash_entry *hh, 3159 struct bfd_link_info *info) 3160 { 3161 int insn; 3162 unsigned int r_type = ELF32_R_TYPE (rela->r_info); 3163 unsigned int orig_r_type = r_type; 3164 reloc_howto_type *howto = elf_hppa_howto_table + r_type; 3165 int r_format = howto->bitsize; 3166 enum hppa_reloc_field_selector_type_alt r_field; 3167 bfd *input_bfd = input_section->owner; 3168 bfd_vma offset = rela->r_offset; 3169 bfd_vma max_branch_offset = 0; 3170 bfd_byte *hit_data = contents + offset; 3171 bfd_signed_vma addend = rela->r_addend; 3172 bfd_vma location; 3173 struct elf32_hppa_stub_hash_entry *hsh = NULL; 3174 int val; 3175 3176 if (r_type == R_PARISC_NONE) 3177 return bfd_reloc_ok; 3178 3179 insn = bfd_get_32 (input_bfd, hit_data); 3180 3181 /* Find out where we are and where we're going. */ 3182 location = (offset + 3183 input_section->output_offset + 3184 input_section->output_section->vma); 3185 3186 /* If we are not building a shared library, convert DLTIND relocs to 3187 DPREL relocs. */ 3188 if (!info->shared) 3189 { 3190 switch (r_type) 3191 { 3192 case R_PARISC_DLTIND21L: 3193 r_type = R_PARISC_DPREL21L; 3194 break; 3195 3196 case R_PARISC_DLTIND14R: 3197 r_type = R_PARISC_DPREL14R; 3198 break; 3199 3200 case R_PARISC_DLTIND14F: 3201 r_type = R_PARISC_DPREL14F; 3202 break; 3203 } 3204 } 3205 3206 switch (r_type) 3207 { 3208 case R_PARISC_PCREL12F: 3209 case R_PARISC_PCREL17F: 3210 case R_PARISC_PCREL22F: 3211 /* If this call should go via the plt, find the import stub in 3212 the stub hash. */ 3213 if (sym_sec == NULL 3214 || sym_sec->output_section == NULL 3215 || (hh != NULL 3216 && hh->eh.plt.offset != (bfd_vma) -1 3217 && hh->eh.dynindx != -1 3218 && !hh->plabel 3219 && (info->shared 3220 || !hh->eh.def_regular 3221 || hh->eh.root.type == bfd_link_hash_defweak))) 3222 { 3223 hsh = hppa_get_stub_entry (input_section, sym_sec, 3224 hh, rela, htab); 3225 if (hsh != NULL) 3226 { 3227 value = (hsh->stub_offset 3228 + hsh->stub_sec->output_offset 3229 + hsh->stub_sec->output_section->vma); 3230 addend = 0; 3231 } 3232 else if (sym_sec == NULL && hh != NULL 3233 && hh->eh.root.type == bfd_link_hash_undefweak) 3234 { 3235 /* It's OK if undefined weak. Calls to undefined weak 3236 symbols behave as if the "called" function 3237 immediately returns. We can thus call to a weak 3238 function without first checking whether the function 3239 is defined. */ 3240 value = location; 3241 addend = 8; 3242 } 3243 else 3244 return bfd_reloc_undefined; 3245 } 3246 /* Fall thru. */ 3247 3248 case R_PARISC_PCREL21L: 3249 case R_PARISC_PCREL17C: 3250 case R_PARISC_PCREL17R: 3251 case R_PARISC_PCREL14R: 3252 case R_PARISC_PCREL14F: 3253 case R_PARISC_PCREL32: 3254 /* Make it a pc relative offset. */ 3255 value -= location; 3256 addend -= 8; 3257 break; 3258 3259 case R_PARISC_DPREL21L: 3260 case R_PARISC_DPREL14R: 3261 case R_PARISC_DPREL14F: 3262 /* Convert instructions that use the linkage table pointer (r19) to 3263 instructions that use the global data pointer (dp). This is the 3264 most efficient way of using PIC code in an incomplete executable, 3265 but the user must follow the standard runtime conventions for 3266 accessing data for this to work. */ 3267 if (orig_r_type == R_PARISC_DLTIND21L) 3268 { 3269 /* Convert addil instructions if the original reloc was a 3270 DLTIND21L. GCC sometimes uses a register other than r19 for 3271 the operation, so we must convert any addil instruction 3272 that uses this relocation. */ 3273 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26)) 3274 insn = ADDIL_DP; 3275 else 3276 /* We must have a ldil instruction. It's too hard to find 3277 and convert the associated add instruction, so issue an 3278 error. */ 3279 (*_bfd_error_handler) 3280 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"), 3281 input_bfd, 3282 input_section, 3283 offset, 3284 howto->name, 3285 insn); 3286 } 3287 else if (orig_r_type == R_PARISC_DLTIND14F) 3288 { 3289 /* This must be a format 1 load/store. Change the base 3290 register to dp. */ 3291 insn = (insn & 0xfc1ffff) | (27 << 21); 3292 } 3293 3294 /* For all the DP relative relocations, we need to examine the symbol's 3295 section. If it has no section or if it's a code section, then 3296 "data pointer relative" makes no sense. In that case we don't 3297 adjust the "value", and for 21 bit addil instructions, we change the 3298 source addend register from %dp to %r0. This situation commonly 3299 arises for undefined weak symbols and when a variable's "constness" 3300 is declared differently from the way the variable is defined. For 3301 instance: "extern int foo" with foo defined as "const int foo". */ 3302 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) 3303 { 3304 if ((insn & ((0x3f << 26) | (0x1f << 21))) 3305 == (((int) OP_ADDIL << 26) | (27 << 21))) 3306 { 3307 insn &= ~ (0x1f << 21); 3308 } 3309 /* Now try to make things easy for the dynamic linker. */ 3310 3311 break; 3312 } 3313 /* Fall thru. */ 3314 3315 case R_PARISC_DLTIND21L: 3316 case R_PARISC_DLTIND14R: 3317 case R_PARISC_DLTIND14F: 3318 value -= elf_gp (input_section->output_section->owner); 3319 break; 3320 3321 case R_PARISC_SEGREL32: 3322 if ((sym_sec->flags & SEC_CODE) != 0) 3323 value -= htab->text_segment_base; 3324 else 3325 value -= htab->data_segment_base; 3326 break; 3327 3328 default: 3329 break; 3330 } 3331 3332 switch (r_type) 3333 { 3334 case R_PARISC_DIR32: 3335 case R_PARISC_DIR14F: 3336 case R_PARISC_DIR17F: 3337 case R_PARISC_PCREL17C: 3338 case R_PARISC_PCREL14F: 3339 case R_PARISC_PCREL32: 3340 case R_PARISC_DPREL14F: 3341 case R_PARISC_PLABEL32: 3342 case R_PARISC_DLTIND14F: 3343 case R_PARISC_SEGBASE: 3344 case R_PARISC_SEGREL32: 3345 r_field = e_fsel; 3346 break; 3347 3348 case R_PARISC_DLTIND21L: 3349 case R_PARISC_PCREL21L: 3350 case R_PARISC_PLABEL21L: 3351 r_field = e_lsel; 3352 break; 3353 3354 case R_PARISC_DIR21L: 3355 case R_PARISC_DPREL21L: 3356 r_field = e_lrsel; 3357 break; 3358 3359 case R_PARISC_PCREL17R: 3360 case R_PARISC_PCREL14R: 3361 case R_PARISC_PLABEL14R: 3362 case R_PARISC_DLTIND14R: 3363 r_field = e_rsel; 3364 break; 3365 3366 case R_PARISC_DIR17R: 3367 case R_PARISC_DIR14R: 3368 case R_PARISC_DPREL14R: 3369 r_field = e_rrsel; 3370 break; 3371 3372 case R_PARISC_PCREL12F: 3373 case R_PARISC_PCREL17F: 3374 case R_PARISC_PCREL22F: 3375 r_field = e_fsel; 3376 3377 if (r_type == (unsigned int) R_PARISC_PCREL17F) 3378 { 3379 max_branch_offset = (1 << (17-1)) << 2; 3380 } 3381 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 3382 { 3383 max_branch_offset = (1 << (12-1)) << 2; 3384 } 3385 else 3386 { 3387 max_branch_offset = (1 << (22-1)) << 2; 3388 } 3389 3390 /* sym_sec is NULL on undefined weak syms or when shared on 3391 undefined syms. We've already checked for a stub for the 3392 shared undefined case. */ 3393 if (sym_sec == NULL) 3394 break; 3395 3396 /* If the branch is out of reach, then redirect the 3397 call to the local stub for this function. */ 3398 if (value + addend + max_branch_offset >= 2*max_branch_offset) 3399 { 3400 hsh = hppa_get_stub_entry (input_section, sym_sec, 3401 hh, rela, htab); 3402 if (hsh == NULL) 3403 return bfd_reloc_undefined; 3404 3405 /* Munge up the value and addend so that we call the stub 3406 rather than the procedure directly. */ 3407 value = (hsh->stub_offset 3408 + hsh->stub_sec->output_offset 3409 + hsh->stub_sec->output_section->vma 3410 - location); 3411 addend = -8; 3412 } 3413 break; 3414 3415 /* Something we don't know how to handle. */ 3416 default: 3417 return bfd_reloc_notsupported; 3418 } 3419 3420 /* Make sure we can reach the stub. */ 3421 if (max_branch_offset != 0 3422 && value + addend + max_branch_offset >= 2*max_branch_offset) 3423 { 3424 (*_bfd_error_handler) 3425 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"), 3426 input_bfd, 3427 input_section, 3428 offset, 3429 hsh->bh_root.string); 3430 bfd_set_error (bfd_error_bad_value); 3431 return bfd_reloc_notsupported; 3432 } 3433 3434 val = hppa_field_adjust (value, addend, r_field); 3435 3436 switch (r_type) 3437 { 3438 case R_PARISC_PCREL12F: 3439 case R_PARISC_PCREL17C: 3440 case R_PARISC_PCREL17F: 3441 case R_PARISC_PCREL17R: 3442 case R_PARISC_PCREL22F: 3443 case R_PARISC_DIR17F: 3444 case R_PARISC_DIR17R: 3445 /* This is a branch. Divide the offset by four. 3446 Note that we need to decide whether it's a branch or 3447 otherwise by inspecting the reloc. Inspecting insn won't 3448 work as insn might be from a .word directive. */ 3449 val >>= 2; 3450 break; 3451 3452 default: 3453 break; 3454 } 3455 3456 insn = hppa_rebuild_insn (insn, val, r_format); 3457 3458 /* Update the instruction word. */ 3459 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); 3460 return bfd_reloc_ok; 3461 } 3462 3463 /* Relocate an HPPA ELF section. */ 3464 3465 static bfd_boolean 3466 elf32_hppa_relocate_section (bfd *output_bfd, 3467 struct bfd_link_info *info, 3468 bfd *input_bfd, 3469 asection *input_section, 3470 bfd_byte *contents, 3471 Elf_Internal_Rela *relocs, 3472 Elf_Internal_Sym *local_syms, 3473 asection **local_sections) 3474 { 3475 bfd_vma *local_got_offsets; 3476 struct elf32_hppa_link_hash_table *htab; 3477 Elf_Internal_Shdr *symtab_hdr; 3478 Elf_Internal_Rela *rela; 3479 Elf_Internal_Rela *relend; 3480 3481 if (info->relocatable) 3482 return TRUE; 3483 3484 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3485 3486 htab = hppa_link_hash_table (info); 3487 local_got_offsets = elf_local_got_offsets (input_bfd); 3488 3489 rela = relocs; 3490 relend = relocs + input_section->reloc_count; 3491 for (; rela < relend; rela++) 3492 { 3493 unsigned int r_type; 3494 reloc_howto_type *howto; 3495 unsigned int r_symndx; 3496 struct elf32_hppa_link_hash_entry *hh; 3497 Elf_Internal_Sym *sym; 3498 asection *sym_sec; 3499 bfd_vma relocation; 3500 bfd_reloc_status_type rstatus; 3501 const char *sym_name; 3502 bfd_boolean plabel; 3503 bfd_boolean warned_undef; 3504 3505 r_type = ELF32_R_TYPE (rela->r_info); 3506 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 3507 { 3508 bfd_set_error (bfd_error_bad_value); 3509 return FALSE; 3510 } 3511 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY 3512 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) 3513 continue; 3514 3515 /* This is a final link. */ 3516 r_symndx = ELF32_R_SYM (rela->r_info); 3517 hh = NULL; 3518 sym = NULL; 3519 sym_sec = NULL; 3520 warned_undef = FALSE; 3521 if (r_symndx < symtab_hdr->sh_info) 3522 { 3523 /* This is a local symbol, h defaults to NULL. */ 3524 sym = local_syms + r_symndx; 3525 sym_sec = local_sections[r_symndx]; 3526 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); 3527 } 3528 else 3529 { 3530 struct elf_link_hash_entry *eh; 3531 bfd_boolean unresolved_reloc; 3532 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 3533 3534 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, 3535 r_symndx, symtab_hdr, sym_hashes, 3536 eh, sym_sec, relocation, 3537 unresolved_reloc, warned_undef); 3538 3539 if (relocation == 0 3540 && eh->root.type != bfd_link_hash_defined 3541 && eh->root.type != bfd_link_hash_defweak 3542 && eh->root.type != bfd_link_hash_undefweak) 3543 { 3544 if (info->unresolved_syms_in_objects == RM_IGNORE 3545 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT 3546 && eh->type == STT_PARISC_MILLI) 3547 { 3548 if (! info->callbacks->undefined_symbol 3549 (info, eh->root.root.string, input_bfd, 3550 input_section, rela->r_offset, FALSE)) 3551 return FALSE; 3552 warned_undef = TRUE; 3553 } 3554 } 3555 hh = hppa_elf_hash_entry (eh); 3556 } 3557 3558 /* Do any required modifications to the relocation value, and 3559 determine what types of dynamic info we need to output, if 3560 any. */ 3561 plabel = 0; 3562 switch (r_type) 3563 { 3564 case R_PARISC_DLTIND14F: 3565 case R_PARISC_DLTIND14R: 3566 case R_PARISC_DLTIND21L: 3567 { 3568 bfd_vma off; 3569 bfd_boolean do_got = 0; 3570 3571 /* Relocation is to the entry for this symbol in the 3572 global offset table. */ 3573 if (hh != NULL) 3574 { 3575 bfd_boolean dyn; 3576 3577 off = hh->eh.got.offset; 3578 dyn = htab->etab.dynamic_sections_created; 3579 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, 3580 &hh->eh)) 3581 { 3582 /* If we aren't going to call finish_dynamic_symbol, 3583 then we need to handle initialisation of the .got 3584 entry and create needed relocs here. Since the 3585 offset must always be a multiple of 4, we use the 3586 least significant bit to record whether we have 3587 initialised it already. */ 3588 if ((off & 1) != 0) 3589 off &= ~1; 3590 else 3591 { 3592 hh->eh.got.offset |= 1; 3593 do_got = 1; 3594 } 3595 } 3596 } 3597 else 3598 { 3599 /* Local symbol case. */ 3600 if (local_got_offsets == NULL) 3601 abort (); 3602 3603 off = local_got_offsets[r_symndx]; 3604 3605 /* The offset must always be a multiple of 4. We use 3606 the least significant bit to record whether we have 3607 already generated the necessary reloc. */ 3608 if ((off & 1) != 0) 3609 off &= ~1; 3610 else 3611 { 3612 local_got_offsets[r_symndx] |= 1; 3613 do_got = 1; 3614 } 3615 } 3616 3617 if (do_got) 3618 { 3619 if (info->shared) 3620 { 3621 /* Output a dynamic relocation for this GOT entry. 3622 In this case it is relative to the base of the 3623 object because the symbol index is zero. */ 3624 Elf_Internal_Rela outrel; 3625 bfd_byte *loc; 3626 asection *sec = htab->srelgot; 3627 3628 outrel.r_offset = (off 3629 + htab->sgot->output_offset 3630 + htab->sgot->output_section->vma); 3631 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 3632 outrel.r_addend = relocation; 3633 loc = sec->contents; 3634 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); 3635 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3636 } 3637 else 3638 bfd_put_32 (output_bfd, relocation, 3639 htab->sgot->contents + off); 3640 } 3641 3642 if (off >= (bfd_vma) -2) 3643 abort (); 3644 3645 /* Add the base of the GOT to the relocation value. */ 3646 relocation = (off 3647 + htab->sgot->output_offset 3648 + htab->sgot->output_section->vma); 3649 } 3650 break; 3651 3652 case R_PARISC_SEGREL32: 3653 /* If this is the first SEGREL relocation, then initialize 3654 the segment base values. */ 3655 if (htab->text_segment_base == (bfd_vma) -1) 3656 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); 3657 break; 3658 3659 case R_PARISC_PLABEL14R: 3660 case R_PARISC_PLABEL21L: 3661 case R_PARISC_PLABEL32: 3662 if (htab->etab.dynamic_sections_created) 3663 { 3664 bfd_vma off; 3665 bfd_boolean do_plt = 0; 3666 /* If we have a global symbol with a PLT slot, then 3667 redirect this relocation to it. */ 3668 if (hh != NULL) 3669 { 3670 off = hh->eh.plt.offset; 3671 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, 3672 &hh->eh)) 3673 { 3674 /* In a non-shared link, adjust_dynamic_symbols 3675 isn't called for symbols forced local. We 3676 need to write out the plt entry here. */ 3677 if ((off & 1) != 0) 3678 off &= ~1; 3679 else 3680 { 3681 hh->eh.plt.offset |= 1; 3682 do_plt = 1; 3683 } 3684 } 3685 } 3686 else 3687 { 3688 bfd_vma *local_plt_offsets; 3689 3690 if (local_got_offsets == NULL) 3691 abort (); 3692 3693 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; 3694 off = local_plt_offsets[r_symndx]; 3695 3696 /* As for the local .got entry case, we use the last 3697 bit to record whether we've already initialised 3698 this local .plt entry. */ 3699 if ((off & 1) != 0) 3700 off &= ~1; 3701 else 3702 { 3703 local_plt_offsets[r_symndx] |= 1; 3704 do_plt = 1; 3705 } 3706 } 3707 3708 if (do_plt) 3709 { 3710 if (info->shared) 3711 { 3712 /* Output a dynamic IPLT relocation for this 3713 PLT entry. */ 3714 Elf_Internal_Rela outrel; 3715 bfd_byte *loc; 3716 asection *s = htab->srelplt; 3717 3718 outrel.r_offset = (off 3719 + htab->splt->output_offset 3720 + htab->splt->output_section->vma); 3721 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 3722 outrel.r_addend = relocation; 3723 loc = s->contents; 3724 loc += s->reloc_count++ * sizeof (Elf32_External_Rela); 3725 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3726 } 3727 else 3728 { 3729 bfd_put_32 (output_bfd, 3730 relocation, 3731 htab->splt->contents + off); 3732 bfd_put_32 (output_bfd, 3733 elf_gp (htab->splt->output_section->owner), 3734 htab->splt->contents + off + 4); 3735 } 3736 } 3737 3738 if (off >= (bfd_vma) -2) 3739 abort (); 3740 3741 /* PLABELs contain function pointers. Relocation is to 3742 the entry for the function in the .plt. The magic +2 3743 offset signals to $$dyncall that the function pointer 3744 is in the .plt and thus has a gp pointer too. 3745 Exception: Undefined PLABELs should have a value of 3746 zero. */ 3747 if (hh == NULL 3748 || (hh->eh.root.type != bfd_link_hash_undefweak 3749 && hh->eh.root.type != bfd_link_hash_undefined)) 3750 { 3751 relocation = (off 3752 + htab->splt->output_offset 3753 + htab->splt->output_section->vma 3754 + 2); 3755 } 3756 plabel = 1; 3757 } 3758 /* Fall through and possibly emit a dynamic relocation. */ 3759 3760 case R_PARISC_DIR17F: 3761 case R_PARISC_DIR17R: 3762 case R_PARISC_DIR14F: 3763 case R_PARISC_DIR14R: 3764 case R_PARISC_DIR21L: 3765 case R_PARISC_DPREL14F: 3766 case R_PARISC_DPREL14R: 3767 case R_PARISC_DPREL21L: 3768 case R_PARISC_DIR32: 3769 /* r_symndx will be zero only for relocs against symbols 3770 from removed linkonce sections, or sections discarded by 3771 a linker script. */ 3772 if (r_symndx == 0 3773 || (input_section->flags & SEC_ALLOC) == 0) 3774 break; 3775 3776 /* The reloc types handled here and this conditional 3777 expression must match the code in ..check_relocs and 3778 allocate_dynrelocs. ie. We need exactly the same condition 3779 as in ..check_relocs, with some extra conditions (dynindx 3780 test in this case) to cater for relocs removed by 3781 allocate_dynrelocs. If you squint, the non-shared test 3782 here does indeed match the one in ..check_relocs, the 3783 difference being that here we test DEF_DYNAMIC as well as 3784 !DEF_REGULAR. All common syms end up with !DEF_REGULAR, 3785 which is why we can't use just that test here. 3786 Conversely, DEF_DYNAMIC can't be used in check_relocs as 3787 there all files have not been loaded. */ 3788 if ((info->shared 3789 && (hh == NULL 3790 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT 3791 || hh->eh.root.type != bfd_link_hash_undefweak) 3792 && (IS_ABSOLUTE_RELOC (r_type) 3793 || !SYMBOL_CALLS_LOCAL (info, &hh->eh))) 3794 || (!info->shared 3795 && hh != NULL 3796 && hh->eh.dynindx != -1 3797 && !hh->eh.non_got_ref 3798 && ((ELIMINATE_COPY_RELOCS 3799 && hh->eh.def_dynamic 3800 && !hh->eh.def_regular) 3801 || hh->eh.root.type == bfd_link_hash_undefweak 3802 || hh->eh.root.type == bfd_link_hash_undefined))) 3803 { 3804 Elf_Internal_Rela outrel; 3805 bfd_boolean skip; 3806 asection *sreloc; 3807 bfd_byte *loc; 3808 3809 /* When generating a shared object, these relocations 3810 are copied into the output file to be resolved at run 3811 time. */ 3812 3813 outrel.r_addend = rela->r_addend; 3814 outrel.r_offset = 3815 _bfd_elf_section_offset (output_bfd, info, input_section, 3816 rela->r_offset); 3817 skip = (outrel.r_offset == (bfd_vma) -1 3818 || outrel.r_offset == (bfd_vma) -2); 3819 outrel.r_offset += (input_section->output_offset 3820 + input_section->output_section->vma); 3821 3822 if (skip) 3823 { 3824 memset (&outrel, 0, sizeof (outrel)); 3825 } 3826 else if (hh != NULL 3827 && hh->eh.dynindx != -1 3828 && (plabel 3829 || !IS_ABSOLUTE_RELOC (r_type) 3830 || !info->shared 3831 || !info->symbolic 3832 || !hh->eh.def_regular)) 3833 { 3834 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); 3835 } 3836 else /* It's a local symbol, or one marked to become local. */ 3837 { 3838 int indx = 0; 3839 3840 /* Add the absolute offset of the symbol. */ 3841 outrel.r_addend += relocation; 3842 3843 /* Global plabels need to be processed by the 3844 dynamic linker so that functions have at most one 3845 fptr. For this reason, we need to differentiate 3846 between global and local plabels, which we do by 3847 providing the function symbol for a global plabel 3848 reloc, and no symbol for local plabels. */ 3849 if (! plabel 3850 && sym_sec != NULL 3851 && sym_sec->output_section != NULL 3852 && ! bfd_is_abs_section (sym_sec)) 3853 { 3854 /* Skip this relocation if the output section has 3855 been discarded. */ 3856 if (bfd_is_abs_section (sym_sec->output_section)) 3857 break; 3858 3859 indx = elf_section_data (sym_sec->output_section)->dynindx; 3860 /* We are turning this relocation into one 3861 against a section symbol, so subtract out the 3862 output section's address but not the offset 3863 of the input section in the output section. */ 3864 outrel.r_addend -= sym_sec->output_section->vma; 3865 } 3866 3867 outrel.r_info = ELF32_R_INFO (indx, r_type); 3868 } 3869 sreloc = elf_section_data (input_section)->sreloc; 3870 if (sreloc == NULL) 3871 abort (); 3872 3873 loc = sreloc->contents; 3874 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 3875 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3876 } 3877 break; 3878 3879 default: 3880 break; 3881 } 3882 3883 rstatus = final_link_relocate (input_section, contents, rela, relocation, 3884 htab, sym_sec, hh, info); 3885 3886 if (rstatus == bfd_reloc_ok) 3887 continue; 3888 3889 if (hh != NULL) 3890 sym_name = hh->eh.root.root.string; 3891 else 3892 { 3893 sym_name = bfd_elf_string_from_elf_section (input_bfd, 3894 symtab_hdr->sh_link, 3895 sym->st_name); 3896 if (sym_name == NULL) 3897 return FALSE; 3898 if (*sym_name == '\0') 3899 sym_name = bfd_section_name (input_bfd, sym_sec); 3900 } 3901 3902 howto = elf_hppa_howto_table + r_type; 3903 3904 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) 3905 { 3906 if (rstatus == bfd_reloc_notsupported || !warned_undef) 3907 { 3908 (*_bfd_error_handler) 3909 (_("%B(%A+0x%lx): cannot handle %s for %s"), 3910 input_bfd, 3911 input_section, 3912 (long) rela->r_offset, 3913 howto->name, 3914 sym_name); 3915 bfd_set_error (bfd_error_bad_value); 3916 return FALSE; 3917 } 3918 } 3919 else 3920 { 3921 if (!((*info->callbacks->reloc_overflow) 3922 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, 3923 (bfd_vma) 0, input_bfd, input_section, rela->r_offset))) 3924 return FALSE; 3925 } 3926 } 3927 3928 return TRUE; 3929 } 3930 3931 /* Finish up dynamic symbol handling. We set the contents of various 3932 dynamic sections here. */ 3933 3934 static bfd_boolean 3935 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, 3936 struct bfd_link_info *info, 3937 struct elf_link_hash_entry *eh, 3938 Elf_Internal_Sym *sym) 3939 { 3940 struct elf32_hppa_link_hash_table *htab; 3941 Elf_Internal_Rela rela; 3942 bfd_byte *loc; 3943 3944 htab = hppa_link_hash_table (info); 3945 3946 if (eh->plt.offset != (bfd_vma) -1) 3947 { 3948 bfd_vma value; 3949 3950 if (eh->plt.offset & 1) 3951 abort (); 3952 3953 /* This symbol has an entry in the procedure linkage table. Set 3954 it up. 3955 3956 The format of a plt entry is 3957 <funcaddr> 3958 <__gp> 3959 */ 3960 value = 0; 3961 if (eh->root.type == bfd_link_hash_defined 3962 || eh->root.type == bfd_link_hash_defweak) 3963 { 3964 value = eh->root.u.def.value; 3965 if (eh->root.u.def.section->output_section != NULL) 3966 value += (eh->root.u.def.section->output_offset 3967 + eh->root.u.def.section->output_section->vma); 3968 } 3969 3970 /* Create a dynamic IPLT relocation for this entry. */ 3971 rela.r_offset = (eh->plt.offset 3972 + htab->splt->output_offset 3973 + htab->splt->output_section->vma); 3974 if (eh->dynindx != -1) 3975 { 3976 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); 3977 rela.r_addend = 0; 3978 } 3979 else 3980 { 3981 /* This symbol has been marked to become local, and is 3982 used by a plabel so must be kept in the .plt. */ 3983 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 3984 rela.r_addend = value; 3985 } 3986 3987 loc = htab->srelplt->contents; 3988 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela); 3989 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc); 3990 3991 if (!eh->def_regular) 3992 { 3993 /* Mark the symbol as undefined, rather than as defined in 3994 the .plt section. Leave the value alone. */ 3995 sym->st_shndx = SHN_UNDEF; 3996 } 3997 } 3998 3999 if (eh->got.offset != (bfd_vma) -1) 4000 { 4001 /* This symbol has an entry in the global offset table. Set it 4002 up. */ 4003 4004 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) 4005 + htab->sgot->output_offset 4006 + htab->sgot->output_section->vma); 4007 4008 /* If this is a -Bsymbolic link and the symbol is defined 4009 locally or was forced to be local because of a version file, 4010 we just want to emit a RELATIVE reloc. The entry in the 4011 global offset table will already have been initialized in the 4012 relocate_section function. */ 4013 if (info->shared 4014 && (info->symbolic || eh->dynindx == -1) 4015 && eh->def_regular) 4016 { 4017 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 4018 rela.r_addend = (eh->root.u.def.value 4019 + eh->root.u.def.section->output_offset 4020 + eh->root.u.def.section->output_section->vma); 4021 } 4022 else 4023 { 4024 if ((eh->got.offset & 1) != 0) 4025 abort (); 4026 4027 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1)); 4028 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); 4029 rela.r_addend = 0; 4030 } 4031 4032 loc = htab->srelgot->contents; 4033 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela); 4034 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4035 } 4036 4037 if (eh->needs_copy) 4038 { 4039 asection *sec; 4040 4041 /* This symbol needs a copy reloc. Set it up. */ 4042 4043 if (! (eh->dynindx != -1 4044 && (eh->root.type == bfd_link_hash_defined 4045 || eh->root.type == bfd_link_hash_defweak))) 4046 abort (); 4047 4048 sec = htab->srelbss; 4049 4050 rela.r_offset = (eh->root.u.def.value 4051 + eh->root.u.def.section->output_offset 4052 + eh->root.u.def.section->output_section->vma); 4053 rela.r_addend = 0; 4054 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); 4055 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); 4056 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4057 } 4058 4059 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 4060 if (eh->root.root.string[0] == '_' 4061 && (strcmp (eh->root.root.string, "_DYNAMIC") == 0 4062 || eh == htab->etab.hgot)) 4063 { 4064 sym->st_shndx = SHN_ABS; 4065 } 4066 4067 return TRUE; 4068 } 4069 4070 /* Used to decide how to sort relocs in an optimal manner for the 4071 dynamic linker, before writing them out. */ 4072 4073 static enum elf_reloc_type_class 4074 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela) 4075 { 4076 if (ELF32_R_SYM (rela->r_info) == 0) 4077 return reloc_class_relative; 4078 4079 switch ((int) ELF32_R_TYPE (rela->r_info)) 4080 { 4081 case R_PARISC_IPLT: 4082 return reloc_class_plt; 4083 case R_PARISC_COPY: 4084 return reloc_class_copy; 4085 default: 4086 return reloc_class_normal; 4087 } 4088 } 4089 4090 /* Finish up the dynamic sections. */ 4091 4092 static bfd_boolean 4093 elf32_hppa_finish_dynamic_sections (bfd *output_bfd, 4094 struct bfd_link_info *info) 4095 { 4096 bfd *dynobj; 4097 struct elf32_hppa_link_hash_table *htab; 4098 asection *sdyn; 4099 4100 htab = hppa_link_hash_table (info); 4101 dynobj = htab->etab.dynobj; 4102 4103 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 4104 4105 if (htab->etab.dynamic_sections_created) 4106 { 4107 Elf32_External_Dyn *dyncon, *dynconend; 4108 4109 if (sdyn == NULL) 4110 abort (); 4111 4112 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4113 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4114 for (; dyncon < dynconend; dyncon++) 4115 { 4116 Elf_Internal_Dyn dyn; 4117 asection *s; 4118 4119 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4120 4121 switch (dyn.d_tag) 4122 { 4123 default: 4124 continue; 4125 4126 case DT_PLTGOT: 4127 /* Use PLTGOT to set the GOT register. */ 4128 dyn.d_un.d_ptr = elf_gp (output_bfd); 4129 break; 4130 4131 case DT_JMPREL: 4132 s = htab->srelplt; 4133 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 4134 break; 4135 4136 case DT_PLTRELSZ: 4137 s = htab->srelplt; 4138 dyn.d_un.d_val = s->size; 4139 break; 4140 4141 case DT_RELASZ: 4142 /* Don't count procedure linkage table relocs in the 4143 overall reloc count. */ 4144 s = htab->srelplt; 4145 if (s == NULL) 4146 continue; 4147 dyn.d_un.d_val -= s->size; 4148 break; 4149 4150 case DT_RELA: 4151 /* We may not be using the standard ELF linker script. 4152 If .rela.plt is the first .rela section, we adjust 4153 DT_RELA to not include it. */ 4154 s = htab->srelplt; 4155 if (s == NULL) 4156 continue; 4157 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset) 4158 continue; 4159 dyn.d_un.d_ptr += s->size; 4160 break; 4161 } 4162 4163 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4164 } 4165 } 4166 4167 if (htab->sgot != NULL && htab->sgot->size != 0) 4168 { 4169 /* Fill in the first entry in the global offset table. 4170 We use it to point to our dynamic section, if we have one. */ 4171 bfd_put_32 (output_bfd, 4172 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, 4173 htab->sgot->contents); 4174 4175 /* The second entry is reserved for use by the dynamic linker. */ 4176 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); 4177 4178 /* Set .got entry size. */ 4179 elf_section_data (htab->sgot->output_section) 4180 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; 4181 } 4182 4183 if (htab->splt != NULL && htab->splt->size != 0) 4184 { 4185 /* Set plt entry size. */ 4186 elf_section_data (htab->splt->output_section) 4187 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; 4188 4189 if (htab->need_plt_stub) 4190 { 4191 /* Set up the .plt stub. */ 4192 memcpy (htab->splt->contents 4193 + htab->splt->size - sizeof (plt_stub), 4194 plt_stub, sizeof (plt_stub)); 4195 4196 if ((htab->splt->output_offset 4197 + htab->splt->output_section->vma 4198 + htab->splt->size) 4199 != (htab->sgot->output_offset 4200 + htab->sgot->output_section->vma)) 4201 { 4202 (*_bfd_error_handler) 4203 (_(".got section not immediately after .plt section")); 4204 return FALSE; 4205 } 4206 } 4207 } 4208 4209 return TRUE; 4210 } 4211 4212 /* Tweak the OSABI field of the elf header. */ 4213 4214 static void 4215 elf32_hppa_post_process_headers (bfd *abfd, 4216 struct bfd_link_info *info ATTRIBUTE_UNUSED) 4217 { 4218 Elf_Internal_Ehdr * i_ehdrp; 4219 4220 i_ehdrp = elf_elfheader (abfd); 4221 4222 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) 4223 { 4224 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; 4225 } 4226 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) 4227 { 4228 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_NETBSD; 4229 } 4230 else 4231 { 4232 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; 4233 } 4234 } 4235 4236 /* Called when writing out an object file to decide the type of a 4237 symbol. */ 4238 static int 4239 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 4240 { 4241 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) 4242 return STT_PARISC_MILLI; 4243 else 4244 return type; 4245 } 4246 4247 /* Misc BFD support code. */ 4248 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name 4249 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup 4250 #define elf_info_to_howto elf_hppa_info_to_howto 4251 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel 4252 4253 /* Stuff for the BFD linker. */ 4254 #define bfd_elf32_bfd_final_link elf32_hppa_final_link 4255 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create 4256 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free 4257 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol 4258 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol 4259 #define elf_backend_check_relocs elf32_hppa_check_relocs 4260 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections 4261 #define elf_backend_fake_sections elf_hppa_fake_sections 4262 #define elf_backend_relocate_section elf32_hppa_relocate_section 4263 #define elf_backend_hide_symbol elf32_hppa_hide_symbol 4264 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol 4265 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections 4266 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections 4267 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook 4268 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook 4269 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus 4270 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo 4271 #define elf_backend_object_p elf32_hppa_object_p 4272 #define elf_backend_final_write_processing elf_hppa_final_write_processing 4273 #define elf_backend_post_process_headers elf32_hppa_post_process_headers 4274 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type 4275 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class 4276 #define elf_backend_action_discarded elf_hppa_action_discarded 4277 4278 #define elf_backend_can_gc_sections 1 4279 #define elf_backend_can_refcount 1 4280 #define elf_backend_plt_alignment 2 4281 #define elf_backend_want_got_plt 0 4282 #define elf_backend_plt_readonly 0 4283 #define elf_backend_want_plt_sym 0 4284 #define elf_backend_got_header_size 8 4285 #define elf_backend_rela_normal 1 4286 4287 #define TARGET_BIG_SYM bfd_elf32_hppa_vec 4288 #define TARGET_BIG_NAME "elf32-hppa" 4289 #define ELF_ARCH bfd_arch_hppa 4290 #define ELF_MACHINE_CODE EM_PARISC 4291 #define ELF_MAXPAGESIZE 0x1000 4292 4293 #include "elf32-target.h" 4294 4295 #undef TARGET_BIG_SYM 4296 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec 4297 #undef TARGET_BIG_NAME 4298 #define TARGET_BIG_NAME "elf32-hppa-linux" 4299 4300 #define INCLUDED_TARGET_FILE 1 4301 #include "elf32-target.h" 4302 4303 #undef TARGET_BIG_SYM 4304 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec 4305 #undef TARGET_BIG_NAME 4306 #define TARGET_BIG_NAME "elf32-hppa-netbsd" 4307 4308 #include "elf32-target.h" 4309