1 /* Motorola 68k series support for 32-bit ELF 2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 3 2004, 2005, 2006 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 20 21 #include "bfd.h" 22 #include "sysdep.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #include "elf-bfd.h" 26 #include "elf/m68k.h" 27 #include "opcode/m68k.h" 28 29 static reloc_howto_type *reloc_type_lookup 30 PARAMS ((bfd *, bfd_reloc_code_real_type)); 31 static void rtype_to_howto 32 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); 33 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc 34 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); 35 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create 36 PARAMS ((bfd *)); 37 static bfd_boolean elf_m68k_check_relocs 38 PARAMS ((bfd *, struct bfd_link_info *, asection *, 39 const Elf_Internal_Rela *)); 40 static asection *elf_m68k_gc_mark_hook 41 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, 42 struct elf_link_hash_entry *, Elf_Internal_Sym *)); 43 static bfd_boolean elf_m68k_gc_sweep_hook 44 PARAMS ((bfd *, struct bfd_link_info *, asection *, 45 const Elf_Internal_Rela *)); 46 static bfd_boolean elf_m68k_adjust_dynamic_symbol 47 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); 48 static bfd_boolean elf_m68k_size_dynamic_sections 49 PARAMS ((bfd *, struct bfd_link_info *)); 50 static bfd_boolean elf_m68k_discard_copies 51 PARAMS ((struct elf_link_hash_entry *, PTR)); 52 static bfd_boolean elf_m68k_relocate_section 53 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 54 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); 55 static bfd_boolean elf_m68k_finish_dynamic_symbol 56 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, 57 Elf_Internal_Sym *)); 58 static bfd_boolean elf_m68k_finish_dynamic_sections 59 PARAMS ((bfd *, struct bfd_link_info *)); 60 61 static bfd_boolean elf32_m68k_set_private_flags 62 PARAMS ((bfd *, flagword)); 63 static bfd_boolean elf32_m68k_merge_private_bfd_data 64 PARAMS ((bfd *, bfd *)); 65 static bfd_boolean elf32_m68k_print_private_bfd_data 66 PARAMS ((bfd *, PTR)); 67 static enum elf_reloc_type_class elf32_m68k_reloc_type_class 68 PARAMS ((const Elf_Internal_Rela *)); 69 70 static reloc_howto_type howto_table[] = { 71 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), 72 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), 73 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), 74 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), 75 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), 76 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), 77 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), 78 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), 79 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), 80 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), 81 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), 82 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), 83 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), 84 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), 85 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), 86 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), 87 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), 88 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), 89 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), 90 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), 91 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), 92 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), 93 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), 94 /* GNU extension to record C++ vtable hierarchy. */ 95 HOWTO (R_68K_GNU_VTINHERIT, /* type */ 96 0, /* rightshift */ 97 2, /* size (0 = byte, 1 = short, 2 = long) */ 98 0, /* bitsize */ 99 FALSE, /* pc_relative */ 100 0, /* bitpos */ 101 complain_overflow_dont, /* complain_on_overflow */ 102 NULL, /* special_function */ 103 "R_68K_GNU_VTINHERIT", /* name */ 104 FALSE, /* partial_inplace */ 105 0, /* src_mask */ 106 0, /* dst_mask */ 107 FALSE), 108 /* GNU extension to record C++ vtable member usage. */ 109 HOWTO (R_68K_GNU_VTENTRY, /* type */ 110 0, /* rightshift */ 111 2, /* size (0 = byte, 1 = short, 2 = long) */ 112 0, /* bitsize */ 113 FALSE, /* pc_relative */ 114 0, /* bitpos */ 115 complain_overflow_dont, /* complain_on_overflow */ 116 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 117 "R_68K_GNU_VTENTRY", /* name */ 118 FALSE, /* partial_inplace */ 119 0, /* src_mask */ 120 0, /* dst_mask */ 121 FALSE), 122 }; 123 124 static void 125 rtype_to_howto (abfd, cache_ptr, dst) 126 bfd *abfd ATTRIBUTE_UNUSED; 127 arelent *cache_ptr; 128 Elf_Internal_Rela *dst; 129 { 130 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max); 131 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)]; 132 } 133 134 #define elf_info_to_howto rtype_to_howto 135 136 static const struct 137 { 138 bfd_reloc_code_real_type bfd_val; 139 int elf_val; 140 } reloc_map[] = { 141 { BFD_RELOC_NONE, R_68K_NONE }, 142 { BFD_RELOC_32, R_68K_32 }, 143 { BFD_RELOC_16, R_68K_16 }, 144 { BFD_RELOC_8, R_68K_8 }, 145 { BFD_RELOC_32_PCREL, R_68K_PC32 }, 146 { BFD_RELOC_16_PCREL, R_68K_PC16 }, 147 { BFD_RELOC_8_PCREL, R_68K_PC8 }, 148 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, 149 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, 150 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, 151 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, 152 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, 153 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, 154 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, 155 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, 156 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, 157 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, 158 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, 159 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, 160 { BFD_RELOC_NONE, R_68K_COPY }, 161 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, 162 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, 163 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, 164 { BFD_RELOC_CTOR, R_68K_32 }, 165 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, 166 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, 167 }; 168 169 static reloc_howto_type * 170 reloc_type_lookup (abfd, code) 171 bfd *abfd ATTRIBUTE_UNUSED; 172 bfd_reloc_code_real_type code; 173 { 174 unsigned int i; 175 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) 176 { 177 if (reloc_map[i].bfd_val == code) 178 return &howto_table[reloc_map[i].elf_val]; 179 } 180 return 0; 181 } 182 183 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup 184 #define ELF_ARCH bfd_arch_m68k 185 186 /* Functions for the m68k ELF linker. */ 187 188 /* The name of the dynamic interpreter. This is put in the .interp 189 section. */ 190 191 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" 192 193 /* The size in bytes of an entry in the procedure linkage table. */ 194 195 #define PLT_ENTRY_SIZE 20 196 197 /* The first entry in a procedure linkage table looks like this. See 198 the SVR4 ABI m68k supplement to see how this works. */ 199 200 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = 201 { 202 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 203 0, 0, 0, 0, /* replaced with offset to .got + 4. */ 204 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 205 0, 0, 0, 0, /* replaced with offset to .got + 8. */ 206 0, 0, 0, 0 /* pad out to 20 bytes. */ 207 }; 208 209 /* Subsequent entries in a procedure linkage table look like this. */ 210 211 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = 212 { 213 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 214 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */ 215 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 216 0, 0, 0, 0, /* replaced with offset into relocation table. */ 217 0x60, 0xff, /* bra.l .plt */ 218 0, 0, 0, 0 /* replaced with offset to start of .plt. */ 219 }; 220 221 222 #define CFV4E_PLT_ENTRY_SIZE 24 223 224 #define CFV4E_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_M68K_CFV4E) 225 226 static const bfd_byte elf_cfv4e_plt0_entry[CFV4E_PLT_ENTRY_SIZE] = 227 { 228 0x20, 0x3c, 229 0, 0, 0, 0, /* Replaced with offset to .got + 4. */ 230 0x2f, 0x3b, 0x08, 0xfa, /* move.l (%pc,addr),-(%sp) */ 231 0x20, 0x3c, 232 0, 0, 0, 0, /* Replaced with offset to .got + 8. */ 233 0x20, 0x7b, 0x08, 0x00, /* move.l (%pc,%d0:l), %a0 */ 234 0x4e, 0xd0, /* jmp (%a0) */ 235 0x4e, 0x71 /* nop */ 236 }; 237 238 /* Subsequent entries in a procedure linkage table look like this. */ 239 240 static const bfd_byte elf_cfv4e_plt_entry[CFV4E_PLT_ENTRY_SIZE] = 241 { 242 0x20, 0x3c, 243 0, 0, 0, 0, /* Replaced with offset to symbol's .got entry. */ 244 0x20, 0x7b, 0x08, 0x00, /* move.l (%pc,%d0:l), %a0 */ 245 0x4e, 0xd0, /* jmp (%a0) */ 246 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 247 0, 0, 0, 0, /* Replaced with offset into relocation table. */ 248 0x60, 0xff, /* bra.l .plt */ 249 0, 0, 0, 0 /* Replaced with offset to start of .plt. */ 250 }; 251 252 #define CPU32_FLAG(abfd) (elf_elfheader (abfd)->e_flags & EF_M68K_CPU32) 253 254 #define PLT_CPU32_ENTRY_SIZE 24 255 /* Procedure linkage table entries for the cpu32 */ 256 static const bfd_byte elf_cpu32_plt0_entry[PLT_CPU32_ENTRY_SIZE] = 257 { 258 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 259 0, 0, 0, 0, /* replaced with offset to .got + 4. */ 260 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 261 0, 0, 0, 0, /* replace with offset to .got +8. */ 262 0x4e, 0xd1, /* jmp %a1@ */ 263 0, 0, 0, 0, /* pad out to 24 bytes. */ 264 0, 0 265 }; 266 267 static const bfd_byte elf_cpu32_plt_entry[PLT_CPU32_ENTRY_SIZE] = 268 { 269 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 270 0, 0, 0, 0, /* replaced with offset to symbol's .got entry. */ 271 0x4e, 0xd1, /* jmp %a1@ */ 272 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 273 0, 0, 0, 0, /* replaced with offset into relocation table. */ 274 0x60, 0xff, /* bra.l .plt */ 275 0, 0, 0, 0, /* replaced with offset to start of .plt. */ 276 0, 0 277 }; 278 279 /* The m68k linker needs to keep track of the number of relocs that it 280 decides to copy in check_relocs for each symbol. This is so that it 281 can discard PC relative relocs if it doesn't need them when linking 282 with -Bsymbolic. We store the information in a field extending the 283 regular ELF linker hash table. */ 284 285 /* This structure keeps track of the number of PC relative relocs we have 286 copied for a given symbol. */ 287 288 struct elf_m68k_pcrel_relocs_copied 289 { 290 /* Next section. */ 291 struct elf_m68k_pcrel_relocs_copied *next; 292 /* A section in dynobj. */ 293 asection *section; 294 /* Number of relocs copied in this section. */ 295 bfd_size_type count; 296 }; 297 298 /* m68k ELF linker hash entry. */ 299 300 struct elf_m68k_link_hash_entry 301 { 302 struct elf_link_hash_entry root; 303 304 /* Number of PC relative relocs copied for this symbol. */ 305 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; 306 }; 307 308 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) 309 310 /* m68k ELF linker hash table. */ 311 312 struct elf_m68k_link_hash_table 313 { 314 struct elf_link_hash_table root; 315 316 /* Small local sym to section mapping cache. */ 317 struct sym_sec_cache sym_sec; 318 }; 319 320 /* Get the m68k ELF linker hash table from a link_info structure. */ 321 322 #define elf_m68k_hash_table(p) \ 323 ((struct elf_m68k_link_hash_table *) (p)->hash) 324 325 /* Create an entry in an m68k ELF linker hash table. */ 326 327 static struct bfd_hash_entry * 328 elf_m68k_link_hash_newfunc (entry, table, string) 329 struct bfd_hash_entry *entry; 330 struct bfd_hash_table *table; 331 const char *string; 332 { 333 struct bfd_hash_entry *ret = entry; 334 335 /* Allocate the structure if it has not already been allocated by a 336 subclass. */ 337 if (ret == NULL) 338 ret = bfd_hash_allocate (table, 339 sizeof (struct elf_m68k_link_hash_entry)); 340 if (ret == NULL) 341 return ret; 342 343 /* Call the allocation method of the superclass. */ 344 ret = _bfd_elf_link_hash_newfunc (ret, table, string); 345 if (ret != NULL) 346 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; 347 348 return ret; 349 } 350 351 /* Create an m68k ELF linker hash table. */ 352 353 static struct bfd_link_hash_table * 354 elf_m68k_link_hash_table_create (abfd) 355 bfd *abfd; 356 { 357 struct elf_m68k_link_hash_table *ret; 358 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); 359 360 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt); 361 if (ret == (struct elf_m68k_link_hash_table *) NULL) 362 return NULL; 363 364 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 365 elf_m68k_link_hash_newfunc, 366 sizeof (struct elf_m68k_link_hash_entry))) 367 { 368 free (ret); 369 return NULL; 370 } 371 372 ret->sym_sec.abfd = NULL; 373 374 return &ret->root.root; 375 } 376 377 /* Set the right machine number. */ 378 379 static bfd_boolean 380 elf32_m68k_object_p (bfd *abfd) 381 { 382 unsigned int mach = 0; 383 unsigned features = 0; 384 flagword eflags = elf_elfheader (abfd)->e_flags; 385 386 if (eflags & EF_M68K_M68000) 387 features |= m68000; 388 else if (eflags & EF_M68K_CPU32) 389 features |= cpu32; 390 else if (eflags & EF_M68K_ISA_MASK) 391 { 392 switch (eflags & EF_M68K_ISA_MASK) 393 { 394 case EF_M68K_ISA_A_NODIV: 395 features |= mcfisa_a; 396 break; 397 case EF_M68K_ISA_A: 398 features |= mcfisa_a|mcfhwdiv; 399 break; 400 case EF_M68K_ISA_A_PLUS: 401 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; 402 break; 403 case EF_M68K_ISA_B_NOUSP: 404 features |= mcfisa_a|mcfisa_b|mcfhwdiv; 405 break; 406 case EF_M68K_ISA_B: 407 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; 408 break; 409 } 410 switch (eflags & EF_M68K_MAC_MASK) 411 { 412 case EF_M68K_MAC: 413 features |= mcfmac; 414 break; 415 case EF_M68K_EMAC: 416 features |= mcfemac; 417 break; 418 } 419 if (eflags & EF_M68K_FLOAT) 420 features |= cfloat; 421 } 422 423 mach = bfd_m68k_features_to_mach (features); 424 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); 425 426 return TRUE; 427 } 428 429 /* Keep m68k-specific flags in the ELF header. */ 430 static bfd_boolean 431 elf32_m68k_set_private_flags (abfd, flags) 432 bfd *abfd; 433 flagword flags; 434 { 435 elf_elfheader (abfd)->e_flags = flags; 436 elf_flags_init (abfd) = TRUE; 437 return TRUE; 438 } 439 440 /* Merge backend specific data from an object file to the output 441 object file when linking. */ 442 static bfd_boolean 443 elf32_m68k_merge_private_bfd_data (ibfd, obfd) 444 bfd *ibfd; 445 bfd *obfd; 446 { 447 flagword out_flags; 448 flagword in_flags; 449 flagword out_isa; 450 flagword in_isa; 451 const bfd_arch_info_type *arch_info; 452 453 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour 454 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 455 return FALSE; 456 457 /* Get the merged machine. This checks for incompatibility between 458 Coldfire & non-Coldfire flags, incompability between different 459 Coldfire ISAs, and incompability between different MAC types. */ 460 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); 461 if (!arch_info) 462 return FALSE; 463 464 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); 465 466 in_flags = elf_elfheader (ibfd)->e_flags; 467 if (!elf_flags_init (obfd)) 468 { 469 elf_flags_init (obfd) = TRUE; 470 out_flags = in_flags; 471 } 472 else 473 { 474 out_flags = elf_elfheader (obfd)->e_flags; 475 in_isa = (in_flags & EF_M68K_ISA_MASK); 476 out_isa = (out_flags & EF_M68K_ISA_MASK); 477 if (in_isa > out_isa) 478 out_flags ^= in_isa ^ out_isa; 479 out_flags |= in_flags ^ in_isa; 480 } 481 elf_elfheader (obfd)->e_flags = out_flags; 482 483 return TRUE; 484 } 485 486 /* Display the flags field. */ 487 static bfd_boolean 488 elf32_m68k_print_private_bfd_data (abfd, ptr) 489 bfd *abfd; 490 PTR ptr; 491 { 492 FILE *file = (FILE *) ptr; 493 flagword eflags = elf_elfheader (abfd)->e_flags; 494 495 BFD_ASSERT (abfd != NULL && ptr != NULL); 496 497 /* Print normal ELF private data. */ 498 _bfd_elf_print_private_bfd_data (abfd, ptr); 499 500 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ 501 502 /* xgettext:c-format */ 503 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 504 505 if (eflags & EF_M68K_CPU32) 506 fprintf (file, " [cpu32]"); 507 508 if (eflags & EF_M68K_M68000) 509 fprintf (file, " [m68000]"); 510 511 if (eflags & EF_M68K_CFV4E) 512 fprintf (file, " [cfv4e]"); 513 514 if (eflags & EF_M68K_ISA_MASK) 515 { 516 char const *isa = _("unknown"); 517 char const *mac = _("unknown"); 518 char const *additional = ""; 519 520 switch (eflags & EF_M68K_ISA_MASK) 521 { 522 case EF_M68K_ISA_A_NODIV: 523 isa = "A"; 524 additional = " [nodiv]"; 525 break; 526 case EF_M68K_ISA_A: 527 isa = "A"; 528 break; 529 case EF_M68K_ISA_A_PLUS: 530 isa = "A+"; 531 break; 532 case EF_M68K_ISA_B_NOUSP: 533 isa = "B"; 534 additional = " [nousp]"; 535 break; 536 case EF_M68K_ISA_B: 537 isa = "B"; 538 break; 539 } 540 fprintf (file, " [isa %s]%s", isa, additional); 541 if (eflags & EF_M68K_FLOAT) 542 fprintf (file, " [float]"); 543 switch (eflags & EF_M68K_MAC_MASK) 544 { 545 case 0: 546 mac = NULL; 547 break; 548 case EF_M68K_MAC: 549 mac = "mac"; 550 break; 551 case EF_M68K_EMAC: 552 mac = "emac"; 553 break; 554 } 555 if (mac) 556 fprintf (file, " [%s]", mac); 557 } 558 559 fputc ('\n', file); 560 561 return TRUE; 562 } 563 /* Look through the relocs for a section during the first phase, and 564 allocate space in the global offset table or procedure linkage 565 table. */ 566 567 static bfd_boolean 568 elf_m68k_check_relocs (abfd, info, sec, relocs) 569 bfd *abfd; 570 struct bfd_link_info *info; 571 asection *sec; 572 const Elf_Internal_Rela *relocs; 573 { 574 bfd *dynobj; 575 Elf_Internal_Shdr *symtab_hdr; 576 struct elf_link_hash_entry **sym_hashes; 577 bfd_signed_vma *local_got_refcounts; 578 const Elf_Internal_Rela *rel; 579 const Elf_Internal_Rela *rel_end; 580 asection *sgot; 581 asection *srelgot; 582 asection *sreloc; 583 584 if (info->relocatable) 585 return TRUE; 586 587 dynobj = elf_hash_table (info)->dynobj; 588 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 589 sym_hashes = elf_sym_hashes (abfd); 590 local_got_refcounts = elf_local_got_refcounts (abfd); 591 592 sgot = NULL; 593 srelgot = NULL; 594 sreloc = NULL; 595 596 rel_end = relocs + sec->reloc_count; 597 for (rel = relocs; rel < rel_end; rel++) 598 { 599 unsigned long r_symndx; 600 struct elf_link_hash_entry *h; 601 602 r_symndx = ELF32_R_SYM (rel->r_info); 603 604 if (r_symndx < symtab_hdr->sh_info) 605 h = NULL; 606 else 607 { 608 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 609 while (h->root.type == bfd_link_hash_indirect 610 || h->root.type == bfd_link_hash_warning) 611 h = (struct elf_link_hash_entry *) h->root.u.i.link; 612 } 613 614 switch (ELF32_R_TYPE (rel->r_info)) 615 { 616 case R_68K_GOT8: 617 case R_68K_GOT16: 618 case R_68K_GOT32: 619 if (h != NULL 620 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 621 break; 622 /* Fall through. */ 623 case R_68K_GOT8O: 624 case R_68K_GOT16O: 625 case R_68K_GOT32O: 626 /* This symbol requires a global offset table entry. */ 627 628 if (dynobj == NULL) 629 { 630 /* Create the .got section. */ 631 elf_hash_table (info)->dynobj = dynobj = abfd; 632 if (!_bfd_elf_create_got_section (dynobj, info)) 633 return FALSE; 634 } 635 636 if (sgot == NULL) 637 { 638 sgot = bfd_get_section_by_name (dynobj, ".got"); 639 BFD_ASSERT (sgot != NULL); 640 } 641 642 if (srelgot == NULL 643 && (h != NULL || info->shared)) 644 { 645 srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); 646 if (srelgot == NULL) 647 { 648 srelgot = bfd_make_section_with_flags (dynobj, 649 ".rela.got", 650 (SEC_ALLOC 651 | SEC_LOAD 652 | SEC_HAS_CONTENTS 653 | SEC_IN_MEMORY 654 | SEC_LINKER_CREATED 655 | SEC_READONLY)); 656 if (srelgot == NULL 657 || !bfd_set_section_alignment (dynobj, srelgot, 2)) 658 return FALSE; 659 } 660 } 661 662 if (h != NULL) 663 { 664 if (h->got.refcount == 0) 665 { 666 /* Make sure this symbol is output as a dynamic symbol. */ 667 if (h->dynindx == -1 668 && !h->forced_local) 669 { 670 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 671 return FALSE; 672 } 673 674 /* Allocate space in the .got section. */ 675 sgot->size += 4; 676 /* Allocate relocation space. */ 677 srelgot->size += sizeof (Elf32_External_Rela); 678 } 679 h->got.refcount++; 680 } 681 else 682 { 683 /* This is a global offset table entry for a local symbol. */ 684 if (local_got_refcounts == NULL) 685 { 686 bfd_size_type size; 687 688 size = symtab_hdr->sh_info; 689 size *= sizeof (bfd_signed_vma); 690 local_got_refcounts = ((bfd_signed_vma *) 691 bfd_zalloc (abfd, size)); 692 if (local_got_refcounts == NULL) 693 return FALSE; 694 elf_local_got_refcounts (abfd) = local_got_refcounts; 695 } 696 if (local_got_refcounts[r_symndx] == 0) 697 { 698 sgot->size += 4; 699 if (info->shared) 700 { 701 /* If we are generating a shared object, we need to 702 output a R_68K_RELATIVE reloc so that the dynamic 703 linker can adjust this GOT entry. */ 704 srelgot->size += sizeof (Elf32_External_Rela); 705 } 706 } 707 local_got_refcounts[r_symndx]++; 708 } 709 break; 710 711 case R_68K_PLT8: 712 case R_68K_PLT16: 713 case R_68K_PLT32: 714 /* This symbol requires a procedure linkage table entry. We 715 actually build the entry in adjust_dynamic_symbol, 716 because this might be a case of linking PIC code which is 717 never referenced by a dynamic object, in which case we 718 don't need to generate a procedure linkage table entry 719 after all. */ 720 721 /* If this is a local symbol, we resolve it directly without 722 creating a procedure linkage table entry. */ 723 if (h == NULL) 724 continue; 725 726 h->needs_plt = 1; 727 h->plt.refcount++; 728 break; 729 730 case R_68K_PLT8O: 731 case R_68K_PLT16O: 732 case R_68K_PLT32O: 733 /* This symbol requires a procedure linkage table entry. */ 734 735 if (h == NULL) 736 { 737 /* It does not make sense to have this relocation for a 738 local symbol. FIXME: does it? How to handle it if 739 it does make sense? */ 740 bfd_set_error (bfd_error_bad_value); 741 return FALSE; 742 } 743 744 /* Make sure this symbol is output as a dynamic symbol. */ 745 if (h->dynindx == -1 746 && !h->forced_local) 747 { 748 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 749 return FALSE; 750 } 751 752 h->needs_plt = 1; 753 h->plt.refcount++; 754 break; 755 756 case R_68K_PC8: 757 case R_68K_PC16: 758 case R_68K_PC32: 759 /* If we are creating a shared library and this is not a local 760 symbol, we need to copy the reloc into the shared library. 761 However when linking with -Bsymbolic and this is a global 762 symbol which is defined in an object we are including in the 763 link (i.e., DEF_REGULAR is set), then we can resolve the 764 reloc directly. At this point we have not seen all the input 765 files, so it is possible that DEF_REGULAR is not set now but 766 will be set later (it is never cleared). We account for that 767 possibility below by storing information in the 768 pcrel_relocs_copied field of the hash table entry. */ 769 if (!(info->shared 770 && (sec->flags & SEC_ALLOC) != 0 771 && h != NULL 772 && (!info->symbolic 773 || h->root.type == bfd_link_hash_defweak 774 || !h->def_regular))) 775 { 776 if (h != NULL) 777 { 778 /* Make sure a plt entry is created for this symbol if 779 it turns out to be a function defined by a dynamic 780 object. */ 781 h->plt.refcount++; 782 } 783 break; 784 } 785 /* Fall through. */ 786 case R_68K_8: 787 case R_68K_16: 788 case R_68K_32: 789 if (h != NULL) 790 { 791 /* Make sure a plt entry is created for this symbol if it 792 turns out to be a function defined by a dynamic object. */ 793 h->plt.refcount++; 794 } 795 796 /* If we are creating a shared library, we need to copy the 797 reloc into the shared library. */ 798 if (info->shared 799 && (sec->flags & SEC_ALLOC) != 0) 800 { 801 /* When creating a shared object, we must copy these 802 reloc types into the output file. We create a reloc 803 section in dynobj and make room for this reloc. */ 804 if (sreloc == NULL) 805 { 806 const char *name; 807 808 name = (bfd_elf_string_from_elf_section 809 (abfd, 810 elf_elfheader (abfd)->e_shstrndx, 811 elf_section_data (sec)->rel_hdr.sh_name)); 812 if (name == NULL) 813 return FALSE; 814 815 BFD_ASSERT (strncmp (name, ".rela", 5) == 0 816 && strcmp (bfd_get_section_name (abfd, sec), 817 name + 5) == 0); 818 819 sreloc = bfd_get_section_by_name (dynobj, name); 820 if (sreloc == NULL) 821 { 822 sreloc = bfd_make_section_with_flags (dynobj, 823 name, 824 (SEC_ALLOC 825 | SEC_LOAD 826 | SEC_HAS_CONTENTS 827 | SEC_IN_MEMORY 828 | SEC_LINKER_CREATED 829 | SEC_READONLY)); 830 if (sreloc == NULL 831 || !bfd_set_section_alignment (dynobj, sreloc, 2)) 832 return FALSE; 833 } 834 elf_section_data (sec)->sreloc = sreloc; 835 } 836 837 if (sec->flags & SEC_READONLY 838 /* Don't set DF_TEXTREL yet for PC relative 839 relocations, they might be discarded later. */ 840 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 841 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 842 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) 843 info->flags |= DF_TEXTREL; 844 845 sreloc->size += sizeof (Elf32_External_Rela); 846 847 /* We count the number of PC relative relocations we have 848 entered for this symbol, so that we can discard them 849 again if, in the -Bsymbolic case, the symbol is later 850 defined by a regular object, or, in the normal shared 851 case, the symbol is forced to be local. Note that this 852 function is only called if we are using an m68kelf linker 853 hash table, which means that h is really a pointer to an 854 elf_m68k_link_hash_entry. */ 855 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 856 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 857 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) 858 { 859 struct elf_m68k_pcrel_relocs_copied *p; 860 struct elf_m68k_pcrel_relocs_copied **head; 861 862 if (h != NULL) 863 { 864 struct elf_m68k_link_hash_entry *eh 865 = elf_m68k_hash_entry (h); 866 head = &eh->pcrel_relocs_copied; 867 } 868 else 869 { 870 asection *s; 871 void *vpp; 872 873 s = (bfd_section_from_r_symndx 874 (abfd, &elf_m68k_hash_table (info)->sym_sec, 875 sec, r_symndx)); 876 if (s == NULL) 877 return FALSE; 878 879 vpp = &elf_section_data (s)->local_dynrel; 880 head = (struct elf_m68k_pcrel_relocs_copied **) vpp; 881 } 882 883 for (p = *head; p != NULL; p = p->next) 884 if (p->section == sreloc) 885 break; 886 887 if (p == NULL) 888 { 889 p = ((struct elf_m68k_pcrel_relocs_copied *) 890 bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); 891 if (p == NULL) 892 return FALSE; 893 p->next = *head; 894 *head = p; 895 p->section = sreloc; 896 p->count = 0; 897 } 898 899 ++p->count; 900 } 901 } 902 903 break; 904 905 /* This relocation describes the C++ object vtable hierarchy. 906 Reconstruct it for later use during GC. */ 907 case R_68K_GNU_VTINHERIT: 908 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 909 return FALSE; 910 break; 911 912 /* This relocation describes which C++ vtable entries are actually 913 used. Record for later use during GC. */ 914 case R_68K_GNU_VTENTRY: 915 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 916 return FALSE; 917 break; 918 919 default: 920 break; 921 } 922 } 923 924 return TRUE; 925 } 926 927 /* Return the section that should be marked against GC for a given 928 relocation. */ 929 930 static asection * 931 elf_m68k_gc_mark_hook (sec, info, rel, h, sym) 932 asection *sec; 933 struct bfd_link_info *info ATTRIBUTE_UNUSED; 934 Elf_Internal_Rela *rel; 935 struct elf_link_hash_entry *h; 936 Elf_Internal_Sym *sym; 937 { 938 if (h != NULL) 939 { 940 switch (ELF32_R_TYPE (rel->r_info)) 941 { 942 case R_68K_GNU_VTINHERIT: 943 case R_68K_GNU_VTENTRY: 944 break; 945 946 default: 947 switch (h->root.type) 948 { 949 default: 950 break; 951 952 case bfd_link_hash_defined: 953 case bfd_link_hash_defweak: 954 return h->root.u.def.section; 955 956 case bfd_link_hash_common: 957 return h->root.u.c.p->section; 958 } 959 } 960 } 961 else 962 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 963 964 return NULL; 965 } 966 967 /* Update the got entry reference counts for the section being removed. */ 968 969 static bfd_boolean 970 elf_m68k_gc_sweep_hook (abfd, info, sec, relocs) 971 bfd *abfd; 972 struct bfd_link_info *info; 973 asection *sec; 974 const Elf_Internal_Rela *relocs; 975 { 976 Elf_Internal_Shdr *symtab_hdr; 977 struct elf_link_hash_entry **sym_hashes; 978 bfd_signed_vma *local_got_refcounts; 979 const Elf_Internal_Rela *rel, *relend; 980 bfd *dynobj; 981 asection *sgot; 982 asection *srelgot; 983 984 dynobj = elf_hash_table (info)->dynobj; 985 if (dynobj == NULL) 986 return TRUE; 987 988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 989 sym_hashes = elf_sym_hashes (abfd); 990 local_got_refcounts = elf_local_got_refcounts (abfd); 991 992 sgot = bfd_get_section_by_name (dynobj, ".got"); 993 srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); 994 995 relend = relocs + sec->reloc_count; 996 for (rel = relocs; rel < relend; rel++) 997 { 998 unsigned long r_symndx; 999 struct elf_link_hash_entry *h = NULL; 1000 1001 r_symndx = ELF32_R_SYM (rel->r_info); 1002 if (r_symndx >= symtab_hdr->sh_info) 1003 { 1004 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1005 while (h->root.type == bfd_link_hash_indirect 1006 || h->root.type == bfd_link_hash_warning) 1007 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1008 } 1009 1010 switch (ELF32_R_TYPE (rel->r_info)) 1011 { 1012 case R_68K_GOT8: 1013 case R_68K_GOT16: 1014 case R_68K_GOT32: 1015 case R_68K_GOT8O: 1016 case R_68K_GOT16O: 1017 case R_68K_GOT32O: 1018 if (h != NULL) 1019 { 1020 if (h->got.refcount > 0) 1021 { 1022 --h->got.refcount; 1023 if (h->got.refcount == 0) 1024 { 1025 /* We don't need the .got entry any more. */ 1026 sgot->size -= 4; 1027 srelgot->size -= sizeof (Elf32_External_Rela); 1028 } 1029 } 1030 } 1031 else if (local_got_refcounts != NULL) 1032 { 1033 if (local_got_refcounts[r_symndx] > 0) 1034 { 1035 --local_got_refcounts[r_symndx]; 1036 if (local_got_refcounts[r_symndx] == 0) 1037 { 1038 /* We don't need the .got entry any more. */ 1039 sgot->size -= 4; 1040 if (info->shared) 1041 srelgot->size -= sizeof (Elf32_External_Rela); 1042 } 1043 } 1044 } 1045 break; 1046 1047 case R_68K_PLT8: 1048 case R_68K_PLT16: 1049 case R_68K_PLT32: 1050 case R_68K_PLT8O: 1051 case R_68K_PLT16O: 1052 case R_68K_PLT32O: 1053 case R_68K_PC8: 1054 case R_68K_PC16: 1055 case R_68K_PC32: 1056 case R_68K_8: 1057 case R_68K_16: 1058 case R_68K_32: 1059 if (h != NULL) 1060 { 1061 if (h->plt.refcount > 0) 1062 --h->plt.refcount; 1063 } 1064 break; 1065 1066 default: 1067 break; 1068 } 1069 } 1070 1071 return TRUE; 1072 } 1073 1074 /* Adjust a symbol defined by a dynamic object and referenced by a 1075 regular object. The current definition is in some section of the 1076 dynamic object, but we're not including those sections. We have to 1077 change the definition to something the rest of the link can 1078 understand. */ 1079 1080 static bfd_boolean 1081 elf_m68k_adjust_dynamic_symbol (info, h) 1082 struct bfd_link_info *info; 1083 struct elf_link_hash_entry *h; 1084 { 1085 bfd *dynobj; 1086 asection *s; 1087 unsigned int power_of_two; 1088 1089 dynobj = elf_hash_table (info)->dynobj; 1090 1091 /* Make sure we know what is going on here. */ 1092 BFD_ASSERT (dynobj != NULL 1093 && (h->needs_plt 1094 || h->u.weakdef != NULL 1095 || (h->def_dynamic 1096 && h->ref_regular 1097 && !h->def_regular))); 1098 1099 /* If this is a function, put it in the procedure linkage table. We 1100 will fill in the contents of the procedure linkage table later, 1101 when we know the address of the .got section. */ 1102 if (h->type == STT_FUNC 1103 || h->needs_plt) 1104 { 1105 if ((h->plt.refcount <= 0 1106 || SYMBOL_CALLS_LOCAL (info, h) 1107 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1108 && h->root.type == bfd_link_hash_undefweak)) 1109 /* We must always create the plt entry if it was referenced 1110 by a PLTxxO relocation. In this case we already recorded 1111 it as a dynamic symbol. */ 1112 && h->dynindx == -1) 1113 { 1114 /* This case can occur if we saw a PLTxx reloc in an input 1115 file, but the symbol was never referred to by a dynamic 1116 object, or if all references were garbage collected. In 1117 such a case, we don't actually need to build a procedure 1118 linkage table, and we can just do a PCxx reloc instead. */ 1119 h->plt.offset = (bfd_vma) -1; 1120 h->needs_plt = 0; 1121 return TRUE; 1122 } 1123 1124 /* Make sure this symbol is output as a dynamic symbol. */ 1125 if (h->dynindx == -1 1126 && !h->forced_local) 1127 { 1128 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1129 return FALSE; 1130 } 1131 1132 s = bfd_get_section_by_name (dynobj, ".plt"); 1133 BFD_ASSERT (s != NULL); 1134 1135 /* If this is the first .plt entry, make room for the special 1136 first entry. */ 1137 if (s->size == 0) 1138 { 1139 if (CPU32_FLAG (dynobj)) 1140 s->size += PLT_CPU32_ENTRY_SIZE; 1141 else if (CFV4E_FLAG (dynobj)) 1142 s->size += CFV4E_PLT_ENTRY_SIZE; 1143 else 1144 s->size += PLT_ENTRY_SIZE; 1145 } 1146 1147 /* If this symbol is not defined in a regular file, and we are 1148 not generating a shared library, then set the symbol to this 1149 location in the .plt. This is required to make function 1150 pointers compare as equal between the normal executable and 1151 the shared library. */ 1152 if (!info->shared 1153 && !h->def_regular) 1154 { 1155 h->root.u.def.section = s; 1156 h->root.u.def.value = s->size; 1157 } 1158 1159 h->plt.offset = s->size; 1160 1161 /* Make room for this entry. */ 1162 if (CPU32_FLAG (dynobj)) 1163 s->size += PLT_CPU32_ENTRY_SIZE; 1164 else if (CFV4E_FLAG (dynobj)) 1165 s->size += CFV4E_PLT_ENTRY_SIZE; 1166 else 1167 s->size += PLT_ENTRY_SIZE; 1168 1169 /* We also need to make an entry in the .got.plt section, which 1170 will be placed in the .got section by the linker script. */ 1171 s = bfd_get_section_by_name (dynobj, ".got.plt"); 1172 BFD_ASSERT (s != NULL); 1173 s->size += 4; 1174 1175 /* We also need to make an entry in the .rela.plt section. */ 1176 s = bfd_get_section_by_name (dynobj, ".rela.plt"); 1177 BFD_ASSERT (s != NULL); 1178 s->size += sizeof (Elf32_External_Rela); 1179 1180 return TRUE; 1181 } 1182 1183 /* Reinitialize the plt offset now that it is not used as a reference 1184 count any more. */ 1185 h->plt.offset = (bfd_vma) -1; 1186 1187 /* If this is a weak symbol, and there is a real definition, the 1188 processor independent code will have arranged for us to see the 1189 real definition first, and we can just use the same value. */ 1190 if (h->u.weakdef != NULL) 1191 { 1192 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 1193 || h->u.weakdef->root.type == bfd_link_hash_defweak); 1194 h->root.u.def.section = h->u.weakdef->root.u.def.section; 1195 h->root.u.def.value = h->u.weakdef->root.u.def.value; 1196 return TRUE; 1197 } 1198 1199 /* This is a reference to a symbol defined by a dynamic object which 1200 is not a function. */ 1201 1202 /* If we are creating a shared library, we must presume that the 1203 only references to the symbol are via the global offset table. 1204 For such cases we need not do anything here; the relocations will 1205 be handled correctly by relocate_section. */ 1206 if (info->shared) 1207 return TRUE; 1208 1209 if (h->size == 0) 1210 { 1211 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), 1212 h->root.root.string); 1213 return TRUE; 1214 } 1215 1216 /* We must allocate the symbol in our .dynbss section, which will 1217 become part of the .bss section of the executable. There will be 1218 an entry for this symbol in the .dynsym section. The dynamic 1219 object will contain position independent code, so all references 1220 from the dynamic object to this symbol will go through the global 1221 offset table. The dynamic linker will use the .dynsym entry to 1222 determine the address it must put in the global offset table, so 1223 both the dynamic object and the regular object will refer to the 1224 same memory location for the variable. */ 1225 1226 s = bfd_get_section_by_name (dynobj, ".dynbss"); 1227 BFD_ASSERT (s != NULL); 1228 1229 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to 1230 copy the initial value out of the dynamic object and into the 1231 runtime process image. We need to remember the offset into the 1232 .rela.bss section we are going to use. */ 1233 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 1234 { 1235 asection *srel; 1236 1237 srel = bfd_get_section_by_name (dynobj, ".rela.bss"); 1238 BFD_ASSERT (srel != NULL); 1239 srel->size += sizeof (Elf32_External_Rela); 1240 h->needs_copy = 1; 1241 } 1242 1243 /* We need to figure out the alignment required for this symbol. I 1244 have no idea how ELF linkers handle this. */ 1245 power_of_two = bfd_log2 (h->size); 1246 if (power_of_two > 3) 1247 power_of_two = 3; 1248 1249 /* Apply the required alignment. */ 1250 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two)); 1251 if (power_of_two > bfd_get_section_alignment (dynobj, s)) 1252 { 1253 if (!bfd_set_section_alignment (dynobj, s, power_of_two)) 1254 return FALSE; 1255 } 1256 1257 /* Define the symbol as being at this point in the section. */ 1258 h->root.u.def.section = s; 1259 h->root.u.def.value = s->size; 1260 1261 /* Increment the section size to make room for the symbol. */ 1262 s->size += h->size; 1263 1264 return TRUE; 1265 } 1266 1267 /* Set the sizes of the dynamic sections. */ 1268 1269 static bfd_boolean 1270 elf_m68k_size_dynamic_sections (output_bfd, info) 1271 bfd *output_bfd ATTRIBUTE_UNUSED; 1272 struct bfd_link_info *info; 1273 { 1274 bfd *dynobj; 1275 asection *s; 1276 bfd_boolean plt; 1277 bfd_boolean relocs; 1278 1279 dynobj = elf_hash_table (info)->dynobj; 1280 BFD_ASSERT (dynobj != NULL); 1281 1282 if (elf_hash_table (info)->dynamic_sections_created) 1283 { 1284 /* Set the contents of the .interp section to the interpreter. */ 1285 if (info->executable && !info->static_link) 1286 { 1287 s = bfd_get_section_by_name (dynobj, ".interp"); 1288 BFD_ASSERT (s != NULL); 1289 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 1290 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1291 } 1292 } 1293 else 1294 { 1295 /* We may have created entries in the .rela.got section. 1296 However, if we are not creating the dynamic sections, we will 1297 not actually use these entries. Reset the size of .rela.got, 1298 which will cause it to get stripped from the output file 1299 below. */ 1300 s = bfd_get_section_by_name (dynobj, ".rela.got"); 1301 if (s != NULL) 1302 s->size = 0; 1303 } 1304 1305 /* If this is a -Bsymbolic shared link, then we need to discard all 1306 PC relative relocs against symbols defined in a regular object. 1307 For the normal shared case we discard the PC relative relocs 1308 against symbols that have become local due to visibility changes. 1309 We allocated space for them in the check_relocs routine, but we 1310 will not fill them in in the relocate_section routine. */ 1311 if (info->shared) 1312 elf_link_hash_traverse (elf_hash_table (info), 1313 elf_m68k_discard_copies, 1314 (PTR) info); 1315 1316 /* The check_relocs and adjust_dynamic_symbol entry points have 1317 determined the sizes of the various dynamic sections. Allocate 1318 memory for them. */ 1319 plt = FALSE; 1320 relocs = FALSE; 1321 for (s = dynobj->sections; s != NULL; s = s->next) 1322 { 1323 const char *name; 1324 1325 if ((s->flags & SEC_LINKER_CREATED) == 0) 1326 continue; 1327 1328 /* It's OK to base decisions on the section name, because none 1329 of the dynobj section names depend upon the input files. */ 1330 name = bfd_get_section_name (dynobj, s); 1331 1332 if (strcmp (name, ".plt") == 0) 1333 { 1334 /* Remember whether there is a PLT. */ 1335 plt = s->size != 0; 1336 } 1337 else if (strncmp (name, ".rela", 5) == 0) 1338 { 1339 if (s->size != 0) 1340 { 1341 relocs = TRUE; 1342 1343 /* We use the reloc_count field as a counter if we need 1344 to copy relocs into the output file. */ 1345 s->reloc_count = 0; 1346 } 1347 } 1348 else if (strncmp (name, ".got", 4) != 0 1349 && strcmp (name, ".dynbss") != 0) 1350 { 1351 /* It's not one of our sections, so don't allocate space. */ 1352 continue; 1353 } 1354 1355 if (s->size == 0) 1356 { 1357 /* If we don't need this section, strip it from the 1358 output file. This is mostly to handle .rela.bss and 1359 .rela.plt. We must create both sections in 1360 create_dynamic_sections, because they must be created 1361 before the linker maps input sections to output 1362 sections. The linker does that before 1363 adjust_dynamic_symbol is called, and it is that 1364 function which decides whether anything needs to go 1365 into these sections. */ 1366 s->flags |= SEC_EXCLUDE; 1367 continue; 1368 } 1369 1370 if ((s->flags & SEC_HAS_CONTENTS) == 0) 1371 continue; 1372 1373 /* Allocate memory for the section contents. */ 1374 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. 1375 Unused entries should be reclaimed before the section's contents 1376 are written out, but at the moment this does not happen. Thus in 1377 order to prevent writing out garbage, we initialise the section's 1378 contents to zero. */ 1379 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 1380 if (s->contents == NULL) 1381 return FALSE; 1382 } 1383 1384 if (elf_hash_table (info)->dynamic_sections_created) 1385 { 1386 /* Add some entries to the .dynamic section. We fill in the 1387 values later, in elf_m68k_finish_dynamic_sections, but we 1388 must add the entries now so that we get the correct size for 1389 the .dynamic section. The DT_DEBUG entry is filled in by the 1390 dynamic linker and used by the debugger. */ 1391 #define add_dynamic_entry(TAG, VAL) \ 1392 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1393 1394 if (!info->shared) 1395 { 1396 if (!add_dynamic_entry (DT_DEBUG, 0)) 1397 return FALSE; 1398 } 1399 1400 if (plt) 1401 { 1402 if (!add_dynamic_entry (DT_PLTGOT, 0) 1403 || !add_dynamic_entry (DT_PLTRELSZ, 0) 1404 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1405 || !add_dynamic_entry (DT_JMPREL, 0)) 1406 return FALSE; 1407 } 1408 1409 if (relocs) 1410 { 1411 if (!add_dynamic_entry (DT_RELA, 0) 1412 || !add_dynamic_entry (DT_RELASZ, 0) 1413 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 1414 return FALSE; 1415 } 1416 1417 if ((info->flags & DF_TEXTREL) != 0) 1418 { 1419 if (!add_dynamic_entry (DT_TEXTREL, 0)) 1420 return FALSE; 1421 } 1422 } 1423 #undef add_dynamic_entry 1424 1425 return TRUE; 1426 } 1427 1428 /* This function is called via elf_link_hash_traverse if we are 1429 creating a shared object. In the -Bsymbolic case it discards the 1430 space allocated to copy PC relative relocs against symbols which 1431 are defined in regular objects. For the normal shared case, it 1432 discards space for pc-relative relocs that have become local due to 1433 symbol visibility changes. We allocated space for them in the 1434 check_relocs routine, but we won't fill them in in the 1435 relocate_section routine. 1436 1437 We also check whether any of the remaining relocations apply 1438 against a readonly section, and set the DF_TEXTREL flag in this 1439 case. */ 1440 1441 static bfd_boolean 1442 elf_m68k_discard_copies (h, inf) 1443 struct elf_link_hash_entry *h; 1444 PTR inf; 1445 { 1446 struct bfd_link_info *info = (struct bfd_link_info *) inf; 1447 struct elf_m68k_pcrel_relocs_copied *s; 1448 1449 if (h->root.type == bfd_link_hash_warning) 1450 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1451 1452 if (!h->def_regular 1453 || (!info->symbolic 1454 && !h->forced_local)) 1455 { 1456 if ((info->flags & DF_TEXTREL) == 0) 1457 { 1458 /* Look for relocations against read-only sections. */ 1459 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 1460 s != NULL; 1461 s = s->next) 1462 if ((s->section->flags & SEC_READONLY) != 0) 1463 { 1464 info->flags |= DF_TEXTREL; 1465 break; 1466 } 1467 } 1468 1469 return TRUE; 1470 } 1471 1472 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 1473 s != NULL; 1474 s = s->next) 1475 s->section->size -= s->count * sizeof (Elf32_External_Rela); 1476 1477 return TRUE; 1478 } 1479 1480 /* Relocate an M68K ELF section. */ 1481 1482 static bfd_boolean 1483 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section, 1484 contents, relocs, local_syms, local_sections) 1485 bfd *output_bfd; 1486 struct bfd_link_info *info; 1487 bfd *input_bfd; 1488 asection *input_section; 1489 bfd_byte *contents; 1490 Elf_Internal_Rela *relocs; 1491 Elf_Internal_Sym *local_syms; 1492 asection **local_sections; 1493 { 1494 bfd *dynobj; 1495 Elf_Internal_Shdr *symtab_hdr; 1496 struct elf_link_hash_entry **sym_hashes; 1497 bfd_vma *local_got_offsets; 1498 asection *sgot; 1499 asection *splt; 1500 asection *sreloc; 1501 Elf_Internal_Rela *rel; 1502 Elf_Internal_Rela *relend; 1503 1504 if (info->relocatable) 1505 return TRUE; 1506 1507 dynobj = elf_hash_table (info)->dynobj; 1508 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1509 sym_hashes = elf_sym_hashes (input_bfd); 1510 local_got_offsets = elf_local_got_offsets (input_bfd); 1511 1512 sgot = NULL; 1513 splt = NULL; 1514 sreloc = NULL; 1515 1516 rel = relocs; 1517 relend = relocs + input_section->reloc_count; 1518 for (; rel < relend; rel++) 1519 { 1520 int r_type; 1521 reloc_howto_type *howto; 1522 unsigned long r_symndx; 1523 struct elf_link_hash_entry *h; 1524 Elf_Internal_Sym *sym; 1525 asection *sec; 1526 bfd_vma relocation; 1527 bfd_boolean unresolved_reloc; 1528 bfd_reloc_status_type r; 1529 1530 r_type = ELF32_R_TYPE (rel->r_info); 1531 if (r_type < 0 || r_type >= (int) R_68K_max) 1532 { 1533 bfd_set_error (bfd_error_bad_value); 1534 return FALSE; 1535 } 1536 howto = howto_table + r_type; 1537 1538 r_symndx = ELF32_R_SYM (rel->r_info); 1539 1540 h = NULL; 1541 sym = NULL; 1542 sec = NULL; 1543 unresolved_reloc = FALSE; 1544 1545 if (r_symndx < symtab_hdr->sh_info) 1546 { 1547 sym = local_syms + r_symndx; 1548 sec = local_sections[r_symndx]; 1549 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1550 } 1551 else 1552 { 1553 bfd_boolean warned; 1554 1555 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1556 r_symndx, symtab_hdr, sym_hashes, 1557 h, sec, relocation, 1558 unresolved_reloc, warned); 1559 } 1560 1561 switch (r_type) 1562 { 1563 case R_68K_GOT8: 1564 case R_68K_GOT16: 1565 case R_68K_GOT32: 1566 /* Relocation is to the address of the entry for this symbol 1567 in the global offset table. */ 1568 if (h != NULL 1569 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 1570 break; 1571 /* Fall through. */ 1572 case R_68K_GOT8O: 1573 case R_68K_GOT16O: 1574 case R_68K_GOT32O: 1575 /* Relocation is the offset of the entry for this symbol in 1576 the global offset table. */ 1577 1578 { 1579 bfd_vma off; 1580 1581 if (sgot == NULL) 1582 { 1583 sgot = bfd_get_section_by_name (dynobj, ".got"); 1584 BFD_ASSERT (sgot != NULL); 1585 } 1586 1587 if (h != NULL) 1588 { 1589 bfd_boolean dyn; 1590 1591 off = h->got.offset; 1592 BFD_ASSERT (off != (bfd_vma) -1); 1593 1594 dyn = elf_hash_table (info)->dynamic_sections_created; 1595 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 1596 || (info->shared 1597 && (info->symbolic 1598 || h->dynindx == -1 1599 || h->forced_local) 1600 && h->def_regular)) 1601 { 1602 /* This is actually a static link, or it is a 1603 -Bsymbolic link and the symbol is defined 1604 locally, or the symbol was forced to be local 1605 because of a version file.. We must initialize 1606 this entry in the global offset table. Since 1607 the offset must always be a multiple of 4, we 1608 use the least significant bit to record whether 1609 we have initialized it already. 1610 1611 When doing a dynamic link, we create a .rela.got 1612 relocation entry to initialize the value. This 1613 is done in the finish_dynamic_symbol routine. */ 1614 if ((off & 1) != 0) 1615 off &= ~1; 1616 else 1617 { 1618 bfd_put_32 (output_bfd, relocation, 1619 sgot->contents + off); 1620 h->got.offset |= 1; 1621 } 1622 } 1623 else 1624 unresolved_reloc = FALSE; 1625 } 1626 else 1627 { 1628 BFD_ASSERT (local_got_offsets != NULL 1629 && local_got_offsets[r_symndx] != (bfd_vma) -1); 1630 1631 off = local_got_offsets[r_symndx]; 1632 1633 /* The offset must always be a multiple of 4. We use 1634 the least significant bit to record whether we have 1635 already generated the necessary reloc. */ 1636 if ((off & 1) != 0) 1637 off &= ~1; 1638 else 1639 { 1640 bfd_put_32 (output_bfd, relocation, sgot->contents + off); 1641 1642 if (info->shared) 1643 { 1644 asection *s; 1645 Elf_Internal_Rela outrel; 1646 bfd_byte *loc; 1647 1648 s = bfd_get_section_by_name (dynobj, ".rela.got"); 1649 BFD_ASSERT (s != NULL); 1650 1651 outrel.r_offset = (sgot->output_section->vma 1652 + sgot->output_offset 1653 + off); 1654 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 1655 outrel.r_addend = relocation; 1656 loc = s->contents; 1657 loc += s->reloc_count++ * sizeof (Elf32_External_Rela); 1658 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 1659 } 1660 1661 local_got_offsets[r_symndx] |= 1; 1662 } 1663 } 1664 1665 relocation = sgot->output_offset + off; 1666 if (r_type == R_68K_GOT8O 1667 || r_type == R_68K_GOT16O 1668 || r_type == R_68K_GOT32O) 1669 { 1670 /* This relocation does not use the addend. */ 1671 rel->r_addend = 0; 1672 } 1673 else 1674 relocation += sgot->output_section->vma; 1675 } 1676 break; 1677 1678 case R_68K_PLT8: 1679 case R_68K_PLT16: 1680 case R_68K_PLT32: 1681 /* Relocation is to the entry for this symbol in the 1682 procedure linkage table. */ 1683 1684 /* Resolve a PLTxx reloc against a local symbol directly, 1685 without using the procedure linkage table. */ 1686 if (h == NULL) 1687 break; 1688 1689 if (h->plt.offset == (bfd_vma) -1 1690 || !elf_hash_table (info)->dynamic_sections_created) 1691 { 1692 /* We didn't make a PLT entry for this symbol. This 1693 happens when statically linking PIC code, or when 1694 using -Bsymbolic. */ 1695 break; 1696 } 1697 1698 if (splt == NULL) 1699 { 1700 splt = bfd_get_section_by_name (dynobj, ".plt"); 1701 BFD_ASSERT (splt != NULL); 1702 } 1703 1704 relocation = (splt->output_section->vma 1705 + splt->output_offset 1706 + h->plt.offset); 1707 unresolved_reloc = FALSE; 1708 break; 1709 1710 case R_68K_PLT8O: 1711 case R_68K_PLT16O: 1712 case R_68K_PLT32O: 1713 /* Relocation is the offset of the entry for this symbol in 1714 the procedure linkage table. */ 1715 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1); 1716 1717 if (splt == NULL) 1718 { 1719 splt = bfd_get_section_by_name (dynobj, ".plt"); 1720 BFD_ASSERT (splt != NULL); 1721 } 1722 1723 relocation = h->plt.offset; 1724 unresolved_reloc = FALSE; 1725 1726 /* This relocation does not use the addend. */ 1727 rel->r_addend = 0; 1728 1729 break; 1730 1731 case R_68K_PC8: 1732 case R_68K_PC16: 1733 case R_68K_PC32: 1734 if (h == NULL 1735 || (info->shared 1736 && h->forced_local)) 1737 break; 1738 /* Fall through. */ 1739 case R_68K_8: 1740 case R_68K_16: 1741 case R_68K_32: 1742 if (info->shared 1743 && r_symndx != 0 1744 && (input_section->flags & SEC_ALLOC) != 0 1745 && (h == NULL 1746 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 1747 || h->root.type != bfd_link_hash_undefweak) 1748 && ((r_type != R_68K_PC8 1749 && r_type != R_68K_PC16 1750 && r_type != R_68K_PC32) 1751 || (h != NULL 1752 && h->dynindx != -1 1753 && (!info->symbolic 1754 || !h->def_regular)))) 1755 { 1756 Elf_Internal_Rela outrel; 1757 bfd_byte *loc; 1758 bfd_boolean skip, relocate; 1759 1760 /* When generating a shared object, these relocations 1761 are copied into the output file to be resolved at run 1762 time. */ 1763 1764 skip = FALSE; 1765 relocate = FALSE; 1766 1767 outrel.r_offset = 1768 _bfd_elf_section_offset (output_bfd, info, input_section, 1769 rel->r_offset); 1770 if (outrel.r_offset == (bfd_vma) -1) 1771 skip = TRUE; 1772 else if (outrel.r_offset == (bfd_vma) -2) 1773 skip = TRUE, relocate = TRUE; 1774 outrel.r_offset += (input_section->output_section->vma 1775 + input_section->output_offset); 1776 1777 if (skip) 1778 memset (&outrel, 0, sizeof outrel); 1779 else if (h != NULL 1780 && h->dynindx != -1 1781 && (r_type == R_68K_PC8 1782 || r_type == R_68K_PC16 1783 || r_type == R_68K_PC32 1784 || !info->shared 1785 || !info->symbolic 1786 || !h->def_regular)) 1787 { 1788 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 1789 outrel.r_addend = rel->r_addend; 1790 } 1791 else 1792 { 1793 /* This symbol is local, or marked to become local. */ 1794 if (r_type == R_68K_32) 1795 { 1796 relocate = TRUE; 1797 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 1798 outrel.r_addend = relocation + rel->r_addend; 1799 } 1800 else 1801 { 1802 long indx; 1803 1804 if (bfd_is_abs_section (sec)) 1805 indx = 0; 1806 else if (sec == NULL || sec->owner == NULL) 1807 { 1808 bfd_set_error (bfd_error_bad_value); 1809 return FALSE; 1810 } 1811 else 1812 { 1813 asection *osec; 1814 1815 osec = sec->output_section; 1816 indx = elf_section_data (osec)->dynindx; 1817 BFD_ASSERT (indx > 0); 1818 } 1819 1820 outrel.r_info = ELF32_R_INFO (indx, r_type); 1821 outrel.r_addend = relocation + rel->r_addend; 1822 } 1823 } 1824 1825 sreloc = elf_section_data (input_section)->sreloc; 1826 if (sreloc == NULL) 1827 abort (); 1828 1829 loc = sreloc->contents; 1830 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 1831 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 1832 1833 /* This reloc will be computed at runtime, so there's no 1834 need to do anything now, except for R_68K_32 1835 relocations that have been turned into 1836 R_68K_RELATIVE. */ 1837 if (!relocate) 1838 continue; 1839 } 1840 1841 break; 1842 1843 case R_68K_GNU_VTINHERIT: 1844 case R_68K_GNU_VTENTRY: 1845 /* These are no-ops in the end. */ 1846 continue; 1847 1848 default: 1849 break; 1850 } 1851 1852 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 1853 because such sections are not SEC_ALLOC and thus ld.so will 1854 not process them. */ 1855 if (unresolved_reloc 1856 && !((input_section->flags & SEC_DEBUGGING) != 0 1857 && h->def_dynamic)) 1858 { 1859 (*_bfd_error_handler) 1860 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 1861 input_bfd, 1862 input_section, 1863 (long) rel->r_offset, 1864 howto->name, 1865 h->root.root.string); 1866 return FALSE; 1867 } 1868 1869 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 1870 contents, rel->r_offset, 1871 relocation, rel->r_addend); 1872 1873 if (r != bfd_reloc_ok) 1874 { 1875 const char *name; 1876 1877 if (h != NULL) 1878 name = h->root.root.string; 1879 else 1880 { 1881 name = bfd_elf_string_from_elf_section (input_bfd, 1882 symtab_hdr->sh_link, 1883 sym->st_name); 1884 if (name == NULL) 1885 return FALSE; 1886 if (*name == '\0') 1887 name = bfd_section_name (input_bfd, sec); 1888 } 1889 1890 if (r == bfd_reloc_overflow) 1891 { 1892 if (!(info->callbacks->reloc_overflow 1893 (info, (h ? &h->root : NULL), name, howto->name, 1894 (bfd_vma) 0, input_bfd, input_section, 1895 rel->r_offset))) 1896 return FALSE; 1897 } 1898 else 1899 { 1900 (*_bfd_error_handler) 1901 (_("%B(%A+0x%lx): reloc against `%s': error %d"), 1902 input_bfd, input_section, 1903 (long) rel->r_offset, name, (int) r); 1904 return FALSE; 1905 } 1906 } 1907 } 1908 1909 return TRUE; 1910 } 1911 1912 /* Finish up dynamic symbol handling. We set the contents of various 1913 dynamic sections here. */ 1914 1915 static bfd_boolean 1916 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym) 1917 bfd *output_bfd; 1918 struct bfd_link_info *info; 1919 struct elf_link_hash_entry *h; 1920 Elf_Internal_Sym *sym; 1921 { 1922 bfd *dynobj; 1923 int plt_off1, plt_off2, plt_off3; 1924 1925 dynobj = elf_hash_table (info)->dynobj; 1926 1927 if (h->plt.offset != (bfd_vma) -1) 1928 { 1929 asection *splt; 1930 asection *sgot; 1931 asection *srela; 1932 bfd_vma plt_index; 1933 bfd_vma got_offset; 1934 Elf_Internal_Rela rela; 1935 bfd_byte *loc; 1936 1937 /* This symbol has an entry in the procedure linkage table. Set 1938 it up. */ 1939 1940 BFD_ASSERT (h->dynindx != -1); 1941 1942 splt = bfd_get_section_by_name (dynobj, ".plt"); 1943 sgot = bfd_get_section_by_name (dynobj, ".got.plt"); 1944 srela = bfd_get_section_by_name (dynobj, ".rela.plt"); 1945 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); 1946 1947 /* Get the index in the procedure linkage table which 1948 corresponds to this symbol. This is the index of this symbol 1949 in all the symbols for which we are making plt entries. The 1950 first entry in the procedure linkage table is reserved. */ 1951 if (CPU32_FLAG (output_bfd)) 1952 plt_index = (h->plt.offset / PLT_CPU32_ENTRY_SIZE) - 1; 1953 else if (CFV4E_FLAG (output_bfd)) 1954 plt_index = (h->plt.offset / CFV4E_PLT_ENTRY_SIZE) - 1; 1955 else 1956 plt_index = (h->plt.offset / PLT_ENTRY_SIZE) - 1; 1957 1958 /* Get the offset into the .got table of the entry that 1959 corresponds to this function. Each .got entry is 4 bytes. 1960 The first three are reserved. */ 1961 got_offset = (plt_index + 3) * 4; 1962 1963 if (CPU32_FLAG (output_bfd)) 1964 { 1965 /* Fill in the entry in the procedure linkage table. */ 1966 memcpy (splt->contents + h->plt.offset, elf_cpu32_plt_entry, 1967 PLT_CPU32_ENTRY_SIZE); 1968 plt_off1 = 4; 1969 plt_off2 = 12; 1970 plt_off3 = 18; 1971 } 1972 else if (CFV4E_FLAG (output_bfd)) 1973 { 1974 memcpy (splt->contents + h->plt.offset, elf_cfv4e_plt_entry, 1975 CFV4E_PLT_ENTRY_SIZE); 1976 plt_off1 = 2; 1977 plt_off2 = 14; 1978 plt_off3 = 20; 1979 } 1980 else 1981 { 1982 /* Fill in the entry in the procedure linkage table. */ 1983 memcpy (splt->contents + h->plt.offset, elf_m68k_plt_entry, 1984 PLT_ENTRY_SIZE); 1985 plt_off1 = 4; 1986 plt_off2 = 10; 1987 plt_off3 = 16; 1988 } 1989 1990 /* The offset is relative to the first extension word. */ 1991 bfd_put_32 (output_bfd, 1992 sgot->output_section->vma 1993 + sgot->output_offset 1994 + got_offset 1995 - (splt->output_section->vma 1996 + h->plt.offset 1997 + (CFV4E_FLAG (output_bfd) ? 8 : 2)), 1998 splt->contents + h->plt.offset + plt_off1); 1999 2000 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), 2001 splt->contents + h->plt.offset + plt_off2); 2002 bfd_put_32 (output_bfd, - (h->plt.offset + plt_off3), 2003 splt->contents + h->plt.offset + plt_off3); 2004 2005 /* Fill in the entry in the global offset table. */ 2006 bfd_put_32 (output_bfd, 2007 (splt->output_section->vma 2008 + splt->output_offset 2009 + h->plt.offset 2010 + (CFV4E_FLAG (output_bfd) ? 12 : 8)), 2011 sgot->contents + got_offset); 2012 2013 /* Fill in the entry in the .rela.plt section. */ 2014 rela.r_offset = (sgot->output_section->vma 2015 + sgot->output_offset 2016 + got_offset); 2017 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); 2018 rela.r_addend = 0; 2019 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); 2020 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 2021 2022 if (!h->def_regular) 2023 { 2024 /* Mark the symbol as undefined, rather than as defined in 2025 the .plt section. Leave the value alone. */ 2026 sym->st_shndx = SHN_UNDEF; 2027 } 2028 } 2029 2030 if (h->got.offset != (bfd_vma) -1) 2031 { 2032 asection *sgot; 2033 asection *srela; 2034 Elf_Internal_Rela rela; 2035 bfd_byte *loc; 2036 2037 /* This symbol has an entry in the global offset table. Set it 2038 up. */ 2039 2040 sgot = bfd_get_section_by_name (dynobj, ".got"); 2041 srela = bfd_get_section_by_name (dynobj, ".rela.got"); 2042 BFD_ASSERT (sgot != NULL && srela != NULL); 2043 2044 rela.r_offset = (sgot->output_section->vma 2045 + sgot->output_offset 2046 + (h->got.offset &~ (bfd_vma) 1)); 2047 2048 /* If this is a -Bsymbolic link, and the symbol is defined 2049 locally, we just want to emit a RELATIVE reloc. Likewise if 2050 the symbol was forced to be local because of a version file. 2051 The entry in the global offset table will already have been 2052 initialized in the relocate_section function. */ 2053 if (info->shared 2054 && (info->symbolic 2055 || h->dynindx == -1 2056 || h->forced_local) 2057 && h->def_regular) 2058 { 2059 rela.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 2060 rela.r_addend = bfd_get_signed_32 (output_bfd, 2061 (sgot->contents 2062 + (h->got.offset &~ (bfd_vma) 1))); 2063 } 2064 else 2065 { 2066 bfd_put_32 (output_bfd, (bfd_vma) 0, 2067 sgot->contents + (h->got.offset &~ (bfd_vma) 1)); 2068 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); 2069 rela.r_addend = 0; 2070 } 2071 2072 loc = srela->contents; 2073 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); 2074 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 2075 } 2076 2077 if (h->needs_copy) 2078 { 2079 asection *s; 2080 Elf_Internal_Rela rela; 2081 bfd_byte *loc; 2082 2083 /* This symbol needs a copy reloc. Set it up. */ 2084 2085 BFD_ASSERT (h->dynindx != -1 2086 && (h->root.type == bfd_link_hash_defined 2087 || h->root.type == bfd_link_hash_defweak)); 2088 2089 s = bfd_get_section_by_name (h->root.u.def.section->owner, 2090 ".rela.bss"); 2091 BFD_ASSERT (s != NULL); 2092 2093 rela.r_offset = (h->root.u.def.value 2094 + h->root.u.def.section->output_section->vma 2095 + h->root.u.def.section->output_offset); 2096 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); 2097 rela.r_addend = 0; 2098 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 2099 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 2100 } 2101 2102 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 2103 if (strcmp (h->root.root.string, "_DYNAMIC") == 0 2104 || h == elf_hash_table (info)->hgot) 2105 sym->st_shndx = SHN_ABS; 2106 2107 return TRUE; 2108 } 2109 2110 /* Finish up the dynamic sections. */ 2111 2112 static bfd_boolean 2113 elf_m68k_finish_dynamic_sections (output_bfd, info) 2114 bfd *output_bfd; 2115 struct bfd_link_info *info; 2116 { 2117 bfd *dynobj; 2118 asection *sgot; 2119 asection *sdyn; 2120 2121 dynobj = elf_hash_table (info)->dynobj; 2122 2123 sgot = bfd_get_section_by_name (dynobj, ".got.plt"); 2124 BFD_ASSERT (sgot != NULL); 2125 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 2126 2127 if (elf_hash_table (info)->dynamic_sections_created) 2128 { 2129 asection *splt; 2130 Elf32_External_Dyn *dyncon, *dynconend; 2131 2132 splt = bfd_get_section_by_name (dynobj, ".plt"); 2133 BFD_ASSERT (splt != NULL && sdyn != NULL); 2134 2135 dyncon = (Elf32_External_Dyn *) sdyn->contents; 2136 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 2137 for (; dyncon < dynconend; dyncon++) 2138 { 2139 Elf_Internal_Dyn dyn; 2140 const char *name; 2141 asection *s; 2142 2143 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 2144 2145 switch (dyn.d_tag) 2146 { 2147 default: 2148 break; 2149 2150 case DT_PLTGOT: 2151 name = ".got"; 2152 goto get_vma; 2153 case DT_JMPREL: 2154 name = ".rela.plt"; 2155 get_vma: 2156 s = bfd_get_section_by_name (output_bfd, name); 2157 BFD_ASSERT (s != NULL); 2158 dyn.d_un.d_ptr = s->vma; 2159 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 2160 break; 2161 2162 case DT_PLTRELSZ: 2163 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 2164 BFD_ASSERT (s != NULL); 2165 dyn.d_un.d_val = s->size; 2166 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 2167 break; 2168 2169 case DT_RELASZ: 2170 /* The procedure linkage table relocs (DT_JMPREL) should 2171 not be included in the overall relocs (DT_RELA). 2172 Therefore, we override the DT_RELASZ entry here to 2173 make it not include the JMPREL relocs. Since the 2174 linker script arranges for .rela.plt to follow all 2175 other relocation sections, we don't have to worry 2176 about changing the DT_RELA entry. */ 2177 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 2178 if (s != NULL) 2179 dyn.d_un.d_val -= s->size; 2180 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 2181 break; 2182 } 2183 } 2184 2185 /* Fill in the first entry in the procedure linkage table. */ 2186 if (splt->size > 0) 2187 { 2188 if (CFV4E_FLAG (output_bfd)) 2189 { 2190 memcpy (splt->contents, elf_cfv4e_plt0_entry, CFV4E_PLT_ENTRY_SIZE); 2191 bfd_put_32 (output_bfd, 2192 (sgot->output_section->vma 2193 + sgot->output_offset + 4 2194 - (splt->output_section->vma + 2)), 2195 splt->contents + 2); 2196 bfd_put_32 (output_bfd, 2197 (sgot->output_section->vma 2198 + sgot->output_offset + 8 2199 - (splt->output_section->vma + 10) - 8), 2200 splt->contents + 12); 2201 elf_section_data (splt->output_section)->this_hdr.sh_entsize 2202 = CFV4E_PLT_ENTRY_SIZE; 2203 } 2204 else if (CPU32_FLAG (output_bfd)) 2205 { 2206 memcpy (splt->contents, elf_cpu32_plt0_entry, PLT_CPU32_ENTRY_SIZE); 2207 bfd_put_32 (output_bfd, 2208 (sgot->output_section->vma 2209 + sgot->output_offset + 4 2210 - (splt->output_section->vma + 2)), 2211 splt->contents + 4); 2212 bfd_put_32 (output_bfd, 2213 (sgot->output_section->vma 2214 + sgot->output_offset + 8 2215 - (splt->output_section->vma + 10)), 2216 splt->contents + 12); 2217 elf_section_data (splt->output_section)->this_hdr.sh_entsize 2218 = PLT_CPU32_ENTRY_SIZE; 2219 } 2220 else 2221 { 2222 memcpy (splt->contents, elf_m68k_plt0_entry, PLT_ENTRY_SIZE); 2223 bfd_put_32 (output_bfd, 2224 (sgot->output_section->vma 2225 + sgot->output_offset + 4 2226 - (splt->output_section->vma + 2)), 2227 splt->contents + 4); 2228 bfd_put_32 (output_bfd, 2229 (sgot->output_section->vma 2230 + sgot->output_offset + 8 2231 - (splt->output_section->vma + 10)), 2232 splt->contents + 12); 2233 elf_section_data (splt->output_section)->this_hdr.sh_entsize 2234 = PLT_ENTRY_SIZE; 2235 } 2236 } 2237 } 2238 2239 /* Fill in the first three entries in the global offset table. */ 2240 if (sgot->size > 0) 2241 { 2242 if (sdyn == NULL) 2243 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 2244 else 2245 bfd_put_32 (output_bfd, 2246 sdyn->output_section->vma + sdyn->output_offset, 2247 sgot->contents); 2248 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 2249 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 2250 } 2251 2252 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 2253 2254 return TRUE; 2255 } 2256 2257 /* Given a .data section and a .emreloc in-memory section, store 2258 relocation information into the .emreloc section which can be 2259 used at runtime to relocate the section. This is called by the 2260 linker when the --embedded-relocs switch is used. This is called 2261 after the add_symbols entry point has been called for all the 2262 objects, and before the final_link entry point is called. */ 2263 2264 bfd_boolean 2265 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) 2266 bfd *abfd; 2267 struct bfd_link_info *info; 2268 asection *datasec; 2269 asection *relsec; 2270 char **errmsg; 2271 { 2272 Elf_Internal_Shdr *symtab_hdr; 2273 Elf_Internal_Sym *isymbuf = NULL; 2274 Elf_Internal_Rela *internal_relocs = NULL; 2275 Elf_Internal_Rela *irel, *irelend; 2276 bfd_byte *p; 2277 bfd_size_type amt; 2278 2279 BFD_ASSERT (! info->relocatable); 2280 2281 *errmsg = NULL; 2282 2283 if (datasec->reloc_count == 0) 2284 return TRUE; 2285 2286 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2287 2288 /* Get a copy of the native relocations. */ 2289 internal_relocs = (_bfd_elf_link_read_relocs 2290 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL, 2291 info->keep_memory)); 2292 if (internal_relocs == NULL) 2293 goto error_return; 2294 2295 amt = (bfd_size_type) datasec->reloc_count * 12; 2296 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt); 2297 if (relsec->contents == NULL) 2298 goto error_return; 2299 2300 p = relsec->contents; 2301 2302 irelend = internal_relocs + datasec->reloc_count; 2303 for (irel = internal_relocs; irel < irelend; irel++, p += 12) 2304 { 2305 asection *targetsec; 2306 2307 /* We are going to write a four byte longword into the runtime 2308 reloc section. The longword will be the address in the data 2309 section which must be relocated. It is followed by the name 2310 of the target section NUL-padded or truncated to 8 2311 characters. */ 2312 2313 /* We can only relocate absolute longword relocs at run time. */ 2314 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32) 2315 { 2316 *errmsg = _("unsupported reloc type"); 2317 bfd_set_error (bfd_error_bad_value); 2318 goto error_return; 2319 } 2320 2321 /* Get the target section referred to by the reloc. */ 2322 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2323 { 2324 /* A local symbol. */ 2325 Elf_Internal_Sym *isym; 2326 2327 /* Read this BFD's local symbols if we haven't done so already. */ 2328 if (isymbuf == NULL) 2329 { 2330 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2331 if (isymbuf == NULL) 2332 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2333 symtab_hdr->sh_info, 0, 2334 NULL, NULL, NULL); 2335 if (isymbuf == NULL) 2336 goto error_return; 2337 } 2338 2339 isym = isymbuf + ELF32_R_SYM (irel->r_info); 2340 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2341 } 2342 else 2343 { 2344 unsigned long indx; 2345 struct elf_link_hash_entry *h; 2346 2347 /* An external symbol. */ 2348 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2349 h = elf_sym_hashes (abfd)[indx]; 2350 BFD_ASSERT (h != NULL); 2351 if (h->root.type == bfd_link_hash_defined 2352 || h->root.type == bfd_link_hash_defweak) 2353 targetsec = h->root.u.def.section; 2354 else 2355 targetsec = NULL; 2356 } 2357 2358 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p); 2359 memset (p + 4, 0, 8); 2360 if (targetsec != NULL) 2361 strncpy ((char *) p + 4, targetsec->output_section->name, 8); 2362 } 2363 2364 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 2365 free (isymbuf); 2366 if (internal_relocs != NULL 2367 && elf_section_data (datasec)->relocs != internal_relocs) 2368 free (internal_relocs); 2369 return TRUE; 2370 2371 error_return: 2372 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 2373 free (isymbuf); 2374 if (internal_relocs != NULL 2375 && elf_section_data (datasec)->relocs != internal_relocs) 2376 free (internal_relocs); 2377 return FALSE; 2378 } 2379 2380 static enum elf_reloc_type_class 2381 elf32_m68k_reloc_type_class (rela) 2382 const Elf_Internal_Rela *rela; 2383 { 2384 switch ((int) ELF32_R_TYPE (rela->r_info)) 2385 { 2386 case R_68K_RELATIVE: 2387 return reloc_class_relative; 2388 case R_68K_JMP_SLOT: 2389 return reloc_class_plt; 2390 case R_68K_COPY: 2391 return reloc_class_copy; 2392 default: 2393 return reloc_class_normal; 2394 } 2395 } 2396 2397 /* Return address for Ith PLT stub in section PLT, for relocation REL 2398 or (bfd_vma) -1 if it should not be included. */ 2399 2400 static bfd_vma 2401 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt, 2402 const arelent *rel ATTRIBUTE_UNUSED) 2403 { 2404 if (CPU32_FLAG (plt->owner)) 2405 return plt->vma + (i + 1) * PLT_CPU32_ENTRY_SIZE; 2406 return plt->vma + (i + 1) * PLT_ENTRY_SIZE; 2407 } 2408 2409 #define TARGET_BIG_SYM bfd_elf32_m68k_vec 2410 #define TARGET_BIG_NAME "elf32-m68k" 2411 #define ELF_MACHINE_CODE EM_68K 2412 #define ELF_MAXPAGESIZE 0x2000 2413 #define elf_backend_create_dynamic_sections \ 2414 _bfd_elf_create_dynamic_sections 2415 #define bfd_elf32_bfd_link_hash_table_create \ 2416 elf_m68k_link_hash_table_create 2417 #define bfd_elf32_bfd_final_link bfd_elf_gc_common_final_link 2418 2419 #define elf_backend_check_relocs elf_m68k_check_relocs 2420 #define elf_backend_adjust_dynamic_symbol \ 2421 elf_m68k_adjust_dynamic_symbol 2422 #define elf_backend_size_dynamic_sections \ 2423 elf_m68k_size_dynamic_sections 2424 #define elf_backend_relocate_section elf_m68k_relocate_section 2425 #define elf_backend_finish_dynamic_symbol \ 2426 elf_m68k_finish_dynamic_symbol 2427 #define elf_backend_finish_dynamic_sections \ 2428 elf_m68k_finish_dynamic_sections 2429 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook 2430 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook 2431 #define bfd_elf32_bfd_merge_private_bfd_data \ 2432 elf32_m68k_merge_private_bfd_data 2433 #define bfd_elf32_bfd_set_private_flags \ 2434 elf32_m68k_set_private_flags 2435 #define bfd_elf32_bfd_print_private_bfd_data \ 2436 elf32_m68k_print_private_bfd_data 2437 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class 2438 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val 2439 #define elf_backend_object_p elf32_m68k_object_p 2440 2441 #define elf_backend_can_gc_sections 1 2442 #define elf_backend_can_refcount 1 2443 #define elf_backend_want_got_plt 1 2444 #define elf_backend_plt_readonly 1 2445 #define elf_backend_want_plt_sym 0 2446 #define elf_backend_got_header_size 12 2447 #define elf_backend_rela_normal 1 2448 2449 #include "elf32-target.h" 2450