1 /* hash.c -- hash table routines for BFD 2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005, 3 2006 Free Software Foundation, Inc. 4 Written by Steve Chamberlain <sac@cygnus.com> 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 21 22 #include "bfd.h" 23 #include "sysdep.h" 24 #include "libbfd.h" 25 #include "objalloc.h" 26 #include "libiberty.h" 27 28 /* 29 SECTION 30 Hash Tables 31 32 @cindex Hash tables 33 BFD provides a simple set of hash table functions. Routines 34 are provided to initialize a hash table, to free a hash table, 35 to look up a string in a hash table and optionally create an 36 entry for it, and to traverse a hash table. There is 37 currently no routine to delete an string from a hash table. 38 39 The basic hash table does not permit any data to be stored 40 with a string. However, a hash table is designed to present a 41 base class from which other types of hash tables may be 42 derived. These derived types may store additional information 43 with the string. Hash tables were implemented in this way, 44 rather than simply providing a data pointer in a hash table 45 entry, because they were designed for use by the linker back 46 ends. The linker may create thousands of hash table entries, 47 and the overhead of allocating private data and storing and 48 following pointers becomes noticeable. 49 50 The basic hash table code is in <<hash.c>>. 51 52 @menu 53 @* Creating and Freeing a Hash Table:: 54 @* Looking Up or Entering a String:: 55 @* Traversing a Hash Table:: 56 @* Deriving a New Hash Table Type:: 57 @end menu 58 59 INODE 60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables 61 SUBSECTION 62 Creating and freeing a hash table 63 64 @findex bfd_hash_table_init 65 @findex bfd_hash_table_init_n 66 To create a hash table, create an instance of a <<struct 67 bfd_hash_table>> (defined in <<bfd.h>>) and call 68 <<bfd_hash_table_init>> (if you know approximately how many 69 entries you will need, the function <<bfd_hash_table_init_n>>, 70 which takes a @var{size} argument, may be used). 71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of 72 error occurs. 73 74 @findex bfd_hash_newfunc 75 The function <<bfd_hash_table_init>> take as an argument a 76 function to use to create new entries. For a basic hash 77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving 78 a New Hash Table Type}, for why you would want to use a 79 different value for this argument. 80 81 @findex bfd_hash_allocate 82 <<bfd_hash_table_init>> will create an objalloc which will be 83 used to allocate new entries. You may allocate memory on this 84 objalloc using <<bfd_hash_allocate>>. 85 86 @findex bfd_hash_table_free 87 Use <<bfd_hash_table_free>> to free up all the memory that has 88 been allocated for a hash table. This will not free up the 89 <<struct bfd_hash_table>> itself, which you must provide. 90 91 @findex bfd_hash_set_default_size 92 Use <<bfd_hash_set_default_size>> to set the default size of 93 hash table to use. 94 95 INODE 96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables 97 SUBSECTION 98 Looking up or entering a string 99 100 @findex bfd_hash_lookup 101 The function <<bfd_hash_lookup>> is used both to look up a 102 string in the hash table and to create a new entry. 103 104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>> 105 will look up a string. If the string is found, it will 106 returns a pointer to a <<struct bfd_hash_entry>>. If the 107 string is not found in the table <<bfd_hash_lookup>> will 108 return <<NULL>>. You should not modify any of the fields in 109 the returns <<struct bfd_hash_entry>>. 110 111 If the @var{create} argument is <<TRUE>>, the string will be 112 entered into the hash table if it is not already there. 113 Either way a pointer to a <<struct bfd_hash_entry>> will be 114 returned, either to the existing structure or to a newly 115 created one. In this case, a <<NULL>> return means that an 116 error occurred. 117 118 If the @var{create} argument is <<TRUE>>, and a new entry is 119 created, the @var{copy} argument is used to decide whether to 120 copy the string onto the hash table objalloc or not. If 121 @var{copy} is passed as <<FALSE>>, you must be careful not to 122 deallocate or modify the string as long as the hash table 123 exists. 124 125 INODE 126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables 127 SUBSECTION 128 Traversing a hash table 129 130 @findex bfd_hash_traverse 131 The function <<bfd_hash_traverse>> may be used to traverse a 132 hash table, calling a function on each element. The traversal 133 is done in a random order. 134 135 <<bfd_hash_traverse>> takes as arguments a function and a 136 generic <<void *>> pointer. The function is called with a 137 hash table entry (a <<struct bfd_hash_entry *>>) and the 138 generic pointer passed to <<bfd_hash_traverse>>. The function 139 must return a <<boolean>> value, which indicates whether to 140 continue traversing the hash table. If the function returns 141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and 142 return immediately. 143 144 INODE 145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables 146 SUBSECTION 147 Deriving a new hash table type 148 149 Many uses of hash tables want to store additional information 150 which each entry in the hash table. Some also find it 151 convenient to store additional information with the hash table 152 itself. This may be done using a derived hash table. 153 154 Since C is not an object oriented language, creating a derived 155 hash table requires sticking together some boilerplate 156 routines with a few differences specific to the type of hash 157 table you want to create. 158 159 An example of a derived hash table is the linker hash table. 160 The structures for this are defined in <<bfdlink.h>>. The 161 functions are in <<linker.c>>. 162 163 You may also derive a hash table from an already derived hash 164 table. For example, the a.out linker backend code uses a hash 165 table derived from the linker hash table. 166 167 @menu 168 @* Define the Derived Structures:: 169 @* Write the Derived Creation Routine:: 170 @* Write Other Derived Routines:: 171 @end menu 172 173 INODE 174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type 175 SUBSUBSECTION 176 Define the derived structures 177 178 You must define a structure for an entry in the hash table, 179 and a structure for the hash table itself. 180 181 The first field in the structure for an entry in the hash 182 table must be of the type used for an entry in the hash table 183 you are deriving from. If you are deriving from a basic hash 184 table this is <<struct bfd_hash_entry>>, which is defined in 185 <<bfd.h>>. The first field in the structure for the hash 186 table itself must be of the type of the hash table you are 187 deriving from itself. If you are deriving from a basic hash 188 table, this is <<struct bfd_hash_table>>. 189 190 For example, the linker hash table defines <<struct 191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field, 192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly, 193 the first field in <<struct bfd_link_hash_table>>, <<table>>, 194 is of type <<struct bfd_hash_table>>. 195 196 INODE 197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type 198 SUBSUBSECTION 199 Write the derived creation routine 200 201 You must write a routine which will create and initialize an 202 entry in the hash table. This routine is passed as the 203 function argument to <<bfd_hash_table_init>>. 204 205 In order to permit other hash tables to be derived from the 206 hash table you are creating, this routine must be written in a 207 standard way. 208 209 The first argument to the creation routine is a pointer to a 210 hash table entry. This may be <<NULL>>, in which case the 211 routine should allocate the right amount of space. Otherwise 212 the space has already been allocated by a hash table type 213 derived from this one. 214 215 After allocating space, the creation routine must call the 216 creation routine of the hash table type it is derived from, 217 passing in a pointer to the space it just allocated. This 218 will initialize any fields used by the base hash table. 219 220 Finally the creation routine must initialize any local fields 221 for the new hash table type. 222 223 Here is a boilerplate example of a creation routine. 224 @var{function_name} is the name of the routine. 225 @var{entry_type} is the type of an entry in the hash table you 226 are creating. @var{base_newfunc} is the name of the creation 227 routine of the hash table type your hash table is derived 228 from. 229 230 EXAMPLE 231 232 .struct bfd_hash_entry * 233 .@var{function_name} (struct bfd_hash_entry *entry, 234 . struct bfd_hash_table *table, 235 . const char *string) 236 .{ 237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry; 238 . 239 . {* Allocate the structure if it has not already been allocated by a 240 . derived class. *} 241 . if (ret == NULL) 242 . { 243 . ret = bfd_hash_allocate (table, sizeof (* ret)); 244 . if (ret == NULL) 245 . return NULL; 246 . } 247 . 248 . {* Call the allocation method of the base class. *} 249 . ret = ((@var{entry_type} *) 250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string)); 251 . 252 . {* Initialize the local fields here. *} 253 . 254 . return (struct bfd_hash_entry *) ret; 255 .} 256 257 DESCRIPTION 258 The creation routine for the linker hash table, which is in 259 <<linker.c>>, looks just like this example. 260 @var{function_name} is <<_bfd_link_hash_newfunc>>. 261 @var{entry_type} is <<struct bfd_link_hash_entry>>. 262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation 263 routine for a basic hash table. 264 265 <<_bfd_link_hash_newfunc>> also initializes the local fields 266 in a linker hash table entry: <<type>>, <<written>> and 267 <<next>>. 268 269 INODE 270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type 271 SUBSUBSECTION 272 Write other derived routines 273 274 You will want to write other routines for your new hash table, 275 as well. 276 277 You will want an initialization routine which calls the 278 initialization routine of the hash table you are deriving from 279 and initializes any other local fields. For the linker hash 280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>. 281 282 You will want a lookup routine which calls the lookup routine 283 of the hash table you are deriving from and casts the result. 284 The linker hash table uses <<bfd_link_hash_lookup>> in 285 <<linker.c>> (this actually takes an additional argument which 286 it uses to decide how to return the looked up value). 287 288 You may want a traversal routine. This should just call the 289 traversal routine of the hash table you are deriving from with 290 appropriate casts. The linker hash table uses 291 <<bfd_link_hash_traverse>> in <<linker.c>>. 292 293 These routines may simply be defined as macros. For example, 294 the a.out backend linker hash table, which is derived from the 295 linker hash table, uses macros for the lookup and traversal 296 routines. These are <<aout_link_hash_lookup>> and 297 <<aout_link_hash_traverse>> in aoutx.h. 298 */ 299 300 /* The default number of entries to use when creating a hash table. */ 301 #define DEFAULT_SIZE 4051 302 static size_t bfd_default_hash_table_size = DEFAULT_SIZE; 303 304 /* Create a new hash table, given a number of entries. */ 305 306 bfd_boolean 307 bfd_hash_table_init_n (struct bfd_hash_table *table, 308 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 309 struct bfd_hash_table *, 310 const char *), 311 unsigned int entsize, 312 unsigned int size) 313 { 314 unsigned int alloc; 315 316 alloc = size * sizeof (struct bfd_hash_entry *); 317 318 table->memory = (void *) objalloc_create (); 319 if (table->memory == NULL) 320 { 321 bfd_set_error (bfd_error_no_memory); 322 return FALSE; 323 } 324 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc); 325 if (table->table == NULL) 326 { 327 bfd_set_error (bfd_error_no_memory); 328 return FALSE; 329 } 330 memset ((void *) table->table, 0, alloc); 331 table->size = size; 332 table->entsize = entsize; 333 table->newfunc = newfunc; 334 return TRUE; 335 } 336 337 /* Create a new hash table with the default number of entries. */ 338 339 bfd_boolean 340 bfd_hash_table_init (struct bfd_hash_table *table, 341 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 342 struct bfd_hash_table *, 343 const char *), 344 unsigned int entsize) 345 { 346 return bfd_hash_table_init_n (table, newfunc, entsize, 347 bfd_default_hash_table_size); 348 } 349 350 /* Free a hash table. */ 351 352 void 353 bfd_hash_table_free (struct bfd_hash_table *table) 354 { 355 objalloc_free (table->memory); 356 table->memory = NULL; 357 } 358 359 /* Look up a string in a hash table. */ 360 361 struct bfd_hash_entry * 362 bfd_hash_lookup (struct bfd_hash_table *table, 363 const char *string, 364 bfd_boolean create, 365 bfd_boolean copy) 366 { 367 const unsigned char *s; 368 unsigned long hash; 369 unsigned int c; 370 struct bfd_hash_entry *hashp; 371 unsigned int len; 372 unsigned int index; 373 374 hash = 0; 375 len = 0; 376 s = (const unsigned char *) string; 377 while ((c = *s++) != '\0') 378 { 379 hash += c + (c << 17); 380 hash ^= hash >> 2; 381 } 382 len = (s - (const unsigned char *) string) - 1; 383 hash += len + (len << 17); 384 hash ^= hash >> 2; 385 386 index = hash % table->size; 387 for (hashp = table->table[index]; 388 hashp != NULL; 389 hashp = hashp->next) 390 { 391 if (hashp->hash == hash 392 && strcmp (hashp->string, string) == 0) 393 return hashp; 394 } 395 396 if (! create) 397 return NULL; 398 399 hashp = (*table->newfunc) (NULL, table, string); 400 if (hashp == NULL) 401 return NULL; 402 if (copy) 403 { 404 char *new; 405 406 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1); 407 if (!new) 408 { 409 bfd_set_error (bfd_error_no_memory); 410 return NULL; 411 } 412 memcpy (new, string, len + 1); 413 string = new; 414 } 415 hashp->string = string; 416 hashp->hash = hash; 417 hashp->next = table->table[index]; 418 table->table[index] = hashp; 419 420 return hashp; 421 } 422 423 /* Replace an entry in a hash table. */ 424 425 void 426 bfd_hash_replace (struct bfd_hash_table *table, 427 struct bfd_hash_entry *old, 428 struct bfd_hash_entry *nw) 429 { 430 unsigned int index; 431 struct bfd_hash_entry **pph; 432 433 index = old->hash % table->size; 434 for (pph = &table->table[index]; 435 (*pph) != NULL; 436 pph = &(*pph)->next) 437 { 438 if (*pph == old) 439 { 440 *pph = nw; 441 return; 442 } 443 } 444 445 abort (); 446 } 447 448 /* Allocate space in a hash table. */ 449 450 void * 451 bfd_hash_allocate (struct bfd_hash_table *table, 452 unsigned int size) 453 { 454 void * ret; 455 456 ret = objalloc_alloc ((struct objalloc *) table->memory, size); 457 if (ret == NULL && size != 0) 458 bfd_set_error (bfd_error_no_memory); 459 return ret; 460 } 461 462 /* Base method for creating a new hash table entry. */ 463 464 struct bfd_hash_entry * 465 bfd_hash_newfunc (struct bfd_hash_entry *entry, 466 struct bfd_hash_table *table, 467 const char *string ATTRIBUTE_UNUSED) 468 { 469 if (entry == NULL) 470 entry = bfd_hash_allocate (table, sizeof (* entry)); 471 return entry; 472 } 473 474 /* Traverse a hash table. */ 475 476 void 477 bfd_hash_traverse (struct bfd_hash_table *table, 478 bfd_boolean (*func) (struct bfd_hash_entry *, void *), 479 void * info) 480 { 481 unsigned int i; 482 483 for (i = 0; i < table->size; i++) 484 { 485 struct bfd_hash_entry *p; 486 487 for (p = table->table[i]; p != NULL; p = p->next) 488 if (! (*func) (p, info)) 489 return; 490 } 491 } 492 493 void 494 bfd_hash_set_default_size (bfd_size_type hash_size) 495 { 496 /* Extend this prime list if you want more granularity of hash table size. */ 497 static const bfd_size_type hash_size_primes[] = 498 { 499 251, 509, 1021, 2039, 4051, 8599, 16699, 32749 500 }; 501 size_t index; 502 503 /* Work out best prime number near the hash_size. */ 504 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index) 505 if (hash_size <= hash_size_primes[index]) 506 break; 507 508 bfd_default_hash_table_size = hash_size_primes[index]; 509 } 510 511 /* A few different object file formats (a.out, COFF, ELF) use a string 512 table. These functions support adding strings to a string table, 513 returning the byte offset, and writing out the table. 514 515 Possible improvements: 516 + look for strings matching trailing substrings of other strings 517 + better data structures? balanced trees? 518 + look at reducing memory use elsewhere -- maybe if we didn't have 519 to construct the entire symbol table at once, we could get by 520 with smaller amounts of VM? (What effect does that have on the 521 string table reductions?) */ 522 523 /* An entry in the strtab hash table. */ 524 525 struct strtab_hash_entry 526 { 527 struct bfd_hash_entry root; 528 /* Index in string table. */ 529 bfd_size_type index; 530 /* Next string in strtab. */ 531 struct strtab_hash_entry *next; 532 }; 533 534 /* The strtab hash table. */ 535 536 struct bfd_strtab_hash 537 { 538 struct bfd_hash_table table; 539 /* Size of strtab--also next available index. */ 540 bfd_size_type size; 541 /* First string in strtab. */ 542 struct strtab_hash_entry *first; 543 /* Last string in strtab. */ 544 struct strtab_hash_entry *last; 545 /* Whether to precede strings with a two byte length, as in the 546 XCOFF .debug section. */ 547 bfd_boolean xcoff; 548 }; 549 550 /* Routine to create an entry in a strtab. */ 551 552 static struct bfd_hash_entry * 553 strtab_hash_newfunc (struct bfd_hash_entry *entry, 554 struct bfd_hash_table *table, 555 const char *string) 556 { 557 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry; 558 559 /* Allocate the structure if it has not already been allocated by a 560 subclass. */ 561 if (ret == NULL) 562 ret = bfd_hash_allocate (table, sizeof (* ret)); 563 if (ret == NULL) 564 return NULL; 565 566 /* Call the allocation method of the superclass. */ 567 ret = (struct strtab_hash_entry *) 568 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string); 569 570 if (ret) 571 { 572 /* Initialize the local fields. */ 573 ret->index = (bfd_size_type) -1; 574 ret->next = NULL; 575 } 576 577 return (struct bfd_hash_entry *) ret; 578 } 579 580 /* Look up an entry in an strtab. */ 581 582 #define strtab_hash_lookup(t, string, create, copy) \ 583 ((struct strtab_hash_entry *) \ 584 bfd_hash_lookup (&(t)->table, (string), (create), (copy))) 585 586 /* Create a new strtab. */ 587 588 struct bfd_strtab_hash * 589 _bfd_stringtab_init (void) 590 { 591 struct bfd_strtab_hash *table; 592 bfd_size_type amt = sizeof (* table); 593 594 table = bfd_malloc (amt); 595 if (table == NULL) 596 return NULL; 597 598 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc, 599 sizeof (struct strtab_hash_entry))) 600 { 601 free (table); 602 return NULL; 603 } 604 605 table->size = 0; 606 table->first = NULL; 607 table->last = NULL; 608 table->xcoff = FALSE; 609 610 return table; 611 } 612 613 /* Create a new strtab in which the strings are output in the format 614 used in the XCOFF .debug section: a two byte length precedes each 615 string. */ 616 617 struct bfd_strtab_hash * 618 _bfd_xcoff_stringtab_init (void) 619 { 620 struct bfd_strtab_hash *ret; 621 622 ret = _bfd_stringtab_init (); 623 if (ret != NULL) 624 ret->xcoff = TRUE; 625 return ret; 626 } 627 628 /* Free a strtab. */ 629 630 void 631 _bfd_stringtab_free (struct bfd_strtab_hash *table) 632 { 633 bfd_hash_table_free (&table->table); 634 free (table); 635 } 636 637 /* Get the index of a string in a strtab, adding it if it is not 638 already present. If HASH is FALSE, we don't really use the hash 639 table, and we don't eliminate duplicate strings. */ 640 641 bfd_size_type 642 _bfd_stringtab_add (struct bfd_strtab_hash *tab, 643 const char *str, 644 bfd_boolean hash, 645 bfd_boolean copy) 646 { 647 struct strtab_hash_entry *entry; 648 649 if (hash) 650 { 651 entry = strtab_hash_lookup (tab, str, TRUE, copy); 652 if (entry == NULL) 653 return (bfd_size_type) -1; 654 } 655 else 656 { 657 entry = bfd_hash_allocate (&tab->table, sizeof (* entry)); 658 if (entry == NULL) 659 return (bfd_size_type) -1; 660 if (! copy) 661 entry->root.string = str; 662 else 663 { 664 char *n; 665 666 n = bfd_hash_allocate (&tab->table, strlen (str) + 1); 667 if (n == NULL) 668 return (bfd_size_type) -1; 669 entry->root.string = n; 670 } 671 entry->index = (bfd_size_type) -1; 672 entry->next = NULL; 673 } 674 675 if (entry->index == (bfd_size_type) -1) 676 { 677 entry->index = tab->size; 678 tab->size += strlen (str) + 1; 679 if (tab->xcoff) 680 { 681 entry->index += 2; 682 tab->size += 2; 683 } 684 if (tab->first == NULL) 685 tab->first = entry; 686 else 687 tab->last->next = entry; 688 tab->last = entry; 689 } 690 691 return entry->index; 692 } 693 694 /* Get the number of bytes in a strtab. */ 695 696 bfd_size_type 697 _bfd_stringtab_size (struct bfd_strtab_hash *tab) 698 { 699 return tab->size; 700 } 701 702 /* Write out a strtab. ABFD must already be at the right location in 703 the file. */ 704 705 bfd_boolean 706 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab) 707 { 708 bfd_boolean xcoff; 709 struct strtab_hash_entry *entry; 710 711 xcoff = tab->xcoff; 712 713 for (entry = tab->first; entry != NULL; entry = entry->next) 714 { 715 const char *str; 716 size_t len; 717 718 str = entry->root.string; 719 len = strlen (str) + 1; 720 721 if (xcoff) 722 { 723 bfd_byte buf[2]; 724 725 /* The output length includes the null byte. */ 726 bfd_put_16 (abfd, (bfd_vma) len, buf); 727 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2) 728 return FALSE; 729 } 730 731 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len) 732 return FALSE; 733 } 734 735 return TRUE; 736 } 737