xref: /openbsd/gnu/usr.bin/binutils-2.17/bfd/hash.c (revision 274d7c50)
1 /* hash.c -- hash table routines for BFD
2    Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3    2006 Free Software Foundation, Inc.
4    Written by Steve Chamberlain <sac@cygnus.com>
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
21 
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27 
28 /*
29 SECTION
30 	Hash Tables
31 
32 @cindex Hash tables
33 	BFD provides a simple set of hash table functions.  Routines
34 	are provided to initialize a hash table, to free a hash table,
35 	to look up a string in a hash table and optionally create an
36 	entry for it, and to traverse a hash table.  There is
37 	currently no routine to delete an string from a hash table.
38 
39 	The basic hash table does not permit any data to be stored
40 	with a string.  However, a hash table is designed to present a
41 	base class from which other types of hash tables may be
42 	derived.  These derived types may store additional information
43 	with the string.  Hash tables were implemented in this way,
44 	rather than simply providing a data pointer in a hash table
45 	entry, because they were designed for use by the linker back
46 	ends.  The linker may create thousands of hash table entries,
47 	and the overhead of allocating private data and storing and
48 	following pointers becomes noticeable.
49 
50 	The basic hash table code is in <<hash.c>>.
51 
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58 
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 	Creating and freeing a hash table
63 
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 	To create a hash table, create an instance of a <<struct
67 	bfd_hash_table>> (defined in <<bfd.h>>) and call
68 	<<bfd_hash_table_init>> (if you know approximately how many
69 	entries you will need, the function <<bfd_hash_table_init_n>>,
70 	which takes a @var{size} argument, may be used).
71 	<<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 	error occurs.
73 
74 @findex bfd_hash_newfunc
75 	The function <<bfd_hash_table_init>> take as an argument a
76 	function to use to create new entries.  For a basic hash
77 	table, use the function <<bfd_hash_newfunc>>.  @xref{Deriving
78 	a New Hash Table Type}, for why you would want to use a
79 	different value for this argument.
80 
81 @findex bfd_hash_allocate
82 	<<bfd_hash_table_init>> will create an objalloc which will be
83 	used to allocate new entries.  You may allocate memory on this
84 	objalloc using <<bfd_hash_allocate>>.
85 
86 @findex bfd_hash_table_free
87 	Use <<bfd_hash_table_free>> to free up all the memory that has
88 	been allocated for a hash table.  This will not free up the
89 	<<struct bfd_hash_table>> itself, which you must provide.
90 
91 @findex bfd_hash_set_default_size
92 	Use <<bfd_hash_set_default_size>> to set the default size of
93 	hash table to use.
94 
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 	Looking up or entering a string
99 
100 @findex bfd_hash_lookup
101 	The function <<bfd_hash_lookup>> is used both to look up a
102 	string in the hash table and to create a new entry.
103 
104 	If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 	will look up a string.  If the string is found, it will
106 	returns a pointer to a <<struct bfd_hash_entry>>.  If the
107 	string is not found in the table <<bfd_hash_lookup>> will
108 	return <<NULL>>.  You should not modify any of the fields in
109 	the returns <<struct bfd_hash_entry>>.
110 
111 	If the @var{create} argument is <<TRUE>>, the string will be
112 	entered into the hash table if it is not already there.
113 	Either way a pointer to a <<struct bfd_hash_entry>> will be
114 	returned, either to the existing structure or to a newly
115 	created one.  In this case, a <<NULL>> return means that an
116 	error occurred.
117 
118 	If the @var{create} argument is <<TRUE>>, and a new entry is
119 	created, the @var{copy} argument is used to decide whether to
120 	copy the string onto the hash table objalloc or not.  If
121 	@var{copy} is passed as <<FALSE>>, you must be careful not to
122 	deallocate or modify the string as long as the hash table
123 	exists.
124 
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 	Traversing a hash table
129 
130 @findex bfd_hash_traverse
131 	The function <<bfd_hash_traverse>> may be used to traverse a
132 	hash table, calling a function on each element.  The traversal
133 	is done in a random order.
134 
135 	<<bfd_hash_traverse>> takes as arguments a function and a
136 	generic <<void *>> pointer.  The function is called with a
137 	hash table entry (a <<struct bfd_hash_entry *>>) and the
138 	generic pointer passed to <<bfd_hash_traverse>>.  The function
139 	must return a <<boolean>> value, which indicates whether to
140 	continue traversing the hash table.  If the function returns
141 	<<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 	return immediately.
143 
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 	Deriving a new hash table type
148 
149 	Many uses of hash tables want to store additional information
150 	which each entry in the hash table.  Some also find it
151 	convenient to store additional information with the hash table
152 	itself.  This may be done using a derived hash table.
153 
154 	Since C is not an object oriented language, creating a derived
155 	hash table requires sticking together some boilerplate
156 	routines with a few differences specific to the type of hash
157 	table you want to create.
158 
159 	An example of a derived hash table is the linker hash table.
160 	The structures for this are defined in <<bfdlink.h>>.  The
161 	functions are in <<linker.c>>.
162 
163 	You may also derive a hash table from an already derived hash
164 	table.  For example, the a.out linker backend code uses a hash
165 	table derived from the linker hash table.
166 
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172 
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 	Define the derived structures
177 
178 	You must define a structure for an entry in the hash table,
179 	and a structure for the hash table itself.
180 
181 	The first field in the structure for an entry in the hash
182 	table must be of the type used for an entry in the hash table
183 	you are deriving from.  If you are deriving from a basic hash
184 	table this is <<struct bfd_hash_entry>>, which is defined in
185 	<<bfd.h>>.  The first field in the structure for the hash
186 	table itself must be of the type of the hash table you are
187 	deriving from itself.  If you are deriving from a basic hash
188 	table, this is <<struct bfd_hash_table>>.
189 
190 	For example, the linker hash table defines <<struct
191 	bfd_link_hash_entry>> (in <<bfdlink.h>>).  The first field,
192 	<<root>>, is of type <<struct bfd_hash_entry>>.  Similarly,
193 	the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 	is of type <<struct bfd_hash_table>>.
195 
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 	Write the derived creation routine
200 
201 	You must write a routine which will create and initialize an
202 	entry in the hash table.  This routine is passed as the
203 	function argument to <<bfd_hash_table_init>>.
204 
205 	In order to permit other hash tables to be derived from the
206 	hash table you are creating, this routine must be written in a
207 	standard way.
208 
209 	The first argument to the creation routine is a pointer to a
210 	hash table entry.  This may be <<NULL>>, in which case the
211 	routine should allocate the right amount of space.  Otherwise
212 	the space has already been allocated by a hash table type
213 	derived from this one.
214 
215 	After allocating space, the creation routine must call the
216 	creation routine of the hash table type it is derived from,
217 	passing in a pointer to the space it just allocated.  This
218 	will initialize any fields used by the base hash table.
219 
220 	Finally the creation routine must initialize any local fields
221 	for the new hash table type.
222 
223 	Here is a boilerplate example of a creation routine.
224 	@var{function_name} is the name of the routine.
225 	@var{entry_type} is the type of an entry in the hash table you
226 	are creating.  @var{base_newfunc} is the name of the creation
227 	routine of the hash table type your hash table is derived
228 	from.
229 
230 EXAMPLE
231 
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 .                     struct bfd_hash_table *table,
235 .                     const char *string)
236 .{
237 .  struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 .    derived class.  *}
241 .  if (ret == NULL)
242 .    {
243 .      ret = bfd_hash_allocate (table, sizeof (* ret));
244 .      if (ret == NULL)
245 .        return NULL;
246 .    }
247 .
248 . {* Call the allocation method of the base class.  *}
249 .  ret = ((@var{entry_type} *)
250 .	 @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here.  *}
253 .
254 .  return (struct bfd_hash_entry *) ret;
255 .}
256 
257 DESCRIPTION
258 	The creation routine for the linker hash table, which is in
259 	<<linker.c>>, looks just like this example.
260 	@var{function_name} is <<_bfd_link_hash_newfunc>>.
261 	@var{entry_type} is <<struct bfd_link_hash_entry>>.
262 	@var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 	routine for a basic hash table.
264 
265 	<<_bfd_link_hash_newfunc>> also initializes the local fields
266 	in a linker hash table entry: <<type>>, <<written>> and
267 	<<next>>.
268 
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 	Write other derived routines
273 
274 	You will want to write other routines for your new hash table,
275 	as well.
276 
277 	You will want an initialization routine which calls the
278 	initialization routine of the hash table you are deriving from
279 	and initializes any other local fields.  For the linker hash
280 	table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281 
282 	You will want a lookup routine which calls the lookup routine
283 	of the hash table you are deriving from and casts the result.
284 	The linker hash table uses <<bfd_link_hash_lookup>> in
285 	<<linker.c>> (this actually takes an additional argument which
286 	it uses to decide how to return the looked up value).
287 
288 	You may want a traversal routine.  This should just call the
289 	traversal routine of the hash table you are deriving from with
290 	appropriate casts.  The linker hash table uses
291 	<<bfd_link_hash_traverse>> in <<linker.c>>.
292 
293 	These routines may simply be defined as macros.  For example,
294 	the a.out backend linker hash table, which is derived from the
295 	linker hash table, uses macros for the lookup and traversal
296 	routines.  These are <<aout_link_hash_lookup>> and
297 	<<aout_link_hash_traverse>> in aoutx.h.
298 */
299 
300 /* The default number of entries to use when creating a hash table.  */
301 #define DEFAULT_SIZE 4051
302 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
303 
304 /* Create a new hash table, given a number of entries.  */
305 
306 bfd_boolean
307 bfd_hash_table_init_n (struct bfd_hash_table *table,
308 		       struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
309 							  struct bfd_hash_table *,
310 							  const char *),
311 		       unsigned int entsize,
312 		       unsigned int size)
313 {
314   unsigned int alloc;
315 
316   alloc = size * sizeof (struct bfd_hash_entry *);
317 
318   table->memory = (void *) objalloc_create ();
319   if (table->memory == NULL)
320     {
321       bfd_set_error (bfd_error_no_memory);
322       return FALSE;
323     }
324   table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
325   if (table->table == NULL)
326     {
327       bfd_set_error (bfd_error_no_memory);
328       return FALSE;
329     }
330   memset ((void *) table->table, 0, alloc);
331   table->size = size;
332   table->entsize = entsize;
333   table->newfunc = newfunc;
334   return TRUE;
335 }
336 
337 /* Create a new hash table with the default number of entries.  */
338 
339 bfd_boolean
340 bfd_hash_table_init (struct bfd_hash_table *table,
341 		     struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
342 							struct bfd_hash_table *,
343 							const char *),
344 		     unsigned int entsize)
345 {
346   return bfd_hash_table_init_n (table, newfunc, entsize,
347 				bfd_default_hash_table_size);
348 }
349 
350 /* Free a hash table.  */
351 
352 void
353 bfd_hash_table_free (struct bfd_hash_table *table)
354 {
355   objalloc_free (table->memory);
356   table->memory = NULL;
357 }
358 
359 /* Look up a string in a hash table.  */
360 
361 struct bfd_hash_entry *
362 bfd_hash_lookup (struct bfd_hash_table *table,
363 		 const char *string,
364 		 bfd_boolean create,
365 		 bfd_boolean copy)
366 {
367   const unsigned char *s;
368   unsigned long hash;
369   unsigned int c;
370   struct bfd_hash_entry *hashp;
371   unsigned int len;
372   unsigned int index;
373 
374   hash = 0;
375   len = 0;
376   s = (const unsigned char *) string;
377   while ((c = *s++) != '\0')
378     {
379       hash += c + (c << 17);
380       hash ^= hash >> 2;
381     }
382   len = (s - (const unsigned char *) string) - 1;
383   hash += len + (len << 17);
384   hash ^= hash >> 2;
385 
386   index = hash % table->size;
387   for (hashp = table->table[index];
388        hashp != NULL;
389        hashp = hashp->next)
390     {
391       if (hashp->hash == hash
392 	  && strcmp (hashp->string, string) == 0)
393 	return hashp;
394     }
395 
396   if (! create)
397     return NULL;
398 
399   hashp = (*table->newfunc) (NULL, table, string);
400   if (hashp == NULL)
401     return NULL;
402   if (copy)
403     {
404       char *new;
405 
406       new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
407       if (!new)
408 	{
409 	  bfd_set_error (bfd_error_no_memory);
410 	  return NULL;
411 	}
412       memcpy (new, string, len + 1);
413       string = new;
414     }
415   hashp->string = string;
416   hashp->hash = hash;
417   hashp->next = table->table[index];
418   table->table[index] = hashp;
419 
420   return hashp;
421 }
422 
423 /* Replace an entry in a hash table.  */
424 
425 void
426 bfd_hash_replace (struct bfd_hash_table *table,
427 		  struct bfd_hash_entry *old,
428 		  struct bfd_hash_entry *nw)
429 {
430   unsigned int index;
431   struct bfd_hash_entry **pph;
432 
433   index = old->hash % table->size;
434   for (pph = &table->table[index];
435        (*pph) != NULL;
436        pph = &(*pph)->next)
437     {
438       if (*pph == old)
439 	{
440 	  *pph = nw;
441 	  return;
442 	}
443     }
444 
445   abort ();
446 }
447 
448 /* Allocate space in a hash table.  */
449 
450 void *
451 bfd_hash_allocate (struct bfd_hash_table *table,
452 		   unsigned int size)
453 {
454   void * ret;
455 
456   ret = objalloc_alloc ((struct objalloc *) table->memory, size);
457   if (ret == NULL && size != 0)
458     bfd_set_error (bfd_error_no_memory);
459   return ret;
460 }
461 
462 /* Base method for creating a new hash table entry.  */
463 
464 struct bfd_hash_entry *
465 bfd_hash_newfunc (struct bfd_hash_entry *entry,
466 		  struct bfd_hash_table *table,
467 		  const char *string ATTRIBUTE_UNUSED)
468 {
469   if (entry == NULL)
470     entry = bfd_hash_allocate (table, sizeof (* entry));
471   return entry;
472 }
473 
474 /* Traverse a hash table.  */
475 
476 void
477 bfd_hash_traverse (struct bfd_hash_table *table,
478 		   bfd_boolean (*func) (struct bfd_hash_entry *, void *),
479 		   void * info)
480 {
481   unsigned int i;
482 
483   for (i = 0; i < table->size; i++)
484     {
485       struct bfd_hash_entry *p;
486 
487       for (p = table->table[i]; p != NULL; p = p->next)
488 	if (! (*func) (p, info))
489 	  return;
490     }
491 }
492 
493 void
494 bfd_hash_set_default_size (bfd_size_type hash_size)
495 {
496   /* Extend this prime list if you want more granularity of hash table size.  */
497   static const bfd_size_type hash_size_primes[] =
498     {
499       251, 509, 1021, 2039, 4051, 8599, 16699, 32749
500     };
501   size_t index;
502 
503   /* Work out best prime number near the hash_size.  */
504   for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
505     if (hash_size <= hash_size_primes[index])
506       break;
507 
508   bfd_default_hash_table_size = hash_size_primes[index];
509 }
510 
511 /* A few different object file formats (a.out, COFF, ELF) use a string
512    table.  These functions support adding strings to a string table,
513    returning the byte offset, and writing out the table.
514 
515    Possible improvements:
516    + look for strings matching trailing substrings of other strings
517    + better data structures?  balanced trees?
518    + look at reducing memory use elsewhere -- maybe if we didn't have
519      to construct the entire symbol table at once, we could get by
520      with smaller amounts of VM?  (What effect does that have on the
521      string table reductions?)  */
522 
523 /* An entry in the strtab hash table.  */
524 
525 struct strtab_hash_entry
526 {
527   struct bfd_hash_entry root;
528   /* Index in string table.  */
529   bfd_size_type index;
530   /* Next string in strtab.  */
531   struct strtab_hash_entry *next;
532 };
533 
534 /* The strtab hash table.  */
535 
536 struct bfd_strtab_hash
537 {
538   struct bfd_hash_table table;
539   /* Size of strtab--also next available index.  */
540   bfd_size_type size;
541   /* First string in strtab.  */
542   struct strtab_hash_entry *first;
543   /* Last string in strtab.  */
544   struct strtab_hash_entry *last;
545   /* Whether to precede strings with a two byte length, as in the
546      XCOFF .debug section.  */
547   bfd_boolean xcoff;
548 };
549 
550 /* Routine to create an entry in a strtab.  */
551 
552 static struct bfd_hash_entry *
553 strtab_hash_newfunc (struct bfd_hash_entry *entry,
554 		     struct bfd_hash_table *table,
555 		     const char *string)
556 {
557   struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
558 
559   /* Allocate the structure if it has not already been allocated by a
560      subclass.  */
561   if (ret == NULL)
562     ret = bfd_hash_allocate (table, sizeof (* ret));
563   if (ret == NULL)
564     return NULL;
565 
566   /* Call the allocation method of the superclass.  */
567   ret = (struct strtab_hash_entry *)
568 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
569 
570   if (ret)
571     {
572       /* Initialize the local fields.  */
573       ret->index = (bfd_size_type) -1;
574       ret->next = NULL;
575     }
576 
577   return (struct bfd_hash_entry *) ret;
578 }
579 
580 /* Look up an entry in an strtab.  */
581 
582 #define strtab_hash_lookup(t, string, create, copy) \
583   ((struct strtab_hash_entry *) \
584    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
585 
586 /* Create a new strtab.  */
587 
588 struct bfd_strtab_hash *
589 _bfd_stringtab_init (void)
590 {
591   struct bfd_strtab_hash *table;
592   bfd_size_type amt = sizeof (* table);
593 
594   table = bfd_malloc (amt);
595   if (table == NULL)
596     return NULL;
597 
598   if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
599 			    sizeof (struct strtab_hash_entry)))
600     {
601       free (table);
602       return NULL;
603     }
604 
605   table->size = 0;
606   table->first = NULL;
607   table->last = NULL;
608   table->xcoff = FALSE;
609 
610   return table;
611 }
612 
613 /* Create a new strtab in which the strings are output in the format
614    used in the XCOFF .debug section: a two byte length precedes each
615    string.  */
616 
617 struct bfd_strtab_hash *
618 _bfd_xcoff_stringtab_init (void)
619 {
620   struct bfd_strtab_hash *ret;
621 
622   ret = _bfd_stringtab_init ();
623   if (ret != NULL)
624     ret->xcoff = TRUE;
625   return ret;
626 }
627 
628 /* Free a strtab.  */
629 
630 void
631 _bfd_stringtab_free (struct bfd_strtab_hash *table)
632 {
633   bfd_hash_table_free (&table->table);
634   free (table);
635 }
636 
637 /* Get the index of a string in a strtab, adding it if it is not
638    already present.  If HASH is FALSE, we don't really use the hash
639    table, and we don't eliminate duplicate strings.  */
640 
641 bfd_size_type
642 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
643 		    const char *str,
644 		    bfd_boolean hash,
645 		    bfd_boolean copy)
646 {
647   struct strtab_hash_entry *entry;
648 
649   if (hash)
650     {
651       entry = strtab_hash_lookup (tab, str, TRUE, copy);
652       if (entry == NULL)
653 	return (bfd_size_type) -1;
654     }
655   else
656     {
657       entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
658       if (entry == NULL)
659 	return (bfd_size_type) -1;
660       if (! copy)
661 	entry->root.string = str;
662       else
663 	{
664 	  char *n;
665 
666 	  n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
667 	  if (n == NULL)
668 	    return (bfd_size_type) -1;
669 	  entry->root.string = n;
670 	}
671       entry->index = (bfd_size_type) -1;
672       entry->next = NULL;
673     }
674 
675   if (entry->index == (bfd_size_type) -1)
676     {
677       entry->index = tab->size;
678       tab->size += strlen (str) + 1;
679       if (tab->xcoff)
680 	{
681 	  entry->index += 2;
682 	  tab->size += 2;
683 	}
684       if (tab->first == NULL)
685 	tab->first = entry;
686       else
687 	tab->last->next = entry;
688       tab->last = entry;
689     }
690 
691   return entry->index;
692 }
693 
694 /* Get the number of bytes in a strtab.  */
695 
696 bfd_size_type
697 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
698 {
699   return tab->size;
700 }
701 
702 /* Write out a strtab.  ABFD must already be at the right location in
703    the file.  */
704 
705 bfd_boolean
706 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
707 {
708   bfd_boolean xcoff;
709   struct strtab_hash_entry *entry;
710 
711   xcoff = tab->xcoff;
712 
713   for (entry = tab->first; entry != NULL; entry = entry->next)
714     {
715       const char *str;
716       size_t len;
717 
718       str = entry->root.string;
719       len = strlen (str) + 1;
720 
721       if (xcoff)
722 	{
723 	  bfd_byte buf[2];
724 
725 	  /* The output length includes the null byte.  */
726 	  bfd_put_16 (abfd, (bfd_vma) len, buf);
727 	  if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
728 	    return FALSE;
729 	}
730 
731       if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
732 	return FALSE;
733     }
734 
735   return TRUE;
736 }
737