1 /* bfd back-end for HP PA-RISC SOM objects. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005 4 Free Software Foundation, Inc. 5 6 Contributed by the Center for Software Science at the 7 University of Utah. 8 9 This file is part of BFD, the Binary File Descriptor library. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 2 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program; if not, write to the Free Software 23 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 24 02110-1301, USA. */ 25 26 #include "alloca-conf.h" 27 #include "bfd.h" 28 #include "sysdep.h" 29 30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX) 31 32 #include "libbfd.h" 33 #include "som.h" 34 #include "safe-ctype.h" 35 36 #include <sys/param.h> 37 #include <signal.h> 38 #include <machine/reg.h> 39 #include <sys/file.h> 40 41 static bfd_reloc_status_type hppa_som_reloc 42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 43 static bfd_boolean som_mkobject (bfd *); 44 static bfd_boolean som_is_space (asection *); 45 static bfd_boolean som_is_subspace (asection *); 46 static int compare_subspaces (const void *, const void *); 47 static unsigned long som_compute_checksum (bfd *); 48 static bfd_boolean som_build_and_write_symbol_table (bfd *); 49 static unsigned int som_slurp_symbol_table (bfd *); 50 51 /* Magic not defined in standard HP-UX header files until 8.0. */ 52 53 #ifndef CPU_PA_RISC1_0 54 #define CPU_PA_RISC1_0 0x20B 55 #endif /* CPU_PA_RISC1_0 */ 56 57 #ifndef CPU_PA_RISC1_1 58 #define CPU_PA_RISC1_1 0x210 59 #endif /* CPU_PA_RISC1_1 */ 60 61 #ifndef CPU_PA_RISC2_0 62 #define CPU_PA_RISC2_0 0x214 63 #endif /* CPU_PA_RISC2_0 */ 64 65 #ifndef _PA_RISC1_0_ID 66 #define _PA_RISC1_0_ID CPU_PA_RISC1_0 67 #endif /* _PA_RISC1_0_ID */ 68 69 #ifndef _PA_RISC1_1_ID 70 #define _PA_RISC1_1_ID CPU_PA_RISC1_1 71 #endif /* _PA_RISC1_1_ID */ 72 73 #ifndef _PA_RISC2_0_ID 74 #define _PA_RISC2_0_ID CPU_PA_RISC2_0 75 #endif /* _PA_RISC2_0_ID */ 76 77 #ifndef _PA_RISC_MAXID 78 #define _PA_RISC_MAXID 0x2FF 79 #endif /* _PA_RISC_MAXID */ 80 81 #ifndef _PA_RISC_ID 82 #define _PA_RISC_ID(__m_num) \ 83 (((__m_num) == _PA_RISC1_0_ID) || \ 84 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID)) 85 #endif /* _PA_RISC_ID */ 86 87 /* HIUX in it's infinite stupidity changed the names for several "well 88 known" constants. Work around such braindamage. Try the HPUX version 89 first, then the HIUX version, and finally provide a default. */ 90 #ifdef HPUX_AUX_ID 91 #define EXEC_AUX_ID HPUX_AUX_ID 92 #endif 93 94 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID) 95 #define EXEC_AUX_ID HIUX_AUX_ID 96 #endif 97 98 #ifndef EXEC_AUX_ID 99 #define EXEC_AUX_ID 0 100 #endif 101 102 /* Size (in chars) of the temporary buffers used during fixup and string 103 table writes. */ 104 105 #define SOM_TMP_BUFSIZE 8192 106 107 /* Size of the hash table in archives. */ 108 #define SOM_LST_HASH_SIZE 31 109 110 /* Max number of SOMs to be found in an archive. */ 111 #define SOM_LST_MODULE_LIMIT 1024 112 113 /* Generic alignment macro. */ 114 #define SOM_ALIGN(val, alignment) \ 115 (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1)) 116 117 /* SOM allows any one of the four previous relocations to be reused 118 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP 119 relocations are always a single byte, using a R_PREV_FIXUP instead 120 of some multi-byte relocation makes object files smaller. 121 122 Note one side effect of using a R_PREV_FIXUP is the relocation that 123 is being repeated moves to the front of the queue. */ 124 struct reloc_queue 125 { 126 unsigned char *reloc; 127 unsigned int size; 128 } reloc_queue[4]; 129 130 /* This fully describes the symbol types which may be attached to 131 an EXPORT or IMPORT directive. Only SOM uses this formation 132 (ELF has no need for it). */ 133 typedef enum 134 { 135 SYMBOL_TYPE_UNKNOWN, 136 SYMBOL_TYPE_ABSOLUTE, 137 SYMBOL_TYPE_CODE, 138 SYMBOL_TYPE_DATA, 139 SYMBOL_TYPE_ENTRY, 140 SYMBOL_TYPE_MILLICODE, 141 SYMBOL_TYPE_PLABEL, 142 SYMBOL_TYPE_PRI_PROG, 143 SYMBOL_TYPE_SEC_PROG, 144 } pa_symbol_type; 145 146 struct section_to_type 147 { 148 char *section; 149 char type; 150 }; 151 152 /* Assorted symbol information that needs to be derived from the BFD symbol 153 and/or the BFD backend private symbol data. */ 154 struct som_misc_symbol_info 155 { 156 unsigned int symbol_type; 157 unsigned int symbol_scope; 158 unsigned int arg_reloc; 159 unsigned int symbol_info; 160 unsigned int symbol_value; 161 unsigned int priv_level; 162 unsigned int secondary_def; 163 unsigned int is_comdat; 164 unsigned int is_common; 165 unsigned int dup_common; 166 }; 167 168 /* Map SOM section names to POSIX/BSD single-character symbol types. 169 170 This table includes all the standard subspaces as defined in the 171 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for 172 some reason was left out, and sections specific to embedded stabs. */ 173 174 static const struct section_to_type stt[] = 175 { 176 {"$TEXT$", 't'}, 177 {"$SHLIB_INFO$", 't'}, 178 {"$MILLICODE$", 't'}, 179 {"$LIT$", 't'}, 180 {"$CODE$", 't'}, 181 {"$UNWIND_START$", 't'}, 182 {"$UNWIND$", 't'}, 183 {"$PRIVATE$", 'd'}, 184 {"$PLT$", 'd'}, 185 {"$SHLIB_DATA$", 'd'}, 186 {"$DATA$", 'd'}, 187 {"$SHORTDATA$", 'g'}, 188 {"$DLT$", 'd'}, 189 {"$GLOBAL$", 'g'}, 190 {"$SHORTBSS$", 's'}, 191 {"$BSS$", 'b'}, 192 {"$GDB_STRINGS$", 'N'}, 193 {"$GDB_SYMBOLS$", 'N'}, 194 {0, 0} 195 }; 196 197 /* About the relocation formatting table... 198 199 There are 256 entries in the table, one for each possible 200 relocation opcode available in SOM. We index the table by 201 the relocation opcode. The names and operations are those 202 defined by a.out_800 (4). 203 204 Right now this table is only used to count and perform minimal 205 processing on relocation streams so that they can be internalized 206 into BFD and symbolically printed by utilities. To make actual use 207 of them would be much more difficult, BFD's concept of relocations 208 is far too simple to handle SOM relocations. The basic assumption 209 that a relocation can be completely processed independent of other 210 relocations before an object file is written is invalid for SOM. 211 212 The SOM relocations are meant to be processed as a stream, they 213 specify copying of data from the input section to the output section 214 while possibly modifying the data in some manner. They also can 215 specify that a variable number of zeros or uninitialized data be 216 inserted on in the output segment at the current offset. Some 217 relocations specify that some previous relocation be re-applied at 218 the current location in the input/output sections. And finally a number 219 of relocations have effects on other sections (R_ENTRY, R_EXIT, 220 R_UNWIND_AUX and a variety of others). There isn't even enough room 221 in the BFD relocation data structure to store enough information to 222 perform all the relocations. 223 224 Each entry in the table has three fields. 225 226 The first entry is an index into this "class" of relocations. This 227 index can then be used as a variable within the relocation itself. 228 229 The second field is a format string which actually controls processing 230 of the relocation. It uses a simple postfix machine to do calculations 231 based on variables/constants found in the string and the relocation 232 stream. 233 234 The third field specifys whether or not this relocation may use 235 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant 236 stored in the instruction. 237 238 Variables: 239 240 L = input space byte count 241 D = index into class of relocations 242 M = output space byte count 243 N = statement number (unused?) 244 O = stack operation 245 R = parameter relocation bits 246 S = symbol index 247 T = first 32 bits of stack unwind information 248 U = second 32 bits of stack unwind information 249 V = a literal constant (usually used in the next relocation) 250 P = a previous relocation 251 252 Lower case letters (starting with 'b') refer to following 253 bytes in the relocation stream. 'b' is the next 1 byte, 254 c is the next 2 bytes, d is the next 3 bytes, etc... 255 This is the variable part of the relocation entries that 256 makes our life a living hell. 257 258 numerical constants are also used in the format string. Note 259 the constants are represented in decimal. 260 261 '+', "*" and "=" represents the obvious postfix operators. 262 '<' represents a left shift. 263 264 Stack Operations: 265 266 Parameter Relocation Bits: 267 268 Unwind Entries: 269 270 Previous Relocations: The index field represents which in the queue 271 of 4 previous fixups should be re-applied. 272 273 Literal Constants: These are generally used to represent addend 274 parts of relocations when these constants are not stored in the 275 fields of the instructions themselves. For example the instruction 276 addil foo-$global$-0x1234 would use an override for "0x1234" rather 277 than storing it into the addil itself. */ 278 279 struct fixup_format 280 { 281 int D; 282 const char *format; 283 }; 284 285 static const struct fixup_format som_fixup_formats[256] = 286 { 287 /* R_NO_RELOCATION. */ 288 { 0, "LD1+4*=" }, /* 0x00 */ 289 { 1, "LD1+4*=" }, /* 0x01 */ 290 { 2, "LD1+4*=" }, /* 0x02 */ 291 { 3, "LD1+4*=" }, /* 0x03 */ 292 { 4, "LD1+4*=" }, /* 0x04 */ 293 { 5, "LD1+4*=" }, /* 0x05 */ 294 { 6, "LD1+4*=" }, /* 0x06 */ 295 { 7, "LD1+4*=" }, /* 0x07 */ 296 { 8, "LD1+4*=" }, /* 0x08 */ 297 { 9, "LD1+4*=" }, /* 0x09 */ 298 { 10, "LD1+4*=" }, /* 0x0a */ 299 { 11, "LD1+4*=" }, /* 0x0b */ 300 { 12, "LD1+4*=" }, /* 0x0c */ 301 { 13, "LD1+4*=" }, /* 0x0d */ 302 { 14, "LD1+4*=" }, /* 0x0e */ 303 { 15, "LD1+4*=" }, /* 0x0f */ 304 { 16, "LD1+4*=" }, /* 0x10 */ 305 { 17, "LD1+4*=" }, /* 0x11 */ 306 { 18, "LD1+4*=" }, /* 0x12 */ 307 { 19, "LD1+4*=" }, /* 0x13 */ 308 { 20, "LD1+4*=" }, /* 0x14 */ 309 { 21, "LD1+4*=" }, /* 0x15 */ 310 { 22, "LD1+4*=" }, /* 0x16 */ 311 { 23, "LD1+4*=" }, /* 0x17 */ 312 { 0, "LD8<b+1+4*=" }, /* 0x18 */ 313 { 1, "LD8<b+1+4*=" }, /* 0x19 */ 314 { 2, "LD8<b+1+4*=" }, /* 0x1a */ 315 { 3, "LD8<b+1+4*=" }, /* 0x1b */ 316 { 0, "LD16<c+1+4*=" }, /* 0x1c */ 317 { 1, "LD16<c+1+4*=" }, /* 0x1d */ 318 { 2, "LD16<c+1+4*=" }, /* 0x1e */ 319 { 0, "Ld1+=" }, /* 0x1f */ 320 /* R_ZEROES. */ 321 { 0, "Lb1+4*=" }, /* 0x20 */ 322 { 1, "Ld1+=" }, /* 0x21 */ 323 /* R_UNINIT. */ 324 { 0, "Lb1+4*=" }, /* 0x22 */ 325 { 1, "Ld1+=" }, /* 0x23 */ 326 /* R_RELOCATION. */ 327 { 0, "L4=" }, /* 0x24 */ 328 /* R_DATA_ONE_SYMBOL. */ 329 { 0, "L4=Sb=" }, /* 0x25 */ 330 { 1, "L4=Sd=" }, /* 0x26 */ 331 /* R_DATA_PLEBEL. */ 332 { 0, "L4=Sb=" }, /* 0x27 */ 333 { 1, "L4=Sd=" }, /* 0x28 */ 334 /* R_SPACE_REF. */ 335 { 0, "L4=" }, /* 0x29 */ 336 /* R_REPEATED_INIT. */ 337 { 0, "L4=Mb1+4*=" }, /* 0x2a */ 338 { 1, "Lb4*=Mb1+L*=" }, /* 0x2b */ 339 { 2, "Lb4*=Md1+4*=" }, /* 0x2c */ 340 { 3, "Ld1+=Me1+=" }, /* 0x2d */ 341 { 0, "" }, /* 0x2e */ 342 { 0, "" }, /* 0x2f */ 343 /* R_PCREL_CALL. */ 344 { 0, "L4=RD=Sb=" }, /* 0x30 */ 345 { 1, "L4=RD=Sb=" }, /* 0x31 */ 346 { 2, "L4=RD=Sb=" }, /* 0x32 */ 347 { 3, "L4=RD=Sb=" }, /* 0x33 */ 348 { 4, "L4=RD=Sb=" }, /* 0x34 */ 349 { 5, "L4=RD=Sb=" }, /* 0x35 */ 350 { 6, "L4=RD=Sb=" }, /* 0x36 */ 351 { 7, "L4=RD=Sb=" }, /* 0x37 */ 352 { 8, "L4=RD=Sb=" }, /* 0x38 */ 353 { 9, "L4=RD=Sb=" }, /* 0x39 */ 354 { 0, "L4=RD8<b+=Sb=" }, /* 0x3a */ 355 { 1, "L4=RD8<b+=Sb=" }, /* 0x3b */ 356 { 0, "L4=RD8<b+=Sd=" }, /* 0x3c */ 357 { 1, "L4=RD8<b+=Sd=" }, /* 0x3d */ 358 /* R_SHORT_PCREL_MODE. */ 359 { 0, "" }, /* 0x3e */ 360 /* R_LONG_PCREL_MODE. */ 361 { 0, "" }, /* 0x3f */ 362 /* R_ABS_CALL. */ 363 { 0, "L4=RD=Sb=" }, /* 0x40 */ 364 { 1, "L4=RD=Sb=" }, /* 0x41 */ 365 { 2, "L4=RD=Sb=" }, /* 0x42 */ 366 { 3, "L4=RD=Sb=" }, /* 0x43 */ 367 { 4, "L4=RD=Sb=" }, /* 0x44 */ 368 { 5, "L4=RD=Sb=" }, /* 0x45 */ 369 { 6, "L4=RD=Sb=" }, /* 0x46 */ 370 { 7, "L4=RD=Sb=" }, /* 0x47 */ 371 { 8, "L4=RD=Sb=" }, /* 0x48 */ 372 { 9, "L4=RD=Sb=" }, /* 0x49 */ 373 { 0, "L4=RD8<b+=Sb=" }, /* 0x4a */ 374 { 1, "L4=RD8<b+=Sb=" }, /* 0x4b */ 375 { 0, "L4=RD8<b+=Sd=" }, /* 0x4c */ 376 { 1, "L4=RD8<b+=Sd=" }, /* 0x4d */ 377 /* R_RESERVED. */ 378 { 0, "" }, /* 0x4e */ 379 { 0, "" }, /* 0x4f */ 380 /* R_DP_RELATIVE. */ 381 { 0, "L4=SD=" }, /* 0x50 */ 382 { 1, "L4=SD=" }, /* 0x51 */ 383 { 2, "L4=SD=" }, /* 0x52 */ 384 { 3, "L4=SD=" }, /* 0x53 */ 385 { 4, "L4=SD=" }, /* 0x54 */ 386 { 5, "L4=SD=" }, /* 0x55 */ 387 { 6, "L4=SD=" }, /* 0x56 */ 388 { 7, "L4=SD=" }, /* 0x57 */ 389 { 8, "L4=SD=" }, /* 0x58 */ 390 { 9, "L4=SD=" }, /* 0x59 */ 391 { 10, "L4=SD=" }, /* 0x5a */ 392 { 11, "L4=SD=" }, /* 0x5b */ 393 { 12, "L4=SD=" }, /* 0x5c */ 394 { 13, "L4=SD=" }, /* 0x5d */ 395 { 14, "L4=SD=" }, /* 0x5e */ 396 { 15, "L4=SD=" }, /* 0x5f */ 397 { 16, "L4=SD=" }, /* 0x60 */ 398 { 17, "L4=SD=" }, /* 0x61 */ 399 { 18, "L4=SD=" }, /* 0x62 */ 400 { 19, "L4=SD=" }, /* 0x63 */ 401 { 20, "L4=SD=" }, /* 0x64 */ 402 { 21, "L4=SD=" }, /* 0x65 */ 403 { 22, "L4=SD=" }, /* 0x66 */ 404 { 23, "L4=SD=" }, /* 0x67 */ 405 { 24, "L4=SD=" }, /* 0x68 */ 406 { 25, "L4=SD=" }, /* 0x69 */ 407 { 26, "L4=SD=" }, /* 0x6a */ 408 { 27, "L4=SD=" }, /* 0x6b */ 409 { 28, "L4=SD=" }, /* 0x6c */ 410 { 29, "L4=SD=" }, /* 0x6d */ 411 { 30, "L4=SD=" }, /* 0x6e */ 412 { 31, "L4=SD=" }, /* 0x6f */ 413 { 32, "L4=Sb=" }, /* 0x70 */ 414 { 33, "L4=Sd=" }, /* 0x71 */ 415 /* R_RESERVED. */ 416 { 0, "" }, /* 0x72 */ 417 { 0, "" }, /* 0x73 */ 418 { 0, "" }, /* 0x74 */ 419 { 0, "" }, /* 0x75 */ 420 { 0, "" }, /* 0x76 */ 421 { 0, "" }, /* 0x77 */ 422 /* R_DLT_REL. */ 423 { 0, "L4=Sb=" }, /* 0x78 */ 424 { 1, "L4=Sd=" }, /* 0x79 */ 425 /* R_RESERVED. */ 426 { 0, "" }, /* 0x7a */ 427 { 0, "" }, /* 0x7b */ 428 { 0, "" }, /* 0x7c */ 429 { 0, "" }, /* 0x7d */ 430 { 0, "" }, /* 0x7e */ 431 { 0, "" }, /* 0x7f */ 432 /* R_CODE_ONE_SYMBOL. */ 433 { 0, "L4=SD=" }, /* 0x80 */ 434 { 1, "L4=SD=" }, /* 0x81 */ 435 { 2, "L4=SD=" }, /* 0x82 */ 436 { 3, "L4=SD=" }, /* 0x83 */ 437 { 4, "L4=SD=" }, /* 0x84 */ 438 { 5, "L4=SD=" }, /* 0x85 */ 439 { 6, "L4=SD=" }, /* 0x86 */ 440 { 7, "L4=SD=" }, /* 0x87 */ 441 { 8, "L4=SD=" }, /* 0x88 */ 442 { 9, "L4=SD=" }, /* 0x89 */ 443 { 10, "L4=SD=" }, /* 0x8q */ 444 { 11, "L4=SD=" }, /* 0x8b */ 445 { 12, "L4=SD=" }, /* 0x8c */ 446 { 13, "L4=SD=" }, /* 0x8d */ 447 { 14, "L4=SD=" }, /* 0x8e */ 448 { 15, "L4=SD=" }, /* 0x8f */ 449 { 16, "L4=SD=" }, /* 0x90 */ 450 { 17, "L4=SD=" }, /* 0x91 */ 451 { 18, "L4=SD=" }, /* 0x92 */ 452 { 19, "L4=SD=" }, /* 0x93 */ 453 { 20, "L4=SD=" }, /* 0x94 */ 454 { 21, "L4=SD=" }, /* 0x95 */ 455 { 22, "L4=SD=" }, /* 0x96 */ 456 { 23, "L4=SD=" }, /* 0x97 */ 457 { 24, "L4=SD=" }, /* 0x98 */ 458 { 25, "L4=SD=" }, /* 0x99 */ 459 { 26, "L4=SD=" }, /* 0x9a */ 460 { 27, "L4=SD=" }, /* 0x9b */ 461 { 28, "L4=SD=" }, /* 0x9c */ 462 { 29, "L4=SD=" }, /* 0x9d */ 463 { 30, "L4=SD=" }, /* 0x9e */ 464 { 31, "L4=SD=" }, /* 0x9f */ 465 { 32, "L4=Sb=" }, /* 0xa0 */ 466 { 33, "L4=Sd=" }, /* 0xa1 */ 467 /* R_RESERVED. */ 468 { 0, "" }, /* 0xa2 */ 469 { 0, "" }, /* 0xa3 */ 470 { 0, "" }, /* 0xa4 */ 471 { 0, "" }, /* 0xa5 */ 472 { 0, "" }, /* 0xa6 */ 473 { 0, "" }, /* 0xa7 */ 474 { 0, "" }, /* 0xa8 */ 475 { 0, "" }, /* 0xa9 */ 476 { 0, "" }, /* 0xaa */ 477 { 0, "" }, /* 0xab */ 478 { 0, "" }, /* 0xac */ 479 { 0, "" }, /* 0xad */ 480 /* R_MILLI_REL. */ 481 { 0, "L4=Sb=" }, /* 0xae */ 482 { 1, "L4=Sd=" }, /* 0xaf */ 483 /* R_CODE_PLABEL. */ 484 { 0, "L4=Sb=" }, /* 0xb0 */ 485 { 1, "L4=Sd=" }, /* 0xb1 */ 486 /* R_BREAKPOINT. */ 487 { 0, "L4=" }, /* 0xb2 */ 488 /* R_ENTRY. */ 489 { 0, "Te=Ue=" }, /* 0xb3 */ 490 { 1, "Uf=" }, /* 0xb4 */ 491 /* R_ALT_ENTRY. */ 492 { 0, "" }, /* 0xb5 */ 493 /* R_EXIT. */ 494 { 0, "" }, /* 0xb6 */ 495 /* R_BEGIN_TRY. */ 496 { 0, "" }, /* 0xb7 */ 497 /* R_END_TRY. */ 498 { 0, "R0=" }, /* 0xb8 */ 499 { 1, "Rb4*=" }, /* 0xb9 */ 500 { 2, "Rd4*=" }, /* 0xba */ 501 /* R_BEGIN_BRTAB. */ 502 { 0, "" }, /* 0xbb */ 503 /* R_END_BRTAB. */ 504 { 0, "" }, /* 0xbc */ 505 /* R_STATEMENT. */ 506 { 0, "Nb=" }, /* 0xbd */ 507 { 1, "Nc=" }, /* 0xbe */ 508 { 2, "Nd=" }, /* 0xbf */ 509 /* R_DATA_EXPR. */ 510 { 0, "L4=" }, /* 0xc0 */ 511 /* R_CODE_EXPR. */ 512 { 0, "L4=" }, /* 0xc1 */ 513 /* R_FSEL. */ 514 { 0, "" }, /* 0xc2 */ 515 /* R_LSEL. */ 516 { 0, "" }, /* 0xc3 */ 517 /* R_RSEL. */ 518 { 0, "" }, /* 0xc4 */ 519 /* R_N_MODE. */ 520 { 0, "" }, /* 0xc5 */ 521 /* R_S_MODE. */ 522 { 0, "" }, /* 0xc6 */ 523 /* R_D_MODE. */ 524 { 0, "" }, /* 0xc7 */ 525 /* R_R_MODE. */ 526 { 0, "" }, /* 0xc8 */ 527 /* R_DATA_OVERRIDE. */ 528 { 0, "V0=" }, /* 0xc9 */ 529 { 1, "Vb=" }, /* 0xca */ 530 { 2, "Vc=" }, /* 0xcb */ 531 { 3, "Vd=" }, /* 0xcc */ 532 { 4, "Ve=" }, /* 0xcd */ 533 /* R_TRANSLATED. */ 534 { 0, "" }, /* 0xce */ 535 /* R_AUX_UNWIND. */ 536 { 0,"Sd=Ve=Ee=" }, /* 0xcf */ 537 /* R_COMP1. */ 538 { 0, "Ob=" }, /* 0xd0 */ 539 /* R_COMP2. */ 540 { 0, "Ob=Sd=" }, /* 0xd1 */ 541 /* R_COMP3. */ 542 { 0, "Ob=Ve=" }, /* 0xd2 */ 543 /* R_PREV_FIXUP. */ 544 { 0, "P" }, /* 0xd3 */ 545 { 1, "P" }, /* 0xd4 */ 546 { 2, "P" }, /* 0xd5 */ 547 { 3, "P" }, /* 0xd6 */ 548 /* R_SEC_STMT. */ 549 { 0, "" }, /* 0xd7 */ 550 /* R_N0SEL. */ 551 { 0, "" }, /* 0xd8 */ 552 /* R_N1SEL. */ 553 { 0, "" }, /* 0xd9 */ 554 /* R_LINETAB. */ 555 { 0, "Eb=Sd=Ve=" }, /* 0xda */ 556 /* R_LINETAB_ESC. */ 557 { 0, "Eb=Mb=" }, /* 0xdb */ 558 /* R_LTP_OVERRIDE. */ 559 { 0, "" }, /* 0xdc */ 560 /* R_COMMENT. */ 561 { 0, "Ob=Vf=" }, /* 0xdd */ 562 /* R_RESERVED. */ 563 { 0, "" }, /* 0xde */ 564 { 0, "" }, /* 0xdf */ 565 { 0, "" }, /* 0xe0 */ 566 { 0, "" }, /* 0xe1 */ 567 { 0, "" }, /* 0xe2 */ 568 { 0, "" }, /* 0xe3 */ 569 { 0, "" }, /* 0xe4 */ 570 { 0, "" }, /* 0xe5 */ 571 { 0, "" }, /* 0xe6 */ 572 { 0, "" }, /* 0xe7 */ 573 { 0, "" }, /* 0xe8 */ 574 { 0, "" }, /* 0xe9 */ 575 { 0, "" }, /* 0xea */ 576 { 0, "" }, /* 0xeb */ 577 { 0, "" }, /* 0xec */ 578 { 0, "" }, /* 0xed */ 579 { 0, "" }, /* 0xee */ 580 { 0, "" }, /* 0xef */ 581 { 0, "" }, /* 0xf0 */ 582 { 0, "" }, /* 0xf1 */ 583 { 0, "" }, /* 0xf2 */ 584 { 0, "" }, /* 0xf3 */ 585 { 0, "" }, /* 0xf4 */ 586 { 0, "" }, /* 0xf5 */ 587 { 0, "" }, /* 0xf6 */ 588 { 0, "" }, /* 0xf7 */ 589 { 0, "" }, /* 0xf8 */ 590 { 0, "" }, /* 0xf9 */ 591 { 0, "" }, /* 0xfa */ 592 { 0, "" }, /* 0xfb */ 593 { 0, "" }, /* 0xfc */ 594 { 0, "" }, /* 0xfd */ 595 { 0, "" }, /* 0xfe */ 596 { 0, "" }, /* 0xff */ 597 }; 598 599 static const int comp1_opcodes[] = 600 { 601 0x00, 602 0x40, 603 0x41, 604 0x42, 605 0x43, 606 0x44, 607 0x45, 608 0x46, 609 0x47, 610 0x48, 611 0x49, 612 0x4a, 613 0x4b, 614 0x60, 615 0x80, 616 0xa0, 617 0xc0, 618 -1 619 }; 620 621 static const int comp2_opcodes[] = 622 { 623 0x00, 624 0x80, 625 0x82, 626 0xc0, 627 -1 628 }; 629 630 static const int comp3_opcodes[] = 631 { 632 0x00, 633 0x02, 634 -1 635 }; 636 637 /* These apparently are not in older versions of hpux reloc.h (hpux7). */ 638 #ifndef R_DLT_REL 639 #define R_DLT_REL 0x78 640 #endif 641 642 #ifndef R_AUX_UNWIND 643 #define R_AUX_UNWIND 0xcf 644 #endif 645 646 #ifndef R_SEC_STMT 647 #define R_SEC_STMT 0xd7 648 #endif 649 650 /* And these first appeared in hpux10. */ 651 #ifndef R_SHORT_PCREL_MODE 652 #define NO_PCREL_MODES 653 #define R_SHORT_PCREL_MODE 0x3e 654 #endif 655 656 #ifndef R_LONG_PCREL_MODE 657 #define R_LONG_PCREL_MODE 0x3f 658 #endif 659 660 #ifndef R_N0SEL 661 #define R_N0SEL 0xd8 662 #endif 663 664 #ifndef R_N1SEL 665 #define R_N1SEL 0xd9 666 #endif 667 668 #ifndef R_LINETAB 669 #define R_LINETAB 0xda 670 #endif 671 672 #ifndef R_LINETAB_ESC 673 #define R_LINETAB_ESC 0xdb 674 #endif 675 676 #ifndef R_LTP_OVERRIDE 677 #define R_LTP_OVERRIDE 0xdc 678 #endif 679 680 #ifndef R_COMMENT 681 #define R_COMMENT 0xdd 682 #endif 683 684 #define SOM_HOWTO(TYPE, NAME) \ 685 HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE) 686 687 static reloc_howto_type som_hppa_howto_table[] = 688 { 689 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 690 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 691 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 692 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 693 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 694 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 695 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 696 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 697 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 698 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 699 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 700 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 701 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 702 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 703 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 704 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 705 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 706 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 707 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 708 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 709 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 710 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 711 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 712 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 713 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 714 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 715 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 716 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 717 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 718 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 719 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 720 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 721 SOM_HOWTO (R_ZEROES, "R_ZEROES"), 722 SOM_HOWTO (R_ZEROES, "R_ZEROES"), 723 SOM_HOWTO (R_UNINIT, "R_UNINIT"), 724 SOM_HOWTO (R_UNINIT, "R_UNINIT"), 725 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"), 726 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"), 727 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"), 728 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"), 729 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"), 730 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"), 731 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 732 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 733 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 734 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 735 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 736 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 737 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 738 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 739 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 740 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 741 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 742 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 743 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 744 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 745 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 746 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 747 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 748 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 749 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 750 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 751 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"), 752 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"), 753 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 754 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 755 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 756 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 757 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 758 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 759 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 760 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 761 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 762 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 763 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 764 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 765 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 766 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 767 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 768 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 769 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 770 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 771 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 772 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 773 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 774 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 775 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 776 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 777 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 778 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 779 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 780 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 781 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 782 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 783 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 784 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 785 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 786 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 787 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 788 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 789 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 790 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 791 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 792 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 793 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 794 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 795 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 796 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 797 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 798 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 799 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 800 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 801 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 802 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 803 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 804 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 805 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 806 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 807 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 808 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 809 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"), 810 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"), 811 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 812 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 813 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 814 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 815 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 816 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 817 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 818 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 819 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 820 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 821 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 822 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 823 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 824 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 825 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 826 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 827 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 828 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 829 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 830 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 831 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 832 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 833 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 834 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 835 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 836 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 837 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 838 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 839 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 840 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 841 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 842 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 843 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 844 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 845 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 846 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 847 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 848 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 849 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 850 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 851 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 852 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 853 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 854 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 855 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 856 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 857 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 858 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 859 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 860 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 861 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 862 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 863 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"), 864 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"), 865 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"), 866 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"), 867 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"), 868 SOM_HOWTO (R_ENTRY, "R_ENTRY"), 869 SOM_HOWTO (R_ENTRY, "R_ENTRY"), 870 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"), 871 SOM_HOWTO (R_EXIT, "R_EXIT"), 872 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"), 873 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 874 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 875 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 876 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"), 877 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"), 878 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 879 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 880 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 881 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"), 882 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"), 883 SOM_HOWTO (R_FSEL, "R_FSEL"), 884 SOM_HOWTO (R_LSEL, "R_LSEL"), 885 SOM_HOWTO (R_RSEL, "R_RSEL"), 886 SOM_HOWTO (R_N_MODE, "R_N_MODE"), 887 SOM_HOWTO (R_S_MODE, "R_S_MODE"), 888 SOM_HOWTO (R_D_MODE, "R_D_MODE"), 889 SOM_HOWTO (R_R_MODE, "R_R_MODE"), 890 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 891 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 892 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 893 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 894 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 895 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"), 896 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"), 897 SOM_HOWTO (R_COMP1, "R_COMP1"), 898 SOM_HOWTO (R_COMP2, "R_COMP2"), 899 SOM_HOWTO (R_COMP3, "R_COMP3"), 900 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 901 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 902 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 903 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 904 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"), 905 SOM_HOWTO (R_N0SEL, "R_N0SEL"), 906 SOM_HOWTO (R_N1SEL, "R_N1SEL"), 907 SOM_HOWTO (R_LINETAB, "R_LINETAB"), 908 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"), 909 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"), 910 SOM_HOWTO (R_COMMENT, "R_COMMENT"), 911 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 912 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 913 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 914 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 915 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 916 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 917 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 918 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 919 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 920 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 921 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 922 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 923 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 924 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 925 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 926 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 927 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 928 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 929 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 930 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 931 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 932 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 933 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 934 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 935 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 936 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 937 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 938 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 939 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 940 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 941 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 942 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 943 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 944 SOM_HOWTO (R_RESERVED, "R_RESERVED") 945 }; 946 947 /* Initialize the SOM relocation queue. By definition the queue holds 948 the last four multibyte fixups. */ 949 950 static void 951 som_initialize_reloc_queue (struct reloc_queue *queue) 952 { 953 queue[0].reloc = NULL; 954 queue[0].size = 0; 955 queue[1].reloc = NULL; 956 queue[1].size = 0; 957 queue[2].reloc = NULL; 958 queue[2].size = 0; 959 queue[3].reloc = NULL; 960 queue[3].size = 0; 961 } 962 963 /* Insert a new relocation into the relocation queue. */ 964 965 static void 966 som_reloc_queue_insert (unsigned char *p, 967 unsigned int size, 968 struct reloc_queue *queue) 969 { 970 queue[3].reloc = queue[2].reloc; 971 queue[3].size = queue[2].size; 972 queue[2].reloc = queue[1].reloc; 973 queue[2].size = queue[1].size; 974 queue[1].reloc = queue[0].reloc; 975 queue[1].size = queue[0].size; 976 queue[0].reloc = p; 977 queue[0].size = size; 978 } 979 980 /* When an entry in the relocation queue is reused, the entry moves 981 to the front of the queue. */ 982 983 static void 984 som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index) 985 { 986 if (index == 0) 987 return; 988 989 if (index == 1) 990 { 991 unsigned char *tmp1 = queue[0].reloc; 992 unsigned int tmp2 = queue[0].size; 993 994 queue[0].reloc = queue[1].reloc; 995 queue[0].size = queue[1].size; 996 queue[1].reloc = tmp1; 997 queue[1].size = tmp2; 998 return; 999 } 1000 1001 if (index == 2) 1002 { 1003 unsigned char *tmp1 = queue[0].reloc; 1004 unsigned int tmp2 = queue[0].size; 1005 1006 queue[0].reloc = queue[2].reloc; 1007 queue[0].size = queue[2].size; 1008 queue[2].reloc = queue[1].reloc; 1009 queue[2].size = queue[1].size; 1010 queue[1].reloc = tmp1; 1011 queue[1].size = tmp2; 1012 return; 1013 } 1014 1015 if (index == 3) 1016 { 1017 unsigned char *tmp1 = queue[0].reloc; 1018 unsigned int tmp2 = queue[0].size; 1019 1020 queue[0].reloc = queue[3].reloc; 1021 queue[0].size = queue[3].size; 1022 queue[3].reloc = queue[2].reloc; 1023 queue[3].size = queue[2].size; 1024 queue[2].reloc = queue[1].reloc; 1025 queue[2].size = queue[1].size; 1026 queue[1].reloc = tmp1; 1027 queue[1].size = tmp2; 1028 return; 1029 } 1030 abort (); 1031 } 1032 1033 /* Search for a particular relocation in the relocation queue. */ 1034 1035 static int 1036 som_reloc_queue_find (unsigned char *p, 1037 unsigned int size, 1038 struct reloc_queue *queue) 1039 { 1040 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size) 1041 && size == queue[0].size) 1042 return 0; 1043 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size) 1044 && size == queue[1].size) 1045 return 1; 1046 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size) 1047 && size == queue[2].size) 1048 return 2; 1049 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size) 1050 && size == queue[3].size) 1051 return 3; 1052 return -1; 1053 } 1054 1055 static unsigned char * 1056 try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED, 1057 unsigned int *subspace_reloc_sizep, 1058 unsigned char *p, 1059 unsigned int size, 1060 struct reloc_queue *queue) 1061 { 1062 int queue_index = som_reloc_queue_find (p, size, queue); 1063 1064 if (queue_index != -1) 1065 { 1066 /* Found this in a previous fixup. Undo the fixup we 1067 just built and use R_PREV_FIXUP instead. We saved 1068 a total of size - 1 bytes in the fixup stream. */ 1069 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p); 1070 p += 1; 1071 *subspace_reloc_sizep += 1; 1072 som_reloc_queue_fix (queue, queue_index); 1073 } 1074 else 1075 { 1076 som_reloc_queue_insert (p, size, queue); 1077 *subspace_reloc_sizep += size; 1078 p += size; 1079 } 1080 return p; 1081 } 1082 1083 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP 1084 bytes without any relocation. Update the size of the subspace 1085 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the 1086 current pointer into the relocation stream. */ 1087 1088 static unsigned char * 1089 som_reloc_skip (bfd *abfd, 1090 unsigned int skip, 1091 unsigned char *p, 1092 unsigned int *subspace_reloc_sizep, 1093 struct reloc_queue *queue) 1094 { 1095 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value 1096 then R_PREV_FIXUPs to get the difference down to a 1097 reasonable size. */ 1098 if (skip >= 0x1000000) 1099 { 1100 skip -= 0x1000000; 1101 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); 1102 bfd_put_8 (abfd, 0xff, p + 1); 1103 bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2); 1104 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1105 while (skip >= 0x1000000) 1106 { 1107 skip -= 0x1000000; 1108 bfd_put_8 (abfd, R_PREV_FIXUP, p); 1109 p++; 1110 *subspace_reloc_sizep += 1; 1111 /* No need to adjust queue here since we are repeating the 1112 most recent fixup. */ 1113 } 1114 } 1115 1116 /* The difference must be less than 0x1000000. Use one 1117 more R_NO_RELOCATION entry to get to the right difference. */ 1118 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0) 1119 { 1120 /* Difference can be handled in a simple single-byte 1121 R_NO_RELOCATION entry. */ 1122 if (skip <= 0x60) 1123 { 1124 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p); 1125 *subspace_reloc_sizep += 1; 1126 p++; 1127 } 1128 /* Handle it with a two byte R_NO_RELOCATION entry. */ 1129 else if (skip <= 0x1000) 1130 { 1131 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p); 1132 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1); 1133 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1134 } 1135 /* Handle it with a three byte R_NO_RELOCATION entry. */ 1136 else 1137 { 1138 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p); 1139 bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1); 1140 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1141 } 1142 } 1143 /* Ugh. Punt and use a 4 byte entry. */ 1144 else if (skip > 0) 1145 { 1146 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); 1147 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1); 1148 bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2); 1149 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1150 } 1151 return p; 1152 } 1153 1154 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend 1155 from a BFD relocation. Update the size of the subspace relocation 1156 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer 1157 into the relocation stream. */ 1158 1159 static unsigned char * 1160 som_reloc_addend (bfd *abfd, 1161 bfd_vma addend, 1162 unsigned char *p, 1163 unsigned int *subspace_reloc_sizep, 1164 struct reloc_queue *queue) 1165 { 1166 if (addend + 0x80 < 0x100) 1167 { 1168 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p); 1169 bfd_put_8 (abfd, addend, p + 1); 1170 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1171 } 1172 else if (addend + 0x8000 < 0x10000) 1173 { 1174 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p); 1175 bfd_put_16 (abfd, addend, p + 1); 1176 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1177 } 1178 else if (addend + 0x800000 < 0x1000000) 1179 { 1180 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p); 1181 bfd_put_8 (abfd, addend >> 16, p + 1); 1182 bfd_put_16 (abfd, addend, p + 2); 1183 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1184 } 1185 else 1186 { 1187 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p); 1188 bfd_put_32 (abfd, addend, p + 1); 1189 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); 1190 } 1191 return p; 1192 } 1193 1194 /* Handle a single function call relocation. */ 1195 1196 static unsigned char * 1197 som_reloc_call (bfd *abfd, 1198 unsigned char *p, 1199 unsigned int *subspace_reloc_sizep, 1200 arelent *bfd_reloc, 1201 int sym_num, 1202 struct reloc_queue *queue) 1203 { 1204 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend); 1205 int rtn_bits = arg_bits & 0x3; 1206 int type, done = 0; 1207 1208 /* You'll never believe all this is necessary to handle relocations 1209 for function calls. Having to compute and pack the argument 1210 relocation bits is the real nightmare. 1211 1212 If you're interested in how this works, just forget it. You really 1213 do not want to know about this braindamage. */ 1214 1215 /* First see if this can be done with a "simple" relocation. Simple 1216 relocations have a symbol number < 0x100 and have simple encodings 1217 of argument relocations. */ 1218 1219 if (sym_num < 0x100) 1220 { 1221 switch (arg_bits) 1222 { 1223 case 0: 1224 case 1: 1225 type = 0; 1226 break; 1227 case 1 << 8: 1228 case 1 << 8 | 1: 1229 type = 1; 1230 break; 1231 case 1 << 8 | 1 << 6: 1232 case 1 << 8 | 1 << 6 | 1: 1233 type = 2; 1234 break; 1235 case 1 << 8 | 1 << 6 | 1 << 4: 1236 case 1 << 8 | 1 << 6 | 1 << 4 | 1: 1237 type = 3; 1238 break; 1239 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2: 1240 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1: 1241 type = 4; 1242 break; 1243 default: 1244 /* Not one of the easy encodings. This will have to be 1245 handled by the more complex code below. */ 1246 type = -1; 1247 break; 1248 } 1249 if (type != -1) 1250 { 1251 /* Account for the return value too. */ 1252 if (rtn_bits) 1253 type += 5; 1254 1255 /* Emit a 2 byte relocation. Then see if it can be handled 1256 with a relocation which is already in the relocation queue. */ 1257 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p); 1258 bfd_put_8 (abfd, sym_num, p + 1); 1259 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1260 done = 1; 1261 } 1262 } 1263 1264 /* If this could not be handled with a simple relocation, then do a hard 1265 one. Hard relocations occur if the symbol number was too high or if 1266 the encoding of argument relocation bits is too complex. */ 1267 if (! done) 1268 { 1269 /* Don't ask about these magic sequences. I took them straight 1270 from gas-1.36 which took them from the a.out man page. */ 1271 type = rtn_bits; 1272 if ((arg_bits >> 6 & 0xf) == 0xe) 1273 type += 9 * 40; 1274 else 1275 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40; 1276 if ((arg_bits >> 2 & 0xf) == 0xe) 1277 type += 9 * 4; 1278 else 1279 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4; 1280 1281 /* Output the first two bytes of the relocation. These describe 1282 the length of the relocation and encoding style. */ 1283 bfd_put_8 (abfd, bfd_reloc->howto->type + 10 1284 + 2 * (sym_num >= 0x100) + (type >= 0x100), 1285 p); 1286 bfd_put_8 (abfd, type, p + 1); 1287 1288 /* Now output the symbol index and see if this bizarre relocation 1289 just happened to be in the relocation queue. */ 1290 if (sym_num < 0x100) 1291 { 1292 bfd_put_8 (abfd, sym_num, p + 2); 1293 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1294 } 1295 else 1296 { 1297 bfd_put_8 (abfd, sym_num >> 16, p + 2); 1298 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3); 1299 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); 1300 } 1301 } 1302 return p; 1303 } 1304 1305 /* Return the logarithm of X, base 2, considering X unsigned, 1306 if X is a power of 2. Otherwise, returns -1. */ 1307 1308 static int 1309 exact_log2 (unsigned int x) 1310 { 1311 int log = 0; 1312 1313 /* Test for 0 or a power of 2. */ 1314 if (x == 0 || x != (x & -x)) 1315 return -1; 1316 1317 while ((x >>= 1) != 0) 1318 log++; 1319 return log; 1320 } 1321 1322 static bfd_reloc_status_type 1323 hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1324 arelent *reloc_entry, 1325 asymbol *symbol_in ATTRIBUTE_UNUSED, 1326 void *data ATTRIBUTE_UNUSED, 1327 asection *input_section, 1328 bfd *output_bfd, 1329 char **error_message ATTRIBUTE_UNUSED) 1330 { 1331 if (output_bfd) 1332 reloc_entry->address += input_section->output_offset; 1333 1334 return bfd_reloc_ok; 1335 } 1336 1337 /* Given a generic HPPA relocation type, the instruction format, 1338 and a field selector, return one or more appropriate SOM relocations. */ 1339 1340 int ** 1341 hppa_som_gen_reloc_type (bfd *abfd, 1342 int base_type, 1343 int format, 1344 enum hppa_reloc_field_selector_type_alt field, 1345 int sym_diff, 1346 asymbol *sym) 1347 { 1348 int *final_type, **final_types; 1349 1350 final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6); 1351 final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1352 if (!final_types || !final_type) 1353 return NULL; 1354 1355 /* The field selector may require additional relocations to be 1356 generated. It's impossible to know at this moment if additional 1357 relocations will be needed, so we make them. The code to actually 1358 write the relocation/fixup stream is responsible for removing 1359 any redundant relocations. */ 1360 switch (field) 1361 { 1362 case e_fsel: 1363 case e_psel: 1364 case e_lpsel: 1365 case e_rpsel: 1366 final_types[0] = final_type; 1367 final_types[1] = NULL; 1368 final_types[2] = NULL; 1369 *final_type = base_type; 1370 break; 1371 1372 case e_tsel: 1373 case e_ltsel: 1374 case e_rtsel: 1375 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1376 if (!final_types[0]) 1377 return NULL; 1378 if (field == e_tsel) 1379 *final_types[0] = R_FSEL; 1380 else if (field == e_ltsel) 1381 *final_types[0] = R_LSEL; 1382 else 1383 *final_types[0] = R_RSEL; 1384 final_types[1] = final_type; 1385 final_types[2] = NULL; 1386 *final_type = base_type; 1387 break; 1388 1389 case e_lssel: 1390 case e_rssel: 1391 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1392 if (!final_types[0]) 1393 return NULL; 1394 *final_types[0] = R_S_MODE; 1395 final_types[1] = final_type; 1396 final_types[2] = NULL; 1397 *final_type = base_type; 1398 break; 1399 1400 case e_lsel: 1401 case e_rsel: 1402 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1403 if (!final_types[0]) 1404 return NULL; 1405 *final_types[0] = R_N_MODE; 1406 final_types[1] = final_type; 1407 final_types[2] = NULL; 1408 *final_type = base_type; 1409 break; 1410 1411 case e_ldsel: 1412 case e_rdsel: 1413 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1414 if (!final_types[0]) 1415 return NULL; 1416 *final_types[0] = R_D_MODE; 1417 final_types[1] = final_type; 1418 final_types[2] = NULL; 1419 *final_type = base_type; 1420 break; 1421 1422 case e_lrsel: 1423 case e_rrsel: 1424 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1425 if (!final_types[0]) 1426 return NULL; 1427 *final_types[0] = R_R_MODE; 1428 final_types[1] = final_type; 1429 final_types[2] = NULL; 1430 *final_type = base_type; 1431 break; 1432 1433 case e_nsel: 1434 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1435 if (!final_types[0]) 1436 return NULL; 1437 *final_types[0] = R_N1SEL; 1438 final_types[1] = final_type; 1439 final_types[2] = NULL; 1440 *final_type = base_type; 1441 break; 1442 1443 case e_nlsel: 1444 case e_nlrsel: 1445 final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1446 if (!final_types[0]) 1447 return NULL; 1448 *final_types[0] = R_N0SEL; 1449 final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int)); 1450 if (!final_types[1]) 1451 return NULL; 1452 if (field == e_nlsel) 1453 *final_types[1] = R_N_MODE; 1454 else 1455 *final_types[1] = R_R_MODE; 1456 final_types[2] = final_type; 1457 final_types[3] = NULL; 1458 *final_type = base_type; 1459 break; 1460 1461 /* FIXME: These two field selectors are not currently supported. */ 1462 case e_ltpsel: 1463 case e_rtpsel: 1464 abort (); 1465 } 1466 1467 switch (base_type) 1468 { 1469 case R_HPPA: 1470 /* The difference of two symbols needs *very* special handling. */ 1471 if (sym_diff) 1472 { 1473 bfd_size_type amt = sizeof (int); 1474 1475 final_types[0] = bfd_alloc (abfd, amt); 1476 final_types[1] = bfd_alloc (abfd, amt); 1477 final_types[2] = bfd_alloc (abfd, amt); 1478 final_types[3] = bfd_alloc (abfd, amt); 1479 if (!final_types[0] || !final_types[1] || !final_types[2]) 1480 return NULL; 1481 if (field == e_fsel) 1482 *final_types[0] = R_FSEL; 1483 else if (field == e_rsel) 1484 *final_types[0] = R_RSEL; 1485 else if (field == e_lsel) 1486 *final_types[0] = R_LSEL; 1487 *final_types[1] = R_COMP2; 1488 *final_types[2] = R_COMP2; 1489 *final_types[3] = R_COMP1; 1490 final_types[4] = final_type; 1491 if (format == 32) 1492 *final_types[4] = R_DATA_EXPR; 1493 else 1494 *final_types[4] = R_CODE_EXPR; 1495 final_types[5] = NULL; 1496 break; 1497 } 1498 /* PLABELs get their own relocation type. */ 1499 else if (field == e_psel 1500 || field == e_lpsel 1501 || field == e_rpsel) 1502 { 1503 /* A PLABEL relocation that has a size of 32 bits must 1504 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */ 1505 if (format == 32) 1506 *final_type = R_DATA_PLABEL; 1507 else 1508 *final_type = R_CODE_PLABEL; 1509 } 1510 /* PIC stuff. */ 1511 else if (field == e_tsel 1512 || field == e_ltsel 1513 || field == e_rtsel) 1514 *final_type = R_DLT_REL; 1515 /* A relocation in the data space is always a full 32bits. */ 1516 else if (format == 32) 1517 { 1518 *final_type = R_DATA_ONE_SYMBOL; 1519 1520 /* If there's no SOM symbol type associated with this BFD 1521 symbol, then set the symbol type to ST_DATA. 1522 1523 Only do this if the type is going to default later when 1524 we write the object file. 1525 1526 This is done so that the linker never encounters an 1527 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol. 1528 1529 This allows the compiler to generate exception handling 1530 tables. 1531 1532 Note that one day we may need to also emit BEGIN_BRTAB and 1533 END_BRTAB to prevent the linker from optimizing away insns 1534 in exception handling regions. */ 1535 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 1536 && (sym->flags & BSF_SECTION_SYM) == 0 1537 && (sym->flags & BSF_FUNCTION) == 0 1538 && ! bfd_is_com_section (sym->section)) 1539 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; 1540 } 1541 break; 1542 1543 case R_HPPA_GOTOFF: 1544 /* More PLABEL special cases. */ 1545 if (field == e_psel 1546 || field == e_lpsel 1547 || field == e_rpsel) 1548 *final_type = R_DATA_PLABEL; 1549 break; 1550 1551 case R_HPPA_COMPLEX: 1552 /* The difference of two symbols needs *very* special handling. */ 1553 if (sym_diff) 1554 { 1555 bfd_size_type amt = sizeof (int); 1556 1557 final_types[0] = bfd_alloc (abfd, amt); 1558 final_types[1] = bfd_alloc (abfd, amt); 1559 final_types[2] = bfd_alloc (abfd, amt); 1560 final_types[3] = bfd_alloc (abfd, amt); 1561 if (!final_types[0] || !final_types[1] || !final_types[2]) 1562 return NULL; 1563 if (field == e_fsel) 1564 *final_types[0] = R_FSEL; 1565 else if (field == e_rsel) 1566 *final_types[0] = R_RSEL; 1567 else if (field == e_lsel) 1568 *final_types[0] = R_LSEL; 1569 *final_types[1] = R_COMP2; 1570 *final_types[2] = R_COMP2; 1571 *final_types[3] = R_COMP1; 1572 final_types[4] = final_type; 1573 if (format == 32) 1574 *final_types[4] = R_DATA_EXPR; 1575 else 1576 *final_types[4] = R_CODE_EXPR; 1577 final_types[5] = NULL; 1578 break; 1579 } 1580 else 1581 break; 1582 1583 case R_HPPA_NONE: 1584 case R_HPPA_ABS_CALL: 1585 /* Right now we can default all these. */ 1586 break; 1587 1588 case R_HPPA_PCREL_CALL: 1589 { 1590 #ifndef NO_PCREL_MODES 1591 /* If we have short and long pcrel modes, then generate the proper 1592 mode selector, then the pcrel relocation. Redundant selectors 1593 will be eliminated as the relocs are sized and emitted. */ 1594 bfd_size_type amt = sizeof (int); 1595 1596 final_types[0] = bfd_alloc (abfd, amt); 1597 if (!final_types[0]) 1598 return NULL; 1599 if (format == 17) 1600 *final_types[0] = R_SHORT_PCREL_MODE; 1601 else 1602 *final_types[0] = R_LONG_PCREL_MODE; 1603 final_types[1] = final_type; 1604 final_types[2] = NULL; 1605 *final_type = base_type; 1606 #endif 1607 break; 1608 } 1609 } 1610 return final_types; 1611 } 1612 1613 /* Return the address of the correct entry in the PA SOM relocation 1614 howto table. */ 1615 1616 static reloc_howto_type * 1617 som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1618 bfd_reloc_code_real_type code) 1619 { 1620 if ((int) code < (int) R_NO_RELOCATION + 255) 1621 { 1622 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code); 1623 return &som_hppa_howto_table[(int) code]; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 /* Perform some initialization for an object. Save results of this 1630 initialization in the BFD. */ 1631 1632 static const bfd_target * 1633 som_object_setup (bfd *abfd, 1634 struct header *file_hdrp, 1635 struct som_exec_auxhdr *aux_hdrp, 1636 unsigned long current_offset) 1637 { 1638 asection *section; 1639 1640 /* som_mkobject will set bfd_error if som_mkobject fails. */ 1641 if (! som_mkobject (abfd)) 1642 return NULL; 1643 1644 /* Set BFD flags based on what information is available in the SOM. */ 1645 abfd->flags = BFD_NO_FLAGS; 1646 if (file_hdrp->symbol_total) 1647 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; 1648 1649 switch (file_hdrp->a_magic) 1650 { 1651 case DEMAND_MAGIC: 1652 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P); 1653 break; 1654 case SHARE_MAGIC: 1655 abfd->flags |= (WP_TEXT | EXEC_P); 1656 break; 1657 case EXEC_MAGIC: 1658 abfd->flags |= (EXEC_P); 1659 break; 1660 case RELOC_MAGIC: 1661 abfd->flags |= HAS_RELOC; 1662 break; 1663 #ifdef SHL_MAGIC 1664 case SHL_MAGIC: 1665 #endif 1666 #ifdef DL_MAGIC 1667 case DL_MAGIC: 1668 #endif 1669 abfd->flags |= DYNAMIC; 1670 break; 1671 1672 default: 1673 break; 1674 } 1675 1676 /* Save the auxiliary header. */ 1677 obj_som_exec_hdr (abfd) = aux_hdrp; 1678 1679 /* Allocate space to hold the saved exec header information. */ 1680 obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data)); 1681 if (obj_som_exec_data (abfd) == NULL) 1682 return NULL; 1683 1684 /* The braindamaged OSF1 linker switched exec_flags and exec_entry! 1685 1686 We used to identify OSF1 binaries based on NEW_VERSION_ID, but 1687 apparently the latest HPUX linker is using NEW_VERSION_ID now. 1688 1689 It's about time, OSF has used the new id since at least 1992; 1690 HPUX didn't start till nearly 1995!. 1691 1692 The new approach examines the entry field for an executable. If 1693 it is not 4-byte aligned then it's not a proper code address and 1694 we guess it's really the executable flags. For a main program, 1695 we also consider zero to be indicative of a buggy linker, since 1696 that is not a valid entry point. The entry point for a shared 1697 library, however, can be zero so we do not consider that to be 1698 indicative of a buggy linker. */ 1699 if (aux_hdrp) 1700 { 1701 int found = 0; 1702 1703 for (section = abfd->sections; section; section = section->next) 1704 { 1705 bfd_vma entry; 1706 1707 if ((section->flags & SEC_CODE) == 0) 1708 continue; 1709 entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem; 1710 if (entry >= section->vma 1711 && entry < section->vma + section->size) 1712 found = 1; 1713 } 1714 if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC)) 1715 || (aux_hdrp->exec_entry & 0x3) != 0 1716 || ! found) 1717 { 1718 bfd_get_start_address (abfd) = aux_hdrp->exec_flags; 1719 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry; 1720 } 1721 else 1722 { 1723 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset; 1724 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags; 1725 } 1726 } 1727 1728 obj_som_exec_data (abfd)->version_id = file_hdrp->version_id; 1729 1730 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10); 1731 bfd_get_symcount (abfd) = file_hdrp->symbol_total; 1732 1733 /* Initialize the saved symbol table and string table to NULL. 1734 Save important offsets and sizes from the SOM header into 1735 the BFD. */ 1736 obj_som_stringtab (abfd) = NULL; 1737 obj_som_symtab (abfd) = NULL; 1738 obj_som_sorted_syms (abfd) = NULL; 1739 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size; 1740 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset; 1741 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location 1742 + current_offset); 1743 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location 1744 + current_offset); 1745 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id; 1746 1747 return abfd->xvec; 1748 } 1749 1750 /* Convert all of the space and subspace info into BFD sections. Each space 1751 contains a number of subspaces, which in turn describe the mapping between 1752 regions of the exec file, and the address space that the program runs in. 1753 BFD sections which correspond to spaces will overlap the sections for the 1754 associated subspaces. */ 1755 1756 static bfd_boolean 1757 setup_sections (bfd *abfd, 1758 struct header *file_hdr, 1759 unsigned long current_offset) 1760 { 1761 char *space_strings; 1762 unsigned int space_index, i; 1763 unsigned int total_subspaces = 0; 1764 asection **subspace_sections = NULL; 1765 asection *section; 1766 bfd_size_type amt; 1767 1768 /* First, read in space names. */ 1769 amt = file_hdr->space_strings_size; 1770 space_strings = bfd_malloc (amt); 1771 if (!space_strings && amt != 0) 1772 goto error_return; 1773 1774 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location, 1775 SEEK_SET) != 0) 1776 goto error_return; 1777 if (bfd_bread (space_strings, amt, abfd) != amt) 1778 goto error_return; 1779 1780 /* Loop over all of the space dictionaries, building up sections. */ 1781 for (space_index = 0; space_index < file_hdr->space_total; space_index++) 1782 { 1783 struct space_dictionary_record space; 1784 struct som_subspace_dictionary_record subspace, save_subspace; 1785 unsigned int subspace_index; 1786 asection *space_asect; 1787 bfd_size_type space_size = 0; 1788 char *newname; 1789 1790 /* Read the space dictionary element. */ 1791 if (bfd_seek (abfd, 1792 (current_offset + file_hdr->space_location 1793 + space_index * sizeof space), 1794 SEEK_SET) != 0) 1795 goto error_return; 1796 amt = sizeof space; 1797 if (bfd_bread (&space, amt, abfd) != amt) 1798 goto error_return; 1799 1800 /* Setup the space name string. */ 1801 space.name.n_name = space.name.n_strx + space_strings; 1802 1803 /* Make a section out of it. */ 1804 amt = strlen (space.name.n_name) + 1; 1805 newname = bfd_alloc (abfd, amt); 1806 if (!newname) 1807 goto error_return; 1808 strcpy (newname, space.name.n_name); 1809 1810 space_asect = bfd_make_section_anyway (abfd, newname); 1811 if (!space_asect) 1812 goto error_return; 1813 1814 if (space.is_loadable == 0) 1815 space_asect->flags |= SEC_DEBUGGING; 1816 1817 /* Set up all the attributes for the space. */ 1818 if (! bfd_som_set_section_attributes (space_asect, space.is_defined, 1819 space.is_private, space.sort_key, 1820 space.space_number)) 1821 goto error_return; 1822 1823 /* If the space has no subspaces, then we're done. */ 1824 if (space.subspace_quantity == 0) 1825 continue; 1826 1827 /* Now, read in the first subspace for this space. */ 1828 if (bfd_seek (abfd, 1829 (current_offset + file_hdr->subspace_location 1830 + space.subspace_index * sizeof subspace), 1831 SEEK_SET) != 0) 1832 goto error_return; 1833 amt = sizeof subspace; 1834 if (bfd_bread (&subspace, amt, abfd) != amt) 1835 goto error_return; 1836 /* Seek back to the start of the subspaces for loop below. */ 1837 if (bfd_seek (abfd, 1838 (current_offset + file_hdr->subspace_location 1839 + space.subspace_index * sizeof subspace), 1840 SEEK_SET) != 0) 1841 goto error_return; 1842 1843 /* Setup the start address and file loc from the first subspace 1844 record. */ 1845 space_asect->vma = subspace.subspace_start; 1846 space_asect->filepos = subspace.file_loc_init_value + current_offset; 1847 space_asect->alignment_power = exact_log2 (subspace.alignment); 1848 if (space_asect->alignment_power == (unsigned) -1) 1849 goto error_return; 1850 1851 /* Initialize save_subspace so we can reliably determine if this 1852 loop placed any useful values into it. */ 1853 memset (&save_subspace, 0, sizeof (save_subspace)); 1854 1855 /* Loop over the rest of the subspaces, building up more sections. */ 1856 for (subspace_index = 0; subspace_index < space.subspace_quantity; 1857 subspace_index++) 1858 { 1859 asection *subspace_asect; 1860 1861 /* Read in the next subspace. */ 1862 amt = sizeof subspace; 1863 if (bfd_bread (&subspace, amt, abfd) != amt) 1864 goto error_return; 1865 1866 /* Setup the subspace name string. */ 1867 subspace.name.n_name = subspace.name.n_strx + space_strings; 1868 1869 amt = strlen (subspace.name.n_name) + 1; 1870 newname = bfd_alloc (abfd, amt); 1871 if (!newname) 1872 goto error_return; 1873 strcpy (newname, subspace.name.n_name); 1874 1875 /* Make a section out of this subspace. */ 1876 subspace_asect = bfd_make_section_anyway (abfd, newname); 1877 if (!subspace_asect) 1878 goto error_return; 1879 1880 /* Store private information about the section. */ 1881 if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect, 1882 subspace.access_control_bits, 1883 subspace.sort_key, 1884 subspace.quadrant, 1885 subspace.is_comdat, 1886 subspace.is_common, 1887 subspace.dup_common)) 1888 goto error_return; 1889 1890 /* Keep an easy mapping between subspaces and sections. 1891 Note we do not necessarily read the subspaces in the 1892 same order in which they appear in the object file. 1893 1894 So to make the target index come out correctly, we 1895 store the location of the subspace header in target 1896 index, then sort using the location of the subspace 1897 header as the key. Then we can assign correct 1898 subspace indices. */ 1899 total_subspaces++; 1900 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace); 1901 1902 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified 1903 by the access_control_bits in the subspace header. */ 1904 switch (subspace.access_control_bits >> 4) 1905 { 1906 /* Readonly data. */ 1907 case 0x0: 1908 subspace_asect->flags |= SEC_DATA | SEC_READONLY; 1909 break; 1910 1911 /* Normal data. */ 1912 case 0x1: 1913 subspace_asect->flags |= SEC_DATA; 1914 break; 1915 1916 /* Readonly code and the gateways. 1917 Gateways have other attributes which do not map 1918 into anything BFD knows about. */ 1919 case 0x2: 1920 case 0x4: 1921 case 0x5: 1922 case 0x6: 1923 case 0x7: 1924 subspace_asect->flags |= SEC_CODE | SEC_READONLY; 1925 break; 1926 1927 /* dynamic (writable) code. */ 1928 case 0x3: 1929 subspace_asect->flags |= SEC_CODE; 1930 break; 1931 } 1932 1933 if (subspace.is_comdat || subspace.is_common || subspace.dup_common) 1934 subspace_asect->flags |= SEC_LINK_ONCE; 1935 1936 if (subspace.subspace_length > 0) 1937 subspace_asect->flags |= SEC_HAS_CONTENTS; 1938 1939 if (subspace.is_loadable) 1940 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD; 1941 else 1942 subspace_asect->flags |= SEC_DEBUGGING; 1943 1944 if (subspace.code_only) 1945 subspace_asect->flags |= SEC_CODE; 1946 1947 /* Both file_loc_init_value and initialization_length will 1948 be zero for a BSS like subspace. */ 1949 if (subspace.file_loc_init_value == 0 1950 && subspace.initialization_length == 0) 1951 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS); 1952 1953 /* This subspace has relocations. 1954 The fixup_request_quantity is a byte count for the number of 1955 entries in the relocation stream; it is not the actual number 1956 of relocations in the subspace. */ 1957 if (subspace.fixup_request_quantity != 0) 1958 { 1959 subspace_asect->flags |= SEC_RELOC; 1960 subspace_asect->rel_filepos = subspace.fixup_request_index; 1961 som_section_data (subspace_asect)->reloc_size 1962 = subspace.fixup_request_quantity; 1963 /* We can not determine this yet. When we read in the 1964 relocation table the correct value will be filled in. */ 1965 subspace_asect->reloc_count = (unsigned) -1; 1966 } 1967 1968 /* Update save_subspace if appropriate. */ 1969 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value) 1970 save_subspace = subspace; 1971 1972 subspace_asect->vma = subspace.subspace_start; 1973 subspace_asect->size = subspace.subspace_length; 1974 subspace_asect->filepos = (subspace.file_loc_init_value 1975 + current_offset); 1976 subspace_asect->alignment_power = exact_log2 (subspace.alignment); 1977 if (subspace_asect->alignment_power == (unsigned) -1) 1978 goto error_return; 1979 1980 /* Keep track of the accumulated sizes of the sections. */ 1981 space_size += subspace.subspace_length; 1982 } 1983 1984 /* This can happen for a .o which defines symbols in otherwise 1985 empty subspaces. */ 1986 if (!save_subspace.file_loc_init_value) 1987 space_asect->size = 0; 1988 else 1989 { 1990 if (file_hdr->a_magic != RELOC_MAGIC) 1991 { 1992 /* Setup the size for the space section based upon the info 1993 in the last subspace of the space. */ 1994 space_asect->size = (save_subspace.subspace_start 1995 - space_asect->vma 1996 + save_subspace.subspace_length); 1997 } 1998 else 1999 { 2000 /* The subspace_start field is not initialised in relocatable 2001 only objects, so it cannot be used for length calculations. 2002 Instead we use the space_size value which we have been 2003 accumulating. This isn't an accurate estimate since it 2004 ignores alignment and ordering issues. */ 2005 space_asect->size = space_size; 2006 } 2007 } 2008 } 2009 /* Now that we've read in all the subspace records, we need to assign 2010 a target index to each subspace. */ 2011 amt = total_subspaces; 2012 amt *= sizeof (asection *); 2013 subspace_sections = bfd_malloc (amt); 2014 if (subspace_sections == NULL) 2015 goto error_return; 2016 2017 for (i = 0, section = abfd->sections; section; section = section->next) 2018 { 2019 if (!som_is_subspace (section)) 2020 continue; 2021 2022 subspace_sections[i] = section; 2023 i++; 2024 } 2025 qsort (subspace_sections, total_subspaces, 2026 sizeof (asection *), compare_subspaces); 2027 2028 /* subspace_sections is now sorted in the order in which the subspaces 2029 appear in the object file. Assign an index to each one now. */ 2030 for (i = 0; i < total_subspaces; i++) 2031 subspace_sections[i]->target_index = i; 2032 2033 if (space_strings != NULL) 2034 free (space_strings); 2035 2036 if (subspace_sections != NULL) 2037 free (subspace_sections); 2038 2039 return TRUE; 2040 2041 error_return: 2042 if (space_strings != NULL) 2043 free (space_strings); 2044 2045 if (subspace_sections != NULL) 2046 free (subspace_sections); 2047 return FALSE; 2048 } 2049 2050 /* Read in a SOM object and make it into a BFD. */ 2051 2052 static const bfd_target * 2053 som_object_p (bfd *abfd) 2054 { 2055 struct header file_hdr; 2056 struct som_exec_auxhdr *aux_hdr_ptr = NULL; 2057 unsigned long current_offset = 0; 2058 struct lst_header lst_header; 2059 struct som_entry som_entry; 2060 bfd_size_type amt; 2061 #define ENTRY_SIZE sizeof (struct som_entry) 2062 2063 amt = FILE_HDR_SIZE; 2064 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt) 2065 { 2066 if (bfd_get_error () != bfd_error_system_call) 2067 bfd_set_error (bfd_error_wrong_format); 2068 return NULL; 2069 } 2070 2071 if (!_PA_RISC_ID (file_hdr.system_id)) 2072 { 2073 bfd_set_error (bfd_error_wrong_format); 2074 return NULL; 2075 } 2076 2077 switch (file_hdr.a_magic) 2078 { 2079 case RELOC_MAGIC: 2080 case EXEC_MAGIC: 2081 case SHARE_MAGIC: 2082 case DEMAND_MAGIC: 2083 #ifdef DL_MAGIC 2084 case DL_MAGIC: 2085 #endif 2086 #ifdef SHL_MAGIC 2087 case SHL_MAGIC: 2088 #endif 2089 #ifdef SHARED_MAGIC_CNX 2090 case SHARED_MAGIC_CNX: 2091 #endif 2092 break; 2093 2094 #ifdef EXECLIBMAGIC 2095 case EXECLIBMAGIC: 2096 /* Read the lst header and determine where the SOM directory begins. */ 2097 2098 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) 2099 { 2100 if (bfd_get_error () != bfd_error_system_call) 2101 bfd_set_error (bfd_error_wrong_format); 2102 return NULL; 2103 } 2104 2105 amt = SLSTHDR; 2106 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt) 2107 { 2108 if (bfd_get_error () != bfd_error_system_call) 2109 bfd_set_error (bfd_error_wrong_format); 2110 return NULL; 2111 } 2112 2113 /* Position to and read the first directory entry. */ 2114 2115 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0) 2116 { 2117 if (bfd_get_error () != bfd_error_system_call) 2118 bfd_set_error (bfd_error_wrong_format); 2119 return NULL; 2120 } 2121 2122 amt = ENTRY_SIZE; 2123 if (bfd_bread ((void *) &som_entry, amt, abfd) != amt) 2124 { 2125 if (bfd_get_error () != bfd_error_system_call) 2126 bfd_set_error (bfd_error_wrong_format); 2127 return NULL; 2128 } 2129 2130 /* Now position to the first SOM. */ 2131 2132 if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0) 2133 { 2134 if (bfd_get_error () != bfd_error_system_call) 2135 bfd_set_error (bfd_error_wrong_format); 2136 return NULL; 2137 } 2138 2139 current_offset = som_entry.location; 2140 2141 /* And finally, re-read the som header. */ 2142 amt = FILE_HDR_SIZE; 2143 if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt) 2144 { 2145 if (bfd_get_error () != bfd_error_system_call) 2146 bfd_set_error (bfd_error_wrong_format); 2147 return NULL; 2148 } 2149 2150 break; 2151 #endif 2152 2153 default: 2154 bfd_set_error (bfd_error_wrong_format); 2155 return NULL; 2156 } 2157 2158 if (file_hdr.version_id != VERSION_ID 2159 && file_hdr.version_id != NEW_VERSION_ID) 2160 { 2161 bfd_set_error (bfd_error_wrong_format); 2162 return NULL; 2163 } 2164 2165 /* If the aux_header_size field in the file header is zero, then this 2166 object is an incomplete executable (a .o file). Do not try to read 2167 a non-existant auxiliary header. */ 2168 if (file_hdr.aux_header_size != 0) 2169 { 2170 aux_hdr_ptr = bfd_zalloc (abfd, 2171 (bfd_size_type) sizeof (*aux_hdr_ptr)); 2172 if (aux_hdr_ptr == NULL) 2173 return NULL; 2174 amt = AUX_HDR_SIZE; 2175 if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt) 2176 { 2177 if (bfd_get_error () != bfd_error_system_call) 2178 bfd_set_error (bfd_error_wrong_format); 2179 return NULL; 2180 } 2181 } 2182 2183 if (!setup_sections (abfd, &file_hdr, current_offset)) 2184 { 2185 /* setup_sections does not bubble up a bfd error code. */ 2186 bfd_set_error (bfd_error_bad_value); 2187 return NULL; 2188 } 2189 2190 /* This appears to be a valid SOM object. Do some initialization. */ 2191 return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset); 2192 } 2193 2194 /* Create a SOM object. */ 2195 2196 static bfd_boolean 2197 som_mkobject (bfd *abfd) 2198 { 2199 /* Allocate memory to hold backend information. */ 2200 abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct)); 2201 if (abfd->tdata.som_data == NULL) 2202 return FALSE; 2203 return TRUE; 2204 } 2205 2206 /* Initialize some information in the file header. This routine makes 2207 not attempt at doing the right thing for a full executable; it 2208 is only meant to handle relocatable objects. */ 2209 2210 static bfd_boolean 2211 som_prep_headers (bfd *abfd) 2212 { 2213 struct header *file_hdr; 2214 asection *section; 2215 bfd_size_type amt = sizeof (struct header); 2216 2217 /* Make and attach a file header to the BFD. */ 2218 file_hdr = bfd_zalloc (abfd, amt); 2219 if (file_hdr == NULL) 2220 return FALSE; 2221 obj_som_file_hdr (abfd) = file_hdr; 2222 2223 if (abfd->flags & (EXEC_P | DYNAMIC)) 2224 { 2225 /* Make and attach an exec header to the BFD. */ 2226 amt = sizeof (struct som_exec_auxhdr); 2227 obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt); 2228 if (obj_som_exec_hdr (abfd) == NULL) 2229 return FALSE; 2230 2231 if (abfd->flags & D_PAGED) 2232 file_hdr->a_magic = DEMAND_MAGIC; 2233 else if (abfd->flags & WP_TEXT) 2234 file_hdr->a_magic = SHARE_MAGIC; 2235 #ifdef SHL_MAGIC 2236 else if (abfd->flags & DYNAMIC) 2237 file_hdr->a_magic = SHL_MAGIC; 2238 #endif 2239 else 2240 file_hdr->a_magic = EXEC_MAGIC; 2241 } 2242 else 2243 file_hdr->a_magic = RELOC_MAGIC; 2244 2245 /* These fields are optional, and embedding timestamps is not always 2246 a wise thing to do, it makes comparing objects during a multi-stage 2247 bootstrap difficult. */ 2248 file_hdr->file_time.secs = 0; 2249 file_hdr->file_time.nanosecs = 0; 2250 2251 file_hdr->entry_space = 0; 2252 file_hdr->entry_subspace = 0; 2253 file_hdr->entry_offset = 0; 2254 file_hdr->presumed_dp = 0; 2255 2256 /* Now iterate over the sections translating information from 2257 BFD sections to SOM spaces/subspaces. */ 2258 for (section = abfd->sections; section != NULL; section = section->next) 2259 { 2260 /* Ignore anything which has not been marked as a space or 2261 subspace. */ 2262 if (!som_is_space (section) && !som_is_subspace (section)) 2263 continue; 2264 2265 if (som_is_space (section)) 2266 { 2267 /* Allocate space for the space dictionary. */ 2268 amt = sizeof (struct space_dictionary_record); 2269 som_section_data (section)->space_dict = bfd_zalloc (abfd, amt); 2270 if (som_section_data (section)->space_dict == NULL) 2271 return FALSE; 2272 /* Set space attributes. Note most attributes of SOM spaces 2273 are set based on the subspaces it contains. */ 2274 som_section_data (section)->space_dict->loader_fix_index = -1; 2275 som_section_data (section)->space_dict->init_pointer_index = -1; 2276 2277 /* Set more attributes that were stuffed away in private data. */ 2278 som_section_data (section)->space_dict->sort_key = 2279 som_section_data (section)->copy_data->sort_key; 2280 som_section_data (section)->space_dict->is_defined = 2281 som_section_data (section)->copy_data->is_defined; 2282 som_section_data (section)->space_dict->is_private = 2283 som_section_data (section)->copy_data->is_private; 2284 som_section_data (section)->space_dict->space_number = 2285 som_section_data (section)->copy_data->space_number; 2286 } 2287 else 2288 { 2289 /* Allocate space for the subspace dictionary. */ 2290 amt = sizeof (struct som_subspace_dictionary_record); 2291 som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt); 2292 if (som_section_data (section)->subspace_dict == NULL) 2293 return FALSE; 2294 2295 /* Set subspace attributes. Basic stuff is done here, additional 2296 attributes are filled in later as more information becomes 2297 available. */ 2298 if (section->flags & SEC_ALLOC) 2299 som_section_data (section)->subspace_dict->is_loadable = 1; 2300 2301 if (section->flags & SEC_CODE) 2302 som_section_data (section)->subspace_dict->code_only = 1; 2303 2304 som_section_data (section)->subspace_dict->subspace_start = 2305 section->vma; 2306 som_section_data (section)->subspace_dict->subspace_length = 2307 section->size; 2308 som_section_data (section)->subspace_dict->initialization_length = 2309 section->size; 2310 som_section_data (section)->subspace_dict->alignment = 2311 1 << section->alignment_power; 2312 2313 /* Set more attributes that were stuffed away in private data. */ 2314 som_section_data (section)->subspace_dict->sort_key = 2315 som_section_data (section)->copy_data->sort_key; 2316 som_section_data (section)->subspace_dict->access_control_bits = 2317 som_section_data (section)->copy_data->access_control_bits; 2318 som_section_data (section)->subspace_dict->quadrant = 2319 som_section_data (section)->copy_data->quadrant; 2320 som_section_data (section)->subspace_dict->is_comdat = 2321 som_section_data (section)->copy_data->is_comdat; 2322 som_section_data (section)->subspace_dict->is_common = 2323 som_section_data (section)->copy_data->is_common; 2324 som_section_data (section)->subspace_dict->dup_common = 2325 som_section_data (section)->copy_data->dup_common; 2326 } 2327 } 2328 return TRUE; 2329 } 2330 2331 /* Return TRUE if the given section is a SOM space, FALSE otherwise. */ 2332 2333 static bfd_boolean 2334 som_is_space (asection *section) 2335 { 2336 /* If no copy data is available, then it's neither a space nor a 2337 subspace. */ 2338 if (som_section_data (section)->copy_data == NULL) 2339 return FALSE; 2340 2341 /* If the containing space isn't the same as the given section, 2342 then this isn't a space. */ 2343 if (som_section_data (section)->copy_data->container != section 2344 && (som_section_data (section)->copy_data->container->output_section 2345 != section)) 2346 return FALSE; 2347 2348 /* OK. Must be a space. */ 2349 return TRUE; 2350 } 2351 2352 /* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */ 2353 2354 static bfd_boolean 2355 som_is_subspace (asection *section) 2356 { 2357 /* If no copy data is available, then it's neither a space nor a 2358 subspace. */ 2359 if (som_section_data (section)->copy_data == NULL) 2360 return FALSE; 2361 2362 /* If the containing space is the same as the given section, 2363 then this isn't a subspace. */ 2364 if (som_section_data (section)->copy_data->container == section 2365 || (som_section_data (section)->copy_data->container->output_section 2366 == section)) 2367 return FALSE; 2368 2369 /* OK. Must be a subspace. */ 2370 return TRUE; 2371 } 2372 2373 /* Return TRUE if the given space contains the given subspace. It 2374 is safe to assume space really is a space, and subspace really 2375 is a subspace. */ 2376 2377 static bfd_boolean 2378 som_is_container (asection *space, asection *subspace) 2379 { 2380 return (som_section_data (subspace)->copy_data->container == space) 2381 || (som_section_data (subspace)->copy_data->container->output_section 2382 == space); 2383 } 2384 2385 /* Count and return the number of spaces attached to the given BFD. */ 2386 2387 static unsigned long 2388 som_count_spaces (bfd *abfd) 2389 { 2390 int count = 0; 2391 asection *section; 2392 2393 for (section = abfd->sections; section != NULL; section = section->next) 2394 count += som_is_space (section); 2395 2396 return count; 2397 } 2398 2399 /* Count the number of subspaces attached to the given BFD. */ 2400 2401 static unsigned long 2402 som_count_subspaces (bfd *abfd) 2403 { 2404 int count = 0; 2405 asection *section; 2406 2407 for (section = abfd->sections; section != NULL; section = section->next) 2408 count += som_is_subspace (section); 2409 2410 return count; 2411 } 2412 2413 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2. 2414 2415 We desire symbols to be ordered starting with the symbol with the 2416 highest relocation count down to the symbol with the lowest relocation 2417 count. Doing so compacts the relocation stream. */ 2418 2419 static int 2420 compare_syms (const void *arg1, const void *arg2) 2421 { 2422 asymbol **sym1 = (asymbol **) arg1; 2423 asymbol **sym2 = (asymbol **) arg2; 2424 unsigned int count1, count2; 2425 2426 /* Get relocation count for each symbol. Note that the count 2427 is stored in the udata pointer for section symbols! */ 2428 if ((*sym1)->flags & BSF_SECTION_SYM) 2429 count1 = (*sym1)->udata.i; 2430 else 2431 count1 = som_symbol_data (*sym1)->reloc_count; 2432 2433 if ((*sym2)->flags & BSF_SECTION_SYM) 2434 count2 = (*sym2)->udata.i; 2435 else 2436 count2 = som_symbol_data (*sym2)->reloc_count; 2437 2438 /* Return the appropriate value. */ 2439 if (count1 < count2) 2440 return 1; 2441 else if (count1 > count2) 2442 return -1; 2443 return 0; 2444 } 2445 2446 /* Return -1, 0, 1 indicating the relative ordering of subspace1 2447 and subspace. */ 2448 2449 static int 2450 compare_subspaces (const void *arg1, const void *arg2) 2451 { 2452 asection **subspace1 = (asection **) arg1; 2453 asection **subspace2 = (asection **) arg2; 2454 2455 if ((*subspace1)->target_index < (*subspace2)->target_index) 2456 return -1; 2457 else if ((*subspace2)->target_index < (*subspace1)->target_index) 2458 return 1; 2459 else 2460 return 0; 2461 } 2462 2463 /* Perform various work in preparation for emitting the fixup stream. */ 2464 2465 static void 2466 som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms) 2467 { 2468 unsigned long i; 2469 asection *section; 2470 asymbol **sorted_syms; 2471 bfd_size_type amt; 2472 2473 /* Most SOM relocations involving a symbol have a length which is 2474 dependent on the index of the symbol. So symbols which are 2475 used often in relocations should have a small index. */ 2476 2477 /* First initialize the counters for each symbol. */ 2478 for (i = 0; i < num_syms; i++) 2479 { 2480 /* Handle a section symbol; these have no pointers back to the 2481 SOM symbol info. So we just use the udata field to hold the 2482 relocation count. */ 2483 if (som_symbol_data (syms[i]) == NULL 2484 || syms[i]->flags & BSF_SECTION_SYM) 2485 { 2486 syms[i]->flags |= BSF_SECTION_SYM; 2487 syms[i]->udata.i = 0; 2488 } 2489 else 2490 som_symbol_data (syms[i])->reloc_count = 0; 2491 } 2492 2493 /* Now that the counters are initialized, make a weighted count 2494 of how often a given symbol is used in a relocation. */ 2495 for (section = abfd->sections; section != NULL; section = section->next) 2496 { 2497 int j; 2498 2499 /* Does this section have any relocations? */ 2500 if ((int) section->reloc_count <= 0) 2501 continue; 2502 2503 /* Walk through each relocation for this section. */ 2504 for (j = 1; j < (int) section->reloc_count; j++) 2505 { 2506 arelent *reloc = section->orelocation[j]; 2507 int scale; 2508 2509 /* A relocation against a symbol in the *ABS* section really 2510 does not have a symbol. Likewise if the symbol isn't associated 2511 with any section. */ 2512 if (reloc->sym_ptr_ptr == NULL 2513 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section)) 2514 continue; 2515 2516 /* Scaling to encourage symbols involved in R_DP_RELATIVE 2517 and R_CODE_ONE_SYMBOL relocations to come first. These 2518 two relocations have single byte versions if the symbol 2519 index is very small. */ 2520 if (reloc->howto->type == R_DP_RELATIVE 2521 || reloc->howto->type == R_CODE_ONE_SYMBOL) 2522 scale = 2; 2523 else 2524 scale = 1; 2525 2526 /* Handle section symbols by storing the count in the udata 2527 field. It will not be used and the count is very important 2528 for these symbols. */ 2529 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) 2530 { 2531 (*reloc->sym_ptr_ptr)->udata.i = 2532 (*reloc->sym_ptr_ptr)->udata.i + scale; 2533 continue; 2534 } 2535 2536 /* A normal symbol. Increment the count. */ 2537 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale; 2538 } 2539 } 2540 2541 /* Sort a copy of the symbol table, rather than the canonical 2542 output symbol table. */ 2543 amt = num_syms; 2544 amt *= sizeof (asymbol *); 2545 sorted_syms = bfd_zalloc (abfd, amt); 2546 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *)); 2547 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms); 2548 obj_som_sorted_syms (abfd) = sorted_syms; 2549 2550 /* Compute the symbol indexes, they will be needed by the relocation 2551 code. */ 2552 for (i = 0; i < num_syms; i++) 2553 { 2554 /* A section symbol. Again, there is no pointer to backend symbol 2555 information, so we reuse the udata field again. */ 2556 if (sorted_syms[i]->flags & BSF_SECTION_SYM) 2557 sorted_syms[i]->udata.i = i; 2558 else 2559 som_symbol_data (sorted_syms[i])->index = i; 2560 } 2561 } 2562 2563 static bfd_boolean 2564 som_write_fixups (bfd *abfd, 2565 unsigned long current_offset, 2566 unsigned int *total_reloc_sizep) 2567 { 2568 unsigned int i, j; 2569 /* Chunk of memory that we can use as buffer space, then throw 2570 away. */ 2571 unsigned char tmp_space[SOM_TMP_BUFSIZE]; 2572 unsigned char *p; 2573 unsigned int total_reloc_size = 0; 2574 unsigned int subspace_reloc_size = 0; 2575 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total; 2576 asection *section = abfd->sections; 2577 bfd_size_type amt; 2578 2579 memset (tmp_space, 0, SOM_TMP_BUFSIZE); 2580 p = tmp_space; 2581 2582 /* All the fixups for a particular subspace are emitted in a single 2583 stream. All the subspaces for a particular space are emitted 2584 as a single stream. 2585 2586 So, to get all the locations correct one must iterate through all the 2587 spaces, for each space iterate through its subspaces and output a 2588 fixups stream. */ 2589 for (i = 0; i < num_spaces; i++) 2590 { 2591 asection *subsection; 2592 2593 /* Find a space. */ 2594 while (!som_is_space (section)) 2595 section = section->next; 2596 2597 /* Now iterate through each of its subspaces. */ 2598 for (subsection = abfd->sections; 2599 subsection != NULL; 2600 subsection = subsection->next) 2601 { 2602 int reloc_offset; 2603 unsigned int current_rounding_mode; 2604 #ifndef NO_PCREL_MODES 2605 unsigned int current_call_mode; 2606 #endif 2607 2608 /* Find a subspace of this space. */ 2609 if (!som_is_subspace (subsection) 2610 || !som_is_container (section, subsection)) 2611 continue; 2612 2613 /* If this subspace does not have real data, then we are 2614 finished with it. */ 2615 if ((subsection->flags & SEC_HAS_CONTENTS) == 0) 2616 { 2617 som_section_data (subsection)->subspace_dict->fixup_request_index 2618 = -1; 2619 continue; 2620 } 2621 2622 /* This subspace has some relocations. Put the relocation stream 2623 index into the subspace record. */ 2624 som_section_data (subsection)->subspace_dict->fixup_request_index 2625 = total_reloc_size; 2626 2627 /* To make life easier start over with a clean slate for 2628 each subspace. Seek to the start of the relocation stream 2629 for this subspace in preparation for writing out its fixup 2630 stream. */ 2631 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0) 2632 return FALSE; 2633 2634 /* Buffer space has already been allocated. Just perform some 2635 initialization here. */ 2636 p = tmp_space; 2637 subspace_reloc_size = 0; 2638 reloc_offset = 0; 2639 som_initialize_reloc_queue (reloc_queue); 2640 current_rounding_mode = R_N_MODE; 2641 #ifndef NO_PCREL_MODES 2642 current_call_mode = R_SHORT_PCREL_MODE; 2643 #endif 2644 2645 /* Translate each BFD relocation into one or more SOM 2646 relocations. */ 2647 for (j = 0; j < subsection->reloc_count; j++) 2648 { 2649 arelent *bfd_reloc = subsection->orelocation[j]; 2650 unsigned int skip; 2651 int sym_num; 2652 2653 /* Get the symbol number. Remember it's stored in a 2654 special place for section symbols. */ 2655 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) 2656 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i; 2657 else 2658 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index; 2659 2660 /* If there is not enough room for the next couple relocations, 2661 then dump the current buffer contents now. Also reinitialize 2662 the relocation queue. 2663 2664 No single BFD relocation could ever translate into more 2665 than 100 bytes of SOM relocations (20bytes is probably the 2666 upper limit, but leave lots of space for growth). */ 2667 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE) 2668 { 2669 amt = p - tmp_space; 2670 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt) 2671 return FALSE; 2672 2673 p = tmp_space; 2674 som_initialize_reloc_queue (reloc_queue); 2675 } 2676 2677 /* Emit R_NO_RELOCATION fixups to map any bytes which were 2678 skipped. */ 2679 skip = bfd_reloc->address - reloc_offset; 2680 p = som_reloc_skip (abfd, skip, p, 2681 &subspace_reloc_size, reloc_queue); 2682 2683 /* Update reloc_offset for the next iteration. 2684 2685 Many relocations do not consume input bytes. They 2686 are markers, or set state necessary to perform some 2687 later relocation. */ 2688 switch (bfd_reloc->howto->type) 2689 { 2690 case R_ENTRY: 2691 case R_ALT_ENTRY: 2692 case R_EXIT: 2693 case R_N_MODE: 2694 case R_S_MODE: 2695 case R_D_MODE: 2696 case R_R_MODE: 2697 case R_FSEL: 2698 case R_LSEL: 2699 case R_RSEL: 2700 case R_COMP1: 2701 case R_COMP2: 2702 case R_BEGIN_BRTAB: 2703 case R_END_BRTAB: 2704 case R_BEGIN_TRY: 2705 case R_END_TRY: 2706 case R_N0SEL: 2707 case R_N1SEL: 2708 #ifndef NO_PCREL_MODES 2709 case R_SHORT_PCREL_MODE: 2710 case R_LONG_PCREL_MODE: 2711 #endif 2712 reloc_offset = bfd_reloc->address; 2713 break; 2714 2715 default: 2716 reloc_offset = bfd_reloc->address + 4; 2717 break; 2718 } 2719 2720 /* Now the actual relocation we care about. */ 2721 switch (bfd_reloc->howto->type) 2722 { 2723 case R_PCREL_CALL: 2724 case R_ABS_CALL: 2725 p = som_reloc_call (abfd, p, &subspace_reloc_size, 2726 bfd_reloc, sym_num, reloc_queue); 2727 break; 2728 2729 case R_CODE_ONE_SYMBOL: 2730 case R_DP_RELATIVE: 2731 /* Account for any addend. */ 2732 if (bfd_reloc->addend) 2733 p = som_reloc_addend (abfd, bfd_reloc->addend, p, 2734 &subspace_reloc_size, reloc_queue); 2735 2736 if (sym_num < 0x20) 2737 { 2738 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p); 2739 subspace_reloc_size += 1; 2740 p += 1; 2741 } 2742 else if (sym_num < 0x100) 2743 { 2744 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p); 2745 bfd_put_8 (abfd, sym_num, p + 1); 2746 p = try_prev_fixup (abfd, &subspace_reloc_size, p, 2747 2, reloc_queue); 2748 } 2749 else if (sym_num < 0x10000000) 2750 { 2751 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p); 2752 bfd_put_8 (abfd, sym_num >> 16, p + 1); 2753 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2); 2754 p = try_prev_fixup (abfd, &subspace_reloc_size, 2755 p, 4, reloc_queue); 2756 } 2757 else 2758 abort (); 2759 break; 2760 2761 case R_DATA_ONE_SYMBOL: 2762 case R_DATA_PLABEL: 2763 case R_CODE_PLABEL: 2764 case R_DLT_REL: 2765 /* Account for any addend using R_DATA_OVERRIDE. */ 2766 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL 2767 && bfd_reloc->addend) 2768 p = som_reloc_addend (abfd, bfd_reloc->addend, p, 2769 &subspace_reloc_size, reloc_queue); 2770 2771 if (sym_num < 0x100) 2772 { 2773 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2774 bfd_put_8 (abfd, sym_num, p + 1); 2775 p = try_prev_fixup (abfd, &subspace_reloc_size, p, 2776 2, reloc_queue); 2777 } 2778 else if (sym_num < 0x10000000) 2779 { 2780 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); 2781 bfd_put_8 (abfd, sym_num >> 16, p + 1); 2782 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2); 2783 p = try_prev_fixup (abfd, &subspace_reloc_size, 2784 p, 4, reloc_queue); 2785 } 2786 else 2787 abort (); 2788 break; 2789 2790 case R_ENTRY: 2791 { 2792 unsigned int tmp; 2793 arelent *tmp_reloc = NULL; 2794 bfd_put_8 (abfd, R_ENTRY, p); 2795 2796 /* R_ENTRY relocations have 64 bits of associated 2797 data. Unfortunately the addend field of a bfd 2798 relocation is only 32 bits. So, we split up 2799 the 64bit unwind information and store part in 2800 the R_ENTRY relocation, and the rest in the R_EXIT 2801 relocation. */ 2802 bfd_put_32 (abfd, bfd_reloc->addend, p + 1); 2803 2804 /* Find the next R_EXIT relocation. */ 2805 for (tmp = j; tmp < subsection->reloc_count; tmp++) 2806 { 2807 tmp_reloc = subsection->orelocation[tmp]; 2808 if (tmp_reloc->howto->type == R_EXIT) 2809 break; 2810 } 2811 2812 if (tmp == subsection->reloc_count) 2813 abort (); 2814 2815 bfd_put_32 (abfd, tmp_reloc->addend, p + 5); 2816 p = try_prev_fixup (abfd, &subspace_reloc_size, 2817 p, 9, reloc_queue); 2818 break; 2819 } 2820 2821 case R_N_MODE: 2822 case R_S_MODE: 2823 case R_D_MODE: 2824 case R_R_MODE: 2825 /* If this relocation requests the current rounding 2826 mode, then it is redundant. */ 2827 if (bfd_reloc->howto->type != current_rounding_mode) 2828 { 2829 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2830 subspace_reloc_size += 1; 2831 p += 1; 2832 current_rounding_mode = bfd_reloc->howto->type; 2833 } 2834 break; 2835 2836 #ifndef NO_PCREL_MODES 2837 case R_LONG_PCREL_MODE: 2838 case R_SHORT_PCREL_MODE: 2839 if (bfd_reloc->howto->type != current_call_mode) 2840 { 2841 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2842 subspace_reloc_size += 1; 2843 p += 1; 2844 current_call_mode = bfd_reloc->howto->type; 2845 } 2846 break; 2847 #endif 2848 2849 case R_EXIT: 2850 case R_ALT_ENTRY: 2851 case R_FSEL: 2852 case R_LSEL: 2853 case R_RSEL: 2854 case R_BEGIN_BRTAB: 2855 case R_END_BRTAB: 2856 case R_BEGIN_TRY: 2857 case R_N0SEL: 2858 case R_N1SEL: 2859 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2860 subspace_reloc_size += 1; 2861 p += 1; 2862 break; 2863 2864 case R_END_TRY: 2865 /* The end of an exception handling region. The reloc's 2866 addend contains the offset of the exception handling 2867 code. */ 2868 if (bfd_reloc->addend == 0) 2869 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2870 else if (bfd_reloc->addend < 1024) 2871 { 2872 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); 2873 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1); 2874 p = try_prev_fixup (abfd, &subspace_reloc_size, 2875 p, 2, reloc_queue); 2876 } 2877 else 2878 { 2879 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p); 2880 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1); 2881 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2); 2882 p = try_prev_fixup (abfd, &subspace_reloc_size, 2883 p, 4, reloc_queue); 2884 } 2885 break; 2886 2887 case R_COMP1: 2888 /* The only time we generate R_COMP1, R_COMP2 and 2889 R_CODE_EXPR relocs is for the difference of two 2890 symbols. Hence we can cheat here. */ 2891 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2892 bfd_put_8 (abfd, 0x44, p + 1); 2893 p = try_prev_fixup (abfd, &subspace_reloc_size, 2894 p, 2, reloc_queue); 2895 break; 2896 2897 case R_COMP2: 2898 /* The only time we generate R_COMP1, R_COMP2 and 2899 R_CODE_EXPR relocs is for the difference of two 2900 symbols. Hence we can cheat here. */ 2901 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2902 bfd_put_8 (abfd, 0x80, p + 1); 2903 bfd_put_8 (abfd, sym_num >> 16, p + 2); 2904 bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3); 2905 p = try_prev_fixup (abfd, &subspace_reloc_size, 2906 p, 5, reloc_queue); 2907 break; 2908 2909 case R_CODE_EXPR: 2910 case R_DATA_EXPR: 2911 /* The only time we generate R_COMP1, R_COMP2 and 2912 R_CODE_EXPR relocs is for the difference of two 2913 symbols. Hence we can cheat here. */ 2914 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2915 subspace_reloc_size += 1; 2916 p += 1; 2917 break; 2918 2919 /* Put a "R_RESERVED" relocation in the stream if 2920 we hit something we do not understand. The linker 2921 will complain loudly if this ever happens. */ 2922 default: 2923 bfd_put_8 (abfd, 0xff, p); 2924 subspace_reloc_size += 1; 2925 p += 1; 2926 break; 2927 } 2928 } 2929 2930 /* Last BFD relocation for a subspace has been processed. 2931 Map the rest of the subspace with R_NO_RELOCATION fixups. */ 2932 p = som_reloc_skip (abfd, subsection->size - reloc_offset, 2933 p, &subspace_reloc_size, reloc_queue); 2934 2935 /* Scribble out the relocations. */ 2936 amt = p - tmp_space; 2937 if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt) 2938 return FALSE; 2939 p = tmp_space; 2940 2941 total_reloc_size += subspace_reloc_size; 2942 som_section_data (subsection)->subspace_dict->fixup_request_quantity 2943 = subspace_reloc_size; 2944 } 2945 section = section->next; 2946 } 2947 *total_reloc_sizep = total_reloc_size; 2948 return TRUE; 2949 } 2950 2951 /* Write out the space/subspace string table. */ 2952 2953 static bfd_boolean 2954 som_write_space_strings (bfd *abfd, 2955 unsigned long current_offset, 2956 unsigned int *string_sizep) 2957 { 2958 /* Chunk of memory that we can use as buffer space, then throw 2959 away. */ 2960 size_t tmp_space_size = SOM_TMP_BUFSIZE; 2961 char *tmp_space = alloca (tmp_space_size); 2962 char *p = tmp_space; 2963 unsigned int strings_size = 0; 2964 asection *section; 2965 bfd_size_type amt; 2966 2967 /* Seek to the start of the space strings in preparation for writing 2968 them out. */ 2969 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) 2970 return FALSE; 2971 2972 /* Walk through all the spaces and subspaces (order is not important) 2973 building up and writing string table entries for their names. */ 2974 for (section = abfd->sections; section != NULL; section = section->next) 2975 { 2976 size_t length; 2977 2978 /* Only work with space/subspaces; avoid any other sections 2979 which might have been made (.text for example). */ 2980 if (!som_is_space (section) && !som_is_subspace (section)) 2981 continue; 2982 2983 /* Get the length of the space/subspace name. */ 2984 length = strlen (section->name); 2985 2986 /* If there is not enough room for the next entry, then dump the 2987 current buffer contents now and maybe allocate a larger 2988 buffer. Each entry will take 4 bytes to hold the string 2989 length + the string itself + null terminator. */ 2990 if (p - tmp_space + 5 + length > tmp_space_size) 2991 { 2992 /* Flush buffer before refilling or reallocating. */ 2993 amt = p - tmp_space; 2994 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) 2995 return FALSE; 2996 2997 /* Reallocate if now empty buffer still too small. */ 2998 if (5 + length > tmp_space_size) 2999 { 3000 /* Ensure a minimum growth factor to avoid O(n**2) space 3001 consumption for n strings. The optimal minimum 3002 factor seems to be 2, as no other value can guarantee 3003 wasting less than 50% space. (Note that we cannot 3004 deallocate space allocated by `alloca' without 3005 returning from this function.) The same technique is 3006 used a few more times below when a buffer is 3007 reallocated. */ 3008 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3009 tmp_space = alloca (tmp_space_size); 3010 } 3011 3012 /* Reset to beginning of the (possibly new) buffer space. */ 3013 p = tmp_space; 3014 } 3015 3016 /* First element in a string table entry is the length of the 3017 string. Alignment issues are already handled. */ 3018 bfd_put_32 (abfd, (bfd_vma) length, p); 3019 p += 4; 3020 strings_size += 4; 3021 3022 /* Record the index in the space/subspace records. */ 3023 if (som_is_space (section)) 3024 som_section_data (section)->space_dict->name.n_strx = strings_size; 3025 else 3026 som_section_data (section)->subspace_dict->name.n_strx = strings_size; 3027 3028 /* Next comes the string itself + a null terminator. */ 3029 strcpy (p, section->name); 3030 p += length + 1; 3031 strings_size += length + 1; 3032 3033 /* Always align up to the next word boundary. */ 3034 while (strings_size % 4) 3035 { 3036 bfd_put_8 (abfd, 0, p); 3037 p++; 3038 strings_size++; 3039 } 3040 } 3041 3042 /* Done with the space/subspace strings. Write out any information 3043 contained in a partial block. */ 3044 amt = p - tmp_space; 3045 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) 3046 return FALSE; 3047 *string_sizep = strings_size; 3048 return TRUE; 3049 } 3050 3051 /* Write out the symbol string table. */ 3052 3053 static bfd_boolean 3054 som_write_symbol_strings (bfd *abfd, 3055 unsigned long current_offset, 3056 asymbol **syms, 3057 unsigned int num_syms, 3058 unsigned int *string_sizep, 3059 COMPUNIT *compilation_unit) 3060 { 3061 unsigned int i; 3062 3063 /* Chunk of memory that we can use as buffer space, then throw 3064 away. */ 3065 size_t tmp_space_size = SOM_TMP_BUFSIZE; 3066 char *tmp_space = alloca (tmp_space_size); 3067 char *p = tmp_space; 3068 3069 unsigned int strings_size = 0; 3070 char *comp[4]; 3071 bfd_size_type amt; 3072 3073 /* This gets a bit gruesome because of the compilation unit. The 3074 strings within the compilation unit are part of the symbol 3075 strings, but don't have symbol_dictionary entries. So, manually 3076 write them and update the compilation unit header. On input, the 3077 compilation unit header contains local copies of the strings. 3078 Move them aside. */ 3079 if (compilation_unit) 3080 { 3081 comp[0] = compilation_unit->name.n_name; 3082 comp[1] = compilation_unit->language_name.n_name; 3083 comp[2] = compilation_unit->product_id.n_name; 3084 comp[3] = compilation_unit->version_id.n_name; 3085 } 3086 3087 /* Seek to the start of the space strings in preparation for writing 3088 them out. */ 3089 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) 3090 return FALSE; 3091 3092 if (compilation_unit) 3093 { 3094 for (i = 0; i < 4; i++) 3095 { 3096 size_t length = strlen (comp[i]); 3097 3098 /* If there is not enough room for the next entry, then dump 3099 the current buffer contents now and maybe allocate a 3100 larger buffer. */ 3101 if (p - tmp_space + 5 + length > tmp_space_size) 3102 { 3103 /* Flush buffer before refilling or reallocating. */ 3104 amt = p - tmp_space; 3105 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) 3106 return FALSE; 3107 3108 /* Reallocate if now empty buffer still too small. */ 3109 if (5 + length > tmp_space_size) 3110 { 3111 /* See alloca above for discussion of new size. */ 3112 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3113 tmp_space = alloca (tmp_space_size); 3114 } 3115 3116 /* Reset to beginning of the (possibly new) buffer 3117 space. */ 3118 p = tmp_space; 3119 } 3120 3121 /* First element in a string table entry is the length of 3122 the string. This must always be 4 byte aligned. This is 3123 also an appropriate time to fill in the string index 3124 field in the symbol table entry. */ 3125 bfd_put_32 (abfd, (bfd_vma) length, p); 3126 strings_size += 4; 3127 p += 4; 3128 3129 /* Next comes the string itself + a null terminator. */ 3130 strcpy (p, comp[i]); 3131 3132 switch (i) 3133 { 3134 case 0: 3135 obj_som_compilation_unit (abfd)->name.n_strx = strings_size; 3136 break; 3137 case 1: 3138 obj_som_compilation_unit (abfd)->language_name.n_strx = 3139 strings_size; 3140 break; 3141 case 2: 3142 obj_som_compilation_unit (abfd)->product_id.n_strx = 3143 strings_size; 3144 break; 3145 case 3: 3146 obj_som_compilation_unit (abfd)->version_id.n_strx = 3147 strings_size; 3148 break; 3149 } 3150 3151 p += length + 1; 3152 strings_size += length + 1; 3153 3154 /* Always align up to the next word boundary. */ 3155 while (strings_size % 4) 3156 { 3157 bfd_put_8 (abfd, 0, p); 3158 strings_size++; 3159 p++; 3160 } 3161 } 3162 } 3163 3164 for (i = 0; i < num_syms; i++) 3165 { 3166 size_t length = strlen (syms[i]->name); 3167 3168 /* If there is not enough room for the next entry, then dump the 3169 current buffer contents now and maybe allocate a larger buffer. */ 3170 if (p - tmp_space + 5 + length > tmp_space_size) 3171 { 3172 /* Flush buffer before refilling or reallocating. */ 3173 amt = p - tmp_space; 3174 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) 3175 return FALSE; 3176 3177 /* Reallocate if now empty buffer still too small. */ 3178 if (5 + length > tmp_space_size) 3179 { 3180 /* See alloca above for discussion of new size. */ 3181 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3182 tmp_space = alloca (tmp_space_size); 3183 } 3184 3185 /* Reset to beginning of the (possibly new) buffer space. */ 3186 p = tmp_space; 3187 } 3188 3189 /* First element in a string table entry is the length of the 3190 string. This must always be 4 byte aligned. This is also 3191 an appropriate time to fill in the string index field in the 3192 symbol table entry. */ 3193 bfd_put_32 (abfd, (bfd_vma) length, p); 3194 strings_size += 4; 3195 p += 4; 3196 3197 /* Next comes the string itself + a null terminator. */ 3198 strcpy (p, syms[i]->name); 3199 3200 som_symbol_data (syms[i])->stringtab_offset = strings_size; 3201 p += length + 1; 3202 strings_size += length + 1; 3203 3204 /* Always align up to the next word boundary. */ 3205 while (strings_size % 4) 3206 { 3207 bfd_put_8 (abfd, 0, p); 3208 strings_size++; 3209 p++; 3210 } 3211 } 3212 3213 /* Scribble out any partial block. */ 3214 amt = p - tmp_space; 3215 if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt) 3216 return FALSE; 3217 3218 *string_sizep = strings_size; 3219 return TRUE; 3220 } 3221 3222 /* Compute variable information to be placed in the SOM headers, 3223 space/subspace dictionaries, relocation streams, etc. Begin 3224 writing parts of the object file. */ 3225 3226 static bfd_boolean 3227 som_begin_writing (bfd *abfd) 3228 { 3229 unsigned long current_offset = 0; 3230 unsigned int strings_size = 0; 3231 unsigned long num_spaces, num_subspaces, i; 3232 asection *section; 3233 unsigned int total_subspaces = 0; 3234 struct som_exec_auxhdr *exec_header = NULL; 3235 3236 /* The file header will always be first in an object file, 3237 everything else can be in random locations. To keep things 3238 "simple" BFD will lay out the object file in the manner suggested 3239 by the PRO ABI for PA-RISC Systems. */ 3240 3241 /* Before any output can really begin offsets for all the major 3242 portions of the object file must be computed. So, starting 3243 with the initial file header compute (and sometimes write) 3244 each portion of the object file. */ 3245 3246 /* Make room for the file header, it's contents are not complete 3247 yet, so it can not be written at this time. */ 3248 current_offset += sizeof (struct header); 3249 3250 /* Any auxiliary headers will follow the file header. Right now 3251 we support only the copyright and version headers. */ 3252 obj_som_file_hdr (abfd)->aux_header_location = current_offset; 3253 obj_som_file_hdr (abfd)->aux_header_size = 0; 3254 if (abfd->flags & (EXEC_P | DYNAMIC)) 3255 { 3256 /* Parts of the exec header will be filled in later, so 3257 delay writing the header itself. Fill in the defaults, 3258 and write it later. */ 3259 current_offset += sizeof (struct som_exec_auxhdr); 3260 obj_som_file_hdr (abfd)->aux_header_size 3261 += sizeof (struct som_exec_auxhdr); 3262 exec_header = obj_som_exec_hdr (abfd); 3263 exec_header->som_auxhdr.type = EXEC_AUX_ID; 3264 exec_header->som_auxhdr.length = 40; 3265 } 3266 if (obj_som_version_hdr (abfd) != NULL) 3267 { 3268 bfd_size_type len; 3269 3270 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) 3271 return FALSE; 3272 3273 /* Write the aux_id structure and the string length. */ 3274 len = sizeof (struct aux_id) + sizeof (unsigned int); 3275 obj_som_file_hdr (abfd)->aux_header_size += len; 3276 current_offset += len; 3277 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len) 3278 return FALSE; 3279 3280 /* Write the version string. */ 3281 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int); 3282 obj_som_file_hdr (abfd)->aux_header_size += len; 3283 current_offset += len; 3284 if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd) 3285 != len) 3286 return FALSE; 3287 } 3288 3289 if (obj_som_copyright_hdr (abfd) != NULL) 3290 { 3291 bfd_size_type len; 3292 3293 if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0) 3294 return FALSE; 3295 3296 /* Write the aux_id structure and the string length. */ 3297 len = sizeof (struct aux_id) + sizeof (unsigned int); 3298 obj_som_file_hdr (abfd)->aux_header_size += len; 3299 current_offset += len; 3300 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len) 3301 return FALSE; 3302 3303 /* Write the copyright string. */ 3304 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int); 3305 obj_som_file_hdr (abfd)->aux_header_size += len; 3306 current_offset += len; 3307 if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd) 3308 != len) 3309 return FALSE; 3310 } 3311 3312 /* Next comes the initialization pointers; we have no initialization 3313 pointers, so current offset does not change. */ 3314 obj_som_file_hdr (abfd)->init_array_location = current_offset; 3315 obj_som_file_hdr (abfd)->init_array_total = 0; 3316 3317 /* Next are the space records. These are fixed length records. 3318 3319 Count the number of spaces to determine how much room is needed 3320 in the object file for the space records. 3321 3322 The names of the spaces are stored in a separate string table, 3323 and the index for each space into the string table is computed 3324 below. Therefore, it is not possible to write the space headers 3325 at this time. */ 3326 num_spaces = som_count_spaces (abfd); 3327 obj_som_file_hdr (abfd)->space_location = current_offset; 3328 obj_som_file_hdr (abfd)->space_total = num_spaces; 3329 current_offset += num_spaces * sizeof (struct space_dictionary_record); 3330 3331 /* Next are the subspace records. These are fixed length records. 3332 3333 Count the number of subspaes to determine how much room is needed 3334 in the object file for the subspace records. 3335 3336 A variety if fields in the subspace record are still unknown at 3337 this time (index into string table, fixup stream location/size, etc). */ 3338 num_subspaces = som_count_subspaces (abfd); 3339 obj_som_file_hdr (abfd)->subspace_location = current_offset; 3340 obj_som_file_hdr (abfd)->subspace_total = num_subspaces; 3341 current_offset 3342 += num_subspaces * sizeof (struct som_subspace_dictionary_record); 3343 3344 /* Next is the string table for the space/subspace names. We will 3345 build and write the string table on the fly. At the same time 3346 we will fill in the space/subspace name index fields. */ 3347 3348 /* The string table needs to be aligned on a word boundary. */ 3349 if (current_offset % 4) 3350 current_offset += (4 - (current_offset % 4)); 3351 3352 /* Mark the offset of the space/subspace string table in the 3353 file header. */ 3354 obj_som_file_hdr (abfd)->space_strings_location = current_offset; 3355 3356 /* Scribble out the space strings. */ 3357 if (! som_write_space_strings (abfd, current_offset, &strings_size)) 3358 return FALSE; 3359 3360 /* Record total string table size in the header and update the 3361 current offset. */ 3362 obj_som_file_hdr (abfd)->space_strings_size = strings_size; 3363 current_offset += strings_size; 3364 3365 /* Next is the compilation unit. */ 3366 obj_som_file_hdr (abfd)->compiler_location = current_offset; 3367 obj_som_file_hdr (abfd)->compiler_total = 0; 3368 if (obj_som_compilation_unit (abfd)) 3369 { 3370 obj_som_file_hdr (abfd)->compiler_total = 1; 3371 current_offset += COMPUNITSZ; 3372 } 3373 3374 /* Now compute the file positions for the loadable subspaces, taking 3375 care to make sure everything stays properly aligned. */ 3376 3377 section = abfd->sections; 3378 for (i = 0; i < num_spaces; i++) 3379 { 3380 asection *subsection; 3381 int first_subspace; 3382 unsigned int subspace_offset = 0; 3383 3384 /* Find a space. */ 3385 while (!som_is_space (section)) 3386 section = section->next; 3387 3388 first_subspace = 1; 3389 /* Now look for all its subspaces. */ 3390 for (subsection = abfd->sections; 3391 subsection != NULL; 3392 subsection = subsection->next) 3393 { 3394 3395 if (!som_is_subspace (subsection) 3396 || !som_is_container (section, subsection) 3397 || (subsection->flags & SEC_ALLOC) == 0) 3398 continue; 3399 3400 /* If this is the first subspace in the space, and we are 3401 building an executable, then take care to make sure all 3402 the alignments are correct and update the exec header. */ 3403 if (first_subspace 3404 && (abfd->flags & (EXEC_P | DYNAMIC))) 3405 { 3406 /* Demand paged executables have each space aligned to a 3407 page boundary. Sharable executables (write-protected 3408 text) have just the private (aka data & bss) space aligned 3409 to a page boundary. Ugh. Not true for HPUX. 3410 3411 The HPUX kernel requires the text to always be page aligned 3412 within the file regardless of the executable's type. */ 3413 if (abfd->flags & (D_PAGED | DYNAMIC) 3414 || (subsection->flags & SEC_CODE) 3415 || ((abfd->flags & WP_TEXT) 3416 && (subsection->flags & SEC_DATA))) 3417 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3418 3419 /* Update the exec header. */ 3420 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0) 3421 { 3422 exec_header->exec_tmem = section->vma; 3423 exec_header->exec_tfile = current_offset; 3424 } 3425 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0) 3426 { 3427 exec_header->exec_dmem = section->vma; 3428 exec_header->exec_dfile = current_offset; 3429 } 3430 3431 /* Keep track of exactly where we are within a particular 3432 space. This is necessary as the braindamaged HPUX 3433 loader will create holes between subspaces *and* 3434 subspace alignments are *NOT* preserved. What a crock. */ 3435 subspace_offset = subsection->vma; 3436 3437 /* Only do this for the first subspace within each space. */ 3438 first_subspace = 0; 3439 } 3440 else if (abfd->flags & (EXEC_P | DYNAMIC)) 3441 { 3442 /* The braindamaged HPUX loader may have created a hole 3443 between two subspaces. It is *not* sufficient to use 3444 the alignment specifications within the subspaces to 3445 account for these holes -- I've run into at least one 3446 case where the loader left one code subspace unaligned 3447 in a final executable. 3448 3449 To combat this we keep a current offset within each space, 3450 and use the subspace vma fields to detect and preserve 3451 holes. What a crock! 3452 3453 ps. This is not necessary for unloadable space/subspaces. */ 3454 current_offset += subsection->vma - subspace_offset; 3455 if (subsection->flags & SEC_CODE) 3456 exec_header->exec_tsize += subsection->vma - subspace_offset; 3457 else 3458 exec_header->exec_dsize += subsection->vma - subspace_offset; 3459 subspace_offset += subsection->vma - subspace_offset; 3460 } 3461 3462 subsection->target_index = total_subspaces++; 3463 /* This is real data to be loaded from the file. */ 3464 if (subsection->flags & SEC_LOAD) 3465 { 3466 /* Update the size of the code & data. */ 3467 if (abfd->flags & (EXEC_P | DYNAMIC) 3468 && subsection->flags & SEC_CODE) 3469 exec_header->exec_tsize += subsection->size; 3470 else if (abfd->flags & (EXEC_P | DYNAMIC) 3471 && subsection->flags & SEC_DATA) 3472 exec_header->exec_dsize += subsection->size; 3473 som_section_data (subsection)->subspace_dict->file_loc_init_value 3474 = current_offset; 3475 subsection->filepos = current_offset; 3476 current_offset += subsection->size; 3477 subspace_offset += subsection->size; 3478 } 3479 /* Looks like uninitialized data. */ 3480 else 3481 { 3482 /* Update the size of the bss section. */ 3483 if (abfd->flags & (EXEC_P | DYNAMIC)) 3484 exec_header->exec_bsize += subsection->size; 3485 3486 som_section_data (subsection)->subspace_dict->file_loc_init_value 3487 = 0; 3488 som_section_data (subsection)->subspace_dict-> 3489 initialization_length = 0; 3490 } 3491 } 3492 /* Goto the next section. */ 3493 section = section->next; 3494 } 3495 3496 /* Finally compute the file positions for unloadable subspaces. 3497 If building an executable, start the unloadable stuff on its 3498 own page. */ 3499 3500 if (abfd->flags & (EXEC_P | DYNAMIC)) 3501 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3502 3503 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset; 3504 section = abfd->sections; 3505 for (i = 0; i < num_spaces; i++) 3506 { 3507 asection *subsection; 3508 3509 /* Find a space. */ 3510 while (!som_is_space (section)) 3511 section = section->next; 3512 3513 if (abfd->flags & (EXEC_P | DYNAMIC)) 3514 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3515 3516 /* Now look for all its subspaces. */ 3517 for (subsection = abfd->sections; 3518 subsection != NULL; 3519 subsection = subsection->next) 3520 { 3521 3522 if (!som_is_subspace (subsection) 3523 || !som_is_container (section, subsection) 3524 || (subsection->flags & SEC_ALLOC) != 0) 3525 continue; 3526 3527 subsection->target_index = total_subspaces++; 3528 /* This is real data to be loaded from the file. */ 3529 if ((subsection->flags & SEC_LOAD) == 0) 3530 { 3531 som_section_data (subsection)->subspace_dict->file_loc_init_value 3532 = current_offset; 3533 subsection->filepos = current_offset; 3534 current_offset += subsection->size; 3535 } 3536 /* Looks like uninitialized data. */ 3537 else 3538 { 3539 som_section_data (subsection)->subspace_dict->file_loc_init_value 3540 = 0; 3541 som_section_data (subsection)->subspace_dict-> 3542 initialization_length = subsection->size; 3543 } 3544 } 3545 /* Goto the next section. */ 3546 section = section->next; 3547 } 3548 3549 /* If building an executable, then make sure to seek to and write 3550 one byte at the end of the file to make sure any necessary 3551 zeros are filled in. Ugh. */ 3552 if (abfd->flags & (EXEC_P | DYNAMIC)) 3553 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3554 if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0) 3555 return FALSE; 3556 if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1) 3557 return FALSE; 3558 3559 obj_som_file_hdr (abfd)->unloadable_sp_size 3560 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location; 3561 3562 /* Loader fixups are not supported in any way shape or form. */ 3563 obj_som_file_hdr (abfd)->loader_fixup_location = 0; 3564 obj_som_file_hdr (abfd)->loader_fixup_total = 0; 3565 3566 /* Done. Store the total size of the SOM so far. */ 3567 obj_som_file_hdr (abfd)->som_length = current_offset; 3568 3569 return TRUE; 3570 } 3571 3572 /* Finally, scribble out the various headers to the disk. */ 3573 3574 static bfd_boolean 3575 som_finish_writing (bfd *abfd) 3576 { 3577 int num_spaces = som_count_spaces (abfd); 3578 asymbol **syms = bfd_get_outsymbols (abfd); 3579 int i, num_syms; 3580 int subspace_index = 0; 3581 file_ptr location; 3582 asection *section; 3583 unsigned long current_offset; 3584 unsigned int strings_size, total_reloc_size; 3585 bfd_size_type amt; 3586 3587 /* We must set up the version identifier here as objcopy/strip copy 3588 private BFD data too late for us to handle this in som_begin_writing. */ 3589 if (obj_som_exec_data (abfd) 3590 && obj_som_exec_data (abfd)->version_id) 3591 obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id; 3592 else 3593 obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID; 3594 3595 /* Next is the symbol table. These are fixed length records. 3596 3597 Count the number of symbols to determine how much room is needed 3598 in the object file for the symbol table. 3599 3600 The names of the symbols are stored in a separate string table, 3601 and the index for each symbol name into the string table is computed 3602 below. Therefore, it is not possible to write the symbol table 3603 at this time. 3604 3605 These used to be output before the subspace contents, but they 3606 were moved here to work around a stupid bug in the hpux linker 3607 (fixed in hpux10). */ 3608 current_offset = obj_som_file_hdr (abfd)->som_length; 3609 3610 /* Make sure we're on a word boundary. */ 3611 if (current_offset % 4) 3612 current_offset += (4 - (current_offset % 4)); 3613 3614 num_syms = bfd_get_symcount (abfd); 3615 obj_som_file_hdr (abfd)->symbol_location = current_offset; 3616 obj_som_file_hdr (abfd)->symbol_total = num_syms; 3617 current_offset += num_syms * sizeof (struct symbol_dictionary_record); 3618 3619 /* Next are the symbol strings. 3620 Align them to a word boundary. */ 3621 if (current_offset % 4) 3622 current_offset += (4 - (current_offset % 4)); 3623 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset; 3624 3625 /* Scribble out the symbol strings. */ 3626 if (! som_write_symbol_strings (abfd, current_offset, syms, 3627 num_syms, &strings_size, 3628 obj_som_compilation_unit (abfd))) 3629 return FALSE; 3630 3631 /* Record total string table size in header and update the 3632 current offset. */ 3633 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size; 3634 current_offset += strings_size; 3635 3636 /* Do prep work before handling fixups. */ 3637 som_prep_for_fixups (abfd, 3638 bfd_get_outsymbols (abfd), 3639 bfd_get_symcount (abfd)); 3640 3641 /* At the end of the file is the fixup stream which starts on a 3642 word boundary. */ 3643 if (current_offset % 4) 3644 current_offset += (4 - (current_offset % 4)); 3645 obj_som_file_hdr (abfd)->fixup_request_location = current_offset; 3646 3647 /* Write the fixups and update fields in subspace headers which 3648 relate to the fixup stream. */ 3649 if (! som_write_fixups (abfd, current_offset, &total_reloc_size)) 3650 return FALSE; 3651 3652 /* Record the total size of the fixup stream in the file header. */ 3653 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size; 3654 3655 /* Done. Store the total size of the SOM. */ 3656 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size; 3657 3658 /* Now that the symbol table information is complete, build and 3659 write the symbol table. */ 3660 if (! som_build_and_write_symbol_table (abfd)) 3661 return FALSE; 3662 3663 /* Subspaces are written first so that we can set up information 3664 about them in their containing spaces as the subspace is written. */ 3665 3666 /* Seek to the start of the subspace dictionary records. */ 3667 location = obj_som_file_hdr (abfd)->subspace_location; 3668 if (bfd_seek (abfd, location, SEEK_SET) != 0) 3669 return FALSE; 3670 3671 section = abfd->sections; 3672 /* Now for each loadable space write out records for its subspaces. */ 3673 for (i = 0; i < num_spaces; i++) 3674 { 3675 asection *subsection; 3676 3677 /* Find a space. */ 3678 while (!som_is_space (section)) 3679 section = section->next; 3680 3681 /* Now look for all its subspaces. */ 3682 for (subsection = abfd->sections; 3683 subsection != NULL; 3684 subsection = subsection->next) 3685 { 3686 3687 /* Skip any section which does not correspond to a space 3688 or subspace. Or does not have SEC_ALLOC set (and therefore 3689 has no real bits on the disk). */ 3690 if (!som_is_subspace (subsection) 3691 || !som_is_container (section, subsection) 3692 || (subsection->flags & SEC_ALLOC) == 0) 3693 continue; 3694 3695 /* If this is the first subspace for this space, then save 3696 the index of the subspace in its containing space. Also 3697 set "is_loadable" in the containing space. */ 3698 3699 if (som_section_data (section)->space_dict->subspace_quantity == 0) 3700 { 3701 som_section_data (section)->space_dict->is_loadable = 1; 3702 som_section_data (section)->space_dict->subspace_index 3703 = subspace_index; 3704 } 3705 3706 /* Increment the number of subspaces seen and the number of 3707 subspaces contained within the current space. */ 3708 subspace_index++; 3709 som_section_data (section)->space_dict->subspace_quantity++; 3710 3711 /* Mark the index of the current space within the subspace's 3712 dictionary record. */ 3713 som_section_data (subsection)->subspace_dict->space_index = i; 3714 3715 /* Dump the current subspace header. */ 3716 amt = sizeof (struct som_subspace_dictionary_record); 3717 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict, 3718 amt, abfd) != amt) 3719 return FALSE; 3720 } 3721 /* Goto the next section. */ 3722 section = section->next; 3723 } 3724 3725 /* Now repeat the process for unloadable subspaces. */ 3726 section = abfd->sections; 3727 /* Now for each space write out records for its subspaces. */ 3728 for (i = 0; i < num_spaces; i++) 3729 { 3730 asection *subsection; 3731 3732 /* Find a space. */ 3733 while (!som_is_space (section)) 3734 section = section->next; 3735 3736 /* Now look for all its subspaces. */ 3737 for (subsection = abfd->sections; 3738 subsection != NULL; 3739 subsection = subsection->next) 3740 { 3741 3742 /* Skip any section which does not correspond to a space or 3743 subspace, or which SEC_ALLOC set (and therefore handled 3744 in the loadable spaces/subspaces code above). */ 3745 3746 if (!som_is_subspace (subsection) 3747 || !som_is_container (section, subsection) 3748 || (subsection->flags & SEC_ALLOC) != 0) 3749 continue; 3750 3751 /* If this is the first subspace for this space, then save 3752 the index of the subspace in its containing space. Clear 3753 "is_loadable". */ 3754 3755 if (som_section_data (section)->space_dict->subspace_quantity == 0) 3756 { 3757 som_section_data (section)->space_dict->is_loadable = 0; 3758 som_section_data (section)->space_dict->subspace_index 3759 = subspace_index; 3760 } 3761 3762 /* Increment the number of subspaces seen and the number of 3763 subspaces contained within the current space. */ 3764 som_section_data (section)->space_dict->subspace_quantity++; 3765 subspace_index++; 3766 3767 /* Mark the index of the current space within the subspace's 3768 dictionary record. */ 3769 som_section_data (subsection)->subspace_dict->space_index = i; 3770 3771 /* Dump this subspace header. */ 3772 amt = sizeof (struct som_subspace_dictionary_record); 3773 if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict, 3774 amt, abfd) != amt) 3775 return FALSE; 3776 } 3777 /* Goto the next section. */ 3778 section = section->next; 3779 } 3780 3781 /* All the subspace dictionary records are written, and all the 3782 fields are set up in the space dictionary records. 3783 3784 Seek to the right location and start writing the space 3785 dictionary records. */ 3786 location = obj_som_file_hdr (abfd)->space_location; 3787 if (bfd_seek (abfd, location, SEEK_SET) != 0) 3788 return FALSE; 3789 3790 section = abfd->sections; 3791 for (i = 0; i < num_spaces; i++) 3792 { 3793 /* Find a space. */ 3794 while (!som_is_space (section)) 3795 section = section->next; 3796 3797 /* Dump its header. */ 3798 amt = sizeof (struct space_dictionary_record); 3799 if (bfd_bwrite ((void *) som_section_data (section)->space_dict, 3800 amt, abfd) != amt) 3801 return FALSE; 3802 3803 /* Goto the next section. */ 3804 section = section->next; 3805 } 3806 3807 /* Write the compilation unit record if there is one. */ 3808 if (obj_som_compilation_unit (abfd)) 3809 { 3810 location = obj_som_file_hdr (abfd)->compiler_location; 3811 if (bfd_seek (abfd, location, SEEK_SET) != 0) 3812 return FALSE; 3813 3814 amt = COMPUNITSZ; 3815 if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt) 3816 return FALSE; 3817 } 3818 3819 /* Setting of the system_id has to happen very late now that copying of 3820 BFD private data happens *after* section contents are set. */ 3821 if (abfd->flags & (EXEC_P | DYNAMIC)) 3822 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id; 3823 else if (bfd_get_mach (abfd) == pa20) 3824 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0; 3825 else if (bfd_get_mach (abfd) == pa11) 3826 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1; 3827 else 3828 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0; 3829 3830 /* Compute the checksum for the file header just before writing 3831 the header to disk. */ 3832 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd); 3833 3834 /* Only thing left to do is write out the file header. It is always 3835 at location zero. Seek there and write it. */ 3836 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0) 3837 return FALSE; 3838 amt = sizeof (struct header); 3839 if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt) 3840 return FALSE; 3841 3842 /* Now write the exec header. */ 3843 if (abfd->flags & (EXEC_P | DYNAMIC)) 3844 { 3845 long tmp, som_length; 3846 struct som_exec_auxhdr *exec_header; 3847 3848 exec_header = obj_som_exec_hdr (abfd); 3849 exec_header->exec_entry = bfd_get_start_address (abfd); 3850 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags; 3851 3852 /* Oh joys. Ram some of the BSS data into the DATA section 3853 to be compatible with how the hp linker makes objects 3854 (saves memory space). */ 3855 tmp = exec_header->exec_dsize; 3856 tmp = SOM_ALIGN (tmp, PA_PAGESIZE); 3857 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize); 3858 if (exec_header->exec_bsize < 0) 3859 exec_header->exec_bsize = 0; 3860 exec_header->exec_dsize = tmp; 3861 3862 /* Now perform some sanity checks. The idea is to catch bogons now and 3863 inform the user, instead of silently generating a bogus file. */ 3864 som_length = obj_som_file_hdr (abfd)->som_length; 3865 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length 3866 || exec_header->exec_dfile + exec_header->exec_dsize > som_length) 3867 { 3868 bfd_set_error (bfd_error_bad_value); 3869 return FALSE; 3870 } 3871 3872 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, 3873 SEEK_SET) != 0) 3874 return FALSE; 3875 3876 amt = AUX_HDR_SIZE; 3877 if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt) 3878 return FALSE; 3879 } 3880 return TRUE; 3881 } 3882 3883 /* Compute and return the checksum for a SOM file header. */ 3884 3885 static unsigned long 3886 som_compute_checksum (bfd *abfd) 3887 { 3888 unsigned long checksum, count, i; 3889 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd); 3890 3891 checksum = 0; 3892 count = sizeof (struct header) / sizeof (unsigned long); 3893 for (i = 0; i < count; i++) 3894 checksum ^= *(buffer + i); 3895 3896 return checksum; 3897 } 3898 3899 static void 3900 som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 3901 asymbol *sym, 3902 struct som_misc_symbol_info *info) 3903 { 3904 /* Initialize. */ 3905 memset (info, 0, sizeof (struct som_misc_symbol_info)); 3906 3907 /* The HP SOM linker requires detailed type information about 3908 all symbols (including undefined symbols!). Unfortunately, 3909 the type specified in an import/export statement does not 3910 always match what the linker wants. Severe braindamage. */ 3911 3912 /* Section symbols will not have a SOM symbol type assigned to 3913 them yet. Assign all section symbols type ST_DATA. */ 3914 if (sym->flags & BSF_SECTION_SYM) 3915 info->symbol_type = ST_DATA; 3916 else 3917 { 3918 /* For BFD style common, the linker will choke unless we set the 3919 type and scope to ST_STORAGE and SS_UNSAT, respectively. */ 3920 if (bfd_is_com_section (sym->section)) 3921 { 3922 info->symbol_type = ST_STORAGE; 3923 info->symbol_scope = SS_UNSAT; 3924 } 3925 3926 /* It is possible to have a symbol without an associated 3927 type. This happens if the user imported the symbol 3928 without a type and the symbol was never defined 3929 locally. If BSF_FUNCTION is set for this symbol, then 3930 assign it type ST_CODE (the HP linker requires undefined 3931 external functions to have type ST_CODE rather than ST_ENTRY). */ 3932 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 3933 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) 3934 && bfd_is_und_section (sym->section) 3935 && sym->flags & BSF_FUNCTION) 3936 info->symbol_type = ST_CODE; 3937 3938 /* Handle function symbols which were defined in this file. 3939 They should have type ST_ENTRY. Also retrieve the argument 3940 relocation bits from the SOM backend information. */ 3941 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY 3942 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE 3943 && (sym->flags & BSF_FUNCTION)) 3944 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 3945 && (sym->flags & BSF_FUNCTION))) 3946 { 3947 info->symbol_type = ST_ENTRY; 3948 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc; 3949 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level; 3950 } 3951 3952 /* For unknown symbols set the symbol's type based on the symbol's 3953 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */ 3954 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) 3955 { 3956 if (sym->section->flags & SEC_CODE) 3957 info->symbol_type = ST_CODE; 3958 else 3959 info->symbol_type = ST_DATA; 3960 } 3961 3962 /* From now on it's a very simple mapping. */ 3963 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE) 3964 info->symbol_type = ST_ABSOLUTE; 3965 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) 3966 info->symbol_type = ST_CODE; 3967 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA) 3968 info->symbol_type = ST_DATA; 3969 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE) 3970 info->symbol_type = ST_MILLICODE; 3971 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL) 3972 info->symbol_type = ST_PLABEL; 3973 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG) 3974 info->symbol_type = ST_PRI_PROG; 3975 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG) 3976 info->symbol_type = ST_SEC_PROG; 3977 } 3978 3979 /* Now handle the symbol's scope. Exported data which is not 3980 in the common section has scope SS_UNIVERSAL. Note scope 3981 of common symbols was handled earlier! */ 3982 if (bfd_is_com_section (sym->section)) 3983 ; 3984 else if (bfd_is_und_section (sym->section)) 3985 info->symbol_scope = SS_UNSAT; 3986 else if (sym->flags & (BSF_EXPORT | BSF_WEAK)) 3987 info->symbol_scope = SS_UNIVERSAL; 3988 /* Anything else which is not in the common section has scope 3989 SS_LOCAL. */ 3990 else 3991 info->symbol_scope = SS_LOCAL; 3992 3993 /* Now set the symbol_info field. It has no real meaning 3994 for undefined or common symbols, but the HP linker will 3995 choke if it's not set to some "reasonable" value. We 3996 use zero as a reasonable value. */ 3997 if (bfd_is_com_section (sym->section) 3998 || bfd_is_und_section (sym->section) 3999 || bfd_is_abs_section (sym->section)) 4000 info->symbol_info = 0; 4001 /* For all other symbols, the symbol_info field contains the 4002 subspace index of the space this symbol is contained in. */ 4003 else 4004 info->symbol_info = sym->section->target_index; 4005 4006 /* Set the symbol's value. */ 4007 info->symbol_value = sym->value + sym->section->vma; 4008 4009 /* The secondary_def field is for "weak" symbols. */ 4010 if (sym->flags & BSF_WEAK) 4011 info->secondary_def = TRUE; 4012 else 4013 info->secondary_def = FALSE; 4014 4015 /* The is_comdat, is_common and dup_common fields provide various 4016 flavors of common. 4017 4018 For data symbols, setting IS_COMMON provides Fortran style common 4019 (duplicate definitions and overlapped initialization). Setting both 4020 IS_COMMON and DUP_COMMON provides Cobol style common (duplicate 4021 definitions as long as they are all the same length). In a shared 4022 link data symbols retain their IS_COMMON and DUP_COMMON flags. 4023 An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON 4024 symbol except in that it loses its IS_COMDAT flag in a shared link. 4025 4026 For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal 4027 DUP_COMMON code symbols are not exported from shared libraries. 4028 IS_COMDAT symbols are exported but they lose their IS_COMDAT flag. 4029 4030 We take a simplified approach to setting the is_comdat, is_common 4031 and dup_common flags in symbols based on the flag settings of their 4032 subspace. This avoids having to add directives like `.comdat' but 4033 the linker behavior is probably undefined if there is more than one 4034 universal symbol (comdat key sysmbol) in a subspace. 4035 4036 The behavior of these flags is not well documentmented, so there 4037 may be bugs and some surprising interactions with other flags. */ 4038 if (som_section_data (sym->section) 4039 && som_section_data (sym->section)->subspace_dict 4040 && info->symbol_scope == SS_UNIVERSAL 4041 && (info->symbol_type == ST_ENTRY 4042 || info->symbol_type == ST_CODE 4043 || info->symbol_type == ST_DATA)) 4044 { 4045 info->is_comdat 4046 = som_section_data (sym->section)->subspace_dict->is_comdat; 4047 info->is_common 4048 = som_section_data (sym->section)->subspace_dict->is_common; 4049 info->dup_common 4050 = som_section_data (sym->section)->subspace_dict->dup_common; 4051 } 4052 } 4053 4054 /* Build and write, in one big chunk, the entire symbol table for 4055 this BFD. */ 4056 4057 static bfd_boolean 4058 som_build_and_write_symbol_table (bfd *abfd) 4059 { 4060 unsigned int num_syms = bfd_get_symcount (abfd); 4061 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location; 4062 asymbol **bfd_syms = obj_som_sorted_syms (abfd); 4063 struct symbol_dictionary_record *som_symtab = NULL; 4064 unsigned int i; 4065 bfd_size_type symtab_size; 4066 4067 /* Compute total symbol table size and allocate a chunk of memory 4068 to hold the symbol table as we build it. */ 4069 symtab_size = num_syms; 4070 symtab_size *= sizeof (struct symbol_dictionary_record); 4071 som_symtab = bfd_zmalloc (symtab_size); 4072 if (som_symtab == NULL && symtab_size != 0) 4073 goto error_return; 4074 4075 /* Walk over each symbol. */ 4076 for (i = 0; i < num_syms; i++) 4077 { 4078 struct som_misc_symbol_info info; 4079 4080 /* This is really an index into the symbol strings table. 4081 By the time we get here, the index has already been 4082 computed and stored into the name field in the BFD symbol. */ 4083 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset; 4084 4085 /* Derive SOM information from the BFD symbol. */ 4086 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info); 4087 4088 /* Now use it. */ 4089 som_symtab[i].symbol_type = info.symbol_type; 4090 som_symtab[i].symbol_scope = info.symbol_scope; 4091 som_symtab[i].arg_reloc = info.arg_reloc; 4092 som_symtab[i].symbol_info = info.symbol_info; 4093 som_symtab[i].xleast = 3; 4094 som_symtab[i].symbol_value = info.symbol_value | info.priv_level; 4095 som_symtab[i].secondary_def = info.secondary_def; 4096 som_symtab[i].is_comdat = info.is_comdat; 4097 som_symtab[i].is_common = info.is_common; 4098 som_symtab[i].dup_common = info.dup_common; 4099 } 4100 4101 /* Everything is ready, seek to the right location and 4102 scribble out the symbol table. */ 4103 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0) 4104 return FALSE; 4105 4106 if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size) 4107 goto error_return; 4108 4109 if (som_symtab != NULL) 4110 free (som_symtab); 4111 return TRUE; 4112 error_return: 4113 if (som_symtab != NULL) 4114 free (som_symtab); 4115 return FALSE; 4116 } 4117 4118 /* Write an object in SOM format. */ 4119 4120 static bfd_boolean 4121 som_write_object_contents (bfd *abfd) 4122 { 4123 if (! abfd->output_has_begun) 4124 { 4125 /* Set up fixed parts of the file, space, and subspace headers. 4126 Notify the world that output has begun. */ 4127 som_prep_headers (abfd); 4128 abfd->output_has_begun = TRUE; 4129 /* Start writing the object file. This include all the string 4130 tables, fixup streams, and other portions of the object file. */ 4131 som_begin_writing (abfd); 4132 } 4133 4134 return som_finish_writing (abfd); 4135 } 4136 4137 /* Read and save the string table associated with the given BFD. */ 4138 4139 static bfd_boolean 4140 som_slurp_string_table (bfd *abfd) 4141 { 4142 char *stringtab; 4143 bfd_size_type amt; 4144 4145 /* Use the saved version if its available. */ 4146 if (obj_som_stringtab (abfd) != NULL) 4147 return TRUE; 4148 4149 /* I don't think this can currently happen, and I'm not sure it should 4150 really be an error, but it's better than getting unpredictable results 4151 from the host's malloc when passed a size of zero. */ 4152 if (obj_som_stringtab_size (abfd) == 0) 4153 { 4154 bfd_set_error (bfd_error_no_symbols); 4155 return FALSE; 4156 } 4157 4158 /* Allocate and read in the string table. */ 4159 amt = obj_som_stringtab_size (abfd); 4160 stringtab = bfd_zmalloc (amt); 4161 if (stringtab == NULL) 4162 return FALSE; 4163 4164 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0) 4165 return FALSE; 4166 4167 if (bfd_bread (stringtab, amt, abfd) != amt) 4168 return FALSE; 4169 4170 /* Save our results and return success. */ 4171 obj_som_stringtab (abfd) = stringtab; 4172 return TRUE; 4173 } 4174 4175 /* Return the amount of data (in bytes) required to hold the symbol 4176 table for this object. */ 4177 4178 static long 4179 som_get_symtab_upper_bound (bfd *abfd) 4180 { 4181 if (!som_slurp_symbol_table (abfd)) 4182 return -1; 4183 4184 return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *); 4185 } 4186 4187 /* Convert from a SOM subspace index to a BFD section. */ 4188 4189 static asection * 4190 bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol) 4191 { 4192 asection *section; 4193 4194 /* The meaning of the symbol_info field changes for functions 4195 within executables. So only use the quick symbol_info mapping for 4196 incomplete objects and non-function symbols in executables. */ 4197 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 4198 || (symbol->symbol_type != ST_ENTRY 4199 && symbol->symbol_type != ST_PRI_PROG 4200 && symbol->symbol_type != ST_SEC_PROG 4201 && symbol->symbol_type != ST_MILLICODE)) 4202 { 4203 int index = symbol->symbol_info; 4204 4205 for (section = abfd->sections; section != NULL; section = section->next) 4206 if (section->target_index == index && som_is_subspace (section)) 4207 return section; 4208 } 4209 else 4210 { 4211 unsigned int value = symbol->symbol_value; 4212 4213 /* For executables we will have to use the symbol's address and 4214 find out what section would contain that address. Yuk. */ 4215 for (section = abfd->sections; section; section = section->next) 4216 if (value >= section->vma 4217 && value <= section->vma + section->size 4218 && som_is_subspace (section)) 4219 return section; 4220 } 4221 4222 /* Could be a symbol from an external library (such as an OMOS 4223 shared library). Don't abort. */ 4224 return bfd_abs_section_ptr; 4225 } 4226 4227 /* Read and save the symbol table associated with the given BFD. */ 4228 4229 static unsigned int 4230 som_slurp_symbol_table (bfd *abfd) 4231 { 4232 int symbol_count = bfd_get_symcount (abfd); 4233 int symsize = sizeof (struct symbol_dictionary_record); 4234 char *stringtab; 4235 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp; 4236 som_symbol_type *sym, *symbase; 4237 bfd_size_type amt; 4238 4239 /* Return saved value if it exists. */ 4240 if (obj_som_symtab (abfd) != NULL) 4241 goto successful_return; 4242 4243 /* Special case. This is *not* an error. */ 4244 if (symbol_count == 0) 4245 goto successful_return; 4246 4247 if (!som_slurp_string_table (abfd)) 4248 goto error_return; 4249 4250 stringtab = obj_som_stringtab (abfd); 4251 4252 amt = symbol_count; 4253 amt *= sizeof (som_symbol_type); 4254 symbase = bfd_zmalloc (amt); 4255 if (symbase == NULL) 4256 goto error_return; 4257 4258 /* Read in the external SOM representation. */ 4259 amt = symbol_count; 4260 amt *= symsize; 4261 buf = bfd_malloc (amt); 4262 if (buf == NULL && amt != 0) 4263 goto error_return; 4264 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0) 4265 goto error_return; 4266 if (bfd_bread (buf, amt, abfd) != amt) 4267 goto error_return; 4268 4269 /* Iterate over all the symbols and internalize them. */ 4270 endbufp = buf + symbol_count; 4271 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp) 4272 { 4273 /* I don't think we care about these. */ 4274 if (bufp->symbol_type == ST_SYM_EXT 4275 || bufp->symbol_type == ST_ARG_EXT) 4276 continue; 4277 4278 /* Set some private data we care about. */ 4279 if (bufp->symbol_type == ST_NULL) 4280 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; 4281 else if (bufp->symbol_type == ST_ABSOLUTE) 4282 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE; 4283 else if (bufp->symbol_type == ST_DATA) 4284 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; 4285 else if (bufp->symbol_type == ST_CODE) 4286 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE; 4287 else if (bufp->symbol_type == ST_PRI_PROG) 4288 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG; 4289 else if (bufp->symbol_type == ST_SEC_PROG) 4290 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG; 4291 else if (bufp->symbol_type == ST_ENTRY) 4292 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY; 4293 else if (bufp->symbol_type == ST_MILLICODE) 4294 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE; 4295 else if (bufp->symbol_type == ST_PLABEL) 4296 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL; 4297 else 4298 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; 4299 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc; 4300 4301 /* Some reasonable defaults. */ 4302 sym->symbol.the_bfd = abfd; 4303 sym->symbol.name = bufp->name.n_strx + stringtab; 4304 sym->symbol.value = bufp->symbol_value; 4305 sym->symbol.section = 0; 4306 sym->symbol.flags = 0; 4307 4308 switch (bufp->symbol_type) 4309 { 4310 case ST_ENTRY: 4311 case ST_MILLICODE: 4312 sym->symbol.flags |= BSF_FUNCTION; 4313 som_symbol_data (sym)->tc_data.ap.hppa_priv_level = 4314 sym->symbol.value & 0x3; 4315 sym->symbol.value &= ~0x3; 4316 break; 4317 4318 case ST_STUB: 4319 case ST_CODE: 4320 case ST_PRI_PROG: 4321 case ST_SEC_PROG: 4322 som_symbol_data (sym)->tc_data.ap.hppa_priv_level = 4323 sym->symbol.value & 0x3; 4324 sym->symbol.value &= ~0x3; 4325 /* If the symbol's scope is SS_UNSAT, then these are 4326 undefined function symbols. */ 4327 if (bufp->symbol_scope == SS_UNSAT) 4328 sym->symbol.flags |= BSF_FUNCTION; 4329 4330 default: 4331 break; 4332 } 4333 4334 /* Handle scoping and section information. */ 4335 switch (bufp->symbol_scope) 4336 { 4337 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols, 4338 so the section associated with this symbol can't be known. */ 4339 case SS_EXTERNAL: 4340 if (bufp->symbol_type != ST_STORAGE) 4341 sym->symbol.section = bfd_und_section_ptr; 4342 else 4343 sym->symbol.section = bfd_com_section_ptr; 4344 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); 4345 break; 4346 4347 case SS_UNSAT: 4348 if (bufp->symbol_type != ST_STORAGE) 4349 sym->symbol.section = bfd_und_section_ptr; 4350 else 4351 sym->symbol.section = bfd_com_section_ptr; 4352 break; 4353 4354 case SS_UNIVERSAL: 4355 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); 4356 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); 4357 sym->symbol.value -= sym->symbol.section->vma; 4358 break; 4359 4360 case SS_LOCAL: 4361 sym->symbol.flags |= BSF_LOCAL; 4362 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); 4363 sym->symbol.value -= sym->symbol.section->vma; 4364 break; 4365 } 4366 4367 /* Check for a weak symbol. */ 4368 if (bufp->secondary_def) 4369 sym->symbol.flags |= BSF_WEAK; 4370 4371 /* Mark section symbols and symbols used by the debugger. 4372 Note $START$ is a magic code symbol, NOT a section symbol. */ 4373 if (sym->symbol.name[0] == '$' 4374 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$' 4375 && !strcmp (sym->symbol.name, sym->symbol.section->name)) 4376 sym->symbol.flags |= BSF_SECTION_SYM; 4377 else if (!strncmp (sym->symbol.name, "L$0\002", 4)) 4378 { 4379 sym->symbol.flags |= BSF_SECTION_SYM; 4380 sym->symbol.name = sym->symbol.section->name; 4381 } 4382 else if (!strncmp (sym->symbol.name, "L$0\001", 4)) 4383 sym->symbol.flags |= BSF_DEBUGGING; 4384 4385 /* Note increment at bottom of loop, since we skip some symbols 4386 we can not include it as part of the for statement. */ 4387 sym++; 4388 } 4389 4390 /* We modify the symbol count to record the number of BFD symbols we 4391 created. */ 4392 bfd_get_symcount (abfd) = sym - symbase; 4393 4394 /* Save our results and return success. */ 4395 obj_som_symtab (abfd) = symbase; 4396 successful_return: 4397 if (buf != NULL) 4398 free (buf); 4399 return (TRUE); 4400 4401 error_return: 4402 if (buf != NULL) 4403 free (buf); 4404 return FALSE; 4405 } 4406 4407 /* Canonicalize a SOM symbol table. Return the number of entries 4408 in the symbol table. */ 4409 4410 static long 4411 som_canonicalize_symtab (bfd *abfd, asymbol **location) 4412 { 4413 int i; 4414 som_symbol_type *symbase; 4415 4416 if (!som_slurp_symbol_table (abfd)) 4417 return -1; 4418 4419 i = bfd_get_symcount (abfd); 4420 symbase = obj_som_symtab (abfd); 4421 4422 for (; i > 0; i--, location++, symbase++) 4423 *location = &symbase->symbol; 4424 4425 /* Final null pointer. */ 4426 *location = 0; 4427 return (bfd_get_symcount (abfd)); 4428 } 4429 4430 /* Make a SOM symbol. There is nothing special to do here. */ 4431 4432 static asymbol * 4433 som_make_empty_symbol (bfd *abfd) 4434 { 4435 bfd_size_type amt = sizeof (som_symbol_type); 4436 som_symbol_type *new = bfd_zalloc (abfd, amt); 4437 4438 if (new == NULL) 4439 return NULL; 4440 new->symbol.the_bfd = abfd; 4441 4442 return &new->symbol; 4443 } 4444 4445 /* Print symbol information. */ 4446 4447 static void 4448 som_print_symbol (bfd *abfd, 4449 void *afile, 4450 asymbol *symbol, 4451 bfd_print_symbol_type how) 4452 { 4453 FILE *file = (FILE *) afile; 4454 4455 switch (how) 4456 { 4457 case bfd_print_symbol_name: 4458 fprintf (file, "%s", symbol->name); 4459 break; 4460 case bfd_print_symbol_more: 4461 fprintf (file, "som "); 4462 fprintf_vma (file, symbol->value); 4463 fprintf (file, " %lx", (long) symbol->flags); 4464 break; 4465 case bfd_print_symbol_all: 4466 { 4467 const char *section_name; 4468 4469 section_name = symbol->section ? symbol->section->name : "(*none*)"; 4470 bfd_print_symbol_vandf (abfd, (void *) file, symbol); 4471 fprintf (file, " %s\t%s", section_name, symbol->name); 4472 break; 4473 } 4474 } 4475 } 4476 4477 static bfd_boolean 4478 som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 4479 const char *name) 4480 { 4481 return name[0] == 'L' && name[1] == '$'; 4482 } 4483 4484 /* Count or process variable-length SOM fixup records. 4485 4486 To avoid code duplication we use this code both to compute the number 4487 of relocations requested by a stream, and to internalize the stream. 4488 4489 When computing the number of relocations requested by a stream the 4490 variables rptr, section, and symbols have no meaning. 4491 4492 Return the number of relocations requested by the fixup stream. When 4493 not just counting 4494 4495 This needs at least two or three more passes to get it cleaned up. */ 4496 4497 static unsigned int 4498 som_set_reloc_info (unsigned char *fixup, 4499 unsigned int end, 4500 arelent *internal_relocs, 4501 asection *section, 4502 asymbol **symbols, 4503 bfd_boolean just_count) 4504 { 4505 unsigned int op, varname, deallocate_contents = 0; 4506 unsigned char *end_fixups = &fixup[end]; 4507 const struct fixup_format *fp; 4508 const char *cp; 4509 unsigned char *save_fixup; 4510 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits; 4511 const int *subop; 4512 arelent *rptr = internal_relocs; 4513 unsigned int offset = 0; 4514 4515 #define var(c) variables[(c) - 'A'] 4516 #define push(v) (*sp++ = (v)) 4517 #define pop() (*--sp) 4518 #define emptystack() (sp == stack) 4519 4520 som_initialize_reloc_queue (reloc_queue); 4521 memset (variables, 0, sizeof (variables)); 4522 memset (stack, 0, sizeof (stack)); 4523 count = 0; 4524 prev_fixup = 0; 4525 saved_unwind_bits = 0; 4526 sp = stack; 4527 4528 while (fixup < end_fixups) 4529 { 4530 /* Save pointer to the start of this fixup. We'll use 4531 it later to determine if it is necessary to put this fixup 4532 on the queue. */ 4533 save_fixup = fixup; 4534 4535 /* Get the fixup code and its associated format. */ 4536 op = *fixup++; 4537 fp = &som_fixup_formats[op]; 4538 4539 /* Handle a request for a previous fixup. */ 4540 if (*fp->format == 'P') 4541 { 4542 /* Get pointer to the beginning of the prev fixup, move 4543 the repeated fixup to the head of the queue. */ 4544 fixup = reloc_queue[fp->D].reloc; 4545 som_reloc_queue_fix (reloc_queue, fp->D); 4546 prev_fixup = 1; 4547 4548 /* Get the fixup code and its associated format. */ 4549 op = *fixup++; 4550 fp = &som_fixup_formats[op]; 4551 } 4552 4553 /* If this fixup will be passed to BFD, set some reasonable defaults. */ 4554 if (! just_count 4555 && som_hppa_howto_table[op].type != R_NO_RELOCATION 4556 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE) 4557 { 4558 rptr->address = offset; 4559 rptr->howto = &som_hppa_howto_table[op]; 4560 rptr->addend = 0; 4561 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 4562 } 4563 4564 /* Set default input length to 0. Get the opcode class index 4565 into D. */ 4566 var ('L') = 0; 4567 var ('D') = fp->D; 4568 var ('U') = saved_unwind_bits; 4569 4570 /* Get the opcode format. */ 4571 cp = fp->format; 4572 4573 /* Process the format string. Parsing happens in two phases, 4574 parse RHS, then assign to LHS. Repeat until no more 4575 characters in the format string. */ 4576 while (*cp) 4577 { 4578 /* The variable this pass is going to compute a value for. */ 4579 varname = *cp++; 4580 4581 /* Start processing RHS. Continue until a NULL or '=' is found. */ 4582 do 4583 { 4584 c = *cp++; 4585 4586 /* If this is a variable, push it on the stack. */ 4587 if (ISUPPER (c)) 4588 push (var (c)); 4589 4590 /* If this is a lower case letter, then it represents 4591 additional data from the fixup stream to be pushed onto 4592 the stack. */ 4593 else if (ISLOWER (c)) 4594 { 4595 int bits = (c - 'a') * 8; 4596 for (v = 0; c > 'a'; --c) 4597 v = (v << 8) | *fixup++; 4598 if (varname == 'V') 4599 v = sign_extend (v, bits); 4600 push (v); 4601 } 4602 4603 /* A decimal constant. Push it on the stack. */ 4604 else if (ISDIGIT (c)) 4605 { 4606 v = c - '0'; 4607 while (ISDIGIT (*cp)) 4608 v = (v * 10) + (*cp++ - '0'); 4609 push (v); 4610 } 4611 else 4612 /* An operator. Pop two two values from the stack and 4613 use them as operands to the given operation. Push 4614 the result of the operation back on the stack. */ 4615 switch (c) 4616 { 4617 case '+': 4618 v = pop (); 4619 v += pop (); 4620 push (v); 4621 break; 4622 case '*': 4623 v = pop (); 4624 v *= pop (); 4625 push (v); 4626 break; 4627 case '<': 4628 v = pop (); 4629 v = pop () << v; 4630 push (v); 4631 break; 4632 default: 4633 abort (); 4634 } 4635 } 4636 while (*cp && *cp != '='); 4637 4638 /* Move over the equal operator. */ 4639 cp++; 4640 4641 /* Pop the RHS off the stack. */ 4642 c = pop (); 4643 4644 /* Perform the assignment. */ 4645 var (varname) = c; 4646 4647 /* Handle side effects. and special 'O' stack cases. */ 4648 switch (varname) 4649 { 4650 /* Consume some bytes from the input space. */ 4651 case 'L': 4652 offset += c; 4653 break; 4654 /* A symbol to use in the relocation. Make a note 4655 of this if we are not just counting. */ 4656 case 'S': 4657 if (! just_count) 4658 rptr->sym_ptr_ptr = &symbols[c]; 4659 break; 4660 /* Argument relocation bits for a function call. */ 4661 case 'R': 4662 if (! just_count) 4663 { 4664 unsigned int tmp = var ('R'); 4665 rptr->addend = 0; 4666 4667 if ((som_hppa_howto_table[op].type == R_PCREL_CALL 4668 && R_PCREL_CALL + 10 > op) 4669 || (som_hppa_howto_table[op].type == R_ABS_CALL 4670 && R_ABS_CALL + 10 > op)) 4671 { 4672 /* Simple encoding. */ 4673 if (tmp > 4) 4674 { 4675 tmp -= 5; 4676 rptr->addend |= 1; 4677 } 4678 if (tmp == 4) 4679 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2; 4680 else if (tmp == 3) 4681 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4; 4682 else if (tmp == 2) 4683 rptr->addend |= 1 << 8 | 1 << 6; 4684 else if (tmp == 1) 4685 rptr->addend |= 1 << 8; 4686 } 4687 else 4688 { 4689 unsigned int tmp1, tmp2; 4690 4691 /* First part is easy -- low order two bits are 4692 directly copied, then shifted away. */ 4693 rptr->addend = tmp & 0x3; 4694 tmp >>= 2; 4695 4696 /* Diving the result by 10 gives us the second 4697 part. If it is 9, then the first two words 4698 are a double precision paramater, else it is 4699 3 * the first arg bits + the 2nd arg bits. */ 4700 tmp1 = tmp / 10; 4701 tmp -= tmp1 * 10; 4702 if (tmp1 == 9) 4703 rptr->addend += (0xe << 6); 4704 else 4705 { 4706 /* Get the two pieces. */ 4707 tmp2 = tmp1 / 3; 4708 tmp1 -= tmp2 * 3; 4709 /* Put them in the addend. */ 4710 rptr->addend += (tmp2 << 8) + (tmp1 << 6); 4711 } 4712 4713 /* What's left is the third part. It's unpacked 4714 just like the second. */ 4715 if (tmp == 9) 4716 rptr->addend += (0xe << 2); 4717 else 4718 { 4719 tmp2 = tmp / 3; 4720 tmp -= tmp2 * 3; 4721 rptr->addend += (tmp2 << 4) + (tmp << 2); 4722 } 4723 } 4724 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0); 4725 } 4726 break; 4727 /* Handle the linker expression stack. */ 4728 case 'O': 4729 switch (op) 4730 { 4731 case R_COMP1: 4732 subop = comp1_opcodes; 4733 break; 4734 case R_COMP2: 4735 subop = comp2_opcodes; 4736 break; 4737 case R_COMP3: 4738 subop = comp3_opcodes; 4739 break; 4740 default: 4741 abort (); 4742 } 4743 while (*subop <= (unsigned char) c) 4744 ++subop; 4745 --subop; 4746 break; 4747 /* The lower 32unwind bits must be persistent. */ 4748 case 'U': 4749 saved_unwind_bits = var ('U'); 4750 break; 4751 4752 default: 4753 break; 4754 } 4755 } 4756 4757 /* If we used a previous fixup, clean up after it. */ 4758 if (prev_fixup) 4759 { 4760 fixup = save_fixup + 1; 4761 prev_fixup = 0; 4762 } 4763 /* Queue it. */ 4764 else if (fixup > save_fixup + 1) 4765 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue); 4766 4767 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION 4768 fixups to BFD. */ 4769 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE 4770 && som_hppa_howto_table[op].type != R_NO_RELOCATION) 4771 { 4772 /* Done with a single reloction. Loop back to the top. */ 4773 if (! just_count) 4774 { 4775 if (som_hppa_howto_table[op].type == R_ENTRY) 4776 rptr->addend = var ('T'); 4777 else if (som_hppa_howto_table[op].type == R_EXIT) 4778 rptr->addend = var ('U'); 4779 else if (som_hppa_howto_table[op].type == R_PCREL_CALL 4780 || som_hppa_howto_table[op].type == R_ABS_CALL) 4781 ; 4782 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL) 4783 { 4784 /* Try what was specified in R_DATA_OVERRIDE first 4785 (if anything). Then the hard way using the 4786 section contents. */ 4787 rptr->addend = var ('V'); 4788 4789 if (rptr->addend == 0 && !section->contents) 4790 { 4791 /* Got to read the damn contents first. We don't 4792 bother saving the contents (yet). Add it one 4793 day if the need arises. */ 4794 bfd_byte *contents; 4795 if (!bfd_malloc_and_get_section (section->owner, section, 4796 &contents)) 4797 { 4798 if (contents != NULL) 4799 free (contents); 4800 return (unsigned) -1; 4801 } 4802 section->contents = contents; 4803 deallocate_contents = 1; 4804 } 4805 else if (rptr->addend == 0) 4806 rptr->addend = bfd_get_32 (section->owner, 4807 (section->contents 4808 + offset - var ('L'))); 4809 4810 } 4811 else 4812 rptr->addend = var ('V'); 4813 rptr++; 4814 } 4815 count++; 4816 /* Now that we've handled a "full" relocation, reset 4817 some state. */ 4818 memset (variables, 0, sizeof (variables)); 4819 memset (stack, 0, sizeof (stack)); 4820 } 4821 } 4822 if (deallocate_contents) 4823 free (section->contents); 4824 4825 return count; 4826 4827 #undef var 4828 #undef push 4829 #undef pop 4830 #undef emptystack 4831 } 4832 4833 /* Read in the relocs (aka fixups in SOM terms) for a section. 4834 4835 som_get_reloc_upper_bound calls this routine with JUST_COUNT 4836 set to TRUE to indicate it only needs a count of the number 4837 of actual relocations. */ 4838 4839 static bfd_boolean 4840 som_slurp_reloc_table (bfd *abfd, 4841 asection *section, 4842 asymbol **symbols, 4843 bfd_boolean just_count) 4844 { 4845 unsigned char *external_relocs; 4846 unsigned int fixup_stream_size; 4847 arelent *internal_relocs; 4848 unsigned int num_relocs; 4849 bfd_size_type amt; 4850 4851 fixup_stream_size = som_section_data (section)->reloc_size; 4852 /* If there were no relocations, then there is nothing to do. */ 4853 if (section->reloc_count == 0) 4854 return TRUE; 4855 4856 /* If reloc_count is -1, then the relocation stream has not been 4857 parsed. We must do so now to know how many relocations exist. */ 4858 if (section->reloc_count == (unsigned) -1) 4859 { 4860 amt = fixup_stream_size; 4861 external_relocs = bfd_malloc (amt); 4862 if (external_relocs == NULL) 4863 return FALSE; 4864 /* Read in the external forms. */ 4865 if (bfd_seek (abfd, 4866 obj_som_reloc_filepos (abfd) + section->rel_filepos, 4867 SEEK_SET) 4868 != 0) 4869 return FALSE; 4870 if (bfd_bread (external_relocs, amt, abfd) != amt) 4871 return FALSE; 4872 4873 /* Let callers know how many relocations found. 4874 also save the relocation stream as we will 4875 need it again. */ 4876 section->reloc_count = som_set_reloc_info (external_relocs, 4877 fixup_stream_size, 4878 NULL, NULL, NULL, TRUE); 4879 4880 som_section_data (section)->reloc_stream = external_relocs; 4881 } 4882 4883 /* If the caller only wanted a count, then return now. */ 4884 if (just_count) 4885 return TRUE; 4886 4887 num_relocs = section->reloc_count; 4888 external_relocs = som_section_data (section)->reloc_stream; 4889 /* Return saved information about the relocations if it is available. */ 4890 if (section->relocation != NULL) 4891 return TRUE; 4892 4893 amt = num_relocs; 4894 amt *= sizeof (arelent); 4895 internal_relocs = bfd_zalloc (abfd, (amt)); 4896 if (internal_relocs == NULL) 4897 return FALSE; 4898 4899 /* Process and internalize the relocations. */ 4900 som_set_reloc_info (external_relocs, fixup_stream_size, 4901 internal_relocs, section, symbols, FALSE); 4902 4903 /* We're done with the external relocations. Free them. */ 4904 free (external_relocs); 4905 som_section_data (section)->reloc_stream = NULL; 4906 4907 /* Save our results and return success. */ 4908 section->relocation = internal_relocs; 4909 return TRUE; 4910 } 4911 4912 /* Return the number of bytes required to store the relocation 4913 information associated with the given section. */ 4914 4915 static long 4916 som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect) 4917 { 4918 /* If section has relocations, then read in the relocation stream 4919 and parse it to determine how many relocations exist. */ 4920 if (asect->flags & SEC_RELOC) 4921 { 4922 if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE)) 4923 return -1; 4924 return (asect->reloc_count + 1) * sizeof (arelent *); 4925 } 4926 /* There are no relocations. */ 4927 return 0; 4928 } 4929 4930 /* Convert relocations from SOM (external) form into BFD internal 4931 form. Return the number of relocations. */ 4932 4933 static long 4934 som_canonicalize_reloc (bfd *abfd, 4935 sec_ptr section, 4936 arelent **relptr, 4937 asymbol **symbols) 4938 { 4939 arelent *tblptr; 4940 int count; 4941 4942 if (! som_slurp_reloc_table (abfd, section, symbols, FALSE)) 4943 return -1; 4944 4945 count = section->reloc_count; 4946 tblptr = section->relocation; 4947 4948 while (count--) 4949 *relptr++ = tblptr++; 4950 4951 *relptr = NULL; 4952 return section->reloc_count; 4953 } 4954 4955 extern const bfd_target som_vec; 4956 4957 /* A hook to set up object file dependent section information. */ 4958 4959 static bfd_boolean 4960 som_new_section_hook (bfd *abfd, asection *newsect) 4961 { 4962 bfd_size_type amt = sizeof (struct som_section_data_struct); 4963 4964 newsect->used_by_bfd = bfd_zalloc (abfd, amt); 4965 if (!newsect->used_by_bfd) 4966 return FALSE; 4967 newsect->alignment_power = 3; 4968 4969 /* We allow more than three sections internally. */ 4970 return TRUE; 4971 } 4972 4973 /* Copy any private info we understand from the input symbol 4974 to the output symbol. */ 4975 4976 static bfd_boolean 4977 som_bfd_copy_private_symbol_data (bfd *ibfd, 4978 asymbol *isymbol, 4979 bfd *obfd, 4980 asymbol *osymbol) 4981 { 4982 struct som_symbol *input_symbol = (struct som_symbol *) isymbol; 4983 struct som_symbol *output_symbol = (struct som_symbol *) osymbol; 4984 4985 /* One day we may try to grok other private data. */ 4986 if (ibfd->xvec->flavour != bfd_target_som_flavour 4987 || obfd->xvec->flavour != bfd_target_som_flavour) 4988 return FALSE; 4989 4990 /* The only private information we need to copy is the argument relocation 4991 bits. */ 4992 output_symbol->tc_data.ap.hppa_arg_reloc = 4993 input_symbol->tc_data.ap.hppa_arg_reloc; 4994 4995 return TRUE; 4996 } 4997 4998 /* Copy any private info we understand from the input section 4999 to the output section. */ 5000 5001 static bfd_boolean 5002 som_bfd_copy_private_section_data (bfd *ibfd, 5003 asection *isection, 5004 bfd *obfd, 5005 asection *osection) 5006 { 5007 bfd_size_type amt; 5008 5009 /* One day we may try to grok other private data. */ 5010 if (ibfd->xvec->flavour != bfd_target_som_flavour 5011 || obfd->xvec->flavour != bfd_target_som_flavour 5012 || (!som_is_space (isection) && !som_is_subspace (isection))) 5013 return TRUE; 5014 5015 amt = sizeof (struct som_copyable_section_data_struct); 5016 som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt); 5017 if (som_section_data (osection)->copy_data == NULL) 5018 return FALSE; 5019 5020 memcpy (som_section_data (osection)->copy_data, 5021 som_section_data (isection)->copy_data, 5022 sizeof (struct som_copyable_section_data_struct)); 5023 5024 /* Reparent if necessary. */ 5025 if (som_section_data (osection)->copy_data->container) 5026 som_section_data (osection)->copy_data->container = 5027 som_section_data (osection)->copy_data->container->output_section; 5028 5029 return TRUE; 5030 } 5031 5032 /* Copy any private info we understand from the input bfd 5033 to the output bfd. */ 5034 5035 static bfd_boolean 5036 som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 5037 { 5038 /* One day we may try to grok other private data. */ 5039 if (ibfd->xvec->flavour != bfd_target_som_flavour 5040 || obfd->xvec->flavour != bfd_target_som_flavour) 5041 return TRUE; 5042 5043 /* Allocate some memory to hold the data we need. */ 5044 obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data)); 5045 if (obj_som_exec_data (obfd) == NULL) 5046 return FALSE; 5047 5048 /* Now copy the data. */ 5049 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd), 5050 sizeof (struct som_exec_data)); 5051 5052 return TRUE; 5053 } 5054 5055 /* Display the SOM header. */ 5056 5057 static bfd_boolean 5058 som_bfd_print_private_bfd_data (bfd *abfd, void *farg) 5059 { 5060 struct som_exec_auxhdr *exec_header; 5061 struct aux_id* auxhdr; 5062 FILE *f; 5063 5064 f = (FILE *) farg; 5065 5066 exec_header = obj_som_exec_hdr (abfd); 5067 if (exec_header) 5068 { 5069 fprintf (f, _("\nExec Auxiliary Header\n")); 5070 fprintf (f, " flags "); 5071 auxhdr = &exec_header->som_auxhdr; 5072 if (auxhdr->mandatory) 5073 fprintf (f, "mandatory "); 5074 if (auxhdr->copy) 5075 fprintf (f, "copy "); 5076 if (auxhdr->append) 5077 fprintf (f, "append "); 5078 if (auxhdr->ignore) 5079 fprintf (f, "ignore "); 5080 fprintf (f, "\n"); 5081 fprintf (f, " type %#x\n", auxhdr->type); 5082 fprintf (f, " length %#x\n", auxhdr->length); 5083 5084 /* Note that, depending on the HP-UX version, the following fields can be 5085 either ints, or longs. */ 5086 5087 fprintf (f, " text size %#lx\n", (long) exec_header->exec_tsize); 5088 fprintf (f, " text memory offset %#lx\n", (long) exec_header->exec_tmem); 5089 fprintf (f, " text file offset %#lx\n", (long) exec_header->exec_tfile); 5090 fprintf (f, " data size %#lx\n", (long) exec_header->exec_dsize); 5091 fprintf (f, " data memory offset %#lx\n", (long) exec_header->exec_dmem); 5092 fprintf (f, " data file offset %#lx\n", (long) exec_header->exec_dfile); 5093 fprintf (f, " bss size %#lx\n", (long) exec_header->exec_bsize); 5094 fprintf (f, " entry point %#lx\n", (long) exec_header->exec_entry); 5095 fprintf (f, " loader flags %#lx\n", (long) exec_header->exec_flags); 5096 fprintf (f, " bss initializer %#lx\n", (long) exec_header->exec_bfill); 5097 } 5098 5099 return TRUE; 5100 } 5101 5102 /* Set backend info for sections which can not be described 5103 in the BFD data structures. */ 5104 5105 bfd_boolean 5106 bfd_som_set_section_attributes (asection *section, 5107 int defined, 5108 int private, 5109 unsigned int sort_key, 5110 int spnum) 5111 { 5112 /* Allocate memory to hold the magic information. */ 5113 if (som_section_data (section)->copy_data == NULL) 5114 { 5115 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct); 5116 5117 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt); 5118 if (som_section_data (section)->copy_data == NULL) 5119 return FALSE; 5120 } 5121 som_section_data (section)->copy_data->sort_key = sort_key; 5122 som_section_data (section)->copy_data->is_defined = defined; 5123 som_section_data (section)->copy_data->is_private = private; 5124 som_section_data (section)->copy_data->container = section; 5125 som_section_data (section)->copy_data->space_number = spnum; 5126 return TRUE; 5127 } 5128 5129 /* Set backend info for subsections which can not be described 5130 in the BFD data structures. */ 5131 5132 bfd_boolean 5133 bfd_som_set_subsection_attributes (asection *section, 5134 asection *container, 5135 int access, 5136 unsigned int sort_key, 5137 int quadrant, 5138 int comdat, 5139 int common, 5140 int dup_common) 5141 { 5142 /* Allocate memory to hold the magic information. */ 5143 if (som_section_data (section)->copy_data == NULL) 5144 { 5145 bfd_size_type amt = sizeof (struct som_copyable_section_data_struct); 5146 5147 som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt); 5148 if (som_section_data (section)->copy_data == NULL) 5149 return FALSE; 5150 } 5151 som_section_data (section)->copy_data->sort_key = sort_key; 5152 som_section_data (section)->copy_data->access_control_bits = access; 5153 som_section_data (section)->copy_data->quadrant = quadrant; 5154 som_section_data (section)->copy_data->container = container; 5155 som_section_data (section)->copy_data->is_comdat = comdat; 5156 som_section_data (section)->copy_data->is_common = common; 5157 som_section_data (section)->copy_data->dup_common = dup_common; 5158 return TRUE; 5159 } 5160 5161 /* Set the full SOM symbol type. SOM needs far more symbol information 5162 than any other object file format I'm aware of. It is mandatory 5163 to be able to know if a symbol is an entry point, millicode, data, 5164 code, absolute, storage request, or procedure label. If you get 5165 the symbol type wrong your program will not link. */ 5166 5167 void 5168 bfd_som_set_symbol_type (asymbol *symbol, unsigned int type) 5169 { 5170 som_symbol_data (symbol)->som_type = type; 5171 } 5172 5173 /* Attach an auxiliary header to the BFD backend so that it may be 5174 written into the object file. */ 5175 5176 bfd_boolean 5177 bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string) 5178 { 5179 bfd_size_type amt; 5180 5181 if (type == VERSION_AUX_ID) 5182 { 5183 size_t len = strlen (string); 5184 int pad = 0; 5185 5186 if (len % 4) 5187 pad = (4 - (len % 4)); 5188 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad; 5189 obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt); 5190 if (!obj_som_version_hdr (abfd)) 5191 return FALSE; 5192 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID; 5193 obj_som_version_hdr (abfd)->header_id.length = len + pad; 5194 obj_som_version_hdr (abfd)->header_id.length += sizeof (int); 5195 obj_som_version_hdr (abfd)->string_length = len; 5196 strncpy (obj_som_version_hdr (abfd)->user_string, string, len); 5197 } 5198 else if (type == COPYRIGHT_AUX_ID) 5199 { 5200 int len = strlen (string); 5201 int pad = 0; 5202 5203 if (len % 4) 5204 pad = (4 - (len % 4)); 5205 amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad; 5206 obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt); 5207 if (!obj_som_copyright_hdr (abfd)) 5208 return FALSE; 5209 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID; 5210 obj_som_copyright_hdr (abfd)->header_id.length = len + pad; 5211 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int); 5212 obj_som_copyright_hdr (abfd)->string_length = len; 5213 strcpy (obj_som_copyright_hdr (abfd)->copyright, string); 5214 } 5215 return TRUE; 5216 } 5217 5218 /* Attach a compilation unit header to the BFD backend so that it may be 5219 written into the object file. */ 5220 5221 bfd_boolean 5222 bfd_som_attach_compilation_unit (bfd *abfd, 5223 const char *name, 5224 const char *language_name, 5225 const char *product_id, 5226 const char *version_id) 5227 { 5228 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ); 5229 5230 if (n == NULL) 5231 return FALSE; 5232 5233 #define STRDUP(f) \ 5234 if (f != NULL) \ 5235 { \ 5236 n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \ 5237 if (n->f.n_name == NULL) \ 5238 return FALSE; \ 5239 strcpy (n->f.n_name, f); \ 5240 } 5241 5242 STRDUP (name); 5243 STRDUP (language_name); 5244 STRDUP (product_id); 5245 STRDUP (version_id); 5246 5247 #undef STRDUP 5248 5249 obj_som_compilation_unit (abfd) = n; 5250 5251 return TRUE; 5252 } 5253 5254 static bfd_boolean 5255 som_get_section_contents (bfd *abfd, 5256 sec_ptr section, 5257 void *location, 5258 file_ptr offset, 5259 bfd_size_type count) 5260 { 5261 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0)) 5262 return TRUE; 5263 if ((bfd_size_type) (offset+count) > section->size 5264 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0 5265 || bfd_bread (location, count, abfd) != count) 5266 return FALSE; /* On error. */ 5267 return TRUE; 5268 } 5269 5270 static bfd_boolean 5271 som_set_section_contents (bfd *abfd, 5272 sec_ptr section, 5273 const void *location, 5274 file_ptr offset, 5275 bfd_size_type count) 5276 { 5277 if (! abfd->output_has_begun) 5278 { 5279 /* Set up fixed parts of the file, space, and subspace headers. 5280 Notify the world that output has begun. */ 5281 som_prep_headers (abfd); 5282 abfd->output_has_begun = TRUE; 5283 /* Start writing the object file. This include all the string 5284 tables, fixup streams, and other portions of the object file. */ 5285 som_begin_writing (abfd); 5286 } 5287 5288 /* Only write subspaces which have "real" contents (eg. the contents 5289 are not generated at run time by the OS). */ 5290 if (!som_is_subspace (section) 5291 || ((section->flags & SEC_HAS_CONTENTS) == 0)) 5292 return TRUE; 5293 5294 /* Seek to the proper offset within the object file and write the 5295 data. */ 5296 offset += som_section_data (section)->subspace_dict->file_loc_init_value; 5297 if (bfd_seek (abfd, offset, SEEK_SET) != 0) 5298 return FALSE; 5299 5300 if (bfd_bwrite (location, count, abfd) != count) 5301 return FALSE; 5302 return TRUE; 5303 } 5304 5305 static bfd_boolean 5306 som_set_arch_mach (bfd *abfd, 5307 enum bfd_architecture arch, 5308 unsigned long machine) 5309 { 5310 /* Allow any architecture to be supported by the SOM backend. */ 5311 return bfd_default_set_arch_mach (abfd, arch, machine); 5312 } 5313 5314 static bfd_boolean 5315 som_find_nearest_line (bfd *abfd ATTRIBUTE_UNUSED, 5316 asection *section ATTRIBUTE_UNUSED, 5317 asymbol **symbols ATTRIBUTE_UNUSED, 5318 bfd_vma offset ATTRIBUTE_UNUSED, 5319 const char **filename_ptr ATTRIBUTE_UNUSED, 5320 const char **functionname_ptr ATTRIBUTE_UNUSED, 5321 unsigned int *line_ptr ATTRIBUTE_UNUSED) 5322 { 5323 return FALSE; 5324 } 5325 5326 static int 5327 som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED, 5328 bfd_boolean reloc ATTRIBUTE_UNUSED) 5329 { 5330 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented")); 5331 fflush (stderr); 5332 abort (); 5333 return 0; 5334 } 5335 5336 /* Return the single-character symbol type corresponding to 5337 SOM section S, or '?' for an unknown SOM section. */ 5338 5339 static char 5340 som_section_type (const char *s) 5341 { 5342 const struct section_to_type *t; 5343 5344 for (t = &stt[0]; t->section; t++) 5345 if (!strcmp (s, t->section)) 5346 return t->type; 5347 return '?'; 5348 } 5349 5350 static int 5351 som_decode_symclass (asymbol *symbol) 5352 { 5353 char c; 5354 5355 if (bfd_is_com_section (symbol->section)) 5356 return 'C'; 5357 if (bfd_is_und_section (symbol->section)) 5358 { 5359 if (symbol->flags & BSF_WEAK) 5360 { 5361 /* If weak, determine if it's specifically an object 5362 or non-object weak. */ 5363 if (symbol->flags & BSF_OBJECT) 5364 return 'v'; 5365 else 5366 return 'w'; 5367 } 5368 else 5369 return 'U'; 5370 } 5371 if (bfd_is_ind_section (symbol->section)) 5372 return 'I'; 5373 if (symbol->flags & BSF_WEAK) 5374 { 5375 /* If weak, determine if it's specifically an object 5376 or non-object weak. */ 5377 if (symbol->flags & BSF_OBJECT) 5378 return 'V'; 5379 else 5380 return 'W'; 5381 } 5382 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) 5383 return '?'; 5384 5385 if (bfd_is_abs_section (symbol->section) 5386 || (som_symbol_data (symbol) != NULL 5387 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE)) 5388 c = 'a'; 5389 else if (symbol->section) 5390 c = som_section_type (symbol->section->name); 5391 else 5392 return '?'; 5393 if (symbol->flags & BSF_GLOBAL) 5394 c = TOUPPER (c); 5395 return c; 5396 } 5397 5398 /* Return information about SOM symbol SYMBOL in RET. */ 5399 5400 static void 5401 som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED, 5402 asymbol *symbol, 5403 symbol_info *ret) 5404 { 5405 ret->type = som_decode_symclass (symbol); 5406 if (ret->type != 'U') 5407 ret->value = symbol->value + symbol->section->vma; 5408 else 5409 ret->value = 0; 5410 ret->name = symbol->name; 5411 } 5412 5413 /* Count the number of symbols in the archive symbol table. Necessary 5414 so that we can allocate space for all the carsyms at once. */ 5415 5416 static bfd_boolean 5417 som_bfd_count_ar_symbols (bfd *abfd, 5418 struct lst_header *lst_header, 5419 symindex *count) 5420 { 5421 unsigned int i; 5422 unsigned int *hash_table = NULL; 5423 bfd_size_type amt; 5424 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5425 5426 amt = lst_header->hash_size; 5427 amt *= sizeof (unsigned int); 5428 hash_table = bfd_malloc (amt); 5429 if (hash_table == NULL && lst_header->hash_size != 0) 5430 goto error_return; 5431 5432 /* Don't forget to initialize the counter! */ 5433 *count = 0; 5434 5435 /* Read in the hash table. The has table is an array of 32bit file offsets 5436 which point to the hash chains. */ 5437 if (bfd_bread ((void *) hash_table, amt, abfd) != amt) 5438 goto error_return; 5439 5440 /* Walk each chain counting the number of symbols found on that particular 5441 chain. */ 5442 for (i = 0; i < lst_header->hash_size; i++) 5443 { 5444 struct lst_symbol_record lst_symbol; 5445 5446 /* An empty chain has zero as it's file offset. */ 5447 if (hash_table[i] == 0) 5448 continue; 5449 5450 /* Seek to the first symbol in this hash chain. */ 5451 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0) 5452 goto error_return; 5453 5454 /* Read in this symbol and update the counter. */ 5455 amt = sizeof (lst_symbol); 5456 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) 5457 goto error_return; 5458 5459 (*count)++; 5460 5461 /* Now iterate through the rest of the symbols on this chain. */ 5462 while (lst_symbol.next_entry) 5463 { 5464 5465 /* Seek to the next symbol. */ 5466 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) 5467 != 0) 5468 goto error_return; 5469 5470 /* Read the symbol in and update the counter. */ 5471 amt = sizeof (lst_symbol); 5472 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) 5473 goto error_return; 5474 5475 (*count)++; 5476 } 5477 } 5478 if (hash_table != NULL) 5479 free (hash_table); 5480 return TRUE; 5481 5482 error_return: 5483 if (hash_table != NULL) 5484 free (hash_table); 5485 return FALSE; 5486 } 5487 5488 /* Fill in the canonical archive symbols (SYMS) from the archive described 5489 by ABFD and LST_HEADER. */ 5490 5491 static bfd_boolean 5492 som_bfd_fill_in_ar_symbols (bfd *abfd, 5493 struct lst_header *lst_header, 5494 carsym **syms) 5495 { 5496 unsigned int i, len; 5497 carsym *set = syms[0]; 5498 unsigned int *hash_table = NULL; 5499 struct som_entry *som_dict = NULL; 5500 bfd_size_type amt; 5501 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5502 5503 amt = lst_header->hash_size; 5504 amt *= sizeof (unsigned int); 5505 hash_table = bfd_malloc (amt); 5506 if (hash_table == NULL && lst_header->hash_size != 0) 5507 goto error_return; 5508 5509 /* Read in the hash table. The has table is an array of 32bit file offsets 5510 which point to the hash chains. */ 5511 if (bfd_bread ((void *) hash_table, amt, abfd) != amt) 5512 goto error_return; 5513 5514 /* Seek to and read in the SOM dictionary. We will need this to fill 5515 in the carsym's filepos field. */ 5516 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0) 5517 goto error_return; 5518 5519 amt = lst_header->module_count; 5520 amt *= sizeof (struct som_entry); 5521 som_dict = bfd_malloc (amt); 5522 if (som_dict == NULL && lst_header->module_count != 0) 5523 goto error_return; 5524 5525 if (bfd_bread ((void *) som_dict, amt, abfd) != amt) 5526 goto error_return; 5527 5528 /* Walk each chain filling in the carsyms as we go along. */ 5529 for (i = 0; i < lst_header->hash_size; i++) 5530 { 5531 struct lst_symbol_record lst_symbol; 5532 5533 /* An empty chain has zero as it's file offset. */ 5534 if (hash_table[i] == 0) 5535 continue; 5536 5537 /* Seek to and read the first symbol on the chain. */ 5538 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0) 5539 goto error_return; 5540 5541 amt = sizeof (lst_symbol); 5542 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) 5543 goto error_return; 5544 5545 /* Get the name of the symbol, first get the length which is stored 5546 as a 32bit integer just before the symbol. 5547 5548 One might ask why we don't just read in the entire string table 5549 and index into it. Well, according to the SOM ABI the string 5550 index can point *anywhere* in the archive to save space, so just 5551 using the string table would not be safe. */ 5552 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc 5553 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0) 5554 goto error_return; 5555 5556 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4) 5557 goto error_return; 5558 5559 /* Allocate space for the name and null terminate it too. */ 5560 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1); 5561 if (!set->name) 5562 goto error_return; 5563 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len) 5564 goto error_return; 5565 5566 set->name[len] = 0; 5567 5568 /* Fill in the file offset. Note that the "location" field points 5569 to the SOM itself, not the ar_hdr in front of it. */ 5570 set->file_offset = som_dict[lst_symbol.som_index].location 5571 - sizeof (struct ar_hdr); 5572 5573 /* Go to the next symbol. */ 5574 set++; 5575 5576 /* Iterate through the rest of the chain. */ 5577 while (lst_symbol.next_entry) 5578 { 5579 /* Seek to the next symbol and read it in. */ 5580 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) 5581 != 0) 5582 goto error_return; 5583 5584 amt = sizeof (lst_symbol); 5585 if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt) 5586 goto error_return; 5587 5588 /* Seek to the name length & string and read them in. */ 5589 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc 5590 + lst_symbol.name.n_strx - 4, SEEK_SET) != 0) 5591 goto error_return; 5592 5593 if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4) 5594 goto error_return; 5595 5596 /* Allocate space for the name and null terminate it too. */ 5597 set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1); 5598 if (!set->name) 5599 goto error_return; 5600 5601 if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len) 5602 goto error_return; 5603 set->name[len] = 0; 5604 5605 /* Fill in the file offset. Note that the "location" field points 5606 to the SOM itself, not the ar_hdr in front of it. */ 5607 set->file_offset = som_dict[lst_symbol.som_index].location 5608 - sizeof (struct ar_hdr); 5609 5610 /* Go on to the next symbol. */ 5611 set++; 5612 } 5613 } 5614 /* If we haven't died by now, then we successfully read the entire 5615 archive symbol table. */ 5616 if (hash_table != NULL) 5617 free (hash_table); 5618 if (som_dict != NULL) 5619 free (som_dict); 5620 return TRUE; 5621 5622 error_return: 5623 if (hash_table != NULL) 5624 free (hash_table); 5625 if (som_dict != NULL) 5626 free (som_dict); 5627 return FALSE; 5628 } 5629 5630 /* Read in the LST from the archive. */ 5631 5632 static bfd_boolean 5633 som_slurp_armap (bfd *abfd) 5634 { 5635 struct lst_header lst_header; 5636 struct ar_hdr ar_header; 5637 unsigned int parsed_size; 5638 struct artdata *ardata = bfd_ardata (abfd); 5639 char nextname[17]; 5640 bfd_size_type amt = 16; 5641 int i = bfd_bread ((void *) nextname, amt, abfd); 5642 5643 /* Special cases. */ 5644 if (i == 0) 5645 return TRUE; 5646 if (i != 16) 5647 return FALSE; 5648 5649 if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0) 5650 return FALSE; 5651 5652 /* For archives without .o files there is no symbol table. */ 5653 if (strncmp (nextname, "/ ", 16)) 5654 { 5655 bfd_has_map (abfd) = FALSE; 5656 return TRUE; 5657 } 5658 5659 /* Read in and sanity check the archive header. */ 5660 amt = sizeof (struct ar_hdr); 5661 if (bfd_bread ((void *) &ar_header, amt, abfd) != amt) 5662 return FALSE; 5663 5664 if (strncmp (ar_header.ar_fmag, ARFMAG, 2)) 5665 { 5666 bfd_set_error (bfd_error_malformed_archive); 5667 return FALSE; 5668 } 5669 5670 /* How big is the archive symbol table entry? */ 5671 errno = 0; 5672 parsed_size = strtol (ar_header.ar_size, NULL, 10); 5673 if (errno != 0) 5674 { 5675 bfd_set_error (bfd_error_malformed_archive); 5676 return FALSE; 5677 } 5678 5679 /* Save off the file offset of the first real user data. */ 5680 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size; 5681 5682 /* Read in the library symbol table. We'll make heavy use of this 5683 in just a minute. */ 5684 amt = sizeof (struct lst_header); 5685 if (bfd_bread ((void *) &lst_header, amt, abfd) != amt) 5686 return FALSE; 5687 5688 /* Sanity check. */ 5689 if (lst_header.a_magic != LIBMAGIC) 5690 { 5691 bfd_set_error (bfd_error_malformed_archive); 5692 return FALSE; 5693 } 5694 5695 /* Count the number of symbols in the library symbol table. */ 5696 if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)) 5697 return FALSE; 5698 5699 /* Get back to the start of the library symbol table. */ 5700 if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size 5701 + sizeof (struct lst_header)), SEEK_SET) != 0) 5702 return FALSE; 5703 5704 /* Initialize the cache and allocate space for the library symbols. */ 5705 ardata->cache = 0; 5706 amt = ardata->symdef_count; 5707 amt *= sizeof (carsym); 5708 ardata->symdefs = bfd_alloc (abfd, amt); 5709 if (!ardata->symdefs) 5710 return FALSE; 5711 5712 /* Now fill in the canonical archive symbols. */ 5713 if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)) 5714 return FALSE; 5715 5716 /* Seek back to the "first" file in the archive. Note the "first" 5717 file may be the extended name table. */ 5718 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0) 5719 return FALSE; 5720 5721 /* Notify the generic archive code that we have a symbol map. */ 5722 bfd_has_map (abfd) = TRUE; 5723 return TRUE; 5724 } 5725 5726 /* Begin preparing to write a SOM library symbol table. 5727 5728 As part of the prep work we need to determine the number of symbols 5729 and the size of the associated string section. */ 5730 5731 static bfd_boolean 5732 som_bfd_prep_for_ar_write (bfd *abfd, 5733 unsigned int *num_syms, 5734 unsigned int *stringsize) 5735 { 5736 bfd *curr_bfd = abfd->archive_head; 5737 5738 /* Some initialization. */ 5739 *num_syms = 0; 5740 *stringsize = 0; 5741 5742 /* Iterate over each BFD within this archive. */ 5743 while (curr_bfd != NULL) 5744 { 5745 unsigned int curr_count, i; 5746 som_symbol_type *sym; 5747 5748 /* Don't bother for non-SOM objects. */ 5749 if (curr_bfd->format != bfd_object 5750 || curr_bfd->xvec->flavour != bfd_target_som_flavour) 5751 { 5752 curr_bfd = curr_bfd->next; 5753 continue; 5754 } 5755 5756 /* Make sure the symbol table has been read, then snag a pointer 5757 to it. It's a little slimey to grab the symbols via obj_som_symtab, 5758 but doing so avoids allocating lots of extra memory. */ 5759 if (! som_slurp_symbol_table (curr_bfd)) 5760 return FALSE; 5761 5762 sym = obj_som_symtab (curr_bfd); 5763 curr_count = bfd_get_symcount (curr_bfd); 5764 5765 /* Examine each symbol to determine if it belongs in the 5766 library symbol table. */ 5767 for (i = 0; i < curr_count; i++, sym++) 5768 { 5769 struct som_misc_symbol_info info; 5770 5771 /* Derive SOM information from the BFD symbol. */ 5772 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); 5773 5774 /* Should we include this symbol? */ 5775 if (info.symbol_type == ST_NULL 5776 || info.symbol_type == ST_SYM_EXT 5777 || info.symbol_type == ST_ARG_EXT) 5778 continue; 5779 5780 /* Only global symbols and unsatisfied commons. */ 5781 if (info.symbol_scope != SS_UNIVERSAL 5782 && info.symbol_type != ST_STORAGE) 5783 continue; 5784 5785 /* Do no include undefined symbols. */ 5786 if (bfd_is_und_section (sym->symbol.section)) 5787 continue; 5788 5789 /* Bump the various counters, being careful to honor 5790 alignment considerations in the string table. */ 5791 (*num_syms)++; 5792 *stringsize = *stringsize + strlen (sym->symbol.name) + 5; 5793 while (*stringsize % 4) 5794 (*stringsize)++; 5795 } 5796 5797 curr_bfd = curr_bfd->next; 5798 } 5799 return TRUE; 5800 } 5801 5802 /* Hash a symbol name based on the hashing algorithm presented in the 5803 SOM ABI. */ 5804 5805 static unsigned int 5806 som_bfd_ar_symbol_hash (asymbol *symbol) 5807 { 5808 unsigned int len = strlen (symbol->name); 5809 5810 /* Names with length 1 are special. */ 5811 if (len == 1) 5812 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0]; 5813 5814 return ((len & 0x7f) << 24) | (symbol->name[1] << 16) 5815 | (symbol->name[len - 2] << 8) | symbol->name[len - 1]; 5816 } 5817 5818 /* Do the bulk of the work required to write the SOM library 5819 symbol table. */ 5820 5821 static bfd_boolean 5822 som_bfd_ar_write_symbol_stuff (bfd *abfd, 5823 unsigned int nsyms, 5824 unsigned int string_size, 5825 struct lst_header lst, 5826 unsigned elength) 5827 { 5828 file_ptr lst_filepos; 5829 char *strings = NULL, *p; 5830 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym; 5831 bfd *curr_bfd; 5832 unsigned int *hash_table = NULL; 5833 struct som_entry *som_dict = NULL; 5834 struct lst_symbol_record **last_hash_entry = NULL; 5835 unsigned int curr_som_offset, som_index = 0; 5836 bfd_size_type amt; 5837 5838 amt = lst.hash_size; 5839 amt *= sizeof (unsigned int); 5840 hash_table = bfd_zmalloc (amt); 5841 if (hash_table == NULL && lst.hash_size != 0) 5842 goto error_return; 5843 5844 amt = lst.module_count; 5845 amt *= sizeof (struct som_entry); 5846 som_dict = bfd_zmalloc (amt); 5847 if (som_dict == NULL && lst.module_count != 0) 5848 goto error_return; 5849 5850 amt = lst.hash_size; 5851 amt *= sizeof (struct lst_symbol_record *); 5852 last_hash_entry = bfd_zmalloc (amt); 5853 if (last_hash_entry == NULL && lst.hash_size != 0) 5854 goto error_return; 5855 5856 /* Lots of fields are file positions relative to the start 5857 of the lst record. So save its location. */ 5858 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5859 5860 /* Symbols have som_index fields, so we have to keep track of the 5861 index of each SOM in the archive. 5862 5863 The SOM dictionary has (among other things) the absolute file 5864 position for the SOM which a particular dictionary entry 5865 describes. We have to compute that information as we iterate 5866 through the SOMs/symbols. */ 5867 som_index = 0; 5868 5869 /* We add in the size of the archive header twice as the location 5870 in the SOM dictionary is the actual offset of the SOM, not the 5871 archive header before the SOM. */ 5872 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end; 5873 5874 /* Make room for the archive header and the contents of the 5875 extended string table. Note that elength includes the size 5876 of the archive header for the extended name table! */ 5877 if (elength) 5878 curr_som_offset += elength; 5879 5880 /* Make sure we're properly aligned. */ 5881 curr_som_offset = (curr_som_offset + 0x1) & ~0x1; 5882 5883 /* FIXME should be done with buffers just like everything else... */ 5884 amt = nsyms; 5885 amt *= sizeof (struct lst_symbol_record); 5886 lst_syms = bfd_malloc (amt); 5887 if (lst_syms == NULL && nsyms != 0) 5888 goto error_return; 5889 strings = bfd_malloc ((bfd_size_type) string_size); 5890 if (strings == NULL && string_size != 0) 5891 goto error_return; 5892 5893 p = strings; 5894 curr_lst_sym = lst_syms; 5895 5896 curr_bfd = abfd->archive_head; 5897 while (curr_bfd != NULL) 5898 { 5899 unsigned int curr_count, i; 5900 som_symbol_type *sym; 5901 5902 /* Don't bother for non-SOM objects. */ 5903 if (curr_bfd->format != bfd_object 5904 || curr_bfd->xvec->flavour != bfd_target_som_flavour) 5905 { 5906 curr_bfd = curr_bfd->next; 5907 continue; 5908 } 5909 5910 /* Make sure the symbol table has been read, then snag a pointer 5911 to it. It's a little slimey to grab the symbols via obj_som_symtab, 5912 but doing so avoids allocating lots of extra memory. */ 5913 if (! som_slurp_symbol_table (curr_bfd)) 5914 goto error_return; 5915 5916 sym = obj_som_symtab (curr_bfd); 5917 curr_count = bfd_get_symcount (curr_bfd); 5918 5919 for (i = 0; i < curr_count; i++, sym++) 5920 { 5921 struct som_misc_symbol_info info; 5922 5923 /* Derive SOM information from the BFD symbol. */ 5924 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); 5925 5926 /* Should we include this symbol? */ 5927 if (info.symbol_type == ST_NULL 5928 || info.symbol_type == ST_SYM_EXT 5929 || info.symbol_type == ST_ARG_EXT) 5930 continue; 5931 5932 /* Only global symbols and unsatisfied commons. */ 5933 if (info.symbol_scope != SS_UNIVERSAL 5934 && info.symbol_type != ST_STORAGE) 5935 continue; 5936 5937 /* Do no include undefined symbols. */ 5938 if (bfd_is_und_section (sym->symbol.section)) 5939 continue; 5940 5941 /* If this is the first symbol from this SOM, then update 5942 the SOM dictionary too. */ 5943 if (som_dict[som_index].location == 0) 5944 { 5945 som_dict[som_index].location = curr_som_offset; 5946 som_dict[som_index].length = arelt_size (curr_bfd); 5947 } 5948 5949 /* Fill in the lst symbol record. */ 5950 curr_lst_sym->hidden = 0; 5951 curr_lst_sym->secondary_def = info.secondary_def; 5952 curr_lst_sym->symbol_type = info.symbol_type; 5953 curr_lst_sym->symbol_scope = info.symbol_scope; 5954 curr_lst_sym->check_level = 0; 5955 curr_lst_sym->must_qualify = 0; 5956 curr_lst_sym->initially_frozen = 0; 5957 curr_lst_sym->memory_resident = 0; 5958 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section); 5959 curr_lst_sym->dup_common = info.dup_common; 5960 curr_lst_sym->xleast = 3; 5961 curr_lst_sym->arg_reloc = info.arg_reloc; 5962 curr_lst_sym->name.n_strx = p - strings + 4; 5963 curr_lst_sym->qualifier_name.n_strx = 0; 5964 curr_lst_sym->symbol_info = info.symbol_info; 5965 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level; 5966 curr_lst_sym->symbol_descriptor = 0; 5967 curr_lst_sym->reserved = 0; 5968 curr_lst_sym->som_index = som_index; 5969 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol); 5970 curr_lst_sym->next_entry = 0; 5971 5972 /* Insert into the hash table. */ 5973 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size]) 5974 { 5975 struct lst_symbol_record *tmp; 5976 5977 /* There is already something at the head of this hash chain, 5978 so tack this symbol onto the end of the chain. */ 5979 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]; 5980 tmp->next_entry 5981 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) 5982 + lst.hash_size * 4 5983 + lst.module_count * sizeof (struct som_entry) 5984 + sizeof (struct lst_header); 5985 } 5986 else 5987 /* First entry in this hash chain. */ 5988 hash_table[curr_lst_sym->symbol_key % lst.hash_size] 5989 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) 5990 + lst.hash_size * 4 5991 + lst.module_count * sizeof (struct som_entry) 5992 + sizeof (struct lst_header); 5993 5994 /* Keep track of the last symbol we added to this chain so we can 5995 easily update its next_entry pointer. */ 5996 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size] 5997 = curr_lst_sym; 5998 5999 /* Update the string table. */ 6000 bfd_put_32 (abfd, strlen (sym->symbol.name), p); 6001 p += 4; 6002 strcpy (p, sym->symbol.name); 6003 p += strlen (sym->symbol.name) + 1; 6004 while ((int) p % 4) 6005 { 6006 bfd_put_8 (abfd, 0, p); 6007 p++; 6008 } 6009 6010 /* Head to the next symbol. */ 6011 curr_lst_sym++; 6012 } 6013 6014 /* Keep track of where each SOM will finally reside; then look 6015 at the next BFD. */ 6016 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr); 6017 6018 /* A particular object in the archive may have an odd length; the 6019 linker requires objects begin on an even boundary. So round 6020 up the current offset as necessary. */ 6021 curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1; 6022 curr_bfd = curr_bfd->next; 6023 som_index++; 6024 } 6025 6026 /* Now scribble out the hash table. */ 6027 amt = lst.hash_size * 4; 6028 if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt) 6029 goto error_return; 6030 6031 /* Then the SOM dictionary. */ 6032 amt = lst.module_count * sizeof (struct som_entry); 6033 if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt) 6034 goto error_return; 6035 6036 /* The library symbols. */ 6037 amt = nsyms * sizeof (struct lst_symbol_record); 6038 if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt) 6039 goto error_return; 6040 6041 /* And finally the strings. */ 6042 amt = string_size; 6043 if (bfd_bwrite ((void *) strings, amt, abfd) != amt) 6044 goto error_return; 6045 6046 if (hash_table != NULL) 6047 free (hash_table); 6048 if (som_dict != NULL) 6049 free (som_dict); 6050 if (last_hash_entry != NULL) 6051 free (last_hash_entry); 6052 if (lst_syms != NULL) 6053 free (lst_syms); 6054 if (strings != NULL) 6055 free (strings); 6056 return TRUE; 6057 6058 error_return: 6059 if (hash_table != NULL) 6060 free (hash_table); 6061 if (som_dict != NULL) 6062 free (som_dict); 6063 if (last_hash_entry != NULL) 6064 free (last_hash_entry); 6065 if (lst_syms != NULL) 6066 free (lst_syms); 6067 if (strings != NULL) 6068 free (strings); 6069 6070 return FALSE; 6071 } 6072 6073 /* Write out the LST for the archive. 6074 6075 You'll never believe this is really how armaps are handled in SOM... */ 6076 6077 static bfd_boolean 6078 som_write_armap (bfd *abfd, 6079 unsigned int elength, 6080 struct orl *map ATTRIBUTE_UNUSED, 6081 unsigned int orl_count ATTRIBUTE_UNUSED, 6082 int stridx ATTRIBUTE_UNUSED) 6083 { 6084 bfd *curr_bfd; 6085 struct stat statbuf; 6086 unsigned int i, lst_size, nsyms, stringsize; 6087 struct ar_hdr hdr; 6088 struct lst_header lst; 6089 int *p; 6090 bfd_size_type amt; 6091 6092 /* We'll use this for the archive's date and mode later. */ 6093 if (stat (abfd->filename, &statbuf) != 0) 6094 { 6095 bfd_set_error (bfd_error_system_call); 6096 return FALSE; 6097 } 6098 /* Fudge factor. */ 6099 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60; 6100 6101 /* Account for the lst header first. */ 6102 lst_size = sizeof (struct lst_header); 6103 6104 /* Start building the LST header. */ 6105 /* FIXME: Do we need to examine each element to determine the 6106 largest id number? */ 6107 lst.system_id = CPU_PA_RISC1_0; 6108 lst.a_magic = LIBMAGIC; 6109 lst.version_id = VERSION_ID; 6110 lst.file_time.secs = 0; 6111 lst.file_time.nanosecs = 0; 6112 6113 lst.hash_loc = lst_size; 6114 lst.hash_size = SOM_LST_HASH_SIZE; 6115 6116 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */ 6117 lst_size += 4 * SOM_LST_HASH_SIZE; 6118 6119 /* We need to count the number of SOMs in this archive. */ 6120 curr_bfd = abfd->archive_head; 6121 lst.module_count = 0; 6122 while (curr_bfd != NULL) 6123 { 6124 /* Only true SOM objects count. */ 6125 if (curr_bfd->format == bfd_object 6126 && curr_bfd->xvec->flavour == bfd_target_som_flavour) 6127 lst.module_count++; 6128 curr_bfd = curr_bfd->next; 6129 } 6130 lst.module_limit = lst.module_count; 6131 lst.dir_loc = lst_size; 6132 lst_size += sizeof (struct som_entry) * lst.module_count; 6133 6134 /* We don't support import/export tables, auxiliary headers, 6135 or free lists yet. Make the linker work a little harder 6136 to make our life easier. */ 6137 6138 lst.export_loc = 0; 6139 lst.export_count = 0; 6140 lst.import_loc = 0; 6141 lst.aux_loc = 0; 6142 lst.aux_size = 0; 6143 6144 /* Count how many symbols we will have on the hash chains and the 6145 size of the associated string table. */ 6146 if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize)) 6147 return FALSE; 6148 6149 lst_size += sizeof (struct lst_symbol_record) * nsyms; 6150 6151 /* For the string table. One day we might actually use this info 6152 to avoid small seeks/reads when reading archives. */ 6153 lst.string_loc = lst_size; 6154 lst.string_size = stringsize; 6155 lst_size += stringsize; 6156 6157 /* SOM ABI says this must be zero. */ 6158 lst.free_list = 0; 6159 lst.file_end = lst_size; 6160 6161 /* Compute the checksum. Must happen after the entire lst header 6162 has filled in. */ 6163 p = (int *) &lst; 6164 lst.checksum = 0; 6165 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++) 6166 lst.checksum ^= *p++; 6167 6168 sprintf (hdr.ar_name, "/ "); 6169 sprintf (hdr.ar_date, "%lld", (long long)bfd_ardata (abfd)->armap_timestamp); 6170 sprintf (hdr.ar_uid, "%ld", (long) getuid ()); 6171 sprintf (hdr.ar_gid, "%ld", (long) getgid ()); 6172 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode); 6173 sprintf (hdr.ar_size, "%-10d", (int) lst_size); 6174 hdr.ar_fmag[0] = '`'; 6175 hdr.ar_fmag[1] = '\012'; 6176 6177 /* Turn any nulls into spaces. */ 6178 for (i = 0; i < sizeof (struct ar_hdr); i++) 6179 if (((char *) (&hdr))[i] == '\0') 6180 (((char *) (&hdr))[i]) = ' '; 6181 6182 /* Scribble out the ar header. */ 6183 amt = sizeof (struct ar_hdr); 6184 if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt) 6185 return FALSE; 6186 6187 /* Now scribble out the lst header. */ 6188 amt = sizeof (struct lst_header); 6189 if (bfd_bwrite ((void *) &lst, amt, abfd) != amt) 6190 return FALSE; 6191 6192 /* Build and write the armap. */ 6193 if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength)) 6194 return FALSE; 6195 6196 /* Done. */ 6197 return TRUE; 6198 } 6199 6200 /* Free all information we have cached for this BFD. We can always 6201 read it again later if we need it. */ 6202 6203 static bfd_boolean 6204 som_bfd_free_cached_info (bfd *abfd) 6205 { 6206 asection *o; 6207 6208 if (bfd_get_format (abfd) != bfd_object) 6209 return TRUE; 6210 6211 #define FREE(x) if (x != NULL) { free (x); x = NULL; } 6212 /* Free the native string and symbol tables. */ 6213 FREE (obj_som_symtab (abfd)); 6214 FREE (obj_som_stringtab (abfd)); 6215 for (o = abfd->sections; o != NULL; o = o->next) 6216 { 6217 /* Free the native relocations. */ 6218 o->reloc_count = (unsigned) -1; 6219 FREE (som_section_data (o)->reloc_stream); 6220 /* Free the generic relocations. */ 6221 FREE (o->relocation); 6222 } 6223 #undef FREE 6224 6225 return TRUE; 6226 } 6227 6228 /* End of miscellaneous support functions. */ 6229 6230 /* Linker support functions. */ 6231 6232 static bfd_boolean 6233 som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) 6234 { 6235 return som_is_subspace (sec) && sec->size > 240000; 6236 } 6237 6238 #define som_close_and_cleanup som_bfd_free_cached_info 6239 #define som_read_ar_hdr _bfd_generic_read_ar_hdr 6240 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file 6241 #define som_get_elt_at_index _bfd_generic_get_elt_at_index 6242 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt 6243 #define som_truncate_arname bfd_bsd_truncate_arname 6244 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table 6245 #define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table 6246 #define som_update_armap_timestamp bfd_true 6247 #define som_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false) 6248 #define som_get_lineno _bfd_nosymbols_get_lineno 6249 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol 6250 #define som_read_minisymbols _bfd_generic_read_minisymbols 6251 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol 6252 #define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window 6253 #define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents 6254 #define som_bfd_relax_section bfd_generic_relax_section 6255 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create 6256 #define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free 6257 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols 6258 #define som_bfd_link_just_syms _bfd_generic_link_just_syms 6259 #define som_bfd_final_link _bfd_generic_final_link 6260 #define som_bfd_gc_sections bfd_generic_gc_sections 6261 #define som_bfd_merge_sections bfd_generic_merge_sections 6262 #define som_bfd_is_group_section bfd_generic_is_group_section 6263 #define som_bfd_discard_group bfd_generic_discard_group 6264 #define som_section_already_linked _bfd_generic_section_already_linked 6265 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data 6266 #define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data 6267 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags 6268 #define som_find_inliner_info _bfd_nosymbols_find_inliner_info 6269 6270 const bfd_target som_vec = 6271 { 6272 "som", /* Name. */ 6273 bfd_target_som_flavour, 6274 BFD_ENDIAN_BIG, /* Target byte order. */ 6275 BFD_ENDIAN_BIG, /* Target headers byte order. */ 6276 (HAS_RELOC | EXEC_P | /* Object flags. */ 6277 HAS_LINENO | HAS_DEBUG | 6278 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC), 6279 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE 6280 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */ 6281 6282 /* Leading_symbol_char: is the first char of a user symbol 6283 predictable, and if so what is it. */ 6284 0, 6285 '/', /* AR_pad_char. */ 6286 14, /* AR_max_namelen. */ 6287 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 6288 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 6289 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */ 6290 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 6291 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 6292 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */ 6293 {_bfd_dummy_target, 6294 som_object_p, /* bfd_check_format. */ 6295 bfd_generic_archive_p, 6296 _bfd_dummy_target 6297 }, 6298 { 6299 bfd_false, 6300 som_mkobject, 6301 _bfd_generic_mkarchive, 6302 bfd_false 6303 }, 6304 { 6305 bfd_false, 6306 som_write_object_contents, 6307 _bfd_write_archive_contents, 6308 bfd_false, 6309 }, 6310 #undef som 6311 6312 BFD_JUMP_TABLE_GENERIC (som), 6313 BFD_JUMP_TABLE_COPY (som), 6314 BFD_JUMP_TABLE_CORE (_bfd_nocore), 6315 BFD_JUMP_TABLE_ARCHIVE (som), 6316 BFD_JUMP_TABLE_SYMBOLS (som), 6317 BFD_JUMP_TABLE_RELOCS (som), 6318 BFD_JUMP_TABLE_WRITE (som), 6319 BFD_JUMP_TABLE_LINK (som), 6320 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 6321 6322 NULL, 6323 6324 NULL 6325 }; 6326 6327 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */ 6328