1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V 2 Copyright 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005 3 Free Software Foundation, Inc. 4 5 This file is part of GAS, the GNU Assembler. 6 7 GAS is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2, or (at your option) 10 any later version. 11 12 GAS is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GAS; see the file COPYING. If not, write to 19 the Free Software Foundation, 51 Franklin Street - Fifth Floor, 20 Boston, MA 02110-1301, USA. */ 21 22 #include <stdio.h> 23 #include "as.h" 24 #include "safe-ctype.h" 25 #include "subsegs.h" 26 #include "opcode/d30v.h" 27 28 const char comment_chars[] = ";"; 29 const char line_comment_chars[] = "#"; 30 const char line_separator_chars[] = ""; 31 const char *md_shortopts = "OnNcC"; 32 const char EXP_CHARS[] = "eE"; 33 const char FLT_CHARS[] = "dD"; 34 35 #if HAVE_LIMITS_H 36 #include <limits.h> 37 #endif 38 39 #ifndef CHAR_BIT 40 #define CHAR_BIT 8 41 #endif 42 43 #define NOP_MULTIPLY 1 44 #define NOP_ALL 2 45 static int warn_nops = 0; 46 static int Optimizing = 0; 47 static int warn_register_name_conflicts = 1; 48 49 #define FORCE_SHORT 1 50 #define FORCE_LONG 2 51 52 /* EXEC types. */ 53 typedef enum _exec_type 54 { 55 EXEC_UNKNOWN, /* No order specified. */ 56 EXEC_PARALLEL, /* Done in parallel (FM=00). */ 57 EXEC_SEQ, /* Sequential (FM=01). */ 58 EXEC_REVSEQ /* Reverse sequential (FM=10). */ 59 } exec_type_enum; 60 61 /* Fixups. */ 62 #define MAX_INSN_FIXUPS 5 63 64 struct d30v_fixup 65 { 66 expressionS exp; 67 int operand; 68 int pcrel; 69 int size; 70 bfd_reloc_code_real_type reloc; 71 }; 72 73 typedef struct _fixups 74 { 75 int fc; 76 struct d30v_fixup fix[MAX_INSN_FIXUPS]; 77 struct _fixups *next; 78 } Fixups; 79 80 static Fixups FixUps[2]; 81 static Fixups *fixups; 82 83 /* Whether current and previous instruction are word multiply insns. */ 84 static int cur_mul32_p = 0; 85 static int prev_mul32_p = 0; 86 87 /* The flag_explicitly_parallel is true iff the instruction being assembled 88 has been explicitly written as a parallel short-instruction pair by the 89 human programmer. It is used in parallel_ok () to distinguish between 90 those dangerous parallelizations attempted by the human, which are to be 91 allowed, and those attempted by the assembler, which are not. It is set 92 from md_assemble (). */ 93 static int flag_explicitly_parallel = 0; 94 static int flag_xp_state = 0; 95 96 /* Whether current and previous left sub-instruction disables 97 execution of right sub-instruction. */ 98 static int cur_left_kills_right_p = 0; 99 static int prev_left_kills_right_p = 0; 100 101 /* The known current alignment of the current section. */ 102 static int d30v_current_align; 103 static segT d30v_current_align_seg; 104 105 /* The last seen label in the current section. This is used to auto-align 106 labels preceding instructions. */ 107 static symbolS *d30v_last_label; 108 109 /* Two nops. */ 110 #define NOP_LEFT ((long long) NOP << 32) 111 #define NOP_RIGHT ((long long) NOP) 112 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT) 113 114 struct option md_longopts[] = 115 { 116 {NULL, no_argument, NULL, 0} 117 }; 118 119 size_t md_longopts_size = sizeof (md_longopts); 120 121 /* Opcode hash table. */ 122 static struct hash_control *d30v_hash; 123 124 /* Do a binary search of the pre_defined_registers array to see if 125 NAME is a valid regiter name. Return the register number from the 126 array on success, or -1 on failure. */ 127 128 static int 129 reg_name_search (char *name) 130 { 131 int middle, low, high; 132 int cmp; 133 134 low = 0; 135 high = reg_name_cnt () - 1; 136 137 do 138 { 139 middle = (low + high) / 2; 140 cmp = strcasecmp (name, pre_defined_registers[middle].name); 141 if (cmp < 0) 142 high = middle - 1; 143 else if (cmp > 0) 144 low = middle + 1; 145 else 146 { 147 if (symbol_find (name) != NULL) 148 { 149 if (warn_register_name_conflicts) 150 as_warn (_("Register name %s conflicts with symbol of the same name"), 151 name); 152 } 153 154 return pre_defined_registers[middle].value; 155 } 156 } 157 while (low <= high); 158 159 return -1; 160 } 161 162 /* Check the string at input_line_pointer to see if it is a valid 163 register name. */ 164 165 static int 166 register_name (expressionS *expressionP) 167 { 168 int reg_number; 169 char c, *p = input_line_pointer; 170 171 while (*p && *p != '\n' && *p != '\r' && *p != ',' && *p != ' ' && *p != ')') 172 p++; 173 174 c = *p; 175 if (c) 176 *p++ = 0; 177 178 /* Look to see if it's in the register table. */ 179 reg_number = reg_name_search (input_line_pointer); 180 if (reg_number >= 0) 181 { 182 expressionP->X_op = O_register; 183 /* Temporarily store a pointer to the string here. */ 184 expressionP->X_op_symbol = (symbolS *) input_line_pointer; 185 expressionP->X_add_number = reg_number; 186 input_line_pointer = p; 187 return 1; 188 } 189 if (c) 190 *(p - 1) = c; 191 return 0; 192 } 193 194 static int 195 check_range (unsigned long num, int bits, int flags) 196 { 197 long min, max; 198 199 /* Don't bother checking 32-bit values. */ 200 if (bits == 32) 201 { 202 if (sizeof (unsigned long) * CHAR_BIT == 32) 203 return 0; 204 205 /* We don't record signed or unsigned for 32-bit quantities. 206 Allow either. */ 207 min = -((unsigned long) 1 << (bits - 1)); 208 max = ((unsigned long) 1 << bits) - 1; 209 return (long) num < min || (long) num > max; 210 } 211 212 if (flags & OPERAND_SHIFT) 213 { 214 /* We know that all shifts are right by three bits. */ 215 num >>= 3; 216 217 if (flags & OPERAND_SIGNED) 218 { 219 unsigned long sign_bit = ((unsigned long) -1L >> 4) + 1; 220 num = (num ^ sign_bit) - sign_bit; 221 } 222 } 223 224 if (flags & OPERAND_SIGNED) 225 { 226 max = ((unsigned long) 1 << (bits - 1)) - 1; 227 min = - ((unsigned long) 1 << (bits - 1)); 228 return (long) num > max || (long) num < min; 229 } 230 else 231 { 232 max = ((unsigned long) 1 << bits) - 1; 233 return num > (unsigned long) max; 234 } 235 } 236 237 void 238 md_show_usage (FILE *stream) 239 { 240 fprintf (stream, _("\nD30V options:\n\ 241 -O Make adjacent short instructions parallel if possible.\n\ 242 -n Warn about all NOPs inserted by the assembler.\n\ 243 -N Warn about NOPs inserted after word multiplies.\n\ 244 -c Warn about symbols whoes names match register names.\n\ 245 -C Opposite of -C. -c is the default.\n")); 246 } 247 248 int 249 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED) 250 { 251 switch (c) 252 { 253 /* Optimize. Will attempt to parallelize operations. */ 254 case 'O': 255 Optimizing = 1; 256 break; 257 258 /* Warn about all NOPS that the assembler inserts. */ 259 case 'n': 260 warn_nops = NOP_ALL; 261 break; 262 263 /* Warn about the NOPS that the assembler inserts because of the 264 multiply hazard. */ 265 case 'N': 266 warn_nops = NOP_MULTIPLY; 267 break; 268 269 case 'c': 270 warn_register_name_conflicts = 1; 271 break; 272 273 case 'C': 274 warn_register_name_conflicts = 0; 275 break; 276 277 default: 278 return 0; 279 } 280 return 1; 281 } 282 283 symbolS * 284 md_undefined_symbol (char *name ATTRIBUTE_UNUSED) 285 { 286 return 0; 287 } 288 289 /* Turn a string in input_line_pointer into a floating point constant 290 of type TYPE, and store the appropriate bytes in *LITP. The number 291 of LITTLENUMS emitted is stored in *SIZEP. An error message is 292 returned, or NULL on OK. */ 293 294 char * 295 md_atof (int type, char *litP, int *sizeP) 296 { 297 int prec; 298 LITTLENUM_TYPE words[4]; 299 char *t; 300 int i; 301 302 switch (type) 303 { 304 case 'f': 305 prec = 2; 306 break; 307 case 'd': 308 prec = 4; 309 break; 310 default: 311 *sizeP = 0; 312 return _("bad call to md_atof"); 313 } 314 315 t = atof_ieee (input_line_pointer, type, words); 316 if (t) 317 input_line_pointer = t; 318 319 *sizeP = prec * 2; 320 321 for (i = 0; i < prec; i++) 322 { 323 md_number_to_chars (litP, (valueT) words[i], 2); 324 litP += 2; 325 } 326 return NULL; 327 } 328 329 void 330 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, 331 asection *sec ATTRIBUTE_UNUSED, 332 fragS *fragP ATTRIBUTE_UNUSED) 333 { 334 abort (); 335 } 336 337 valueT 338 md_section_align (asection *seg, valueT addr) 339 { 340 int align = bfd_get_section_alignment (stdoutput, seg); 341 return ((addr + (1 << align) - 1) & (-1 << align)); 342 } 343 344 void 345 md_begin (void) 346 { 347 struct d30v_opcode *opcode; 348 d30v_hash = hash_new (); 349 350 /* Insert opcode names into a hash table. */ 351 for (opcode = (struct d30v_opcode *) d30v_opcode_table; opcode->name; opcode++) 352 hash_insert (d30v_hash, opcode->name, (char *) opcode); 353 354 fixups = &FixUps[0]; 355 FixUps[0].next = &FixUps[1]; 356 FixUps[1].next = &FixUps[0]; 357 358 d30v_current_align_seg = now_seg; 359 } 360 361 /* Remove the postincrement or postdecrement operator ( '+' or '-' ) 362 from an expression. */ 363 364 static int 365 postfix (char *p) 366 { 367 while (*p != '-' && *p != '+') 368 { 369 if (*p == 0 || *p == '\n' || *p == '\r' || *p == ' ' || *p == ',') 370 break; 371 p++; 372 } 373 374 if (*p == '-') 375 { 376 *p = ' '; 377 return -1; 378 } 379 380 if (*p == '+') 381 { 382 *p = ' '; 383 return 1; 384 } 385 386 return 0; 387 } 388 389 static bfd_reloc_code_real_type 390 get_reloc (struct d30v_operand *op, int rel_flag) 391 { 392 switch (op->bits) 393 { 394 case 6: 395 if (op->flags & OPERAND_SHIFT) 396 return BFD_RELOC_D30V_9_PCREL; 397 else 398 return BFD_RELOC_D30V_6; 399 break; 400 case 12: 401 if (!(op->flags & OPERAND_SHIFT)) 402 as_warn (_("unexpected 12-bit reloc type")); 403 if (rel_flag == RELOC_PCREL) 404 return BFD_RELOC_D30V_15_PCREL; 405 else 406 return BFD_RELOC_D30V_15; 407 case 18: 408 if (!(op->flags & OPERAND_SHIFT)) 409 as_warn (_("unexpected 18-bit reloc type")); 410 if (rel_flag == RELOC_PCREL) 411 return BFD_RELOC_D30V_21_PCREL; 412 else 413 return BFD_RELOC_D30V_21; 414 case 32: 415 if (rel_flag == RELOC_PCREL) 416 return BFD_RELOC_D30V_32_PCREL; 417 else 418 return BFD_RELOC_D30V_32; 419 default: 420 return 0; 421 } 422 } 423 424 /* Parse a string of operands and return an array of expressions. */ 425 426 static int 427 get_operands (expressionS exp[], int cmp_hack) 428 { 429 char *p = input_line_pointer; 430 int numops = 0; 431 int post = 0; 432 433 if (cmp_hack) 434 { 435 exp[numops].X_op = O_absent; 436 exp[numops++].X_add_number = cmp_hack - 1; 437 } 438 439 while (*p) 440 { 441 while (*p == ' ' || *p == '\t' || *p == ',') 442 p++; 443 444 if (*p == 0 || *p == '\n' || *p == '\r') 445 break; 446 447 if (*p == '@') 448 { 449 p++; 450 exp[numops].X_op = O_absent; 451 if (*p == '(') 452 { 453 p++; 454 exp[numops].X_add_number = OPERAND_ATPAR; 455 post = postfix (p); 456 } 457 else if (*p == '-') 458 { 459 p++; 460 exp[numops].X_add_number = OPERAND_ATMINUS; 461 } 462 else 463 { 464 exp[numops].X_add_number = OPERAND_ATSIGN; 465 post = postfix (p); 466 } 467 numops++; 468 continue; 469 } 470 471 if (*p == ')') 472 { 473 /* Just skip the trailing paren. */ 474 p++; 475 continue; 476 } 477 478 input_line_pointer = p; 479 480 /* Check to see if it might be a register name. */ 481 if (!register_name (&exp[numops])) 482 { 483 /* Parse as an expression. */ 484 expression (&exp[numops]); 485 } 486 487 if (exp[numops].X_op == O_illegal) 488 as_bad (_("illegal operand")); 489 else if (exp[numops].X_op == O_absent) 490 as_bad (_("missing operand")); 491 492 numops++; 493 p = input_line_pointer; 494 495 switch (post) 496 { 497 case -1: 498 /* Postdecrement mode. */ 499 exp[numops].X_op = O_absent; 500 exp[numops++].X_add_number = OPERAND_MINUS; 501 break; 502 case 1: 503 /* Postincrement mode. */ 504 exp[numops].X_op = O_absent; 505 exp[numops++].X_add_number = OPERAND_PLUS; 506 break; 507 } 508 post = 0; 509 } 510 511 exp[numops].X_op = 0; 512 513 return numops; 514 } 515 516 /* Generate the instruction. 517 It does everything but write the FM bits. */ 518 519 static long long 520 build_insn (struct d30v_insn *opcode, expressionS *opers) 521 { 522 int i, length, bits, shift, flags; 523 unsigned long number, id = 0; 524 long long insn; 525 struct d30v_opcode *op = opcode->op; 526 struct d30v_format *form = opcode->form; 527 528 insn = 529 opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18; 530 531 for (i = 0; form->operands[i]; i++) 532 { 533 flags = d30v_operand_table[form->operands[i]].flags; 534 535 /* Must be a register or number. */ 536 if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM) 537 && !(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL)) 538 continue; 539 540 bits = d30v_operand_table[form->operands[i]].bits; 541 if (flags & OPERAND_SHIFT) 542 bits += 3; 543 544 length = d30v_operand_table[form->operands[i]].length; 545 shift = 12 - d30v_operand_table[form->operands[i]].position; 546 if (opers[i].X_op != O_symbol) 547 number = opers[i].X_add_number; 548 else 549 number = 0; 550 if (flags & OPERAND_REG) 551 { 552 /* Check for mvfsys or mvtsys control registers. */ 553 if (flags & OPERAND_CONTROL && (number & 0x7f) > MAX_CONTROL_REG) 554 { 555 /* PSWL or PSWH. */ 556 id = (number & 0x7f) - MAX_CONTROL_REG; 557 number = 0; 558 } 559 else if (number & OPERAND_FLAG) 560 /* NUMBER is a flag register. */ 561 id = 3; 562 563 number &= 0x7F; 564 } 565 else if (flags & OPERAND_SPECIAL) 566 number = id; 567 568 if (opers[i].X_op != O_register && opers[i].X_op != O_constant 569 && !(flags & OPERAND_NAME)) 570 { 571 /* Now create a fixup. */ 572 if (fixups->fc >= MAX_INSN_FIXUPS) 573 as_fatal (_("too many fixups")); 574 575 fixups->fix[fixups->fc].reloc = 576 get_reloc ((struct d30v_operand *) &d30v_operand_table[form->operands[i]], op->reloc_flag); 577 fixups->fix[fixups->fc].size = 4; 578 fixups->fix[fixups->fc].exp = opers[i]; 579 fixups->fix[fixups->fc].operand = form->operands[i]; 580 if (fixups->fix[fixups->fc].reloc == BFD_RELOC_D30V_9_PCREL) 581 fixups->fix[fixups->fc].pcrel = RELOC_PCREL; 582 else 583 fixups->fix[fixups->fc].pcrel = op->reloc_flag; 584 (fixups->fc)++; 585 } 586 587 /* Truncate to the proper number of bits. */ 588 if ((opers[i].X_op == O_constant) && check_range (number, bits, flags)) 589 as_bad (_("operand out of range: %ld"), number); 590 if (bits < 31) 591 number &= 0x7FFFFFFF >> (31 - bits); 592 if (flags & OPERAND_SHIFT) 593 number >>= 3; 594 if (bits == 32) 595 { 596 /* It's a LONG instruction. */ 597 insn |= ((number & 0xffffffff) >> 26); /* Top 6 bits. */ 598 insn <<= 32; /* Shift the first word over. */ 599 insn |= ((number & 0x03FC0000) << 2); /* Next 8 bits. */ 600 insn |= number & 0x0003FFFF; /* Bottom 18 bits. */ 601 } 602 else 603 insn |= number << shift; 604 } 605 606 return insn; 607 } 608 609 static void 610 d30v_number_to_chars (char *buf, /* Return 'nbytes' of chars here. */ 611 long long value, /* The value of the bits. */ 612 int n) /* Number of bytes in the output. */ 613 { 614 while (n--) 615 { 616 buf[n] = value & 0xff; 617 value >>= 8; 618 } 619 } 620 621 /* Write out a long form instruction. */ 622 623 static void 624 write_long (struct d30v_insn *opcode ATTRIBUTE_UNUSED, 625 long long insn, 626 Fixups *fx) 627 { 628 int i, where; 629 char *f = frag_more (8); 630 631 insn |= FM11; 632 d30v_number_to_chars (f, insn, 8); 633 634 for (i = 0; i < fx->fc; i++) 635 { 636 if (fx->fix[i].reloc) 637 { 638 where = f - frag_now->fr_literal; 639 fix_new_exp (frag_now, where, fx->fix[i].size, &(fx->fix[i].exp), 640 fx->fix[i].pcrel, fx->fix[i].reloc); 641 } 642 } 643 644 fx->fc = 0; 645 } 646 647 /* Write out a short form instruction by itself. */ 648 649 static void 650 write_1_short (struct d30v_insn *opcode, 651 long long insn, 652 Fixups *fx, 653 int use_sequential) 654 { 655 char *f = frag_more (8); 656 int i, where; 657 658 if (warn_nops == NOP_ALL) 659 as_warn (_("%s NOP inserted"), use_sequential ? 660 _("sequential") : _("parallel")); 661 662 /* The other container needs to be NOP. */ 663 if (use_sequential) 664 { 665 /* Use a sequential NOP rather than a parallel one, 666 as the current instruction is a FLAG_MUL32 type one 667 and the next instruction is a load. */ 668 669 /* According to 4.3.1: for FM=01, sub-instructions performed 670 only by IU cannot be encoded in L-container. */ 671 if (opcode->op->unit == IU) 672 /* Right then left. */ 673 insn |= FM10 | NOP_LEFT; 674 else 675 /* Left then right. */ 676 insn = FM01 | (insn << 32) | NOP_RIGHT; 677 } 678 else 679 { 680 /* According to 4.3.1: for FM=00, sub-instructions performed 681 only by IU cannot be encoded in L-container. */ 682 if (opcode->op->unit == IU) 683 /* Right container. */ 684 insn |= FM00 | NOP_LEFT; 685 else 686 /* Left container. */ 687 insn = FM00 | (insn << 32) | NOP_RIGHT; 688 } 689 690 d30v_number_to_chars (f, insn, 8); 691 692 for (i = 0; i < fx->fc; i++) 693 { 694 if (fx->fix[i].reloc) 695 { 696 where = f - frag_now->fr_literal; 697 fix_new_exp (frag_now, 698 where, 699 fx->fix[i].size, 700 &(fx->fix[i].exp), 701 fx->fix[i].pcrel, 702 fx->fix[i].reloc); 703 } 704 } 705 706 fx->fc = 0; 707 } 708 709 /* Check 2 instructions and determine if they can be safely 710 executed in parallel. Return 1 if they can be. */ 711 712 static int 713 parallel_ok (struct d30v_insn *op1, 714 unsigned long insn1, 715 struct d30v_insn *op2, 716 unsigned long insn2, 717 exec_type_enum exec_type) 718 { 719 int i, j, shift, regno, bits, ecc; 720 unsigned long flags, mask, flags_set1, flags_set2, flags_used1, flags_used2; 721 unsigned long ins, mod_reg[2][3], used_reg[2][3], flag_reg[2]; 722 struct d30v_format *f; 723 struct d30v_opcode *op; 724 725 /* Section 4.3: Both instructions must not be IU or MU only. */ 726 if ((op1->op->unit == IU && op2->op->unit == IU) 727 || (op1->op->unit == MU && op2->op->unit == MU)) 728 return 0; 729 730 /* First instruction must not be a jump to safely optimize, unless this 731 is an explicit parallel operation. */ 732 if (exec_type != EXEC_PARALLEL 733 && (op1->op->flags_used & (FLAG_JMP | FLAG_JSR))) 734 return 0; 735 736 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively, 737 then it is safe to allow the two to be done as parallel ops, since only 738 one will ever be executed at a time. */ 739 if ((op1->ecc == ECC_TX && op2->ecc == ECC_FX) 740 || (op1->ecc == ECC_FX && op2->ecc == ECC_TX) 741 || (op1->ecc == ECC_XT && op2->ecc == ECC_XF) 742 || (op1->ecc == ECC_XF && op2->ecc == ECC_XT)) 743 return 1; 744 745 /* [0] r0-r31 746 [1] r32-r63 747 [2] a0, a1, flag registers. */ 748 for (j = 0; j < 2; j++) 749 { 750 if (j == 0) 751 { 752 f = op1->form; 753 op = op1->op; 754 ecc = op1->ecc; 755 ins = insn1; 756 } 757 else 758 { 759 f = op2->form; 760 op = op2->op; 761 ecc = op2->ecc; 762 ins = insn2; 763 } 764 765 flag_reg[j] = 0; 766 mod_reg[j][0] = mod_reg[j][1] = 0; 767 used_reg[j][0] = used_reg[j][1] = 0; 768 769 if (flag_explicitly_parallel) 770 { 771 /* For human specified parallel instructions we have been asked 772 to ignore the possibility that both instructions could modify 773 bits in the PSW, so we initialise the mod & used arrays to 0. 774 We have been asked, however, to refuse to allow parallel 775 instructions which explicitly set the same flag register, 776 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test 777 for the use of a flag register and set a bit in the mod or used 778 array appropriately. */ 779 mod_reg[j][2] = 0; 780 used_reg[j][2] = 0; 781 } 782 else 783 { 784 mod_reg[j][2] = (op->flags_set & FLAG_ALL); 785 used_reg[j][2] = (op->flags_used & FLAG_ALL); 786 } 787 788 /* BSR/JSR always sets R62. */ 789 if (op->flags_used & FLAG_JSR) 790 mod_reg[j][1] = (1L << (62 - 32)); 791 792 /* Conditional execution affects the flags_used. */ 793 switch (ecc) 794 { 795 case ECC_TX: 796 case ECC_FX: 797 used_reg[j][2] |= flag_reg[j] = FLAG_0; 798 break; 799 800 case ECC_XT: 801 case ECC_XF: 802 used_reg[j][2] |= flag_reg[j] = FLAG_1; 803 break; 804 805 case ECC_TT: 806 case ECC_TF: 807 used_reg[j][2] |= flag_reg[j] = (FLAG_0 | FLAG_1); 808 break; 809 } 810 811 for (i = 0; f->operands[i]; i++) 812 { 813 flags = d30v_operand_table[f->operands[i]].flags; 814 shift = 12 - d30v_operand_table[f->operands[i]].position; 815 bits = d30v_operand_table[f->operands[i]].bits; 816 if (bits == 32) 817 mask = 0xffffffff; 818 else 819 mask = 0x7FFFFFFF >> (31 - bits); 820 821 if ((flags & OPERAND_PLUS) || (flags & OPERAND_MINUS)) 822 { 823 /* This is a post-increment or post-decrement. 824 The previous register needs to be marked as modified. */ 825 shift = 12 - d30v_operand_table[f->operands[i - 1]].position; 826 regno = (ins >> shift) & 0x3f; 827 if (regno >= 32) 828 mod_reg[j][1] |= 1L << (regno - 32); 829 else 830 mod_reg[j][0] |= 1L << regno; 831 } 832 else if (flags & OPERAND_REG) 833 { 834 regno = (ins >> shift) & mask; 835 /* The memory write functions don't have a destination 836 register. */ 837 if ((flags & OPERAND_DEST) && !(op->flags_set & FLAG_MEM)) 838 { 839 /* MODIFIED registers and flags. */ 840 if (flags & OPERAND_ACC) 841 { 842 if (regno == 0) 843 mod_reg[j][2] |= FLAG_A0; 844 else if (regno == 1) 845 mod_reg[j][2] |= FLAG_A1; 846 else 847 abort (); 848 } 849 else if (flags & OPERAND_FLAG) 850 mod_reg[j][2] |= 1L << regno; 851 else if (!(flags & OPERAND_CONTROL)) 852 { 853 int r, z; 854 855 /* Need to check if there are two destination 856 registers, for example ld2w. */ 857 if (flags & OPERAND_2REG) 858 z = 1; 859 else 860 z = 0; 861 862 for (r = regno; r <= regno + z; r++) 863 { 864 if (r >= 32) 865 mod_reg[j][1] |= 1L << (r - 32); 866 else 867 mod_reg[j][0] |= 1L << r; 868 } 869 } 870 } 871 else 872 { 873 /* USED, but not modified registers and flags. */ 874 if (flags & OPERAND_ACC) 875 { 876 if (regno == 0) 877 used_reg[j][2] |= FLAG_A0; 878 else if (regno == 1) 879 used_reg[j][2] |= FLAG_A1; 880 else 881 abort (); 882 } 883 else if (flags & OPERAND_FLAG) 884 used_reg[j][2] |= 1L << regno; 885 else if (!(flags & OPERAND_CONTROL)) 886 { 887 int r, z; 888 889 /* Need to check if there are two source 890 registers, for example st2w. */ 891 if (flags & OPERAND_2REG) 892 z = 1; 893 else 894 z = 0; 895 896 for (r = regno; r <= regno + z; r++) 897 { 898 if (r >= 32) 899 used_reg[j][1] |= 1L << (r - 32); 900 else 901 used_reg[j][0] |= 1L << r; 902 } 903 } 904 } 905 } 906 } 907 } 908 909 flags_set1 = op1->op->flags_set; 910 flags_set2 = op2->op->flags_set; 911 flags_used1 = op1->op->flags_used; 912 flags_used2 = op2->op->flags_used; 913 914 /* Check for illegal combinations with ADDppp/SUBppp. */ 915 if (((flags_set1 & FLAG_NOT_WITH_ADDSUBppp) != 0 916 && (flags_used2 & FLAG_ADDSUBppp) != 0) 917 || ((flags_set2 & FLAG_NOT_WITH_ADDSUBppp) != 0 918 && (flags_used1 & FLAG_ADDSUBppp) != 0)) 919 return 0; 920 921 /* Load instruction combined with half-word multiply is illegal. */ 922 if (((flags_used1 & FLAG_MEM) != 0 && (flags_used2 & FLAG_MUL16)) 923 || ((flags_used2 & FLAG_MEM) != 0 && (flags_used1 & FLAG_MUL16))) 924 return 0; 925 926 /* Specifically allow add || add by removing carry, overflow bits dependency. 927 This is safe, even if an addc follows since the IU takes the argument in 928 the right container, and it writes its results last. 929 However, don't paralellize add followed by addc or sub followed by 930 subb. */ 931 if (mod_reg[0][2] == FLAG_CVVA && mod_reg[1][2] == FLAG_CVVA 932 && (used_reg[0][2] & ~flag_reg[0]) == 0 933 && (used_reg[1][2] & ~flag_reg[1]) == 0 934 && op1->op->unit == EITHER && op2->op->unit == EITHER) 935 { 936 mod_reg[0][2] = mod_reg[1][2] = 0; 937 } 938 939 for (j = 0; j < 3; j++) 940 { 941 /* If the second instruction depends on the first, we obviously 942 cannot parallelize. Note, the mod flag implies use, so 943 check that as well. */ 944 /* If flag_explicitly_parallel is set, then the case of the 945 second instruction using a register the first instruction 946 modifies is assumed to be okay; we trust the human. We 947 don't trust the human if both instructions modify the same 948 register but we do trust the human if they modify the same 949 flags. */ 950 /* We have now been requested not to trust the human if the 951 instructions modify the same flag registers either. */ 952 if (flag_explicitly_parallel) 953 { 954 if ((mod_reg[0][j] & mod_reg[1][j]) != 0) 955 return 0; 956 } 957 else 958 if ((mod_reg[0][j] & (mod_reg[1][j] | used_reg[1][j])) != 0) 959 return 0; 960 } 961 962 return 1; 963 } 964 965 /* Write out a short form instruction if possible. 966 Return number of instructions not written out. */ 967 968 static int 969 write_2_short (struct d30v_insn *opcode1, 970 long long insn1, 971 struct d30v_insn *opcode2, 972 long long insn2, 973 exec_type_enum exec_type, 974 Fixups *fx) 975 { 976 long long insn = NOP2; 977 char *f; 978 int i, j, where; 979 980 if (exec_type == EXEC_SEQ 981 && (opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR)) 982 && ((opcode1->op->flags_used & FLAG_DELAY) == 0) 983 && ((opcode1->ecc == ECC_AL) || ! Optimizing)) 984 { 985 /* Unconditional, non-delayed branches kill instructions in 986 the right bin. Conditional branches don't always but if 987 we are not optimizing, then we have been asked to produce 988 an error about such constructs. For the purposes of this 989 test, subroutine calls are considered to be branches. */ 990 write_1_short (opcode1, insn1, fx->next, FALSE); 991 return 1; 992 } 993 994 /* Note: we do not have to worry about subroutine calls occurring 995 in the right hand container. The return address is always 996 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */ 997 switch (exec_type) 998 { 999 case EXEC_UNKNOWN: /* Order not specified. */ 1000 if (Optimizing 1001 && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type) 1002 && ! ( (opcode1->op->unit == EITHER_BUT_PREFER_MU 1003 || opcode1->op->unit == MU) 1004 && 1005 ( opcode2->op->unit == EITHER_BUT_PREFER_MU 1006 || opcode2->op->unit == MU))) 1007 { 1008 /* Parallel. */ 1009 exec_type = EXEC_PARALLEL; 1010 1011 if (opcode1->op->unit == IU 1012 || opcode2->op->unit == MU 1013 || opcode2->op->unit == EITHER_BUT_PREFER_MU) 1014 insn = FM00 | (insn2 << 32) | insn1; 1015 else 1016 { 1017 insn = FM00 | (insn1 << 32) | insn2; 1018 fx = fx->next; 1019 } 1020 } 1021 else if ((opcode1->op->flags_used & (FLAG_JMP | FLAG_JSR) 1022 && ((opcode1->op->flags_used & FLAG_DELAY) == 0)) 1023 || opcode1->op->flags_used & FLAG_RP) 1024 { 1025 /* We must emit (non-delayed) branch type instructions 1026 on their own with nothing in the right container. */ 1027 /* We must treat repeat instructions likewise, since the 1028 following instruction has to be separate from the repeat 1029 in order to be repeated. */ 1030 write_1_short (opcode1, insn1, fx->next, FALSE); 1031 return 1; 1032 } 1033 else if (prev_left_kills_right_p) 1034 { 1035 /* The left instruction kils the right slot, so we 1036 must leave it empty. */ 1037 write_1_short (opcode1, insn1, fx->next, FALSE); 1038 return 1; 1039 } 1040 else if (opcode1->op->unit == IU) 1041 { 1042 if (opcode2->op->unit == EITHER_BUT_PREFER_MU) 1043 { 1044 /* Case 103810 is a request from Mitsubishi that opcodes 1045 with EITHER_BUT_PREFER_MU should not be executed in 1046 reverse sequential order. */ 1047 write_1_short (opcode1, insn1, fx->next, FALSE); 1048 return 1; 1049 } 1050 1051 /* Reverse sequential. */ 1052 insn = FM10 | (insn2 << 32) | insn1; 1053 exec_type = EXEC_REVSEQ; 1054 } 1055 else 1056 { 1057 /* Sequential. */ 1058 insn = FM01 | (insn1 << 32) | insn2; 1059 fx = fx->next; 1060 exec_type = EXEC_SEQ; 1061 } 1062 break; 1063 1064 case EXEC_PARALLEL: /* Parallel. */ 1065 flag_explicitly_parallel = flag_xp_state; 1066 if (! parallel_ok (opcode1, insn1, opcode2, insn2, exec_type)) 1067 as_bad (_("Instructions may not be executed in parallel")); 1068 else if (opcode1->op->unit == IU) 1069 { 1070 if (opcode2->op->unit == IU) 1071 as_bad (_("Two IU instructions may not be executed in parallel")); 1072 as_warn (_("Swapping instruction order")); 1073 insn = FM00 | (insn2 << 32) | insn1; 1074 } 1075 else if (opcode2->op->unit == MU) 1076 { 1077 if (opcode1->op->unit == MU) 1078 as_bad (_("Two MU instructions may not be executed in parallel")); 1079 else if (opcode1->op->unit == EITHER_BUT_PREFER_MU) 1080 as_warn (_("Executing %s in IU may not work"), opcode1->op->name); 1081 as_warn (_("Swapping instruction order")); 1082 insn = FM00 | (insn2 << 32) | insn1; 1083 } 1084 else 1085 { 1086 if (opcode2->op->unit == EITHER_BUT_PREFER_MU) 1087 as_warn (_("Executing %s in IU may not work in parallel execution"), 1088 opcode2->op->name); 1089 1090 insn = FM00 | (insn1 << 32) | insn2; 1091 fx = fx->next; 1092 } 1093 flag_explicitly_parallel = 0; 1094 break; 1095 1096 case EXEC_SEQ: /* Sequential. */ 1097 if (opcode1->op->unit == IU) 1098 as_bad (_("IU instruction may not be in the left container")); 1099 if (prev_left_kills_right_p) 1100 as_bad (_("special left instruction `%s' kills instruction " 1101 "`%s' in right container"), 1102 opcode1->op->name, opcode2->op->name); 1103 insn = FM01 | (insn1 << 32) | insn2; 1104 fx = fx->next; 1105 break; 1106 1107 case EXEC_REVSEQ: /* Reverse sequential. */ 1108 if (opcode2->op->unit == MU) 1109 as_bad (_("MU instruction may not be in the right container")); 1110 if (opcode1->op->unit == EITHER_BUT_PREFER_MU) 1111 as_warn (_("Executing %s in reverse serial with %s may not work"), 1112 opcode1->op->name, opcode2->op->name); 1113 else if (opcode2->op->unit == EITHER_BUT_PREFER_MU) 1114 as_warn (_("Executing %s in IU in reverse serial may not work"), 1115 opcode2->op->name); 1116 insn = FM10 | (insn1 << 32) | insn2; 1117 fx = fx->next; 1118 break; 1119 1120 default: 1121 as_fatal (_("unknown execution type passed to write_2_short()")); 1122 } 1123 1124 f = frag_more (8); 1125 d30v_number_to_chars (f, insn, 8); 1126 1127 /* If the previous instruction was a 32-bit multiply but it is put into a 1128 parallel container, mark the current instruction as being a 32-bit 1129 multiply. */ 1130 if (prev_mul32_p && exec_type == EXEC_PARALLEL) 1131 cur_mul32_p = 1; 1132 1133 for (j = 0; j < 2; j++) 1134 { 1135 for (i = 0; i < fx->fc; i++) 1136 { 1137 if (fx->fix[i].reloc) 1138 { 1139 where = (f - frag_now->fr_literal) + 4 * j; 1140 1141 fix_new_exp (frag_now, 1142 where, 1143 fx->fix[i].size, 1144 &(fx->fix[i].exp), 1145 fx->fix[i].pcrel, 1146 fx->fix[i].reloc); 1147 } 1148 } 1149 1150 fx->fc = 0; 1151 fx = fx->next; 1152 } 1153 1154 return 0; 1155 } 1156 1157 /* Get a pointer to an entry in the format table. 1158 It must look at all formats for an opcode and use the operands 1159 to choose the correct one. Return NULL on error. */ 1160 1161 static struct d30v_format * 1162 find_format (struct d30v_opcode *opcode, 1163 expressionS myops[], 1164 int fsize, 1165 int cmp_hack) 1166 { 1167 int numops, match, index, i = 0, j, k; 1168 struct d30v_format *fm; 1169 1170 if (opcode == NULL) 1171 return NULL; 1172 1173 /* Get all the operands and save them as expressions. */ 1174 numops = get_operands (myops, cmp_hack); 1175 1176 while ((index = opcode->format[i++]) != 0) 1177 { 1178 if (fsize == FORCE_SHORT && index >= LONG) 1179 continue; 1180 1181 if (fsize == FORCE_LONG && index < LONG) 1182 continue; 1183 1184 fm = (struct d30v_format *) &d30v_format_table[index]; 1185 k = index; 1186 while (fm->form == index) 1187 { 1188 match = 1; 1189 /* Now check the operands for compatibility. */ 1190 for (j = 0; match && fm->operands[j]; j++) 1191 { 1192 int flags = d30v_operand_table[fm->operands[j]].flags; 1193 int bits = d30v_operand_table[fm->operands[j]].bits; 1194 int X_op = myops[j].X_op; 1195 int num = myops[j].X_add_number; 1196 1197 if (flags & OPERAND_SPECIAL) 1198 break; 1199 else if (X_op == O_illegal) 1200 match = 0; 1201 else if (flags & OPERAND_REG) 1202 { 1203 if (X_op != O_register 1204 || ((flags & OPERAND_ACC) && !(num & OPERAND_ACC)) 1205 || (!(flags & OPERAND_ACC) && (num & OPERAND_ACC)) 1206 || ((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG)) 1207 || (!(flags & (OPERAND_FLAG | OPERAND_CONTROL)) && (num & OPERAND_FLAG)) 1208 || ((flags & OPERAND_CONTROL) 1209 && !(num & (OPERAND_CONTROL | OPERAND_FLAG)))) 1210 match = 0; 1211 } 1212 else if (((flags & OPERAND_MINUS) 1213 && (X_op != O_absent || num != OPERAND_MINUS)) 1214 || ((flags & OPERAND_PLUS) 1215 && (X_op != O_absent || num != OPERAND_PLUS)) 1216 || ((flags & OPERAND_ATMINUS) 1217 && (X_op != O_absent || num != OPERAND_ATMINUS)) 1218 || ((flags & OPERAND_ATPAR) 1219 && (X_op != O_absent || num != OPERAND_ATPAR)) 1220 || ((flags & OPERAND_ATSIGN) 1221 && (X_op != O_absent || num != OPERAND_ATSIGN))) 1222 match = 0; 1223 else if (flags & OPERAND_NUM) 1224 { 1225 /* A number can be a constant or symbol expression. */ 1226 1227 /* If we have found a register name, but that name 1228 also matches a symbol, then re-parse the name as 1229 an expression. */ 1230 if (X_op == O_register 1231 && symbol_find ((char *) myops[j].X_op_symbol)) 1232 { 1233 input_line_pointer = (char *) myops[j].X_op_symbol; 1234 expression (&myops[j]); 1235 } 1236 1237 /* Turn an expression into a symbol for later resolution. */ 1238 if (X_op != O_absent && X_op != O_constant 1239 && X_op != O_symbol && X_op != O_register 1240 && X_op != O_big) 1241 { 1242 symbolS *sym = make_expr_symbol (&myops[j]); 1243 myops[j].X_op = X_op = O_symbol; 1244 myops[j].X_add_symbol = sym; 1245 myops[j].X_add_number = num = 0; 1246 } 1247 1248 if (fm->form >= LONG) 1249 { 1250 /* If we're testing for a LONG format, either fits. */ 1251 if (X_op != O_constant && X_op != O_symbol) 1252 match = 0; 1253 } 1254 else if (fm->form < LONG 1255 && ((fsize == FORCE_SHORT && X_op == O_symbol) 1256 || (fm->form == SHORT_D2 && j == 0))) 1257 match = 1; 1258 1259 /* This is the tricky part. Will the constant or symbol 1260 fit into the space in the current format? */ 1261 else if (X_op == O_constant) 1262 { 1263 if (check_range (num, bits, flags)) 1264 match = 0; 1265 } 1266 else if (X_op == O_symbol 1267 && S_IS_DEFINED (myops[j].X_add_symbol) 1268 && S_GET_SEGMENT (myops[j].X_add_symbol) == now_seg 1269 && opcode->reloc_flag == RELOC_PCREL) 1270 { 1271 /* If the symbol is defined, see if the value will fit 1272 into the form we're considering. */ 1273 fragS *f; 1274 long value; 1275 1276 /* Calculate the current address by running through the 1277 previous frags and adding our current offset. */ 1278 value = 0; 1279 for (f = frchain_now->frch_root; f; f = f->fr_next) 1280 value += f->fr_fix + f->fr_offset; 1281 value = (S_GET_VALUE (myops[j].X_add_symbol) - value 1282 - (obstack_next_free (&frchain_now->frch_obstack) 1283 - frag_now->fr_literal)); 1284 if (check_range (value, bits, flags)) 1285 match = 0; 1286 } 1287 else 1288 match = 0; 1289 } 1290 } 1291 /* We're only done if the operands matched so far AND there 1292 are no more to check. */ 1293 if (match && myops[j].X_op == 0) 1294 { 1295 /* Final check - issue a warning if an odd numbered register 1296 is used as the first register in an instruction that reads 1297 or writes 2 registers. */ 1298 1299 for (j = 0; fm->operands[j]; j++) 1300 if (myops[j].X_op == O_register 1301 && (myops[j].X_add_number & 1) 1302 && (d30v_operand_table[fm->operands[j]].flags & OPERAND_2REG)) 1303 as_warn (_("Odd numbered register used as target of multi-register instruction")); 1304 1305 return fm; 1306 } 1307 fm = (struct d30v_format *) &d30v_format_table[++k]; 1308 } 1309 } 1310 return NULL; 1311 } 1312 1313 /* Assemble a single instruction and return an opcode. 1314 Return -1 (an invalid opcode) on error. */ 1315 1316 #define NAME_BUF_LEN 20 1317 1318 static long long 1319 do_assemble (char *str, 1320 struct d30v_insn *opcode, 1321 int shortp, 1322 int is_parallel) 1323 { 1324 char *op_start; 1325 char *save; 1326 char *op_end; 1327 char name[NAME_BUF_LEN]; 1328 int cmp_hack; 1329 int nlen = 0; 1330 int fsize = (shortp ? FORCE_SHORT : 0); 1331 expressionS myops[6]; 1332 long long insn; 1333 1334 /* Drop leading whitespace. */ 1335 while (*str == ' ') 1336 str++; 1337 1338 /* Find the opcode end. */ 1339 for (op_start = op_end = str; 1340 *op_end 1341 && nlen < (NAME_BUF_LEN - 1) 1342 && *op_end != '/' 1343 && !is_end_of_line[(unsigned char) *op_end] && *op_end != ' '; 1344 op_end++) 1345 { 1346 name[nlen] = TOLOWER (op_start[nlen]); 1347 nlen++; 1348 } 1349 1350 if (nlen == 0) 1351 return -1; 1352 1353 name[nlen] = 0; 1354 1355 /* If there is an execution condition code, handle it. */ 1356 if (*op_end == '/') 1357 { 1358 int i = 0; 1359 while ((i < ECC_MAX) && strncasecmp (d30v_ecc_names[i], op_end + 1, 2)) 1360 i++; 1361 1362 if (i == ECC_MAX) 1363 { 1364 char tmp[4]; 1365 strncpy (tmp, op_end + 1, 2); 1366 tmp[2] = 0; 1367 as_bad (_("unknown condition code: %s"), tmp); 1368 return -1; 1369 } 1370 opcode->ecc = i; 1371 op_end += 3; 1372 } 1373 else 1374 opcode->ecc = ECC_AL; 1375 1376 /* CMP and CMPU change their name based on condition codes. */ 1377 if (!strncmp (name, "cmp", 3)) 1378 { 1379 int p, i; 1380 char **str = (char **) d30v_cc_names; 1381 if (name[3] == 'u') 1382 p = 4; 1383 else 1384 p = 3; 1385 1386 for (i = 1; *str && strncmp (*str, &name[p], 2); i++, str++) 1387 ; 1388 1389 /* cmpu only supports some condition codes. */ 1390 if (p == 4) 1391 { 1392 if (i < 3 || i > 6) 1393 { 1394 name[p + 2] = 0; 1395 as_bad (_("cmpu doesn't support condition code %s"), &name[p]); 1396 } 1397 } 1398 1399 if (!*str) 1400 { 1401 name[p + 2] = 0; 1402 as_bad (_("unknown condition code: %s"), &name[p]); 1403 } 1404 1405 cmp_hack = i; 1406 name[p] = 0; 1407 } 1408 else 1409 cmp_hack = 0; 1410 1411 /* Need to look for .s or .l. */ 1412 if (name[nlen - 2] == '.') 1413 { 1414 switch (name[nlen - 1]) 1415 { 1416 case 's': 1417 fsize = FORCE_SHORT; 1418 break; 1419 case 'l': 1420 fsize = FORCE_LONG; 1421 break; 1422 } 1423 name[nlen - 2] = 0; 1424 } 1425 1426 /* Find the first opcode with the proper name. */ 1427 opcode->op = (struct d30v_opcode *) hash_find (d30v_hash, name); 1428 if (opcode->op == NULL) 1429 { 1430 as_bad (_("unknown opcode: %s"), name); 1431 return -1; 1432 } 1433 1434 save = input_line_pointer; 1435 input_line_pointer = op_end; 1436 while (!(opcode->form = find_format (opcode->op, myops, fsize, cmp_hack))) 1437 { 1438 opcode->op++; 1439 if (opcode->op->name == NULL || strcmp (opcode->op->name, name)) 1440 { 1441 as_bad (_("operands for opcode `%s' do not match any valid format"), 1442 name); 1443 return -1; 1444 } 1445 } 1446 input_line_pointer = save; 1447 1448 insn = build_insn (opcode, myops); 1449 1450 /* Propagate multiply status. */ 1451 if (insn != -1) 1452 { 1453 if (is_parallel && prev_mul32_p) 1454 cur_mul32_p = 1; 1455 else 1456 { 1457 prev_mul32_p = cur_mul32_p; 1458 cur_mul32_p = (opcode->op->flags_used & FLAG_MUL32) != 0; 1459 } 1460 } 1461 1462 /* Propagate left_kills_right status. */ 1463 if (insn != -1) 1464 { 1465 prev_left_kills_right_p = cur_left_kills_right_p; 1466 1467 if (opcode->op->flags_set & FLAG_LKR) 1468 { 1469 cur_left_kills_right_p = 1; 1470 1471 if (strcmp (opcode->op->name, "mvtsys") == 0) 1472 { 1473 /* Left kills right for only mvtsys only for 1474 PSW/PSWH/PSWL/flags target. */ 1475 if ((myops[0].X_op == O_register) && 1476 ((myops[0].X_add_number == OPERAND_CONTROL) || /* psw */ 1477 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+2) || /* pswh */ 1478 (myops[0].X_add_number == OPERAND_CONTROL+MAX_CONTROL_REG+1) || /* pswl */ 1479 (myops[0].X_add_number == OPERAND_FLAG+0) || /* f0 */ 1480 (myops[0].X_add_number == OPERAND_FLAG+1) || /* f1 */ 1481 (myops[0].X_add_number == OPERAND_FLAG+2) || /* f2 */ 1482 (myops[0].X_add_number == OPERAND_FLAG+3) || /* f3 */ 1483 (myops[0].X_add_number == OPERAND_FLAG+4) || /* f4 */ 1484 (myops[0].X_add_number == OPERAND_FLAG+5) || /* f5 */ 1485 (myops[0].X_add_number == OPERAND_FLAG+6) || /* f6 */ 1486 (myops[0].X_add_number == OPERAND_FLAG+7))) /* f7 */ 1487 { 1488 cur_left_kills_right_p = 1; 1489 } 1490 else 1491 { 1492 /* Other mvtsys target registers don't kill right 1493 instruction. */ 1494 cur_left_kills_right_p = 0; 1495 } 1496 } /* mvtsys */ 1497 } 1498 else 1499 cur_left_kills_right_p = 0; 1500 } 1501 1502 return insn; 1503 } 1504 1505 /* Called internally to handle all alignment needs. This takes care 1506 of eliding calls to frag_align if'n the cached current alignment 1507 says we've already got it, as well as taking care of the auto-aligning 1508 labels wrt code. */ 1509 1510 static void 1511 d30v_align (int n, char *pfill, symbolS *label) 1512 { 1513 /* The front end is prone to changing segments out from under us 1514 temporarily when -g is in effect. */ 1515 int switched_seg_p = (d30v_current_align_seg != now_seg); 1516 1517 /* Do not assume that if 'd30v_current_align >= n' and 1518 '! switched_seg_p' that it is safe to avoid performing 1519 this alignment request. The alignment of the current frag 1520 can be changed under our feet, for example by a .ascii 1521 directive in the source code. cf testsuite/gas/d30v/reloc.s */ 1522 d30v_cleanup (FALSE); 1523 1524 if (pfill == NULL) 1525 { 1526 if (n > 2 1527 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) 1528 { 1529 static char const nop[4] = { 0x00, 0xf0, 0x00, 0x00 }; 1530 1531 /* First, make sure we're on a four-byte boundary, in case 1532 someone has been putting .byte values the text section. */ 1533 if (d30v_current_align < 2 || switched_seg_p) 1534 frag_align (2, 0, 0); 1535 frag_align_pattern (n, nop, sizeof nop, 0); 1536 } 1537 else 1538 frag_align (n, 0, 0); 1539 } 1540 else 1541 frag_align (n, *pfill, 0); 1542 1543 if (!switched_seg_p) 1544 d30v_current_align = n; 1545 1546 if (label != NULL) 1547 { 1548 symbolS *sym; 1549 int label_seen = FALSE; 1550 struct frag *old_frag; 1551 valueT old_value; 1552 valueT new_value; 1553 1554 assert (S_GET_SEGMENT (label) == now_seg); 1555 1556 old_frag = symbol_get_frag (label); 1557 old_value = S_GET_VALUE (label); 1558 new_value = (valueT) frag_now_fix (); 1559 1560 /* It is possible to have more than one label at a particular 1561 address, especially if debugging is enabled, so we must 1562 take care to adjust all the labels at this address in this 1563 fragment. To save time we search from the end of the symbol 1564 list, backwards, since the symbols we are interested in are 1565 almost certainly the ones that were most recently added. 1566 Also to save time we stop searching once we have seen at least 1567 one matching label, and we encounter a label that is no longer 1568 in the target fragment. Note, this search is guaranteed to 1569 find at least one match when sym == label, so no special case 1570 code is necessary. */ 1571 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym)) 1572 { 1573 if (symbol_get_frag (sym) == old_frag 1574 && S_GET_VALUE (sym) == old_value) 1575 { 1576 label_seen = TRUE; 1577 symbol_set_frag (sym, frag_now); 1578 S_SET_VALUE (sym, new_value); 1579 } 1580 else if (label_seen && symbol_get_frag (sym) != old_frag) 1581 break; 1582 } 1583 } 1584 1585 record_alignment (now_seg, n); 1586 } 1587 1588 /* This is the main entry point for the machine-dependent assembler. 1589 STR points to a machine-dependent instruction. This function is 1590 supposed to emit the frags/bytes it assembles to. For the D30V, it 1591 mostly handles the special VLIW parsing and packing and leaves the 1592 difficult stuff to do_assemble (). */ 1593 1594 static long long prev_insn = -1; 1595 static struct d30v_insn prev_opcode; 1596 static subsegT prev_subseg; 1597 static segT prev_seg = 0; 1598 1599 void 1600 md_assemble (char *str) 1601 { 1602 struct d30v_insn opcode; 1603 long long insn; 1604 /* Execution type; parallel, etc. */ 1605 exec_type_enum extype = EXEC_UNKNOWN; 1606 /* Saved extype. Used for multiline instructions. */ 1607 static exec_type_enum etype = EXEC_UNKNOWN; 1608 char *str2; 1609 1610 if ((prev_insn != -1) && prev_seg 1611 && ((prev_seg != now_seg) || (prev_subseg != now_subseg))) 1612 d30v_cleanup (FALSE); 1613 1614 if (d30v_current_align < 3) 1615 d30v_align (3, NULL, d30v_last_label); 1616 else if (d30v_current_align > 3) 1617 d30v_current_align = 3; 1618 d30v_last_label = NULL; 1619 1620 flag_explicitly_parallel = 0; 1621 flag_xp_state = 0; 1622 if (etype == EXEC_UNKNOWN) 1623 { 1624 /* Look for the special multiple instruction separators. */ 1625 str2 = strstr (str, "||"); 1626 if (str2) 1627 { 1628 extype = EXEC_PARALLEL; 1629 flag_xp_state = 1; 1630 } 1631 else 1632 { 1633 str2 = strstr (str, "->"); 1634 if (str2) 1635 extype = EXEC_SEQ; 1636 else 1637 { 1638 str2 = strstr (str, "<-"); 1639 if (str2) 1640 extype = EXEC_REVSEQ; 1641 } 1642 } 1643 1644 /* STR2 points to the separator, if one. */ 1645 if (str2) 1646 { 1647 *str2 = 0; 1648 1649 /* If two instructions are present and we already have one saved, 1650 then first write it out. */ 1651 d30v_cleanup (FALSE); 1652 1653 /* Assemble first instruction and save it. */ 1654 prev_insn = do_assemble (str, &prev_opcode, 1, 0); 1655 if (prev_insn == -1) 1656 as_bad (_("Cannot assemble instruction")); 1657 if (prev_opcode.form != NULL && prev_opcode.form->form >= LONG) 1658 as_bad (_("First opcode is long. Unable to mix instructions as specified.")); 1659 fixups = fixups->next; 1660 str = str2 + 2; 1661 prev_seg = now_seg; 1662 prev_subseg = now_subseg; 1663 } 1664 } 1665 1666 insn = do_assemble (str, &opcode, 1667 (extype != EXEC_UNKNOWN || etype != EXEC_UNKNOWN), 1668 extype == EXEC_PARALLEL); 1669 if (insn == -1) 1670 { 1671 if (extype != EXEC_UNKNOWN) 1672 etype = extype; 1673 as_bad (_("Cannot assemble instruction")); 1674 return; 1675 } 1676 1677 if (etype != EXEC_UNKNOWN) 1678 { 1679 extype = etype; 1680 etype = EXEC_UNKNOWN; 1681 } 1682 1683 /* Word multiply instructions must not be followed by either a load or a 1684 16-bit multiply instruction in the next cycle. */ 1685 if ( (extype != EXEC_REVSEQ) 1686 && prev_mul32_p 1687 && (opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16))) 1688 { 1689 /* However, load and multiply should able to be combined in a parallel 1690 operation, so check for that first. */ 1691 if (prev_insn != -1 1692 && (opcode.op->flags_used & FLAG_MEM) 1693 && opcode.form->form < LONG 1694 && (extype == EXEC_PARALLEL || (Optimizing && extype == EXEC_UNKNOWN)) 1695 && parallel_ok (&prev_opcode, (long) prev_insn, 1696 &opcode, (long) insn, extype) 1697 && write_2_short (&prev_opcode, (long) prev_insn, 1698 &opcode, (long) insn, extype, fixups) == 0) 1699 { 1700 /* No instructions saved. */ 1701 prev_insn = -1; 1702 return; 1703 } 1704 else 1705 { 1706 /* Can't parallelize, flush previous instruction and emit a 1707 word of NOPS, unless the previous instruction is a NOP, 1708 in which case just flush it, as this will generate a word 1709 of NOPs for us. */ 1710 1711 if (prev_insn != -1 && (strcmp (prev_opcode.op->name, "nop") == 0)) 1712 d30v_cleanup (FALSE); 1713 else 1714 { 1715 char *f; 1716 1717 if (prev_insn != -1) 1718 d30v_cleanup (TRUE); 1719 else 1720 { 1721 f = frag_more (8); 1722 d30v_number_to_chars (f, NOP2, 8); 1723 1724 if (warn_nops == NOP_ALL || warn_nops == NOP_MULTIPLY) 1725 { 1726 if (opcode.op->flags_used & FLAG_MEM) 1727 as_warn (_("word of NOPs added between word multiply and load")); 1728 else 1729 as_warn (_("word of NOPs added between word multiply and 16-bit multiply")); 1730 } 1731 } 1732 } 1733 1734 extype = EXEC_UNKNOWN; 1735 } 1736 } 1737 else if ( (extype == EXEC_REVSEQ) 1738 && cur_mul32_p 1739 && (prev_opcode.op->flags_used & (FLAG_MEM | FLAG_MUL16))) 1740 { 1741 /* Can't parallelize, flush current instruction and add a 1742 sequential NOP. */ 1743 write_1_short (&opcode, (long) insn, fixups->next->next, TRUE); 1744 1745 /* Make the previous instruction the current one. */ 1746 extype = EXEC_UNKNOWN; 1747 insn = prev_insn; 1748 now_seg = prev_seg; 1749 now_subseg = prev_subseg; 1750 prev_insn = -1; 1751 cur_mul32_p = prev_mul32_p; 1752 prev_mul32_p = 0; 1753 memcpy (&opcode, &prev_opcode, sizeof (prev_opcode)); 1754 } 1755 1756 /* If this is a long instruction, write it and any previous short 1757 instruction. */ 1758 if (opcode.form->form >= LONG) 1759 { 1760 if (extype != EXEC_UNKNOWN) 1761 as_bad (_("Instruction uses long version, so it cannot be mixed as specified")); 1762 d30v_cleanup (FALSE); 1763 write_long (&opcode, insn, fixups); 1764 prev_insn = -1; 1765 } 1766 else if ((prev_insn != -1) 1767 && (write_2_short 1768 (&prev_opcode, (long) prev_insn, &opcode, 1769 (long) insn, extype, fixups) == 0)) 1770 { 1771 /* No instructions saved. */ 1772 prev_insn = -1; 1773 } 1774 else 1775 { 1776 if (extype != EXEC_UNKNOWN) 1777 as_bad (_("Unable to mix instructions as specified")); 1778 1779 /* Save off last instruction so it may be packed on next pass. */ 1780 memcpy (&prev_opcode, &opcode, sizeof (prev_opcode)); 1781 prev_insn = insn; 1782 prev_seg = now_seg; 1783 prev_subseg = now_subseg; 1784 fixups = fixups->next; 1785 prev_mul32_p = cur_mul32_p; 1786 } 1787 } 1788 1789 /* If while processing a fixup, a reloc really needs to be created, 1790 then it is done here. */ 1791 1792 arelent * 1793 tc_gen_reloc (asection *seg ATTRIBUTE_UNUSED, fixS *fixp) 1794 { 1795 arelent *reloc; 1796 reloc = xmalloc (sizeof (arelent)); 1797 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); 1798 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); 1799 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; 1800 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); 1801 if (reloc->howto == NULL) 1802 { 1803 as_bad_where (fixp->fx_file, fixp->fx_line, 1804 _("reloc %d not supported by object file format"), 1805 (int) fixp->fx_r_type); 1806 return NULL; 1807 } 1808 1809 reloc->addend = 0; 1810 return reloc; 1811 } 1812 1813 int 1814 md_estimate_size_before_relax (fragS *fragp ATTRIBUTE_UNUSED, 1815 asection *seg ATTRIBUTE_UNUSED) 1816 { 1817 abort (); 1818 return 0; 1819 } 1820 1821 long 1822 md_pcrel_from_section (fixS *fixp, segT sec) 1823 { 1824 if (fixp->fx_addsy != (symbolS *) NULL 1825 && (!S_IS_DEFINED (fixp->fx_addsy) 1826 || (S_GET_SEGMENT (fixp->fx_addsy) != sec))) 1827 return 0; 1828 return fixp->fx_frag->fr_address + fixp->fx_where; 1829 } 1830 1831 /* Called after the assembler has finished parsing the input file or 1832 after a label is defined. Because the D30V assembler sometimes 1833 saves short instructions to see if it can package them with the 1834 next instruction, there may be a short instruction that still needs 1835 written. */ 1836 1837 int 1838 d30v_cleanup (int use_sequential) 1839 { 1840 segT seg; 1841 subsegT subseg; 1842 1843 if (prev_insn != -1) 1844 { 1845 seg = now_seg; 1846 subseg = now_subseg; 1847 subseg_set (prev_seg, prev_subseg); 1848 write_1_short (&prev_opcode, (long) prev_insn, fixups->next, 1849 use_sequential); 1850 subseg_set (seg, subseg); 1851 prev_insn = -1; 1852 if (use_sequential) 1853 prev_mul32_p = FALSE; 1854 } 1855 1856 return 1; 1857 } 1858 1859 /* This function is called at the start of every line. It checks to 1860 see if the first character is a '.', which indicates the start of a 1861 pseudo-op. If it is, then write out any unwritten instructions. */ 1862 1863 void 1864 d30v_start_line (void) 1865 { 1866 char *c = input_line_pointer; 1867 1868 while (ISSPACE (*c)) 1869 c++; 1870 1871 if (*c == '.') 1872 d30v_cleanup (FALSE); 1873 } 1874 1875 static void 1876 check_size (long value, int bits, char *file, int line) 1877 { 1878 int tmp, max; 1879 1880 if (value < 0) 1881 tmp = ~value; 1882 else 1883 tmp = value; 1884 1885 max = (1 << (bits - 1)) - 1; 1886 1887 if (tmp > max) 1888 as_bad_where (file, line, _("value too large to fit in %d bits"), bits); 1889 } 1890 1891 /* d30v_frob_label() is called when after a label is recognized. */ 1892 1893 void 1894 d30v_frob_label (symbolS *lab) 1895 { 1896 /* Emit any pending instructions. */ 1897 d30v_cleanup (FALSE); 1898 1899 /* Update the label's address with the current output pointer. */ 1900 symbol_set_frag (lab, frag_now); 1901 S_SET_VALUE (lab, (valueT) frag_now_fix ()); 1902 1903 /* Record this label for future adjustment after we find out what 1904 kind of data it references, and the required alignment therewith. */ 1905 d30v_last_label = lab; 1906 } 1907 1908 /* Hook into cons for capturing alignment changes. */ 1909 1910 void 1911 d30v_cons_align (int size) 1912 { 1913 int log_size; 1914 1915 log_size = 0; 1916 while ((size >>= 1) != 0) 1917 ++log_size; 1918 1919 if (d30v_current_align < log_size) 1920 d30v_align (log_size, (char *) NULL, NULL); 1921 else if (d30v_current_align > log_size) 1922 d30v_current_align = log_size; 1923 d30v_last_label = NULL; 1924 } 1925 1926 void 1927 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED) 1928 { 1929 char *where; 1930 unsigned long insn, insn2; 1931 long value = *valP; 1932 1933 if (fixP->fx_addsy == (symbolS *) NULL) 1934 fixP->fx_done = 1; 1935 1936 /* We don't support subtracting a symbol. */ 1937 if (fixP->fx_subsy != (symbolS *) NULL) 1938 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex")); 1939 1940 /* Fetch the instruction, insert the fully resolved operand 1941 value, and stuff the instruction back again. */ 1942 where = fixP->fx_frag->fr_literal + fixP->fx_where; 1943 insn = bfd_getb32 ((unsigned char *) where); 1944 1945 switch (fixP->fx_r_type) 1946 { 1947 case BFD_RELOC_8: /* Check for a bad .byte directive. */ 1948 if (fixP->fx_addsy != NULL) 1949 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"), 1950 fixP->fx_line, S_GET_NAME (fixP->fx_addsy)); 1951 else if (((unsigned)value) > 0xff) 1952 as_bad (_("line %d: unable to place value %lx into a byte"), 1953 fixP->fx_line, value); 1954 else 1955 *(unsigned char *) where = value; 1956 break; 1957 1958 case BFD_RELOC_16: /* Check for a bad .short directive. */ 1959 if (fixP->fx_addsy != NULL) 1960 as_bad (_("line %d: unable to place address of symbol '%s' into a short"), 1961 fixP->fx_line, S_GET_NAME (fixP->fx_addsy)); 1962 else if (((unsigned)value) > 0xffff) 1963 as_bad (_("line %d: unable to place value %lx into a short"), 1964 fixP->fx_line, value); 1965 else 1966 bfd_putb16 ((bfd_vma) value, (unsigned char *) where); 1967 break; 1968 1969 case BFD_RELOC_64: /* Check for a bad .quad directive. */ 1970 if (fixP->fx_addsy != NULL) 1971 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"), 1972 fixP->fx_line, S_GET_NAME (fixP->fx_addsy)); 1973 else 1974 { 1975 bfd_putb32 ((bfd_vma) value, (unsigned char *) where); 1976 bfd_putb32 (0, ((unsigned char *) where) + 4); 1977 } 1978 break; 1979 1980 case BFD_RELOC_D30V_6: 1981 check_size (value, 6, fixP->fx_file, fixP->fx_line); 1982 insn |= value & 0x3F; 1983 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 1984 break; 1985 1986 case BFD_RELOC_D30V_9_PCREL: 1987 if (fixP->fx_where & 0x7) 1988 { 1989 if (fixP->fx_done) 1990 value += 4; 1991 else 1992 fixP->fx_r_type = BFD_RELOC_D30V_9_PCREL_R; 1993 } 1994 check_size (value, 9, fixP->fx_file, fixP->fx_line); 1995 insn |= ((value >> 3) & 0x3F) << 12; 1996 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 1997 break; 1998 1999 case BFD_RELOC_D30V_15: 2000 check_size (value, 15, fixP->fx_file, fixP->fx_line); 2001 insn |= (value >> 3) & 0xFFF; 2002 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2003 break; 2004 2005 case BFD_RELOC_D30V_15_PCREL: 2006 if (fixP->fx_where & 0x7) 2007 { 2008 if (fixP->fx_done) 2009 value += 4; 2010 else 2011 fixP->fx_r_type = BFD_RELOC_D30V_15_PCREL_R; 2012 } 2013 check_size (value, 15, fixP->fx_file, fixP->fx_line); 2014 insn |= (value >> 3) & 0xFFF; 2015 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2016 break; 2017 2018 case BFD_RELOC_D30V_21: 2019 check_size (value, 21, fixP->fx_file, fixP->fx_line); 2020 insn |= (value >> 3) & 0x3FFFF; 2021 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2022 break; 2023 2024 case BFD_RELOC_D30V_21_PCREL: 2025 if (fixP->fx_where & 0x7) 2026 { 2027 if (fixP->fx_done) 2028 value += 4; 2029 else 2030 fixP->fx_r_type = BFD_RELOC_D30V_21_PCREL_R; 2031 } 2032 check_size (value, 21, fixP->fx_file, fixP->fx_line); 2033 insn |= (value >> 3) & 0x3FFFF; 2034 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2035 break; 2036 2037 case BFD_RELOC_D30V_32: 2038 insn2 = bfd_getb32 ((unsigned char *) where + 4); 2039 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */ 2040 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */ 2041 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */ 2042 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2043 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4); 2044 break; 2045 2046 case BFD_RELOC_D30V_32_PCREL: 2047 insn2 = bfd_getb32 ((unsigned char *) where + 4); 2048 insn |= (value >> 26) & 0x3F; /* Top 6 bits. */ 2049 insn2 |= ((value & 0x03FC0000) << 2); /* Next 8 bits. */ 2050 insn2 |= value & 0x0003FFFF; /* Bottom 18 bits. */ 2051 bfd_putb32 ((bfd_vma) insn, (unsigned char *) where); 2052 bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4); 2053 break; 2054 2055 case BFD_RELOC_32: 2056 bfd_putb32 ((bfd_vma) value, (unsigned char *) where); 2057 break; 2058 2059 default: 2060 as_bad (_("line %d: unknown relocation type: 0x%x"), 2061 fixP->fx_line, fixP->fx_r_type); 2062 } 2063 } 2064 2065 /* Handle the .align pseudo-op. This aligns to a power of two. We 2066 hook here to latch the current alignment. */ 2067 2068 static void 2069 s_d30v_align (int ignore ATTRIBUTE_UNUSED) 2070 { 2071 int align; 2072 char fill, *pfill = NULL; 2073 long max_alignment = 15; 2074 2075 align = get_absolute_expression (); 2076 if (align > max_alignment) 2077 { 2078 align = max_alignment; 2079 as_warn (_("Alignment too large: %d assumed"), align); 2080 } 2081 else if (align < 0) 2082 { 2083 as_warn (_("Alignment negative: 0 assumed")); 2084 align = 0; 2085 } 2086 2087 if (*input_line_pointer == ',') 2088 { 2089 input_line_pointer++; 2090 fill = get_absolute_expression (); 2091 pfill = &fill; 2092 } 2093 2094 d30v_last_label = NULL; 2095 d30v_align (align, pfill, NULL); 2096 2097 demand_empty_rest_of_line (); 2098 } 2099 2100 /* Handle the .text pseudo-op. This is like the usual one, but it 2101 clears the saved last label and resets known alignment. */ 2102 2103 static void 2104 s_d30v_text (int i) 2105 2106 { 2107 s_text (i); 2108 d30v_last_label = NULL; 2109 d30v_current_align = 0; 2110 d30v_current_align_seg = now_seg; 2111 } 2112 2113 /* Handle the .data pseudo-op. This is like the usual one, but it 2114 clears the saved last label and resets known alignment. */ 2115 2116 static void 2117 s_d30v_data (int i) 2118 { 2119 s_data (i); 2120 d30v_last_label = NULL; 2121 d30v_current_align = 0; 2122 d30v_current_align_seg = now_seg; 2123 } 2124 2125 /* Handle the .section pseudo-op. This is like the usual one, but it 2126 clears the saved last label and resets known alignment. */ 2127 2128 static void 2129 s_d30v_section (int ignore) 2130 { 2131 obj_elf_section (ignore); 2132 d30v_last_label = NULL; 2133 d30v_current_align = 0; 2134 d30v_current_align_seg = now_seg; 2135 } 2136 2137 /* The target specific pseudo-ops which we support. */ 2138 const pseudo_typeS md_pseudo_table[] = 2139 { 2140 { "word", cons, 4 }, 2141 { "hword", cons, 2 }, 2142 { "align", s_d30v_align, 0 }, 2143 { "text", s_d30v_text, 0 }, 2144 { "data", s_d30v_data, 0 }, 2145 { "section", s_d30v_section, 0 }, 2146 { "section.s", s_d30v_section, 0 }, 2147 { "sect", s_d30v_section, 0 }, 2148 { "sect.s", s_d30v_section, 0 }, 2149 { NULL, NULL, 0 } 2150 }; 2151 2152