1 /* tc-i960.c - All the i80960-specific stuff 2 Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 3 1999, 2000, 2001, 2002, 2003, 2005 4 Free Software Foundation, Inc. 5 6 This file is part of GAS. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the Free 20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 21 02110-1301, USA. */ 22 23 /* See comment on md_parse_option for 80960-specific invocation options. */ 24 25 /* There are 4 different lengths of (potentially) symbol-based displacements 26 in the 80960 instruction set, each of which could require address fix-ups 27 and (in the case of external symbols) emission of relocation directives: 28 29 32-bit (MEMB) 30 This is a standard length for the base assembler and requires no 31 special action. 32 33 13-bit (COBR) 34 This is a non-standard length, but the base assembler has a 35 hook for bit field address fixups: the fixS structure can 36 point to a descriptor of the field, in which case our 37 md_number_to_field() routine gets called to process it. 38 39 I made the hook a little cleaner by having fix_new() (in the base 40 assembler) return a pointer to the fixS in question. And I made it a 41 little simpler by storing the field size (in this case 13) instead of 42 of a pointer to another structure: 80960 displacements are ALWAYS 43 stored in the low-order bits of a 4-byte word. 44 45 Since the target of a COBR cannot be external, no relocation 46 directives for this size displacement have to be generated. 47 But the base assembler had to be modified to issue error 48 messages if the symbol did turn out to be external. 49 50 24-bit (CTRL) 51 Fixups are handled as for the 13-bit case (except that 24 is stored 52 in the fixS). 53 54 The relocation directive generated is the same as that for the 32-bit 55 displacement, except that it's PC-relative (the 32-bit displacement 56 never is). The i80960 version of the linker needs a mod to 57 distinguish and handle the 24-bit case. 58 59 12-bit (MEMA) 60 MEMA formats are always promoted to MEMB (32-bit) if the displacement 61 is based on a symbol, because it could be relocated at link time. 62 The only time we use the 12-bit format is if an absolute value of 63 less than 4096 is specified, in which case we need neither a fixup nor 64 a relocation directive. */ 65 66 #include <stdio.h> 67 68 #include "as.h" 69 70 #include "safe-ctype.h" 71 #include "obstack.h" 72 73 #include "opcode/i960.h" 74 75 #if defined (OBJ_AOUT) || defined (OBJ_BOUT) 76 77 #define TC_S_IS_SYSPROC(s) ((1 <= S_GET_OTHER (s)) && (S_GET_OTHER (s) <= 32)) 78 #define TC_S_IS_BALNAME(s) (S_GET_OTHER (s) == N_BALNAME) 79 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER (s) == N_CALLNAME) 80 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER (s) != 0) && !TC_S_IS_CALLNAME (s) && !TC_S_IS_BALNAME (s) && !TC_S_IS_SYSPROC (s)) 81 82 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER ((s), (p) + 1)) 83 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER (s) - 1) 84 85 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER ((s), N_BALNAME)) 86 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER ((s), N_CALLNAME)) 87 #define TC_S_FORCE_TO_SYSPROC(s) {;} 88 89 #else /* ! OBJ_A/BOUT */ 90 #ifdef OBJ_COFF 91 92 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS (s) == C_SCALL) 93 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME (s)) 94 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME (s)) 95 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC (s) && TC_S_GET_SYSPROC (s) < 0 && 31 < TC_S_GET_SYSPROC (s)) 96 97 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p)) 98 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx) 99 100 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME (s)) 101 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME (s)) 102 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS ((s), C_SCALL)) 103 104 #else /* ! OBJ_COFF */ 105 #ifdef OBJ_ELF 106 #define TC_S_IS_SYSPROC(s) 0 107 108 #define TC_S_IS_BALNAME(s) 0 109 #define TC_S_IS_CALLNAME(s) 0 110 #define TC_S_IS_BADPROC(s) 0 111 112 #define TC_S_SET_SYSPROC(s, p) 113 #define TC_S_GET_SYSPROC(s) 0 114 115 #define TC_S_FORCE_TO_BALNAME(s) 116 #define TC_S_FORCE_TO_CALLNAME(s) 117 #define TC_S_FORCE_TO_SYSPROC(s) 118 #else 119 #error COFF, a.out, b.out, and ELF are the only supported formats. 120 #endif /* ! OBJ_ELF */ 121 #endif /* ! OBJ_COFF */ 122 #endif /* ! OBJ_A/BOUT */ 123 124 extern char *input_line_pointer; 125 126 /* Local i80960 routines. */ 127 struct memS; 128 struct regop; 129 130 /* See md_parse_option() for meanings of these options. */ 131 static char norelax; /* True if -norelax switch seen. */ 132 static char instrument_branches; /* True if -b switch seen. */ 133 134 /* Characters that always start a comment. 135 If the pre-processor is disabled, these aren't very useful. */ 136 const char comment_chars[] = "#"; 137 138 /* Characters that only start a comment at the beginning of 139 a line. If the line seems to have the form '# 123 filename' 140 .line and .file directives will appear in the pre-processed output. 141 142 Note that input_file.c hand checks for '#' at the beginning of the 143 first line of the input file. This is because the compiler outputs 144 #NO_APP at the beginning of its output. */ 145 146 /* Also note that comments started like this one will always work. */ 147 148 const char line_comment_chars[] = "#"; 149 const char line_separator_chars[] = ";"; 150 151 /* Chars that can be used to separate mant from exp in floating point nums. */ 152 const char EXP_CHARS[] = "eE"; 153 154 /* Chars that mean this number is a floating point constant, 155 as in 0f12.456 or 0d1.2345e12. */ 156 const char FLT_CHARS[] = "fFdDtT"; 157 158 /* Table used by base assembler to relax addresses based on varying length 159 instructions. The fields are: 160 1) most positive reach of this state, 161 2) most negative reach of this state, 162 3) how many bytes this mode will add to the size of the current frag 163 4) which index into the table to try if we can't fit into this one. 164 165 For i80960, the only application is the (de-)optimization of cobr 166 instructions into separate compare and branch instructions when a 13-bit 167 displacement won't hack it. */ 168 const relax_typeS md_relax_table[] = 169 { 170 {0, 0, 0, 0}, /* State 0 => no more relaxation possible. */ 171 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr). */ 172 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl). */ 173 }; 174 175 /* These are the machine dependent pseudo-ops. 176 177 This table describes all the machine specific pseudo-ops the assembler 178 has to support. The fields are: 179 pseudo-op name without dot 180 function to call to execute this pseudo-op 181 integer arg to pass to the function. */ 182 #define S_LEAFPROC 1 183 #define S_SYSPROC 2 184 185 /* Macros to extract info from an 'expressionS' structure 'e'. */ 186 #define adds(e) e.X_add_symbol 187 #define offs(e) e.X_add_number 188 189 /* Branch-prediction bits for CTRL/COBR format opcodes. */ 190 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit. */ 191 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch. */ 192 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch. */ 193 194 /* Some instruction opcodes that we need explicitly. */ 195 #define BE 0x12000000 196 #define BG 0x11000000 197 #define BGE 0x13000000 198 #define BL 0x14000000 199 #define BLE 0x16000000 200 #define BNE 0x15000000 201 #define BNO 0x10000000 202 #define BO 0x17000000 203 #define CHKBIT 0x5a002700 204 #define CMPI 0x5a002080 205 #define CMPO 0x5a002000 206 207 #define B 0x08000000 208 #define BAL 0x0b000000 209 #define CALL 0x09000000 210 #define CALLS 0x66003800 211 #define RET 0x0a000000 212 213 /* These masks are used to build up a set of MEMB mode bits. */ 214 #define A_BIT 0x0400 215 #define I_BIT 0x0800 216 #define MEMB_BIT 0x1000 217 #define D_BIT 0x2000 218 219 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is 220 used). */ 221 #define MEMA_ABASE 0x2000 222 223 /* Info from which a MEMA or MEMB format instruction can be generated. */ 224 typedef struct memS 225 { 226 /* (First) 32 bits of instruction. */ 227 long opcode; 228 /* 0-(none), 12- or, 32-bit displacement needed. */ 229 int disp; 230 /* The expression in the source instruction from which the 231 displacement should be determined. */ 232 char *e; 233 } 234 memS; 235 236 /* The two pieces of info we need to generate a register operand. */ 237 struct regop 238 { 239 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg. */ 240 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0). */ 241 int n; /* Register number or literal value. */ 242 }; 243 244 /* Number and assembler mnemonic for all registers that can appear in 245 operands. */ 246 static const struct 247 { 248 char *reg_name; 249 int reg_num; 250 } 251 regnames[] = 252 { 253 { "pfp", 0 }, 254 { "sp", 1 }, 255 { "rip", 2 }, 256 { "r3", 3 }, 257 { "r4", 4 }, 258 { "r5", 5 }, 259 { "r6", 6 }, 260 { "r7", 7 }, 261 { "r8", 8 }, 262 { "r9", 9 }, 263 { "r10", 10 }, 264 { "r11", 11 }, 265 { "r12", 12 }, 266 { "r13", 13 }, 267 { "r14", 14 }, 268 { "r15", 15 }, 269 { "g0", 16 }, 270 { "g1", 17 }, 271 { "g2", 18 }, 272 { "g3", 19 }, 273 { "g4", 20 }, 274 { "g5", 21 }, 275 { "g6", 22 }, 276 { "g7", 23 }, 277 { "g8", 24 }, 278 { "g9", 25 }, 279 { "g10", 26 }, 280 { "g11", 27 }, 281 { "g12", 28 }, 282 { "g13", 29 }, 283 { "g14", 30 }, 284 { "fp", 31 }, 285 286 /* Numbers for special-function registers are for assembler internal 287 use only: they are scaled back to range [0-31] for binary output. */ 288 #define SF0 32 289 290 { "sf0", 32 }, 291 { "sf1", 33 }, 292 { "sf2", 34 }, 293 { "sf3", 35 }, 294 { "sf4", 36 }, 295 { "sf5", 37 }, 296 { "sf6", 38 }, 297 { "sf7", 39 }, 298 { "sf8", 40 }, 299 { "sf9", 41 }, 300 { "sf10", 42 }, 301 { "sf11", 43 }, 302 { "sf12", 44 }, 303 { "sf13", 45 }, 304 { "sf14", 46 }, 305 { "sf15", 47 }, 306 { "sf16", 48 }, 307 { "sf17", 49 }, 308 { "sf18", 50 }, 309 { "sf19", 51 }, 310 { "sf20", 52 }, 311 { "sf21", 53 }, 312 { "sf22", 54 }, 313 { "sf23", 55 }, 314 { "sf24", 56 }, 315 { "sf25", 57 }, 316 { "sf26", 58 }, 317 { "sf27", 59 }, 318 { "sf28", 60 }, 319 { "sf29", 61 }, 320 { "sf30", 62 }, 321 { "sf31", 63 }, 322 323 /* Numbers for floating point registers are for assembler internal 324 use only: they are scaled back to [0-3] for binary output. */ 325 #define FP0 64 326 327 { "fp0", 64 }, 328 { "fp1", 65 }, 329 { "fp2", 66 }, 330 { "fp3", 67 }, 331 332 { NULL, 0 }, /* END OF LIST */ 333 }; 334 335 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) 336 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) 337 #define IS_FP_REG(n) ((n) >= FP0) 338 339 /* Number and assembler mnemonic for all registers that can appear as 340 'abase' (indirect addressing) registers. */ 341 static const struct 342 { 343 char *areg_name; 344 int areg_num; 345 } 346 aregs[] = 347 { 348 { "(pfp)", 0 }, 349 { "(sp)", 1 }, 350 { "(rip)", 2 }, 351 { "(r3)", 3 }, 352 { "(r4)", 4 }, 353 { "(r5)", 5 }, 354 { "(r6)", 6 }, 355 { "(r7)", 7 }, 356 { "(r8)", 8 }, 357 { "(r9)", 9 }, 358 { "(r10)", 10 }, 359 { "(r11)", 11 }, 360 { "(r12)", 12 }, 361 { "(r13)", 13 }, 362 { "(r14)", 14 }, 363 { "(r15)", 15 }, 364 { "(g0)", 16 }, 365 { "(g1)", 17 }, 366 { "(g2)", 18 }, 367 { "(g3)", 19 }, 368 { "(g4)", 20 }, 369 { "(g5)", 21 }, 370 { "(g6)", 22 }, 371 { "(g7)", 23 }, 372 { "(g8)", 24 }, 373 { "(g9)", 25 }, 374 { "(g10)", 26 }, 375 { "(g11)", 27 }, 376 { "(g12)", 28 }, 377 { "(g13)", 29 }, 378 { "(g14)", 30 }, 379 { "(fp)", 31 }, 380 381 #define IPREL 32 382 /* For assembler internal use only: this number never appears in binary 383 output. */ 384 { "(ip)", IPREL }, 385 386 { NULL, 0 }, /* END OF LIST */ 387 }; 388 389 /* Hash tables. */ 390 static struct hash_control *op_hash; /* Opcode mnemonics. */ 391 static struct hash_control *reg_hash; /* Register name hash table. */ 392 static struct hash_control *areg_hash; /* Abase register hash table. */ 393 394 /* Architecture for which we are assembling. */ 395 #define ARCH_ANY 0 /* Default: no architecture checking done. */ 396 #define ARCH_KA 1 397 #define ARCH_KB 2 398 #define ARCH_MC 3 399 #define ARCH_CA 4 400 #define ARCH_JX 5 401 #define ARCH_HX 6 402 int architecture = ARCH_ANY; /* Architecture requested on invocation line. */ 403 int iclasses_seen; /* OR of instruction classes (I_* constants) 404 for which we've actually assembled 405 instructions. */ 406 407 /* BRANCH-PREDICTION INSTRUMENTATION 408 409 The following supports generation of branch-prediction instrumentation 410 (turned on by -b switch). The instrumentation collects counts 411 of branches taken/not-taken for later input to a utility that will 412 set the branch prediction bits of the instructions in accordance with 413 the behavior observed. (Note that the KX series does not have 414 brach-prediction.) 415 416 The instrumentation consists of: 417 418 (1) before and after each conditional branch, a call to an external 419 routine that increments and steps over an inline counter. The 420 counter itself, initialized to 0, immediately follows the call 421 instruction. For each branch, the counter following the branch 422 is the number of times the branch was not taken, and the difference 423 between the counters is the number of times it was taken. An 424 example of an instrumented conditional branch: 425 426 call BR_CNT_FUNC 427 .word 0 428 LBRANCH23: be label 429 call BR_CNT_FUNC 430 .word 0 431 432 (2) a table of pointers to the instrumented branches, so that an 433 external postprocessing routine can locate all of the counters. 434 the table begins with a 2-word header: a pointer to the next in 435 a linked list of such tables (initialized to 0); and a count 436 of the number of entries in the table (exclusive of the header. 437 438 Note that input source code is expected to already contain calls 439 an external routine that will link the branch local table into a 440 list of such tables. */ 441 442 /* Number of branches instrumented so far. Also used to generate 443 unique local labels for each instrumented branch. */ 444 static int br_cnt; 445 446 #define BR_LABEL_BASE "LBRANCH" 447 /* Basename of local labels on instrumented branches, to avoid 448 conflict with compiler- generated local labels. */ 449 450 #define BR_CNT_FUNC "__inc_branch" 451 /* Name of the external routine that will increment (and step over) an 452 inline counter. */ 453 454 #define BR_TAB_NAME "__BRANCH_TABLE__" 455 /* Name of the table of pointers to branches. A local (i.e., 456 non-external) symbol. */ 457 458 static void ctrl_fmt (char *, long, int); 459 460 461 void 462 md_begin (void) 463 { 464 int i; /* Loop counter. */ 465 const struct i960_opcode *oP; /* Pointer into opcode table. */ 466 const char *retval; /* Value returned by hash functions. */ 467 468 op_hash = hash_new (); 469 reg_hash = hash_new (); 470 areg_hash = hash_new (); 471 472 /* For some reason, the base assembler uses an empty string for "no 473 error message", instead of a NULL pointer. */ 474 retval = 0; 475 476 for (oP = i960_opcodes; oP->name && !retval; oP++) 477 retval = hash_insert (op_hash, oP->name, (void *) oP); 478 479 for (i = 0; regnames[i].reg_name && !retval; i++) 480 retval = hash_insert (reg_hash, regnames[i].reg_name, 481 (char *) ®names[i].reg_num); 482 483 for (i = 0; aregs[i].areg_name && !retval; i++) 484 retval = hash_insert (areg_hash, aregs[i].areg_name, 485 (char *) &aregs[i].areg_num); 486 487 if (retval) 488 as_fatal (_("Hashing returned \"%s\"."), retval); 489 } 490 491 /* parse_expr: parse an expression 492 493 Use base assembler's expression parser to parse an expression. 494 It, unfortunately, runs off a global which we have to save/restore 495 in order to make it work for us. 496 497 An empty expression string is treated as an absolute 0. 498 499 Sets O_illegal regardless of expression evaluation if entire input 500 string is not consumed in the evaluation -- tolerate no dangling junk! */ 501 502 static void 503 parse_expr (char *textP, /* Text of expression to be parsed. */ 504 expressionS *expP) /* Where to put the results of parsing. */ 505 { 506 char *save_in; /* Save global here. */ 507 symbolS *symP; 508 509 know (textP); 510 511 if (*textP == '\0') 512 { 513 /* Treat empty string as absolute 0. */ 514 expP->X_add_symbol = expP->X_op_symbol = NULL; 515 expP->X_add_number = 0; 516 expP->X_op = O_constant; 517 } 518 else 519 { 520 save_in = input_line_pointer; /* Save global. */ 521 input_line_pointer = textP; /* Make parser work for us. */ 522 523 (void) expression (expP); 524 if ((size_t) (input_line_pointer - textP) != strlen (textP)) 525 /* Did not consume all of the input. */ 526 expP->X_op = O_illegal; 527 528 symP = expP->X_add_symbol; 529 if (symP && (hash_find (reg_hash, S_GET_NAME (symP)))) 530 /* Register name in an expression. */ 531 /* FIXME: this isn't much of a check any more. */ 532 expP->X_op = O_illegal; 533 534 input_line_pointer = save_in; /* Restore global. */ 535 } 536 } 537 538 /* emit: output instruction binary 539 540 Output instruction binary, in target byte order, 4 bytes at a time. 541 Return pointer to where it was placed. */ 542 543 static char * 544 emit (long instr) /* Word to be output, host byte order. */ 545 { 546 char *toP; /* Where to output it. */ 547 548 toP = frag_more (4); /* Allocate storage. */ 549 md_number_to_chars (toP, instr, 4); /* Convert to target byte order. */ 550 return toP; 551 } 552 553 /* get_cdisp: handle displacement for a COBR or CTRL instruction. 554 555 Parse displacement for a COBR or CTRL instruction. 556 557 If successful, output the instruction opcode and set up for it, 558 depending on the arg 'var_frag', either: 559 o an address fixup to be done when all symbol values are known, or 560 o a varying length code fragment, with address fixup info. This 561 will be done for cobr instructions that may have to be relaxed 562 in to compare/branch instructions (8 bytes) if the final 563 address displacement is greater than 13 bits. */ 564 565 static void 566 get_cdisp (char *dispP, /* Displacement as specified in source instruction. */ 567 char *ifmtP, /* "COBR" or "CTRL" (for use in error message). */ 568 long instr, /* Instruction needing the displacement. */ 569 int numbits, /* # bits of displacement (13 for COBR, 24 for CTRL). */ 570 int var_frag,/* 1 if varying length code fragment should be emitted; 571 0 if an address fix should be emitted. */ 572 int callj) /* 1 if callj relocation should be done; else 0. */ 573 { 574 expressionS e; /* Parsed expression. */ 575 fixS *fixP; /* Structure describing needed address fix. */ 576 char *outP; /* Where instruction binary is output to. */ 577 578 fixP = NULL; 579 580 parse_expr (dispP, &e); 581 switch (e.X_op) 582 { 583 case O_illegal: 584 as_bad (_("expression syntax error")); 585 586 case O_symbol: 587 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg 588 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section) 589 { 590 if (var_frag) 591 { 592 outP = frag_more (8); /* Allocate worst-case storage. */ 593 md_number_to_chars (outP, instr, 4); 594 frag_variant (rs_machine_dependent, 4, 4, 1, 595 adds (e), offs (e), outP); 596 } 597 else 598 { 599 /* Set up a new fix structure, so address can be updated 600 when all symbol values are known. */ 601 outP = emit (instr); 602 fixP = fix_new (frag_now, 603 outP - frag_now->fr_literal, 604 4, 605 adds (e), 606 offs (e), 607 1, 608 NO_RELOC); 609 610 fixP->fx_tcbit = callj; 611 612 /* We want to modify a bit field when the address is 613 known. But we don't need all the garbage in the 614 bit_fix structure. So we're going to lie and store 615 the number of bits affected instead of a pointer. */ 616 fixP->fx_bit_fixP = (bit_fixS *) (size_t) numbits; 617 } 618 } 619 else 620 as_bad (_("attempt to branch into different segment")); 621 break; 622 623 default: 624 as_bad (_("target of %s instruction must be a label"), ifmtP); 625 break; 626 } 627 } 628 629 static int 630 md_chars_to_number (char * val, /* Value in target byte order. */ 631 int n) /* Number of bytes in the input. */ 632 { 633 int retval; 634 635 for (retval = 0; n--;) 636 { 637 retval <<= 8; 638 retval |= (unsigned char) val[n]; 639 } 640 return retval; 641 } 642 643 /* mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. 644 645 There are 2 possible MEMA formats: 646 - displacement only 647 - displacement + abase 648 649 They are distinguished by the setting of the MEMA_ABASE bit. */ 650 651 static void 652 mema_to_memb (char * opcodeP) /* Where to find the opcode, in target byte order. */ 653 { 654 long opcode; /* Opcode in host byte order. */ 655 long mode; /* Mode bits for MEMB instruction. */ 656 657 opcode = md_chars_to_number (opcodeP, 4); 658 know (!(opcode & MEMB_BIT)); 659 660 mode = MEMB_BIT | D_BIT; 661 if (opcode & MEMA_ABASE) 662 mode |= A_BIT; 663 664 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits. */ 665 opcode |= mode; /* Set MEMB mode bits. */ 666 667 md_number_to_chars (opcodeP, opcode, 4); 668 } 669 670 /* targ_has_sfr: 671 672 Return TRUE iff the target architecture supports the specified 673 special-function register (sfr). */ 674 675 static int 676 targ_has_sfr (int n) /* Number (0-31) of sfr. */ 677 { 678 switch (architecture) 679 { 680 case ARCH_KA: 681 case ARCH_KB: 682 case ARCH_MC: 683 case ARCH_JX: 684 return 0; 685 case ARCH_HX: 686 return ((0 <= n) && (n <= 4)); 687 case ARCH_CA: 688 default: 689 return ((0 <= n) && (n <= 2)); 690 } 691 } 692 693 /* Look up a (suspected) register name in the register table and return the 694 associated register number (or -1 if not found). */ 695 696 static int 697 get_regnum (char *regname) /* Suspected register name. */ 698 { 699 int *rP; 700 701 rP = (int *) hash_find (reg_hash, regname); 702 return (rP == NULL) ? -1 : *rP; 703 } 704 705 /* syntax: Issue a syntax error. */ 706 707 static void 708 syntax (void) 709 { 710 as_bad (_("syntax error")); 711 } 712 713 /* parse_regop: parse a register operand. 714 715 In case of illegal operand, issue a message and return some valid 716 information so instruction processing can continue. */ 717 718 static void 719 parse_regop (struct regop *regopP, /* Where to put description of register operand. */ 720 char *optext, /* Text of operand. */ 721 char opdesc) /* Descriptor byte: what's legal for this operand. */ 722 { 723 int n; /* Register number. */ 724 expressionS e; /* Parsed expression. */ 725 726 /* See if operand is a register. */ 727 n = get_regnum (optext); 728 if (n >= 0) 729 { 730 if (IS_RG_REG (n)) 731 { 732 /* Global or local register. */ 733 if (!REG_ALIGN (opdesc, n)) 734 as_bad (_("unaligned register")); 735 736 regopP->n = n; 737 regopP->mode = 0; 738 regopP->special = 0; 739 return; 740 } 741 else if (IS_FP_REG (n) && FP_OK (opdesc)) 742 { 743 /* Floating point register, and it's allowed. */ 744 regopP->n = n - FP0; 745 regopP->mode = 1; 746 regopP->special = 0; 747 return; 748 } 749 else if (IS_SF_REG (n) && SFR_OK (opdesc)) 750 { 751 /* Special-function register, and it's allowed. */ 752 regopP->n = n - SF0; 753 regopP->mode = 0; 754 regopP->special = 1; 755 if (!targ_has_sfr (regopP->n)) 756 as_bad (_("no such sfr in this architecture")); 757 758 return; 759 } 760 } 761 else if (LIT_OK (opdesc)) 762 { 763 /* How about a literal? */ 764 regopP->mode = 1; 765 regopP->special = 0; 766 if (FP_OK (opdesc)) 767 { 768 /* Floating point literal acceptable. */ 769 /* Skip over 0f, 0d, or 0e prefix. */ 770 if ((optext[0] == '0') 771 && (optext[1] >= 'd') 772 && (optext[1] <= 'f')) 773 optext += 2; 774 775 if (!strcmp (optext, "0.0") || !strcmp (optext, "0")) 776 { 777 regopP->n = 0x10; 778 return; 779 } 780 781 if (!strcmp (optext, "1.0") || !strcmp (optext, "1")) 782 { 783 regopP->n = 0x16; 784 return; 785 } 786 } 787 else 788 { 789 /* Fixed point literal acceptable. */ 790 parse_expr (optext, &e); 791 if (e.X_op != O_constant 792 || (offs (e) < 0) || (offs (e) > 31)) 793 { 794 as_bad (_("illegal literal")); 795 offs (e) = 0; 796 } 797 regopP->n = offs (e); 798 return; 799 } 800 } 801 802 /* Nothing worked. */ 803 syntax (); 804 regopP->mode = 0; /* Register r0 is always a good one. */ 805 regopP->n = 0; 806 regopP->special = 0; 807 } 808 809 /* get_ispec: parse a memory operand for an index specification 810 811 Here, an "index specification" is taken to be anything surrounded 812 by square brackets and NOT followed by anything else. 813 814 If it's found, detach it from the input string, remove the surrounding 815 square brackets, and return a pointer to it. Otherwise, return NULL. */ 816 817 static char * 818 get_ispec (char *textP) /* Pointer to memory operand from source instruction, no white space. */ 819 820 { 821 /* Points to start of index specification. */ 822 char *start; 823 /* Points to end of index specification. */ 824 char *end; 825 826 /* Find opening square bracket, if any. */ 827 start = strchr (textP, '['); 828 829 if (start != NULL) 830 { 831 /* Eliminate '[', detach from rest of operand. */ 832 *start++ = '\0'; 833 834 end = strchr (start, ']'); 835 836 if (end == NULL) 837 as_bad (_("unmatched '['")); 838 else 839 { 840 /* Eliminate ']' and make sure it was the last thing 841 in the string. */ 842 *end = '\0'; 843 if (*(end + 1) != '\0') 844 as_bad (_("garbage after index spec ignored")); 845 } 846 } 847 return start; 848 } 849 850 /* parse_memop: parse a memory operand 851 852 This routine is based on the observation that the 4 mode bits of the 853 MEMB format, taken individually, have fairly consistent meaning: 854 855 M3 (bit 13): 1 if displacement is present (D_BIT) 856 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) 857 M1 (bit 11): 1 if index is present (I_BIT) 858 M0 (bit 10): 1 if abase is present (A_BIT) 859 860 So we parse the memory operand and set bits in the mode as we find 861 things. Then at the end, if we go to MEMB format, we need only set 862 the MEMB bit (M2) and our mode is built for us. 863 864 Unfortunately, I said "fairly consistent". The exceptions: 865 866 DBIA 867 0100 Would seem illegal, but means "abase-only". 868 869 0101 Would seem to mean "abase-only" -- it means IP-relative. 870 Must be converted to 0100. 871 872 0110 Would seem to mean "index-only", but is reserved. 873 We turn on the D bit and provide a 0 displacement. 874 875 The other thing to observe is that we parse from the right, peeling 876 things * off as we go: first any index spec, then any abase, then 877 the displacement. */ 878 879 static void 880 parse_memop (memS *memP, /* Where to put the results. */ 881 char *argP, /* Text of the operand to be parsed. */ 882 int optype) /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16. */ 883 { 884 char *indexP; /* Pointer to index specification with "[]" removed. */ 885 char *p; /* Temp char pointer. */ 886 char iprel_flag; /* True if this is an IP-relative operand. */ 887 int regnum; /* Register number. */ 888 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format 889 (0,1,2,3,4 respectively). */ 890 int scale; 891 int mode; /* MEMB mode bits. */ 892 int *intP; /* Pointer to register number. */ 893 894 /* The following table contains the default scale factors for each 895 type of memory instruction. It is accessed using (optype-MEM1) 896 as an index -- thus it assumes the 'optype' constants are 897 assigned consecutive values, in the order they appear in this 898 table. */ 899 static const int def_scale[] = 900 { 901 1, /* MEM1 */ 902 2, /* MEM2 */ 903 4, /* MEM4 */ 904 8, /* MEM8 */ 905 -1, /* MEM12 -- no valid default */ 906 16 /* MEM16 */ 907 }; 908 909 iprel_flag = mode = 0; 910 911 /* Any index present? */ 912 indexP = get_ispec (argP); 913 if (indexP) 914 { 915 p = strchr (indexP, '*'); 916 if (p == NULL) 917 { 918 /* No explicit scale -- use default for this instruction 919 type and assembler mode. */ 920 if (flag_mri) 921 scale = 1; 922 else 923 /* GNU960 compatibility */ 924 scale = def_scale[optype - MEM1]; 925 } 926 else 927 { 928 *p++ = '\0'; /* Eliminate '*' */ 929 930 /* Now indexP->a '\0'-terminated register name, 931 and p->a scale factor. */ 932 933 if (!strcmp (p, "16")) 934 scale = 16; 935 else if (strchr ("1248", *p) && (p[1] == '\0')) 936 scale = *p - '0'; 937 else 938 scale = -1; 939 } 940 941 regnum = get_regnum (indexP); /* Get index reg. # */ 942 if (!IS_RG_REG (regnum)) 943 { 944 as_bad (_("invalid index register")); 945 return; 946 } 947 948 /* Convert scale to its binary encoding. */ 949 switch (scale) 950 { 951 case 1: 952 scale = 0 << 7; 953 break; 954 case 2: 955 scale = 1 << 7; 956 break; 957 case 4: 958 scale = 2 << 7; 959 break; 960 case 8: 961 scale = 3 << 7; 962 break; 963 case 16: 964 scale = 4 << 7; 965 break; 966 default: 967 as_bad (_("invalid scale factor")); 968 return; 969 }; 970 971 memP->opcode |= scale | regnum; /* Set index bits in opcode. */ 972 mode |= I_BIT; /* Found a valid index spec. */ 973 } 974 975 /* Any abase (Register Indirect) specification present? */ 976 if ((p = strrchr (argP, '(')) != NULL) 977 { 978 /* "(" is there -- does it start a legal abase spec? If not, it 979 could be part of a displacement expression. */ 980 intP = (int *) hash_find (areg_hash, p); 981 if (intP != NULL) 982 { 983 /* Got an abase here. */ 984 regnum = *intP; 985 *p = '\0'; /* Discard register spec. */ 986 if (regnum == IPREL) 987 /* We have to specialcase ip-rel mode. */ 988 iprel_flag = 1; 989 else 990 { 991 memP->opcode |= regnum << 14; 992 mode |= A_BIT; 993 } 994 } 995 } 996 997 /* Any expression present? */ 998 memP->e = argP; 999 if (*argP != '\0') 1000 mode |= D_BIT; 1001 1002 /* Special-case ip-relative addressing. */ 1003 if (iprel_flag) 1004 { 1005 if (mode & I_BIT) 1006 syntax (); 1007 else 1008 { 1009 memP->opcode |= 5 << 10; /* IP-relative mode. */ 1010 memP->disp = 32; 1011 } 1012 return; 1013 } 1014 1015 /* Handle all other modes. */ 1016 switch (mode) 1017 { 1018 case D_BIT | A_BIT: 1019 /* Go with MEMA instruction format for now (grow to MEMB later 1020 if 12 bits is not enough for the displacement). MEMA format 1021 has a single mode bit: set it to indicate that abase is 1022 present. */ 1023 memP->opcode |= MEMA_ABASE; 1024 memP->disp = 12; 1025 break; 1026 1027 case D_BIT: 1028 /* Go with MEMA instruction format for now (grow to MEMB later 1029 if 12 bits is not enough for the displacement). */ 1030 memP->disp = 12; 1031 break; 1032 1033 case A_BIT: 1034 /* For some reason, the bit string for this mode is not 1035 consistent: it should be 0 (exclusive of the MEMB bit), so we 1036 set it "by hand" here. */ 1037 memP->opcode |= MEMB_BIT; 1038 break; 1039 1040 case A_BIT | I_BIT: 1041 /* set MEMB bit in mode, and OR in mode bits. */ 1042 memP->opcode |= mode | MEMB_BIT; 1043 break; 1044 1045 case I_BIT: 1046 /* Treat missing displacement as displacement of 0. */ 1047 mode |= D_BIT; 1048 /* Fall into next case. */ 1049 case D_BIT | A_BIT | I_BIT: 1050 case D_BIT | I_BIT: 1051 /* Set MEMB bit in mode, and OR in mode bits. */ 1052 memP->opcode |= mode | MEMB_BIT; 1053 memP->disp = 32; 1054 break; 1055 1056 default: 1057 syntax (); 1058 break; 1059 } 1060 } 1061 1062 /* Generate a MEMA- or MEMB-format instruction. */ 1063 1064 static void 1065 mem_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */ 1066 struct i960_opcode *oP,/* Pointer to description of instruction. */ 1067 int callx) /* Is this a callx opcode. */ 1068 { 1069 int i; /* Loop counter. */ 1070 struct regop regop; /* Description of register operand. */ 1071 char opdesc; /* Operand descriptor byte. */ 1072 memS instr; /* Description of binary to be output. */ 1073 char *outP; /* Where the binary was output to. */ 1074 expressionS expr; /* Parsed expression. */ 1075 /* ->description of deferred address fixup. */ 1076 fixS *fixP; 1077 1078 #ifdef OBJ_COFF 1079 /* COFF support isn't in place yet for callx relaxing. */ 1080 callx = 0; 1081 #endif 1082 1083 memset (&instr, '\0', sizeof (memS)); 1084 instr.opcode = oP->opcode; 1085 1086 /* Process operands. */ 1087 for (i = 1; i <= oP->num_ops; i++) 1088 { 1089 opdesc = oP->operand[i - 1]; 1090 1091 if (MEMOP (opdesc)) 1092 parse_memop (&instr, args[i], oP->format); 1093 else 1094 { 1095 parse_regop (®op, args[i], opdesc); 1096 instr.opcode |= regop.n << 19; 1097 } 1098 } 1099 1100 /* Parse the displacement; this must be done before emitting the 1101 opcode, in case it is an expression using `.'. */ 1102 parse_expr (instr.e, &expr); 1103 1104 /* Output opcode. */ 1105 outP = emit (instr.opcode); 1106 1107 if (instr.disp == 0) 1108 return; 1109 1110 /* Process the displacement. */ 1111 switch (expr.X_op) 1112 { 1113 case O_illegal: 1114 as_bad (_("expression syntax error")); 1115 break; 1116 1117 case O_constant: 1118 if (instr.disp == 32) 1119 (void) emit (offs (expr)); /* Output displacement. */ 1120 else 1121 { 1122 /* 12-bit displacement. */ 1123 if (offs (expr) & ~0xfff) 1124 { 1125 /* Won't fit in 12 bits: convert already-output 1126 instruction to MEMB format, output 1127 displacement. */ 1128 mema_to_memb (outP); 1129 (void) emit (offs (expr)); 1130 } 1131 else 1132 { 1133 /* WILL fit in 12 bits: OR into opcode and 1134 overwrite the binary we already put out. */ 1135 instr.opcode |= offs (expr); 1136 md_number_to_chars (outP, instr.opcode, 4); 1137 } 1138 } 1139 break; 1140 1141 default: 1142 if (instr.disp == 12) 1143 /* Displacement is dependent on a symbol, whose value 1144 may change at link time. We HAVE to reserve 32 bits. 1145 Convert already-output opcode to MEMB format. */ 1146 mema_to_memb (outP); 1147 1148 /* Output 0 displacement and set up address fixup for when 1149 this symbol's value becomes known. */ 1150 outP = emit ((long) 0); 1151 fixP = fix_new_exp (frag_now, 1152 outP - frag_now->fr_literal, 1153 4, & expr, 0, NO_RELOC); 1154 /* Steve's linker relaxing hack. Mark this 32-bit relocation as 1155 being in the instruction stream, specifically as part of a callx 1156 instruction. */ 1157 fixP->fx_bsr = callx; 1158 break; 1159 } 1160 } 1161 1162 /* targ_has_iclass: 1163 1164 Return TRUE iff the target architecture supports the indicated 1165 class of instructions. */ 1166 1167 static int 1168 targ_has_iclass (int ic) /* Instruction class; one of: 1169 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2. */ 1170 { 1171 iclasses_seen |= ic; 1172 1173 switch (architecture) 1174 { 1175 case ARCH_KA: 1176 return ic & (I_BASE | I_KX); 1177 case ARCH_KB: 1178 return ic & (I_BASE | I_KX | I_FP | I_DEC); 1179 case ARCH_MC: 1180 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); 1181 case ARCH_CA: 1182 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM); 1183 case ARCH_JX: 1184 return ic & (I_BASE | I_CX2 | I_JX); 1185 case ARCH_HX: 1186 return ic & (I_BASE | I_CX2 | I_JX | I_HX); 1187 default: 1188 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL)) 1189 && (iclasses_seen & (I_CX | I_CX2))) 1190 { 1191 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)")); 1192 iclasses_seen &= ~ic; 1193 } 1194 return 1; 1195 } 1196 } 1197 1198 /* shift_ok: 1199 Determine if a "shlo" instruction can be used to implement a "ldconst". 1200 This means that some number X < 32 can be shifted left to produce the 1201 constant of interest. 1202 1203 Return the shift count, or 0 if we can't do it. 1204 Caller calculates X by shifting original constant right 'shift' places. */ 1205 1206 static int 1207 shift_ok (int n) /* The constant of interest. */ 1208 { 1209 int shift; /* The shift count. */ 1210 1211 if (n <= 0) 1212 /* Can't do it for negative numbers. */ 1213 return 0; 1214 1215 /* Shift 'n' right until a 1 is about to be lost. */ 1216 for (shift = 0; (n & 1) == 0; shift++) 1217 n >>= 1; 1218 1219 if (n >= 32) 1220 return 0; 1221 1222 return shift; 1223 } 1224 1225 /* parse_ldcont: 1226 Parse and replace a 'ldconst' pseudo-instruction with an appropriate 1227 i80960 instruction. 1228 1229 Assumes the input consists of: 1230 arg[0] opcode mnemonic ('ldconst') 1231 arg[1] first operand (constant) 1232 arg[2] name of register to be loaded 1233 1234 Replaces opcode and/or operands as appropriate. 1235 1236 Returns the new number of arguments, or -1 on failure. */ 1237 1238 static int 1239 parse_ldconst (char *arg[]) /* See above. */ 1240 { 1241 int n; /* Constant to be loaded. */ 1242 int shift; /* Shift count for "shlo" instruction. */ 1243 static char buf[5]; /* Literal for first operand. */ 1244 static char buf2[5]; /* Literal for second operand. */ 1245 expressionS e; /* Parsed expression. */ 1246 1247 arg[3] = NULL; /* So we can tell at the end if it got used or not. */ 1248 1249 parse_expr (arg[1], &e); 1250 switch (e.X_op) 1251 { 1252 default: 1253 /* We're dependent on one or more symbols -- use "lda". */ 1254 arg[0] = "lda"; 1255 break; 1256 1257 case O_constant: 1258 /* Try the following mappings: 1259 ldconst 0,<reg> -> mov 0,<reg> 1260 ldconst 31,<reg> -> mov 31,<reg> 1261 ldconst 32,<reg> -> addo 1,31,<reg> 1262 ldconst 62,<reg> -> addo 31,31,<reg> 1263 ldconst 64,<reg> -> shlo 8,3,<reg> 1264 ldconst -1,<reg> -> subo 1,0,<reg> 1265 ldconst -31,<reg> -> subo 31,0,<reg> 1266 1267 Anything else becomes: 1268 lda xxx,<reg>. */ 1269 n = offs (e); 1270 if ((0 <= n) && (n <= 31)) 1271 arg[0] = "mov"; 1272 else if ((-31 <= n) && (n <= -1)) 1273 { 1274 arg[0] = "subo"; 1275 arg[3] = arg[2]; 1276 sprintf (buf, "%d", -n); 1277 arg[1] = buf; 1278 arg[2] = "0"; 1279 } 1280 else if ((32 <= n) && (n <= 62)) 1281 { 1282 arg[0] = "addo"; 1283 arg[3] = arg[2]; 1284 arg[1] = "31"; 1285 sprintf (buf, "%d", n - 31); 1286 arg[2] = buf; 1287 } 1288 else if ((shift = shift_ok (n)) != 0) 1289 { 1290 arg[0] = "shlo"; 1291 arg[3] = arg[2]; 1292 sprintf (buf, "%d", shift); 1293 arg[1] = buf; 1294 sprintf (buf2, "%d", n >> shift); 1295 arg[2] = buf2; 1296 } 1297 else 1298 arg[0] = "lda"; 1299 break; 1300 1301 case O_illegal: 1302 as_bad (_("invalid constant")); 1303 return -1; 1304 break; 1305 } 1306 return (arg[3] == 0) ? 2 : 3; 1307 } 1308 1309 /* reg_fmt: generate a REG-format instruction. */ 1310 1311 static void 1312 reg_fmt (char *args[], /* args[0]->opcode mnemonic, args[1-3]->operands. */ 1313 struct i960_opcode *oP)/* Pointer to description of instruction. */ 1314 { 1315 long instr; /* Binary to be output. */ 1316 struct regop regop; /* Description of register operand. */ 1317 int n_ops; /* Number of operands. */ 1318 1319 instr = oP->opcode; 1320 n_ops = oP->num_ops; 1321 1322 if (n_ops >= 1) 1323 { 1324 parse_regop (®op, args[1], oP->operand[0]); 1325 1326 if ((n_ops == 1) && !(instr & M3)) 1327 { 1328 /* 1-operand instruction in which the dst field should 1329 be used (instead of src1). */ 1330 regop.n <<= 19; 1331 if (regop.special) 1332 regop.mode = regop.special; 1333 regop.mode <<= 13; 1334 regop.special = 0; 1335 } 1336 else 1337 { 1338 /* regop.n goes in bit 0, needs no shifting. */ 1339 regop.mode <<= 11; 1340 regop.special <<= 5; 1341 } 1342 instr |= regop.n | regop.mode | regop.special; 1343 } 1344 1345 if (n_ops >= 2) 1346 { 1347 parse_regop (®op, args[2], oP->operand[1]); 1348 1349 if ((n_ops == 2) && !(instr & M3)) 1350 { 1351 /* 2-operand instruction in which the dst field should 1352 be used instead of src2). */ 1353 regop.n <<= 19; 1354 if (regop.special) 1355 regop.mode = regop.special; 1356 regop.mode <<= 13; 1357 regop.special = 0; 1358 } 1359 else 1360 { 1361 regop.n <<= 14; 1362 regop.mode <<= 12; 1363 regop.special <<= 6; 1364 } 1365 instr |= regop.n | regop.mode | regop.special; 1366 } 1367 if (n_ops == 3) 1368 { 1369 parse_regop (®op, args[3], oP->operand[2]); 1370 if (regop.special) 1371 regop.mode = regop.special; 1372 instr |= (regop.n <<= 19) | (regop.mode <<= 13); 1373 } 1374 emit (instr); 1375 } 1376 1377 /* get_args: break individual arguments out of comma-separated list 1378 1379 Input assumptions: 1380 - all comments and labels have been removed 1381 - all strings of whitespace have been collapsed to a single blank. 1382 - all character constants ('x') have been replaced with decimal 1383 1384 Output: 1385 args[0] is untouched. args[1] points to first operand, etc. All args: 1386 - are NULL-terminated 1387 - contain no whitespace 1388 1389 Return value: 1390 Number of operands (0,1,2, or 3) or -1 on error. */ 1391 1392 static int 1393 get_args (char *p, /* Pointer to comma-separated operands; Mucked by us. */ 1394 char *args[]) /* Output arg: pointers to operands placed in args[1-3]. 1395 Must accommodate 4 entries (args[0-3]). */ 1396 1397 { 1398 int n; /* Number of operands. */ 1399 char *to; 1400 1401 /* Skip lead white space. */ 1402 while (*p == ' ') 1403 p++; 1404 1405 if (*p == '\0') 1406 return 0; 1407 1408 n = 1; 1409 args[1] = p; 1410 1411 /* Squeze blanks out by moving non-blanks toward start of string. 1412 Isolate operands, whenever comma is found. */ 1413 to = p; 1414 while (*p != '\0') 1415 { 1416 if (*p == ' ' 1417 && (! ISALNUM (p[1]) 1418 || ! ISALNUM (p[-1]))) 1419 p++; 1420 else if (*p == ',') 1421 { 1422 /* Start of operand. */ 1423 if (n == 3) 1424 { 1425 as_bad (_("too many operands")); 1426 return -1; 1427 } 1428 *to++ = '\0'; /* Terminate argument. */ 1429 args[++n] = to; /* Start next argument. */ 1430 p++; 1431 } 1432 else 1433 *to++ = *p++; 1434 } 1435 *to = '\0'; 1436 return n; 1437 } 1438 1439 /* i_scan: perform lexical scan of ascii assembler instruction. 1440 1441 Input assumptions: 1442 - input string is an i80960 instruction (not a pseudo-op) 1443 - all comments and labels have been removed 1444 - all strings of whitespace have been collapsed to a single blank. 1445 1446 Output: 1447 args[0] points to opcode, other entries point to operands. All strings: 1448 - are NULL-terminated 1449 - contain no whitespace 1450 - have character constants ('x') replaced with a decimal number 1451 1452 Return value: 1453 Number of operands (0,1,2, or 3) or -1 on error. */ 1454 1455 static int 1456 i_scan (char *iP, /* Pointer to ascii instruction; Mucked by us. */ 1457 char *args[]) /* Output arg: pointers to opcode and operands placed here. 1458 Must accommodate 4 entries. */ 1459 { 1460 /* Isolate opcode. */ 1461 if (*(iP) == ' ') 1462 iP++; 1463 1464 args[0] = iP; 1465 for (; *iP != ' '; iP++) 1466 { 1467 if (*iP == '\0') 1468 { 1469 /* There are no operands. */ 1470 if (args[0] == iP) 1471 { 1472 /* We never moved: there was no opcode either! */ 1473 as_bad (_("missing opcode")); 1474 return -1; 1475 } 1476 return 0; 1477 } 1478 } 1479 *iP++ = '\0'; 1480 return (get_args (iP, args)); 1481 } 1482 1483 static void 1484 brcnt_emit (void) 1485 { 1486 /* Emit call to "increment" routine. */ 1487 ctrl_fmt (BR_CNT_FUNC, CALL, 1); 1488 /* Emit inline counter to be incremented. */ 1489 emit (0); 1490 } 1491 1492 static char * 1493 brlab_next (void) 1494 { 1495 static char buf[20]; 1496 1497 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++); 1498 return buf; 1499 } 1500 1501 static void 1502 ctrl_fmt (char *targP, /* Pointer to text of lone operand (if any). */ 1503 long opcode, /* Template of instruction. */ 1504 int num_ops) /* Number of operands. */ 1505 { 1506 int instrument; /* TRUE iff we should add instrumentation to track 1507 how often the branch is taken. */ 1508 1509 if (num_ops == 0) 1510 emit (opcode); /* Output opcode. */ 1511 else 1512 { 1513 instrument = instrument_branches && (opcode != CALL) 1514 && (opcode != B) && (opcode != RET) && (opcode != BAL); 1515 1516 if (instrument) 1517 { 1518 brcnt_emit (); 1519 colon (brlab_next ()); 1520 } 1521 1522 /* The operand MUST be an ip-relative displacement. Parse it 1523 and set up address fix for the instruction we just output. */ 1524 get_cdisp (targP, "CTRL", opcode, 24, 0, 0); 1525 1526 if (instrument) 1527 brcnt_emit (); 1528 } 1529 } 1530 1531 static void 1532 cobr_fmt (/* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ 1533 char *arg[], 1534 /* Opcode, with branch-prediction bits already set if necessary. */ 1535 long opcode, 1536 /* Pointer to description of instruction. */ 1537 struct i960_opcode *oP) 1538 { 1539 long instr; /* 32-bit instruction. */ 1540 struct regop regop; /* Description of register operand. */ 1541 int n; /* Number of operands. */ 1542 int var_frag; /* 1 if varying length code fragment should 1543 be emitted; 0 if an address fix 1544 should be emitted. */ 1545 1546 instr = opcode; 1547 n = oP->num_ops; 1548 1549 if (n >= 1) 1550 { 1551 /* First operand (if any) of a COBR is always a register 1552 operand. Parse it. */ 1553 parse_regop (®op, arg[1], oP->operand[0]); 1554 instr |= (regop.n << 19) | (regop.mode << 13); 1555 } 1556 1557 if (n >= 2) 1558 { 1559 /* Second operand (if any) of a COBR is always a register 1560 operand. Parse it. */ 1561 parse_regop (®op, arg[2], oP->operand[1]); 1562 instr |= (regop.n << 14) | regop.special; 1563 } 1564 1565 if (n < 3) 1566 emit (instr); 1567 else 1568 { 1569 if (instrument_branches) 1570 { 1571 brcnt_emit (); 1572 colon (brlab_next ()); 1573 } 1574 1575 /* A third operand to a COBR is always a displacement. Parse 1576 it; if it's relaxable (a cobr "j" directive, or any cobr 1577 other than bbs/bbc when the "-norelax" option is not in use) 1578 set up a variable code fragment; otherwise set up an address 1579 fix. */ 1580 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ 1581 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0); 1582 1583 if (instrument_branches) 1584 brcnt_emit (); 1585 } 1586 } 1587 1588 /* Assumptions about the passed-in text: 1589 - all comments, labels removed 1590 - text is an instruction 1591 - all white space compressed to single blanks 1592 - all character constants have been replaced with decimal. */ 1593 1594 void 1595 md_assemble (char *textP) 1596 { 1597 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode 1598 mnemonic arg[1-3]->operands, with char constants replaced by 1599 decimal numbers. */ 1600 char *args[4]; 1601 /* Number of instruction operands. */ 1602 int n_ops; 1603 /* Pointer to instruction description. */ 1604 struct i960_opcode *oP; 1605 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f" 1606 or ".t"). */ 1607 int branch_predict; 1608 /* Setting of branch-prediction bit(s) to be OR'd into instruction 1609 opcode of CTRL/COBR format instructions. */ 1610 long bp_bits; 1611 /* Offset of last character in opcode mnemonic. */ 1612 int n; 1613 const char *bp_error_msg = _("branch prediction invalid on this opcode"); 1614 1615 /* Parse instruction into opcode and operands. */ 1616 memset (args, '\0', sizeof (args)); 1617 1618 n_ops = i_scan (textP, args); 1619 1620 if (n_ops == -1) 1621 return; /* Error message already issued. */ 1622 1623 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction. */ 1624 if (!strcmp (args[0], "ldconst")) 1625 { 1626 n_ops = parse_ldconst (args); 1627 if (n_ops == -1) 1628 return; 1629 } 1630 1631 /* Check for branch-prediction suffix on opcode mnemonic, strip it off. */ 1632 n = strlen (args[0]) - 1; 1633 branch_predict = 0; 1634 bp_bits = 0; 1635 1636 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')) 1637 { 1638 /* We could check here to see if the target architecture 1639 supports branch prediction, but why bother? The bit will 1640 just be ignored by processors that don't use it. */ 1641 branch_predict = 1; 1642 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; 1643 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */ 1644 } 1645 1646 /* Look up opcode mnemonic in table and check number of operands. 1647 Check that opcode is legal for the target architecture. If all 1648 looks good, assemble instruction. */ 1649 oP = (struct i960_opcode *) hash_find (op_hash, args[0]); 1650 if (!oP || !targ_has_iclass (oP->iclass)) 1651 as_bad (_("invalid opcode, \"%s\"."), args[0]); 1652 else if (n_ops != oP->num_ops) 1653 as_bad (_("improper number of operands. expecting %d, got %d"), 1654 oP->num_ops, n_ops); 1655 else 1656 { 1657 switch (oP->format) 1658 { 1659 case FBRA: 1660 case CTRL: 1661 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops); 1662 if (oP->format == FBRA) 1663 /* Now generate a 'bno' to same arg */ 1664 ctrl_fmt (args[1], BNO | bp_bits, 1); 1665 break; 1666 case COBR: 1667 case COJ: 1668 cobr_fmt (args, oP->opcode | bp_bits, oP); 1669 break; 1670 case REG: 1671 if (branch_predict) 1672 as_warn ("%s", bp_error_msg); 1673 reg_fmt (args, oP); 1674 break; 1675 case MEM1: 1676 if (args[0][0] == 'c' && args[0][1] == 'a') 1677 { 1678 if (branch_predict) 1679 as_warn ("%s", bp_error_msg); 1680 mem_fmt (args, oP, 1); 1681 break; 1682 } 1683 case MEM2: 1684 case MEM4: 1685 case MEM8: 1686 case MEM12: 1687 case MEM16: 1688 if (branch_predict) 1689 as_warn ("%s", bp_error_msg); 1690 mem_fmt (args, oP, 0); 1691 break; 1692 case CALLJ: 1693 if (branch_predict) 1694 as_warn ("%s", bp_error_msg); 1695 /* Output opcode & set up "fixup" (relocation); flag 1696 relocation as 'callj' type. */ 1697 know (oP->num_ops == 1); 1698 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1); 1699 break; 1700 default: 1701 BAD_CASE (oP->format); 1702 break; 1703 } 1704 } 1705 } 1706 1707 void 1708 md_number_to_chars (char *buf, 1709 valueT value, 1710 int n) 1711 { 1712 number_to_chars_littleendian (buf, value, n); 1713 } 1714 1715 #define MAX_LITTLENUMS 6 1716 #define LNUM_SIZE sizeof (LITTLENUM_TYPE) 1717 1718 /* md_atof: convert ascii to floating point 1719 1720 Turn a string at input_line_pointer into a floating point constant of type 1721 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS 1722 emitted is returned at 'sizeP'. An error message is returned, or a pointer 1723 to an empty message if OK. 1724 1725 Note we call the i386 floating point routine, rather than complicating 1726 things with more files or symbolic links. */ 1727 1728 char * 1729 md_atof (int type, char *litP, int *sizeP) 1730 { 1731 LITTLENUM_TYPE words[MAX_LITTLENUMS]; 1732 LITTLENUM_TYPE *wordP; 1733 int prec; 1734 char *t; 1735 1736 switch (type) 1737 { 1738 case 'f': 1739 case 'F': 1740 prec = 2; 1741 break; 1742 1743 case 'd': 1744 case 'D': 1745 prec = 4; 1746 break; 1747 1748 case 't': 1749 case 'T': 1750 prec = 5; 1751 type = 'x'; /* That's what atof_ieee() understands. */ 1752 break; 1753 1754 default: 1755 *sizeP = 0; 1756 return _("Bad call to md_atof()"); 1757 } 1758 1759 t = atof_ieee (input_line_pointer, type, words); 1760 if (t) 1761 input_line_pointer = t; 1762 1763 *sizeP = prec * LNUM_SIZE; 1764 1765 /* Output the LITTLENUMs in REVERSE order in accord with i80960 1766 word-order. (Dunno why atof_ieee doesn't do it in the right 1767 order in the first place -- probably because it's a hack of 1768 atof_m68k.) */ 1769 for (wordP = words + prec - 1; prec--;) 1770 { 1771 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE); 1772 litP += sizeof (LITTLENUM_TYPE); 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void 1779 md_number_to_imm (char *buf, long val, int n) 1780 { 1781 md_number_to_chars (buf, val, n); 1782 } 1783 1784 static void 1785 md_number_to_field (char *instrP, /* Pointer to instruction to be fixed. */ 1786 long val, /* Address fixup value. */ 1787 bit_fixS *bfixP) /* Description of bit field to be fixed up. */ 1788 { 1789 int numbits; /* Length of bit field to be fixed. */ 1790 long instr; /* 32-bit instruction to be fixed-up. */ 1791 long sign; /* 0 or -1, according to sign bit of 'val'. */ 1792 1793 /* Convert instruction back to host byte order. */ 1794 instr = md_chars_to_number (instrP, 4); 1795 1796 /* Surprise! -- we stored the number of bits to be modified rather 1797 than a pointer to a structure. */ 1798 numbits = (int) (size_t) bfixP; 1799 if (numbits == 1) 1800 /* This is a no-op, stuck here by reloc_callj(). */ 1801 return; 1802 1803 know ((numbits == 13) || (numbits == 24)); 1804 1805 /* Propagate sign bit of 'val' for the given number of bits. Result 1806 should be all 0 or all 1. */ 1807 sign = val >> ((int) numbits - 1); 1808 if (((val < 0) && (sign != -1)) 1809 || ((val > 0) && (sign != 0))) 1810 as_bad (_("Fixup of %ld too large for field width of %d"), 1811 val, numbits); 1812 else 1813 { 1814 /* Put bit field into instruction and write back in target 1815 * byte order. */ 1816 val &= ~(-1 << (int) numbits); /* Clear unused sign bits. */ 1817 instr |= val; 1818 md_number_to_chars (instrP, instr, 4); 1819 } 1820 } 1821 1822 1823 /* md_parse_option 1824 Invocation line includes a switch not recognized by the base assembler. 1825 See if it's a processor-specific option. For the 960, these are: 1826 1827 -norelax: 1828 Conditional branch instructions that require displacements 1829 greater than 13 bits (or that have external targets) should 1830 generate errors. The default is to replace each such 1831 instruction with the corresponding compare (or chkbit) and 1832 branch instructions. Note that the Intel "j" cobr directives 1833 are ALWAYS "de-optimized" in this way when necessary, 1834 regardless of the setting of this option. 1835 1836 -b: 1837 Add code to collect information about branches taken, for 1838 later optimization of branch prediction bits by a separate 1839 tool. COBR and CNTL format instructions have branch 1840 prediction bits (in the CX architecture); if "BR" represents 1841 an instruction in one of these classes, the following rep- 1842 resents the code generated by the assembler: 1843 1844 call <increment routine> 1845 .word 0 # pre-counter 1846 Label: BR 1847 call <increment routine> 1848 .word 0 # post-counter 1849 1850 A table of all such "Labels" is also generated. 1851 1852 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: 1853 Select the 80960 architecture. Instructions or features not 1854 supported by the selected architecture cause fatal errors. 1855 The default is to generate code for any instruction or feature 1856 that is supported by SOME version of the 960 (even if this 1857 means mixing architectures!). */ 1858 1859 const char *md_shortopts = "A:b"; 1860 struct option md_longopts[] = 1861 { 1862 #define OPTION_LINKRELAX (OPTION_MD_BASE) 1863 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX}, 1864 {"link-relax", no_argument, NULL, OPTION_LINKRELAX}, 1865 #define OPTION_NORELAX (OPTION_MD_BASE + 1) 1866 {"norelax", no_argument, NULL, OPTION_NORELAX}, 1867 {"no-relax", no_argument, NULL, OPTION_NORELAX}, 1868 {NULL, no_argument, NULL, 0} 1869 }; 1870 size_t md_longopts_size = sizeof (md_longopts); 1871 1872 struct tabentry 1873 { 1874 char *flag; 1875 int arch; 1876 }; 1877 static const struct tabentry arch_tab[] = 1878 { 1879 {"KA", ARCH_KA}, 1880 {"KB", ARCH_KB}, 1881 {"SA", ARCH_KA}, /* Synonym for KA. */ 1882 {"SB", ARCH_KB}, /* Synonym for KB. */ 1883 {"KC", ARCH_MC}, /* Synonym for MC. */ 1884 {"MC", ARCH_MC}, 1885 {"CA", ARCH_CA}, 1886 {"JX", ARCH_JX}, 1887 {"HX", ARCH_HX}, 1888 {NULL, 0} 1889 }; 1890 1891 int 1892 md_parse_option (int c, char *arg) 1893 { 1894 switch (c) 1895 { 1896 case OPTION_LINKRELAX: 1897 linkrelax = 1; 1898 flag_keep_locals = 1; 1899 break; 1900 1901 case OPTION_NORELAX: 1902 norelax = 1; 1903 break; 1904 1905 case 'b': 1906 instrument_branches = 1; 1907 break; 1908 1909 case 'A': 1910 { 1911 const struct tabentry *tp; 1912 char *p = arg; 1913 1914 for (tp = arch_tab; tp->flag != NULL; tp++) 1915 if (!strcmp (p, tp->flag)) 1916 break; 1917 1918 if (tp->flag == NULL) 1919 { 1920 as_bad (_("invalid architecture %s"), p); 1921 return 0; 1922 } 1923 else 1924 architecture = tp->arch; 1925 } 1926 break; 1927 1928 default: 1929 return 0; 1930 } 1931 1932 return 1; 1933 } 1934 1935 void 1936 md_show_usage (FILE *stream) 1937 { 1938 int i; 1939 1940 fprintf (stream, _("I960 options:\n")); 1941 for (i = 0; arch_tab[i].flag; i++) 1942 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag); 1943 fprintf (stream, _("\n\ 1944 specify variant of 960 architecture\n\ 1945 -b add code to collect statistics about branches taken\n\ 1946 -link-relax preserve individual alignment directives so linker\n\ 1947 can do relaxing (b.out format only)\n\ 1948 -no-relax don't alter compare-and-branch instructions for\n\ 1949 long displacements\n")); 1950 } 1951 1952 /* relax_cobr: 1953 Replace cobr instruction in a code fragment with equivalent branch and 1954 compare instructions, so it can reach beyond a 13-bit displacement. 1955 Set up an address fix/relocation for the new branch instruction. */ 1956 1957 /* This "conditional jump" table maps cobr instructions into 1958 equivalent compare and branch opcodes. */ 1959 1960 static const 1961 struct 1962 { 1963 long compare; 1964 long branch; 1965 } 1966 1967 coj[] = 1968 { /* COBR OPCODE: */ 1969 { CHKBIT, BNO }, /* 0x30 - bbc */ 1970 { CMPO, BG }, /* 0x31 - cmpobg */ 1971 { CMPO, BE }, /* 0x32 - cmpobe */ 1972 { CMPO, BGE }, /* 0x33 - cmpobge */ 1973 { CMPO, BL }, /* 0x34 - cmpobl */ 1974 { CMPO, BNE }, /* 0x35 - cmpobne */ 1975 { CMPO, BLE }, /* 0x36 - cmpoble */ 1976 { CHKBIT, BO }, /* 0x37 - bbs */ 1977 { CMPI, BNO }, /* 0x38 - cmpibno */ 1978 { CMPI, BG }, /* 0x39 - cmpibg */ 1979 { CMPI, BE }, /* 0x3a - cmpibe */ 1980 { CMPI, BGE }, /* 0x3b - cmpibge */ 1981 { CMPI, BL }, /* 0x3c - cmpibl */ 1982 { CMPI, BNE }, /* 0x3d - cmpibne */ 1983 { CMPI, BLE }, /* 0x3e - cmpible */ 1984 { CMPI, BO }, /* 0x3f - cmpibo */ 1985 }; 1986 1987 static void 1988 relax_cobr (fragS *fragP) /* fragP->fr_opcode is assumed to point to 1989 the cobr instruction, which comes at the 1990 end of the code fragment. */ 1991 { 1992 int opcode, src1, src2, m1, s2; 1993 /* Bit fields from cobr instruction. */ 1994 long bp_bits; /* Branch prediction bits from cobr instruction. */ 1995 long instr; /* A single i960 instruction. */ 1996 /* ->instruction to be replaced. */ 1997 char *iP; 1998 fixS *fixP; /* Relocation that can be done at assembly time. */ 1999 2000 /* Pick up & parse cobr instruction. */ 2001 iP = fragP->fr_opcode; 2002 instr = md_chars_to_number (iP, 4); 2003 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index. */ 2004 src1 = (instr >> 19) & 0x1f; 2005 m1 = (instr >> 13) & 1; 2006 s2 = instr & 1; 2007 src2 = (instr >> 14) & 0x1f; 2008 bp_bits = instr & BP_MASK; 2009 2010 /* Generate and output compare instruction. */ 2011 instr = coj[opcode].compare 2012 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); 2013 md_number_to_chars (iP, instr, 4); 2014 2015 /* Output branch instruction. */ 2016 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4); 2017 2018 /* Set up address fixup/relocation. */ 2019 fixP = fix_new (fragP, 2020 iP + 4 - fragP->fr_literal, 2021 4, 2022 fragP->fr_symbol, 2023 fragP->fr_offset, 2024 1, 2025 NO_RELOC); 2026 2027 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field. */ 2028 2029 fragP->fr_fix += 4; 2030 frag_wane (fragP); 2031 } 2032 2033 /* md_convert_frag: 2034 2035 Called by base assembler after address relaxation is finished: modify 2036 variable fragments according to how much relaxation was done. 2037 2038 If the fragment substate is still 1, a 13-bit displacement was enough 2039 to reach the symbol in question. Set up an address fixup, but otherwise 2040 leave the cobr instruction alone. 2041 2042 If the fragment substate is 2, a 13-bit displacement was not enough. 2043 Replace the cobr with a two instructions (a compare and a branch). */ 2044 2045 void 2046 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, 2047 segT sec ATTRIBUTE_UNUSED, 2048 fragS *fragP) 2049 { 2050 /* Structure describing needed address fix. */ 2051 fixS *fixP; 2052 2053 switch (fragP->fr_subtype) 2054 { 2055 case 1: 2056 /* Leave single cobr instruction. */ 2057 fixP = fix_new (fragP, 2058 fragP->fr_opcode - fragP->fr_literal, 2059 4, 2060 fragP->fr_symbol, 2061 fragP->fr_offset, 2062 1, 2063 NO_RELOC); 2064 2065 fixP->fx_bit_fixP = (bit_fixS *) 13; /* Size of bit field. */ 2066 break; 2067 case 2: 2068 /* Replace cobr with compare/branch instructions. */ 2069 relax_cobr (fragP); 2070 break; 2071 default: 2072 BAD_CASE (fragP->fr_subtype); 2073 break; 2074 } 2075 } 2076 2077 /* md_estimate_size_before_relax: How much does it look like *fragP will grow? 2078 2079 Called by base assembler just before address relaxation. 2080 Return the amount by which the fragment will grow. 2081 2082 Any symbol that is now undefined will not become defined; cobr's 2083 based on undefined symbols will have to be replaced with a compare 2084 instruction and a branch instruction, and the code fragment will grow 2085 by 4 bytes. */ 2086 2087 int 2088 md_estimate_size_before_relax (fragS *fragP, segT segment_type) 2089 { 2090 /* If symbol is undefined in this segment, go to "relaxed" state 2091 (compare and branch instructions instead of cobr) right now. */ 2092 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type) 2093 { 2094 relax_cobr (fragP); 2095 return 4; 2096 } 2097 2098 return md_relax_table[fragP->fr_subtype].rlx_length; 2099 } 2100 2101 #if defined(OBJ_AOUT) | defined(OBJ_BOUT) 2102 2103 /* md_ri_to_chars: 2104 This routine exists in order to overcome machine byte-order problems 2105 when dealing with bit-field entries in the relocation_info struct. 2106 2107 But relocation info will be used on the host machine only (only 2108 executable code is actually downloaded to the i80960). Therefore, 2109 we leave it in host byte order. */ 2110 2111 static void 2112 md_ri_to_chars (char *where, struct relocation_info *ri) 2113 { 2114 host_number_to_chars (where, ri->r_address, 4); 2115 host_number_to_chars (where + 4, ri->r_index, 3); 2116 #if WORDS_BIGENDIAN 2117 where[7] = (ri->r_pcrel << 7 2118 | ri->r_length << 5 2119 | ri->r_extern << 4 2120 | ri->r_bsr << 3 2121 | ri->r_disp << 2 2122 | ri->r_callj << 1 2123 | ri->nuthin << 0); 2124 #else 2125 where[7] = (ri->r_pcrel << 0 2126 | ri->r_length << 1 2127 | ri->r_extern << 3 2128 | ri->r_bsr << 4 2129 | ri->r_disp << 5 2130 | ri->r_callj << 6 2131 | ri->nuthin << 7); 2132 #endif 2133 } 2134 2135 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */ 2136 2137 2138 /* brtab_emit: generate the fetch-prediction branch table. 2139 2140 See the comments above the declaration of 'br_cnt' for details on 2141 branch-prediction instrumentation. 2142 2143 The code emitted here would be functionally equivalent to the following 2144 example assembler source. 2145 2146 .data 2147 .align 2 2148 BR_TAB_NAME: 2149 .word 0 # link to next table 2150 .word 3 # length of table 2151 .word LBRANCH0 # 1st entry in table proper 2152 .word LBRANCH1 2153 .word LBRANCH2 */ 2154 2155 void 2156 brtab_emit (void) 2157 { 2158 int i; 2159 char buf[20]; 2160 /* Where the binary was output to. */ 2161 char *p; 2162 /* Pointer to description of deferred address fixup. */ 2163 fixS *fixP; 2164 2165 if (!instrument_branches) 2166 return; 2167 2168 subseg_set (data_section, 0); /* .data */ 2169 frag_align (2, 0, 0); /* .align 2 */ 2170 record_alignment (now_seg, 2); 2171 colon (BR_TAB_NAME); /* BR_TAB_NAME: */ 2172 emit (0); /* .word 0 #link to next table */ 2173 emit (br_cnt); /* .word n #length of table */ 2174 2175 for (i = 0; i < br_cnt; i++) 2176 { 2177 sprintf (buf, "%s%d", BR_LABEL_BASE, i); 2178 p = emit (0); 2179 fixP = fix_new (frag_now, 2180 p - frag_now->fr_literal, 2181 4, symbol_find (buf), 0, 0, NO_RELOC); 2182 } 2183 } 2184 2185 /* s_leafproc: process .leafproc pseudo-op 2186 2187 .leafproc takes two arguments, the second one is optional: 2188 arg[1]: name of 'call' entry point to leaf procedure 2189 arg[2]: name of 'bal' entry point to leaf procedure 2190 2191 If the two arguments are identical, or if the second one is missing, 2192 the first argument is taken to be the 'bal' entry point. 2193 2194 If there are 2 distinct arguments, we must make sure that the 'bal' 2195 entry point immediately follows the 'call' entry point in the linked 2196 list of symbols. */ 2197 2198 static void 2199 s_leafproc (int n_ops, /* Number of operands. */ 2200 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */ 2201 { 2202 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol. */ 2203 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol. */ 2204 2205 if ((n_ops != 1) && (n_ops != 2)) 2206 { 2207 as_bad (_("should have 1 or 2 operands")); 2208 return; 2209 } 2210 2211 /* Find or create symbol for 'call' entry point. */ 2212 callP = symbol_find_or_make (args[1]); 2213 2214 if (TC_S_IS_CALLNAME (callP)) 2215 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP)); 2216 2217 /* If that was the only argument, use it as the 'bal' entry point. 2218 Otherwise, mark it as the 'call' entry point and find or create 2219 another symbol for the 'bal' entry point. */ 2220 if ((n_ops == 1) || !strcmp (args[1], args[2])) 2221 { 2222 TC_S_FORCE_TO_BALNAME (callP); 2223 } 2224 else 2225 { 2226 TC_S_FORCE_TO_CALLNAME (callP); 2227 2228 balP = symbol_find_or_make (args[2]); 2229 if (TC_S_IS_CALLNAME (balP)) 2230 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP)); 2231 2232 TC_S_FORCE_TO_BALNAME (balP); 2233 2234 #ifndef OBJ_ELF 2235 tc_set_bal_of_call (callP, balP); 2236 #endif 2237 } 2238 } 2239 2240 /* s_sysproc: process .sysproc pseudo-op 2241 2242 .sysproc takes two arguments: 2243 arg[1]: name of entry point to system procedure 2244 arg[2]: 'entry_num' (index) of system procedure in the range 2245 [0,31] inclusive. 2246 2247 For [ab].out, we store the 'entrynum' in the 'n_other' field of 2248 the symbol. Since that entry is normally 0, we bias 'entrynum' 2249 by adding 1 to it. It must be unbiased before it is used. */ 2250 2251 static void 2252 s_sysproc (int n_ops, /* Number of operands. */ 2253 char *args[]) /* args[1]->1st operand, args[2]->2nd operand. */ 2254 { 2255 expressionS exp; 2256 symbolS *symP; 2257 2258 if (n_ops != 2) 2259 { 2260 as_bad (_("should have two operands")); 2261 return; 2262 } 2263 2264 /* Parse "entry_num" argument and check it for validity. */ 2265 parse_expr (args[2], &exp); 2266 if (exp.X_op != O_constant 2267 || (offs (exp) < 0) 2268 || (offs (exp) > 31)) 2269 { 2270 as_bad (_("'entry_num' must be absolute number in [0,31]")); 2271 return; 2272 } 2273 2274 /* Find/make symbol and stick entry number (biased by +1) into it. */ 2275 symP = symbol_find_or_make (args[1]); 2276 2277 if (TC_S_IS_SYSPROC (symP)) 2278 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP)); 2279 2280 TC_S_SET_SYSPROC (symP, offs (exp)); /* Encode entry number. */ 2281 TC_S_FORCE_TO_SYSPROC (symP); 2282 } 2283 2284 /* parse_po: parse machine-dependent pseudo-op 2285 2286 This is a top-level routine for machine-dependent pseudo-ops. It slurps 2287 up the rest of the input line, breaks out the individual arguments, 2288 and dispatches them to the correct handler. */ 2289 2290 static void 2291 parse_po (int po_num) /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC. */ 2292 { 2293 /* Pointers operands, with no embedded whitespace. 2294 arg[0] unused, arg[1-3]->operands. */ 2295 char *args[4]; 2296 int n_ops; /* Number of operands. */ 2297 char *p; /* Pointer to beginning of unparsed argument string. */ 2298 char eol; /* Character that indicated end of line. */ 2299 2300 extern char is_end_of_line[]; 2301 2302 /* Advance input pointer to end of line. */ 2303 p = input_line_pointer; 2304 while (!is_end_of_line[(unsigned char) *input_line_pointer]) 2305 input_line_pointer++; 2306 2307 eol = *input_line_pointer; /* Save end-of-line char. */ 2308 *input_line_pointer = '\0'; /* Terminate argument list. */ 2309 2310 /* Parse out operands. */ 2311 n_ops = get_args (p, args); 2312 if (n_ops == -1) 2313 return; 2314 2315 /* Dispatch to correct handler. */ 2316 switch (po_num) 2317 { 2318 case S_SYSPROC: 2319 s_sysproc (n_ops, args); 2320 break; 2321 case S_LEAFPROC: 2322 s_leafproc (n_ops, args); 2323 break; 2324 default: 2325 BAD_CASE (po_num); 2326 break; 2327 } 2328 2329 /* Restore eol, so line numbers get updated correctly. Base 2330 assembler assumes we leave input pointer pointing at char 2331 following the eol. */ 2332 *input_line_pointer++ = eol; 2333 } 2334 2335 /* reloc_callj: Relocate a 'callj' instruction 2336 2337 This is a "non-(GNU)-standard" machine-dependent hook. The base 2338 assembler calls it when it decides it can relocate an address at 2339 assembly time instead of emitting a relocation directive. 2340 2341 Check to see if the relocation involves a 'callj' instruction to a: 2342 sysproc: Replace the default 'call' instruction with a 'calls' 2343 leafproc: Replace the default 'call' instruction with a 'bal'. 2344 other proc: Do nothing. 2345 2346 See b.out.h for details on the 'n_other' field in a symbol structure. 2347 2348 IMPORTANT!: 2349 Assumes the caller has already figured out, in the case of a leafproc, 2350 to use the 'bal' entry point, and has substituted that symbol into the 2351 passed fixup structure. */ 2352 2353 int 2354 reloc_callj (fixS *fixP) /* Relocation that can be done at assembly time. */ 2355 { 2356 /* Points to the binary for the instruction being relocated. */ 2357 char *where; 2358 2359 if (!fixP->fx_tcbit) 2360 /* This wasn't a callj instruction in the first place. */ 2361 return 0; 2362 2363 where = fixP->fx_frag->fr_literal + fixP->fx_where; 2364 2365 if (TC_S_IS_SYSPROC (fixP->fx_addsy)) 2366 { 2367 /* Symbol is a .sysproc: replace 'call' with 'calls'. System 2368 procedure number is (other-1). */ 2369 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4); 2370 2371 /* Nothing else needs to be done for this instruction. Make 2372 sure 'md_number_to_field()' will perform a no-op. */ 2373 fixP->fx_bit_fixP = (bit_fixS *) 1; 2374 } 2375 else if (TC_S_IS_CALLNAME (fixP->fx_addsy)) 2376 { 2377 /* Should not happen: see block comment above. */ 2378 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy)); 2379 } 2380 else if (TC_S_IS_BALNAME (fixP->fx_addsy)) 2381 { 2382 /* Replace 'call' with 'bal'; both instructions have the same 2383 format, so calling code should complete relocation as if 2384 nothing happened here. */ 2385 md_number_to_chars (where, BAL, 4); 2386 } 2387 else if (TC_S_IS_BADPROC (fixP->fx_addsy)) 2388 as_bad (_("Looks like a proc, but can't tell what kind.\n")); 2389 2390 /* Otherwise Symbol is neither a sysproc nor a leafproc. */ 2391 return 0; 2392 } 2393 2394 /* Handle the MRI .endian pseudo-op. */ 2395 2396 static void 2397 s_endian (int ignore ATTRIBUTE_UNUSED) 2398 { 2399 char *name; 2400 char c; 2401 2402 name = input_line_pointer; 2403 c = get_symbol_end (); 2404 if (strcasecmp (name, "little") == 0) 2405 ; 2406 else if (strcasecmp (name, "big") == 0) 2407 as_bad (_("big endian mode is not supported")); 2408 else 2409 as_warn (_("ignoring unrecognized .endian type `%s'"), name); 2410 2411 *input_line_pointer = c; 2412 2413 demand_empty_rest_of_line (); 2414 } 2415 2416 /* We have no need to default values of symbols. */ 2417 2418 symbolS * 2419 md_undefined_symbol (char *name ATTRIBUTE_UNUSED) 2420 { 2421 return 0; 2422 } 2423 2424 /* Exactly what point is a PC-relative offset relative TO? 2425 On the i960, they're relative to the address of the instruction, 2426 which we have set up as the address of the fixup too. */ 2427 long 2428 md_pcrel_from (fixS *fixP) 2429 { 2430 return fixP->fx_where + fixP->fx_frag->fr_address; 2431 } 2432 2433 void 2434 md_apply_fix (fixS *fixP, 2435 valueT *valP, 2436 segT seg ATTRIBUTE_UNUSED) 2437 { 2438 long val = *valP; 2439 char *place = fixP->fx_where + fixP->fx_frag->fr_literal; 2440 2441 if (!fixP->fx_bit_fixP) 2442 { 2443 md_number_to_imm (place, val, fixP->fx_size); 2444 } 2445 else if ((int) (size_t) fixP->fx_bit_fixP == 13 2446 && fixP->fx_addsy != NULL 2447 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section) 2448 { 2449 /* This is a COBR instruction. They have only a 2450 13-bit displacement and are only to be used 2451 for local branches: flag as error, don't generate 2452 relocation. */ 2453 as_bad_where (fixP->fx_file, fixP->fx_line, 2454 _("can't use COBR format with external label")); 2455 fixP->fx_addsy = NULL; 2456 } 2457 else 2458 md_number_to_field (place, val, fixP->fx_bit_fixP); 2459 2460 if (fixP->fx_addsy == NULL) 2461 fixP->fx_done = 1; 2462 } 2463 2464 #if defined(OBJ_AOUT) | defined(OBJ_BOUT) 2465 void 2466 tc_bout_fix_to_chars (char *where, 2467 fixS *fixP, 2468 relax_addressT segment_address_in_file) 2469 { 2470 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; 2471 struct relocation_info ri; 2472 symbolS *symbolP; 2473 2474 memset ((char *) &ri, '\0', sizeof (ri)); 2475 symbolP = fixP->fx_addsy; 2476 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC); 2477 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */ 2478 /* These two 'cuz of NS32K */ 2479 ri.r_callj = fixP->fx_tcbit; 2480 if (fixP->fx_bit_fixP) 2481 ri.r_length = 2; 2482 else 2483 ri.r_length = nbytes_r_length[fixP->fx_size]; 2484 ri.r_pcrel = fixP->fx_pcrel; 2485 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; 2486 2487 if (fixP->fx_r_type != NO_RELOC) 2488 { 2489 switch (fixP->fx_r_type) 2490 { 2491 case rs_align: 2492 ri.r_index = -2; 2493 ri.r_pcrel = 1; 2494 ri.r_length = fixP->fx_size - 1; 2495 break; 2496 case rs_org: 2497 ri.r_index = -2; 2498 ri.r_pcrel = 0; 2499 break; 2500 case rs_fill: 2501 ri.r_index = -1; 2502 break; 2503 default: 2504 abort (); 2505 } 2506 ri.r_extern = 0; 2507 } 2508 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr) 2509 { 2510 ri.r_extern = 1; 2511 ri.r_index = symbolP->sy_number; 2512 } 2513 else 2514 { 2515 ri.r_extern = 0; 2516 ri.r_index = S_GET_TYPE (symbolP); 2517 } 2518 2519 /* Output the relocation information in machine-dependent form. */ 2520 md_ri_to_chars (where, &ri); 2521 } 2522 2523 #endif /* OBJ_AOUT or OBJ_BOUT */ 2524 2525 /* Align an address by rounding it up to the specified boundary. */ 2526 2527 valueT 2528 md_section_align (segT seg, 2529 valueT addr) /* Address to be rounded up. */ 2530 { 2531 int align; 2532 2533 align = bfd_get_section_alignment (stdoutput, seg); 2534 return (addr + (1 << align) - 1) & (-1 << align); 2535 } 2536 2537 extern int coff_flags; 2538 2539 /* For aout or bout, the bal immediately follows the call. 2540 2541 For coff, we cheat and store a pointer to the bal symbol in the 2542 second aux entry of the call. */ 2543 2544 #undef OBJ_ABOUT 2545 #ifdef OBJ_AOUT 2546 #define OBJ_ABOUT 2547 #endif 2548 #ifdef OBJ_BOUT 2549 #define OBJ_ABOUT 2550 #endif 2551 2552 void 2553 tc_set_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED, 2554 symbolS *balP ATTRIBUTE_UNUSED) 2555 { 2556 know (TC_S_IS_CALLNAME (callP)); 2557 know (TC_S_IS_BALNAME (balP)); 2558 2559 #ifdef OBJ_COFF 2560 2561 callP->sy_tc = balP; 2562 S_SET_NUMBER_AUXILIARY (callP, 2); 2563 2564 #else /* ! OBJ_COFF */ 2565 #ifdef OBJ_ABOUT 2566 2567 /* If the 'bal' entry doesn't immediately follow the 'call' 2568 symbol, unlink it from the symbol list and re-insert it. */ 2569 if (symbol_next (callP) != balP) 2570 { 2571 symbol_remove (balP, &symbol_rootP, &symbol_lastP); 2572 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP); 2573 } /* if not in order */ 2574 2575 #else /* ! OBJ_ABOUT */ 2576 as_fatal ("Only supported for a.out, b.out, or COFF"); 2577 #endif /* ! OBJ_ABOUT */ 2578 #endif /* ! OBJ_COFF */ 2579 } 2580 2581 symbolS * 2582 tc_get_bal_of_call (symbolS *callP ATTRIBUTE_UNUSED) 2583 { 2584 symbolS *retval; 2585 2586 know (TC_S_IS_CALLNAME (callP)); 2587 2588 #ifdef OBJ_COFF 2589 retval = callP->sy_tc; 2590 #else 2591 #ifdef OBJ_ABOUT 2592 retval = symbol_next (callP); 2593 #else 2594 as_fatal ("Only supported for a.out, b.out, or COFF"); 2595 #endif /* ! OBJ_ABOUT */ 2596 #endif /* ! OBJ_COFF */ 2597 2598 know (TC_S_IS_BALNAME (retval)); 2599 return retval; 2600 } 2601 2602 #ifdef OBJ_COFF 2603 void 2604 tc_coff_symbol_emit_hook (symbolS *symbolP ATTRIBUTE_UNUSED) 2605 { 2606 if (TC_S_IS_CALLNAME (symbolP)) 2607 { 2608 symbolS *balP = tc_get_bal_of_call (symbolP); 2609 2610 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP); 2611 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT) 2612 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT); 2613 else 2614 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT); 2615 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); 2616 /* Fix up the bal symbol. */ 2617 S_SET_STORAGE_CLASS (balP, C_LABEL); 2618 } 2619 } 2620 #endif /* OBJ_COFF */ 2621 2622 void 2623 i960_handle_align (fragS *fragp ATTRIBUTE_UNUSED) 2624 { 2625 if (!linkrelax) 2626 return; 2627 2628 #ifndef OBJ_BOUT 2629 as_bad (_("option --link-relax is only supported in b.out format")); 2630 linkrelax = 0; 2631 return; 2632 #else 2633 2634 /* The text section "ends" with another alignment reloc, to which we 2635 aren't adding padding. */ 2636 if (fragp->fr_next == text_last_frag 2637 || fragp->fr_next == data_last_frag) 2638 return; 2639 2640 /* alignment directive */ 2641 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, 2642 (int) fragp->fr_type); 2643 #endif /* OBJ_BOUT */ 2644 } 2645 2646 int 2647 i960_validate_fix (fixS *fixP, segT this_segment_type ATTRIBUTE_UNUSED) 2648 { 2649 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy)) 2650 { 2651 /* Relocation should be done via the associated 'bal' 2652 entry point symbol. */ 2653 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy))) 2654 { 2655 as_bad_where (fixP->fx_file, fixP->fx_line, 2656 _("No 'bal' entry point for leafproc %s"), 2657 S_GET_NAME (fixP->fx_addsy)); 2658 return 0; 2659 } 2660 fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy); 2661 } 2662 2663 return 1; 2664 } 2665 2666 /* From cgen.c: */ 2667 2668 static short 2669 tc_bfd_fix2rtype (fixS *fixP) 2670 { 2671 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) 2672 return BFD_RELOC_32; 2673 2674 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) 2675 return BFD_RELOC_24_PCREL; 2676 2677 abort (); 2678 return 0; 2679 } 2680 2681 /* Translate internal representation of relocation info to BFD target 2682 format. 2683 2684 FIXME: To what extent can we get all relevant targets to use this? */ 2685 2686 arelent * 2687 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixP) 2688 { 2689 arelent * reloc; 2690 2691 reloc = xmalloc (sizeof (arelent)); 2692 2693 /* HACK: Is this right? */ 2694 fixP->fx_r_type = tc_bfd_fix2rtype (fixP); 2695 2696 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 2697 if (reloc->howto == NULL) 2698 { 2699 as_bad_where (fixP->fx_file, fixP->fx_line, 2700 "internal error: can't export reloc type %d (`%s')", 2701 fixP->fx_r_type, 2702 bfd_get_reloc_code_name (fixP->fx_r_type)); 2703 return NULL; 2704 } 2705 2706 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); 2707 2708 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); 2709 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); 2710 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; 2711 reloc->addend = fixP->fx_addnumber; 2712 2713 return reloc; 2714 } 2715 2716 /* end from cgen.c */ 2717 2718 const pseudo_typeS md_pseudo_table[] = 2719 { 2720 {"bss", s_lcomm, 1}, 2721 {"endian", s_endian, 0}, 2722 {"extended", float_cons, 't'}, 2723 {"leafproc", parse_po, S_LEAFPROC}, 2724 {"sysproc", parse_po, S_SYSPROC}, 2725 2726 {"word", cons, 4}, 2727 {"quad", cons, 16}, 2728 2729 {0, 0, 0} 2730 }; 2731