1 /* expr.c -operands, expressions- 2 Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 4 Free Software Foundation, Inc. 5 6 This file is part of GAS, the GNU Assembler. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the Free 20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 21 02110-1301, USA. */ 22 23 /* This is really a branch office of as-read.c. I split it out to clearly 24 distinguish the world of expressions from the world of statements. 25 (It also gives smaller files to re-compile.) 26 Here, "operand"s are of expressions, not instructions. */ 27 28 #include <string.h> 29 #define min(a, b) ((a) < (b) ? (a) : (b)) 30 31 #include "as.h" 32 #include "safe-ctype.h" 33 #include "obstack.h" 34 35 static void floating_constant (expressionS * expressionP); 36 static valueT generic_bignum_to_int32 (void); 37 #ifdef BFD64 38 static valueT generic_bignum_to_int64 (void); 39 #endif 40 static void integer_constant (int radix, expressionS * expressionP); 41 static void mri_char_constant (expressionS *); 42 static void current_location (expressionS *); 43 static void clean_up_expression (expressionS * expressionP); 44 static segT operand (expressionS *, enum expr_mode); 45 static operatorT operator (int *); 46 47 extern const char EXP_CHARS[], FLT_CHARS[]; 48 49 /* We keep a mapping of expression symbols to file positions, so that 50 we can provide better error messages. */ 51 52 struct expr_symbol_line { 53 struct expr_symbol_line *next; 54 symbolS *sym; 55 char *file; 56 unsigned int line; 57 }; 58 59 static struct expr_symbol_line *expr_symbol_lines; 60 61 /* Build a dummy symbol to hold a complex expression. This is how we 62 build expressions up out of other expressions. The symbol is put 63 into the fake section expr_section. */ 64 65 symbolS * 66 make_expr_symbol (expressionS *expressionP) 67 { 68 expressionS zero; 69 symbolS *symbolP; 70 struct expr_symbol_line *n; 71 72 if (expressionP->X_op == O_symbol 73 && expressionP->X_add_number == 0) 74 return expressionP->X_add_symbol; 75 76 if (expressionP->X_op == O_big) 77 { 78 /* This won't work, because the actual value is stored in 79 generic_floating_point_number or generic_bignum, and we are 80 going to lose it if we haven't already. */ 81 if (expressionP->X_add_number > 0) 82 as_bad (_("bignum invalid")); 83 else 84 as_bad (_("floating point number invalid")); 85 zero.X_op = O_constant; 86 zero.X_add_number = 0; 87 zero.X_unsigned = 0; 88 clean_up_expression (&zero); 89 expressionP = &zero; 90 } 91 92 /* Putting constant symbols in absolute_section rather than 93 expr_section is convenient for the old a.out code, for which 94 S_GET_SEGMENT does not always retrieve the value put in by 95 S_SET_SEGMENT. */ 96 symbolP = symbol_create (FAKE_LABEL_NAME, 97 (expressionP->X_op == O_constant 98 ? absolute_section 99 : expr_section), 100 0, &zero_address_frag); 101 symbol_set_value_expression (symbolP, expressionP); 102 103 if (expressionP->X_op == O_constant) 104 resolve_symbol_value (symbolP); 105 106 n = (struct expr_symbol_line *) xmalloc (sizeof *n); 107 n->sym = symbolP; 108 as_where (&n->file, &n->line); 109 n->next = expr_symbol_lines; 110 expr_symbol_lines = n; 111 112 return symbolP; 113 } 114 115 /* Return the file and line number for an expr symbol. Return 116 non-zero if something was found, 0 if no information is known for 117 the symbol. */ 118 119 int 120 expr_symbol_where (symbolS *sym, char **pfile, unsigned int *pline) 121 { 122 register struct expr_symbol_line *l; 123 124 for (l = expr_symbol_lines; l != NULL; l = l->next) 125 { 126 if (l->sym == sym) 127 { 128 *pfile = l->file; 129 *pline = l->line; 130 return 1; 131 } 132 } 133 134 return 0; 135 } 136 137 /* Utilities for building expressions. 138 Since complex expressions are recorded as symbols for use in other 139 expressions these return a symbolS * and not an expressionS *. 140 These explicitly do not take an "add_number" argument. */ 141 /* ??? For completeness' sake one might want expr_build_symbol. 142 It would just return its argument. */ 143 144 /* Build an expression for an unsigned constant. 145 The corresponding one for signed constants is missing because 146 there's currently no need for it. One could add an unsigned_p flag 147 but that seems more clumsy. */ 148 149 symbolS * 150 expr_build_uconstant (offsetT value) 151 { 152 expressionS e; 153 154 e.X_op = O_constant; 155 e.X_add_number = value; 156 e.X_unsigned = 1; 157 return make_expr_symbol (&e); 158 } 159 160 /* Build an expression for the current location ('.'). */ 161 162 symbolS * 163 expr_build_dot (void) 164 { 165 expressionS e; 166 167 current_location (&e); 168 return make_expr_symbol (&e); 169 } 170 171 /* Build any floating-point literal here. 172 Also build any bignum literal here. */ 173 174 /* Seems atof_machine can backscan through generic_bignum and hit whatever 175 happens to be loaded before it in memory. And its way too complicated 176 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger, 177 and never write into the early words, thus they'll always be zero. 178 I hate Dean's floating-point code. Bleh. */ 179 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6]; 180 181 FLONUM_TYPE generic_floating_point_number = { 182 &generic_bignum[6], /* low. (JF: Was 0) */ 183 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */ 184 0, /* leader. */ 185 0, /* exponent. */ 186 0 /* sign. */ 187 }; 188 189 190 static void 191 floating_constant (expressionS *expressionP) 192 { 193 /* input_line_pointer -> floating-point constant. */ 194 int error_code; 195 196 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS, 197 &generic_floating_point_number); 198 199 if (error_code) 200 { 201 if (error_code == ERROR_EXPONENT_OVERFLOW) 202 { 203 as_bad (_("bad floating-point constant: exponent overflow")); 204 } 205 else 206 { 207 as_bad (_("bad floating-point constant: unknown error code=%d"), 208 error_code); 209 } 210 } 211 expressionP->X_op = O_big; 212 /* input_line_pointer -> just after constant, which may point to 213 whitespace. */ 214 expressionP->X_add_number = -1; 215 } 216 217 static valueT 218 generic_bignum_to_int32 (void) 219 { 220 valueT number = 221 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS) 222 | (generic_bignum[0] & LITTLENUM_MASK); 223 number &= 0xffffffff; 224 return number; 225 } 226 227 #ifdef BFD64 228 static valueT 229 generic_bignum_to_int64 (void) 230 { 231 valueT number = 232 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK) 233 << LITTLENUM_NUMBER_OF_BITS) 234 | ((valueT) generic_bignum[2] & LITTLENUM_MASK)) 235 << LITTLENUM_NUMBER_OF_BITS) 236 | ((valueT) generic_bignum[1] & LITTLENUM_MASK)) 237 << LITTLENUM_NUMBER_OF_BITS) 238 | ((valueT) generic_bignum[0] & LITTLENUM_MASK)); 239 return number; 240 } 241 #endif 242 243 static void 244 integer_constant (int radix, expressionS *expressionP) 245 { 246 char *start; /* Start of number. */ 247 char *suffix = NULL; 248 char c; 249 valueT number; /* Offset or (absolute) value. */ 250 short int digit; /* Value of next digit in current radix. */ 251 short int maxdig = 0; /* Highest permitted digit value. */ 252 int too_many_digits = 0; /* If we see >= this number of. */ 253 char *name; /* Points to name of symbol. */ 254 symbolS *symbolP; /* Points to symbol. */ 255 256 int small; /* True if fits in 32 bits. */ 257 258 /* May be bignum, or may fit in 32 bits. */ 259 /* Most numbers fit into 32 bits, and we want this case to be fast. 260 so we pretend it will fit into 32 bits. If, after making up a 32 261 bit number, we realise that we have scanned more digits than 262 comfortably fit into 32 bits, we re-scan the digits coding them 263 into a bignum. For decimal and octal numbers we are 264 conservative: Some numbers may be assumed bignums when in fact 265 they do fit into 32 bits. Numbers of any radix can have excess 266 leading zeros: We strive to recognise this and cast them back 267 into 32 bits. We must check that the bignum really is more than 268 32 bits, and change it back to a 32-bit number if it fits. The 269 number we are looking for is expected to be positive, but if it 270 fits into 32 bits as an unsigned number, we let it be a 32-bit 271 number. The cavalier approach is for speed in ordinary cases. */ 272 /* This has been extended for 64 bits. We blindly assume that if 273 you're compiling in 64-bit mode, the target is a 64-bit machine. 274 This should be cleaned up. */ 275 276 #ifdef BFD64 277 #define valuesize 64 278 #else /* includes non-bfd case, mostly */ 279 #define valuesize 32 280 #endif 281 282 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0) 283 { 284 int flt = 0; 285 286 /* In MRI mode, the number may have a suffix indicating the 287 radix. For that matter, it might actually be a floating 288 point constant. */ 289 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++) 290 { 291 if (*suffix == 'e' || *suffix == 'E') 292 flt = 1; 293 } 294 295 if (suffix == input_line_pointer) 296 { 297 radix = 10; 298 suffix = NULL; 299 } 300 else 301 { 302 c = *--suffix; 303 c = TOUPPER (c); 304 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB, 305 we distinguish between 'B' and 'b'. This is the case for 306 Z80. */ 307 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B') 308 radix = 2; 309 else if (c == 'D') 310 radix = 10; 311 else if (c == 'O' || c == 'Q') 312 radix = 8; 313 else if (c == 'H') 314 radix = 16; 315 else if (suffix[1] == '.' || c == 'E' || flt) 316 { 317 floating_constant (expressionP); 318 return; 319 } 320 else 321 { 322 radix = 10; 323 suffix = NULL; 324 } 325 } 326 } 327 328 switch (radix) 329 { 330 case 2: 331 maxdig = 2; 332 too_many_digits = valuesize + 1; 333 break; 334 case 8: 335 maxdig = radix = 8; 336 too_many_digits = (valuesize + 2) / 3 + 1; 337 break; 338 case 16: 339 maxdig = radix = 16; 340 too_many_digits = (valuesize + 3) / 4 + 1; 341 break; 342 case 10: 343 maxdig = radix = 10; 344 too_many_digits = (valuesize + 11) / 4; /* Very rough. */ 345 } 346 #undef valuesize 347 start = input_line_pointer; 348 c = *input_line_pointer++; 349 for (number = 0; 350 (digit = hex_value (c)) < maxdig; 351 c = *input_line_pointer++) 352 { 353 number = number * radix + digit; 354 } 355 /* c contains character after number. */ 356 /* input_line_pointer->char after c. */ 357 small = (input_line_pointer - start - 1) < too_many_digits; 358 359 if (radix == 16 && c == '_') 360 { 361 /* This is literal of the form 0x333_0_12345678_1. 362 This example is equivalent to 0x00000333000000001234567800000001. */ 363 364 int num_little_digits = 0; 365 int i; 366 input_line_pointer = start; /* -> 1st digit. */ 367 368 know (LITTLENUM_NUMBER_OF_BITS == 16); 369 370 for (c = '_'; c == '_'; num_little_digits += 2) 371 { 372 373 /* Convert one 64-bit word. */ 374 int ndigit = 0; 375 number = 0; 376 for (c = *input_line_pointer++; 377 (digit = hex_value (c)) < maxdig; 378 c = *(input_line_pointer++)) 379 { 380 number = number * radix + digit; 381 ndigit++; 382 } 383 384 /* Check for 8 digit per word max. */ 385 if (ndigit > 8) 386 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word")); 387 388 /* Add this chunk to the bignum. 389 Shift things down 2 little digits. */ 390 know (LITTLENUM_NUMBER_OF_BITS == 16); 391 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1); 392 i >= 2; 393 i--) 394 generic_bignum[i] = generic_bignum[i - 2]; 395 396 /* Add the new digits as the least significant new ones. */ 397 generic_bignum[0] = number & 0xffffffff; 398 generic_bignum[1] = number >> 16; 399 } 400 401 /* Again, c is char after number, input_line_pointer->after c. */ 402 403 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1) 404 num_little_digits = SIZE_OF_LARGE_NUMBER - 1; 405 406 assert (num_little_digits >= 4); 407 408 if (num_little_digits != 8) 409 as_bad (_("a bignum with underscores must have exactly 4 words")); 410 411 /* We might have some leading zeros. These can be trimmed to give 412 us a change to fit this constant into a small number. */ 413 while (generic_bignum[num_little_digits - 1] == 0 414 && num_little_digits > 1) 415 num_little_digits--; 416 417 if (num_little_digits <= 2) 418 { 419 /* will fit into 32 bits. */ 420 number = generic_bignum_to_int32 (); 421 small = 1; 422 } 423 #ifdef BFD64 424 else if (num_little_digits <= 4) 425 { 426 /* Will fit into 64 bits. */ 427 number = generic_bignum_to_int64 (); 428 small = 1; 429 } 430 #endif 431 else 432 { 433 small = 0; 434 435 /* Number of littlenums in the bignum. */ 436 number = num_little_digits; 437 } 438 } 439 else if (!small) 440 { 441 /* We saw a lot of digits. manufacture a bignum the hard way. */ 442 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */ 443 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */ 444 long carry; 445 446 leader = generic_bignum; 447 generic_bignum[0] = 0; 448 generic_bignum[1] = 0; 449 generic_bignum[2] = 0; 450 generic_bignum[3] = 0; 451 input_line_pointer = start; /* -> 1st digit. */ 452 c = *input_line_pointer++; 453 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++) 454 { 455 for (pointer = generic_bignum; pointer <= leader; pointer++) 456 { 457 long work; 458 459 work = carry + radix * *pointer; 460 *pointer = work & LITTLENUM_MASK; 461 carry = work >> LITTLENUM_NUMBER_OF_BITS; 462 } 463 if (carry) 464 { 465 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1) 466 { 467 /* Room to grow a longer bignum. */ 468 *++leader = carry; 469 } 470 } 471 } 472 /* Again, c is char after number. */ 473 /* input_line_pointer -> after c. */ 474 know (LITTLENUM_NUMBER_OF_BITS == 16); 475 if (leader < generic_bignum + 2) 476 { 477 /* Will fit into 32 bits. */ 478 number = generic_bignum_to_int32 (); 479 small = 1; 480 } 481 #ifdef BFD64 482 else if (leader < generic_bignum + 4) 483 { 484 /* Will fit into 64 bits. */ 485 number = generic_bignum_to_int64 (); 486 small = 1; 487 } 488 #endif 489 else 490 { 491 /* Number of littlenums in the bignum. */ 492 number = leader - generic_bignum + 1; 493 } 494 } 495 496 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) 497 && suffix != NULL 498 && input_line_pointer - 1 == suffix) 499 c = *input_line_pointer++; 500 501 if (small) 502 { 503 /* Here with number, in correct radix. c is the next char. 504 Note that unlike un*x, we allow "011f" "0x9f" to both mean 505 the same as the (conventional) "9f". 506 This is simply easier than checking for strict canonical 507 form. Syntax sux! */ 508 509 if (LOCAL_LABELS_FB && c == 'b') 510 { 511 /* Backward ref to local label. 512 Because it is backward, expect it to be defined. */ 513 /* Construct a local label. */ 514 name = fb_label_name ((int) number, 0); 515 516 /* Seen before, or symbol is defined: OK. */ 517 symbolP = symbol_find (name); 518 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP))) 519 { 520 /* Local labels are never absolute. Don't waste time 521 checking absoluteness. */ 522 know (SEG_NORMAL (S_GET_SEGMENT (symbolP))); 523 524 expressionP->X_op = O_symbol; 525 expressionP->X_add_symbol = symbolP; 526 } 527 else 528 { 529 /* Either not seen or not defined. */ 530 /* @@ Should print out the original string instead of 531 the parsed number. */ 532 as_bad (_("backward ref to unknown label \"%d:\""), 533 (int) number); 534 expressionP->X_op = O_constant; 535 } 536 537 expressionP->X_add_number = 0; 538 } /* case 'b' */ 539 else if (LOCAL_LABELS_FB && c == 'f') 540 { 541 /* Forward reference. Expect symbol to be undefined or 542 unknown. undefined: seen it before. unknown: never seen 543 it before. 544 545 Construct a local label name, then an undefined symbol. 546 Don't create a xseg frag for it: caller may do that. 547 Just return it as never seen before. */ 548 name = fb_label_name ((int) number, 1); 549 symbolP = symbol_find_or_make (name); 550 /* We have no need to check symbol properties. */ 551 #ifndef many_segments 552 /* Since "know" puts its arg into a "string", we 553 can't have newlines in the argument. */ 554 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section); 555 #endif 556 expressionP->X_op = O_symbol; 557 expressionP->X_add_symbol = symbolP; 558 expressionP->X_add_number = 0; 559 } /* case 'f' */ 560 else if (LOCAL_LABELS_DOLLAR && c == '$') 561 { 562 /* If the dollar label is *currently* defined, then this is just 563 another reference to it. If it is not *currently* defined, 564 then this is a fresh instantiation of that number, so create 565 it. */ 566 567 if (dollar_label_defined ((long) number)) 568 { 569 name = dollar_label_name ((long) number, 0); 570 symbolP = symbol_find (name); 571 know (symbolP != NULL); 572 } 573 else 574 { 575 name = dollar_label_name ((long) number, 1); 576 symbolP = symbol_find_or_make (name); 577 } 578 579 expressionP->X_op = O_symbol; 580 expressionP->X_add_symbol = symbolP; 581 expressionP->X_add_number = 0; 582 } /* case '$' */ 583 else 584 { 585 expressionP->X_op = O_constant; 586 expressionP->X_add_number = number; 587 input_line_pointer--; /* Restore following character. */ 588 } /* Really just a number. */ 589 } 590 else 591 { 592 /* Not a small number. */ 593 expressionP->X_op = O_big; 594 expressionP->X_add_number = number; /* Number of littlenums. */ 595 input_line_pointer--; /* -> char following number. */ 596 } 597 } 598 599 /* Parse an MRI multi character constant. */ 600 601 static void 602 mri_char_constant (expressionS *expressionP) 603 { 604 int i; 605 606 if (*input_line_pointer == '\'' 607 && input_line_pointer[1] != '\'') 608 { 609 expressionP->X_op = O_constant; 610 expressionP->X_add_number = 0; 611 return; 612 } 613 614 /* In order to get the correct byte ordering, we must build the 615 number in reverse. */ 616 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--) 617 { 618 int j; 619 620 generic_bignum[i] = 0; 621 for (j = 0; j < CHARS_PER_LITTLENUM; j++) 622 { 623 if (*input_line_pointer == '\'') 624 { 625 if (input_line_pointer[1] != '\'') 626 break; 627 ++input_line_pointer; 628 } 629 generic_bignum[i] <<= 8; 630 generic_bignum[i] += *input_line_pointer; 631 ++input_line_pointer; 632 } 633 634 if (i < SIZE_OF_LARGE_NUMBER - 1) 635 { 636 /* If there is more than one littlenum, left justify the 637 last one to make it match the earlier ones. If there is 638 only one, we can just use the value directly. */ 639 for (; j < CHARS_PER_LITTLENUM; j++) 640 generic_bignum[i] <<= 8; 641 } 642 643 if (*input_line_pointer == '\'' 644 && input_line_pointer[1] != '\'') 645 break; 646 } 647 648 if (i < 0) 649 { 650 as_bad (_("character constant too large")); 651 i = 0; 652 } 653 654 if (i > 0) 655 { 656 int c; 657 int j; 658 659 c = SIZE_OF_LARGE_NUMBER - i; 660 for (j = 0; j < c; j++) 661 generic_bignum[j] = generic_bignum[i + j]; 662 i = c; 663 } 664 665 know (LITTLENUM_NUMBER_OF_BITS == 16); 666 if (i > 2) 667 { 668 expressionP->X_op = O_big; 669 expressionP->X_add_number = i; 670 } 671 else 672 { 673 expressionP->X_op = O_constant; 674 if (i < 2) 675 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK; 676 else 677 expressionP->X_add_number = 678 (((generic_bignum[1] & LITTLENUM_MASK) 679 << LITTLENUM_NUMBER_OF_BITS) 680 | (generic_bignum[0] & LITTLENUM_MASK)); 681 } 682 683 /* Skip the final closing quote. */ 684 ++input_line_pointer; 685 } 686 687 /* Return an expression representing the current location. This 688 handles the magic symbol `.'. */ 689 690 static void 691 current_location (expressionS *expressionp) 692 { 693 if (now_seg == absolute_section) 694 { 695 expressionp->X_op = O_constant; 696 expressionp->X_add_number = abs_section_offset; 697 } 698 else 699 { 700 expressionp->X_op = O_symbol; 701 expressionp->X_add_symbol = symbol_temp_new_now (); 702 expressionp->X_add_number = 0; 703 } 704 } 705 706 /* In: Input_line_pointer points to 1st char of operand, which may 707 be a space. 708 709 Out: An expressionS. 710 The operand may have been empty: in this case X_op == O_absent. 711 Input_line_pointer->(next non-blank) char after operand. */ 712 713 static segT 714 operand (expressionS *expressionP, enum expr_mode mode) 715 { 716 char c; 717 symbolS *symbolP; /* Points to symbol. */ 718 char *name; /* Points to name of symbol. */ 719 segT segment; 720 721 /* All integers are regarded as unsigned unless they are negated. 722 This is because the only thing which cares whether a number is 723 unsigned is the code in emit_expr which extends constants into 724 bignums. It should only sign extend negative numbers, so that 725 something like ``.quad 0x80000000'' is not sign extended even 726 though it appears negative if valueT is 32 bits. */ 727 expressionP->X_unsigned = 1; 728 729 /* Digits, assume it is a bignum. */ 730 731 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */ 732 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */ 733 734 if (is_end_of_line[(unsigned char) c]) 735 goto eol; 736 737 switch (c) 738 { 739 case '1': 740 case '2': 741 case '3': 742 case '4': 743 case '5': 744 case '6': 745 case '7': 746 case '8': 747 case '9': 748 input_line_pointer--; 749 750 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) 751 ? 0 : 10, 752 expressionP); 753 break; 754 755 #ifdef LITERAL_PREFIXDOLLAR_HEX 756 case '$': 757 /* $L is the start of a local label, not a hex constant. */ 758 if (* input_line_pointer == 'L') 759 goto isname; 760 integer_constant (16, expressionP); 761 break; 762 #endif 763 764 #ifdef LITERAL_PREFIXPERCENT_BIN 765 case '%': 766 integer_constant (2, expressionP); 767 break; 768 #endif 769 770 case '0': 771 /* Non-decimal radix. */ 772 773 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri) 774 { 775 char *s; 776 777 /* Check for a hex or float constant. */ 778 for (s = input_line_pointer; hex_p (*s); s++) 779 ; 780 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.') 781 { 782 --input_line_pointer; 783 integer_constant (0, expressionP); 784 break; 785 } 786 } 787 c = *input_line_pointer; 788 switch (c) 789 { 790 case 'o': 791 case 'O': 792 case 'q': 793 case 'Q': 794 case '8': 795 case '9': 796 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri) 797 { 798 integer_constant (0, expressionP); 799 break; 800 } 801 /* Fall through. */ 802 default: 803 default_case: 804 if (c && strchr (FLT_CHARS, c)) 805 { 806 input_line_pointer++; 807 floating_constant (expressionP); 808 expressionP->X_add_number = - TOLOWER (c); 809 } 810 else 811 { 812 /* The string was only zero. */ 813 expressionP->X_op = O_constant; 814 expressionP->X_add_number = 0; 815 } 816 817 break; 818 819 case 'x': 820 case 'X': 821 if (flag_m68k_mri) 822 goto default_case; 823 input_line_pointer++; 824 integer_constant (16, expressionP); 825 break; 826 827 case 'b': 828 if (LOCAL_LABELS_FB && ! (flag_m68k_mri || NUMBERS_WITH_SUFFIX)) 829 { 830 /* This code used to check for '+' and '-' here, and, in 831 some conditions, fall through to call 832 integer_constant. However, that didn't make sense, 833 as integer_constant only accepts digits. */ 834 /* Some of our code elsewhere does permit digits greater 835 than the expected base; for consistency, do the same 836 here. */ 837 if (input_line_pointer[1] < '0' 838 || input_line_pointer[1] > '9') 839 { 840 /* Parse this as a back reference to label 0. */ 841 input_line_pointer--; 842 integer_constant (10, expressionP); 843 break; 844 } 845 /* Otherwise, parse this as a binary number. */ 846 } 847 /* Fall through. */ 848 case 'B': 849 input_line_pointer++; 850 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX) 851 goto default_case; 852 integer_constant (2, expressionP); 853 break; 854 855 case '0': 856 case '1': 857 case '2': 858 case '3': 859 case '4': 860 case '5': 861 case '6': 862 case '7': 863 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX) 864 ? 0 : 8, 865 expressionP); 866 break; 867 868 case 'f': 869 if (LOCAL_LABELS_FB) 870 { 871 /* If it says "0f" and it could possibly be a floating point 872 number, make it one. Otherwise, make it a local label, 873 and try to deal with parsing the rest later. */ 874 if (!input_line_pointer[1] 875 || (is_end_of_line[0xff & input_line_pointer[1]]) 876 || strchr (FLT_CHARS, 'f') == NULL) 877 goto is_0f_label; 878 { 879 char *cp = input_line_pointer + 1; 880 int r = atof_generic (&cp, ".", EXP_CHARS, 881 &generic_floating_point_number); 882 switch (r) 883 { 884 case 0: 885 case ERROR_EXPONENT_OVERFLOW: 886 if (*cp == 'f' || *cp == 'b') 887 /* Looks like a difference expression. */ 888 goto is_0f_label; 889 else if (cp == input_line_pointer + 1) 890 /* No characters has been accepted -- looks like 891 end of operand. */ 892 goto is_0f_label; 893 else 894 goto is_0f_float; 895 default: 896 as_fatal (_("expr.c(operand): bad atof_generic return val %d"), 897 r); 898 } 899 } 900 901 /* Okay, now we've sorted it out. We resume at one of these 902 two labels, depending on what we've decided we're probably 903 looking at. */ 904 is_0f_label: 905 input_line_pointer--; 906 integer_constant (10, expressionP); 907 break; 908 909 is_0f_float: 910 /* Fall through. */ 911 ; 912 } 913 914 case 'd': 915 case 'D': 916 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX) 917 { 918 integer_constant (0, expressionP); 919 break; 920 } 921 /* Fall through. */ 922 case 'F': 923 case 'r': 924 case 'e': 925 case 'E': 926 case 'g': 927 case 'G': 928 input_line_pointer++; 929 floating_constant (expressionP); 930 expressionP->X_add_number = - TOLOWER (c); 931 break; 932 933 case '$': 934 if (LOCAL_LABELS_DOLLAR) 935 { 936 integer_constant (10, expressionP); 937 break; 938 } 939 else 940 goto default_case; 941 } 942 943 break; 944 945 case '(': 946 #ifndef NEED_INDEX_OPERATOR 947 case '[': 948 #endif 949 /* Didn't begin with digit & not a name. */ 950 if (mode != expr_defer) 951 segment = expression (expressionP); 952 else 953 segment = deferred_expression (expressionP); 954 /* expression () will pass trailing whitespace. */ 955 if ((c == '(' && *input_line_pointer != ')') 956 || (c == '[' && *input_line_pointer != ']')) 957 as_bad (_("missing '%c'"), c == '(' ? ')' : ']'); 958 else 959 input_line_pointer++; 960 SKIP_WHITESPACE (); 961 /* Here with input_line_pointer -> char after "(...)". */ 962 return segment; 963 964 #ifdef TC_M68K 965 case 'E': 966 if (! flag_m68k_mri || *input_line_pointer != '\'') 967 goto de_fault; 968 as_bad (_("EBCDIC constants are not supported")); 969 /* Fall through. */ 970 case 'A': 971 if (! flag_m68k_mri || *input_line_pointer != '\'') 972 goto de_fault; 973 ++input_line_pointer; 974 /* Fall through. */ 975 #endif 976 case '\'': 977 if (! flag_m68k_mri) 978 { 979 /* Warning: to conform to other people's assemblers NO 980 ESCAPEMENT is permitted for a single quote. The next 981 character, parity errors and all, is taken as the value 982 of the operand. VERY KINKY. */ 983 expressionP->X_op = O_constant; 984 expressionP->X_add_number = *input_line_pointer++; 985 break; 986 } 987 988 mri_char_constant (expressionP); 989 break; 990 991 #ifdef TC_M68K 992 case '"': 993 /* Double quote is the bitwise not operator in MRI mode. */ 994 if (! flag_m68k_mri) 995 goto de_fault; 996 /* Fall through. */ 997 #endif 998 case '~': 999 /* '~' is permitted to start a label on the Delta. */ 1000 if (is_name_beginner (c)) 1001 goto isname; 1002 case '!': 1003 case '-': 1004 case '+': 1005 { 1006 /* Do not accept ++e or --e as +(+e) or -(-e) 1007 Disabled, since the preprocessor removes whitespace. */ 1008 if (0 && (c == '-' || c == '+') && *input_line_pointer == c) 1009 goto target_op; 1010 1011 operand (expressionP, mode); 1012 if (expressionP->X_op == O_constant) 1013 { 1014 /* input_line_pointer -> char after operand. */ 1015 if (c == '-') 1016 { 1017 expressionP->X_add_number = - expressionP->X_add_number; 1018 /* Notice: '-' may overflow: no warning is given. 1019 This is compatible with other people's 1020 assemblers. Sigh. */ 1021 expressionP->X_unsigned = 0; 1022 } 1023 else if (c == '~' || c == '"') 1024 expressionP->X_add_number = ~ expressionP->X_add_number; 1025 else if (c == '!') 1026 expressionP->X_add_number = ! expressionP->X_add_number; 1027 } 1028 else if (expressionP->X_op == O_big 1029 && expressionP->X_add_number <= 0 1030 && c == '-' 1031 && (generic_floating_point_number.sign == '+' 1032 || generic_floating_point_number.sign == 'P')) 1033 { 1034 /* Negative flonum (eg, -1.000e0). */ 1035 if (generic_floating_point_number.sign == '+') 1036 generic_floating_point_number.sign = '-'; 1037 else 1038 generic_floating_point_number.sign = 'N'; 1039 } 1040 else if (expressionP->X_op == O_big 1041 && expressionP->X_add_number > 0) 1042 { 1043 int i; 1044 1045 if (c == '~' || c == '-') 1046 { 1047 for (i = 0; i < expressionP->X_add_number; ++i) 1048 generic_bignum[i] = ~generic_bignum[i]; 1049 1050 /* Extend the bignum to at least the size of .octa. */ 1051 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER) 1052 { 1053 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER; 1054 for (; i < expressionP->X_add_number; ++i) 1055 generic_bignum[i] = ~(LITTLENUM_TYPE) 0; 1056 } 1057 1058 if (c == '-') 1059 for (i = 0; i < expressionP->X_add_number; ++i) 1060 { 1061 generic_bignum[i] += 1; 1062 if (generic_bignum[i]) 1063 break; 1064 } 1065 } 1066 else if (c == '!') 1067 { 1068 for (i = 0; i < expressionP->X_add_number; ++i) 1069 if (generic_bignum[i] != 0) 1070 break; 1071 expressionP->X_add_number = i >= expressionP->X_add_number; 1072 expressionP->X_op = O_constant; 1073 expressionP->X_unsigned = 1; 1074 } 1075 } 1076 else if (expressionP->X_op != O_illegal 1077 && expressionP->X_op != O_absent) 1078 { 1079 if (c != '+') 1080 { 1081 expressionP->X_add_symbol = make_expr_symbol (expressionP); 1082 if (c == '-') 1083 expressionP->X_op = O_uminus; 1084 else if (c == '~' || c == '"') 1085 expressionP->X_op = O_bit_not; 1086 else 1087 expressionP->X_op = O_logical_not; 1088 expressionP->X_add_number = 0; 1089 } 1090 } 1091 else 1092 as_warn (_("Unary operator %c ignored because bad operand follows"), 1093 c); 1094 } 1095 break; 1096 1097 #if defined (DOLLAR_DOT) || defined (TC_M68K) 1098 case '$': 1099 /* '$' is the program counter when in MRI mode, or when 1100 DOLLAR_DOT is defined. */ 1101 #ifndef DOLLAR_DOT 1102 if (! flag_m68k_mri) 1103 goto de_fault; 1104 #endif 1105 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer)) 1106 { 1107 /* In MRI mode and on Z80, '$' is also used as the prefix 1108 for a hexadecimal constant. */ 1109 integer_constant (16, expressionP); 1110 break; 1111 } 1112 1113 if (is_part_of_name (*input_line_pointer)) 1114 goto isname; 1115 1116 current_location (expressionP); 1117 break; 1118 #endif 1119 1120 case '.': 1121 if (!is_part_of_name (*input_line_pointer)) 1122 { 1123 current_location (expressionP); 1124 break; 1125 } 1126 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0 1127 && ! is_part_of_name (input_line_pointer[8])) 1128 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0 1129 && ! is_part_of_name (input_line_pointer[7]))) 1130 { 1131 int start; 1132 1133 start = (input_line_pointer[1] == 't' 1134 || input_line_pointer[1] == 'T'); 1135 input_line_pointer += start ? 8 : 7; 1136 SKIP_WHITESPACE (); 1137 if (*input_line_pointer != '(') 1138 as_bad (_("syntax error in .startof. or .sizeof.")); 1139 else 1140 { 1141 char *buf; 1142 1143 ++input_line_pointer; 1144 SKIP_WHITESPACE (); 1145 name = input_line_pointer; 1146 c = get_symbol_end (); 1147 1148 buf = (char *) xmalloc (strlen (name) + 10); 1149 if (start) 1150 sprintf (buf, ".startof.%s", name); 1151 else 1152 sprintf (buf, ".sizeof.%s", name); 1153 symbolP = symbol_make (buf); 1154 free (buf); 1155 1156 expressionP->X_op = O_symbol; 1157 expressionP->X_add_symbol = symbolP; 1158 expressionP->X_add_number = 0; 1159 1160 *input_line_pointer = c; 1161 SKIP_WHITESPACE (); 1162 if (*input_line_pointer != ')') 1163 as_bad (_("syntax error in .startof. or .sizeof.")); 1164 else 1165 ++input_line_pointer; 1166 } 1167 break; 1168 } 1169 else 1170 { 1171 goto isname; 1172 } 1173 1174 case ',': 1175 eol: 1176 /* Can't imagine any other kind of operand. */ 1177 expressionP->X_op = O_absent; 1178 input_line_pointer--; 1179 break; 1180 1181 #ifdef TC_M68K 1182 case '%': 1183 if (! flag_m68k_mri) 1184 goto de_fault; 1185 integer_constant (2, expressionP); 1186 break; 1187 1188 case '@': 1189 if (! flag_m68k_mri) 1190 goto de_fault; 1191 integer_constant (8, expressionP); 1192 break; 1193 1194 case ':': 1195 if (! flag_m68k_mri) 1196 goto de_fault; 1197 1198 /* In MRI mode, this is a floating point constant represented 1199 using hexadecimal digits. */ 1200 1201 ++input_line_pointer; 1202 integer_constant (16, expressionP); 1203 break; 1204 1205 case '*': 1206 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer)) 1207 goto de_fault; 1208 1209 current_location (expressionP); 1210 break; 1211 #endif 1212 1213 default: 1214 #ifdef TC_M68K 1215 de_fault: 1216 #endif 1217 if (is_name_beginner (c)) /* Here if did not begin with a digit. */ 1218 { 1219 /* Identifier begins here. 1220 This is kludged for speed, so code is repeated. */ 1221 isname: 1222 name = --input_line_pointer; 1223 c = get_symbol_end (); 1224 1225 #ifdef md_parse_name 1226 /* This is a hook for the backend to parse certain names 1227 specially in certain contexts. If a name always has a 1228 specific value, it can often be handled by simply 1229 entering it in the symbol table. */ 1230 if (md_parse_name (name, expressionP, mode, &c)) 1231 { 1232 *input_line_pointer = c; 1233 break; 1234 } 1235 #endif 1236 1237 #ifdef TC_I960 1238 /* The MRI i960 assembler permits 1239 lda sizeof code,g13 1240 FIXME: This should use md_parse_name. */ 1241 if (flag_mri 1242 && (strcasecmp (name, "sizeof") == 0 1243 || strcasecmp (name, "startof") == 0)) 1244 { 1245 int start; 1246 char *buf; 1247 1248 start = (name[1] == 't' 1249 || name[1] == 'T'); 1250 1251 *input_line_pointer = c; 1252 SKIP_WHITESPACE (); 1253 1254 name = input_line_pointer; 1255 c = get_symbol_end (); 1256 1257 buf = (char *) xmalloc (strlen (name) + 10); 1258 if (start) 1259 sprintf (buf, ".startof.%s", name); 1260 else 1261 sprintf (buf, ".sizeof.%s", name); 1262 symbolP = symbol_make (buf); 1263 free (buf); 1264 1265 expressionP->X_op = O_symbol; 1266 expressionP->X_add_symbol = symbolP; 1267 expressionP->X_add_number = 0; 1268 1269 *input_line_pointer = c; 1270 SKIP_WHITESPACE (); 1271 1272 break; 1273 } 1274 #endif 1275 1276 symbolP = symbol_find_or_make (name); 1277 1278 /* If we have an absolute symbol or a reg, then we know its 1279 value now. */ 1280 segment = S_GET_SEGMENT (symbolP); 1281 if (mode != expr_defer && segment == absolute_section) 1282 { 1283 expressionP->X_op = O_constant; 1284 expressionP->X_add_number = S_GET_VALUE (symbolP); 1285 } 1286 else if (mode != expr_defer && segment == reg_section) 1287 { 1288 expressionP->X_op = O_register; 1289 expressionP->X_add_number = S_GET_VALUE (symbolP); 1290 } 1291 else 1292 { 1293 expressionP->X_op = O_symbol; 1294 expressionP->X_add_symbol = symbolP; 1295 expressionP->X_add_number = 0; 1296 } 1297 *input_line_pointer = c; 1298 } 1299 else 1300 { 1301 target_op: 1302 /* Let the target try to parse it. Success is indicated by changing 1303 the X_op field to something other than O_absent and pointing 1304 input_line_pointer past the expression. If it can't parse the 1305 expression, X_op and input_line_pointer should be unchanged. */ 1306 expressionP->X_op = O_absent; 1307 --input_line_pointer; 1308 md_operand (expressionP); 1309 if (expressionP->X_op == O_absent) 1310 { 1311 ++input_line_pointer; 1312 as_bad (_("bad expression")); 1313 expressionP->X_op = O_constant; 1314 expressionP->X_add_number = 0; 1315 } 1316 } 1317 break; 1318 } 1319 1320 /* It is more 'efficient' to clean up the expressionS when they are 1321 created. Doing it here saves lines of code. */ 1322 clean_up_expression (expressionP); 1323 SKIP_WHITESPACE (); /* -> 1st char after operand. */ 1324 know (*input_line_pointer != ' '); 1325 1326 /* The PA port needs this information. */ 1327 if (expressionP->X_add_symbol) 1328 symbol_mark_used (expressionP->X_add_symbol); 1329 1330 expressionP->X_add_symbol = symbol_clone_if_forward_ref (expressionP->X_add_symbol); 1331 expressionP->X_op_symbol = symbol_clone_if_forward_ref (expressionP->X_op_symbol); 1332 1333 switch (expressionP->X_op) 1334 { 1335 default: 1336 return absolute_section; 1337 case O_symbol: 1338 return S_GET_SEGMENT (expressionP->X_add_symbol); 1339 case O_register: 1340 return reg_section; 1341 } 1342 } 1343 1344 /* Internal. Simplify a struct expression for use by expr (). */ 1345 1346 /* In: address of an expressionS. 1347 The X_op field of the expressionS may only take certain values. 1348 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT. 1349 1350 Out: expressionS may have been modified: 1351 Unused fields zeroed to help expr (). */ 1352 1353 static void 1354 clean_up_expression (expressionS *expressionP) 1355 { 1356 switch (expressionP->X_op) 1357 { 1358 case O_illegal: 1359 case O_absent: 1360 expressionP->X_add_number = 0; 1361 /* Fall through. */ 1362 case O_big: 1363 case O_constant: 1364 case O_register: 1365 expressionP->X_add_symbol = NULL; 1366 /* Fall through. */ 1367 case O_symbol: 1368 case O_uminus: 1369 case O_bit_not: 1370 expressionP->X_op_symbol = NULL; 1371 break; 1372 default: 1373 break; 1374 } 1375 } 1376 1377 /* Expression parser. */ 1378 1379 /* We allow an empty expression, and just assume (absolute,0) silently. 1380 Unary operators and parenthetical expressions are treated as operands. 1381 As usual, Q==quantity==operand, O==operator, X==expression mnemonics. 1382 1383 We used to do an aho/ullman shift-reduce parser, but the logic got so 1384 warped that I flushed it and wrote a recursive-descent parser instead. 1385 Now things are stable, would anybody like to write a fast parser? 1386 Most expressions are either register (which does not even reach here) 1387 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common. 1388 So I guess it doesn't really matter how inefficient more complex expressions 1389 are parsed. 1390 1391 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK. 1392 Also, we have consumed any leading or trailing spaces (operand does that) 1393 and done all intervening operators. 1394 1395 This returns the segment of the result, which will be 1396 absolute_section or the segment of a symbol. */ 1397 1398 #undef __ 1399 #define __ O_illegal 1400 #ifndef O_SINGLE_EQ 1401 #define O_SINGLE_EQ O_illegal 1402 #endif 1403 1404 /* Maps ASCII -> operators. */ 1405 static const operatorT op_encoding[256] = { 1406 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1407 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1408 1409 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __, 1410 __, __, O_multiply, O_add, __, O_subtract, __, O_divide, 1411 __, __, __, __, __, __, __, __, 1412 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __, 1413 __, __, __, __, __, __, __, __, 1414 __, __, __, __, __, __, __, __, 1415 __, __, __, __, __, __, __, __, 1416 __, __, __, 1417 #ifdef NEED_INDEX_OPERATOR 1418 O_index, 1419 #else 1420 __, 1421 #endif 1422 __, __, O_bit_exclusive_or, __, 1423 __, __, __, __, __, __, __, __, 1424 __, __, __, __, __, __, __, __, 1425 __, __, __, __, __, __, __, __, 1426 __, __, __, __, O_bit_inclusive_or, __, __, __, 1427 1428 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1429 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1430 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1431 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1432 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1433 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1434 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, 1435 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __ 1436 }; 1437 1438 /* Rank Examples 1439 0 operand, (expression) 1440 1 || 1441 2 && 1442 3 == <> < <= >= > 1443 4 + - 1444 5 used for * / % in MRI mode 1445 6 & ^ ! | 1446 7 * / % << >> 1447 8 unary - unary ~ 1448 */ 1449 static operator_rankT op_rank[] = { 1450 0, /* O_illegal */ 1451 0, /* O_absent */ 1452 0, /* O_constant */ 1453 0, /* O_symbol */ 1454 0, /* O_symbol_rva */ 1455 0, /* O_register */ 1456 0, /* O_big */ 1457 9, /* O_uminus */ 1458 9, /* O_bit_not */ 1459 9, /* O_logical_not */ 1460 8, /* O_multiply */ 1461 8, /* O_divide */ 1462 8, /* O_modulus */ 1463 8, /* O_left_shift */ 1464 8, /* O_right_shift */ 1465 7, /* O_bit_inclusive_or */ 1466 7, /* O_bit_or_not */ 1467 7, /* O_bit_exclusive_or */ 1468 7, /* O_bit_and */ 1469 5, /* O_add */ 1470 5, /* O_subtract */ 1471 4, /* O_eq */ 1472 4, /* O_ne */ 1473 4, /* O_lt */ 1474 4, /* O_le */ 1475 4, /* O_ge */ 1476 4, /* O_gt */ 1477 3, /* O_logical_and */ 1478 2, /* O_logical_or */ 1479 1, /* O_index */ 1480 0, /* O_md1 */ 1481 0, /* O_md2 */ 1482 0, /* O_md3 */ 1483 0, /* O_md4 */ 1484 0, /* O_md5 */ 1485 0, /* O_md6 */ 1486 0, /* O_md7 */ 1487 0, /* O_md8 */ 1488 0, /* O_md9 */ 1489 0, /* O_md10 */ 1490 0, /* O_md11 */ 1491 0, /* O_md12 */ 1492 0, /* O_md13 */ 1493 0, /* O_md14 */ 1494 0, /* O_md15 */ 1495 0, /* O_md16 */ 1496 }; 1497 1498 /* Unfortunately, in MRI mode for the m68k, multiplication and 1499 division have lower precedence than the bit wise operators. This 1500 function sets the operator precedences correctly for the current 1501 mode. Also, MRI uses a different bit_not operator, and this fixes 1502 that as well. */ 1503 1504 #define STANDARD_MUL_PRECEDENCE 8 1505 #define MRI_MUL_PRECEDENCE 6 1506 1507 void 1508 expr_set_precedence (void) 1509 { 1510 if (flag_m68k_mri) 1511 { 1512 op_rank[O_multiply] = MRI_MUL_PRECEDENCE; 1513 op_rank[O_divide] = MRI_MUL_PRECEDENCE; 1514 op_rank[O_modulus] = MRI_MUL_PRECEDENCE; 1515 } 1516 else 1517 { 1518 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE; 1519 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE; 1520 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE; 1521 } 1522 } 1523 1524 /* Initialize the expression parser. */ 1525 1526 void 1527 expr_begin (void) 1528 { 1529 expr_set_precedence (); 1530 1531 /* Verify that X_op field is wide enough. */ 1532 { 1533 expressionS e; 1534 e.X_op = O_max; 1535 assert (e.X_op == O_max); 1536 } 1537 } 1538 1539 /* Return the encoding for the operator at INPUT_LINE_POINTER, and 1540 sets NUM_CHARS to the number of characters in the operator. 1541 Does not advance INPUT_LINE_POINTER. */ 1542 1543 static inline operatorT 1544 operator (int *num_chars) 1545 { 1546 int c; 1547 operatorT ret; 1548 1549 c = *input_line_pointer & 0xff; 1550 *num_chars = 1; 1551 1552 if (is_end_of_line[c]) 1553 return O_illegal; 1554 1555 switch (c) 1556 { 1557 default: 1558 return op_encoding[c]; 1559 1560 case '+': 1561 case '-': 1562 /* Do not allow a++b and a--b to be a + (+b) and a - (-b) 1563 Disabled, since the preprocessor removes whitespace. */ 1564 if (1 || input_line_pointer[1] != c) 1565 return op_encoding[c]; 1566 return O_illegal; 1567 1568 case '<': 1569 switch (input_line_pointer[1]) 1570 { 1571 default: 1572 return op_encoding[c]; 1573 case '<': 1574 ret = O_left_shift; 1575 break; 1576 case '>': 1577 ret = O_ne; 1578 break; 1579 case '=': 1580 ret = O_le; 1581 break; 1582 } 1583 *num_chars = 2; 1584 return ret; 1585 1586 case '=': 1587 if (input_line_pointer[1] != '=') 1588 return op_encoding[c]; 1589 1590 *num_chars = 2; 1591 return O_eq; 1592 1593 case '>': 1594 switch (input_line_pointer[1]) 1595 { 1596 default: 1597 return op_encoding[c]; 1598 case '>': 1599 ret = O_right_shift; 1600 break; 1601 case '=': 1602 ret = O_ge; 1603 break; 1604 } 1605 *num_chars = 2; 1606 return ret; 1607 1608 case '!': 1609 switch (input_line_pointer[1]) 1610 { 1611 case '!': 1612 /* We accept !! as equivalent to ^ for MRI compatibility. */ 1613 *num_chars = 2; 1614 return O_bit_exclusive_or; 1615 case '=': 1616 /* We accept != as equivalent to <>. */ 1617 *num_chars = 2; 1618 return O_ne; 1619 default: 1620 if (flag_m68k_mri) 1621 return O_bit_inclusive_or; 1622 return op_encoding[c]; 1623 } 1624 1625 case '|': 1626 if (input_line_pointer[1] != '|') 1627 return op_encoding[c]; 1628 1629 *num_chars = 2; 1630 return O_logical_or; 1631 1632 case '&': 1633 if (input_line_pointer[1] != '&') 1634 return op_encoding[c]; 1635 1636 *num_chars = 2; 1637 return O_logical_and; 1638 } 1639 1640 /* NOTREACHED */ 1641 } 1642 1643 /* Parse an expression. */ 1644 1645 segT 1646 expr (int rankarg, /* Larger # is higher rank. */ 1647 expressionS *resultP, /* Deliver result here. */ 1648 enum expr_mode mode /* Controls behavior. */) 1649 { 1650 operator_rankT rank = (operator_rankT) rankarg; 1651 segT retval; 1652 expressionS right; 1653 operatorT op_left; 1654 operatorT op_right; 1655 int op_chars; 1656 1657 know (rank >= 0); 1658 1659 /* Save the value of dot for the fixup code. */ 1660 if (rank == 0) 1661 dot_value = frag_now_fix (); 1662 1663 retval = operand (resultP, mode); 1664 1665 /* operand () gobbles spaces. */ 1666 know (*input_line_pointer != ' '); 1667 1668 op_left = operator (&op_chars); 1669 while (op_left != O_illegal && op_rank[(int) op_left] > rank) 1670 { 1671 segT rightseg; 1672 bfd_vma frag_off; 1673 1674 input_line_pointer += op_chars; /* -> after operator. */ 1675 1676 rightseg = expr (op_rank[(int) op_left], &right, mode); 1677 if (right.X_op == O_absent) 1678 { 1679 as_warn (_("missing operand; zero assumed")); 1680 right.X_op = O_constant; 1681 right.X_add_number = 0; 1682 right.X_add_symbol = NULL; 1683 right.X_op_symbol = NULL; 1684 } 1685 1686 know (*input_line_pointer != ' '); 1687 1688 if (op_left == O_index) 1689 { 1690 if (*input_line_pointer != ']') 1691 as_bad ("missing right bracket"); 1692 else 1693 { 1694 ++input_line_pointer; 1695 SKIP_WHITESPACE (); 1696 } 1697 } 1698 1699 op_right = operator (&op_chars); 1700 1701 know (op_right == O_illegal 1702 || op_rank[(int) op_right] <= op_rank[(int) op_left]); 1703 know ((int) op_left >= (int) O_multiply 1704 && (int) op_left <= (int) O_index); 1705 1706 /* input_line_pointer->after right-hand quantity. */ 1707 /* left-hand quantity in resultP. */ 1708 /* right-hand quantity in right. */ 1709 /* operator in op_left. */ 1710 1711 if (resultP->X_op == O_big) 1712 { 1713 if (resultP->X_add_number > 0) 1714 as_warn (_("left operand is a bignum; integer 0 assumed")); 1715 else 1716 as_warn (_("left operand is a float; integer 0 assumed")); 1717 resultP->X_op = O_constant; 1718 resultP->X_add_number = 0; 1719 resultP->X_add_symbol = NULL; 1720 resultP->X_op_symbol = NULL; 1721 } 1722 if (right.X_op == O_big) 1723 { 1724 if (right.X_add_number > 0) 1725 as_warn (_("right operand is a bignum; integer 0 assumed")); 1726 else 1727 as_warn (_("right operand is a float; integer 0 assumed")); 1728 right.X_op = O_constant; 1729 right.X_add_number = 0; 1730 right.X_add_symbol = NULL; 1731 right.X_op_symbol = NULL; 1732 } 1733 1734 /* Optimize common cases. */ 1735 #ifdef md_optimize_expr 1736 if (md_optimize_expr (resultP, op_left, &right)) 1737 { 1738 /* Skip. */ 1739 ; 1740 } 1741 else 1742 #endif 1743 if (op_left == O_add && right.X_op == O_constant) 1744 { 1745 /* X + constant. */ 1746 resultP->X_add_number += right.X_add_number; 1747 } 1748 /* This case comes up in PIC code. */ 1749 else if (op_left == O_subtract 1750 && right.X_op == O_symbol 1751 && resultP->X_op == O_symbol 1752 && retval == rightseg 1753 && (SEG_NORMAL (rightseg) 1754 || right.X_add_symbol == resultP->X_add_symbol) 1755 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol), 1756 symbol_get_frag (right.X_add_symbol), 1757 &frag_off)) 1758 { 1759 resultP->X_add_number -= right.X_add_number; 1760 resultP->X_add_number -= frag_off / OCTETS_PER_BYTE; 1761 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol) 1762 - S_GET_VALUE (right.X_add_symbol)); 1763 resultP->X_op = O_constant; 1764 resultP->X_add_symbol = 0; 1765 } 1766 else if (op_left == O_subtract && right.X_op == O_constant) 1767 { 1768 /* X - constant. */ 1769 resultP->X_add_number -= right.X_add_number; 1770 } 1771 else if (op_left == O_add && resultP->X_op == O_constant) 1772 { 1773 /* Constant + X. */ 1774 resultP->X_op = right.X_op; 1775 resultP->X_add_symbol = right.X_add_symbol; 1776 resultP->X_op_symbol = right.X_op_symbol; 1777 resultP->X_add_number += right.X_add_number; 1778 retval = rightseg; 1779 } 1780 else if (resultP->X_op == O_constant && right.X_op == O_constant) 1781 { 1782 /* Constant OP constant. */ 1783 offsetT v = right.X_add_number; 1784 if (v == 0 && (op_left == O_divide || op_left == O_modulus)) 1785 { 1786 as_warn (_("division by zero")); 1787 v = 1; 1788 } 1789 switch (op_left) 1790 { 1791 default: abort (); 1792 case O_multiply: resultP->X_add_number *= v; break; 1793 case O_divide: resultP->X_add_number /= v; break; 1794 case O_modulus: resultP->X_add_number %= v; break; 1795 case O_left_shift: resultP->X_add_number <<= v; break; 1796 case O_right_shift: 1797 /* We always use unsigned shifts, to avoid relying on 1798 characteristics of the compiler used to compile gas. */ 1799 resultP->X_add_number = 1800 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v); 1801 break; 1802 case O_bit_inclusive_or: resultP->X_add_number |= v; break; 1803 case O_bit_or_not: resultP->X_add_number |= ~v; break; 1804 case O_bit_exclusive_or: resultP->X_add_number ^= v; break; 1805 case O_bit_and: resultP->X_add_number &= v; break; 1806 case O_add: resultP->X_add_number += v; break; 1807 case O_subtract: resultP->X_add_number -= v; break; 1808 case O_eq: 1809 resultP->X_add_number = 1810 resultP->X_add_number == v ? ~ (offsetT) 0 : 0; 1811 break; 1812 case O_ne: 1813 resultP->X_add_number = 1814 resultP->X_add_number != v ? ~ (offsetT) 0 : 0; 1815 break; 1816 case O_lt: 1817 resultP->X_add_number = 1818 resultP->X_add_number < v ? ~ (offsetT) 0 : 0; 1819 break; 1820 case O_le: 1821 resultP->X_add_number = 1822 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0; 1823 break; 1824 case O_ge: 1825 resultP->X_add_number = 1826 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0; 1827 break; 1828 case O_gt: 1829 resultP->X_add_number = 1830 resultP->X_add_number > v ? ~ (offsetT) 0 : 0; 1831 break; 1832 case O_logical_and: 1833 resultP->X_add_number = resultP->X_add_number && v; 1834 break; 1835 case O_logical_or: 1836 resultP->X_add_number = resultP->X_add_number || v; 1837 break; 1838 } 1839 } 1840 else if (resultP->X_op == O_symbol 1841 && right.X_op == O_symbol 1842 && (op_left == O_add 1843 || op_left == O_subtract 1844 || (resultP->X_add_number == 0 1845 && right.X_add_number == 0))) 1846 { 1847 /* Symbol OP symbol. */ 1848 resultP->X_op = op_left; 1849 resultP->X_op_symbol = right.X_add_symbol; 1850 if (op_left == O_add) 1851 resultP->X_add_number += right.X_add_number; 1852 else if (op_left == O_subtract) 1853 { 1854 resultP->X_add_number -= right.X_add_number; 1855 if (retval == rightseg && SEG_NORMAL (retval)) 1856 { 1857 retval = absolute_section; 1858 rightseg = absolute_section; 1859 } 1860 } 1861 } 1862 else 1863 { 1864 /* The general case. */ 1865 resultP->X_add_symbol = make_expr_symbol (resultP); 1866 resultP->X_op_symbol = make_expr_symbol (&right); 1867 resultP->X_op = op_left; 1868 resultP->X_add_number = 0; 1869 resultP->X_unsigned = 1; 1870 } 1871 1872 if (retval != rightseg) 1873 { 1874 if (! SEG_NORMAL (retval)) 1875 { 1876 if (retval != undefined_section || SEG_NORMAL (rightseg)) 1877 retval = rightseg; 1878 } 1879 else if (SEG_NORMAL (rightseg) 1880 #ifdef DIFF_EXPR_OK 1881 && op_left != O_subtract 1882 #endif 1883 ) 1884 as_bad (_("operation combines symbols in different segments")); 1885 } 1886 1887 op_left = op_right; 1888 } /* While next operator is >= this rank. */ 1889 1890 /* The PA port needs this information. */ 1891 if (resultP->X_add_symbol) 1892 symbol_mark_used (resultP->X_add_symbol); 1893 1894 if (rank == 0 && mode == expr_evaluate) 1895 resolve_expression (resultP); 1896 1897 return resultP->X_op == O_constant ? absolute_section : retval; 1898 } 1899 1900 /* Resolve an expression without changing any symbols/sub-expressions 1901 used. */ 1902 1903 int 1904 resolve_expression (expressionS *expressionP) 1905 { 1906 /* Help out with CSE. */ 1907 valueT final_val = expressionP->X_add_number; 1908 symbolS *add_symbol = expressionP->X_add_symbol; 1909 symbolS *op_symbol = expressionP->X_op_symbol; 1910 operatorT op = expressionP->X_op; 1911 valueT left, right; 1912 segT seg_left, seg_right; 1913 fragS *frag_left, *frag_right; 1914 bfd_vma frag_off; 1915 1916 switch (op) 1917 { 1918 default: 1919 return 0; 1920 1921 case O_constant: 1922 case O_register: 1923 left = 0; 1924 break; 1925 1926 case O_symbol: 1927 case O_symbol_rva: 1928 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)) 1929 return 0; 1930 1931 break; 1932 1933 case O_uminus: 1934 case O_bit_not: 1935 case O_logical_not: 1936 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)) 1937 return 0; 1938 1939 if (seg_left != absolute_section) 1940 return 0; 1941 1942 if (op == O_logical_not) 1943 left = !left; 1944 else if (op == O_uminus) 1945 left = -left; 1946 else 1947 left = ~left; 1948 op = O_constant; 1949 break; 1950 1951 case O_multiply: 1952 case O_divide: 1953 case O_modulus: 1954 case O_left_shift: 1955 case O_right_shift: 1956 case O_bit_inclusive_or: 1957 case O_bit_or_not: 1958 case O_bit_exclusive_or: 1959 case O_bit_and: 1960 case O_add: 1961 case O_subtract: 1962 case O_eq: 1963 case O_ne: 1964 case O_lt: 1965 case O_le: 1966 case O_ge: 1967 case O_gt: 1968 case O_logical_and: 1969 case O_logical_or: 1970 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left) 1971 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right)) 1972 return 0; 1973 1974 /* Simplify addition or subtraction of a constant by folding the 1975 constant into X_add_number. */ 1976 if (op == O_add) 1977 { 1978 if (seg_right == absolute_section) 1979 { 1980 final_val += right; 1981 op = O_symbol; 1982 break; 1983 } 1984 else if (seg_left == absolute_section) 1985 { 1986 final_val += left; 1987 left = right; 1988 seg_left = seg_right; 1989 add_symbol = op_symbol; 1990 op = O_symbol; 1991 break; 1992 } 1993 } 1994 else if (op == O_subtract) 1995 { 1996 if (seg_right == absolute_section) 1997 { 1998 final_val -= right; 1999 op = O_symbol; 2000 break; 2001 } 2002 } 2003 2004 /* Equality and non-equality tests are permitted on anything. 2005 Subtraction, and other comparison operators are permitted if 2006 both operands are in the same section. 2007 Shifts by constant zero are permitted on anything. 2008 Multiplies, bit-ors, and bit-ands with constant zero are 2009 permitted on anything. 2010 Multiplies and divides by constant one are permitted on 2011 anything. 2012 Binary operations with both operands being the same register 2013 or undefined symbol are permitted if the result doesn't depend 2014 on the input value. 2015 Otherwise, both operands must be absolute. We already handled 2016 the case of addition or subtraction of a constant above. */ 2017 frag_off = 0; 2018 if (!(seg_left == absolute_section 2019 && seg_right == absolute_section) 2020 && !(op == O_eq || op == O_ne) 2021 && !((op == O_subtract 2022 || op == O_lt || op == O_le || op == O_ge || op == O_gt) 2023 && seg_left == seg_right 2024 && (finalize_syms 2025 || frag_offset_fixed_p (frag_left, frag_right, &frag_off)) 2026 && (seg_left != reg_section || left == right) 2027 && (seg_left != undefined_section || add_symbol == op_symbol))) 2028 { 2029 if ((seg_left == absolute_section && left == 0) 2030 || (seg_right == absolute_section && right == 0)) 2031 { 2032 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or) 2033 { 2034 if (seg_right != absolute_section || right != 0) 2035 { 2036 seg_left = seg_right; 2037 left = right; 2038 add_symbol = op_symbol; 2039 } 2040 op = O_symbol; 2041 break; 2042 } 2043 else if (op == O_left_shift || op == O_right_shift) 2044 { 2045 if (seg_left != absolute_section || left != 0) 2046 { 2047 op = O_symbol; 2048 break; 2049 } 2050 } 2051 else if (op != O_multiply 2052 && op != O_bit_or_not && op != O_bit_and) 2053 return 0; 2054 } 2055 else if (op == O_multiply 2056 && seg_left == absolute_section && left == 1) 2057 { 2058 seg_left = seg_right; 2059 left = right; 2060 add_symbol = op_symbol; 2061 op = O_symbol; 2062 break; 2063 } 2064 else if ((op == O_multiply || op == O_divide) 2065 && seg_right == absolute_section && right == 1) 2066 { 2067 op = O_symbol; 2068 break; 2069 } 2070 else if (left != right 2071 || ((seg_left != reg_section || seg_right != reg_section) 2072 && (seg_left != undefined_section 2073 || seg_right != undefined_section 2074 || add_symbol != op_symbol))) 2075 return 0; 2076 else if (op == O_bit_and || op == O_bit_inclusive_or) 2077 { 2078 op = O_symbol; 2079 break; 2080 } 2081 else if (op != O_bit_exclusive_or && op != O_bit_or_not) 2082 return 0; 2083 } 2084 2085 right += frag_off / OCTETS_PER_BYTE; 2086 switch (op) 2087 { 2088 case O_add: left += right; break; 2089 case O_subtract: left -= right; break; 2090 case O_multiply: left *= right; break; 2091 case O_divide: 2092 if (right == 0) 2093 return 0; 2094 left = (offsetT) left / (offsetT) right; 2095 break; 2096 case O_modulus: 2097 if (right == 0) 2098 return 0; 2099 left = (offsetT) left % (offsetT) right; 2100 break; 2101 case O_left_shift: left <<= right; break; 2102 case O_right_shift: left >>= right; break; 2103 case O_bit_inclusive_or: left |= right; break; 2104 case O_bit_or_not: left |= ~right; break; 2105 case O_bit_exclusive_or: left ^= right; break; 2106 case O_bit_and: left &= right; break; 2107 case O_eq: 2108 case O_ne: 2109 left = (left == right 2110 && seg_left == seg_right 2111 && (finalize_syms || frag_left == frag_right) 2112 && (seg_left != undefined_section 2113 || add_symbol == op_symbol) 2114 ? ~ (valueT) 0 : 0); 2115 if (op == O_ne) 2116 left = ~left; 2117 break; 2118 case O_lt: 2119 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0; 2120 break; 2121 case O_le: 2122 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0; 2123 break; 2124 case O_ge: 2125 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0; 2126 break; 2127 case O_gt: 2128 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0; 2129 break; 2130 case O_logical_and: left = left && right; break; 2131 case O_logical_or: left = left || right; break; 2132 default: abort (); 2133 } 2134 2135 op = O_constant; 2136 break; 2137 } 2138 2139 if (op == O_symbol) 2140 { 2141 if (seg_left == absolute_section) 2142 op = O_constant; 2143 else if (seg_left == reg_section && final_val == 0) 2144 op = O_register; 2145 else if (add_symbol != expressionP->X_add_symbol) 2146 final_val += left; 2147 expressionP->X_add_symbol = add_symbol; 2148 } 2149 expressionP->X_op = op; 2150 2151 if (op == O_constant || op == O_register) 2152 final_val += left; 2153 expressionP->X_add_number = final_val; 2154 2155 return 1; 2156 } 2157 2158 /* This lives here because it belongs equally in expr.c & read.c. 2159 expr.c is just a branch office read.c anyway, and putting it 2160 here lessens the crowd at read.c. 2161 2162 Assume input_line_pointer is at start of symbol name. 2163 Advance input_line_pointer past symbol name. 2164 Turn that character into a '\0', returning its former value. 2165 This allows a string compare (RMS wants symbol names to be strings) 2166 of the symbol name. 2167 There will always be a char following symbol name, because all good 2168 lines end in end-of-line. */ 2169 2170 char 2171 get_symbol_end (void) 2172 { 2173 char c; 2174 2175 /* We accept \001 in a name in case this is being called with a 2176 constructed string. */ 2177 if (is_name_beginner (c = *input_line_pointer++) || c == '\001') 2178 { 2179 while (is_part_of_name (c = *input_line_pointer++) 2180 || c == '\001') 2181 ; 2182 if (is_name_ender (c)) 2183 c = *input_line_pointer++; 2184 } 2185 *--input_line_pointer = 0; 2186 return (c); 2187 } 2188 2189 unsigned int 2190 get_single_number (void) 2191 { 2192 expressionS exp; 2193 operand (&exp, expr_normal); 2194 return exp.X_add_number; 2195 } 2196