xref: /openbsd/gnu/usr.bin/binutils/bfd/elf64-mmix.c (revision 3d8817e4)
1 /* MMIX-specific support for 64-bit ELF.
2    Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3    Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4 
5 This file is part of BFD, the Binary File Descriptor library.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 /* No specific ABI or "processor-specific supplement" defined.  */
22 
23 /* TODO:
24    - "Traditional" linker relaxation (shrinking whole sections).
25    - Merge reloc stubs jumping to same location.
26    - GETA stub relaxation (call a stub for out of range new
27      R_MMIX_GETA_STUBBABLE).  */
28 
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/mmix.h"
34 #include "opcode/mmix.h"
35 
36 #define MINUS_ONE	(((bfd_vma) 0) - 1)
37 
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
39 
40 /* Put these everywhere in new code.  */
41 #define FATAL_DEBUG						\
42  _bfd_abort (__FILE__, __LINE__,				\
43 	     "Internal: Non-debugged code (test-case missing)")
44 
45 #define BAD_CASE(x)				\
46  _bfd_abort (__FILE__, __LINE__,		\
47 	     "bad case for " #x)
48 
49 struct _mmix_elf_section_data
50 {
51   struct bfd_elf_section_data elf;
52   union
53   {
54     struct bpo_reloc_section_info *reloc;
55     struct bpo_greg_section_info *greg;
56   } bpo;
57 
58   struct pushj_stub_info
59   {
60     /* Maximum number of stubs needed for this section.  */
61     bfd_size_type n_pushj_relocs;
62 
63     /* Size of stubs after a mmix_elf_relax_section round.  */
64     bfd_size_type stubs_size_sum;
65 
66     /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
67        of these.  Allocated in mmix_elf_check_common_relocs.  */
68     bfd_size_type *stub_size;
69 
70     /* Offset of next stub during relocation.  Somewhat redundant with the
71        above: error coverage is easier and we don't have to reset the
72        stubs_size_sum for relocation.  */
73     bfd_size_type stub_offset;
74   } pjs;
75 };
76 
77 #define mmix_elf_section_data(sec) \
78   ((struct _mmix_elf_section_data *) elf_section_data (sec))
79 
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81    this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82    NULL.  */
83 struct bpo_reloc_section_info
84   {
85     /* The base is 1; this is the first number in this section.  */
86     size_t first_base_plus_offset_reloc;
87 
88     /* Number of BPO-relocs in this section.  */
89     size_t n_bpo_relocs_this_section;
90 
91     /* Running index, used at relocation time.  */
92     size_t bpo_index;
93 
94     /* We don't have access to the bfd_link_info struct in
95        mmix_final_link_relocate.  What we really want to get at is the
96        global single struct greg_relocation, so we stash it here.  */
97     asection *bpo_greg_section;
98   };
99 
100 /* Helper struct (in global context) for the one below.
101    There's one of these created for every BPO reloc.  */
102 struct bpo_reloc_request
103   {
104     bfd_vma value;
105 
106     /* Valid after relaxation.  The base is 0; the first register number
107        must be added.  The offset is in range 0..255.  */
108     size_t regindex;
109     size_t offset;
110 
111     /* The order number for this BPO reloc, corresponding to the order in
112        which BPO relocs were found.  Used to create an index after reloc
113        requests are sorted.  */
114     size_t bpo_reloc_no;
115 
116     /* Set when the value is computed.  Better than coding "guard values"
117        into the other members.  Is FALSE only for BPO relocs in a GC:ed
118        section.  */
119     bfd_boolean valid;
120   };
121 
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123    greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124    which is linked into the register contents section
125    (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
126    linker; using the same hook as for usual with BPO relocs does not
127    collide.  */
128 struct bpo_greg_section_info
129   {
130     /* After GC, this reflects the number of remaining, non-excluded
131        BPO-relocs.  */
132     size_t n_bpo_relocs;
133 
134     /* This is the number of allocated bpo_reloc_requests; the size of
135        sorted_indexes.  Valid after the check.*relocs functions are called
136        for all incoming sections.  It includes the number of BPO relocs in
137        sections that were GC:ed.  */
138     size_t n_max_bpo_relocs;
139 
140     /* A counter used to find out when to fold the BPO gregs, since we
141        don't have a single "after-relaxation" hook.  */
142     size_t n_remaining_bpo_relocs_this_relaxation_round;
143 
144     /* The number of linker-allocated GREGs resulting from BPO relocs.
145        This is an approximation after _bfd_mmix_before_linker_allocation
146        and supposedly accurate after mmix_elf_relax_section is called for
147        all incoming non-collected sections.  */
148     size_t n_allocated_bpo_gregs;
149 
150     /* Index into reloc_request[], sorted on increasing "value", secondary
151        by increasing index for strict sorting order.  */
152     size_t *bpo_reloc_indexes;
153 
154     /* An array of all relocations, with the "value" member filled in by
155        the relaxation function.  */
156     struct bpo_reloc_request *reloc_request;
157   };
158 
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160   PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 	   asection *, struct elf_link_hash_entry *));
162 
163 static bfd_reloc_status_type mmix_elf_reloc
164   PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165 
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167   PARAMS ((bfd *, bfd_reloc_code_real_type));
168 
169 static void mmix_info_to_howto_rela
170   PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171 
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173 
174 static bfd_boolean mmix_elf_new_section_hook
175   PARAMS ((bfd *, asection *));
176 
177 static bfd_boolean mmix_elf_check_relocs
178   PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 	   const Elf_Internal_Rela *));
180 
181 static bfd_boolean mmix_elf_check_common_relocs
182   PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 	   const Elf_Internal_Rela *));
184 
185 static bfd_boolean mmix_elf_relocate_section
186   PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 	   Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188 
189 static asection * mmix_elf_gc_mark_hook
190   PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 	   struct elf_link_hash_entry *, Elf_Internal_Sym *));
192 
193 static bfd_boolean mmix_elf_gc_sweep_hook
194   PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 	   const Elf_Internal_Rela *));
196 
197 static bfd_reloc_status_type mmix_final_link_relocate
198   PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 	   bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200 
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202   PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203 
204 static bfd_boolean mmix_elf_section_from_bfd_section
205   PARAMS ((bfd *, asection *, int *));
206 
207 static bfd_boolean mmix_elf_add_symbol_hook
208   PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209 	   const char **, flagword *, asection **, bfd_vma *));
210 
211 static bfd_boolean mmix_elf_is_local_label_name
212   PARAMS ((bfd *, const char *));
213 
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215 
216 static bfd_boolean mmix_elf_relax_section
217   PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 	   bfd_boolean *again));
219 
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221 
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223 
224 /* Only intended to be called from a debugger.  */
225 extern void mmix_dump_bpo_gregs
226   PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227 
228 static void
229 mmix_set_relaxable_size
230   PARAMS ((bfd *, asection *, void *));
231 
232 static bfd_boolean
233 mmix_elf_get_section_contents
234   PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type));
235 
236 
237 /* Watch out: this currently needs to have elements with the same index as
238    their R_MMIX_ number.  */
239 static reloc_howto_type elf_mmix_howto_table[] =
240  {
241   /* This reloc does nothing.  */
242   HOWTO (R_MMIX_NONE,		/* type */
243 	 0,			/* rightshift */
244 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
245 	 32,			/* bitsize */
246 	 FALSE,			/* pc_relative */
247 	 0,			/* bitpos */
248 	 complain_overflow_bitfield, /* complain_on_overflow */
249 	 bfd_elf_generic_reloc,	/* special_function */
250 	 "R_MMIX_NONE",		/* name */
251 	 FALSE,			/* partial_inplace */
252 	 0,			/* src_mask */
253 	 0,			/* dst_mask */
254 	 FALSE),		/* pcrel_offset */
255 
256   /* An 8 bit absolute relocation.  */
257   HOWTO (R_MMIX_8,		/* type */
258 	 0,			/* rightshift */
259 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
260 	 8,			/* bitsize */
261 	 FALSE,			/* pc_relative */
262 	 0,			/* bitpos */
263 	 complain_overflow_bitfield, /* complain_on_overflow */
264 	 bfd_elf_generic_reloc,	/* special_function */
265 	 "R_MMIX_8",		/* name */
266 	 FALSE,			/* partial_inplace */
267 	 0,			/* src_mask */
268 	 0xff,			/* dst_mask */
269 	 FALSE),		/* pcrel_offset */
270 
271   /* An 16 bit absolute relocation.  */
272   HOWTO (R_MMIX_16,		/* type */
273 	 0,			/* rightshift */
274 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
275 	 16,			/* bitsize */
276 	 FALSE,			/* pc_relative */
277 	 0,			/* bitpos */
278 	 complain_overflow_bitfield, /* complain_on_overflow */
279 	 bfd_elf_generic_reloc,	/* special_function */
280 	 "R_MMIX_16",		/* name */
281 	 FALSE,			/* partial_inplace */
282 	 0,			/* src_mask */
283 	 0xffff,		/* dst_mask */
284 	 FALSE),		/* pcrel_offset */
285 
286   /* An 24 bit absolute relocation.  */
287   HOWTO (R_MMIX_24,		/* type */
288 	 0,			/* rightshift */
289 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
290 	 24,			/* bitsize */
291 	 FALSE,			/* pc_relative */
292 	 0,			/* bitpos */
293 	 complain_overflow_bitfield, /* complain_on_overflow */
294 	 bfd_elf_generic_reloc,	/* special_function */
295 	 "R_MMIX_24",		/* name */
296 	 FALSE,			/* partial_inplace */
297 	 ~0xffffff,		/* src_mask */
298 	 0xffffff,		/* dst_mask */
299 	 FALSE),		/* pcrel_offset */
300 
301   /* A 32 bit absolute relocation.  */
302   HOWTO (R_MMIX_32,		/* type */
303 	 0,			/* rightshift */
304 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
305 	 32,			/* bitsize */
306 	 FALSE,			/* pc_relative */
307 	 0,			/* bitpos */
308 	 complain_overflow_bitfield, /* complain_on_overflow */
309 	 bfd_elf_generic_reloc,	/* special_function */
310 	 "R_MMIX_32",		/* name */
311 	 FALSE,			/* partial_inplace */
312 	 0,			/* src_mask */
313 	 0xffffffff,		/* dst_mask */
314 	 FALSE),		/* pcrel_offset */
315 
316   /* 64 bit relocation.  */
317   HOWTO (R_MMIX_64,		/* type */
318 	 0,			/* rightshift */
319 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
320 	 64,			/* bitsize */
321 	 FALSE,			/* pc_relative */
322 	 0,			/* bitpos */
323 	 complain_overflow_bitfield, /* complain_on_overflow */
324 	 bfd_elf_generic_reloc,	/* special_function */
325 	 "R_MMIX_64",		/* name */
326 	 FALSE,			/* partial_inplace */
327 	 0,			/* src_mask */
328 	 MINUS_ONE,		/* dst_mask */
329 	 FALSE),		/* pcrel_offset */
330 
331   /* An 8 bit PC-relative relocation.  */
332   HOWTO (R_MMIX_PC_8,		/* type */
333 	 0,			/* rightshift */
334 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
335 	 8,			/* bitsize */
336 	 TRUE,			/* pc_relative */
337 	 0,			/* bitpos */
338 	 complain_overflow_bitfield, /* complain_on_overflow */
339 	 bfd_elf_generic_reloc,	/* special_function */
340 	 "R_MMIX_PC_8",		/* name */
341 	 FALSE,			/* partial_inplace */
342 	 0,			/* src_mask */
343 	 0xff,			/* dst_mask */
344 	 TRUE),			/* pcrel_offset */
345 
346   /* An 16 bit PC-relative relocation.  */
347   HOWTO (R_MMIX_PC_16,		/* type */
348 	 0,			/* rightshift */
349 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
350 	 16,			/* bitsize */
351 	 TRUE,			/* pc_relative */
352 	 0,			/* bitpos */
353 	 complain_overflow_bitfield, /* complain_on_overflow */
354 	 bfd_elf_generic_reloc,	/* special_function */
355 	 "R_MMIX_PC_16",	/* name */
356 	 FALSE,			/* partial_inplace */
357 	 0,			/* src_mask */
358 	 0xffff,		/* dst_mask */
359 	 TRUE),			/* pcrel_offset */
360 
361   /* An 24 bit PC-relative relocation.  */
362   HOWTO (R_MMIX_PC_24,		/* type */
363 	 0,			/* rightshift */
364 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
365 	 24,			/* bitsize */
366 	 TRUE,			/* pc_relative */
367 	 0,			/* bitpos */
368 	 complain_overflow_bitfield, /* complain_on_overflow */
369 	 bfd_elf_generic_reloc,	/* special_function */
370 	 "R_MMIX_PC_24",	/* name */
371 	 FALSE,			/* partial_inplace */
372 	 ~0xffffff,		/* src_mask */
373 	 0xffffff,		/* dst_mask */
374 	 TRUE),			/* pcrel_offset */
375 
376   /* A 32 bit absolute PC-relative relocation.  */
377   HOWTO (R_MMIX_PC_32,		/* type */
378 	 0,			/* rightshift */
379 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
380 	 32,			/* bitsize */
381 	 TRUE,			/* pc_relative */
382 	 0,			/* bitpos */
383 	 complain_overflow_bitfield, /* complain_on_overflow */
384 	 bfd_elf_generic_reloc,	/* special_function */
385 	 "R_MMIX_PC_32",	/* name */
386 	 FALSE,			/* partial_inplace */
387 	 0,			/* src_mask */
388 	 0xffffffff,		/* dst_mask */
389 	 TRUE),			/* pcrel_offset */
390 
391   /* 64 bit PC-relative relocation.  */
392   HOWTO (R_MMIX_PC_64,		/* type */
393 	 0,			/* rightshift */
394 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
395 	 64,			/* bitsize */
396 	 TRUE,			/* pc_relative */
397 	 0,			/* bitpos */
398 	 complain_overflow_bitfield, /* complain_on_overflow */
399 	 bfd_elf_generic_reloc,	/* special_function */
400 	 "R_MMIX_PC_64",	/* name */
401 	 FALSE,			/* partial_inplace */
402 	 0,			/* src_mask */
403 	 MINUS_ONE,		/* dst_mask */
404 	 TRUE),			/* pcrel_offset */
405 
406   /* GNU extension to record C++ vtable hierarchy.  */
407   HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
408 	 0,			/* rightshift */
409 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
410 	 0,			/* bitsize */
411 	 FALSE,			/* pc_relative */
412 	 0,			/* bitpos */
413 	 complain_overflow_dont, /* complain_on_overflow */
414 	 NULL,			/* special_function */
415 	 "R_MMIX_GNU_VTINHERIT", /* name */
416 	 FALSE,			/* partial_inplace */
417 	 0,			/* src_mask */
418 	 0,			/* dst_mask */
419 	 TRUE),			/* pcrel_offset */
420 
421   /* GNU extension to record C++ vtable member usage.  */
422   HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
423 	 0,			/* rightshift */
424 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
425 	 0,			/* bitsize */
426 	 FALSE,			/* pc_relative */
427 	 0,			/* bitpos */
428 	 complain_overflow_dont, /* complain_on_overflow */
429 	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
430 	 "R_MMIX_GNU_VTENTRY", /* name */
431 	 FALSE,			/* partial_inplace */
432 	 0,			/* src_mask */
433 	 0,			/* dst_mask */
434 	 FALSE),		/* pcrel_offset */
435 
436   /* The GETA relocation is supposed to get any address that could
437      possibly be reached by the GETA instruction.  It can silently expand
438      to get a 64-bit operand, but will complain if any of the two least
439      significant bits are set.  The howto members reflect a simple GETA.  */
440   HOWTO (R_MMIX_GETA,		/* type */
441 	 2,			/* rightshift */
442 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
443 	 19,			/* bitsize */
444 	 TRUE,			/* pc_relative */
445 	 0,			/* bitpos */
446 	 complain_overflow_signed, /* complain_on_overflow */
447 	 mmix_elf_reloc,	/* special_function */
448 	 "R_MMIX_GETA",		/* name */
449 	 FALSE,			/* partial_inplace */
450 	 ~0x0100ffff,		/* src_mask */
451 	 0x0100ffff,		/* dst_mask */
452 	 TRUE),			/* pcrel_offset */
453 
454   HOWTO (R_MMIX_GETA_1,		/* type */
455 	 2,			/* rightshift */
456 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
457 	 19,			/* bitsize */
458 	 TRUE,			/* pc_relative */
459 	 0,			/* bitpos */
460 	 complain_overflow_signed, /* complain_on_overflow */
461 	 mmix_elf_reloc,	/* special_function */
462 	 "R_MMIX_GETA_1",		/* name */
463 	 FALSE,			/* partial_inplace */
464 	 ~0x0100ffff,		/* src_mask */
465 	 0x0100ffff,		/* dst_mask */
466 	 TRUE),			/* pcrel_offset */
467 
468   HOWTO (R_MMIX_GETA_2,		/* type */
469 	 2,			/* rightshift */
470 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
471 	 19,			/* bitsize */
472 	 TRUE,			/* pc_relative */
473 	 0,			/* bitpos */
474 	 complain_overflow_signed, /* complain_on_overflow */
475 	 mmix_elf_reloc,	/* special_function */
476 	 "R_MMIX_GETA_2",		/* name */
477 	 FALSE,			/* partial_inplace */
478 	 ~0x0100ffff,		/* src_mask */
479 	 0x0100ffff,		/* dst_mask */
480 	 TRUE),			/* pcrel_offset */
481 
482   HOWTO (R_MMIX_GETA_3,		/* type */
483 	 2,			/* rightshift */
484 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
485 	 19,			/* bitsize */
486 	 TRUE,			/* pc_relative */
487 	 0,			/* bitpos */
488 	 complain_overflow_signed, /* complain_on_overflow */
489 	 mmix_elf_reloc,	/* special_function */
490 	 "R_MMIX_GETA_3",		/* name */
491 	 FALSE,			/* partial_inplace */
492 	 ~0x0100ffff,		/* src_mask */
493 	 0x0100ffff,		/* dst_mask */
494 	 TRUE),			/* pcrel_offset */
495 
496   /* The conditional branches are supposed to reach any (code) address.
497      It can silently expand to a 64-bit operand, but will emit an error if
498      any of the two least significant bits are set.  The howto members
499      reflect a simple branch.  */
500   HOWTO (R_MMIX_CBRANCH,	/* type */
501 	 2,			/* rightshift */
502 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
503 	 19,			/* bitsize */
504 	 TRUE,			/* pc_relative */
505 	 0,			/* bitpos */
506 	 complain_overflow_signed, /* complain_on_overflow */
507 	 mmix_elf_reloc,	/* special_function */
508 	 "R_MMIX_CBRANCH",	/* name */
509 	 FALSE,			/* partial_inplace */
510 	 ~0x0100ffff,		/* src_mask */
511 	 0x0100ffff,		/* dst_mask */
512 	 TRUE),		       	/* pcrel_offset */
513 
514   HOWTO (R_MMIX_CBRANCH_J,	/* type */
515 	 2,			/* rightshift */
516 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
517 	 19,			/* bitsize */
518 	 TRUE,			/* pc_relative */
519 	 0,			/* bitpos */
520 	 complain_overflow_signed, /* complain_on_overflow */
521 	 mmix_elf_reloc,	/* special_function */
522 	 "R_MMIX_CBRANCH_J",	/* name */
523 	 FALSE,			/* partial_inplace */
524 	 ~0x0100ffff,		/* src_mask */
525 	 0x0100ffff,		/* dst_mask */
526 	 TRUE),			/* pcrel_offset */
527 
528   HOWTO (R_MMIX_CBRANCH_1,	/* type */
529 	 2,			/* rightshift */
530 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
531 	 19,			/* bitsize */
532 	 TRUE,			/* pc_relative */
533 	 0,			/* bitpos */
534 	 complain_overflow_signed, /* complain_on_overflow */
535 	 mmix_elf_reloc,	/* special_function */
536 	 "R_MMIX_CBRANCH_1",	/* name */
537 	 FALSE,			/* partial_inplace */
538 	 ~0x0100ffff,		/* src_mask */
539 	 0x0100ffff,		/* dst_mask */
540 	 TRUE),			/* pcrel_offset */
541 
542   HOWTO (R_MMIX_CBRANCH_2,	/* type */
543 	 2,			/* rightshift */
544 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
545 	 19,			/* bitsize */
546 	 TRUE,			/* pc_relative */
547 	 0,			/* bitpos */
548 	 complain_overflow_signed, /* complain_on_overflow */
549 	 mmix_elf_reloc,	/* special_function */
550 	 "R_MMIX_CBRANCH_2",	/* name */
551 	 FALSE,			/* partial_inplace */
552 	 ~0x0100ffff,		/* src_mask */
553 	 0x0100ffff,		/* dst_mask */
554 	 TRUE),			/* pcrel_offset */
555 
556   HOWTO (R_MMIX_CBRANCH_3,	/* type */
557 	 2,			/* rightshift */
558 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
559 	 19,			/* bitsize */
560 	 TRUE,			/* pc_relative */
561 	 0,			/* bitpos */
562 	 complain_overflow_signed, /* complain_on_overflow */
563 	 mmix_elf_reloc,	/* special_function */
564 	 "R_MMIX_CBRANCH_3",	/* name */
565 	 FALSE,			/* partial_inplace */
566 	 ~0x0100ffff,		/* src_mask */
567 	 0x0100ffff,		/* dst_mask */
568 	 TRUE),			/* pcrel_offset */
569 
570   /* The PUSHJ instruction can reach any (code) address, as long as it's
571      the beginning of a function (no usable restriction).  It can silently
572      expand to a 64-bit operand, but will emit an error if any of the two
573      least significant bits are set.  It can also expand into a call to a
574      stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
575      PUSHJ.  */
576   HOWTO (R_MMIX_PUSHJ,		/* type */
577 	 2,			/* rightshift */
578 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
579 	 19,			/* bitsize */
580 	 TRUE,			/* pc_relative */
581 	 0,			/* bitpos */
582 	 complain_overflow_signed, /* complain_on_overflow */
583 	 mmix_elf_reloc,	/* special_function */
584 	 "R_MMIX_PUSHJ",	/* name */
585 	 FALSE,			/* partial_inplace */
586 	 ~0x0100ffff,		/* src_mask */
587 	 0x0100ffff,		/* dst_mask */
588 	 TRUE),			/* pcrel_offset */
589 
590   HOWTO (R_MMIX_PUSHJ_1,	/* type */
591 	 2,			/* rightshift */
592 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
593 	 19,			/* bitsize */
594 	 TRUE,			/* pc_relative */
595 	 0,			/* bitpos */
596 	 complain_overflow_signed, /* complain_on_overflow */
597 	 mmix_elf_reloc,	/* special_function */
598 	 "R_MMIX_PUSHJ_1",	/* name */
599 	 FALSE,			/* partial_inplace */
600 	 ~0x0100ffff,		/* src_mask */
601 	 0x0100ffff,		/* dst_mask */
602 	 TRUE),			/* pcrel_offset */
603 
604   HOWTO (R_MMIX_PUSHJ_2,	/* type */
605 	 2,			/* rightshift */
606 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
607 	 19,			/* bitsize */
608 	 TRUE,			/* pc_relative */
609 	 0,			/* bitpos */
610 	 complain_overflow_signed, /* complain_on_overflow */
611 	 mmix_elf_reloc,	/* special_function */
612 	 "R_MMIX_PUSHJ_2",	/* name */
613 	 FALSE,			/* partial_inplace */
614 	 ~0x0100ffff,		/* src_mask */
615 	 0x0100ffff,		/* dst_mask */
616 	 TRUE),			/* pcrel_offset */
617 
618   HOWTO (R_MMIX_PUSHJ_3,	/* type */
619 	 2,			/* rightshift */
620 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
621 	 19,			/* bitsize */
622 	 TRUE,			/* pc_relative */
623 	 0,			/* bitpos */
624 	 complain_overflow_signed, /* complain_on_overflow */
625 	 mmix_elf_reloc,	/* special_function */
626 	 "R_MMIX_PUSHJ_3",	/* name */
627 	 FALSE,			/* partial_inplace */
628 	 ~0x0100ffff,		/* src_mask */
629 	 0x0100ffff,		/* dst_mask */
630 	 TRUE),			/* pcrel_offset */
631 
632   /* A JMP is supposed to reach any (code) address.  By itself, it can
633      reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
634      limit is soon reached if you link the program in wildly different
635      memory segments.  The howto members reflect a trivial JMP.  */
636   HOWTO (R_MMIX_JMP,		/* type */
637 	 2,			/* rightshift */
638 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
639 	 27,			/* bitsize */
640 	 TRUE,			/* pc_relative */
641 	 0,			/* bitpos */
642 	 complain_overflow_signed, /* complain_on_overflow */
643 	 mmix_elf_reloc,	/* special_function */
644 	 "R_MMIX_JMP",		/* name */
645 	 FALSE,			/* partial_inplace */
646 	 ~0x1ffffff,		/* src_mask */
647 	 0x1ffffff,		/* dst_mask */
648 	 TRUE),			/* pcrel_offset */
649 
650   HOWTO (R_MMIX_JMP_1,		/* type */
651 	 2,			/* rightshift */
652 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
653 	 27,			/* bitsize */
654 	 TRUE,			/* pc_relative */
655 	 0,			/* bitpos */
656 	 complain_overflow_signed, /* complain_on_overflow */
657 	 mmix_elf_reloc,	/* special_function */
658 	 "R_MMIX_JMP_1",	/* name */
659 	 FALSE,			/* partial_inplace */
660 	 ~0x1ffffff,		/* src_mask */
661 	 0x1ffffff,		/* dst_mask */
662 	 TRUE),			/* pcrel_offset */
663 
664   HOWTO (R_MMIX_JMP_2,		/* type */
665 	 2,			/* rightshift */
666 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
667 	 27,			/* bitsize */
668 	 TRUE,			/* pc_relative */
669 	 0,			/* bitpos */
670 	 complain_overflow_signed, /* complain_on_overflow */
671 	 mmix_elf_reloc,	/* special_function */
672 	 "R_MMIX_JMP_2",	/* name */
673 	 FALSE,			/* partial_inplace */
674 	 ~0x1ffffff,		/* src_mask */
675 	 0x1ffffff,		/* dst_mask */
676 	 TRUE),			/* pcrel_offset */
677 
678   HOWTO (R_MMIX_JMP_3,		/* type */
679 	 2,			/* rightshift */
680 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
681 	 27,			/* bitsize */
682 	 TRUE,			/* pc_relative */
683 	 0,			/* bitpos */
684 	 complain_overflow_signed, /* complain_on_overflow */
685 	 mmix_elf_reloc,	/* special_function */
686 	 "R_MMIX_JMP_3",	/* name */
687 	 FALSE,			/* partial_inplace */
688 	 ~0x1ffffff,		/* src_mask */
689 	 0x1ffffff,		/* dst_mask */
690 	 TRUE),			/* pcrel_offset */
691 
692   /* When we don't emit link-time-relaxable code from the assembler, or
693      when relaxation has done all it can do, these relocs are used.  For
694      GETA/PUSHJ/branches.  */
695   HOWTO (R_MMIX_ADDR19,		/* type */
696 	 2,			/* rightshift */
697 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
698 	 19,			/* bitsize */
699 	 TRUE,			/* pc_relative */
700 	 0,			/* bitpos */
701 	 complain_overflow_signed, /* complain_on_overflow */
702 	 mmix_elf_reloc,	/* special_function */
703 	 "R_MMIX_ADDR19",	/* name */
704 	 FALSE,			/* partial_inplace */
705 	 ~0x0100ffff,		/* src_mask */
706 	 0x0100ffff,		/* dst_mask */
707 	 TRUE),			/* pcrel_offset */
708 
709   /* For JMP.  */
710   HOWTO (R_MMIX_ADDR27,		/* type */
711 	 2,			/* rightshift */
712 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
713 	 27,			/* bitsize */
714 	 TRUE,			/* pc_relative */
715 	 0,			/* bitpos */
716 	 complain_overflow_signed, /* complain_on_overflow */
717 	 mmix_elf_reloc,	/* special_function */
718 	 "R_MMIX_ADDR27",	/* name */
719 	 FALSE,			/* partial_inplace */
720 	 ~0x1ffffff,		/* src_mask */
721 	 0x1ffffff,		/* dst_mask */
722 	 TRUE),			/* pcrel_offset */
723 
724   /* A general register or the value 0..255.  If a value, then the
725      instruction (offset -3) needs adjusting.  */
726   HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
727 	 0,			/* rightshift */
728 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
729 	 8,			/* bitsize */
730 	 FALSE,			/* pc_relative */
731 	 0,			/* bitpos */
732 	 complain_overflow_bitfield, /* complain_on_overflow */
733 	 mmix_elf_reloc,	/* special_function */
734 	 "R_MMIX_REG_OR_BYTE",	/* name */
735 	 FALSE,			/* partial_inplace */
736 	 0,			/* src_mask */
737 	 0xff,			/* dst_mask */
738 	 FALSE),		/* pcrel_offset */
739 
740   /* A general register.  */
741   HOWTO (R_MMIX_REG,		/* type */
742 	 0,			/* rightshift */
743 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
744 	 8,			/* bitsize */
745 	 FALSE,			/* pc_relative */
746 	 0,			/* bitpos */
747 	 complain_overflow_bitfield, /* complain_on_overflow */
748 	 mmix_elf_reloc,	/* special_function */
749 	 "R_MMIX_REG",		/* name */
750 	 FALSE,			/* partial_inplace */
751 	 0,			/* src_mask */
752 	 0xff,			/* dst_mask */
753 	 FALSE),		/* pcrel_offset */
754 
755   /* A register plus an index, corresponding to the relocation expression.
756      The sizes must correspond to the valid range of the expression, while
757      the bitmasks correspond to what we store in the image.  */
758   HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
759 	 0,			/* rightshift */
760 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
761 	 64,			/* bitsize */
762 	 FALSE,			/* pc_relative */
763 	 0,			/* bitpos */
764 	 complain_overflow_bitfield, /* complain_on_overflow */
765 	 mmix_elf_reloc,	/* special_function */
766 	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
767 	 FALSE,			/* partial_inplace */
768 	 0,			/* src_mask */
769 	 0xffff,		/* dst_mask */
770 	 FALSE),		/* pcrel_offset */
771 
772   /* A "magic" relocation for a LOCAL expression, asserting that the
773      expression is less than the number of global registers.  No actual
774      modification of the contents is done.  Implementing this as a
775      relocation was less intrusive than e.g. putting such expressions in a
776      section to discard *after* relocation.  */
777   HOWTO (R_MMIX_LOCAL,		/* type */
778 	 0,			/* rightshift */
779 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
780 	 0,			/* bitsize */
781 	 FALSE,			/* pc_relative */
782 	 0,			/* bitpos */
783 	 complain_overflow_dont, /* complain_on_overflow */
784 	 mmix_elf_reloc,	/* special_function */
785 	 "R_MMIX_LOCAL",	/* name */
786 	 FALSE,			/* partial_inplace */
787 	 0,			/* src_mask */
788 	 0,			/* dst_mask */
789 	 FALSE),		/* pcrel_offset */
790 
791   HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
792 	 2,			/* rightshift */
793 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
794 	 19,			/* bitsize */
795 	 TRUE,			/* pc_relative */
796 	 0,			/* bitpos */
797 	 complain_overflow_signed, /* complain_on_overflow */
798 	 mmix_elf_reloc,	/* special_function */
799 	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 	 FALSE,			/* partial_inplace */
801 	 ~0x0100ffff,		/* src_mask */
802 	 0x0100ffff,		/* dst_mask */
803 	 TRUE)			/* pcrel_offset */
804  };
805 
806 
807 /* Map BFD reloc types to MMIX ELF reloc types.  */
808 
809 struct mmix_reloc_map
810   {
811     bfd_reloc_code_real_type bfd_reloc_val;
812     enum elf_mmix_reloc_type elf_reloc_val;
813   };
814 
815 
816 static const struct mmix_reloc_map mmix_reloc_map[] =
817   {
818     {BFD_RELOC_NONE, R_MMIX_NONE},
819     {BFD_RELOC_8, R_MMIX_8},
820     {BFD_RELOC_16, R_MMIX_16},
821     {BFD_RELOC_24, R_MMIX_24},
822     {BFD_RELOC_32, R_MMIX_32},
823     {BFD_RELOC_64, R_MMIX_64},
824     {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
825     {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
826     {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
827     {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
828     {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
829     {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
830     {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
831     {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
832     {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
833     {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
834     {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
835     {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
836     {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
837     {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
838     {BFD_RELOC_MMIX_REG, R_MMIX_REG},
839     {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
840     {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
841     {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
842   };
843 
844 static reloc_howto_type *
845 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
846      bfd *abfd ATTRIBUTE_UNUSED;
847      bfd_reloc_code_real_type code;
848 {
849   unsigned int i;
850 
851   for (i = 0;
852        i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
853        i++)
854     {
855       if (mmix_reloc_map[i].bfd_reloc_val == code)
856 	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
857     }
858 
859   return NULL;
860 }
861 
862 static bfd_boolean
863 mmix_elf_new_section_hook (abfd, sec)
864      bfd *abfd;
865      asection *sec;
866 {
867   struct _mmix_elf_section_data *sdata;
868   bfd_size_type amt = sizeof (*sdata);
869 
870   sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
871   if (sdata == NULL)
872     return FALSE;
873   sec->used_by_bfd = (PTR) sdata;
874 
875   return _bfd_elf_new_section_hook (abfd, sec);
876 }
877 
878 
879 /* This function performs the actual bitfiddling and sanity check for a
880    final relocation.  Each relocation gets its *worst*-case expansion
881    in size when it arrives here; any reduction in size should have been
882    caught in linker relaxation earlier.  When we get here, the relocation
883    looks like the smallest instruction with SWYM:s (nop:s) appended to the
884    max size.  We fill in those nop:s.
885 
886    R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
887     GETA $N,foo
888    ->
889     SETL $N,foo & 0xffff
890     INCML $N,(foo >> 16) & 0xffff
891     INCMH $N,(foo >> 32) & 0xffff
892     INCH $N,(foo >> 48) & 0xffff
893 
894    R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895    condbranches needing relaxation might be rare enough to not be
896    worthwhile.)
897     [P]Bcc $N,foo
898    ->
899     [~P]B~cc $N,.+20
900     SETL $255,foo & ...
901     INCML ...
902     INCMH ...
903     INCH ...
904     GO $255,$255,0
905 
906    R_MMIX_PUSHJ: (FIXME: Relaxation...)
907     PUSHJ $N,foo
908    ->
909     SETL $255,foo & ...
910     INCML ...
911     INCMH ...
912     INCH ...
913     PUSHGO $N,$255,0
914 
915    R_MMIX_JMP: (FIXME: Relaxation...)
916     JMP foo
917    ->
918     SETL $255,foo & ...
919     INCML ...
920     INCMH ...
921     INCH ...
922     GO $255,$255,0
923 
924    R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
925 
926 static bfd_reloc_status_type
927 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
928      asection *isec;
929      reloc_howto_type *howto;
930      PTR datap;
931      bfd_vma addr;
932      bfd_vma value;
933 {
934   bfd *abfd = isec->owner;
935   bfd_reloc_status_type flag = bfd_reloc_ok;
936   bfd_reloc_status_type r;
937   int offs = 0;
938   int reg = 255;
939 
940   /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941      We handle the differences here and the common sequence later.  */
942   switch (howto->type)
943     {
944     case R_MMIX_GETA:
945       offs = 0;
946       reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
947 
948       /* We change to an absolute value.  */
949       value += addr;
950       break;
951 
952     case R_MMIX_CBRANCH:
953       {
954 	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
955 
956 	/* Invert the condition and prediction bit, and set the offset
957 	   to five instructions ahead.
958 
959 	   We *can* do better if we want to.  If the branch is found to be
960 	   within limits, we could leave the branch as is; there'll just
961 	   be a bunch of NOP:s after it.  But we shouldn't see this
962 	   sequence often enough that it's worth doing it.  */
963 
964 	bfd_put_32 (abfd,
965 		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
966 		     | (24/4)),
967 		    (bfd_byte *) datap);
968 
969 	/* Put a "GO $255,$255,0" after the common sequence.  */
970 	bfd_put_32 (abfd,
971 		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
972 		    (bfd_byte *) datap + 20);
973 
974 	/* Common sequence starts at offset 4.  */
975 	offs = 4;
976 
977 	/* We change to an absolute value.  */
978 	value += addr;
979       }
980       break;
981 
982     case R_MMIX_PUSHJ_STUBBABLE:
983       /* If the address fits, we're fine.  */
984       if ((value & 3) == 0
985 	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
986 	  && (r = bfd_check_overflow (complain_overflow_signed,
987 				      howto->bitsize,
988 				      0,
989 				      bfd_arch_bits_per_address (abfd),
990 				      value)) == bfd_reloc_ok)
991 	goto pcrel_mmix_reloc_fits;
992       else
993 	{
994 	  bfd_size_type raw_size
995 	    = (isec->_raw_size
996 	       - mmix_elf_section_data (isec)->pjs.n_pushj_relocs
997 	       * MAX_PUSHJ_STUB_SIZE);
998 
999 	  /* We have the bytes at the PUSHJ insn and need to get the
1000 	     position for the stub.  There's supposed to be room allocated
1001 	     for the stub.  */
1002 	  bfd_byte *stubcontents
1003 	    = ((char *) datap
1004 	       - (addr - (isec->output_section->vma + isec->output_offset))
1005 	       + raw_size
1006 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1007 	  bfd_vma stubaddr;
1008 
1009 	  /* The address doesn't fit, so redirect the PUSHJ to the
1010 	     location of the stub.  */
1011 	  r = mmix_elf_perform_relocation (isec,
1012 					   &elf_mmix_howto_table
1013 					   [R_MMIX_ADDR19],
1014 					   datap,
1015 					   addr,
1016 					   isec->output_section->vma
1017 					   + isec->output_offset
1018 					   + raw_size
1019 					   + (mmix_elf_section_data (isec)
1020 					      ->pjs.stub_offset)
1021 					   - addr);
1022 	  if (r != bfd_reloc_ok)
1023 	    return r;
1024 
1025 	  stubaddr
1026 	    = (isec->output_section->vma
1027 	       + isec->output_offset
1028 	       + raw_size
1029 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1030 
1031 	  /* We generate a simple JMP if that suffices, else the whole 5
1032 	     insn stub.  */
1033 	  if (bfd_check_overflow (complain_overflow_signed,
1034 				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1035 				  0,
1036 				  bfd_arch_bits_per_address (abfd),
1037 				  addr + value - stubaddr) == bfd_reloc_ok)
1038 	    {
1039 	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1040 	      r = mmix_elf_perform_relocation (isec,
1041 					       &elf_mmix_howto_table
1042 					       [R_MMIX_ADDR27],
1043 					       stubcontents,
1044 					       stubaddr,
1045 					       value + addr - stubaddr);
1046 	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1047 
1048 	      if (raw_size
1049 		  + mmix_elf_section_data (isec)->pjs.stub_offset
1050 		  > isec->_cooked_size)
1051 		abort ();
1052 
1053 	      return r;
1054 	    }
1055 	  else
1056 	    {
1057 	      /* Put a "GO $255,0" after the common sequence.  */
1058 	      bfd_put_32 (abfd,
1059 			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1060 			  | 0xff00, (bfd_byte *) stubcontents + 16);
1061 
1062 	      /* Prepare for the general code to set the first part of the
1063 		 linker stub, and */
1064 	      value += addr;
1065 	      datap = stubcontents;
1066 	      mmix_elf_section_data (isec)->pjs.stub_offset
1067 		+= MAX_PUSHJ_STUB_SIZE;
1068 	    }
1069 	}
1070       break;
1071 
1072     case R_MMIX_PUSHJ:
1073       {
1074 	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1075 
1076 	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1077 	bfd_put_32 (abfd,
1078 		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1079 		    | (inreg << 16)
1080 		    | 0xff00,
1081 		    (bfd_byte *) datap + 16);
1082 
1083 	/* We change to an absolute value.  */
1084 	value += addr;
1085       }
1086       break;
1087 
1088     case R_MMIX_JMP:
1089       /* This one is a little special.  If we get here on a non-relaxing
1090 	 link, and the destination is actually in range, we don't need to
1091 	 execute the nops.
1092 	 If so, we fall through to the bit-fiddling relocs.
1093 
1094 	 FIXME: bfd_check_overflow seems broken; the relocation is
1095 	 rightshifted before testing, so supply a zero rightshift.  */
1096 
1097       if (! ((value & 3) == 0
1098 	     && (r = bfd_check_overflow (complain_overflow_signed,
1099 					 howto->bitsize,
1100 					 0,
1101 					 bfd_arch_bits_per_address (abfd),
1102 					 value)) == bfd_reloc_ok))
1103 	{
1104 	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 	     modified below, and put a "GO $255,$255,0" after the
1106 	     address-loading sequence.  */
1107 	  bfd_put_32 (abfd,
1108 		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1109 		      | 0xffff00,
1110 		      (bfd_byte *) datap + 16);
1111 
1112 	  /* We change to an absolute value.  */
1113 	  value += addr;
1114 	  break;
1115 	}
1116       /* FALLTHROUGH.  */
1117     case R_MMIX_ADDR19:
1118     case R_MMIX_ADDR27:
1119     pcrel_mmix_reloc_fits:
1120       /* These must be in range, or else we emit an error.  */
1121       if ((value & 3) == 0
1122 	  /* Note rightshift 0; see above.  */
1123 	  && (r = bfd_check_overflow (complain_overflow_signed,
1124 				      howto->bitsize,
1125 				      0,
1126 				      bfd_arch_bits_per_address (abfd),
1127 				      value)) == bfd_reloc_ok)
1128 	{
1129 	  bfd_vma in1
1130 	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1131 	  bfd_vma highbit;
1132 
1133 	  if ((bfd_signed_vma) value < 0)
1134 	    {
1135 	      highbit = 1 << 24;
1136 	      value += (1 << (howto->bitsize - 1));
1137 	    }
1138 	  else
1139 	    highbit = 0;
1140 
1141 	  value >>= 2;
1142 
1143 	  bfd_put_32 (abfd,
1144 		      (in1 & howto->src_mask)
1145 		      | highbit
1146 		      | (value & howto->dst_mask),
1147 		      (bfd_byte *) datap);
1148 
1149 	  return bfd_reloc_ok;
1150 	}
1151       else
1152 	return bfd_reloc_overflow;
1153 
1154     case R_MMIX_BASE_PLUS_OFFSET:
1155       {
1156 	struct bpo_reloc_section_info *bpodata
1157 	  = mmix_elf_section_data (isec)->bpo.reloc;
1158 	asection *bpo_greg_section
1159 	  = bpodata->bpo_greg_section;
1160 	struct bpo_greg_section_info *gregdata
1161 	  = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1162 	size_t bpo_index
1163 	  = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1164 
1165 	/* A consistency check: The value we now have in "relocation" must
1166 	   be the same as the value we stored for that relocation.  It
1167 	   doesn't cost much, so can be left in at all times.  */
1168 	if (value != gregdata->reloc_request[bpo_index].value)
1169 	  {
1170 	    (*_bfd_error_handler)
1171 	      (_("%s: Internal inconsistency error for value for\n\
1172  linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 	       bfd_get_filename (isec->owner),
1174 	       (unsigned long) (value >> 32), (unsigned long) value,
1175 	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1176 				>> 32),
1177 	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1178 	    bfd_set_error (bfd_error_bad_value);
1179 	    return bfd_reloc_overflow;
1180 	  }
1181 
1182 	/* Then store the register number and offset for that register
1183 	   into datap and datap + 1 respectively.  */
1184 	bfd_put_8 (abfd,
1185 		   gregdata->reloc_request[bpo_index].regindex
1186 		   + bpo_greg_section->output_section->vma / 8,
1187 		   datap);
1188 	bfd_put_8 (abfd,
1189 		   gregdata->reloc_request[bpo_index].offset,
1190 		   ((unsigned char *) datap) + 1);
1191 	return bfd_reloc_ok;
1192       }
1193 
1194     case R_MMIX_REG_OR_BYTE:
1195     case R_MMIX_REG:
1196       if (value > 255)
1197 	return bfd_reloc_overflow;
1198       bfd_put_8 (abfd, value, datap);
1199       return bfd_reloc_ok;
1200 
1201     default:
1202       BAD_CASE (howto->type);
1203     }
1204 
1205   /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1206      sequence.  */
1207 
1208   /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1209      everything that looks strange.  */
1210   if (value & 3)
1211     flag = bfd_reloc_overflow;
1212 
1213   bfd_put_32 (abfd,
1214 	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1215 	      (bfd_byte *) datap + offs);
1216   bfd_put_32 (abfd,
1217 	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1218 	      (bfd_byte *) datap + offs + 4);
1219   bfd_put_32 (abfd,
1220 	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1221 	      (bfd_byte *) datap + offs + 8);
1222   bfd_put_32 (abfd,
1223 	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1224 	      (bfd_byte *) datap + offs + 12);
1225 
1226   return flag;
1227 }
1228 
1229 /* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1230 
1231 static void
1232 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1233      bfd *abfd ATTRIBUTE_UNUSED;
1234      arelent *cache_ptr;
1235      Elf_Internal_Rela *dst;
1236 {
1237   unsigned int r_type;
1238 
1239   r_type = ELF64_R_TYPE (dst->r_info);
1240   BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1241   cache_ptr->howto = &elf_mmix_howto_table[r_type];
1242 }
1243 
1244 /* Any MMIX-specific relocation gets here at assembly time or when linking
1245    to other formats (such as mmo); this is the relocation function from
1246    the reloc_table.  We don't get here for final pure ELF linking.  */
1247 
1248 static bfd_reloc_status_type
1249 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1250 		output_bfd, error_message)
1251      bfd *abfd;
1252      arelent *reloc_entry;
1253      asymbol *symbol;
1254      PTR data;
1255      asection *input_section;
1256      bfd *output_bfd;
1257      char **error_message ATTRIBUTE_UNUSED;
1258 {
1259   bfd_vma relocation;
1260   bfd_reloc_status_type r;
1261   asection *reloc_target_output_section;
1262   bfd_reloc_status_type flag = bfd_reloc_ok;
1263   bfd_vma output_base = 0;
1264   bfd_vma addr;
1265 
1266   r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 			     input_section, output_bfd, error_message);
1268 
1269   /* If that was all that was needed (i.e. this isn't a final link, only
1270      some segment adjustments), we're done.  */
1271   if (r != bfd_reloc_continue)
1272     return r;
1273 
1274   if (bfd_is_und_section (symbol->section)
1275       && (symbol->flags & BSF_WEAK) == 0
1276       && output_bfd == (bfd *) NULL)
1277     return bfd_reloc_undefined;
1278 
1279   /* Is the address of the relocation really within the section?  */
1280   if (reloc_entry->address > input_section->_cooked_size)
1281     return bfd_reloc_outofrange;
1282 
1283   /* Work out which section the relocation is targeted at and the
1284      initial relocation command value.  */
1285 
1286   /* Get symbol value.  (Common symbols are special.)  */
1287   if (bfd_is_com_section (symbol->section))
1288     relocation = 0;
1289   else
1290     relocation = symbol->value;
1291 
1292   reloc_target_output_section = bfd_get_output_section (symbol);
1293 
1294   /* Here the variable relocation holds the final address of the symbol we
1295      are relocating against, plus any addend.  */
1296   if (output_bfd)
1297     output_base = 0;
1298   else
1299     output_base = reloc_target_output_section->vma;
1300 
1301   relocation += output_base + symbol->section->output_offset;
1302 
1303   /* Get position of relocation.  */
1304   addr = (reloc_entry->address + input_section->output_section->vma
1305 	  + input_section->output_offset);
1306   if (output_bfd != (bfd *) NULL)
1307     {
1308       /* Add in supplied addend.  */
1309       relocation += reloc_entry->addend;
1310 
1311       /* This is a partial relocation, and we want to apply the
1312 	 relocation to the reloc entry rather than the raw data.
1313 	 Modify the reloc inplace to reflect what we now know.  */
1314       reloc_entry->addend = relocation;
1315       reloc_entry->address += input_section->output_offset;
1316       return flag;
1317     }
1318 
1319   return mmix_final_link_relocate (reloc_entry->howto, input_section,
1320 				   data, reloc_entry->address,
1321 				   reloc_entry->addend, relocation,
1322 				   bfd_asymbol_name (symbol),
1323 				   reloc_target_output_section);
1324 }
1325 
1326 /* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1327    for guidance if you're thinking of copying this.  */
1328 
1329 static bfd_boolean
1330 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1331 			   contents, relocs, local_syms, local_sections)
1332      bfd *output_bfd ATTRIBUTE_UNUSED;
1333      struct bfd_link_info *info;
1334      bfd *input_bfd;
1335      asection *input_section;
1336      bfd_byte *contents;
1337      Elf_Internal_Rela *relocs;
1338      Elf_Internal_Sym *local_syms;
1339      asection **local_sections;
1340 {
1341   Elf_Internal_Shdr *symtab_hdr;
1342   struct elf_link_hash_entry **sym_hashes;
1343   Elf_Internal_Rela *rel;
1344   Elf_Internal_Rela *relend;
1345   bfd_size_type raw_size
1346     = (input_section->_raw_size
1347        - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs
1348        * MAX_PUSHJ_STUB_SIZE);
1349   size_t pjsno = 0;
1350 
1351   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352   sym_hashes = elf_sym_hashes (input_bfd);
1353   relend = relocs + input_section->reloc_count;
1354 
1355   for (rel = relocs; rel < relend; rel ++)
1356     {
1357       reloc_howto_type *howto;
1358       unsigned long r_symndx;
1359       Elf_Internal_Sym *sym;
1360       asection *sec;
1361       struct elf_link_hash_entry *h;
1362       bfd_vma relocation;
1363       bfd_reloc_status_type r;
1364       const char *name = NULL;
1365       int r_type;
1366       bfd_boolean undefined_signalled = FALSE;
1367 
1368       r_type = ELF64_R_TYPE (rel->r_info);
1369 
1370       if (r_type == R_MMIX_GNU_VTINHERIT
1371 	  || r_type == R_MMIX_GNU_VTENTRY)
1372 	continue;
1373 
1374       r_symndx = ELF64_R_SYM (rel->r_info);
1375 
1376       if (info->relocatable)
1377 	{
1378 	  /* This is a relocatable link.  For most relocs we don't have to
1379 	     change anything, unless the reloc is against a section
1380 	     symbol, in which case we have to adjust according to where
1381 	     the section symbol winds up in the output section.  */
1382 	  if (r_symndx < symtab_hdr->sh_info)
1383 	    {
1384 	      sym = local_syms + r_symndx;
1385 
1386 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1387 		{
1388 		  sec = local_sections [r_symndx];
1389 		  rel->r_addend += sec->output_offset + sym->st_value;
1390 		}
1391 	    }
1392 
1393 	  /* For PUSHJ stub relocs however, we may need to change the
1394 	     reloc and the section contents, if the reloc doesn't reach
1395 	     beyond the end of the output section and previous stubs.
1396 	     Then we change the section contents to be a PUSHJ to the end
1397 	     of the input section plus stubs (we can do that without using
1398 	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 	     at the stub location.  */
1400 	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1401 	    {
1402 	      /* We've already checked whether we need a stub; use that
1403 		 knowledge.  */
1404 	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1405 		  != 0)
1406 		{
1407 		  Elf_Internal_Rela relcpy;
1408 
1409 		  if (mmix_elf_section_data (input_section)
1410 		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1411 		    abort ();
1412 
1413 		  /* There's already a PUSHJ insn there, so just fill in
1414 		     the offset bits to the stub.  */
1415 		  if (mmix_final_link_relocate (elf_mmix_howto_table
1416 						+ R_MMIX_ADDR19,
1417 						input_section,
1418 						contents,
1419 						rel->r_offset,
1420 						0,
1421 						input_section
1422 						->output_section->vma
1423 						+ input_section->output_offset
1424 						+ raw_size
1425 						+ mmix_elf_section_data (input_section)
1426 						->pjs.stub_offset,
1427 						NULL, NULL) != bfd_reloc_ok)
1428 		    return FALSE;
1429 
1430 		  /* Put a JMP insn at the stub; it goes with the
1431 		     R_MMIX_JMP reloc.  */
1432 		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1433 			      contents
1434 			      + raw_size
1435 			      + mmix_elf_section_data (input_section)
1436 			      ->pjs.stub_offset);
1437 
1438 		  /* Change the reloc to be at the stub, and to a full
1439 		     R_MMIX_JMP reloc.  */
1440 		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1441 		  rel->r_offset
1442 		    = (raw_size
1443 		       + mmix_elf_section_data (input_section)
1444 		       ->pjs.stub_offset);
1445 
1446 		  mmix_elf_section_data (input_section)->pjs.stub_offset
1447 		    += MAX_PUSHJ_STUB_SIZE;
1448 
1449 		  /* Shift this reloc to the end of the relocs to maintain
1450 		     the r_offset sorted reloc order.  */
1451 		  relcpy = *rel;
1452 		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1453 		  relend[-1] = relcpy;
1454 
1455 		  /* Back up one reloc, or else we'd skip the next reloc
1456 		   in turn.  */
1457 		  rel--;
1458 		}
1459 
1460 	      pjsno++;
1461 	    }
1462 	  continue;
1463 	}
1464 
1465       /* This is a final link.  */
1466       howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1467       h = NULL;
1468       sym = NULL;
1469       sec = NULL;
1470 
1471       if (r_symndx < symtab_hdr->sh_info)
1472 	{
1473 	  sym = local_syms + r_symndx;
1474 	  sec = local_sections [r_symndx];
1475 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1476 
1477 	  name = bfd_elf_string_from_elf_section (input_bfd,
1478 						  symtab_hdr->sh_link,
1479 						  sym->st_name);
1480 	  if (name == NULL)
1481 	    name = bfd_section_name (input_bfd, sec);
1482 	}
1483       else
1484 	{
1485 	  bfd_boolean unresolved_reloc;
1486 
1487 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1488 				   r_symndx, symtab_hdr, sym_hashes,
1489 				   h, sec, relocation,
1490 				   unresolved_reloc, undefined_signalled);
1491 	  name = h->root.root.string;
1492 	}
1493 
1494       r = mmix_final_link_relocate (howto, input_section,
1495 				    contents, rel->r_offset,
1496 				    rel->r_addend, relocation, name, sec);
1497 
1498       if (r != bfd_reloc_ok)
1499 	{
1500 	  bfd_boolean check_ok = TRUE;
1501 	  const char * msg = (const char *) NULL;
1502 
1503 	  switch (r)
1504 	    {
1505 	    case bfd_reloc_overflow:
1506 	      check_ok = info->callbacks->reloc_overflow
1507 		(info, name, howto->name, (bfd_vma) 0,
1508 		 input_bfd, input_section, rel->r_offset);
1509 	      break;
1510 
1511 	    case bfd_reloc_undefined:
1512 	      /* We may have sent this message above.  */
1513 	      if (! undefined_signalled)
1514 		check_ok = info->callbacks->undefined_symbol
1515 		  (info, name, input_bfd, input_section, rel->r_offset,
1516 		   TRUE);
1517 	      undefined_signalled = TRUE;
1518 	      break;
1519 
1520 	    case bfd_reloc_outofrange:
1521 	      msg = _("internal error: out of range error");
1522 	      break;
1523 
1524 	    case bfd_reloc_notsupported:
1525 	      msg = _("internal error: unsupported relocation error");
1526 	      break;
1527 
1528 	    case bfd_reloc_dangerous:
1529 	      msg = _("internal error: dangerous relocation");
1530 	      break;
1531 
1532 	    default:
1533 	      msg = _("internal error: unknown error");
1534 	      break;
1535 	    }
1536 
1537 	  if (msg)
1538 	    check_ok = info->callbacks->warning
1539 	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1540 
1541 	  if (! check_ok)
1542 	    return FALSE;
1543 	}
1544     }
1545 
1546   return TRUE;
1547 }
1548 
1549 /* Perform a single relocation.  By default we use the standard BFD
1550    routines.  A few relocs we have to do ourselves.  */
1551 
1552 static bfd_reloc_status_type
1553 mmix_final_link_relocate (howto, input_section, contents,
1554 			  r_offset, r_addend, relocation, symname, symsec)
1555      reloc_howto_type *howto;
1556      asection *input_section;
1557      bfd_byte *contents;
1558      bfd_vma r_offset;
1559      bfd_signed_vma r_addend;
1560      bfd_vma relocation;
1561      const char *symname;
1562      asection *symsec;
1563 {
1564   bfd_reloc_status_type r = bfd_reloc_ok;
1565   bfd_vma addr
1566     = (input_section->output_section->vma
1567        + input_section->output_offset
1568        + r_offset);
1569   bfd_signed_vma srel
1570     = (bfd_signed_vma) relocation + r_addend;
1571 
1572   switch (howto->type)
1573     {
1574       /* All these are PC-relative.  */
1575     case R_MMIX_PUSHJ_STUBBABLE:
1576     case R_MMIX_PUSHJ:
1577     case R_MMIX_CBRANCH:
1578     case R_MMIX_ADDR19:
1579     case R_MMIX_GETA:
1580     case R_MMIX_ADDR27:
1581     case R_MMIX_JMP:
1582       contents += r_offset;
1583 
1584       srel -= (input_section->output_section->vma
1585 	       + input_section->output_offset
1586 	       + r_offset);
1587 
1588       r = mmix_elf_perform_relocation (input_section, howto, contents,
1589 				       addr, srel);
1590       break;
1591 
1592     case R_MMIX_BASE_PLUS_OFFSET:
1593       if (symsec == NULL)
1594 	return bfd_reloc_undefined;
1595 
1596       /* Check that we're not relocating against a register symbol.  */
1597       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1598 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1599 	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1600 		     MMIX_REG_SECTION_NAME) == 0)
1601 	{
1602 	  /* Note: This is separated out into two messages in order
1603 	     to ease the translation into other languages.  */
1604 	  if (symname == NULL || *symname == 0)
1605 	    (*_bfd_error_handler)
1606 	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1607 	       bfd_get_filename (input_section->owner),
1608 	       bfd_get_section_name (symsec->owner, symsec));
1609 	  else
1610 	    (*_bfd_error_handler)
1611 	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1612 	       bfd_get_filename (input_section->owner), symname,
1613 	       bfd_get_section_name (symsec->owner, symsec));
1614 	  return bfd_reloc_overflow;
1615 	}
1616       goto do_mmix_reloc;
1617 
1618     case R_MMIX_REG_OR_BYTE:
1619     case R_MMIX_REG:
1620       /* For now, we handle these alike.  They must refer to an register
1621 	 symbol, which is either relative to the register section and in
1622 	 the range 0..255, or is in the register contents section with vma
1623 	 regno * 8.  */
1624 
1625       /* FIXME: A better way to check for reg contents section?
1626 	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1627       if (symsec == NULL)
1628 	return bfd_reloc_undefined;
1629 
1630       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1631 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1632 	{
1633 	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1634 	    {
1635 	      /* The bfd_reloc_outofrange return value, though intuitively
1636 		 a better value, will not get us an error.  */
1637 	      return bfd_reloc_overflow;
1638 	    }
1639 	  srel /= 8;
1640 	}
1641       else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 		       MMIX_REG_SECTION_NAME) == 0)
1643 	{
1644 	  if (srel < 0 || srel > 255)
1645 	    /* The bfd_reloc_outofrange return value, though intuitively a
1646 	       better value, will not get us an error.  */
1647 	    return bfd_reloc_overflow;
1648 	}
1649       else
1650 	{
1651 	  /* Note: This is separated out into two messages in order
1652 	     to ease the translation into other languages.  */
1653 	  if (symname == NULL || *symname == 0)
1654 	    (*_bfd_error_handler)
1655 	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1656 	       bfd_get_filename (input_section->owner),
1657 	       bfd_get_section_name (symsec->owner, symsec));
1658 	  else
1659 	    (*_bfd_error_handler)
1660 	      (_("%s: register relocation against non-register symbol: %s in %s"),
1661 	       bfd_get_filename (input_section->owner), symname,
1662 	       bfd_get_section_name (symsec->owner, symsec));
1663 
1664 	  /* The bfd_reloc_outofrange return value, though intuitively a
1665 	     better value, will not get us an error.  */
1666 	  return bfd_reloc_overflow;
1667 	}
1668     do_mmix_reloc:
1669       contents += r_offset;
1670       r = mmix_elf_perform_relocation (input_section, howto, contents,
1671 				       addr, srel);
1672       break;
1673 
1674     case R_MMIX_LOCAL:
1675       /* This isn't a real relocation, it's just an assertion that the
1676 	 final relocation value corresponds to a local register.  We
1677 	 ignore the actual relocation; nothing is changed.  */
1678       {
1679 	asection *regsec
1680 	  = bfd_get_section_by_name (input_section->output_section->owner,
1681 				     MMIX_REG_CONTENTS_SECTION_NAME);
1682 	bfd_vma first_global;
1683 
1684 	/* Check that this is an absolute value, or a reference to the
1685 	   register contents section or the register (symbol) section.
1686 	   Absolute numbers can get here as undefined section.  Undefined
1687 	   symbols are signalled elsewhere, so there's no conflict in us
1688 	   accidentally handling it.  */
1689 	if (!bfd_is_abs_section (symsec)
1690 	    && !bfd_is_und_section (symsec)
1691 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1692 		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1693 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1694 		       MMIX_REG_SECTION_NAME) != 0)
1695 	{
1696 	  (*_bfd_error_handler)
1697 	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1698 	     bfd_get_filename (input_section->owner));
1699 
1700 	  return bfd_reloc_overflow;
1701 	}
1702 
1703       /* If we don't have a register contents section, then $255 is the
1704 	 first global register.  */
1705       if (regsec == NULL)
1706 	first_global = 255;
1707       else
1708 	{
1709 	  first_global = bfd_get_section_vma (abfd, regsec) / 8;
1710 	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1711 		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1712 	    {
1713 	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1714 		/* The bfd_reloc_outofrange return value, though
1715 		   intuitively a better value, will not get us an error.  */
1716 		return bfd_reloc_overflow;
1717 	      srel /= 8;
1718 	    }
1719 	}
1720 
1721 	if ((bfd_vma) srel >= first_global)
1722 	  {
1723 	    /* FIXME: Better error message.  */
1724 	    (*_bfd_error_handler)
1725 	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1726 	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1727 
1728 	    return bfd_reloc_overflow;
1729 	  }
1730       }
1731       r = bfd_reloc_ok;
1732       break;
1733 
1734     default:
1735       r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1736 				    contents, r_offset,
1737 				    relocation, r_addend);
1738     }
1739 
1740   return r;
1741 }
1742 
1743 /* Return the section that should be marked against GC for a given
1744    relocation.  */
1745 
1746 static asection *
1747 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1748      asection *sec;
1749      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1750      Elf_Internal_Rela *rel;
1751      struct elf_link_hash_entry *h;
1752      Elf_Internal_Sym *sym;
1753 {
1754   if (h != NULL)
1755     {
1756       switch (ELF64_R_TYPE (rel->r_info))
1757 	{
1758 	case R_MMIX_GNU_VTINHERIT:
1759 	case R_MMIX_GNU_VTENTRY:
1760 	  break;
1761 
1762 	default:
1763 	  switch (h->root.type)
1764 	    {
1765 	    case bfd_link_hash_defined:
1766 	    case bfd_link_hash_defweak:
1767 	      return h->root.u.def.section;
1768 
1769 	    case bfd_link_hash_common:
1770 	      return h->root.u.c.p->section;
1771 
1772 	    default:
1773 	      break;
1774 	    }
1775 	}
1776     }
1777   else
1778     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1779 
1780   return NULL;
1781 }
1782 
1783 /* Update relocation info for a GC-excluded section.  We could supposedly
1784    perform the allocation after GC, but there's no suitable hook between
1785    GC (or section merge) and the point when all input sections must be
1786    present.  Better to waste some memory and (perhaps) a little time.  */
1787 
1788 static bfd_boolean
1789 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1790      bfd *abfd ATTRIBUTE_UNUSED;
1791      struct bfd_link_info *info ATTRIBUTE_UNUSED;
1792      asection *sec ATTRIBUTE_UNUSED;
1793      const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1794 {
1795   struct bpo_reloc_section_info *bpodata
1796     = mmix_elf_section_data (sec)->bpo.reloc;
1797   asection *allocated_gregs_section;
1798 
1799   /* If no bpodata here, we have nothing to do.  */
1800   if (bpodata == NULL)
1801     return TRUE;
1802 
1803   allocated_gregs_section = bpodata->bpo_greg_section;
1804 
1805   mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1806     -= bpodata->n_bpo_relocs_this_section;
1807 
1808   return TRUE;
1809 }
1810 
1811 /* Sort register relocs to come before expanding relocs.  */
1812 
1813 static int
1814 mmix_elf_sort_relocs (p1, p2)
1815      const PTR p1;
1816      const PTR p2;
1817 {
1818   const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1819   const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1820   int r1_is_reg, r2_is_reg;
1821 
1822   /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1823      insns.  */
1824   if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1825     return 1;
1826   else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1827     return -1;
1828 
1829   r1_is_reg
1830     = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1831        || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1832   r2_is_reg
1833     = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1834        || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1835   if (r1_is_reg != r2_is_reg)
1836     return r2_is_reg - r1_is_reg;
1837 
1838   /* Neither or both are register relocs.  Then sort on full offset.  */
1839   if (r1->r_offset > r2->r_offset)
1840     return 1;
1841   else if (r1->r_offset < r2->r_offset)
1842     return -1;
1843   return 0;
1844 }
1845 
1846 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1847 
1848 static bfd_boolean
1849 mmix_elf_check_common_relocs  (abfd, info, sec, relocs)
1850      bfd *abfd;
1851      struct bfd_link_info *info;
1852      asection *sec;
1853      const Elf_Internal_Rela *relocs;
1854 {
1855   bfd *bpo_greg_owner = NULL;
1856   asection *allocated_gregs_section = NULL;
1857   struct bpo_greg_section_info *gregdata = NULL;
1858   struct bpo_reloc_section_info *bpodata = NULL;
1859   const Elf_Internal_Rela *rel;
1860   const Elf_Internal_Rela *rel_end;
1861 
1862   /* We currently have to abuse this COFF-specific member, since there's
1863      no target-machine-dedicated member.  There's no alternative outside
1864      the bfd_link_info struct; we can't specialize a hash-table since
1865      they're different between ELF and mmo.  */
1866   bpo_greg_owner = (bfd *) info->base_file;
1867 
1868   rel_end = relocs + sec->reloc_count;
1869   for (rel = relocs; rel < rel_end; rel++)
1870     {
1871       switch (ELF64_R_TYPE (rel->r_info))
1872         {
1873 	  /* This relocation causes a GREG allocation.  We need to count
1874 	     them, and we need to create a section for them, so we need an
1875 	     object to fake as the owner of that section.  We can't use
1876 	     the ELF dynobj for this, since the ELF bits assume lots of
1877 	     DSO-related stuff if that member is non-NULL.  */
1878 	case R_MMIX_BASE_PLUS_OFFSET:
1879 	  /* We don't do anything with this reloc for a relocatable link.  */
1880 	  if (info->relocatable)
1881 	    break;
1882 
1883 	  if (bpo_greg_owner == NULL)
1884 	    {
1885 	      bpo_greg_owner = abfd;
1886 	      info->base_file = (PTR) bpo_greg_owner;
1887 	    }
1888 
1889 	  if (allocated_gregs_section == NULL)
1890 	    allocated_gregs_section
1891 	      = bfd_get_section_by_name (bpo_greg_owner,
1892 					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1893 
1894 	  if (allocated_gregs_section == NULL)
1895 	    {
1896 	      allocated_gregs_section
1897 		= bfd_make_section (bpo_greg_owner,
1898 				    MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1899 	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1900 		 treated like any other section, and we'd get errors for
1901 		 address overlap with the text section.  Let's set none of
1902 		 those flags, as that is what currently happens for usual
1903 		 GREG allocations, and that works.  */
1904 	      if (allocated_gregs_section == NULL
1905 		  || !bfd_set_section_flags (bpo_greg_owner,
1906 					     allocated_gregs_section,
1907 					     (SEC_HAS_CONTENTS
1908 					      | SEC_IN_MEMORY
1909 					      | SEC_LINKER_CREATED))
1910 		  || !bfd_set_section_alignment (bpo_greg_owner,
1911 						 allocated_gregs_section,
1912 						 3))
1913 		return FALSE;
1914 
1915 	      gregdata = (struct bpo_greg_section_info *)
1916 		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1917 	      if (gregdata == NULL)
1918 		return FALSE;
1919 	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1920 		= gregdata;
1921 	    }
1922 	  else if (gregdata == NULL)
1923 	    gregdata
1924 	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1925 
1926 	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1927 	  if (bpodata == NULL)
1928 	    {
1929 	      /* No use doing a separate iteration pass to find the upper
1930 		 limit - just use the number of relocs.  */
1931 	      bpodata = (struct bpo_reloc_section_info *)
1932 		bfd_alloc (bpo_greg_owner,
1933 			   sizeof (struct bpo_reloc_section_info)
1934 			   * (sec->reloc_count + 1));
1935 	      if (bpodata == NULL)
1936 		return FALSE;
1937 	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1938 	      bpodata->first_base_plus_offset_reloc
1939 		= bpodata->bpo_index
1940 		= gregdata->n_max_bpo_relocs;
1941 	      bpodata->bpo_greg_section
1942 		= allocated_gregs_section;
1943 	      bpodata->n_bpo_relocs_this_section = 0;
1944 	    }
1945 
1946 	  bpodata->n_bpo_relocs_this_section++;
1947 	  gregdata->n_max_bpo_relocs++;
1948 
1949 	  /* We don't get another chance to set this before GC; we've not
1950 	     set up any hook that runs before GC.  */
1951 	  gregdata->n_bpo_relocs
1952 	    = gregdata->n_max_bpo_relocs;
1953 	  break;
1954 
1955 	case R_MMIX_PUSHJ_STUBBABLE:
1956 	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1957 	  break;
1958 	}
1959     }
1960 
1961   /* Allocate per-reloc stub storage and initialize it to the max stub
1962      size.  */
1963   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1964     {
1965       size_t i;
1966 
1967       mmix_elf_section_data (sec)->pjs.stub_size
1968 	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1969 		     * sizeof (mmix_elf_section_data (sec)
1970 			       ->pjs.stub_size[0]));
1971       if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1972 	return FALSE;
1973 
1974       for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1975 	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1976     }
1977 
1978   return TRUE;
1979 }
1980 
1981 /* Look through the relocs for a section during the first phase.  */
1982 
1983 static bfd_boolean
1984 mmix_elf_check_relocs (abfd, info, sec, relocs)
1985      bfd *abfd;
1986      struct bfd_link_info *info;
1987      asection *sec;
1988      const Elf_Internal_Rela *relocs;
1989 {
1990   Elf_Internal_Shdr *symtab_hdr;
1991   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1992   const Elf_Internal_Rela *rel;
1993   const Elf_Internal_Rela *rel_end;
1994 
1995   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1996   sym_hashes = elf_sym_hashes (abfd);
1997   sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1998   if (!elf_bad_symtab (abfd))
1999     sym_hashes_end -= symtab_hdr->sh_info;
2000 
2001   /* First we sort the relocs so that any register relocs come before
2002      expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
2003   qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2004 	 mmix_elf_sort_relocs);
2005 
2006   /* Do the common part.  */
2007   if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2008     return FALSE;
2009 
2010   if (info->relocatable)
2011     return TRUE;
2012 
2013   rel_end = relocs + sec->reloc_count;
2014   for (rel = relocs; rel < rel_end; rel++)
2015     {
2016       struct elf_link_hash_entry *h;
2017       unsigned long r_symndx;
2018 
2019       r_symndx = ELF64_R_SYM (rel->r_info);
2020       if (r_symndx < symtab_hdr->sh_info)
2021         h = NULL;
2022       else
2023         h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2024 
2025       switch (ELF64_R_TYPE (rel->r_info))
2026 	{
2027         /* This relocation describes the C++ object vtable hierarchy.
2028            Reconstruct it for later use during GC.  */
2029         case R_MMIX_GNU_VTINHERIT:
2030           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2031             return FALSE;
2032           break;
2033 
2034         /* This relocation describes which C++ vtable entries are actually
2035            used.  Record for later use during GC.  */
2036         case R_MMIX_GNU_VTENTRY:
2037           if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2038             return FALSE;
2039           break;
2040 	}
2041     }
2042 
2043   return TRUE;
2044 }
2045 
2046 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2047    Copied from elf_link_add_object_symbols.  */
2048 
2049 bfd_boolean
2050 _bfd_mmix_check_all_relocs (abfd, info)
2051      bfd *abfd;
2052      struct bfd_link_info *info;
2053 {
2054   asection *o;
2055 
2056   for (o = abfd->sections; o != NULL; o = o->next)
2057     {
2058       Elf_Internal_Rela *internal_relocs;
2059       bfd_boolean ok;
2060 
2061       if ((o->flags & SEC_RELOC) == 0
2062 	  || o->reloc_count == 0
2063 	  || ((info->strip == strip_all || info->strip == strip_debugger)
2064 	      && (o->flags & SEC_DEBUGGING) != 0)
2065 	  || bfd_is_abs_section (o->output_section))
2066 	continue;
2067 
2068       internal_relocs
2069 	= _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2070 				     (Elf_Internal_Rela *) NULL,
2071 				     info->keep_memory);
2072       if (internal_relocs == NULL)
2073 	return FALSE;
2074 
2075       ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2076 
2077       if (! info->keep_memory)
2078 	free (internal_relocs);
2079 
2080       if (! ok)
2081 	return FALSE;
2082     }
2083 
2084   return TRUE;
2085 }
2086 
2087 /* Change symbols relative to the reg contents section to instead be to
2088    the register section, and scale them down to correspond to the register
2089    number.  */
2090 
2091 static bfd_boolean
2092 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2093      struct bfd_link_info *info ATTRIBUTE_UNUSED;
2094      const char *name ATTRIBUTE_UNUSED;
2095      Elf_Internal_Sym *sym;
2096      asection *input_sec;
2097      struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2098 {
2099   if (input_sec != NULL
2100       && input_sec->name != NULL
2101       && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2102       && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2103     {
2104       sym->st_value /= 8;
2105       sym->st_shndx = SHN_REGISTER;
2106     }
2107 
2108   return TRUE;
2109 }
2110 
2111 /* We fake a register section that holds values that are register numbers.
2112    Having a SHN_REGISTER and register section translates better to other
2113    formats (e.g. mmo) than for example a STT_REGISTER attribute.
2114    This section faking is based on a construct in elf32-mips.c.  */
2115 static asection mmix_elf_reg_section;
2116 static asymbol mmix_elf_reg_section_symbol;
2117 static asymbol *mmix_elf_reg_section_symbol_ptr;
2118 
2119 /* Handle the special section numbers that a symbol may use.  */
2120 
2121 void
2122 mmix_elf_symbol_processing (abfd, asym)
2123      bfd *abfd ATTRIBUTE_UNUSED;
2124      asymbol *asym;
2125 {
2126   elf_symbol_type *elfsym;
2127 
2128   elfsym = (elf_symbol_type *) asym;
2129   switch (elfsym->internal_elf_sym.st_shndx)
2130     {
2131     case SHN_REGISTER:
2132       if (mmix_elf_reg_section.name == NULL)
2133 	{
2134 	  /* Initialize the register section.  */
2135 	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2136 	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2137 	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2138 	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2139 	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2140 	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2141 	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2142 	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2143 	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2144 	}
2145       asym->section = &mmix_elf_reg_section;
2146       break;
2147 
2148     default:
2149       break;
2150     }
2151 }
2152 
2153 /* Given a BFD section, try to locate the corresponding ELF section
2154    index.  */
2155 
2156 static bfd_boolean
2157 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2158      bfd *                 abfd ATTRIBUTE_UNUSED;
2159      asection *            sec;
2160      int *                 retval;
2161 {
2162   if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2163     *retval = SHN_REGISTER;
2164   else
2165     return FALSE;
2166 
2167   return TRUE;
2168 }
2169 
2170 /* Hook called by the linker routine which adds symbols from an object
2171    file.  We must handle the special SHN_REGISTER section number here.
2172 
2173    We also check that we only have *one* each of the section-start
2174    symbols, since otherwise having two with the same value would cause
2175    them to be "merged", but with the contents serialized.  */
2176 
2177 bfd_boolean
2178 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2179      bfd *abfd;
2180      struct bfd_link_info *info ATTRIBUTE_UNUSED;
2181      Elf_Internal_Sym *sym;
2182      const char **namep ATTRIBUTE_UNUSED;
2183      flagword *flagsp ATTRIBUTE_UNUSED;
2184      asection **secp;
2185      bfd_vma *valp ATTRIBUTE_UNUSED;
2186 {
2187   if (sym->st_shndx == SHN_REGISTER)
2188     *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2189   else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2190 	   && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2191 		       strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2192     {
2193       /* See if we have another one.  */
2194       struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2195 							    *namep,
2196 							    FALSE,
2197 							    FALSE,
2198 							    FALSE);
2199 
2200       if (h != NULL && h->type != bfd_link_hash_undefined)
2201 	{
2202 	  /* How do we get the asymbol (or really: the filename) from h?
2203 	     h->u.def.section->owner is NULL.  */
2204 	  ((*_bfd_error_handler)
2205 	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2206 	    bfd_get_filename (abfd), *namep,
2207 	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2208 	   bfd_set_error (bfd_error_bad_value);
2209 	   return FALSE;
2210 	}
2211     }
2212 
2213   return TRUE;
2214 }
2215 
2216 /* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2217 
2218 bfd_boolean
2219 mmix_elf_is_local_label_name (abfd, name)
2220      bfd *abfd;
2221      const char *name;
2222 {
2223   const char *colpos;
2224   int digits;
2225 
2226   /* Also include the default local-label definition.  */
2227   if (_bfd_elf_is_local_label_name (abfd, name))
2228     return TRUE;
2229 
2230   if (*name != 'L')
2231     return FALSE;
2232 
2233   /* If there's no ":", or more than one, it's not a local symbol.  */
2234   colpos = strchr (name, ':');
2235   if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2236     return FALSE;
2237 
2238   /* Check that there are remaining characters and that they are digits.  */
2239   if (colpos[1] == 0)
2240     return FALSE;
2241 
2242   digits = strspn (colpos + 1, "0123456789");
2243   return digits != 0 && colpos[1 + digits] == 0;
2244 }
2245 
2246 /* We get rid of the register section here.  */
2247 
2248 bfd_boolean
2249 mmix_elf_final_link (abfd, info)
2250      bfd *abfd;
2251      struct bfd_link_info *info;
2252 {
2253   /* We never output a register section, though we create one for
2254      temporary measures.  Check that nobody entered contents into it.  */
2255   asection *reg_section;
2256   asection **secpp;
2257 
2258   reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2259 
2260   if (reg_section != NULL)
2261     {
2262       /* FIXME: Pass error state gracefully.  */
2263       if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2264 	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2265 
2266       /* Really remove the section.  */
2267       for (secpp = &abfd->sections;
2268 	   *secpp != reg_section;
2269 	   secpp = &(*secpp)->next)
2270 	;
2271       bfd_section_list_remove (abfd, secpp);
2272       --abfd->section_count;
2273     }
2274 
2275   if (! bfd_elf_final_link (abfd, info))
2276     return FALSE;
2277 
2278   /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2279      the regular linker machinery.  We do it here, like other targets with
2280      special sections.  */
2281   if (info->base_file != NULL)
2282     {
2283       asection *greg_section
2284 	= bfd_get_section_by_name ((bfd *) info->base_file,
2285 				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2286       if (!bfd_set_section_contents (abfd,
2287 				     greg_section->output_section,
2288 				     greg_section->contents,
2289 				     (file_ptr) greg_section->output_offset,
2290 				     greg_section->_cooked_size))
2291 	return FALSE;
2292     }
2293   return TRUE;
2294 }
2295 
2296 /* We need to include the maximum size of PUSHJ-stubs in the initial
2297    section size.  This is expected to shrink during linker relaxation.
2298 
2299    You might think that we should set *only* _cooked_size, but that won't
2300    work: section contents allocation will be using _raw_size in mixed
2301    format linking and not enough storage will be allocated.  FIXME: That's
2302    a major bug, including the name bfd_get_section_size_before_reloc; it
2303    should be bfd_get_section_size_before_relax.  The relaxation functions
2304    set _cooked size.  Relaxation happens before relocation.  All functions
2305    *after relaxation* should be using _cooked size.  */
2306 
2307 static void
2308 mmix_set_relaxable_size (abfd, sec, ptr)
2309      bfd *abfd ATTRIBUTE_UNUSED;
2310      asection *sec;
2311      void *ptr;
2312 {
2313   struct bfd_link_info *info = ptr;
2314 
2315   /* Make sure we only do this for section where we know we want this,
2316      otherwise we might end up resetting the size of COMMONs.  */
2317   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2318     return;
2319 
2320   sec->_cooked_size
2321     = (sec->_raw_size
2322        + mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2323        * MAX_PUSHJ_STUB_SIZE);
2324   sec->_raw_size = sec->_cooked_size;
2325 
2326   /* For use in relocatable link, we start with a max stubs size.  See
2327      mmix_elf_relax_section.  */
2328   if (info->relocatable && sec->output_section)
2329     mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2330       += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2331 	  * MAX_PUSHJ_STUB_SIZE);
2332 }
2333 
2334 /* Initialize stuff for the linker-generated GREGs to match
2335    R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2336 
2337 bfd_boolean
2338 _bfd_mmix_before_linker_allocation (abfd, info)
2339      bfd *abfd ATTRIBUTE_UNUSED;
2340      struct bfd_link_info *info;
2341 {
2342   asection *bpo_gregs_section;
2343   bfd *bpo_greg_owner;
2344   struct bpo_greg_section_info *gregdata;
2345   size_t n_gregs;
2346   bfd_vma gregs_size;
2347   size_t i;
2348   size_t *bpo_reloc_indexes;
2349   bfd *ibfd;
2350 
2351   /* Set the initial size of sections.  */
2352   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2353     bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2354 
2355   /* The bpo_greg_owner bfd is supposed to have been set by
2356      mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2357      If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2358   bpo_greg_owner = (bfd *) info->base_file;
2359   if (bpo_greg_owner == NULL)
2360     return TRUE;
2361 
2362   bpo_gregs_section
2363     = bfd_get_section_by_name (bpo_greg_owner,
2364 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2365 
2366   if (bpo_gregs_section == NULL)
2367     return TRUE;
2368 
2369   /* We use the target-data handle in the ELF section data.  */
2370   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2371   if (gregdata == NULL)
2372     return FALSE;
2373 
2374   n_gregs = gregdata->n_bpo_relocs;
2375   gregdata->n_allocated_bpo_gregs = n_gregs;
2376 
2377   /* When this reaches zero during relaxation, all entries have been
2378      filled in and the size of the linker gregs can be calculated.  */
2379   gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2380 
2381   /* Set the zeroth-order estimate for the GREGs size.  */
2382   gregs_size = n_gregs * 8;
2383 
2384   if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2385     return FALSE;
2386 
2387   /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2388      time.  Note that we must use the max number ever noted for the array,
2389      since the index numbers were created before GC.  */
2390   gregdata->reloc_request
2391     = bfd_zalloc (bpo_greg_owner,
2392 		  sizeof (struct bpo_reloc_request)
2393 		  * gregdata->n_max_bpo_relocs);
2394 
2395   gregdata->bpo_reloc_indexes
2396     = bpo_reloc_indexes
2397     = bfd_alloc (bpo_greg_owner,
2398 		 gregdata->n_max_bpo_relocs
2399 		 * sizeof (size_t));
2400   if (bpo_reloc_indexes == NULL)
2401     return FALSE;
2402 
2403   /* The default order is an identity mapping.  */
2404   for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2405     {
2406       bpo_reloc_indexes[i] = i;
2407       gregdata->reloc_request[i].bpo_reloc_no = i;
2408     }
2409 
2410   return TRUE;
2411 }
2412 
2413 /* Fill in contents in the linker allocated gregs.  Everything is
2414    calculated at this point; we just move the contents into place here.  */
2415 
2416 bfd_boolean
2417 _bfd_mmix_after_linker_allocation (abfd, link_info)
2418      bfd *abfd ATTRIBUTE_UNUSED;
2419      struct bfd_link_info *link_info;
2420 {
2421   asection *bpo_gregs_section;
2422   bfd *bpo_greg_owner;
2423   struct bpo_greg_section_info *gregdata;
2424   size_t n_gregs;
2425   size_t i, j;
2426   size_t lastreg;
2427   bfd_byte *contents;
2428 
2429   /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2430      when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2431      object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2432   bpo_greg_owner = (bfd *) link_info->base_file;
2433   if (bpo_greg_owner == NULL)
2434     return TRUE;
2435 
2436   bpo_gregs_section
2437     = bfd_get_section_by_name (bpo_greg_owner,
2438 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2439 
2440   /* This can't happen without DSO handling.  When DSOs are handled
2441      without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2442      section.  */
2443   if (bpo_gregs_section == NULL)
2444     return TRUE;
2445 
2446   /* We use the target-data handle in the ELF section data.  */
2447 
2448   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2449   if (gregdata == NULL)
2450     return FALSE;
2451 
2452   n_gregs = gregdata->n_allocated_bpo_gregs;
2453 
2454   /* We need to have a _raw_size contents even though there's only
2455      _cooked_size worth of data, since the generic relocation machinery
2456      will allocate and copy that much temporarily.  */
2457   bpo_gregs_section->contents
2458     = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
2459   if (contents == NULL)
2460     return FALSE;
2461 
2462   /* Sanity check: If these numbers mismatch, some relocation has not been
2463      accounted for and the rest of gregdata is probably inconsistent.
2464      It's a bug, but it's more helpful to identify it than segfaulting
2465      below.  */
2466   if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2467       != gregdata->n_bpo_relocs)
2468     {
2469       (*_bfd_error_handler)
2470 	(_("Internal inconsistency: remaining %u != max %u.\n\
2471   Please report this bug."),
2472 	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2473 	 gregdata->n_bpo_relocs);
2474       return FALSE;
2475     }
2476 
2477   for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2478     if (gregdata->reloc_request[i].regindex != lastreg)
2479       {
2480 	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2481 		    contents + j * 8);
2482 	lastreg = gregdata->reloc_request[i].regindex;
2483 	j++;
2484       }
2485 
2486   return TRUE;
2487 }
2488 
2489 /* Sort valid relocs to come before non-valid relocs, then on increasing
2490    value.  */
2491 
2492 static int
2493 bpo_reloc_request_sort_fn (p1, p2)
2494      const PTR p1;
2495      const PTR p2;
2496 {
2497   const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2498   const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2499 
2500   /* Primary function is validity; non-valid relocs sorted after valid
2501      ones.  */
2502   if (r1->valid != r2->valid)
2503     return r2->valid - r1->valid;
2504 
2505   /* Then sort on value.  Don't simplify and return just the difference of
2506      the values: the upper bits of the 64-bit value would be truncated on
2507      a host with 32-bit ints.  */
2508   if (r1->value != r2->value)
2509     return r1->value > r2->value ? 1 : -1;
2510 
2511   /* As a last re-sort, use the relocation number, so we get a stable
2512      sort.  The *addresses* aren't stable since items are swapped during
2513      sorting.  It depends on the qsort implementation if this actually
2514      happens.  */
2515   return r1->bpo_reloc_no > r2->bpo_reloc_no
2516     ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2517 }
2518 
2519 /* For debug use only.  Dumps the global register allocations resulting
2520    from base-plus-offset relocs.  */
2521 
2522 void
2523 mmix_dump_bpo_gregs (link_info, pf)
2524      struct bfd_link_info *link_info;
2525      bfd_error_handler_type pf;
2526 {
2527   bfd *bpo_greg_owner;
2528   asection *bpo_gregs_section;
2529   struct bpo_greg_section_info *gregdata;
2530   unsigned int i;
2531 
2532   if (link_info == NULL || link_info->base_file == NULL)
2533     return;
2534 
2535   bpo_greg_owner = (bfd *) link_info->base_file;
2536 
2537   bpo_gregs_section
2538     = bfd_get_section_by_name (bpo_greg_owner,
2539 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2540 
2541   if (bpo_gregs_section == NULL)
2542     return;
2543 
2544   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2545   if (gregdata == NULL)
2546     return;
2547 
2548   if (pf == NULL)
2549     pf = _bfd_error_handler;
2550 
2551   /* These format strings are not translated.  They are for debug purposes
2552      only and never displayed to an end user.  Should they escape, we
2553      surely want them in original.  */
2554   (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2555  n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2556      gregdata->n_max_bpo_relocs,
2557      gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2558      gregdata->n_allocated_bpo_gregs);
2559 
2560   if (gregdata->reloc_request)
2561     for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2562       (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2563 	     i,
2564 	     (gregdata->bpo_reloc_indexes != NULL
2565 	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2566 	     gregdata->reloc_request[i].bpo_reloc_no,
2567 	     gregdata->reloc_request[i].valid,
2568 
2569 	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2570 	     (unsigned long) gregdata->reloc_request[i].value,
2571 	     gregdata->reloc_request[i].regindex,
2572 	     gregdata->reloc_request[i].offset);
2573 }
2574 
2575 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2576    when the last such reloc is done, an index-array is sorted according to
2577    the values and iterated over to produce register numbers (indexed by 0
2578    from the first allocated register number) and offsets for use in real
2579    relocation.
2580 
2581    PUSHJ stub accounting is also done here.
2582 
2583    Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2584 
2585 static bfd_boolean
2586 mmix_elf_relax_section (abfd, sec, link_info, again)
2587      bfd *abfd;
2588      asection *sec;
2589      struct bfd_link_info *link_info;
2590      bfd_boolean *again;
2591 {
2592   Elf_Internal_Shdr *symtab_hdr;
2593   Elf_Internal_Rela *internal_relocs;
2594   Elf_Internal_Rela *irel, *irelend;
2595   asection *bpo_gregs_section = NULL;
2596   struct bpo_greg_section_info *gregdata;
2597   struct bpo_reloc_section_info *bpodata
2598     = mmix_elf_section_data (sec)->bpo.reloc;
2599   /* The initialization is to quiet compiler warnings.  The value is to
2600      spot a missing actual initialization.  */
2601   size_t bpono = (size_t) -1;
2602   size_t pjsno = 0;
2603   bfd *bpo_greg_owner;
2604   Elf_Internal_Sym *isymbuf = NULL;
2605   bfd_size_type raw_size
2606     = (sec->_raw_size
2607        - mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2608        * MAX_PUSHJ_STUB_SIZE);
2609 
2610   mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2611 
2612   /* Assume nothing changes.  */
2613   *again = FALSE;
2614 
2615   /* If this is the first time we have been called for this section,
2616      initialize the cooked size.  */
2617   if (sec->_cooked_size == 0 && sec->_raw_size != 0)
2618     abort ();
2619 
2620   /* We don't have to do anything if this section does not have relocs, or
2621      if this is not a code section.  */
2622   if ((sec->flags & SEC_RELOC) == 0
2623       || sec->reloc_count == 0
2624       || (sec->flags & SEC_CODE) == 0
2625       || (sec->flags & SEC_LINKER_CREATED) != 0
2626       /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2627          then nothing to do.  */
2628       || (bpodata == NULL
2629 	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2630     return TRUE;
2631 
2632   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2633 
2634   bpo_greg_owner = (bfd *) link_info->base_file;
2635 
2636   if (bpodata != NULL)
2637     {
2638       bpo_gregs_section = bpodata->bpo_greg_section;
2639       gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2640       bpono = bpodata->first_base_plus_offset_reloc;
2641     }
2642   else
2643     gregdata = NULL;
2644 
2645   /* Get a copy of the native relocations.  */
2646   internal_relocs
2647     = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2648 				 (Elf_Internal_Rela *) NULL,
2649 				 link_info->keep_memory);
2650   if (internal_relocs == NULL)
2651     goto error_return;
2652 
2653   /* Walk through them looking for relaxing opportunities.  */
2654   irelend = internal_relocs + sec->reloc_count;
2655   for (irel = internal_relocs; irel < irelend; irel++)
2656     {
2657       bfd_vma symval;
2658       struct elf_link_hash_entry *h = NULL;
2659 
2660       /* We only process two relocs.  */
2661       if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2662 	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2663 	continue;
2664 
2665       /* We process relocs in a distinctly different way when this is a
2666 	 relocatable link (for one, we don't look at symbols), so we avoid
2667 	 mixing its code with that for the "normal" relaxation.  */
2668       if (link_info->relocatable)
2669 	{
2670 	  /* The only transformation in a relocatable link is to generate
2671 	     a full stub at the location of the stub calculated for the
2672 	     input section, if the relocated stub location, the end of the
2673 	     output section plus earlier stubs, cannot be reached.  Thus
2674 	     relocatable linking can only lead to worse code, but it still
2675 	     works.  */
2676 	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2677 	    {
2678 	      /* If we can reach the end of the output-section and beyond
2679 		 any current stubs, then we don't need a stub for this
2680 		 reloc.  The relaxed order of output stub allocation may
2681 		 not exactly match the straightforward order, so we always
2682 		 assume presence of output stubs, which will allow
2683 		 relaxation only on relocations indifferent to the
2684 		 presence of output stub allocations for other relocations
2685 		 and thus the order of output stub allocation.  */
2686 	      if (bfd_check_overflow (complain_overflow_signed,
2687 				      19,
2688 				      0,
2689 				      bfd_arch_bits_per_address (abfd),
2690 				      /* Output-stub location.  */
2691 				      sec->output_section->_cooked_size
2692 				      + (mmix_elf_section_data (sec
2693 							       ->output_section)
2694 					 ->pjs.stubs_size_sum)
2695 				      /* Location of this PUSHJ reloc.  */
2696 				      - (sec->output_offset + irel->r_offset)
2697 				      /* Don't count *this* stub twice.  */
2698 				      - (mmix_elf_section_data (sec)
2699 					 ->pjs.stub_size[pjsno]
2700 					 + MAX_PUSHJ_STUB_SIZE))
2701 		  == bfd_reloc_ok)
2702 		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2703 
2704 	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2705 		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2706 
2707 	      pjsno++;
2708 	    }
2709 
2710 	  continue;
2711 	}
2712 
2713       /* Get the value of the symbol referred to by the reloc.  */
2714       if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2715 	{
2716 	  /* A local symbol.  */
2717 	  Elf_Internal_Sym *isym;
2718 	  asection *sym_sec;
2719 
2720 	  /* Read this BFD's local symbols if we haven't already.  */
2721 	  if (isymbuf == NULL)
2722 	    {
2723 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2724 	      if (isymbuf == NULL)
2725 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2726 						symtab_hdr->sh_info, 0,
2727 						NULL, NULL, NULL);
2728 	      if (isymbuf == 0)
2729 		goto error_return;
2730 	    }
2731 
2732 	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2733 	  if (isym->st_shndx == SHN_UNDEF)
2734 	    sym_sec = bfd_und_section_ptr;
2735 	  else if (isym->st_shndx == SHN_ABS)
2736 	    sym_sec = bfd_abs_section_ptr;
2737 	  else if (isym->st_shndx == SHN_COMMON)
2738 	    sym_sec = bfd_com_section_ptr;
2739 	  else
2740 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2741 	  symval = (isym->st_value
2742 		    + sym_sec->output_section->vma
2743 		    + sym_sec->output_offset);
2744 	}
2745       else
2746 	{
2747 	  unsigned long indx;
2748 
2749 	  /* An external symbol.  */
2750 	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2751 	  h = elf_sym_hashes (abfd)[indx];
2752 	  BFD_ASSERT (h != NULL);
2753 	  if (h->root.type != bfd_link_hash_defined
2754 	      && h->root.type != bfd_link_hash_defweak)
2755 	    {
2756 	      /* This appears to be a reference to an undefined symbol.  Just
2757 		 ignore it--it will be caught by the regular reloc processing.
2758 		 We need to keep BPO reloc accounting consistent, though
2759 		 else we'll abort instead of emitting an error message.  */
2760 	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2761 		  && gregdata != NULL)
2762 		{
2763 		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2764 		  bpono++;
2765 		}
2766 	      continue;
2767 	    }
2768 
2769 	  symval = (h->root.u.def.value
2770 		    + h->root.u.def.section->output_section->vma
2771 		    + h->root.u.def.section->output_offset);
2772 	}
2773 
2774       if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2775 	{
2776 	  bfd_vma value = symval + irel->r_addend;
2777 	  bfd_vma dot
2778 	    = (sec->output_section->vma
2779 	       + sec->output_offset
2780 	       + irel->r_offset);
2781 	  bfd_vma stubaddr
2782 	    = (sec->output_section->vma
2783 	       + sec->output_offset
2784 	       + raw_size
2785 	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2786 
2787 	  if ((value & 3) == 0
2788 	      && bfd_check_overflow (complain_overflow_signed,
2789 				     19,
2790 				     0,
2791 				     bfd_arch_bits_per_address (abfd),
2792 				     value - dot
2793 				     - (value > dot
2794 					? mmix_elf_section_data (sec)
2795 					->pjs.stub_size[pjsno]
2796 					: 0))
2797 	      == bfd_reloc_ok)
2798 	    /* If the reloc fits, no stub is needed.  */
2799 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2800 	  else
2801 	    /* Maybe we can get away with just a JMP insn?  */
2802 	    if ((value & 3) == 0
2803 		&& bfd_check_overflow (complain_overflow_signed,
2804 				       27,
2805 				       0,
2806 				       bfd_arch_bits_per_address (abfd),
2807 				       value - stubaddr
2808 				       - (value > dot
2809 					  ? mmix_elf_section_data (sec)
2810 					  ->pjs.stub_size[pjsno] - 4
2811 					  : 0))
2812 		== bfd_reloc_ok)
2813 	      /* Yep, account for a stub consisting of a single JMP insn.  */
2814 	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2815 	  else
2816 	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2817 	       emit the intermediate sizes; those will only be useful for
2818 	       a >64M program assuming contiguous code.  */
2819 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2820 	      = MAX_PUSHJ_STUB_SIZE;
2821 
2822 	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2823 	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2824 	  pjsno++;
2825 	  continue;
2826 	}
2827 
2828       /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2829 
2830       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2831 	= symval + irel->r_addend;
2832       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2833       gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2834     }
2835 
2836   /* Check if that was the last BPO-reloc.  If so, sort the values and
2837      calculate how many registers we need to cover them.  Set the size of
2838      the linker gregs, and if the number of registers changed, indicate
2839      that we need to relax some more because we have more work to do.  */
2840   if (gregdata != NULL
2841       && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2842     {
2843       size_t i;
2844       bfd_vma prev_base;
2845       size_t regindex;
2846 
2847       /* First, reset the remaining relocs for the next round.  */
2848       gregdata->n_remaining_bpo_relocs_this_relaxation_round
2849 	= gregdata->n_bpo_relocs;
2850 
2851       qsort ((PTR) gregdata->reloc_request,
2852 	     gregdata->n_max_bpo_relocs,
2853 	     sizeof (struct bpo_reloc_request),
2854 	     bpo_reloc_request_sort_fn);
2855 
2856       /* Recalculate indexes.  When we find a change (however unlikely
2857 	 after the initial iteration), we know we need to relax again,
2858 	 since items in the GREG-array are sorted by increasing value and
2859 	 stored in the relaxation phase.  */
2860       for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2861 	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2862 	    != i)
2863 	  {
2864 	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2865 	      = i;
2866 	    *again = TRUE;
2867 	  }
2868 
2869       /* Allocate register numbers (indexing from 0).  Stop at the first
2870 	 non-valid reloc.  */
2871       for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2872 	   i < gregdata->n_bpo_relocs;
2873 	   i++)
2874 	{
2875 	  if (gregdata->reloc_request[i].value > prev_base + 255)
2876 	    {
2877 	      regindex++;
2878 	      prev_base = gregdata->reloc_request[i].value;
2879 	    }
2880 	  gregdata->reloc_request[i].regindex = regindex;
2881 	  gregdata->reloc_request[i].offset
2882 	    = gregdata->reloc_request[i].value - prev_base;
2883 	}
2884 
2885       /* If it's not the same as the last time, we need to relax again,
2886 	 because the size of the section has changed.  I'm not sure we
2887 	 actually need to do any adjustments since the shrinking happens
2888 	 at the start of this section, but better safe than sorry.  */
2889       if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2890 	{
2891 	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2892 	  *again = TRUE;
2893 	}
2894 
2895       bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2896     }
2897 
2898   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2899     {
2900       if (! link_info->keep_memory)
2901 	free (isymbuf);
2902       else
2903 	{
2904 	  /* Cache the symbols for elf_link_input_bfd.  */
2905 	  symtab_hdr->contents = (unsigned char *) isymbuf;
2906 	}
2907     }
2908 
2909   if (internal_relocs != NULL
2910       && elf_section_data (sec)->relocs != internal_relocs)
2911     free (internal_relocs);
2912 
2913   if (sec->_cooked_size
2914       < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2915     abort ();
2916 
2917   if (sec->_cooked_size
2918       > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2919     {
2920       sec->_cooked_size
2921 	= raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2922       *again = TRUE;
2923     }
2924 
2925   return TRUE;
2926 
2927  error_return:
2928   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2929     free (isymbuf);
2930   if (internal_relocs != NULL
2931       && elf_section_data (sec)->relocs != internal_relocs)
2932     free (internal_relocs);
2933   return FALSE;
2934 }
2935 
2936 /* Because we set _raw_size to include the max size of pushj stubs,
2937    i.e. larger than the actual section input size (see
2938    mmix_set_relaxable_raw_size), we have to take care of that when reading
2939    the section.  */
2940 
2941 static bfd_boolean
2942 mmix_elf_get_section_contents (abfd, section, location, offset, count)
2943      bfd *abfd;
2944      sec_ptr section;
2945      void *location;
2946      file_ptr offset;
2947      bfd_size_type count;
2948 {
2949   bfd_size_type raw_size
2950     = (section->_raw_size
2951        - mmix_elf_section_data (section)->pjs.n_pushj_relocs
2952        * MAX_PUSHJ_STUB_SIZE);
2953 
2954   if (offset + count > section->_raw_size)
2955     {
2956       abort();
2957       bfd_set_error (bfd_error_invalid_operation);
2958       return FALSE;
2959     }
2960 
2961   /* Check bounds against the faked raw_size.  */
2962   if (offset + count > raw_size)
2963     {
2964       /* Clear the part in the faked area.  */
2965       memset (location + raw_size - offset, 0, count - (raw_size - offset));
2966 
2967       /* If there's no initial part within the "real" contents, we're
2968          done.  */
2969       if ((bfd_size_type) offset >= raw_size)
2970 	return TRUE;
2971 
2972       /* Else adjust the count and fall through to call the generic
2973          function.  */
2974       count = raw_size - offset;
2975     }
2976 
2977   return
2978     _bfd_generic_get_section_contents (abfd, section, location, offset,
2979 				       count);
2980 }
2981 
2982 
2983 #define ELF_ARCH		bfd_arch_mmix
2984 #define ELF_MACHINE_CODE 	EM_MMIX
2985 
2986 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2987    However, that's too much for something somewhere in the linker part of
2988    BFD; perhaps the start-address has to be a non-zero multiple of this
2989    number, or larger than this number.  The symptom is that the linker
2990    complains: "warning: allocated section `.text' not in segment".  We
2991    settle for 64k; the page-size used in examples is 8k.
2992    #define ELF_MAXPAGESIZE 0x10000
2993 
2994    Unfortunately, this causes excessive padding in the supposedly small
2995    for-education programs that are the expected usage (where people would
2996    inspect output).  We stick to 256 bytes just to have *some* default
2997    alignment.  */
2998 #define ELF_MAXPAGESIZE 0x100
2999 
3000 #define TARGET_BIG_SYM		bfd_elf64_mmix_vec
3001 #define TARGET_BIG_NAME		"elf64-mmix"
3002 
3003 #define elf_info_to_howto_rel		NULL
3004 #define elf_info_to_howto		mmix_info_to_howto_rela
3005 #define elf_backend_relocate_section	mmix_elf_relocate_section
3006 #define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
3007 #define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
3008 
3009 #define elf_backend_link_output_symbol_hook \
3010 	mmix_elf_link_output_symbol_hook
3011 #define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
3012 
3013 #define elf_backend_check_relocs	mmix_elf_check_relocs
3014 #define elf_backend_symbol_processing	mmix_elf_symbol_processing
3015 
3016 #define bfd_elf64_bfd_is_local_label_name \
3017 	mmix_elf_is_local_label_name
3018 
3019 #define elf_backend_may_use_rel_p	0
3020 #define elf_backend_may_use_rela_p	1
3021 #define elf_backend_default_use_rela_p	1
3022 
3023 #define elf_backend_can_gc_sections	1
3024 #define elf_backend_section_from_bfd_section \
3025 	mmix_elf_section_from_bfd_section
3026 
3027 #define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
3028 #define bfd_elf64_bfd_final_link	mmix_elf_final_link
3029 #define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
3030 #define bfd_elf64_get_section_contents	mmix_elf_get_section_contents
3031 
3032 #include "elf64-target.h"
3033