1 /* MMIX-specific support for 64-bit ELF. 2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 3 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 /* No specific ABI or "processor-specific supplement" defined. */ 22 23 /* TODO: 24 - "Traditional" linker relaxation (shrinking whole sections). 25 - Merge reloc stubs jumping to same location. 26 - GETA stub relaxation (call a stub for out of range new 27 R_MMIX_GETA_STUBBABLE). */ 28 29 #include "bfd.h" 30 #include "sysdep.h" 31 #include "libbfd.h" 32 #include "elf-bfd.h" 33 #include "elf/mmix.h" 34 #include "opcode/mmix.h" 35 36 #define MINUS_ONE (((bfd_vma) 0) - 1) 37 38 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 39 40 /* Put these everywhere in new code. */ 41 #define FATAL_DEBUG \ 42 _bfd_abort (__FILE__, __LINE__, \ 43 "Internal: Non-debugged code (test-case missing)") 44 45 #define BAD_CASE(x) \ 46 _bfd_abort (__FILE__, __LINE__, \ 47 "bad case for " #x) 48 49 struct _mmix_elf_section_data 50 { 51 struct bfd_elf_section_data elf; 52 union 53 { 54 struct bpo_reloc_section_info *reloc; 55 struct bpo_greg_section_info *greg; 56 } bpo; 57 58 struct pushj_stub_info 59 { 60 /* Maximum number of stubs needed for this section. */ 61 bfd_size_type n_pushj_relocs; 62 63 /* Size of stubs after a mmix_elf_relax_section round. */ 64 bfd_size_type stubs_size_sum; 65 66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 67 of these. Allocated in mmix_elf_check_common_relocs. */ 68 bfd_size_type *stub_size; 69 70 /* Offset of next stub during relocation. Somewhat redundant with the 71 above: error coverage is easier and we don't have to reset the 72 stubs_size_sum for relocation. */ 73 bfd_size_type stub_offset; 74 } pjs; 75 }; 76 77 #define mmix_elf_section_data(sec) \ 78 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 79 80 /* For each section containing a base-plus-offset (BPO) reloc, we attach 81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 82 NULL. */ 83 struct bpo_reloc_section_info 84 { 85 /* The base is 1; this is the first number in this section. */ 86 size_t first_base_plus_offset_reloc; 87 88 /* Number of BPO-relocs in this section. */ 89 size_t n_bpo_relocs_this_section; 90 91 /* Running index, used at relocation time. */ 92 size_t bpo_index; 93 94 /* We don't have access to the bfd_link_info struct in 95 mmix_final_link_relocate. What we really want to get at is the 96 global single struct greg_relocation, so we stash it here. */ 97 asection *bpo_greg_section; 98 }; 99 100 /* Helper struct (in global context) for the one below. 101 There's one of these created for every BPO reloc. */ 102 struct bpo_reloc_request 103 { 104 bfd_vma value; 105 106 /* Valid after relaxation. The base is 0; the first register number 107 must be added. The offset is in range 0..255. */ 108 size_t regindex; 109 size_t offset; 110 111 /* The order number for this BPO reloc, corresponding to the order in 112 which BPO relocs were found. Used to create an index after reloc 113 requests are sorted. */ 114 size_t bpo_reloc_no; 115 116 /* Set when the value is computed. Better than coding "guard values" 117 into the other members. Is FALSE only for BPO relocs in a GC:ed 118 section. */ 119 bfd_boolean valid; 120 }; 121 122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 124 which is linked into the register contents section 125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 126 linker; using the same hook as for usual with BPO relocs does not 127 collide. */ 128 struct bpo_greg_section_info 129 { 130 /* After GC, this reflects the number of remaining, non-excluded 131 BPO-relocs. */ 132 size_t n_bpo_relocs; 133 134 /* This is the number of allocated bpo_reloc_requests; the size of 135 sorted_indexes. Valid after the check.*relocs functions are called 136 for all incoming sections. It includes the number of BPO relocs in 137 sections that were GC:ed. */ 138 size_t n_max_bpo_relocs; 139 140 /* A counter used to find out when to fold the BPO gregs, since we 141 don't have a single "after-relaxation" hook. */ 142 size_t n_remaining_bpo_relocs_this_relaxation_round; 143 144 /* The number of linker-allocated GREGs resulting from BPO relocs. 145 This is an approximation after _bfd_mmix_before_linker_allocation 146 and supposedly accurate after mmix_elf_relax_section is called for 147 all incoming non-collected sections. */ 148 size_t n_allocated_bpo_gregs; 149 150 /* Index into reloc_request[], sorted on increasing "value", secondary 151 by increasing index for strict sorting order. */ 152 size_t *bpo_reloc_indexes; 153 154 /* An array of all relocations, with the "value" member filled in by 155 the relaxation function. */ 156 struct bpo_reloc_request *reloc_request; 157 }; 158 159 static bfd_boolean mmix_elf_link_output_symbol_hook 160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *, 161 asection *, struct elf_link_hash_entry *)); 162 163 static bfd_reloc_status_type mmix_elf_reloc 164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 165 166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup 167 PARAMS ((bfd *, bfd_reloc_code_real_type)); 168 169 static void mmix_info_to_howto_rela 170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); 171 172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR)); 173 174 static bfd_boolean mmix_elf_new_section_hook 175 PARAMS ((bfd *, asection *)); 176 177 static bfd_boolean mmix_elf_check_relocs 178 PARAMS ((bfd *, struct bfd_link_info *, asection *, 179 const Elf_Internal_Rela *)); 180 181 static bfd_boolean mmix_elf_check_common_relocs 182 PARAMS ((bfd *, struct bfd_link_info *, asection *, 183 const Elf_Internal_Rela *)); 184 185 static bfd_boolean mmix_elf_relocate_section 186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); 188 189 static asection * mmix_elf_gc_mark_hook 190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *, 191 struct elf_link_hash_entry *, Elf_Internal_Sym *)); 192 193 static bfd_boolean mmix_elf_gc_sweep_hook 194 PARAMS ((bfd *, struct bfd_link_info *, asection *, 195 const Elf_Internal_Rela *)); 196 197 static bfd_reloc_status_type mmix_final_link_relocate 198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *, 199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *)); 200 201 static bfd_reloc_status_type mmix_elf_perform_relocation 202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma)); 203 204 static bfd_boolean mmix_elf_section_from_bfd_section 205 PARAMS ((bfd *, asection *, int *)); 206 207 static bfd_boolean mmix_elf_add_symbol_hook 208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *, 209 const char **, flagword *, asection **, bfd_vma *)); 210 211 static bfd_boolean mmix_elf_is_local_label_name 212 PARAMS ((bfd *, const char *)); 213 214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR)); 215 216 static bfd_boolean mmix_elf_relax_section 217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info, 218 bfd_boolean *again)); 219 220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *)); 221 222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *)); 223 224 /* Only intended to be called from a debugger. */ 225 extern void mmix_dump_bpo_gregs 226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type)); 227 228 static void 229 mmix_set_relaxable_size 230 PARAMS ((bfd *, asection *, void *)); 231 232 static bfd_boolean 233 mmix_elf_get_section_contents 234 PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type)); 235 236 237 /* Watch out: this currently needs to have elements with the same index as 238 their R_MMIX_ number. */ 239 static reloc_howto_type elf_mmix_howto_table[] = 240 { 241 /* This reloc does nothing. */ 242 HOWTO (R_MMIX_NONE, /* type */ 243 0, /* rightshift */ 244 2, /* size (0 = byte, 1 = short, 2 = long) */ 245 32, /* bitsize */ 246 FALSE, /* pc_relative */ 247 0, /* bitpos */ 248 complain_overflow_bitfield, /* complain_on_overflow */ 249 bfd_elf_generic_reloc, /* special_function */ 250 "R_MMIX_NONE", /* name */ 251 FALSE, /* partial_inplace */ 252 0, /* src_mask */ 253 0, /* dst_mask */ 254 FALSE), /* pcrel_offset */ 255 256 /* An 8 bit absolute relocation. */ 257 HOWTO (R_MMIX_8, /* type */ 258 0, /* rightshift */ 259 0, /* size (0 = byte, 1 = short, 2 = long) */ 260 8, /* bitsize */ 261 FALSE, /* pc_relative */ 262 0, /* bitpos */ 263 complain_overflow_bitfield, /* complain_on_overflow */ 264 bfd_elf_generic_reloc, /* special_function */ 265 "R_MMIX_8", /* name */ 266 FALSE, /* partial_inplace */ 267 0, /* src_mask */ 268 0xff, /* dst_mask */ 269 FALSE), /* pcrel_offset */ 270 271 /* An 16 bit absolute relocation. */ 272 HOWTO (R_MMIX_16, /* type */ 273 0, /* rightshift */ 274 1, /* size (0 = byte, 1 = short, 2 = long) */ 275 16, /* bitsize */ 276 FALSE, /* pc_relative */ 277 0, /* bitpos */ 278 complain_overflow_bitfield, /* complain_on_overflow */ 279 bfd_elf_generic_reloc, /* special_function */ 280 "R_MMIX_16", /* name */ 281 FALSE, /* partial_inplace */ 282 0, /* src_mask */ 283 0xffff, /* dst_mask */ 284 FALSE), /* pcrel_offset */ 285 286 /* An 24 bit absolute relocation. */ 287 HOWTO (R_MMIX_24, /* type */ 288 0, /* rightshift */ 289 2, /* size (0 = byte, 1 = short, 2 = long) */ 290 24, /* bitsize */ 291 FALSE, /* pc_relative */ 292 0, /* bitpos */ 293 complain_overflow_bitfield, /* complain_on_overflow */ 294 bfd_elf_generic_reloc, /* special_function */ 295 "R_MMIX_24", /* name */ 296 FALSE, /* partial_inplace */ 297 ~0xffffff, /* src_mask */ 298 0xffffff, /* dst_mask */ 299 FALSE), /* pcrel_offset */ 300 301 /* A 32 bit absolute relocation. */ 302 HOWTO (R_MMIX_32, /* type */ 303 0, /* rightshift */ 304 2, /* size (0 = byte, 1 = short, 2 = long) */ 305 32, /* bitsize */ 306 FALSE, /* pc_relative */ 307 0, /* bitpos */ 308 complain_overflow_bitfield, /* complain_on_overflow */ 309 bfd_elf_generic_reloc, /* special_function */ 310 "R_MMIX_32", /* name */ 311 FALSE, /* partial_inplace */ 312 0, /* src_mask */ 313 0xffffffff, /* dst_mask */ 314 FALSE), /* pcrel_offset */ 315 316 /* 64 bit relocation. */ 317 HOWTO (R_MMIX_64, /* type */ 318 0, /* rightshift */ 319 4, /* size (0 = byte, 1 = short, 2 = long) */ 320 64, /* bitsize */ 321 FALSE, /* pc_relative */ 322 0, /* bitpos */ 323 complain_overflow_bitfield, /* complain_on_overflow */ 324 bfd_elf_generic_reloc, /* special_function */ 325 "R_MMIX_64", /* name */ 326 FALSE, /* partial_inplace */ 327 0, /* src_mask */ 328 MINUS_ONE, /* dst_mask */ 329 FALSE), /* pcrel_offset */ 330 331 /* An 8 bit PC-relative relocation. */ 332 HOWTO (R_MMIX_PC_8, /* type */ 333 0, /* rightshift */ 334 0, /* size (0 = byte, 1 = short, 2 = long) */ 335 8, /* bitsize */ 336 TRUE, /* pc_relative */ 337 0, /* bitpos */ 338 complain_overflow_bitfield, /* complain_on_overflow */ 339 bfd_elf_generic_reloc, /* special_function */ 340 "R_MMIX_PC_8", /* name */ 341 FALSE, /* partial_inplace */ 342 0, /* src_mask */ 343 0xff, /* dst_mask */ 344 TRUE), /* pcrel_offset */ 345 346 /* An 16 bit PC-relative relocation. */ 347 HOWTO (R_MMIX_PC_16, /* type */ 348 0, /* rightshift */ 349 1, /* size (0 = byte, 1 = short, 2 = long) */ 350 16, /* bitsize */ 351 TRUE, /* pc_relative */ 352 0, /* bitpos */ 353 complain_overflow_bitfield, /* complain_on_overflow */ 354 bfd_elf_generic_reloc, /* special_function */ 355 "R_MMIX_PC_16", /* name */ 356 FALSE, /* partial_inplace */ 357 0, /* src_mask */ 358 0xffff, /* dst_mask */ 359 TRUE), /* pcrel_offset */ 360 361 /* An 24 bit PC-relative relocation. */ 362 HOWTO (R_MMIX_PC_24, /* type */ 363 0, /* rightshift */ 364 2, /* size (0 = byte, 1 = short, 2 = long) */ 365 24, /* bitsize */ 366 TRUE, /* pc_relative */ 367 0, /* bitpos */ 368 complain_overflow_bitfield, /* complain_on_overflow */ 369 bfd_elf_generic_reloc, /* special_function */ 370 "R_MMIX_PC_24", /* name */ 371 FALSE, /* partial_inplace */ 372 ~0xffffff, /* src_mask */ 373 0xffffff, /* dst_mask */ 374 TRUE), /* pcrel_offset */ 375 376 /* A 32 bit absolute PC-relative relocation. */ 377 HOWTO (R_MMIX_PC_32, /* type */ 378 0, /* rightshift */ 379 2, /* size (0 = byte, 1 = short, 2 = long) */ 380 32, /* bitsize */ 381 TRUE, /* pc_relative */ 382 0, /* bitpos */ 383 complain_overflow_bitfield, /* complain_on_overflow */ 384 bfd_elf_generic_reloc, /* special_function */ 385 "R_MMIX_PC_32", /* name */ 386 FALSE, /* partial_inplace */ 387 0, /* src_mask */ 388 0xffffffff, /* dst_mask */ 389 TRUE), /* pcrel_offset */ 390 391 /* 64 bit PC-relative relocation. */ 392 HOWTO (R_MMIX_PC_64, /* type */ 393 0, /* rightshift */ 394 4, /* size (0 = byte, 1 = short, 2 = long) */ 395 64, /* bitsize */ 396 TRUE, /* pc_relative */ 397 0, /* bitpos */ 398 complain_overflow_bitfield, /* complain_on_overflow */ 399 bfd_elf_generic_reloc, /* special_function */ 400 "R_MMIX_PC_64", /* name */ 401 FALSE, /* partial_inplace */ 402 0, /* src_mask */ 403 MINUS_ONE, /* dst_mask */ 404 TRUE), /* pcrel_offset */ 405 406 /* GNU extension to record C++ vtable hierarchy. */ 407 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 408 0, /* rightshift */ 409 0, /* size (0 = byte, 1 = short, 2 = long) */ 410 0, /* bitsize */ 411 FALSE, /* pc_relative */ 412 0, /* bitpos */ 413 complain_overflow_dont, /* complain_on_overflow */ 414 NULL, /* special_function */ 415 "R_MMIX_GNU_VTINHERIT", /* name */ 416 FALSE, /* partial_inplace */ 417 0, /* src_mask */ 418 0, /* dst_mask */ 419 TRUE), /* pcrel_offset */ 420 421 /* GNU extension to record C++ vtable member usage. */ 422 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 423 0, /* rightshift */ 424 0, /* size (0 = byte, 1 = short, 2 = long) */ 425 0, /* bitsize */ 426 FALSE, /* pc_relative */ 427 0, /* bitpos */ 428 complain_overflow_dont, /* complain_on_overflow */ 429 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 430 "R_MMIX_GNU_VTENTRY", /* name */ 431 FALSE, /* partial_inplace */ 432 0, /* src_mask */ 433 0, /* dst_mask */ 434 FALSE), /* pcrel_offset */ 435 436 /* The GETA relocation is supposed to get any address that could 437 possibly be reached by the GETA instruction. It can silently expand 438 to get a 64-bit operand, but will complain if any of the two least 439 significant bits are set. The howto members reflect a simple GETA. */ 440 HOWTO (R_MMIX_GETA, /* type */ 441 2, /* rightshift */ 442 2, /* size (0 = byte, 1 = short, 2 = long) */ 443 19, /* bitsize */ 444 TRUE, /* pc_relative */ 445 0, /* bitpos */ 446 complain_overflow_signed, /* complain_on_overflow */ 447 mmix_elf_reloc, /* special_function */ 448 "R_MMIX_GETA", /* name */ 449 FALSE, /* partial_inplace */ 450 ~0x0100ffff, /* src_mask */ 451 0x0100ffff, /* dst_mask */ 452 TRUE), /* pcrel_offset */ 453 454 HOWTO (R_MMIX_GETA_1, /* type */ 455 2, /* rightshift */ 456 2, /* size (0 = byte, 1 = short, 2 = long) */ 457 19, /* bitsize */ 458 TRUE, /* pc_relative */ 459 0, /* bitpos */ 460 complain_overflow_signed, /* complain_on_overflow */ 461 mmix_elf_reloc, /* special_function */ 462 "R_MMIX_GETA_1", /* name */ 463 FALSE, /* partial_inplace */ 464 ~0x0100ffff, /* src_mask */ 465 0x0100ffff, /* dst_mask */ 466 TRUE), /* pcrel_offset */ 467 468 HOWTO (R_MMIX_GETA_2, /* type */ 469 2, /* rightshift */ 470 2, /* size (0 = byte, 1 = short, 2 = long) */ 471 19, /* bitsize */ 472 TRUE, /* pc_relative */ 473 0, /* bitpos */ 474 complain_overflow_signed, /* complain_on_overflow */ 475 mmix_elf_reloc, /* special_function */ 476 "R_MMIX_GETA_2", /* name */ 477 FALSE, /* partial_inplace */ 478 ~0x0100ffff, /* src_mask */ 479 0x0100ffff, /* dst_mask */ 480 TRUE), /* pcrel_offset */ 481 482 HOWTO (R_MMIX_GETA_3, /* type */ 483 2, /* rightshift */ 484 2, /* size (0 = byte, 1 = short, 2 = long) */ 485 19, /* bitsize */ 486 TRUE, /* pc_relative */ 487 0, /* bitpos */ 488 complain_overflow_signed, /* complain_on_overflow */ 489 mmix_elf_reloc, /* special_function */ 490 "R_MMIX_GETA_3", /* name */ 491 FALSE, /* partial_inplace */ 492 ~0x0100ffff, /* src_mask */ 493 0x0100ffff, /* dst_mask */ 494 TRUE), /* pcrel_offset */ 495 496 /* The conditional branches are supposed to reach any (code) address. 497 It can silently expand to a 64-bit operand, but will emit an error if 498 any of the two least significant bits are set. The howto members 499 reflect a simple branch. */ 500 HOWTO (R_MMIX_CBRANCH, /* type */ 501 2, /* rightshift */ 502 2, /* size (0 = byte, 1 = short, 2 = long) */ 503 19, /* bitsize */ 504 TRUE, /* pc_relative */ 505 0, /* bitpos */ 506 complain_overflow_signed, /* complain_on_overflow */ 507 mmix_elf_reloc, /* special_function */ 508 "R_MMIX_CBRANCH", /* name */ 509 FALSE, /* partial_inplace */ 510 ~0x0100ffff, /* src_mask */ 511 0x0100ffff, /* dst_mask */ 512 TRUE), /* pcrel_offset */ 513 514 HOWTO (R_MMIX_CBRANCH_J, /* type */ 515 2, /* rightshift */ 516 2, /* size (0 = byte, 1 = short, 2 = long) */ 517 19, /* bitsize */ 518 TRUE, /* pc_relative */ 519 0, /* bitpos */ 520 complain_overflow_signed, /* complain_on_overflow */ 521 mmix_elf_reloc, /* special_function */ 522 "R_MMIX_CBRANCH_J", /* name */ 523 FALSE, /* partial_inplace */ 524 ~0x0100ffff, /* src_mask */ 525 0x0100ffff, /* dst_mask */ 526 TRUE), /* pcrel_offset */ 527 528 HOWTO (R_MMIX_CBRANCH_1, /* type */ 529 2, /* rightshift */ 530 2, /* size (0 = byte, 1 = short, 2 = long) */ 531 19, /* bitsize */ 532 TRUE, /* pc_relative */ 533 0, /* bitpos */ 534 complain_overflow_signed, /* complain_on_overflow */ 535 mmix_elf_reloc, /* special_function */ 536 "R_MMIX_CBRANCH_1", /* name */ 537 FALSE, /* partial_inplace */ 538 ~0x0100ffff, /* src_mask */ 539 0x0100ffff, /* dst_mask */ 540 TRUE), /* pcrel_offset */ 541 542 HOWTO (R_MMIX_CBRANCH_2, /* type */ 543 2, /* rightshift */ 544 2, /* size (0 = byte, 1 = short, 2 = long) */ 545 19, /* bitsize */ 546 TRUE, /* pc_relative */ 547 0, /* bitpos */ 548 complain_overflow_signed, /* complain_on_overflow */ 549 mmix_elf_reloc, /* special_function */ 550 "R_MMIX_CBRANCH_2", /* name */ 551 FALSE, /* partial_inplace */ 552 ~0x0100ffff, /* src_mask */ 553 0x0100ffff, /* dst_mask */ 554 TRUE), /* pcrel_offset */ 555 556 HOWTO (R_MMIX_CBRANCH_3, /* type */ 557 2, /* rightshift */ 558 2, /* size (0 = byte, 1 = short, 2 = long) */ 559 19, /* bitsize */ 560 TRUE, /* pc_relative */ 561 0, /* bitpos */ 562 complain_overflow_signed, /* complain_on_overflow */ 563 mmix_elf_reloc, /* special_function */ 564 "R_MMIX_CBRANCH_3", /* name */ 565 FALSE, /* partial_inplace */ 566 ~0x0100ffff, /* src_mask */ 567 0x0100ffff, /* dst_mask */ 568 TRUE), /* pcrel_offset */ 569 570 /* The PUSHJ instruction can reach any (code) address, as long as it's 571 the beginning of a function (no usable restriction). It can silently 572 expand to a 64-bit operand, but will emit an error if any of the two 573 least significant bits are set. It can also expand into a call to a 574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 575 PUSHJ. */ 576 HOWTO (R_MMIX_PUSHJ, /* type */ 577 2, /* rightshift */ 578 2, /* size (0 = byte, 1 = short, 2 = long) */ 579 19, /* bitsize */ 580 TRUE, /* pc_relative */ 581 0, /* bitpos */ 582 complain_overflow_signed, /* complain_on_overflow */ 583 mmix_elf_reloc, /* special_function */ 584 "R_MMIX_PUSHJ", /* name */ 585 FALSE, /* partial_inplace */ 586 ~0x0100ffff, /* src_mask */ 587 0x0100ffff, /* dst_mask */ 588 TRUE), /* pcrel_offset */ 589 590 HOWTO (R_MMIX_PUSHJ_1, /* type */ 591 2, /* rightshift */ 592 2, /* size (0 = byte, 1 = short, 2 = long) */ 593 19, /* bitsize */ 594 TRUE, /* pc_relative */ 595 0, /* bitpos */ 596 complain_overflow_signed, /* complain_on_overflow */ 597 mmix_elf_reloc, /* special_function */ 598 "R_MMIX_PUSHJ_1", /* name */ 599 FALSE, /* partial_inplace */ 600 ~0x0100ffff, /* src_mask */ 601 0x0100ffff, /* dst_mask */ 602 TRUE), /* pcrel_offset */ 603 604 HOWTO (R_MMIX_PUSHJ_2, /* type */ 605 2, /* rightshift */ 606 2, /* size (0 = byte, 1 = short, 2 = long) */ 607 19, /* bitsize */ 608 TRUE, /* pc_relative */ 609 0, /* bitpos */ 610 complain_overflow_signed, /* complain_on_overflow */ 611 mmix_elf_reloc, /* special_function */ 612 "R_MMIX_PUSHJ_2", /* name */ 613 FALSE, /* partial_inplace */ 614 ~0x0100ffff, /* src_mask */ 615 0x0100ffff, /* dst_mask */ 616 TRUE), /* pcrel_offset */ 617 618 HOWTO (R_MMIX_PUSHJ_3, /* type */ 619 2, /* rightshift */ 620 2, /* size (0 = byte, 1 = short, 2 = long) */ 621 19, /* bitsize */ 622 TRUE, /* pc_relative */ 623 0, /* bitpos */ 624 complain_overflow_signed, /* complain_on_overflow */ 625 mmix_elf_reloc, /* special_function */ 626 "R_MMIX_PUSHJ_3", /* name */ 627 FALSE, /* partial_inplace */ 628 ~0x0100ffff, /* src_mask */ 629 0x0100ffff, /* dst_mask */ 630 TRUE), /* pcrel_offset */ 631 632 /* A JMP is supposed to reach any (code) address. By itself, it can 633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 634 limit is soon reached if you link the program in wildly different 635 memory segments. The howto members reflect a trivial JMP. */ 636 HOWTO (R_MMIX_JMP, /* type */ 637 2, /* rightshift */ 638 2, /* size (0 = byte, 1 = short, 2 = long) */ 639 27, /* bitsize */ 640 TRUE, /* pc_relative */ 641 0, /* bitpos */ 642 complain_overflow_signed, /* complain_on_overflow */ 643 mmix_elf_reloc, /* special_function */ 644 "R_MMIX_JMP", /* name */ 645 FALSE, /* partial_inplace */ 646 ~0x1ffffff, /* src_mask */ 647 0x1ffffff, /* dst_mask */ 648 TRUE), /* pcrel_offset */ 649 650 HOWTO (R_MMIX_JMP_1, /* type */ 651 2, /* rightshift */ 652 2, /* size (0 = byte, 1 = short, 2 = long) */ 653 27, /* bitsize */ 654 TRUE, /* pc_relative */ 655 0, /* bitpos */ 656 complain_overflow_signed, /* complain_on_overflow */ 657 mmix_elf_reloc, /* special_function */ 658 "R_MMIX_JMP_1", /* name */ 659 FALSE, /* partial_inplace */ 660 ~0x1ffffff, /* src_mask */ 661 0x1ffffff, /* dst_mask */ 662 TRUE), /* pcrel_offset */ 663 664 HOWTO (R_MMIX_JMP_2, /* type */ 665 2, /* rightshift */ 666 2, /* size (0 = byte, 1 = short, 2 = long) */ 667 27, /* bitsize */ 668 TRUE, /* pc_relative */ 669 0, /* bitpos */ 670 complain_overflow_signed, /* complain_on_overflow */ 671 mmix_elf_reloc, /* special_function */ 672 "R_MMIX_JMP_2", /* name */ 673 FALSE, /* partial_inplace */ 674 ~0x1ffffff, /* src_mask */ 675 0x1ffffff, /* dst_mask */ 676 TRUE), /* pcrel_offset */ 677 678 HOWTO (R_MMIX_JMP_3, /* type */ 679 2, /* rightshift */ 680 2, /* size (0 = byte, 1 = short, 2 = long) */ 681 27, /* bitsize */ 682 TRUE, /* pc_relative */ 683 0, /* bitpos */ 684 complain_overflow_signed, /* complain_on_overflow */ 685 mmix_elf_reloc, /* special_function */ 686 "R_MMIX_JMP_3", /* name */ 687 FALSE, /* partial_inplace */ 688 ~0x1ffffff, /* src_mask */ 689 0x1ffffff, /* dst_mask */ 690 TRUE), /* pcrel_offset */ 691 692 /* When we don't emit link-time-relaxable code from the assembler, or 693 when relaxation has done all it can do, these relocs are used. For 694 GETA/PUSHJ/branches. */ 695 HOWTO (R_MMIX_ADDR19, /* type */ 696 2, /* rightshift */ 697 2, /* size (0 = byte, 1 = short, 2 = long) */ 698 19, /* bitsize */ 699 TRUE, /* pc_relative */ 700 0, /* bitpos */ 701 complain_overflow_signed, /* complain_on_overflow */ 702 mmix_elf_reloc, /* special_function */ 703 "R_MMIX_ADDR19", /* name */ 704 FALSE, /* partial_inplace */ 705 ~0x0100ffff, /* src_mask */ 706 0x0100ffff, /* dst_mask */ 707 TRUE), /* pcrel_offset */ 708 709 /* For JMP. */ 710 HOWTO (R_MMIX_ADDR27, /* type */ 711 2, /* rightshift */ 712 2, /* size (0 = byte, 1 = short, 2 = long) */ 713 27, /* bitsize */ 714 TRUE, /* pc_relative */ 715 0, /* bitpos */ 716 complain_overflow_signed, /* complain_on_overflow */ 717 mmix_elf_reloc, /* special_function */ 718 "R_MMIX_ADDR27", /* name */ 719 FALSE, /* partial_inplace */ 720 ~0x1ffffff, /* src_mask */ 721 0x1ffffff, /* dst_mask */ 722 TRUE), /* pcrel_offset */ 723 724 /* A general register or the value 0..255. If a value, then the 725 instruction (offset -3) needs adjusting. */ 726 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 727 0, /* rightshift */ 728 1, /* size (0 = byte, 1 = short, 2 = long) */ 729 8, /* bitsize */ 730 FALSE, /* pc_relative */ 731 0, /* bitpos */ 732 complain_overflow_bitfield, /* complain_on_overflow */ 733 mmix_elf_reloc, /* special_function */ 734 "R_MMIX_REG_OR_BYTE", /* name */ 735 FALSE, /* partial_inplace */ 736 0, /* src_mask */ 737 0xff, /* dst_mask */ 738 FALSE), /* pcrel_offset */ 739 740 /* A general register. */ 741 HOWTO (R_MMIX_REG, /* type */ 742 0, /* rightshift */ 743 1, /* size (0 = byte, 1 = short, 2 = long) */ 744 8, /* bitsize */ 745 FALSE, /* pc_relative */ 746 0, /* bitpos */ 747 complain_overflow_bitfield, /* complain_on_overflow */ 748 mmix_elf_reloc, /* special_function */ 749 "R_MMIX_REG", /* name */ 750 FALSE, /* partial_inplace */ 751 0, /* src_mask */ 752 0xff, /* dst_mask */ 753 FALSE), /* pcrel_offset */ 754 755 /* A register plus an index, corresponding to the relocation expression. 756 The sizes must correspond to the valid range of the expression, while 757 the bitmasks correspond to what we store in the image. */ 758 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 759 0, /* rightshift */ 760 4, /* size (0 = byte, 1 = short, 2 = long) */ 761 64, /* bitsize */ 762 FALSE, /* pc_relative */ 763 0, /* bitpos */ 764 complain_overflow_bitfield, /* complain_on_overflow */ 765 mmix_elf_reloc, /* special_function */ 766 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 767 FALSE, /* partial_inplace */ 768 0, /* src_mask */ 769 0xffff, /* dst_mask */ 770 FALSE), /* pcrel_offset */ 771 772 /* A "magic" relocation for a LOCAL expression, asserting that the 773 expression is less than the number of global registers. No actual 774 modification of the contents is done. Implementing this as a 775 relocation was less intrusive than e.g. putting such expressions in a 776 section to discard *after* relocation. */ 777 HOWTO (R_MMIX_LOCAL, /* type */ 778 0, /* rightshift */ 779 0, /* size (0 = byte, 1 = short, 2 = long) */ 780 0, /* bitsize */ 781 FALSE, /* pc_relative */ 782 0, /* bitpos */ 783 complain_overflow_dont, /* complain_on_overflow */ 784 mmix_elf_reloc, /* special_function */ 785 "R_MMIX_LOCAL", /* name */ 786 FALSE, /* partial_inplace */ 787 0, /* src_mask */ 788 0, /* dst_mask */ 789 FALSE), /* pcrel_offset */ 790 791 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 792 2, /* rightshift */ 793 2, /* size (0 = byte, 1 = short, 2 = long) */ 794 19, /* bitsize */ 795 TRUE, /* pc_relative */ 796 0, /* bitpos */ 797 complain_overflow_signed, /* complain_on_overflow */ 798 mmix_elf_reloc, /* special_function */ 799 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 800 FALSE, /* partial_inplace */ 801 ~0x0100ffff, /* src_mask */ 802 0x0100ffff, /* dst_mask */ 803 TRUE) /* pcrel_offset */ 804 }; 805 806 807 /* Map BFD reloc types to MMIX ELF reloc types. */ 808 809 struct mmix_reloc_map 810 { 811 bfd_reloc_code_real_type bfd_reloc_val; 812 enum elf_mmix_reloc_type elf_reloc_val; 813 }; 814 815 816 static const struct mmix_reloc_map mmix_reloc_map[] = 817 { 818 {BFD_RELOC_NONE, R_MMIX_NONE}, 819 {BFD_RELOC_8, R_MMIX_8}, 820 {BFD_RELOC_16, R_MMIX_16}, 821 {BFD_RELOC_24, R_MMIX_24}, 822 {BFD_RELOC_32, R_MMIX_32}, 823 {BFD_RELOC_64, R_MMIX_64}, 824 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 825 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 826 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 827 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 828 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 829 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 830 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 831 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 832 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 833 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 834 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 835 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 836 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 837 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 838 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 840 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 842 }; 843 844 static reloc_howto_type * 845 bfd_elf64_bfd_reloc_type_lookup (abfd, code) 846 bfd *abfd ATTRIBUTE_UNUSED; 847 bfd_reloc_code_real_type code; 848 { 849 unsigned int i; 850 851 for (i = 0; 852 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 853 i++) 854 { 855 if (mmix_reloc_map[i].bfd_reloc_val == code) 856 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 857 } 858 859 return NULL; 860 } 861 862 static bfd_boolean 863 mmix_elf_new_section_hook (abfd, sec) 864 bfd *abfd; 865 asection *sec; 866 { 867 struct _mmix_elf_section_data *sdata; 868 bfd_size_type amt = sizeof (*sdata); 869 870 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt); 871 if (sdata == NULL) 872 return FALSE; 873 sec->used_by_bfd = (PTR) sdata; 874 875 return _bfd_elf_new_section_hook (abfd, sec); 876 } 877 878 879 /* This function performs the actual bitfiddling and sanity check for a 880 final relocation. Each relocation gets its *worst*-case expansion 881 in size when it arrives here; any reduction in size should have been 882 caught in linker relaxation earlier. When we get here, the relocation 883 looks like the smallest instruction with SWYM:s (nop:s) appended to the 884 max size. We fill in those nop:s. 885 886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 887 GETA $N,foo 888 -> 889 SETL $N,foo & 0xffff 890 INCML $N,(foo >> 16) & 0xffff 891 INCMH $N,(foo >> 32) & 0xffff 892 INCH $N,(foo >> 48) & 0xffff 893 894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 895 condbranches needing relaxation might be rare enough to not be 896 worthwhile.) 897 [P]Bcc $N,foo 898 -> 899 [~P]B~cc $N,.+20 900 SETL $255,foo & ... 901 INCML ... 902 INCMH ... 903 INCH ... 904 GO $255,$255,0 905 906 R_MMIX_PUSHJ: (FIXME: Relaxation...) 907 PUSHJ $N,foo 908 -> 909 SETL $255,foo & ... 910 INCML ... 911 INCMH ... 912 INCH ... 913 PUSHGO $N,$255,0 914 915 R_MMIX_JMP: (FIXME: Relaxation...) 916 JMP foo 917 -> 918 SETL $255,foo & ... 919 INCML ... 920 INCMH ... 921 INCH ... 922 GO $255,$255,0 923 924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 925 926 static bfd_reloc_status_type 927 mmix_elf_perform_relocation (isec, howto, datap, addr, value) 928 asection *isec; 929 reloc_howto_type *howto; 930 PTR datap; 931 bfd_vma addr; 932 bfd_vma value; 933 { 934 bfd *abfd = isec->owner; 935 bfd_reloc_status_type flag = bfd_reloc_ok; 936 bfd_reloc_status_type r; 937 int offs = 0; 938 int reg = 255; 939 940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 941 We handle the differences here and the common sequence later. */ 942 switch (howto->type) 943 { 944 case R_MMIX_GETA: 945 offs = 0; 946 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 947 948 /* We change to an absolute value. */ 949 value += addr; 950 break; 951 952 case R_MMIX_CBRANCH: 953 { 954 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 955 956 /* Invert the condition and prediction bit, and set the offset 957 to five instructions ahead. 958 959 We *can* do better if we want to. If the branch is found to be 960 within limits, we could leave the branch as is; there'll just 961 be a bunch of NOP:s after it. But we shouldn't see this 962 sequence often enough that it's worth doing it. */ 963 964 bfd_put_32 (abfd, 965 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 966 | (24/4)), 967 (bfd_byte *) datap); 968 969 /* Put a "GO $255,$255,0" after the common sequence. */ 970 bfd_put_32 (abfd, 971 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 972 (bfd_byte *) datap + 20); 973 974 /* Common sequence starts at offset 4. */ 975 offs = 4; 976 977 /* We change to an absolute value. */ 978 value += addr; 979 } 980 break; 981 982 case R_MMIX_PUSHJ_STUBBABLE: 983 /* If the address fits, we're fine. */ 984 if ((value & 3) == 0 985 /* Note rightshift 0; see R_MMIX_JMP case below. */ 986 && (r = bfd_check_overflow (complain_overflow_signed, 987 howto->bitsize, 988 0, 989 bfd_arch_bits_per_address (abfd), 990 value)) == bfd_reloc_ok) 991 goto pcrel_mmix_reloc_fits; 992 else 993 { 994 bfd_size_type raw_size 995 = (isec->_raw_size 996 - mmix_elf_section_data (isec)->pjs.n_pushj_relocs 997 * MAX_PUSHJ_STUB_SIZE); 998 999 /* We have the bytes at the PUSHJ insn and need to get the 1000 position for the stub. There's supposed to be room allocated 1001 for the stub. */ 1002 bfd_byte *stubcontents 1003 = ((char *) datap 1004 - (addr - (isec->output_section->vma + isec->output_offset)) 1005 + raw_size 1006 + mmix_elf_section_data (isec)->pjs.stub_offset); 1007 bfd_vma stubaddr; 1008 1009 /* The address doesn't fit, so redirect the PUSHJ to the 1010 location of the stub. */ 1011 r = mmix_elf_perform_relocation (isec, 1012 &elf_mmix_howto_table 1013 [R_MMIX_ADDR19], 1014 datap, 1015 addr, 1016 isec->output_section->vma 1017 + isec->output_offset 1018 + raw_size 1019 + (mmix_elf_section_data (isec) 1020 ->pjs.stub_offset) 1021 - addr); 1022 if (r != bfd_reloc_ok) 1023 return r; 1024 1025 stubaddr 1026 = (isec->output_section->vma 1027 + isec->output_offset 1028 + raw_size 1029 + mmix_elf_section_data (isec)->pjs.stub_offset); 1030 1031 /* We generate a simple JMP if that suffices, else the whole 5 1032 insn stub. */ 1033 if (bfd_check_overflow (complain_overflow_signed, 1034 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1035 0, 1036 bfd_arch_bits_per_address (abfd), 1037 addr + value - stubaddr) == bfd_reloc_ok) 1038 { 1039 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1040 r = mmix_elf_perform_relocation (isec, 1041 &elf_mmix_howto_table 1042 [R_MMIX_ADDR27], 1043 stubcontents, 1044 stubaddr, 1045 value + addr - stubaddr); 1046 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1047 1048 if (raw_size 1049 + mmix_elf_section_data (isec)->pjs.stub_offset 1050 > isec->_cooked_size) 1051 abort (); 1052 1053 return r; 1054 } 1055 else 1056 { 1057 /* Put a "GO $255,0" after the common sequence. */ 1058 bfd_put_32 (abfd, 1059 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1060 | 0xff00, (bfd_byte *) stubcontents + 16); 1061 1062 /* Prepare for the general code to set the first part of the 1063 linker stub, and */ 1064 value += addr; 1065 datap = stubcontents; 1066 mmix_elf_section_data (isec)->pjs.stub_offset 1067 += MAX_PUSHJ_STUB_SIZE; 1068 } 1069 } 1070 break; 1071 1072 case R_MMIX_PUSHJ: 1073 { 1074 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1075 1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1077 bfd_put_32 (abfd, 1078 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1079 | (inreg << 16) 1080 | 0xff00, 1081 (bfd_byte *) datap + 16); 1082 1083 /* We change to an absolute value. */ 1084 value += addr; 1085 } 1086 break; 1087 1088 case R_MMIX_JMP: 1089 /* This one is a little special. If we get here on a non-relaxing 1090 link, and the destination is actually in range, we don't need to 1091 execute the nops. 1092 If so, we fall through to the bit-fiddling relocs. 1093 1094 FIXME: bfd_check_overflow seems broken; the relocation is 1095 rightshifted before testing, so supply a zero rightshift. */ 1096 1097 if (! ((value & 3) == 0 1098 && (r = bfd_check_overflow (complain_overflow_signed, 1099 howto->bitsize, 1100 0, 1101 bfd_arch_bits_per_address (abfd), 1102 value)) == bfd_reloc_ok)) 1103 { 1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1105 modified below, and put a "GO $255,$255,0" after the 1106 address-loading sequence. */ 1107 bfd_put_32 (abfd, 1108 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1109 | 0xffff00, 1110 (bfd_byte *) datap + 16); 1111 1112 /* We change to an absolute value. */ 1113 value += addr; 1114 break; 1115 } 1116 /* FALLTHROUGH. */ 1117 case R_MMIX_ADDR19: 1118 case R_MMIX_ADDR27: 1119 pcrel_mmix_reloc_fits: 1120 /* These must be in range, or else we emit an error. */ 1121 if ((value & 3) == 0 1122 /* Note rightshift 0; see above. */ 1123 && (r = bfd_check_overflow (complain_overflow_signed, 1124 howto->bitsize, 1125 0, 1126 bfd_arch_bits_per_address (abfd), 1127 value)) == bfd_reloc_ok) 1128 { 1129 bfd_vma in1 1130 = bfd_get_32 (abfd, (bfd_byte *) datap); 1131 bfd_vma highbit; 1132 1133 if ((bfd_signed_vma) value < 0) 1134 { 1135 highbit = 1 << 24; 1136 value += (1 << (howto->bitsize - 1)); 1137 } 1138 else 1139 highbit = 0; 1140 1141 value >>= 2; 1142 1143 bfd_put_32 (abfd, 1144 (in1 & howto->src_mask) 1145 | highbit 1146 | (value & howto->dst_mask), 1147 (bfd_byte *) datap); 1148 1149 return bfd_reloc_ok; 1150 } 1151 else 1152 return bfd_reloc_overflow; 1153 1154 case R_MMIX_BASE_PLUS_OFFSET: 1155 { 1156 struct bpo_reloc_section_info *bpodata 1157 = mmix_elf_section_data (isec)->bpo.reloc; 1158 asection *bpo_greg_section 1159 = bpodata->bpo_greg_section; 1160 struct bpo_greg_section_info *gregdata 1161 = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1162 size_t bpo_index 1163 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1164 1165 /* A consistency check: The value we now have in "relocation" must 1166 be the same as the value we stored for that relocation. It 1167 doesn't cost much, so can be left in at all times. */ 1168 if (value != gregdata->reloc_request[bpo_index].value) 1169 { 1170 (*_bfd_error_handler) 1171 (_("%s: Internal inconsistency error for value for\n\ 1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1173 bfd_get_filename (isec->owner), 1174 (unsigned long) (value >> 32), (unsigned long) value, 1175 (unsigned long) (gregdata->reloc_request[bpo_index].value 1176 >> 32), 1177 (unsigned long) gregdata->reloc_request[bpo_index].value); 1178 bfd_set_error (bfd_error_bad_value); 1179 return bfd_reloc_overflow; 1180 } 1181 1182 /* Then store the register number and offset for that register 1183 into datap and datap + 1 respectively. */ 1184 bfd_put_8 (abfd, 1185 gregdata->reloc_request[bpo_index].regindex 1186 + bpo_greg_section->output_section->vma / 8, 1187 datap); 1188 bfd_put_8 (abfd, 1189 gregdata->reloc_request[bpo_index].offset, 1190 ((unsigned char *) datap) + 1); 1191 return bfd_reloc_ok; 1192 } 1193 1194 case R_MMIX_REG_OR_BYTE: 1195 case R_MMIX_REG: 1196 if (value > 255) 1197 return bfd_reloc_overflow; 1198 bfd_put_8 (abfd, value, datap); 1199 return bfd_reloc_ok; 1200 1201 default: 1202 BAD_CASE (howto->type); 1203 } 1204 1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1206 sequence. */ 1207 1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1209 everything that looks strange. */ 1210 if (value & 3) 1211 flag = bfd_reloc_overflow; 1212 1213 bfd_put_32 (abfd, 1214 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1215 (bfd_byte *) datap + offs); 1216 bfd_put_32 (abfd, 1217 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1218 (bfd_byte *) datap + offs + 4); 1219 bfd_put_32 (abfd, 1220 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1221 (bfd_byte *) datap + offs + 8); 1222 bfd_put_32 (abfd, 1223 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1224 (bfd_byte *) datap + offs + 12); 1225 1226 return flag; 1227 } 1228 1229 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1230 1231 static void 1232 mmix_info_to_howto_rela (abfd, cache_ptr, dst) 1233 bfd *abfd ATTRIBUTE_UNUSED; 1234 arelent *cache_ptr; 1235 Elf_Internal_Rela *dst; 1236 { 1237 unsigned int r_type; 1238 1239 r_type = ELF64_R_TYPE (dst->r_info); 1240 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1241 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1242 } 1243 1244 /* Any MMIX-specific relocation gets here at assembly time or when linking 1245 to other formats (such as mmo); this is the relocation function from 1246 the reloc_table. We don't get here for final pure ELF linking. */ 1247 1248 static bfd_reloc_status_type 1249 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section, 1250 output_bfd, error_message) 1251 bfd *abfd; 1252 arelent *reloc_entry; 1253 asymbol *symbol; 1254 PTR data; 1255 asection *input_section; 1256 bfd *output_bfd; 1257 char **error_message ATTRIBUTE_UNUSED; 1258 { 1259 bfd_vma relocation; 1260 bfd_reloc_status_type r; 1261 asection *reloc_target_output_section; 1262 bfd_reloc_status_type flag = bfd_reloc_ok; 1263 bfd_vma output_base = 0; 1264 bfd_vma addr; 1265 1266 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1267 input_section, output_bfd, error_message); 1268 1269 /* If that was all that was needed (i.e. this isn't a final link, only 1270 some segment adjustments), we're done. */ 1271 if (r != bfd_reloc_continue) 1272 return r; 1273 1274 if (bfd_is_und_section (symbol->section) 1275 && (symbol->flags & BSF_WEAK) == 0 1276 && output_bfd == (bfd *) NULL) 1277 return bfd_reloc_undefined; 1278 1279 /* Is the address of the relocation really within the section? */ 1280 if (reloc_entry->address > input_section->_cooked_size) 1281 return bfd_reloc_outofrange; 1282 1283 /* Work out which section the relocation is targeted at and the 1284 initial relocation command value. */ 1285 1286 /* Get symbol value. (Common symbols are special.) */ 1287 if (bfd_is_com_section (symbol->section)) 1288 relocation = 0; 1289 else 1290 relocation = symbol->value; 1291 1292 reloc_target_output_section = bfd_get_output_section (symbol); 1293 1294 /* Here the variable relocation holds the final address of the symbol we 1295 are relocating against, plus any addend. */ 1296 if (output_bfd) 1297 output_base = 0; 1298 else 1299 output_base = reloc_target_output_section->vma; 1300 1301 relocation += output_base + symbol->section->output_offset; 1302 1303 /* Get position of relocation. */ 1304 addr = (reloc_entry->address + input_section->output_section->vma 1305 + input_section->output_offset); 1306 if (output_bfd != (bfd *) NULL) 1307 { 1308 /* Add in supplied addend. */ 1309 relocation += reloc_entry->addend; 1310 1311 /* This is a partial relocation, and we want to apply the 1312 relocation to the reloc entry rather than the raw data. 1313 Modify the reloc inplace to reflect what we now know. */ 1314 reloc_entry->addend = relocation; 1315 reloc_entry->address += input_section->output_offset; 1316 return flag; 1317 } 1318 1319 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1320 data, reloc_entry->address, 1321 reloc_entry->addend, relocation, 1322 bfd_asymbol_name (symbol), 1323 reloc_target_output_section); 1324 } 1325 1326 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1327 for guidance if you're thinking of copying this. */ 1328 1329 static bfd_boolean 1330 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section, 1331 contents, relocs, local_syms, local_sections) 1332 bfd *output_bfd ATTRIBUTE_UNUSED; 1333 struct bfd_link_info *info; 1334 bfd *input_bfd; 1335 asection *input_section; 1336 bfd_byte *contents; 1337 Elf_Internal_Rela *relocs; 1338 Elf_Internal_Sym *local_syms; 1339 asection **local_sections; 1340 { 1341 Elf_Internal_Shdr *symtab_hdr; 1342 struct elf_link_hash_entry **sym_hashes; 1343 Elf_Internal_Rela *rel; 1344 Elf_Internal_Rela *relend; 1345 bfd_size_type raw_size 1346 = (input_section->_raw_size 1347 - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs 1348 * MAX_PUSHJ_STUB_SIZE); 1349 size_t pjsno = 0; 1350 1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1352 sym_hashes = elf_sym_hashes (input_bfd); 1353 relend = relocs + input_section->reloc_count; 1354 1355 for (rel = relocs; rel < relend; rel ++) 1356 { 1357 reloc_howto_type *howto; 1358 unsigned long r_symndx; 1359 Elf_Internal_Sym *sym; 1360 asection *sec; 1361 struct elf_link_hash_entry *h; 1362 bfd_vma relocation; 1363 bfd_reloc_status_type r; 1364 const char *name = NULL; 1365 int r_type; 1366 bfd_boolean undefined_signalled = FALSE; 1367 1368 r_type = ELF64_R_TYPE (rel->r_info); 1369 1370 if (r_type == R_MMIX_GNU_VTINHERIT 1371 || r_type == R_MMIX_GNU_VTENTRY) 1372 continue; 1373 1374 r_symndx = ELF64_R_SYM (rel->r_info); 1375 1376 if (info->relocatable) 1377 { 1378 /* This is a relocatable link. For most relocs we don't have to 1379 change anything, unless the reloc is against a section 1380 symbol, in which case we have to adjust according to where 1381 the section symbol winds up in the output section. */ 1382 if (r_symndx < symtab_hdr->sh_info) 1383 { 1384 sym = local_syms + r_symndx; 1385 1386 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1387 { 1388 sec = local_sections [r_symndx]; 1389 rel->r_addend += sec->output_offset + sym->st_value; 1390 } 1391 } 1392 1393 /* For PUSHJ stub relocs however, we may need to change the 1394 reloc and the section contents, if the reloc doesn't reach 1395 beyond the end of the output section and previous stubs. 1396 Then we change the section contents to be a PUSHJ to the end 1397 of the input section plus stubs (we can do that without using 1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1399 at the stub location. */ 1400 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1401 { 1402 /* We've already checked whether we need a stub; use that 1403 knowledge. */ 1404 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1405 != 0) 1406 { 1407 Elf_Internal_Rela relcpy; 1408 1409 if (mmix_elf_section_data (input_section) 1410 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1411 abort (); 1412 1413 /* There's already a PUSHJ insn there, so just fill in 1414 the offset bits to the stub. */ 1415 if (mmix_final_link_relocate (elf_mmix_howto_table 1416 + R_MMIX_ADDR19, 1417 input_section, 1418 contents, 1419 rel->r_offset, 1420 0, 1421 input_section 1422 ->output_section->vma 1423 + input_section->output_offset 1424 + raw_size 1425 + mmix_elf_section_data (input_section) 1426 ->pjs.stub_offset, 1427 NULL, NULL) != bfd_reloc_ok) 1428 return FALSE; 1429 1430 /* Put a JMP insn at the stub; it goes with the 1431 R_MMIX_JMP reloc. */ 1432 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1433 contents 1434 + raw_size 1435 + mmix_elf_section_data (input_section) 1436 ->pjs.stub_offset); 1437 1438 /* Change the reloc to be at the stub, and to a full 1439 R_MMIX_JMP reloc. */ 1440 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1441 rel->r_offset 1442 = (raw_size 1443 + mmix_elf_section_data (input_section) 1444 ->pjs.stub_offset); 1445 1446 mmix_elf_section_data (input_section)->pjs.stub_offset 1447 += MAX_PUSHJ_STUB_SIZE; 1448 1449 /* Shift this reloc to the end of the relocs to maintain 1450 the r_offset sorted reloc order. */ 1451 relcpy = *rel; 1452 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1453 relend[-1] = relcpy; 1454 1455 /* Back up one reloc, or else we'd skip the next reloc 1456 in turn. */ 1457 rel--; 1458 } 1459 1460 pjsno++; 1461 } 1462 continue; 1463 } 1464 1465 /* This is a final link. */ 1466 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1467 h = NULL; 1468 sym = NULL; 1469 sec = NULL; 1470 1471 if (r_symndx < symtab_hdr->sh_info) 1472 { 1473 sym = local_syms + r_symndx; 1474 sec = local_sections [r_symndx]; 1475 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1476 1477 name = bfd_elf_string_from_elf_section (input_bfd, 1478 symtab_hdr->sh_link, 1479 sym->st_name); 1480 if (name == NULL) 1481 name = bfd_section_name (input_bfd, sec); 1482 } 1483 else 1484 { 1485 bfd_boolean unresolved_reloc; 1486 1487 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1488 r_symndx, symtab_hdr, sym_hashes, 1489 h, sec, relocation, 1490 unresolved_reloc, undefined_signalled); 1491 name = h->root.root.string; 1492 } 1493 1494 r = mmix_final_link_relocate (howto, input_section, 1495 contents, rel->r_offset, 1496 rel->r_addend, relocation, name, sec); 1497 1498 if (r != bfd_reloc_ok) 1499 { 1500 bfd_boolean check_ok = TRUE; 1501 const char * msg = (const char *) NULL; 1502 1503 switch (r) 1504 { 1505 case bfd_reloc_overflow: 1506 check_ok = info->callbacks->reloc_overflow 1507 (info, name, howto->name, (bfd_vma) 0, 1508 input_bfd, input_section, rel->r_offset); 1509 break; 1510 1511 case bfd_reloc_undefined: 1512 /* We may have sent this message above. */ 1513 if (! undefined_signalled) 1514 check_ok = info->callbacks->undefined_symbol 1515 (info, name, input_bfd, input_section, rel->r_offset, 1516 TRUE); 1517 undefined_signalled = TRUE; 1518 break; 1519 1520 case bfd_reloc_outofrange: 1521 msg = _("internal error: out of range error"); 1522 break; 1523 1524 case bfd_reloc_notsupported: 1525 msg = _("internal error: unsupported relocation error"); 1526 break; 1527 1528 case bfd_reloc_dangerous: 1529 msg = _("internal error: dangerous relocation"); 1530 break; 1531 1532 default: 1533 msg = _("internal error: unknown error"); 1534 break; 1535 } 1536 1537 if (msg) 1538 check_ok = info->callbacks->warning 1539 (info, msg, name, input_bfd, input_section, rel->r_offset); 1540 1541 if (! check_ok) 1542 return FALSE; 1543 } 1544 } 1545 1546 return TRUE; 1547 } 1548 1549 /* Perform a single relocation. By default we use the standard BFD 1550 routines. A few relocs we have to do ourselves. */ 1551 1552 static bfd_reloc_status_type 1553 mmix_final_link_relocate (howto, input_section, contents, 1554 r_offset, r_addend, relocation, symname, symsec) 1555 reloc_howto_type *howto; 1556 asection *input_section; 1557 bfd_byte *contents; 1558 bfd_vma r_offset; 1559 bfd_signed_vma r_addend; 1560 bfd_vma relocation; 1561 const char *symname; 1562 asection *symsec; 1563 { 1564 bfd_reloc_status_type r = bfd_reloc_ok; 1565 bfd_vma addr 1566 = (input_section->output_section->vma 1567 + input_section->output_offset 1568 + r_offset); 1569 bfd_signed_vma srel 1570 = (bfd_signed_vma) relocation + r_addend; 1571 1572 switch (howto->type) 1573 { 1574 /* All these are PC-relative. */ 1575 case R_MMIX_PUSHJ_STUBBABLE: 1576 case R_MMIX_PUSHJ: 1577 case R_MMIX_CBRANCH: 1578 case R_MMIX_ADDR19: 1579 case R_MMIX_GETA: 1580 case R_MMIX_ADDR27: 1581 case R_MMIX_JMP: 1582 contents += r_offset; 1583 1584 srel -= (input_section->output_section->vma 1585 + input_section->output_offset 1586 + r_offset); 1587 1588 r = mmix_elf_perform_relocation (input_section, howto, contents, 1589 addr, srel); 1590 break; 1591 1592 case R_MMIX_BASE_PLUS_OFFSET: 1593 if (symsec == NULL) 1594 return bfd_reloc_undefined; 1595 1596 /* Check that we're not relocating against a register symbol. */ 1597 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1598 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1599 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1600 MMIX_REG_SECTION_NAME) == 0) 1601 { 1602 /* Note: This is separated out into two messages in order 1603 to ease the translation into other languages. */ 1604 if (symname == NULL || *symname == 0) 1605 (*_bfd_error_handler) 1606 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1607 bfd_get_filename (input_section->owner), 1608 bfd_get_section_name (symsec->owner, symsec)); 1609 else 1610 (*_bfd_error_handler) 1611 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1612 bfd_get_filename (input_section->owner), symname, 1613 bfd_get_section_name (symsec->owner, symsec)); 1614 return bfd_reloc_overflow; 1615 } 1616 goto do_mmix_reloc; 1617 1618 case R_MMIX_REG_OR_BYTE: 1619 case R_MMIX_REG: 1620 /* For now, we handle these alike. They must refer to an register 1621 symbol, which is either relative to the register section and in 1622 the range 0..255, or is in the register contents section with vma 1623 regno * 8. */ 1624 1625 /* FIXME: A better way to check for reg contents section? 1626 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1627 if (symsec == NULL) 1628 return bfd_reloc_undefined; 1629 1630 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1631 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1632 { 1633 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1634 { 1635 /* The bfd_reloc_outofrange return value, though intuitively 1636 a better value, will not get us an error. */ 1637 return bfd_reloc_overflow; 1638 } 1639 srel /= 8; 1640 } 1641 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1642 MMIX_REG_SECTION_NAME) == 0) 1643 { 1644 if (srel < 0 || srel > 255) 1645 /* The bfd_reloc_outofrange return value, though intuitively a 1646 better value, will not get us an error. */ 1647 return bfd_reloc_overflow; 1648 } 1649 else 1650 { 1651 /* Note: This is separated out into two messages in order 1652 to ease the translation into other languages. */ 1653 if (symname == NULL || *symname == 0) 1654 (*_bfd_error_handler) 1655 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1656 bfd_get_filename (input_section->owner), 1657 bfd_get_section_name (symsec->owner, symsec)); 1658 else 1659 (*_bfd_error_handler) 1660 (_("%s: register relocation against non-register symbol: %s in %s"), 1661 bfd_get_filename (input_section->owner), symname, 1662 bfd_get_section_name (symsec->owner, symsec)); 1663 1664 /* The bfd_reloc_outofrange return value, though intuitively a 1665 better value, will not get us an error. */ 1666 return bfd_reloc_overflow; 1667 } 1668 do_mmix_reloc: 1669 contents += r_offset; 1670 r = mmix_elf_perform_relocation (input_section, howto, contents, 1671 addr, srel); 1672 break; 1673 1674 case R_MMIX_LOCAL: 1675 /* This isn't a real relocation, it's just an assertion that the 1676 final relocation value corresponds to a local register. We 1677 ignore the actual relocation; nothing is changed. */ 1678 { 1679 asection *regsec 1680 = bfd_get_section_by_name (input_section->output_section->owner, 1681 MMIX_REG_CONTENTS_SECTION_NAME); 1682 bfd_vma first_global; 1683 1684 /* Check that this is an absolute value, or a reference to the 1685 register contents section or the register (symbol) section. 1686 Absolute numbers can get here as undefined section. Undefined 1687 symbols are signalled elsewhere, so there's no conflict in us 1688 accidentally handling it. */ 1689 if (!bfd_is_abs_section (symsec) 1690 && !bfd_is_und_section (symsec) 1691 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1692 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1693 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1694 MMIX_REG_SECTION_NAME) != 0) 1695 { 1696 (*_bfd_error_handler) 1697 (_("%s: directive LOCAL valid only with a register or absolute value"), 1698 bfd_get_filename (input_section->owner)); 1699 1700 return bfd_reloc_overflow; 1701 } 1702 1703 /* If we don't have a register contents section, then $255 is the 1704 first global register. */ 1705 if (regsec == NULL) 1706 first_global = 255; 1707 else 1708 { 1709 first_global = bfd_get_section_vma (abfd, regsec) / 8; 1710 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1711 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1712 { 1713 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1714 /* The bfd_reloc_outofrange return value, though 1715 intuitively a better value, will not get us an error. */ 1716 return bfd_reloc_overflow; 1717 srel /= 8; 1718 } 1719 } 1720 1721 if ((bfd_vma) srel >= first_global) 1722 { 1723 /* FIXME: Better error message. */ 1724 (*_bfd_error_handler) 1725 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1726 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1727 1728 return bfd_reloc_overflow; 1729 } 1730 } 1731 r = bfd_reloc_ok; 1732 break; 1733 1734 default: 1735 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1736 contents, r_offset, 1737 relocation, r_addend); 1738 } 1739 1740 return r; 1741 } 1742 1743 /* Return the section that should be marked against GC for a given 1744 relocation. */ 1745 1746 static asection * 1747 mmix_elf_gc_mark_hook (sec, info, rel, h, sym) 1748 asection *sec; 1749 struct bfd_link_info *info ATTRIBUTE_UNUSED; 1750 Elf_Internal_Rela *rel; 1751 struct elf_link_hash_entry *h; 1752 Elf_Internal_Sym *sym; 1753 { 1754 if (h != NULL) 1755 { 1756 switch (ELF64_R_TYPE (rel->r_info)) 1757 { 1758 case R_MMIX_GNU_VTINHERIT: 1759 case R_MMIX_GNU_VTENTRY: 1760 break; 1761 1762 default: 1763 switch (h->root.type) 1764 { 1765 case bfd_link_hash_defined: 1766 case bfd_link_hash_defweak: 1767 return h->root.u.def.section; 1768 1769 case bfd_link_hash_common: 1770 return h->root.u.c.p->section; 1771 1772 default: 1773 break; 1774 } 1775 } 1776 } 1777 else 1778 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 1779 1780 return NULL; 1781 } 1782 1783 /* Update relocation info for a GC-excluded section. We could supposedly 1784 perform the allocation after GC, but there's no suitable hook between 1785 GC (or section merge) and the point when all input sections must be 1786 present. Better to waste some memory and (perhaps) a little time. */ 1787 1788 static bfd_boolean 1789 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs) 1790 bfd *abfd ATTRIBUTE_UNUSED; 1791 struct bfd_link_info *info ATTRIBUTE_UNUSED; 1792 asection *sec ATTRIBUTE_UNUSED; 1793 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; 1794 { 1795 struct bpo_reloc_section_info *bpodata 1796 = mmix_elf_section_data (sec)->bpo.reloc; 1797 asection *allocated_gregs_section; 1798 1799 /* If no bpodata here, we have nothing to do. */ 1800 if (bpodata == NULL) 1801 return TRUE; 1802 1803 allocated_gregs_section = bpodata->bpo_greg_section; 1804 1805 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1806 -= bpodata->n_bpo_relocs_this_section; 1807 1808 return TRUE; 1809 } 1810 1811 /* Sort register relocs to come before expanding relocs. */ 1812 1813 static int 1814 mmix_elf_sort_relocs (p1, p2) 1815 const PTR p1; 1816 const PTR p2; 1817 { 1818 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1819 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1820 int r1_is_reg, r2_is_reg; 1821 1822 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1823 insns. */ 1824 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1825 return 1; 1826 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1827 return -1; 1828 1829 r1_is_reg 1830 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1831 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1832 r2_is_reg 1833 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1834 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1835 if (r1_is_reg != r2_is_reg) 1836 return r2_is_reg - r1_is_reg; 1837 1838 /* Neither or both are register relocs. Then sort on full offset. */ 1839 if (r1->r_offset > r2->r_offset) 1840 return 1; 1841 else if (r1->r_offset < r2->r_offset) 1842 return -1; 1843 return 0; 1844 } 1845 1846 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1847 1848 static bfd_boolean 1849 mmix_elf_check_common_relocs (abfd, info, sec, relocs) 1850 bfd *abfd; 1851 struct bfd_link_info *info; 1852 asection *sec; 1853 const Elf_Internal_Rela *relocs; 1854 { 1855 bfd *bpo_greg_owner = NULL; 1856 asection *allocated_gregs_section = NULL; 1857 struct bpo_greg_section_info *gregdata = NULL; 1858 struct bpo_reloc_section_info *bpodata = NULL; 1859 const Elf_Internal_Rela *rel; 1860 const Elf_Internal_Rela *rel_end; 1861 1862 /* We currently have to abuse this COFF-specific member, since there's 1863 no target-machine-dedicated member. There's no alternative outside 1864 the bfd_link_info struct; we can't specialize a hash-table since 1865 they're different between ELF and mmo. */ 1866 bpo_greg_owner = (bfd *) info->base_file; 1867 1868 rel_end = relocs + sec->reloc_count; 1869 for (rel = relocs; rel < rel_end; rel++) 1870 { 1871 switch (ELF64_R_TYPE (rel->r_info)) 1872 { 1873 /* This relocation causes a GREG allocation. We need to count 1874 them, and we need to create a section for them, so we need an 1875 object to fake as the owner of that section. We can't use 1876 the ELF dynobj for this, since the ELF bits assume lots of 1877 DSO-related stuff if that member is non-NULL. */ 1878 case R_MMIX_BASE_PLUS_OFFSET: 1879 /* We don't do anything with this reloc for a relocatable link. */ 1880 if (info->relocatable) 1881 break; 1882 1883 if (bpo_greg_owner == NULL) 1884 { 1885 bpo_greg_owner = abfd; 1886 info->base_file = (PTR) bpo_greg_owner; 1887 } 1888 1889 if (allocated_gregs_section == NULL) 1890 allocated_gregs_section 1891 = bfd_get_section_by_name (bpo_greg_owner, 1892 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1893 1894 if (allocated_gregs_section == NULL) 1895 { 1896 allocated_gregs_section 1897 = bfd_make_section (bpo_greg_owner, 1898 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1899 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1900 treated like any other section, and we'd get errors for 1901 address overlap with the text section. Let's set none of 1902 those flags, as that is what currently happens for usual 1903 GREG allocations, and that works. */ 1904 if (allocated_gregs_section == NULL 1905 || !bfd_set_section_flags (bpo_greg_owner, 1906 allocated_gregs_section, 1907 (SEC_HAS_CONTENTS 1908 | SEC_IN_MEMORY 1909 | SEC_LINKER_CREATED)) 1910 || !bfd_set_section_alignment (bpo_greg_owner, 1911 allocated_gregs_section, 1912 3)) 1913 return FALSE; 1914 1915 gregdata = (struct bpo_greg_section_info *) 1916 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1917 if (gregdata == NULL) 1918 return FALSE; 1919 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1920 = gregdata; 1921 } 1922 else if (gregdata == NULL) 1923 gregdata 1924 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1925 1926 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1927 if (bpodata == NULL) 1928 { 1929 /* No use doing a separate iteration pass to find the upper 1930 limit - just use the number of relocs. */ 1931 bpodata = (struct bpo_reloc_section_info *) 1932 bfd_alloc (bpo_greg_owner, 1933 sizeof (struct bpo_reloc_section_info) 1934 * (sec->reloc_count + 1)); 1935 if (bpodata == NULL) 1936 return FALSE; 1937 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1938 bpodata->first_base_plus_offset_reloc 1939 = bpodata->bpo_index 1940 = gregdata->n_max_bpo_relocs; 1941 bpodata->bpo_greg_section 1942 = allocated_gregs_section; 1943 bpodata->n_bpo_relocs_this_section = 0; 1944 } 1945 1946 bpodata->n_bpo_relocs_this_section++; 1947 gregdata->n_max_bpo_relocs++; 1948 1949 /* We don't get another chance to set this before GC; we've not 1950 set up any hook that runs before GC. */ 1951 gregdata->n_bpo_relocs 1952 = gregdata->n_max_bpo_relocs; 1953 break; 1954 1955 case R_MMIX_PUSHJ_STUBBABLE: 1956 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1957 break; 1958 } 1959 } 1960 1961 /* Allocate per-reloc stub storage and initialize it to the max stub 1962 size. */ 1963 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1964 { 1965 size_t i; 1966 1967 mmix_elf_section_data (sec)->pjs.stub_size 1968 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1969 * sizeof (mmix_elf_section_data (sec) 1970 ->pjs.stub_size[0])); 1971 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1972 return FALSE; 1973 1974 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1975 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1976 } 1977 1978 return TRUE; 1979 } 1980 1981 /* Look through the relocs for a section during the first phase. */ 1982 1983 static bfd_boolean 1984 mmix_elf_check_relocs (abfd, info, sec, relocs) 1985 bfd *abfd; 1986 struct bfd_link_info *info; 1987 asection *sec; 1988 const Elf_Internal_Rela *relocs; 1989 { 1990 Elf_Internal_Shdr *symtab_hdr; 1991 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 1992 const Elf_Internal_Rela *rel; 1993 const Elf_Internal_Rela *rel_end; 1994 1995 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1996 sym_hashes = elf_sym_hashes (abfd); 1997 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym); 1998 if (!elf_bad_symtab (abfd)) 1999 sym_hashes_end -= symtab_hdr->sh_info; 2000 2001 /* First we sort the relocs so that any register relocs come before 2002 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 2003 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 2004 mmix_elf_sort_relocs); 2005 2006 /* Do the common part. */ 2007 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 2008 return FALSE; 2009 2010 if (info->relocatable) 2011 return TRUE; 2012 2013 rel_end = relocs + sec->reloc_count; 2014 for (rel = relocs; rel < rel_end; rel++) 2015 { 2016 struct elf_link_hash_entry *h; 2017 unsigned long r_symndx; 2018 2019 r_symndx = ELF64_R_SYM (rel->r_info); 2020 if (r_symndx < symtab_hdr->sh_info) 2021 h = NULL; 2022 else 2023 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2024 2025 switch (ELF64_R_TYPE (rel->r_info)) 2026 { 2027 /* This relocation describes the C++ object vtable hierarchy. 2028 Reconstruct it for later use during GC. */ 2029 case R_MMIX_GNU_VTINHERIT: 2030 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2031 return FALSE; 2032 break; 2033 2034 /* This relocation describes which C++ vtable entries are actually 2035 used. Record for later use during GC. */ 2036 case R_MMIX_GNU_VTENTRY: 2037 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2038 return FALSE; 2039 break; 2040 } 2041 } 2042 2043 return TRUE; 2044 } 2045 2046 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2047 Copied from elf_link_add_object_symbols. */ 2048 2049 bfd_boolean 2050 _bfd_mmix_check_all_relocs (abfd, info) 2051 bfd *abfd; 2052 struct bfd_link_info *info; 2053 { 2054 asection *o; 2055 2056 for (o = abfd->sections; o != NULL; o = o->next) 2057 { 2058 Elf_Internal_Rela *internal_relocs; 2059 bfd_boolean ok; 2060 2061 if ((o->flags & SEC_RELOC) == 0 2062 || o->reloc_count == 0 2063 || ((info->strip == strip_all || info->strip == strip_debugger) 2064 && (o->flags & SEC_DEBUGGING) != 0) 2065 || bfd_is_abs_section (o->output_section)) 2066 continue; 2067 2068 internal_relocs 2069 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, 2070 (Elf_Internal_Rela *) NULL, 2071 info->keep_memory); 2072 if (internal_relocs == NULL) 2073 return FALSE; 2074 2075 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2076 2077 if (! info->keep_memory) 2078 free (internal_relocs); 2079 2080 if (! ok) 2081 return FALSE; 2082 } 2083 2084 return TRUE; 2085 } 2086 2087 /* Change symbols relative to the reg contents section to instead be to 2088 the register section, and scale them down to correspond to the register 2089 number. */ 2090 2091 static bfd_boolean 2092 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h) 2093 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2094 const char *name ATTRIBUTE_UNUSED; 2095 Elf_Internal_Sym *sym; 2096 asection *input_sec; 2097 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED; 2098 { 2099 if (input_sec != NULL 2100 && input_sec->name != NULL 2101 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2102 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2103 { 2104 sym->st_value /= 8; 2105 sym->st_shndx = SHN_REGISTER; 2106 } 2107 2108 return TRUE; 2109 } 2110 2111 /* We fake a register section that holds values that are register numbers. 2112 Having a SHN_REGISTER and register section translates better to other 2113 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2114 This section faking is based on a construct in elf32-mips.c. */ 2115 static asection mmix_elf_reg_section; 2116 static asymbol mmix_elf_reg_section_symbol; 2117 static asymbol *mmix_elf_reg_section_symbol_ptr; 2118 2119 /* Handle the special section numbers that a symbol may use. */ 2120 2121 void 2122 mmix_elf_symbol_processing (abfd, asym) 2123 bfd *abfd ATTRIBUTE_UNUSED; 2124 asymbol *asym; 2125 { 2126 elf_symbol_type *elfsym; 2127 2128 elfsym = (elf_symbol_type *) asym; 2129 switch (elfsym->internal_elf_sym.st_shndx) 2130 { 2131 case SHN_REGISTER: 2132 if (mmix_elf_reg_section.name == NULL) 2133 { 2134 /* Initialize the register section. */ 2135 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2136 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2137 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2138 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2139 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2140 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2141 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2142 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2143 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2144 } 2145 asym->section = &mmix_elf_reg_section; 2146 break; 2147 2148 default: 2149 break; 2150 } 2151 } 2152 2153 /* Given a BFD section, try to locate the corresponding ELF section 2154 index. */ 2155 2156 static bfd_boolean 2157 mmix_elf_section_from_bfd_section (abfd, sec, retval) 2158 bfd * abfd ATTRIBUTE_UNUSED; 2159 asection * sec; 2160 int * retval; 2161 { 2162 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2163 *retval = SHN_REGISTER; 2164 else 2165 return FALSE; 2166 2167 return TRUE; 2168 } 2169 2170 /* Hook called by the linker routine which adds symbols from an object 2171 file. We must handle the special SHN_REGISTER section number here. 2172 2173 We also check that we only have *one* each of the section-start 2174 symbols, since otherwise having two with the same value would cause 2175 them to be "merged", but with the contents serialized. */ 2176 2177 bfd_boolean 2178 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) 2179 bfd *abfd; 2180 struct bfd_link_info *info ATTRIBUTE_UNUSED; 2181 Elf_Internal_Sym *sym; 2182 const char **namep ATTRIBUTE_UNUSED; 2183 flagword *flagsp ATTRIBUTE_UNUSED; 2184 asection **secp; 2185 bfd_vma *valp ATTRIBUTE_UNUSED; 2186 { 2187 if (sym->st_shndx == SHN_REGISTER) 2188 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2189 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2190 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX, 2191 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0) 2192 { 2193 /* See if we have another one. */ 2194 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2195 *namep, 2196 FALSE, 2197 FALSE, 2198 FALSE); 2199 2200 if (h != NULL && h->type != bfd_link_hash_undefined) 2201 { 2202 /* How do we get the asymbol (or really: the filename) from h? 2203 h->u.def.section->owner is NULL. */ 2204 ((*_bfd_error_handler) 2205 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2206 bfd_get_filename (abfd), *namep, 2207 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2208 bfd_set_error (bfd_error_bad_value); 2209 return FALSE; 2210 } 2211 } 2212 2213 return TRUE; 2214 } 2215 2216 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2217 2218 bfd_boolean 2219 mmix_elf_is_local_label_name (abfd, name) 2220 bfd *abfd; 2221 const char *name; 2222 { 2223 const char *colpos; 2224 int digits; 2225 2226 /* Also include the default local-label definition. */ 2227 if (_bfd_elf_is_local_label_name (abfd, name)) 2228 return TRUE; 2229 2230 if (*name != 'L') 2231 return FALSE; 2232 2233 /* If there's no ":", or more than one, it's not a local symbol. */ 2234 colpos = strchr (name, ':'); 2235 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2236 return FALSE; 2237 2238 /* Check that there are remaining characters and that they are digits. */ 2239 if (colpos[1] == 0) 2240 return FALSE; 2241 2242 digits = strspn (colpos + 1, "0123456789"); 2243 return digits != 0 && colpos[1 + digits] == 0; 2244 } 2245 2246 /* We get rid of the register section here. */ 2247 2248 bfd_boolean 2249 mmix_elf_final_link (abfd, info) 2250 bfd *abfd; 2251 struct bfd_link_info *info; 2252 { 2253 /* We never output a register section, though we create one for 2254 temporary measures. Check that nobody entered contents into it. */ 2255 asection *reg_section; 2256 asection **secpp; 2257 2258 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2259 2260 if (reg_section != NULL) 2261 { 2262 /* FIXME: Pass error state gracefully. */ 2263 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2264 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2265 2266 /* Really remove the section. */ 2267 for (secpp = &abfd->sections; 2268 *secpp != reg_section; 2269 secpp = &(*secpp)->next) 2270 ; 2271 bfd_section_list_remove (abfd, secpp); 2272 --abfd->section_count; 2273 } 2274 2275 if (! bfd_elf_final_link (abfd, info)) 2276 return FALSE; 2277 2278 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2279 the regular linker machinery. We do it here, like other targets with 2280 special sections. */ 2281 if (info->base_file != NULL) 2282 { 2283 asection *greg_section 2284 = bfd_get_section_by_name ((bfd *) info->base_file, 2285 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2286 if (!bfd_set_section_contents (abfd, 2287 greg_section->output_section, 2288 greg_section->contents, 2289 (file_ptr) greg_section->output_offset, 2290 greg_section->_cooked_size)) 2291 return FALSE; 2292 } 2293 return TRUE; 2294 } 2295 2296 /* We need to include the maximum size of PUSHJ-stubs in the initial 2297 section size. This is expected to shrink during linker relaxation. 2298 2299 You might think that we should set *only* _cooked_size, but that won't 2300 work: section contents allocation will be using _raw_size in mixed 2301 format linking and not enough storage will be allocated. FIXME: That's 2302 a major bug, including the name bfd_get_section_size_before_reloc; it 2303 should be bfd_get_section_size_before_relax. The relaxation functions 2304 set _cooked size. Relaxation happens before relocation. All functions 2305 *after relaxation* should be using _cooked size. */ 2306 2307 static void 2308 mmix_set_relaxable_size (abfd, sec, ptr) 2309 bfd *abfd ATTRIBUTE_UNUSED; 2310 asection *sec; 2311 void *ptr; 2312 { 2313 struct bfd_link_info *info = ptr; 2314 2315 /* Make sure we only do this for section where we know we want this, 2316 otherwise we might end up resetting the size of COMMONs. */ 2317 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2318 return; 2319 2320 sec->_cooked_size 2321 = (sec->_raw_size 2322 + mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2323 * MAX_PUSHJ_STUB_SIZE); 2324 sec->_raw_size = sec->_cooked_size; 2325 2326 /* For use in relocatable link, we start with a max stubs size. See 2327 mmix_elf_relax_section. */ 2328 if (info->relocatable && sec->output_section) 2329 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2330 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2331 * MAX_PUSHJ_STUB_SIZE); 2332 } 2333 2334 /* Initialize stuff for the linker-generated GREGs to match 2335 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2336 2337 bfd_boolean 2338 _bfd_mmix_before_linker_allocation (abfd, info) 2339 bfd *abfd ATTRIBUTE_UNUSED; 2340 struct bfd_link_info *info; 2341 { 2342 asection *bpo_gregs_section; 2343 bfd *bpo_greg_owner; 2344 struct bpo_greg_section_info *gregdata; 2345 size_t n_gregs; 2346 bfd_vma gregs_size; 2347 size_t i; 2348 size_t *bpo_reloc_indexes; 2349 bfd *ibfd; 2350 2351 /* Set the initial size of sections. */ 2352 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2353 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2354 2355 /* The bpo_greg_owner bfd is supposed to have been set by 2356 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2357 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2358 bpo_greg_owner = (bfd *) info->base_file; 2359 if (bpo_greg_owner == NULL) 2360 return TRUE; 2361 2362 bpo_gregs_section 2363 = bfd_get_section_by_name (bpo_greg_owner, 2364 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2365 2366 if (bpo_gregs_section == NULL) 2367 return TRUE; 2368 2369 /* We use the target-data handle in the ELF section data. */ 2370 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2371 if (gregdata == NULL) 2372 return FALSE; 2373 2374 n_gregs = gregdata->n_bpo_relocs; 2375 gregdata->n_allocated_bpo_gregs = n_gregs; 2376 2377 /* When this reaches zero during relaxation, all entries have been 2378 filled in and the size of the linker gregs can be calculated. */ 2379 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2380 2381 /* Set the zeroth-order estimate for the GREGs size. */ 2382 gregs_size = n_gregs * 8; 2383 2384 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2385 return FALSE; 2386 2387 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2388 time. Note that we must use the max number ever noted for the array, 2389 since the index numbers were created before GC. */ 2390 gregdata->reloc_request 2391 = bfd_zalloc (bpo_greg_owner, 2392 sizeof (struct bpo_reloc_request) 2393 * gregdata->n_max_bpo_relocs); 2394 2395 gregdata->bpo_reloc_indexes 2396 = bpo_reloc_indexes 2397 = bfd_alloc (bpo_greg_owner, 2398 gregdata->n_max_bpo_relocs 2399 * sizeof (size_t)); 2400 if (bpo_reloc_indexes == NULL) 2401 return FALSE; 2402 2403 /* The default order is an identity mapping. */ 2404 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2405 { 2406 bpo_reloc_indexes[i] = i; 2407 gregdata->reloc_request[i].bpo_reloc_no = i; 2408 } 2409 2410 return TRUE; 2411 } 2412 2413 /* Fill in contents in the linker allocated gregs. Everything is 2414 calculated at this point; we just move the contents into place here. */ 2415 2416 bfd_boolean 2417 _bfd_mmix_after_linker_allocation (abfd, link_info) 2418 bfd *abfd ATTRIBUTE_UNUSED; 2419 struct bfd_link_info *link_info; 2420 { 2421 asection *bpo_gregs_section; 2422 bfd *bpo_greg_owner; 2423 struct bpo_greg_section_info *gregdata; 2424 size_t n_gregs; 2425 size_t i, j; 2426 size_t lastreg; 2427 bfd_byte *contents; 2428 2429 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2430 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2431 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2432 bpo_greg_owner = (bfd *) link_info->base_file; 2433 if (bpo_greg_owner == NULL) 2434 return TRUE; 2435 2436 bpo_gregs_section 2437 = bfd_get_section_by_name (bpo_greg_owner, 2438 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2439 2440 /* This can't happen without DSO handling. When DSOs are handled 2441 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2442 section. */ 2443 if (bpo_gregs_section == NULL) 2444 return TRUE; 2445 2446 /* We use the target-data handle in the ELF section data. */ 2447 2448 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2449 if (gregdata == NULL) 2450 return FALSE; 2451 2452 n_gregs = gregdata->n_allocated_bpo_gregs; 2453 2454 /* We need to have a _raw_size contents even though there's only 2455 _cooked_size worth of data, since the generic relocation machinery 2456 will allocate and copy that much temporarily. */ 2457 bpo_gregs_section->contents 2458 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size); 2459 if (contents == NULL) 2460 return FALSE; 2461 2462 /* Sanity check: If these numbers mismatch, some relocation has not been 2463 accounted for and the rest of gregdata is probably inconsistent. 2464 It's a bug, but it's more helpful to identify it than segfaulting 2465 below. */ 2466 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2467 != gregdata->n_bpo_relocs) 2468 { 2469 (*_bfd_error_handler) 2470 (_("Internal inconsistency: remaining %u != max %u.\n\ 2471 Please report this bug."), 2472 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2473 gregdata->n_bpo_relocs); 2474 return FALSE; 2475 } 2476 2477 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2478 if (gregdata->reloc_request[i].regindex != lastreg) 2479 { 2480 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2481 contents + j * 8); 2482 lastreg = gregdata->reloc_request[i].regindex; 2483 j++; 2484 } 2485 2486 return TRUE; 2487 } 2488 2489 /* Sort valid relocs to come before non-valid relocs, then on increasing 2490 value. */ 2491 2492 static int 2493 bpo_reloc_request_sort_fn (p1, p2) 2494 const PTR p1; 2495 const PTR p2; 2496 { 2497 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2498 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2499 2500 /* Primary function is validity; non-valid relocs sorted after valid 2501 ones. */ 2502 if (r1->valid != r2->valid) 2503 return r2->valid - r1->valid; 2504 2505 /* Then sort on value. Don't simplify and return just the difference of 2506 the values: the upper bits of the 64-bit value would be truncated on 2507 a host with 32-bit ints. */ 2508 if (r1->value != r2->value) 2509 return r1->value > r2->value ? 1 : -1; 2510 2511 /* As a last re-sort, use the relocation number, so we get a stable 2512 sort. The *addresses* aren't stable since items are swapped during 2513 sorting. It depends on the qsort implementation if this actually 2514 happens. */ 2515 return r1->bpo_reloc_no > r2->bpo_reloc_no 2516 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2517 } 2518 2519 /* For debug use only. Dumps the global register allocations resulting 2520 from base-plus-offset relocs. */ 2521 2522 void 2523 mmix_dump_bpo_gregs (link_info, pf) 2524 struct bfd_link_info *link_info; 2525 bfd_error_handler_type pf; 2526 { 2527 bfd *bpo_greg_owner; 2528 asection *bpo_gregs_section; 2529 struct bpo_greg_section_info *gregdata; 2530 unsigned int i; 2531 2532 if (link_info == NULL || link_info->base_file == NULL) 2533 return; 2534 2535 bpo_greg_owner = (bfd *) link_info->base_file; 2536 2537 bpo_gregs_section 2538 = bfd_get_section_by_name (bpo_greg_owner, 2539 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2540 2541 if (bpo_gregs_section == NULL) 2542 return; 2543 2544 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2545 if (gregdata == NULL) 2546 return; 2547 2548 if (pf == NULL) 2549 pf = _bfd_error_handler; 2550 2551 /* These format strings are not translated. They are for debug purposes 2552 only and never displayed to an end user. Should they escape, we 2553 surely want them in original. */ 2554 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2555 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2556 gregdata->n_max_bpo_relocs, 2557 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2558 gregdata->n_allocated_bpo_gregs); 2559 2560 if (gregdata->reloc_request) 2561 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2562 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2563 i, 2564 (gregdata->bpo_reloc_indexes != NULL 2565 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2566 gregdata->reloc_request[i].bpo_reloc_no, 2567 gregdata->reloc_request[i].valid, 2568 2569 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2570 (unsigned long) gregdata->reloc_request[i].value, 2571 gregdata->reloc_request[i].regindex, 2572 gregdata->reloc_request[i].offset); 2573 } 2574 2575 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2576 when the last such reloc is done, an index-array is sorted according to 2577 the values and iterated over to produce register numbers (indexed by 0 2578 from the first allocated register number) and offsets for use in real 2579 relocation. 2580 2581 PUSHJ stub accounting is also done here. 2582 2583 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2584 2585 static bfd_boolean 2586 mmix_elf_relax_section (abfd, sec, link_info, again) 2587 bfd *abfd; 2588 asection *sec; 2589 struct bfd_link_info *link_info; 2590 bfd_boolean *again; 2591 { 2592 Elf_Internal_Shdr *symtab_hdr; 2593 Elf_Internal_Rela *internal_relocs; 2594 Elf_Internal_Rela *irel, *irelend; 2595 asection *bpo_gregs_section = NULL; 2596 struct bpo_greg_section_info *gregdata; 2597 struct bpo_reloc_section_info *bpodata 2598 = mmix_elf_section_data (sec)->bpo.reloc; 2599 /* The initialization is to quiet compiler warnings. The value is to 2600 spot a missing actual initialization. */ 2601 size_t bpono = (size_t) -1; 2602 size_t pjsno = 0; 2603 bfd *bpo_greg_owner; 2604 Elf_Internal_Sym *isymbuf = NULL; 2605 bfd_size_type raw_size 2606 = (sec->_raw_size 2607 - mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2608 * MAX_PUSHJ_STUB_SIZE); 2609 2610 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2611 2612 /* Assume nothing changes. */ 2613 *again = FALSE; 2614 2615 /* If this is the first time we have been called for this section, 2616 initialize the cooked size. */ 2617 if (sec->_cooked_size == 0 && sec->_raw_size != 0) 2618 abort (); 2619 2620 /* We don't have to do anything if this section does not have relocs, or 2621 if this is not a code section. */ 2622 if ((sec->flags & SEC_RELOC) == 0 2623 || sec->reloc_count == 0 2624 || (sec->flags & SEC_CODE) == 0 2625 || (sec->flags & SEC_LINKER_CREATED) != 0 2626 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2627 then nothing to do. */ 2628 || (bpodata == NULL 2629 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2630 return TRUE; 2631 2632 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2633 2634 bpo_greg_owner = (bfd *) link_info->base_file; 2635 2636 if (bpodata != NULL) 2637 { 2638 bpo_gregs_section = bpodata->bpo_greg_section; 2639 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2640 bpono = bpodata->first_base_plus_offset_reloc; 2641 } 2642 else 2643 gregdata = NULL; 2644 2645 /* Get a copy of the native relocations. */ 2646 internal_relocs 2647 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL, 2648 (Elf_Internal_Rela *) NULL, 2649 link_info->keep_memory); 2650 if (internal_relocs == NULL) 2651 goto error_return; 2652 2653 /* Walk through them looking for relaxing opportunities. */ 2654 irelend = internal_relocs + sec->reloc_count; 2655 for (irel = internal_relocs; irel < irelend; irel++) 2656 { 2657 bfd_vma symval; 2658 struct elf_link_hash_entry *h = NULL; 2659 2660 /* We only process two relocs. */ 2661 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2662 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2663 continue; 2664 2665 /* We process relocs in a distinctly different way when this is a 2666 relocatable link (for one, we don't look at symbols), so we avoid 2667 mixing its code with that for the "normal" relaxation. */ 2668 if (link_info->relocatable) 2669 { 2670 /* The only transformation in a relocatable link is to generate 2671 a full stub at the location of the stub calculated for the 2672 input section, if the relocated stub location, the end of the 2673 output section plus earlier stubs, cannot be reached. Thus 2674 relocatable linking can only lead to worse code, but it still 2675 works. */ 2676 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2677 { 2678 /* If we can reach the end of the output-section and beyond 2679 any current stubs, then we don't need a stub for this 2680 reloc. The relaxed order of output stub allocation may 2681 not exactly match the straightforward order, so we always 2682 assume presence of output stubs, which will allow 2683 relaxation only on relocations indifferent to the 2684 presence of output stub allocations for other relocations 2685 and thus the order of output stub allocation. */ 2686 if (bfd_check_overflow (complain_overflow_signed, 2687 19, 2688 0, 2689 bfd_arch_bits_per_address (abfd), 2690 /* Output-stub location. */ 2691 sec->output_section->_cooked_size 2692 + (mmix_elf_section_data (sec 2693 ->output_section) 2694 ->pjs.stubs_size_sum) 2695 /* Location of this PUSHJ reloc. */ 2696 - (sec->output_offset + irel->r_offset) 2697 /* Don't count *this* stub twice. */ 2698 - (mmix_elf_section_data (sec) 2699 ->pjs.stub_size[pjsno] 2700 + MAX_PUSHJ_STUB_SIZE)) 2701 == bfd_reloc_ok) 2702 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2703 2704 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2705 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2706 2707 pjsno++; 2708 } 2709 2710 continue; 2711 } 2712 2713 /* Get the value of the symbol referred to by the reloc. */ 2714 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2715 { 2716 /* A local symbol. */ 2717 Elf_Internal_Sym *isym; 2718 asection *sym_sec; 2719 2720 /* Read this BFD's local symbols if we haven't already. */ 2721 if (isymbuf == NULL) 2722 { 2723 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2724 if (isymbuf == NULL) 2725 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2726 symtab_hdr->sh_info, 0, 2727 NULL, NULL, NULL); 2728 if (isymbuf == 0) 2729 goto error_return; 2730 } 2731 2732 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2733 if (isym->st_shndx == SHN_UNDEF) 2734 sym_sec = bfd_und_section_ptr; 2735 else if (isym->st_shndx == SHN_ABS) 2736 sym_sec = bfd_abs_section_ptr; 2737 else if (isym->st_shndx == SHN_COMMON) 2738 sym_sec = bfd_com_section_ptr; 2739 else 2740 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2741 symval = (isym->st_value 2742 + sym_sec->output_section->vma 2743 + sym_sec->output_offset); 2744 } 2745 else 2746 { 2747 unsigned long indx; 2748 2749 /* An external symbol. */ 2750 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2751 h = elf_sym_hashes (abfd)[indx]; 2752 BFD_ASSERT (h != NULL); 2753 if (h->root.type != bfd_link_hash_defined 2754 && h->root.type != bfd_link_hash_defweak) 2755 { 2756 /* This appears to be a reference to an undefined symbol. Just 2757 ignore it--it will be caught by the regular reloc processing. 2758 We need to keep BPO reloc accounting consistent, though 2759 else we'll abort instead of emitting an error message. */ 2760 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2761 && gregdata != NULL) 2762 { 2763 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2764 bpono++; 2765 } 2766 continue; 2767 } 2768 2769 symval = (h->root.u.def.value 2770 + h->root.u.def.section->output_section->vma 2771 + h->root.u.def.section->output_offset); 2772 } 2773 2774 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2775 { 2776 bfd_vma value = symval + irel->r_addend; 2777 bfd_vma dot 2778 = (sec->output_section->vma 2779 + sec->output_offset 2780 + irel->r_offset); 2781 bfd_vma stubaddr 2782 = (sec->output_section->vma 2783 + sec->output_offset 2784 + raw_size 2785 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2786 2787 if ((value & 3) == 0 2788 && bfd_check_overflow (complain_overflow_signed, 2789 19, 2790 0, 2791 bfd_arch_bits_per_address (abfd), 2792 value - dot 2793 - (value > dot 2794 ? mmix_elf_section_data (sec) 2795 ->pjs.stub_size[pjsno] 2796 : 0)) 2797 == bfd_reloc_ok) 2798 /* If the reloc fits, no stub is needed. */ 2799 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2800 else 2801 /* Maybe we can get away with just a JMP insn? */ 2802 if ((value & 3) == 0 2803 && bfd_check_overflow (complain_overflow_signed, 2804 27, 2805 0, 2806 bfd_arch_bits_per_address (abfd), 2807 value - stubaddr 2808 - (value > dot 2809 ? mmix_elf_section_data (sec) 2810 ->pjs.stub_size[pjsno] - 4 2811 : 0)) 2812 == bfd_reloc_ok) 2813 /* Yep, account for a stub consisting of a single JMP insn. */ 2814 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2815 else 2816 /* Nope, go for the full insn stub. It doesn't seem useful to 2817 emit the intermediate sizes; those will only be useful for 2818 a >64M program assuming contiguous code. */ 2819 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2820 = MAX_PUSHJ_STUB_SIZE; 2821 2822 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2823 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2824 pjsno++; 2825 continue; 2826 } 2827 2828 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2829 2830 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2831 = symval + irel->r_addend; 2832 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2833 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2834 } 2835 2836 /* Check if that was the last BPO-reloc. If so, sort the values and 2837 calculate how many registers we need to cover them. Set the size of 2838 the linker gregs, and if the number of registers changed, indicate 2839 that we need to relax some more because we have more work to do. */ 2840 if (gregdata != NULL 2841 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2842 { 2843 size_t i; 2844 bfd_vma prev_base; 2845 size_t regindex; 2846 2847 /* First, reset the remaining relocs for the next round. */ 2848 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2849 = gregdata->n_bpo_relocs; 2850 2851 qsort ((PTR) gregdata->reloc_request, 2852 gregdata->n_max_bpo_relocs, 2853 sizeof (struct bpo_reloc_request), 2854 bpo_reloc_request_sort_fn); 2855 2856 /* Recalculate indexes. When we find a change (however unlikely 2857 after the initial iteration), we know we need to relax again, 2858 since items in the GREG-array are sorted by increasing value and 2859 stored in the relaxation phase. */ 2860 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2861 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2862 != i) 2863 { 2864 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2865 = i; 2866 *again = TRUE; 2867 } 2868 2869 /* Allocate register numbers (indexing from 0). Stop at the first 2870 non-valid reloc. */ 2871 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2872 i < gregdata->n_bpo_relocs; 2873 i++) 2874 { 2875 if (gregdata->reloc_request[i].value > prev_base + 255) 2876 { 2877 regindex++; 2878 prev_base = gregdata->reloc_request[i].value; 2879 } 2880 gregdata->reloc_request[i].regindex = regindex; 2881 gregdata->reloc_request[i].offset 2882 = gregdata->reloc_request[i].value - prev_base; 2883 } 2884 2885 /* If it's not the same as the last time, we need to relax again, 2886 because the size of the section has changed. I'm not sure we 2887 actually need to do any adjustments since the shrinking happens 2888 at the start of this section, but better safe than sorry. */ 2889 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2890 { 2891 gregdata->n_allocated_bpo_gregs = regindex + 1; 2892 *again = TRUE; 2893 } 2894 2895 bpo_gregs_section->_cooked_size = (regindex + 1) * 8; 2896 } 2897 2898 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2899 { 2900 if (! link_info->keep_memory) 2901 free (isymbuf); 2902 else 2903 { 2904 /* Cache the symbols for elf_link_input_bfd. */ 2905 symtab_hdr->contents = (unsigned char *) isymbuf; 2906 } 2907 } 2908 2909 if (internal_relocs != NULL 2910 && elf_section_data (sec)->relocs != internal_relocs) 2911 free (internal_relocs); 2912 2913 if (sec->_cooked_size 2914 < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2915 abort (); 2916 2917 if (sec->_cooked_size 2918 > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2919 { 2920 sec->_cooked_size 2921 = raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2922 *again = TRUE; 2923 } 2924 2925 return TRUE; 2926 2927 error_return: 2928 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2929 free (isymbuf); 2930 if (internal_relocs != NULL 2931 && elf_section_data (sec)->relocs != internal_relocs) 2932 free (internal_relocs); 2933 return FALSE; 2934 } 2935 2936 /* Because we set _raw_size to include the max size of pushj stubs, 2937 i.e. larger than the actual section input size (see 2938 mmix_set_relaxable_raw_size), we have to take care of that when reading 2939 the section. */ 2940 2941 static bfd_boolean 2942 mmix_elf_get_section_contents (abfd, section, location, offset, count) 2943 bfd *abfd; 2944 sec_ptr section; 2945 void *location; 2946 file_ptr offset; 2947 bfd_size_type count; 2948 { 2949 bfd_size_type raw_size 2950 = (section->_raw_size 2951 - mmix_elf_section_data (section)->pjs.n_pushj_relocs 2952 * MAX_PUSHJ_STUB_SIZE); 2953 2954 if (offset + count > section->_raw_size) 2955 { 2956 abort(); 2957 bfd_set_error (bfd_error_invalid_operation); 2958 return FALSE; 2959 } 2960 2961 /* Check bounds against the faked raw_size. */ 2962 if (offset + count > raw_size) 2963 { 2964 /* Clear the part in the faked area. */ 2965 memset (location + raw_size - offset, 0, count - (raw_size - offset)); 2966 2967 /* If there's no initial part within the "real" contents, we're 2968 done. */ 2969 if ((bfd_size_type) offset >= raw_size) 2970 return TRUE; 2971 2972 /* Else adjust the count and fall through to call the generic 2973 function. */ 2974 count = raw_size - offset; 2975 } 2976 2977 return 2978 _bfd_generic_get_section_contents (abfd, section, location, offset, 2979 count); 2980 } 2981 2982 2983 #define ELF_ARCH bfd_arch_mmix 2984 #define ELF_MACHINE_CODE EM_MMIX 2985 2986 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2987 However, that's too much for something somewhere in the linker part of 2988 BFD; perhaps the start-address has to be a non-zero multiple of this 2989 number, or larger than this number. The symptom is that the linker 2990 complains: "warning: allocated section `.text' not in segment". We 2991 settle for 64k; the page-size used in examples is 8k. 2992 #define ELF_MAXPAGESIZE 0x10000 2993 2994 Unfortunately, this causes excessive padding in the supposedly small 2995 for-education programs that are the expected usage (where people would 2996 inspect output). We stick to 256 bytes just to have *some* default 2997 alignment. */ 2998 #define ELF_MAXPAGESIZE 0x100 2999 3000 #define TARGET_BIG_SYM bfd_elf64_mmix_vec 3001 #define TARGET_BIG_NAME "elf64-mmix" 3002 3003 #define elf_info_to_howto_rel NULL 3004 #define elf_info_to_howto mmix_info_to_howto_rela 3005 #define elf_backend_relocate_section mmix_elf_relocate_section 3006 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 3007 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 3008 3009 #define elf_backend_link_output_symbol_hook \ 3010 mmix_elf_link_output_symbol_hook 3011 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 3012 3013 #define elf_backend_check_relocs mmix_elf_check_relocs 3014 #define elf_backend_symbol_processing mmix_elf_symbol_processing 3015 3016 #define bfd_elf64_bfd_is_local_label_name \ 3017 mmix_elf_is_local_label_name 3018 3019 #define elf_backend_may_use_rel_p 0 3020 #define elf_backend_may_use_rela_p 1 3021 #define elf_backend_default_use_rela_p 1 3022 3023 #define elf_backend_can_gc_sections 1 3024 #define elf_backend_section_from_bfd_section \ 3025 mmix_elf_section_from_bfd_section 3026 3027 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 3028 #define bfd_elf64_bfd_final_link mmix_elf_final_link 3029 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 3030 #define bfd_elf64_get_section_contents mmix_elf_get_section_contents 3031 3032 #include "elf64-target.h" 3033