1 /* SPARC-specific support for 64-bit ELF 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 #include "bfd.h" 22 #include "sysdep.h" 23 #include "libbfd.h" 24 #include "elf-bfd.h" 25 #include "opcode/sparc.h" 26 27 /* This is defined if one wants to build upward compatible binaries 28 with the original sparc64-elf toolchain. The support is kept in for 29 now but is turned off by default. dje 970930 */ 30 /*#define SPARC64_OLD_RELOCS*/ 31 32 #include "elf/sparc.h" 33 34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 35 #define MINUS_ONE (~ (bfd_vma) 0) 36 37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create 38 PARAMS ((bfd *)); 39 static bfd_reloc_status_type init_insn_reloc 40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, 41 bfd *, bfd_vma *, bfd_vma *)); 42 static reloc_howto_type *sparc64_elf_reloc_type_lookup 43 PARAMS ((bfd *, bfd_reloc_code_real_type)); 44 static void sparc64_elf_info_to_howto 45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); 46 47 static void sparc64_elf_build_plt 48 PARAMS ((bfd *, unsigned char *, int)); 49 static bfd_vma sparc64_elf_plt_entry_offset 50 PARAMS ((bfd_vma)); 51 static bfd_vma sparc64_elf_plt_ptr_offset 52 PARAMS ((bfd_vma, bfd_vma)); 53 54 static bfd_boolean sparc64_elf_check_relocs 55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec, 56 const Elf_Internal_Rela *)); 57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol 58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); 59 static bfd_boolean sparc64_elf_size_dynamic_sections 60 PARAMS ((bfd *, struct bfd_link_info *)); 61 static int sparc64_elf_get_symbol_type 62 PARAMS (( Elf_Internal_Sym *, int)); 63 static bfd_boolean sparc64_elf_add_symbol_hook 64 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *, 65 const char **, flagword *, asection **, bfd_vma *)); 66 static bfd_boolean sparc64_elf_output_arch_syms 67 PARAMS ((bfd *, struct bfd_link_info *, PTR, 68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *, 69 asection *, struct elf_link_hash_entry *))); 70 static void sparc64_elf_symbol_processing 71 PARAMS ((bfd *, asymbol *)); 72 73 static bfd_boolean sparc64_elf_merge_private_bfd_data 74 PARAMS ((bfd *, bfd *)); 75 76 static bfd_boolean sparc64_elf_fake_sections 77 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *)); 78 79 static const char *sparc64_elf_print_symbol_all 80 PARAMS ((bfd *, PTR, asymbol *)); 81 static bfd_boolean sparc64_elf_new_section_hook 82 PARAMS ((bfd *, asection *)); 83 static bfd_boolean sparc64_elf_relax_section 84 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *)); 85 static bfd_boolean sparc64_elf_relocate_section 86 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 87 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); 88 static bfd_boolean sparc64_elf_finish_dynamic_symbol 89 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, 90 Elf_Internal_Sym *)); 91 static bfd_boolean sparc64_elf_finish_dynamic_sections 92 PARAMS ((bfd *, struct bfd_link_info *)); 93 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *)); 94 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *)); 95 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *)); 96 static bfd_boolean sparc64_elf_slurp_one_reloc_table 97 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean)); 98 static bfd_boolean sparc64_elf_slurp_reloc_table 99 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean)); 100 static long sparc64_elf_canonicalize_reloc 101 PARAMS ((bfd *, asection *, arelent **, asymbol **)); 102 static long sparc64_elf_canonicalize_dynamic_reloc 103 PARAMS ((bfd *, arelent **, asymbol **)); 104 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR)); 105 static enum elf_reloc_type_class sparc64_elf_reloc_type_class 106 PARAMS ((const Elf_Internal_Rela *)); 107 108 /* The relocation "howto" table. */ 109 110 static bfd_reloc_status_type sparc_elf_notsup_reloc 111 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 112 static bfd_reloc_status_type sparc_elf_wdisp16_reloc 113 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 114 static bfd_reloc_status_type sparc_elf_hix22_reloc 115 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 116 static bfd_reloc_status_type sparc_elf_lox10_reloc 117 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **)); 118 119 static reloc_howto_type sparc64_elf_howto_table[] = 120 { 121 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE), 122 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE), 123 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE), 124 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE), 125 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE), 126 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE), 127 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE), 128 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE), 129 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE), 130 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE), 131 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE), 132 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE), 133 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE), 134 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE), 135 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE), 136 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE), 137 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE), 138 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE), 139 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE), 140 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE), 141 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE), 142 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE), 143 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE), 144 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE), 145 #ifndef SPARC64_OLD_RELOCS 146 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE), 147 /* These aren't implemented yet. */ 148 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE), 149 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE), 150 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE), 151 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE), 152 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE), 153 #endif 154 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE), 155 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE), 156 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE), 157 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE), 158 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE), 159 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE), 160 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE), 161 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE), 162 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE), 163 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE), 164 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE), 165 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE), 166 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE), 167 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE), 168 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE), 169 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE), 170 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE), 171 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE), 172 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE), 173 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE), 174 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE), 175 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE), 176 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE), 177 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE), 178 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE), 179 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE), 180 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE), 181 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE), 182 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE), 183 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE), 184 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE), 185 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE), 186 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE), 187 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE), 188 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE), 189 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE), 190 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE), 191 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE), 192 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE), 193 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE), 194 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE), 195 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE), 196 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE), 197 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE), 198 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE), 199 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE), 200 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE), 201 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE), 202 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE), 203 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE) 204 }; 205 206 struct elf_reloc_map { 207 bfd_reloc_code_real_type bfd_reloc_val; 208 unsigned char elf_reloc_val; 209 }; 210 211 static const struct elf_reloc_map sparc_reloc_map[] = 212 { 213 { BFD_RELOC_NONE, R_SPARC_NONE, }, 214 { BFD_RELOC_16, R_SPARC_16, }, 215 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 }, 216 { BFD_RELOC_8, R_SPARC_8 }, 217 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 }, 218 { BFD_RELOC_CTOR, R_SPARC_64 }, 219 { BFD_RELOC_32, R_SPARC_32 }, 220 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 }, 221 { BFD_RELOC_HI22, R_SPARC_HI22 }, 222 { BFD_RELOC_LO10, R_SPARC_LO10, }, 223 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 }, 224 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 }, 225 { BFD_RELOC_SPARC22, R_SPARC_22 }, 226 { BFD_RELOC_SPARC13, R_SPARC_13 }, 227 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 }, 228 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 }, 229 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 }, 230 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 }, 231 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 }, 232 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 }, 233 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY }, 234 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT }, 235 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT }, 236 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE }, 237 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 }, 238 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 }, 239 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, 240 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 }, 241 { BFD_RELOC_SPARC_10, R_SPARC_10 }, 242 { BFD_RELOC_SPARC_11, R_SPARC_11 }, 243 { BFD_RELOC_SPARC_64, R_SPARC_64 }, 244 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 }, 245 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 }, 246 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 }, 247 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 }, 248 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 }, 249 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 }, 250 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 }, 251 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 }, 252 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 }, 253 { BFD_RELOC_SPARC_7, R_SPARC_7 }, 254 { BFD_RELOC_SPARC_5, R_SPARC_5 }, 255 { BFD_RELOC_SPARC_6, R_SPARC_6 }, 256 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 }, 257 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 }, 258 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 }, 259 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD }, 260 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL }, 261 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 }, 262 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 }, 263 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD }, 264 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL }, 265 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 }, 266 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 }, 267 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD }, 268 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 }, 269 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 }, 270 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD }, 271 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX }, 272 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD }, 273 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 }, 274 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 }, 275 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 }, 276 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 }, 277 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 }, 278 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 }, 279 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 }, 280 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 }, 281 #ifndef SPARC64_OLD_RELOCS 282 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 }, 283 #endif 284 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 }, 285 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 }, 286 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 }, 287 { BFD_RELOC_SPARC_H44, R_SPARC_H44 }, 288 { BFD_RELOC_SPARC_M44, R_SPARC_M44 }, 289 { BFD_RELOC_SPARC_L44, R_SPARC_L44 }, 290 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER } 291 }; 292 293 static reloc_howto_type * 294 sparc64_elf_reloc_type_lookup (abfd, code) 295 bfd *abfd ATTRIBUTE_UNUSED; 296 bfd_reloc_code_real_type code; 297 { 298 unsigned int i; 299 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++) 300 { 301 if (sparc_reloc_map[i].bfd_reloc_val == code) 302 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val]; 303 } 304 return 0; 305 } 306 307 static void 308 sparc64_elf_info_to_howto (abfd, cache_ptr, dst) 309 bfd *abfd ATTRIBUTE_UNUSED; 310 arelent *cache_ptr; 311 Elf_Internal_Rela *dst; 312 { 313 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std); 314 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)]; 315 } 316 317 struct sparc64_elf_section_data 318 { 319 struct bfd_elf_section_data elf; 320 unsigned int do_relax, reloc_count; 321 }; 322 323 #define sec_do_relax(sec) \ 324 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax 325 #define canon_reloc_count(sec) \ 326 ((struct sparc64_elf_section_data *) elf_section_data (sec))->reloc_count 327 328 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA 329 section can represent up to two relocs, we must tell the user to allocate 330 more space. */ 331 332 static long 333 sparc64_elf_get_reloc_upper_bound (abfd, sec) 334 bfd *abfd ATTRIBUTE_UNUSED; 335 asection *sec; 336 { 337 return (sec->reloc_count * 2 + 1) * sizeof (arelent *); 338 } 339 340 static long 341 sparc64_elf_get_dynamic_reloc_upper_bound (abfd) 342 bfd *abfd; 343 { 344 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2; 345 } 346 347 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of 348 them. We cannot use generic elf routines for this, because R_SPARC_OLO10 349 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations 350 for the same location, R_SPARC_LO10 and R_SPARC_13. */ 351 352 static bfd_boolean 353 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic) 354 bfd *abfd; 355 asection *asect; 356 Elf_Internal_Shdr *rel_hdr; 357 asymbol **symbols; 358 bfd_boolean dynamic; 359 { 360 PTR allocated = NULL; 361 bfd_byte *native_relocs; 362 arelent *relent; 363 unsigned int i; 364 int entsize; 365 bfd_size_type count; 366 arelent *relents; 367 368 allocated = (PTR) bfd_malloc (rel_hdr->sh_size); 369 if (allocated == NULL) 370 goto error_return; 371 372 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 373 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size) 374 goto error_return; 375 376 native_relocs = (bfd_byte *) allocated; 377 378 relents = asect->relocation + canon_reloc_count (asect); 379 380 entsize = rel_hdr->sh_entsize; 381 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela)); 382 383 count = rel_hdr->sh_size / entsize; 384 385 for (i = 0, relent = relents; i < count; 386 i++, relent++, native_relocs += entsize) 387 { 388 Elf_Internal_Rela rela; 389 390 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela); 391 392 /* The address of an ELF reloc is section relative for an object 393 file, and absolute for an executable file or shared library. 394 The address of a normal BFD reloc is always section relative, 395 and the address of a dynamic reloc is absolute.. */ 396 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic) 397 relent->address = rela.r_offset; 398 else 399 relent->address = rela.r_offset - asect->vma; 400 401 if (ELF64_R_SYM (rela.r_info) == 0) 402 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 403 else 404 { 405 asymbol **ps, *s; 406 407 ps = symbols + ELF64_R_SYM (rela.r_info) - 1; 408 s = *ps; 409 410 /* Canonicalize ELF section symbols. FIXME: Why? */ 411 if ((s->flags & BSF_SECTION_SYM) == 0) 412 relent->sym_ptr_ptr = ps; 413 else 414 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; 415 } 416 417 relent->addend = rela.r_addend; 418 419 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std); 420 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10) 421 { 422 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10]; 423 relent[1].address = relent->address; 424 relent++; 425 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 426 relent->addend = ELF64_R_TYPE_DATA (rela.r_info); 427 relent->howto = &sparc64_elf_howto_table[R_SPARC_13]; 428 } 429 else 430 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)]; 431 } 432 433 canon_reloc_count (asect) += relent - relents; 434 435 if (allocated != NULL) 436 free (allocated); 437 438 return TRUE; 439 440 error_return: 441 if (allocated != NULL) 442 free (allocated); 443 return FALSE; 444 } 445 446 /* Read in and swap the external relocs. */ 447 448 static bfd_boolean 449 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic) 450 bfd *abfd; 451 asection *asect; 452 asymbol **symbols; 453 bfd_boolean dynamic; 454 { 455 struct bfd_elf_section_data * const d = elf_section_data (asect); 456 Elf_Internal_Shdr *rel_hdr; 457 Elf_Internal_Shdr *rel_hdr2; 458 bfd_size_type amt; 459 460 if (asect->relocation != NULL) 461 return TRUE; 462 463 if (! dynamic) 464 { 465 if ((asect->flags & SEC_RELOC) == 0 466 || asect->reloc_count == 0) 467 return TRUE; 468 469 rel_hdr = &d->rel_hdr; 470 rel_hdr2 = d->rel_hdr2; 471 472 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset 473 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset)); 474 } 475 else 476 { 477 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this 478 case because relocations against this section may use the 479 dynamic symbol table, and in that case bfd_section_from_shdr 480 in elf.c does not update the RELOC_COUNT. */ 481 if (asect->_raw_size == 0) 482 return TRUE; 483 484 rel_hdr = &d->this_hdr; 485 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr); 486 rel_hdr2 = NULL; 487 } 488 489 amt = asect->reloc_count; 490 amt *= 2 * sizeof (arelent); 491 asect->relocation = (arelent *) bfd_alloc (abfd, amt); 492 if (asect->relocation == NULL) 493 return FALSE; 494 495 /* The sparc64_elf_slurp_one_reloc_table routine increments 496 canon_reloc_count. */ 497 canon_reloc_count (asect) = 0; 498 499 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, 500 dynamic)) 501 return FALSE; 502 503 if (rel_hdr2 504 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols, 505 dynamic)) 506 return FALSE; 507 508 return TRUE; 509 } 510 511 /* Canonicalize the relocs. */ 512 513 static long 514 sparc64_elf_canonicalize_reloc (abfd, section, relptr, symbols) 515 bfd *abfd; 516 sec_ptr section; 517 arelent **relptr; 518 asymbol **symbols; 519 { 520 arelent *tblptr; 521 unsigned int i; 522 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 523 524 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 525 return -1; 526 527 tblptr = section->relocation; 528 for (i = 0; i < canon_reloc_count (section); i++) 529 *relptr++ = tblptr++; 530 531 *relptr = NULL; 532 533 return canon_reloc_count (section); 534 } 535 536 537 /* Canonicalize the dynamic relocation entries. Note that we return 538 the dynamic relocations as a single block, although they are 539 actually associated with particular sections; the interface, which 540 was designed for SunOS style shared libraries, expects that there 541 is only one set of dynamic relocs. Any section that was actually 542 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses 543 the dynamic symbol table, is considered to be a dynamic reloc 544 section. */ 545 546 static long 547 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms) 548 bfd *abfd; 549 arelent **storage; 550 asymbol **syms; 551 { 552 asection *s; 553 long ret; 554 555 if (elf_dynsymtab (abfd) == 0) 556 { 557 bfd_set_error (bfd_error_invalid_operation); 558 return -1; 559 } 560 561 ret = 0; 562 for (s = abfd->sections; s != NULL; s = s->next) 563 { 564 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 565 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 566 { 567 arelent *p; 568 long count, i; 569 570 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE)) 571 return -1; 572 count = canon_reloc_count (s); 573 p = s->relocation; 574 for (i = 0; i < count; i++) 575 *storage++ = p++; 576 ret += count; 577 } 578 } 579 580 *storage = NULL; 581 582 return ret; 583 } 584 585 /* Write out the relocs. */ 586 587 static void 588 sparc64_elf_write_relocs (abfd, sec, data) 589 bfd *abfd; 590 asection *sec; 591 PTR data; 592 { 593 bfd_boolean *failedp = (bfd_boolean *) data; 594 Elf_Internal_Shdr *rela_hdr; 595 Elf64_External_Rela *outbound_relocas, *src_rela; 596 unsigned int idx, count; 597 asymbol *last_sym = 0; 598 int last_sym_idx = 0; 599 600 /* If we have already failed, don't do anything. */ 601 if (*failedp) 602 return; 603 604 if ((sec->flags & SEC_RELOC) == 0) 605 return; 606 607 /* The linker backend writes the relocs out itself, and sets the 608 reloc_count field to zero to inhibit writing them here. Also, 609 sometimes the SEC_RELOC flag gets set even when there aren't any 610 relocs. */ 611 if (sec->reloc_count == 0) 612 return; 613 614 /* We can combine two relocs that refer to the same address 615 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the 616 latter is R_SPARC_13 with no associated symbol. */ 617 count = 0; 618 for (idx = 0; idx < sec->reloc_count; idx++) 619 { 620 bfd_vma addr; 621 622 ++count; 623 624 addr = sec->orelocation[idx]->address; 625 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10 626 && idx < sec->reloc_count - 1) 627 { 628 arelent *r = sec->orelocation[idx + 1]; 629 630 if (r->howto->type == R_SPARC_13 631 && r->address == addr 632 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 633 && (*r->sym_ptr_ptr)->value == 0) 634 ++idx; 635 } 636 } 637 638 rela_hdr = &elf_section_data (sec)->rel_hdr; 639 640 rela_hdr->sh_size = rela_hdr->sh_entsize * count; 641 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size); 642 if (rela_hdr->contents == NULL) 643 { 644 *failedp = TRUE; 645 return; 646 } 647 648 /* Figure out whether the relocations are RELA or REL relocations. */ 649 if (rela_hdr->sh_type != SHT_RELA) 650 abort (); 651 652 /* orelocation has the data, reloc_count has the count... */ 653 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents; 654 src_rela = outbound_relocas; 655 656 for (idx = 0; idx < sec->reloc_count; idx++) 657 { 658 Elf_Internal_Rela dst_rela; 659 arelent *ptr; 660 asymbol *sym; 661 int n; 662 663 ptr = sec->orelocation[idx]; 664 665 /* The address of an ELF reloc is section relative for an object 666 file, and absolute for an executable file or shared library. 667 The address of a BFD reloc is always section relative. */ 668 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 669 dst_rela.r_offset = ptr->address; 670 else 671 dst_rela.r_offset = ptr->address + sec->vma; 672 673 sym = *ptr->sym_ptr_ptr; 674 if (sym == last_sym) 675 n = last_sym_idx; 676 else if (bfd_is_abs_section (sym->section) && sym->value == 0) 677 n = STN_UNDEF; 678 else 679 { 680 last_sym = sym; 681 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); 682 if (n < 0) 683 { 684 *failedp = TRUE; 685 return; 686 } 687 last_sym_idx = n; 688 } 689 690 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL 691 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec 692 && ! _bfd_elf_validate_reloc (abfd, ptr)) 693 { 694 *failedp = TRUE; 695 return; 696 } 697 698 if (ptr->howto->type == R_SPARC_LO10 699 && idx < sec->reloc_count - 1) 700 { 701 arelent *r = sec->orelocation[idx + 1]; 702 703 if (r->howto->type == R_SPARC_13 704 && r->address == ptr->address 705 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 706 && (*r->sym_ptr_ptr)->value == 0) 707 { 708 idx++; 709 dst_rela.r_info 710 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend, 711 R_SPARC_OLO10)); 712 } 713 else 714 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10); 715 } 716 else 717 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type); 718 719 dst_rela.r_addend = ptr->addend; 720 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela); 721 ++src_rela; 722 } 723 } 724 725 /* Sparc64 ELF linker hash table. */ 726 727 struct sparc64_elf_app_reg 728 { 729 unsigned char bind; 730 unsigned short shndx; 731 bfd *abfd; 732 char *name; 733 }; 734 735 struct sparc64_elf_link_hash_table 736 { 737 struct elf_link_hash_table root; 738 739 struct sparc64_elf_app_reg app_regs [4]; 740 }; 741 742 /* Get the Sparc64 ELF linker hash table from a link_info structure. */ 743 744 #define sparc64_elf_hash_table(p) \ 745 ((struct sparc64_elf_link_hash_table *) ((p)->hash)) 746 747 /* Create a Sparc64 ELF linker hash table. */ 748 749 static struct bfd_link_hash_table * 750 sparc64_elf_bfd_link_hash_table_create (abfd) 751 bfd *abfd; 752 { 753 struct sparc64_elf_link_hash_table *ret; 754 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table); 755 756 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt); 757 if (ret == (struct sparc64_elf_link_hash_table *) NULL) 758 return NULL; 759 760 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, 761 _bfd_elf_link_hash_newfunc)) 762 { 763 free (ret); 764 return NULL; 765 } 766 767 return &ret->root.root; 768 } 769 770 /* Utility for performing the standard initial work of an instruction 771 relocation. 772 *PRELOCATION will contain the relocated item. 773 *PINSN will contain the instruction from the input stream. 774 If the result is `bfd_reloc_other' the caller can continue with 775 performing the relocation. Otherwise it must stop and return the 776 value to its caller. */ 777 778 static bfd_reloc_status_type 779 init_insn_reloc (abfd, 780 reloc_entry, 781 symbol, 782 data, 783 input_section, 784 output_bfd, 785 prelocation, 786 pinsn) 787 bfd *abfd; 788 arelent *reloc_entry; 789 asymbol *symbol; 790 PTR data; 791 asection *input_section; 792 bfd *output_bfd; 793 bfd_vma *prelocation; 794 bfd_vma *pinsn; 795 { 796 bfd_vma relocation; 797 reloc_howto_type *howto = reloc_entry->howto; 798 799 if (output_bfd != (bfd *) NULL 800 && (symbol->flags & BSF_SECTION_SYM) == 0 801 && (! howto->partial_inplace 802 || reloc_entry->addend == 0)) 803 { 804 reloc_entry->address += input_section->output_offset; 805 return bfd_reloc_ok; 806 } 807 808 /* This works because partial_inplace is FALSE. */ 809 if (output_bfd != NULL) 810 return bfd_reloc_continue; 811 812 if (reloc_entry->address > input_section->_cooked_size) 813 return bfd_reloc_outofrange; 814 815 relocation = (symbol->value 816 + symbol->section->output_section->vma 817 + symbol->section->output_offset); 818 relocation += reloc_entry->addend; 819 if (howto->pc_relative) 820 { 821 relocation -= (input_section->output_section->vma 822 + input_section->output_offset); 823 relocation -= reloc_entry->address; 824 } 825 826 *prelocation = relocation; 827 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); 828 return bfd_reloc_other; 829 } 830 831 /* For unsupported relocs. */ 832 833 static bfd_reloc_status_type 834 sparc_elf_notsup_reloc (abfd, 835 reloc_entry, 836 symbol, 837 data, 838 input_section, 839 output_bfd, 840 error_message) 841 bfd *abfd ATTRIBUTE_UNUSED; 842 arelent *reloc_entry ATTRIBUTE_UNUSED; 843 asymbol *symbol ATTRIBUTE_UNUSED; 844 PTR data ATTRIBUTE_UNUSED; 845 asection *input_section ATTRIBUTE_UNUSED; 846 bfd *output_bfd ATTRIBUTE_UNUSED; 847 char **error_message ATTRIBUTE_UNUSED; 848 { 849 return bfd_reloc_notsupported; 850 } 851 852 /* Handle the WDISP16 reloc. */ 853 854 static bfd_reloc_status_type 855 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section, 856 output_bfd, error_message) 857 bfd *abfd; 858 arelent *reloc_entry; 859 asymbol *symbol; 860 PTR data; 861 asection *input_section; 862 bfd *output_bfd; 863 char **error_message ATTRIBUTE_UNUSED; 864 { 865 bfd_vma relocation; 866 bfd_vma insn; 867 bfd_reloc_status_type status; 868 869 status = init_insn_reloc (abfd, reloc_entry, symbol, data, 870 input_section, output_bfd, &relocation, &insn); 871 if (status != bfd_reloc_other) 872 return status; 873 874 insn &= ~ (bfd_vma) 0x303fff; 875 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff); 876 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); 877 878 if ((bfd_signed_vma) relocation < - 0x40000 879 || (bfd_signed_vma) relocation > 0x3ffff) 880 return bfd_reloc_overflow; 881 else 882 return bfd_reloc_ok; 883 } 884 885 /* Handle the HIX22 reloc. */ 886 887 static bfd_reloc_status_type 888 sparc_elf_hix22_reloc (abfd, 889 reloc_entry, 890 symbol, 891 data, 892 input_section, 893 output_bfd, 894 error_message) 895 bfd *abfd; 896 arelent *reloc_entry; 897 asymbol *symbol; 898 PTR data; 899 asection *input_section; 900 bfd *output_bfd; 901 char **error_message ATTRIBUTE_UNUSED; 902 { 903 bfd_vma relocation; 904 bfd_vma insn; 905 bfd_reloc_status_type status; 906 907 status = init_insn_reloc (abfd, reloc_entry, symbol, data, 908 input_section, output_bfd, &relocation, &insn); 909 if (status != bfd_reloc_other) 910 return status; 911 912 relocation ^= MINUS_ONE; 913 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff); 914 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); 915 916 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0) 917 return bfd_reloc_overflow; 918 else 919 return bfd_reloc_ok; 920 } 921 922 /* Handle the LOX10 reloc. */ 923 924 static bfd_reloc_status_type 925 sparc_elf_lox10_reloc (abfd, 926 reloc_entry, 927 symbol, 928 data, 929 input_section, 930 output_bfd, 931 error_message) 932 bfd *abfd; 933 arelent *reloc_entry; 934 asymbol *symbol; 935 PTR data; 936 asection *input_section; 937 bfd *output_bfd; 938 char **error_message ATTRIBUTE_UNUSED; 939 { 940 bfd_vma relocation; 941 bfd_vma insn; 942 bfd_reloc_status_type status; 943 944 status = init_insn_reloc (abfd, reloc_entry, symbol, data, 945 input_section, output_bfd, &relocation, &insn); 946 if (status != bfd_reloc_other) 947 return status; 948 949 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff); 950 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address); 951 952 return bfd_reloc_ok; 953 } 954 955 /* PLT/GOT stuff */ 956 957 /* Both the headers and the entries are icache aligned. */ 958 #define PLT_ENTRY_SIZE 32 959 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE) 960 #define LARGE_PLT_THRESHOLD 32768 961 #define GOT_RESERVED_ENTRIES 1 962 963 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1" 964 965 /* Fill in the .plt section. */ 966 967 static void 968 sparc64_elf_build_plt (output_bfd, contents, nentries) 969 bfd *output_bfd; 970 unsigned char *contents; 971 int nentries; 972 { 973 const unsigned int nop = 0x01000000; 974 int i, j; 975 976 /* The first four entries are reserved, and are initially undefined. 977 We fill them with `illtrap 0' to force ld.so to do something. */ 978 979 for (i = 0; i < PLT_HEADER_SIZE/4; ++i) 980 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4); 981 982 /* The first 32768 entries are close enough to plt1 to get there via 983 a straight branch. */ 984 985 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i) 986 { 987 unsigned char *entry = contents + i * PLT_ENTRY_SIZE; 988 unsigned int sethi, ba; 989 990 /* sethi (. - plt0), %g1 */ 991 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE); 992 993 /* ba,a,pt %xcc, plt1 */ 994 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff); 995 996 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry); 997 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4); 998 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8); 999 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12); 1000 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16); 1001 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20); 1002 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24); 1003 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28); 1004 } 1005 1006 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of 1007 160: 160 entries and 160 pointers. This is to separate code from data, 1008 which is much friendlier on the cache. */ 1009 1010 for (; i < nentries; i += 160) 1011 { 1012 int block = (i + 160 <= nentries ? 160 : nentries - i); 1013 for (j = 0; j < block; ++j) 1014 { 1015 unsigned char *entry, *ptr; 1016 unsigned int ldx; 1017 1018 entry = contents + i*PLT_ENTRY_SIZE + j*4*6; 1019 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8; 1020 1021 /* ldx [%o7 + ptr - (entry+4)], %g1 */ 1022 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff); 1023 1024 /* mov %o7,%g5 1025 call .+8 1026 nop 1027 ldx [%o7+P],%g1 1028 jmpl %o7+%g1,%g1 1029 mov %g5,%o7 */ 1030 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry); 1031 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4); 1032 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8); 1033 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12); 1034 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16); 1035 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20); 1036 1037 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr); 1038 } 1039 } 1040 } 1041 1042 /* Return the offset of a particular plt entry within the .plt section. */ 1043 1044 static bfd_vma 1045 sparc64_elf_plt_entry_offset (index) 1046 bfd_vma index; 1047 { 1048 bfd_vma block, ofs; 1049 1050 if (index < LARGE_PLT_THRESHOLD) 1051 return index * PLT_ENTRY_SIZE; 1052 1053 /* See above for details. */ 1054 1055 block = (index - LARGE_PLT_THRESHOLD) / 160; 1056 ofs = (index - LARGE_PLT_THRESHOLD) % 160; 1057 1058 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4; 1059 } 1060 1061 static bfd_vma 1062 sparc64_elf_plt_ptr_offset (index, max) 1063 bfd_vma index; 1064 bfd_vma max; 1065 { 1066 bfd_vma block, ofs, last; 1067 1068 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD); 1069 1070 /* See above for details. */ 1071 1072 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD; 1073 ofs = index - block; 1074 if (block + 160 > max) 1075 last = (max - LARGE_PLT_THRESHOLD) % 160; 1076 else 1077 last = 160; 1078 1079 return (block * PLT_ENTRY_SIZE 1080 + last * 6*4 1081 + ofs * 8); 1082 } 1083 1084 /* Look through the relocs for a section during the first phase, and 1085 allocate space in the global offset table or procedure linkage 1086 table. */ 1087 1088 static bfd_boolean 1089 sparc64_elf_check_relocs (abfd, info, sec, relocs) 1090 bfd *abfd; 1091 struct bfd_link_info *info; 1092 asection *sec; 1093 const Elf_Internal_Rela *relocs; 1094 { 1095 bfd *dynobj; 1096 Elf_Internal_Shdr *symtab_hdr; 1097 struct elf_link_hash_entry **sym_hashes; 1098 bfd_vma *local_got_offsets; 1099 const Elf_Internal_Rela *rel; 1100 const Elf_Internal_Rela *rel_end; 1101 asection *sgot; 1102 asection *srelgot; 1103 asection *sreloc; 1104 1105 if (info->relocatable || !(sec->flags & SEC_ALLOC)) 1106 return TRUE; 1107 1108 dynobj = elf_hash_table (info)->dynobj; 1109 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1110 sym_hashes = elf_sym_hashes (abfd); 1111 local_got_offsets = elf_local_got_offsets (abfd); 1112 1113 sgot = NULL; 1114 srelgot = NULL; 1115 sreloc = NULL; 1116 1117 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr); 1118 for (rel = relocs; rel < rel_end; rel++) 1119 { 1120 unsigned long r_symndx; 1121 struct elf_link_hash_entry *h; 1122 1123 r_symndx = ELF64_R_SYM (rel->r_info); 1124 if (r_symndx < symtab_hdr->sh_info) 1125 h = NULL; 1126 else 1127 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1128 1129 switch (ELF64_R_TYPE_ID (rel->r_info)) 1130 { 1131 case R_SPARC_GOT10: 1132 case R_SPARC_GOT13: 1133 case R_SPARC_GOT22: 1134 /* This symbol requires a global offset table entry. */ 1135 1136 if (dynobj == NULL) 1137 { 1138 /* Create the .got section. */ 1139 elf_hash_table (info)->dynobj = dynobj = abfd; 1140 if (! _bfd_elf_create_got_section (dynobj, info)) 1141 return FALSE; 1142 } 1143 1144 if (sgot == NULL) 1145 { 1146 sgot = bfd_get_section_by_name (dynobj, ".got"); 1147 BFD_ASSERT (sgot != NULL); 1148 } 1149 1150 if (srelgot == NULL && (h != NULL || info->shared)) 1151 { 1152 srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); 1153 if (srelgot == NULL) 1154 { 1155 srelgot = bfd_make_section (dynobj, ".rela.got"); 1156 if (srelgot == NULL 1157 || ! bfd_set_section_flags (dynobj, srelgot, 1158 (SEC_ALLOC 1159 | SEC_LOAD 1160 | SEC_HAS_CONTENTS 1161 | SEC_IN_MEMORY 1162 | SEC_LINKER_CREATED 1163 | SEC_READONLY)) 1164 || ! bfd_set_section_alignment (dynobj, srelgot, 3)) 1165 return FALSE; 1166 } 1167 } 1168 1169 if (h != NULL) 1170 { 1171 if (h->got.offset != (bfd_vma) -1) 1172 { 1173 /* We have already allocated space in the .got. */ 1174 break; 1175 } 1176 h->got.offset = sgot->_raw_size; 1177 1178 /* Make sure this symbol is output as a dynamic symbol. */ 1179 if (h->dynindx == -1) 1180 { 1181 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1182 return FALSE; 1183 } 1184 1185 srelgot->_raw_size += sizeof (Elf64_External_Rela); 1186 } 1187 else 1188 { 1189 /* This is a global offset table entry for a local 1190 symbol. */ 1191 if (local_got_offsets == NULL) 1192 { 1193 bfd_size_type size; 1194 register unsigned int i; 1195 1196 size = symtab_hdr->sh_info; 1197 size *= sizeof (bfd_vma); 1198 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size); 1199 if (local_got_offsets == NULL) 1200 return FALSE; 1201 elf_local_got_offsets (abfd) = local_got_offsets; 1202 for (i = 0; i < symtab_hdr->sh_info; i++) 1203 local_got_offsets[i] = (bfd_vma) -1; 1204 } 1205 if (local_got_offsets[r_symndx] != (bfd_vma) -1) 1206 { 1207 /* We have already allocated space in the .got. */ 1208 break; 1209 } 1210 local_got_offsets[r_symndx] = sgot->_raw_size; 1211 1212 if (info->shared) 1213 { 1214 /* If we are generating a shared object, we need to 1215 output a R_SPARC_RELATIVE reloc so that the 1216 dynamic linker can adjust this GOT entry. */ 1217 srelgot->_raw_size += sizeof (Elf64_External_Rela); 1218 } 1219 } 1220 1221 sgot->_raw_size += 8; 1222 1223 #if 0 1224 /* Doesn't work for 64-bit -fPIC, since sethi/or builds 1225 unsigned numbers. If we permit ourselves to modify 1226 code so we get sethi/xor, this could work. 1227 Question: do we consider conditionally re-enabling 1228 this for -fpic, once we know about object code models? */ 1229 /* If the .got section is more than 0x1000 bytes, we add 1230 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13 1231 bit relocations have a greater chance of working. */ 1232 if (sgot->_raw_size >= 0x1000 1233 && elf_hash_table (info)->hgot->root.u.def.value == 0) 1234 elf_hash_table (info)->hgot->root.u.def.value = 0x1000; 1235 #endif 1236 1237 break; 1238 1239 case R_SPARC_WPLT30: 1240 case R_SPARC_PLT32: 1241 case R_SPARC_HIPLT22: 1242 case R_SPARC_LOPLT10: 1243 case R_SPARC_PCPLT32: 1244 case R_SPARC_PCPLT22: 1245 case R_SPARC_PCPLT10: 1246 case R_SPARC_PLT64: 1247 /* This symbol requires a procedure linkage table entry. We 1248 actually build the entry in adjust_dynamic_symbol, 1249 because this might be a case of linking PIC code without 1250 linking in any dynamic objects, in which case we don't 1251 need to generate a procedure linkage table after all. */ 1252 1253 if (h == NULL) 1254 { 1255 /* It does not make sense to have a procedure linkage 1256 table entry for a local symbol. */ 1257 bfd_set_error (bfd_error_bad_value); 1258 return FALSE; 1259 } 1260 1261 /* Make sure this symbol is output as a dynamic symbol. */ 1262 if (h->dynindx == -1) 1263 { 1264 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1265 return FALSE; 1266 } 1267 1268 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; 1269 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32 1270 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64) 1271 break; 1272 /* Fall through. */ 1273 case R_SPARC_PC10: 1274 case R_SPARC_PC22: 1275 case R_SPARC_PC_HH22: 1276 case R_SPARC_PC_HM10: 1277 case R_SPARC_PC_LM22: 1278 if (h != NULL 1279 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 1280 break; 1281 /* Fall through. */ 1282 case R_SPARC_DISP8: 1283 case R_SPARC_DISP16: 1284 case R_SPARC_DISP32: 1285 case R_SPARC_DISP64: 1286 case R_SPARC_WDISP30: 1287 case R_SPARC_WDISP22: 1288 case R_SPARC_WDISP19: 1289 case R_SPARC_WDISP16: 1290 if (h == NULL) 1291 break; 1292 /* Fall through. */ 1293 case R_SPARC_8: 1294 case R_SPARC_16: 1295 case R_SPARC_32: 1296 case R_SPARC_HI22: 1297 case R_SPARC_22: 1298 case R_SPARC_13: 1299 case R_SPARC_LO10: 1300 case R_SPARC_UA32: 1301 case R_SPARC_10: 1302 case R_SPARC_11: 1303 case R_SPARC_64: 1304 case R_SPARC_OLO10: 1305 case R_SPARC_HH22: 1306 case R_SPARC_HM10: 1307 case R_SPARC_LM22: 1308 case R_SPARC_7: 1309 case R_SPARC_5: 1310 case R_SPARC_6: 1311 case R_SPARC_HIX22: 1312 case R_SPARC_LOX10: 1313 case R_SPARC_H44: 1314 case R_SPARC_M44: 1315 case R_SPARC_L44: 1316 case R_SPARC_UA64: 1317 case R_SPARC_UA16: 1318 /* When creating a shared object, we must copy these relocs 1319 into the output file. We create a reloc section in 1320 dynobj and make room for the reloc. 1321 1322 But don't do this for debugging sections -- this shows up 1323 with DWARF2 -- first because they are not loaded, and 1324 second because DWARF sez the debug info is not to be 1325 biased by the load address. */ 1326 if (info->shared && (sec->flags & SEC_ALLOC)) 1327 { 1328 if (sreloc == NULL) 1329 { 1330 const char *name; 1331 1332 name = (bfd_elf_string_from_elf_section 1333 (abfd, 1334 elf_elfheader (abfd)->e_shstrndx, 1335 elf_section_data (sec)->rel_hdr.sh_name)); 1336 if (name == NULL) 1337 return FALSE; 1338 1339 BFD_ASSERT (strncmp (name, ".rela", 5) == 0 1340 && strcmp (bfd_get_section_name (abfd, sec), 1341 name + 5) == 0); 1342 1343 sreloc = bfd_get_section_by_name (dynobj, name); 1344 if (sreloc == NULL) 1345 { 1346 flagword flags; 1347 1348 sreloc = bfd_make_section (dynobj, name); 1349 flags = (SEC_HAS_CONTENTS | SEC_READONLY 1350 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 1351 if ((sec->flags & SEC_ALLOC) != 0) 1352 flags |= SEC_ALLOC | SEC_LOAD; 1353 if (sreloc == NULL 1354 || ! bfd_set_section_flags (dynobj, sreloc, flags) 1355 || ! bfd_set_section_alignment (dynobj, sreloc, 3)) 1356 return FALSE; 1357 } 1358 if (sec->flags & SEC_READONLY) 1359 info->flags |= DF_TEXTREL; 1360 } 1361 1362 sreloc->_raw_size += sizeof (Elf64_External_Rela); 1363 } 1364 break; 1365 1366 case R_SPARC_REGISTER: 1367 /* Nothing to do. */ 1368 break; 1369 1370 default: 1371 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"), 1372 bfd_archive_filename (abfd), 1373 ELF64_R_TYPE_ID (rel->r_info)); 1374 return FALSE; 1375 } 1376 } 1377 1378 return TRUE; 1379 } 1380 1381 /* Hook called by the linker routine which adds symbols from an object 1382 file. We use it for STT_REGISTER symbols. */ 1383 1384 static bfd_boolean 1385 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) 1386 bfd *abfd; 1387 struct bfd_link_info *info; 1388 Elf_Internal_Sym *sym; 1389 const char **namep; 1390 flagword *flagsp ATTRIBUTE_UNUSED; 1391 asection **secp ATTRIBUTE_UNUSED; 1392 bfd_vma *valp ATTRIBUTE_UNUSED; 1393 { 1394 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" }; 1395 1396 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER) 1397 { 1398 int reg; 1399 struct sparc64_elf_app_reg *p; 1400 1401 reg = (int)sym->st_value; 1402 switch (reg & ~1) 1403 { 1404 case 2: reg -= 2; break; 1405 case 6: reg -= 4; break; 1406 default: 1407 (*_bfd_error_handler) 1408 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"), 1409 bfd_archive_filename (abfd)); 1410 return FALSE; 1411 } 1412 1413 if (info->hash->creator != abfd->xvec 1414 || (abfd->flags & DYNAMIC) != 0) 1415 { 1416 /* STT_REGISTER only works when linking an elf64_sparc object. 1417 If STT_REGISTER comes from a dynamic object, don't put it into 1418 the output bfd. The dynamic linker will recheck it. */ 1419 *namep = NULL; 1420 return TRUE; 1421 } 1422 1423 p = sparc64_elf_hash_table(info)->app_regs + reg; 1424 1425 if (p->name != NULL && strcmp (p->name, *namep)) 1426 { 1427 (*_bfd_error_handler) 1428 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"), 1429 (int) sym->st_value, 1430 **namep ? *namep : "#scratch", bfd_archive_filename (abfd), 1431 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd)); 1432 return FALSE; 1433 } 1434 1435 if (p->name == NULL) 1436 { 1437 if (**namep) 1438 { 1439 struct elf_link_hash_entry *h; 1440 1441 h = (struct elf_link_hash_entry *) 1442 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE); 1443 1444 if (h != NULL) 1445 { 1446 unsigned char type = h->type; 1447 1448 if (type > STT_FUNC) 1449 type = 0; 1450 (*_bfd_error_handler) 1451 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"), 1452 *namep, bfd_archive_filename (abfd), 1453 stt_types[type], bfd_archive_filename (p->abfd)); 1454 return FALSE; 1455 } 1456 1457 p->name = bfd_hash_allocate (&info->hash->table, 1458 strlen (*namep) + 1); 1459 if (!p->name) 1460 return FALSE; 1461 1462 strcpy (p->name, *namep); 1463 } 1464 else 1465 p->name = ""; 1466 p->bind = ELF_ST_BIND (sym->st_info); 1467 p->abfd = abfd; 1468 p->shndx = sym->st_shndx; 1469 } 1470 else 1471 { 1472 if (p->bind == STB_WEAK 1473 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL) 1474 { 1475 p->bind = STB_GLOBAL; 1476 p->abfd = abfd; 1477 } 1478 } 1479 *namep = NULL; 1480 return TRUE; 1481 } 1482 else if (*namep && **namep 1483 && info->hash->creator == abfd->xvec) 1484 { 1485 int i; 1486 struct sparc64_elf_app_reg *p; 1487 1488 p = sparc64_elf_hash_table(info)->app_regs; 1489 for (i = 0; i < 4; i++, p++) 1490 if (p->name != NULL && ! strcmp (p->name, *namep)) 1491 { 1492 unsigned char type = ELF_ST_TYPE (sym->st_info); 1493 1494 if (type > STT_FUNC) 1495 type = 0; 1496 (*_bfd_error_handler) 1497 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"), 1498 *namep, stt_types[type], bfd_archive_filename (abfd), 1499 bfd_archive_filename (p->abfd)); 1500 return FALSE; 1501 } 1502 } 1503 return TRUE; 1504 } 1505 1506 /* This function takes care of emitting STT_REGISTER symbols 1507 which we cannot easily keep in the symbol hash table. */ 1508 1509 static bfd_boolean 1510 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func) 1511 bfd *output_bfd ATTRIBUTE_UNUSED; 1512 struct bfd_link_info *info; 1513 PTR finfo; 1514 bfd_boolean (*func) 1515 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *, 1516 struct elf_link_hash_entry *)); 1517 { 1518 int reg; 1519 struct sparc64_elf_app_reg *app_regs = 1520 sparc64_elf_hash_table(info)->app_regs; 1521 Elf_Internal_Sym sym; 1522 1523 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries 1524 at the end of the dynlocal list, so they came at the end of the local 1525 symbols in the symtab. Except that they aren't STB_LOCAL, so we need 1526 to back up symtab->sh_info. */ 1527 if (elf_hash_table (info)->dynlocal) 1528 { 1529 bfd * dynobj = elf_hash_table (info)->dynobj; 1530 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym"); 1531 struct elf_link_local_dynamic_entry *e; 1532 1533 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 1534 if (e->input_indx == -1) 1535 break; 1536 if (e) 1537 { 1538 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info 1539 = e->dynindx; 1540 } 1541 } 1542 1543 if (info->strip == strip_all) 1544 return TRUE; 1545 1546 for (reg = 0; reg < 4; reg++) 1547 if (app_regs [reg].name != NULL) 1548 { 1549 if (info->strip == strip_some 1550 && bfd_hash_lookup (info->keep_hash, 1551 app_regs [reg].name, 1552 FALSE, FALSE) == NULL) 1553 continue; 1554 1555 sym.st_value = reg < 2 ? reg + 2 : reg + 4; 1556 sym.st_size = 0; 1557 sym.st_other = 0; 1558 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); 1559 sym.st_shndx = app_regs [reg].shndx; 1560 if (! (*func) (finfo, app_regs [reg].name, &sym, 1561 sym.st_shndx == SHN_ABS 1562 ? bfd_abs_section_ptr : bfd_und_section_ptr, 1563 NULL)) 1564 return FALSE; 1565 } 1566 1567 return TRUE; 1568 } 1569 1570 static int 1571 sparc64_elf_get_symbol_type (elf_sym, type) 1572 Elf_Internal_Sym * elf_sym; 1573 int type; 1574 { 1575 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER) 1576 return STT_REGISTER; 1577 else 1578 return type; 1579 } 1580 1581 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL 1582 even in SHN_UNDEF section. */ 1583 1584 static void 1585 sparc64_elf_symbol_processing (abfd, asym) 1586 bfd *abfd ATTRIBUTE_UNUSED; 1587 asymbol *asym; 1588 { 1589 elf_symbol_type *elfsym; 1590 1591 elfsym = (elf_symbol_type *) asym; 1592 if (elfsym->internal_elf_sym.st_info 1593 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER)) 1594 { 1595 asym->flags |= BSF_GLOBAL; 1596 } 1597 } 1598 1599 /* Adjust a symbol defined by a dynamic object and referenced by a 1600 regular object. The current definition is in some section of the 1601 dynamic object, but we're not including those sections. We have to 1602 change the definition to something the rest of the link can 1603 understand. */ 1604 1605 static bfd_boolean 1606 sparc64_elf_adjust_dynamic_symbol (info, h) 1607 struct bfd_link_info *info; 1608 struct elf_link_hash_entry *h; 1609 { 1610 bfd *dynobj; 1611 asection *s; 1612 unsigned int power_of_two; 1613 1614 dynobj = elf_hash_table (info)->dynobj; 1615 1616 /* Make sure we know what is going on here. */ 1617 BFD_ASSERT (dynobj != NULL 1618 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) 1619 || h->weakdef != NULL 1620 || ((h->elf_link_hash_flags 1621 & ELF_LINK_HASH_DEF_DYNAMIC) != 0 1622 && (h->elf_link_hash_flags 1623 & ELF_LINK_HASH_REF_REGULAR) != 0 1624 && (h->elf_link_hash_flags 1625 & ELF_LINK_HASH_DEF_REGULAR) == 0))); 1626 1627 /* If this is a function, put it in the procedure linkage table. We 1628 will fill in the contents of the procedure linkage table later 1629 (although we could actually do it here). The STT_NOTYPE 1630 condition is a hack specifically for the Oracle libraries 1631 delivered for Solaris; for some inexplicable reason, they define 1632 some of their functions as STT_NOTYPE when they really should be 1633 STT_FUNC. */ 1634 if (h->type == STT_FUNC 1635 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0 1636 || (h->type == STT_NOTYPE 1637 && (h->root.type == bfd_link_hash_defined 1638 || h->root.type == bfd_link_hash_defweak) 1639 && (h->root.u.def.section->flags & SEC_CODE) != 0)) 1640 { 1641 if (! elf_hash_table (info)->dynamic_sections_created) 1642 { 1643 /* This case can occur if we saw a WPLT30 reloc in an input 1644 file, but none of the input files were dynamic objects. 1645 In such a case, we don't actually need to build a 1646 procedure linkage table, and we can just do a WDISP30 1647 reloc instead. */ 1648 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0); 1649 return TRUE; 1650 } 1651 1652 s = bfd_get_section_by_name (dynobj, ".plt"); 1653 BFD_ASSERT (s != NULL); 1654 1655 /* The first four bit in .plt is reserved. */ 1656 if (s->_raw_size == 0) 1657 s->_raw_size = PLT_HEADER_SIZE; 1658 1659 /* To simplify matters later, just store the plt index here. */ 1660 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE; 1661 1662 /* If this symbol is not defined in a regular file, and we are 1663 not generating a shared library, then set the symbol to this 1664 location in the .plt. This is required to make function 1665 pointers compare as equal between the normal executable and 1666 the shared library. */ 1667 if (! info->shared 1668 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 1669 { 1670 h->root.u.def.section = s; 1671 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset); 1672 } 1673 1674 /* Make room for this entry. */ 1675 s->_raw_size += PLT_ENTRY_SIZE; 1676 1677 /* We also need to make an entry in the .rela.plt section. */ 1678 1679 s = bfd_get_section_by_name (dynobj, ".rela.plt"); 1680 BFD_ASSERT (s != NULL); 1681 1682 s->_raw_size += sizeof (Elf64_External_Rela); 1683 1684 /* The procedure linkage table size is bounded by the magnitude 1685 of the offset we can describe in the entry. */ 1686 if (s->_raw_size >= (bfd_vma)1 << 32) 1687 { 1688 bfd_set_error (bfd_error_bad_value); 1689 return FALSE; 1690 } 1691 1692 return TRUE; 1693 } 1694 1695 /* If this is a weak symbol, and there is a real definition, the 1696 processor independent code will have arranged for us to see the 1697 real definition first, and we can just use the same value. */ 1698 if (h->weakdef != NULL) 1699 { 1700 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined 1701 || h->weakdef->root.type == bfd_link_hash_defweak); 1702 h->root.u.def.section = h->weakdef->root.u.def.section; 1703 h->root.u.def.value = h->weakdef->root.u.def.value; 1704 return TRUE; 1705 } 1706 1707 /* This is a reference to a symbol defined by a dynamic object which 1708 is not a function. */ 1709 1710 /* If we are creating a shared library, we must presume that the 1711 only references to the symbol are via the global offset table. 1712 For such cases we need not do anything here; the relocations will 1713 be handled correctly by relocate_section. */ 1714 if (info->shared) 1715 return TRUE; 1716 1717 /* We must allocate the symbol in our .dynbss section, which will 1718 become part of the .bss section of the executable. There will be 1719 an entry for this symbol in the .dynsym section. The dynamic 1720 object will contain position independent code, so all references 1721 from the dynamic object to this symbol will go through the global 1722 offset table. The dynamic linker will use the .dynsym entry to 1723 determine the address it must put in the global offset table, so 1724 both the dynamic object and the regular object will refer to the 1725 same memory location for the variable. */ 1726 1727 s = bfd_get_section_by_name (dynobj, ".dynbss"); 1728 BFD_ASSERT (s != NULL); 1729 1730 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker 1731 to copy the initial value out of the dynamic object and into the 1732 runtime process image. We need to remember the offset into the 1733 .rel.bss section we are going to use. */ 1734 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 1735 { 1736 asection *srel; 1737 1738 srel = bfd_get_section_by_name (dynobj, ".rela.bss"); 1739 BFD_ASSERT (srel != NULL); 1740 srel->_raw_size += sizeof (Elf64_External_Rela); 1741 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; 1742 } 1743 1744 /* We need to figure out the alignment required for this symbol. I 1745 have no idea how ELF linkers handle this. 16-bytes is the size 1746 of the largest type that requires hard alignment -- long double. */ 1747 power_of_two = bfd_log2 (h->size); 1748 if (power_of_two > 4) 1749 power_of_two = 4; 1750 1751 /* Apply the required alignment. */ 1752 s->_raw_size = BFD_ALIGN (s->_raw_size, 1753 (bfd_size_type) (1 << power_of_two)); 1754 if (power_of_two > bfd_get_section_alignment (dynobj, s)) 1755 { 1756 if (! bfd_set_section_alignment (dynobj, s, power_of_two)) 1757 return FALSE; 1758 } 1759 1760 /* Define the symbol as being at this point in the section. */ 1761 h->root.u.def.section = s; 1762 h->root.u.def.value = s->_raw_size; 1763 1764 /* Increment the section size to make room for the symbol. */ 1765 s->_raw_size += h->size; 1766 1767 return TRUE; 1768 } 1769 1770 /* Set the sizes of the dynamic sections. */ 1771 1772 static bfd_boolean 1773 sparc64_elf_size_dynamic_sections (output_bfd, info) 1774 bfd *output_bfd; 1775 struct bfd_link_info *info; 1776 { 1777 bfd *dynobj; 1778 asection *s; 1779 bfd_boolean relplt; 1780 1781 dynobj = elf_hash_table (info)->dynobj; 1782 BFD_ASSERT (dynobj != NULL); 1783 1784 if (elf_hash_table (info)->dynamic_sections_created) 1785 { 1786 /* Set the contents of the .interp section to the interpreter. */ 1787 if (info->executable) 1788 { 1789 s = bfd_get_section_by_name (dynobj, ".interp"); 1790 BFD_ASSERT (s != NULL); 1791 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; 1792 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1793 } 1794 } 1795 else 1796 { 1797 /* We may have created entries in the .rela.got section. 1798 However, if we are not creating the dynamic sections, we will 1799 not actually use these entries. Reset the size of .rela.got, 1800 which will cause it to get stripped from the output file 1801 below. */ 1802 s = bfd_get_section_by_name (dynobj, ".rela.got"); 1803 if (s != NULL) 1804 s->_raw_size = 0; 1805 } 1806 1807 /* The check_relocs and adjust_dynamic_symbol entry points have 1808 determined the sizes of the various dynamic sections. Allocate 1809 memory for them. */ 1810 relplt = FALSE; 1811 for (s = dynobj->sections; s != NULL; s = s->next) 1812 { 1813 const char *name; 1814 bfd_boolean strip; 1815 1816 if ((s->flags & SEC_LINKER_CREATED) == 0) 1817 continue; 1818 1819 /* It's OK to base decisions on the section name, because none 1820 of the dynobj section names depend upon the input files. */ 1821 name = bfd_get_section_name (dynobj, s); 1822 1823 strip = FALSE; 1824 1825 if (strncmp (name, ".rela", 5) == 0) 1826 { 1827 if (s->_raw_size == 0) 1828 { 1829 /* If we don't need this section, strip it from the 1830 output file. This is to handle .rela.bss and 1831 .rel.plt. We must create it in 1832 create_dynamic_sections, because it must be created 1833 before the linker maps input sections to output 1834 sections. The linker does that before 1835 adjust_dynamic_symbol is called, and it is that 1836 function which decides whether anything needs to go 1837 into these sections. */ 1838 strip = TRUE; 1839 } 1840 else 1841 { 1842 if (strcmp (name, ".rela.plt") == 0) 1843 relplt = TRUE; 1844 1845 /* We use the reloc_count field as a counter if we need 1846 to copy relocs into the output file. */ 1847 s->reloc_count = 0; 1848 } 1849 } 1850 else if (strcmp (name, ".plt") != 0 1851 && strncmp (name, ".got", 4) != 0) 1852 { 1853 /* It's not one of our sections, so don't allocate space. */ 1854 continue; 1855 } 1856 1857 if (strip) 1858 { 1859 _bfd_strip_section_from_output (info, s); 1860 continue; 1861 } 1862 1863 /* Allocate memory for the section contents. Zero the memory 1864 for the benefit of .rela.plt, which has 4 unused entries 1865 at the beginning, and we don't want garbage. */ 1866 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); 1867 if (s->contents == NULL && s->_raw_size != 0) 1868 return FALSE; 1869 } 1870 1871 if (elf_hash_table (info)->dynamic_sections_created) 1872 { 1873 /* Add some entries to the .dynamic section. We fill in the 1874 values later, in sparc64_elf_finish_dynamic_sections, but we 1875 must add the entries now so that we get the correct size for 1876 the .dynamic section. The DT_DEBUG entry is filled in by the 1877 dynamic linker and used by the debugger. */ 1878 #define add_dynamic_entry(TAG, VAL) \ 1879 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1880 1881 int reg; 1882 struct sparc64_elf_app_reg * app_regs; 1883 struct elf_strtab_hash *dynstr; 1884 struct elf_link_hash_table *eht = elf_hash_table (info); 1885 1886 if (info->executable) 1887 { 1888 if (!add_dynamic_entry (DT_DEBUG, 0)) 1889 return FALSE; 1890 } 1891 1892 if (relplt) 1893 { 1894 if (!add_dynamic_entry (DT_PLTGOT, 0) 1895 || !add_dynamic_entry (DT_PLTRELSZ, 0) 1896 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1897 || !add_dynamic_entry (DT_JMPREL, 0)) 1898 return FALSE; 1899 } 1900 1901 if (!add_dynamic_entry (DT_RELA, 0) 1902 || !add_dynamic_entry (DT_RELASZ, 0) 1903 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) 1904 return FALSE; 1905 1906 if (info->flags & DF_TEXTREL) 1907 { 1908 if (!add_dynamic_entry (DT_TEXTREL, 0)) 1909 return FALSE; 1910 } 1911 1912 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER 1913 entries if needed. */ 1914 app_regs = sparc64_elf_hash_table (info)->app_regs; 1915 dynstr = eht->dynstr; 1916 1917 for (reg = 0; reg < 4; reg++) 1918 if (app_regs [reg].name != NULL) 1919 { 1920 struct elf_link_local_dynamic_entry *entry, *e; 1921 1922 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0)) 1923 return FALSE; 1924 1925 entry = (struct elf_link_local_dynamic_entry *) 1926 bfd_hash_allocate (&info->hash->table, sizeof (*entry)); 1927 if (entry == NULL) 1928 return FALSE; 1929 1930 /* We cheat here a little bit: the symbol will not be local, so we 1931 put it at the end of the dynlocal linked list. We will fix it 1932 later on, as we have to fix other fields anyway. */ 1933 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4; 1934 entry->isym.st_size = 0; 1935 if (*app_regs [reg].name != '\0') 1936 entry->isym.st_name 1937 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE); 1938 else 1939 entry->isym.st_name = 0; 1940 entry->isym.st_other = 0; 1941 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind, 1942 STT_REGISTER); 1943 entry->isym.st_shndx = app_regs [reg].shndx; 1944 entry->next = NULL; 1945 entry->input_bfd = output_bfd; 1946 entry->input_indx = -1; 1947 1948 if (eht->dynlocal == NULL) 1949 eht->dynlocal = entry; 1950 else 1951 { 1952 for (e = eht->dynlocal; e->next; e = e->next) 1953 ; 1954 e->next = entry; 1955 } 1956 eht->dynsymcount++; 1957 } 1958 } 1959 #undef add_dynamic_entry 1960 1961 return TRUE; 1962 } 1963 1964 static bfd_boolean 1965 sparc64_elf_new_section_hook (abfd, sec) 1966 bfd *abfd; 1967 asection *sec; 1968 { 1969 struct sparc64_elf_section_data *sdata; 1970 bfd_size_type amt = sizeof (*sdata); 1971 1972 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt); 1973 if (sdata == NULL) 1974 return FALSE; 1975 sec->used_by_bfd = (PTR) sdata; 1976 1977 return _bfd_elf_new_section_hook (abfd, sec); 1978 } 1979 1980 static bfd_boolean 1981 sparc64_elf_relax_section (abfd, section, link_info, again) 1982 bfd *abfd ATTRIBUTE_UNUSED; 1983 asection *section ATTRIBUTE_UNUSED; 1984 struct bfd_link_info *link_info ATTRIBUTE_UNUSED; 1985 bfd_boolean *again; 1986 { 1987 *again = FALSE; 1988 sec_do_relax (section) = 1; 1989 return TRUE; 1990 } 1991 1992 /* Relocate a SPARC64 ELF section. */ 1993 1994 static bfd_boolean 1995 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section, 1996 contents, relocs, local_syms, local_sections) 1997 bfd *output_bfd; 1998 struct bfd_link_info *info; 1999 bfd *input_bfd; 2000 asection *input_section; 2001 bfd_byte *contents; 2002 Elf_Internal_Rela *relocs; 2003 Elf_Internal_Sym *local_syms; 2004 asection **local_sections; 2005 { 2006 bfd *dynobj; 2007 Elf_Internal_Shdr *symtab_hdr; 2008 struct elf_link_hash_entry **sym_hashes; 2009 bfd_vma *local_got_offsets; 2010 bfd_vma got_base; 2011 asection *sgot; 2012 asection *splt; 2013 asection *sreloc; 2014 Elf_Internal_Rela *rel; 2015 Elf_Internal_Rela *relend; 2016 2017 if (info->relocatable) 2018 return TRUE; 2019 2020 dynobj = elf_hash_table (info)->dynobj; 2021 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2022 sym_hashes = elf_sym_hashes (input_bfd); 2023 local_got_offsets = elf_local_got_offsets (input_bfd); 2024 2025 if (elf_hash_table(info)->hgot == NULL) 2026 got_base = 0; 2027 else 2028 got_base = elf_hash_table (info)->hgot->root.u.def.value; 2029 2030 sgot = splt = sreloc = NULL; 2031 if (dynobj != NULL) 2032 splt = bfd_get_section_by_name (dynobj, ".plt"); 2033 2034 rel = relocs; 2035 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr); 2036 for (; rel < relend; rel++) 2037 { 2038 int r_type; 2039 reloc_howto_type *howto; 2040 unsigned long r_symndx; 2041 struct elf_link_hash_entry *h; 2042 Elf_Internal_Sym *sym; 2043 asection *sec; 2044 bfd_vma relocation, off; 2045 bfd_reloc_status_type r; 2046 bfd_boolean is_plt = FALSE; 2047 bfd_boolean unresolved_reloc; 2048 2049 r_type = ELF64_R_TYPE_ID (rel->r_info); 2050 if (r_type < 0 || r_type >= (int) R_SPARC_max_std) 2051 { 2052 bfd_set_error (bfd_error_bad_value); 2053 return FALSE; 2054 } 2055 howto = sparc64_elf_howto_table + r_type; 2056 2057 /* This is a final link. */ 2058 r_symndx = ELF64_R_SYM (rel->r_info); 2059 h = NULL; 2060 sym = NULL; 2061 sec = NULL; 2062 unresolved_reloc = FALSE; 2063 if (r_symndx < symtab_hdr->sh_info) 2064 { 2065 sym = local_syms + r_symndx; 2066 sec = local_sections[r_symndx]; 2067 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 2068 } 2069 else 2070 { 2071 bfd_boolean warned; 2072 2073 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2074 r_symndx, symtab_hdr, sym_hashes, 2075 h, sec, relocation, 2076 unresolved_reloc, warned); 2077 if (warned) 2078 { 2079 /* To avoid generating warning messages about truncated 2080 relocations, set the relocation's address to be the same as 2081 the start of this section. */ 2082 if (input_section->output_section != NULL) 2083 relocation = input_section->output_section->vma; 2084 else 2085 relocation = 0; 2086 } 2087 } 2088 2089 do_dynreloc: 2090 /* When generating a shared object, these relocations are copied 2091 into the output file to be resolved at run time. */ 2092 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC)) 2093 { 2094 switch (r_type) 2095 { 2096 case R_SPARC_PC10: 2097 case R_SPARC_PC22: 2098 case R_SPARC_PC_HH22: 2099 case R_SPARC_PC_HM10: 2100 case R_SPARC_PC_LM22: 2101 if (h != NULL 2102 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_")) 2103 break; 2104 /* Fall through. */ 2105 case R_SPARC_DISP8: 2106 case R_SPARC_DISP16: 2107 case R_SPARC_DISP32: 2108 case R_SPARC_DISP64: 2109 case R_SPARC_WDISP30: 2110 case R_SPARC_WDISP22: 2111 case R_SPARC_WDISP19: 2112 case R_SPARC_WDISP16: 2113 if (h == NULL) 2114 break; 2115 /* Fall through. */ 2116 case R_SPARC_8: 2117 case R_SPARC_16: 2118 case R_SPARC_32: 2119 case R_SPARC_HI22: 2120 case R_SPARC_22: 2121 case R_SPARC_13: 2122 case R_SPARC_LO10: 2123 case R_SPARC_UA32: 2124 case R_SPARC_10: 2125 case R_SPARC_11: 2126 case R_SPARC_64: 2127 case R_SPARC_OLO10: 2128 case R_SPARC_HH22: 2129 case R_SPARC_HM10: 2130 case R_SPARC_LM22: 2131 case R_SPARC_7: 2132 case R_SPARC_5: 2133 case R_SPARC_6: 2134 case R_SPARC_HIX22: 2135 case R_SPARC_LOX10: 2136 case R_SPARC_H44: 2137 case R_SPARC_M44: 2138 case R_SPARC_L44: 2139 case R_SPARC_UA64: 2140 case R_SPARC_UA16: 2141 { 2142 Elf_Internal_Rela outrel; 2143 bfd_byte *loc; 2144 bfd_boolean skip, relocate; 2145 2146 if (sreloc == NULL) 2147 { 2148 const char *name = 2149 (bfd_elf_string_from_elf_section 2150 (input_bfd, 2151 elf_elfheader (input_bfd)->e_shstrndx, 2152 elf_section_data (input_section)->rel_hdr.sh_name)); 2153 2154 if (name == NULL) 2155 return FALSE; 2156 2157 BFD_ASSERT (strncmp (name, ".rela", 5) == 0 2158 && strcmp (bfd_get_section_name(input_bfd, 2159 input_section), 2160 name + 5) == 0); 2161 2162 sreloc = bfd_get_section_by_name (dynobj, name); 2163 BFD_ASSERT (sreloc != NULL); 2164 } 2165 2166 skip = FALSE; 2167 relocate = FALSE; 2168 2169 outrel.r_offset = 2170 _bfd_elf_section_offset (output_bfd, info, input_section, 2171 rel->r_offset); 2172 if (outrel.r_offset == (bfd_vma) -1) 2173 skip = TRUE; 2174 else if (outrel.r_offset == (bfd_vma) -2) 2175 skip = TRUE, relocate = TRUE; 2176 2177 outrel.r_offset += (input_section->output_section->vma 2178 + input_section->output_offset); 2179 2180 /* Optimize unaligned reloc usage now that we know where 2181 it finally resides. */ 2182 switch (r_type) 2183 { 2184 case R_SPARC_16: 2185 if (outrel.r_offset & 1) r_type = R_SPARC_UA16; 2186 break; 2187 case R_SPARC_UA16: 2188 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16; 2189 break; 2190 case R_SPARC_32: 2191 if (outrel.r_offset & 3) r_type = R_SPARC_UA32; 2192 break; 2193 case R_SPARC_UA32: 2194 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32; 2195 break; 2196 case R_SPARC_64: 2197 if (outrel.r_offset & 7) r_type = R_SPARC_UA64; 2198 break; 2199 case R_SPARC_UA64: 2200 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64; 2201 break; 2202 case R_SPARC_DISP8: 2203 case R_SPARC_DISP16: 2204 case R_SPARC_DISP32: 2205 case R_SPARC_DISP64: 2206 /* If the symbol is not dynamic, we should not keep 2207 a dynamic relocation. But an .rela.* slot has been 2208 allocated for it, output R_SPARC_NONE. 2209 FIXME: Add code tracking needed dynamic relocs as 2210 e.g. i386 has. */ 2211 if (h->dynindx == -1) 2212 skip = TRUE, relocate = TRUE; 2213 break; 2214 } 2215 2216 if (skip) 2217 memset (&outrel, 0, sizeof outrel); 2218 /* h->dynindx may be -1 if the symbol was marked to 2219 become local. */ 2220 else if (h != NULL && ! is_plt 2221 && ((! info->symbolic && h->dynindx != -1) 2222 || (h->elf_link_hash_flags 2223 & ELF_LINK_HASH_DEF_REGULAR) == 0)) 2224 { 2225 BFD_ASSERT (h->dynindx != -1); 2226 outrel.r_info 2227 = ELF64_R_INFO (h->dynindx, 2228 ELF64_R_TYPE_INFO ( 2229 ELF64_R_TYPE_DATA (rel->r_info), 2230 r_type)); 2231 outrel.r_addend = rel->r_addend; 2232 } 2233 else 2234 { 2235 outrel.r_addend = relocation + rel->r_addend; 2236 if (r_type == R_SPARC_64) 2237 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); 2238 else 2239 { 2240 long indx; 2241 2242 if (is_plt) 2243 sec = splt; 2244 2245 if (bfd_is_abs_section (sec)) 2246 indx = 0; 2247 else if (sec == NULL || sec->owner == NULL) 2248 { 2249 bfd_set_error (bfd_error_bad_value); 2250 return FALSE; 2251 } 2252 else 2253 { 2254 asection *osec; 2255 2256 osec = sec->output_section; 2257 indx = elf_section_data (osec)->dynindx; 2258 2259 /* We are turning this relocation into one 2260 against a section symbol, so subtract out 2261 the output section's address but not the 2262 offset of the input section in the output 2263 section. */ 2264 outrel.r_addend -= osec->vma; 2265 2266 /* FIXME: we really should be able to link non-pic 2267 shared libraries. */ 2268 if (indx == 0) 2269 { 2270 BFD_FAIL (); 2271 (*_bfd_error_handler) 2272 (_("%s: probably compiled without -fPIC?"), 2273 bfd_archive_filename (input_bfd)); 2274 bfd_set_error (bfd_error_bad_value); 2275 return FALSE; 2276 } 2277 } 2278 2279 outrel.r_info 2280 = ELF64_R_INFO (indx, 2281 ELF64_R_TYPE_INFO ( 2282 ELF64_R_TYPE_DATA (rel->r_info), 2283 r_type)); 2284 } 2285 } 2286 2287 loc = sreloc->contents; 2288 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela); 2289 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2290 2291 /* This reloc will be computed at runtime, so there's no 2292 need to do anything now. */ 2293 if (! relocate) 2294 continue; 2295 } 2296 break; 2297 } 2298 } 2299 2300 switch (r_type) 2301 { 2302 case R_SPARC_GOT10: 2303 case R_SPARC_GOT13: 2304 case R_SPARC_GOT22: 2305 /* Relocation is to the entry for this symbol in the global 2306 offset table. */ 2307 if (sgot == NULL) 2308 { 2309 sgot = bfd_get_section_by_name (dynobj, ".got"); 2310 BFD_ASSERT (sgot != NULL); 2311 } 2312 2313 if (h != NULL) 2314 { 2315 bfd_boolean dyn; 2316 2317 off = h->got.offset; 2318 BFD_ASSERT (off != (bfd_vma) -1); 2319 dyn = elf_hash_table (info)->dynamic_sections_created; 2320 2321 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 2322 || (info->shared 2323 && (info->symbolic 2324 || h->dynindx == -1 2325 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)) 2326 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) 2327 { 2328 /* This is actually a static link, or it is a -Bsymbolic 2329 link and the symbol is defined locally, or the symbol 2330 was forced to be local because of a version file. We 2331 must initialize this entry in the global offset table. 2332 Since the offset must always be a multiple of 8, we 2333 use the least significant bit to record whether we 2334 have initialized it already. 2335 2336 When doing a dynamic link, we create a .rela.got 2337 relocation entry to initialize the value. This is 2338 done in the finish_dynamic_symbol routine. */ 2339 2340 if ((off & 1) != 0) 2341 off &= ~1; 2342 else 2343 { 2344 bfd_put_64 (output_bfd, relocation, 2345 sgot->contents + off); 2346 h->got.offset |= 1; 2347 } 2348 } 2349 else 2350 unresolved_reloc = FALSE; 2351 } 2352 else 2353 { 2354 BFD_ASSERT (local_got_offsets != NULL); 2355 off = local_got_offsets[r_symndx]; 2356 BFD_ASSERT (off != (bfd_vma) -1); 2357 2358 /* The offset must always be a multiple of 8. We use 2359 the least significant bit to record whether we have 2360 already processed this entry. */ 2361 if ((off & 1) != 0) 2362 off &= ~1; 2363 else 2364 { 2365 local_got_offsets[r_symndx] |= 1; 2366 2367 if (info->shared) 2368 { 2369 asection *s; 2370 Elf_Internal_Rela outrel; 2371 bfd_byte *loc; 2372 2373 /* The Solaris 2.7 64-bit linker adds the contents 2374 of the location to the value of the reloc. 2375 Note this is different behaviour to the 2376 32-bit linker, which both adds the contents 2377 and ignores the addend. So clear the location. */ 2378 bfd_put_64 (output_bfd, (bfd_vma) 0, 2379 sgot->contents + off); 2380 2381 /* We need to generate a R_SPARC_RELATIVE reloc 2382 for the dynamic linker. */ 2383 s = bfd_get_section_by_name(dynobj, ".rela.got"); 2384 BFD_ASSERT (s != NULL); 2385 2386 outrel.r_offset = (sgot->output_section->vma 2387 + sgot->output_offset 2388 + off); 2389 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); 2390 outrel.r_addend = relocation; 2391 loc = s->contents; 2392 loc += s->reloc_count++ * sizeof (Elf64_External_Rela); 2393 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc); 2394 } 2395 else 2396 bfd_put_64 (output_bfd, relocation, sgot->contents + off); 2397 } 2398 } 2399 relocation = sgot->output_offset + off - got_base; 2400 goto do_default; 2401 2402 case R_SPARC_WPLT30: 2403 case R_SPARC_PLT32: 2404 case R_SPARC_HIPLT22: 2405 case R_SPARC_LOPLT10: 2406 case R_SPARC_PCPLT32: 2407 case R_SPARC_PCPLT22: 2408 case R_SPARC_PCPLT10: 2409 case R_SPARC_PLT64: 2410 /* Relocation is to the entry for this symbol in the 2411 procedure linkage table. */ 2412 BFD_ASSERT (h != NULL); 2413 2414 if (h->plt.offset == (bfd_vma) -1 || splt == NULL) 2415 { 2416 /* We didn't make a PLT entry for this symbol. This 2417 happens when statically linking PIC code, or when 2418 using -Bsymbolic. */ 2419 goto do_default; 2420 } 2421 2422 relocation = (splt->output_section->vma 2423 + splt->output_offset 2424 + sparc64_elf_plt_entry_offset (h->plt.offset)); 2425 unresolved_reloc = FALSE; 2426 if (r_type == R_SPARC_WPLT30) 2427 goto do_wplt30; 2428 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64) 2429 { 2430 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64; 2431 is_plt = TRUE; 2432 goto do_dynreloc; 2433 } 2434 goto do_default; 2435 2436 case R_SPARC_OLO10: 2437 { 2438 bfd_vma x; 2439 2440 relocation += rel->r_addend; 2441 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info); 2442 2443 x = bfd_get_32 (input_bfd, contents + rel->r_offset); 2444 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff); 2445 bfd_put_32 (input_bfd, x, contents + rel->r_offset); 2446 2447 r = bfd_check_overflow (howto->complain_on_overflow, 2448 howto->bitsize, howto->rightshift, 2449 bfd_arch_bits_per_address (input_bfd), 2450 relocation); 2451 } 2452 break; 2453 2454 case R_SPARC_WDISP16: 2455 { 2456 bfd_vma x; 2457 2458 relocation += rel->r_addend; 2459 /* Adjust for pc-relative-ness. */ 2460 relocation -= (input_section->output_section->vma 2461 + input_section->output_offset); 2462 relocation -= rel->r_offset; 2463 2464 x = bfd_get_32 (input_bfd, contents + rel->r_offset); 2465 x &= ~(bfd_vma) 0x303fff; 2466 x |= ((((relocation >> 2) & 0xc000) << 6) 2467 | ((relocation >> 2) & 0x3fff)); 2468 bfd_put_32 (input_bfd, x, contents + rel->r_offset); 2469 2470 r = bfd_check_overflow (howto->complain_on_overflow, 2471 howto->bitsize, howto->rightshift, 2472 bfd_arch_bits_per_address (input_bfd), 2473 relocation); 2474 } 2475 break; 2476 2477 case R_SPARC_HIX22: 2478 { 2479 bfd_vma x; 2480 2481 relocation += rel->r_addend; 2482 relocation = relocation ^ MINUS_ONE; 2483 2484 x = bfd_get_32 (input_bfd, contents + rel->r_offset); 2485 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff); 2486 bfd_put_32 (input_bfd, x, contents + rel->r_offset); 2487 2488 r = bfd_check_overflow (howto->complain_on_overflow, 2489 howto->bitsize, howto->rightshift, 2490 bfd_arch_bits_per_address (input_bfd), 2491 relocation); 2492 } 2493 break; 2494 2495 case R_SPARC_LOX10: 2496 { 2497 bfd_vma x; 2498 2499 relocation += rel->r_addend; 2500 relocation = (relocation & 0x3ff) | 0x1c00; 2501 2502 x = bfd_get_32 (input_bfd, contents + rel->r_offset); 2503 x = (x & ~(bfd_vma) 0x1fff) | relocation; 2504 bfd_put_32 (input_bfd, x, contents + rel->r_offset); 2505 2506 r = bfd_reloc_ok; 2507 } 2508 break; 2509 2510 case R_SPARC_WDISP30: 2511 do_wplt30: 2512 if (sec_do_relax (input_section) 2513 && rel->r_offset + 4 < input_section->_raw_size) 2514 { 2515 #define G0 0 2516 #define O7 15 2517 #define XCC (2 << 20) 2518 #define COND(x) (((x)&0xf)<<25) 2519 #define CONDA COND(0x8) 2520 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC) 2521 #define INSN_BA (F2(0,2) | CONDA) 2522 #define INSN_OR F3(2, 0x2, 0) 2523 #define INSN_NOP F2(0,4) 2524 2525 bfd_vma x, y; 2526 2527 /* If the instruction is a call with either: 2528 restore 2529 arithmetic instruction with rd == %o7 2530 where rs1 != %o7 and rs2 if it is register != %o7 2531 then we can optimize if the call destination is near 2532 by changing the call into a branch always. */ 2533 x = bfd_get_32 (input_bfd, contents + rel->r_offset); 2534 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4); 2535 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2)) 2536 { 2537 if (((y & OP3(~0)) == OP3(0x3d) /* restore */ 2538 || ((y & OP3(0x28)) == 0 /* arithmetic */ 2539 && (y & RD(~0)) == RD(O7))) 2540 && (y & RS1(~0)) != RS1(O7) 2541 && ((y & F3I(~0)) 2542 || (y & RS2(~0)) != RS2(O7))) 2543 { 2544 bfd_vma reloc; 2545 2546 reloc = relocation + rel->r_addend - rel->r_offset; 2547 reloc -= (input_section->output_section->vma 2548 + input_section->output_offset); 2549 if (reloc & 3) 2550 goto do_default; 2551 2552 /* Ensure the branch fits into simm22. */ 2553 if ((reloc & ~(bfd_vma)0x7fffff) 2554 && ((reloc | 0x7fffff) != MINUS_ONE)) 2555 goto do_default; 2556 reloc >>= 2; 2557 2558 /* Check whether it fits into simm19. */ 2559 if ((reloc & 0x3c0000) == 0 2560 || (reloc & 0x3c0000) == 0x3c0000) 2561 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */ 2562 else 2563 x = INSN_BA | (reloc & 0x3fffff); /* ba */ 2564 bfd_put_32 (input_bfd, x, contents + rel->r_offset); 2565 r = bfd_reloc_ok; 2566 if (rel->r_offset >= 4 2567 && (y & (0xffffffff ^ RS1(~0))) 2568 == (INSN_OR | RD(O7) | RS2(G0))) 2569 { 2570 bfd_vma z; 2571 unsigned int reg; 2572 2573 z = bfd_get_32 (input_bfd, 2574 contents + rel->r_offset - 4); 2575 if ((z & (0xffffffff ^ RD(~0))) 2576 != (INSN_OR | RS1(O7) | RS2(G0))) 2577 break; 2578 2579 /* The sequence was 2580 or %o7, %g0, %rN 2581 call foo 2582 or %rN, %g0, %o7 2583 2584 If call foo was replaced with ba, replace 2585 or %rN, %g0, %o7 with nop. */ 2586 2587 reg = (y & RS1(~0)) >> 14; 2588 if (reg != ((z & RD(~0)) >> 25) 2589 || reg == G0 || reg == O7) 2590 break; 2591 2592 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP, 2593 contents + rel->r_offset + 4); 2594 } 2595 break; 2596 } 2597 } 2598 } 2599 /* Fall through. */ 2600 2601 default: 2602 do_default: 2603 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 2604 contents, rel->r_offset, 2605 relocation, rel->r_addend); 2606 break; 2607 } 2608 2609 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 2610 because such sections are not SEC_ALLOC and thus ld.so will 2611 not process them. */ 2612 if (unresolved_reloc 2613 && !((input_section->flags & SEC_DEBUGGING) != 0 2614 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)) 2615 (*_bfd_error_handler) 2616 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"), 2617 bfd_archive_filename (input_bfd), 2618 bfd_get_section_name (input_bfd, input_section), 2619 (long) rel->r_offset, 2620 h->root.root.string); 2621 2622 switch (r) 2623 { 2624 case bfd_reloc_ok: 2625 break; 2626 2627 default: 2628 case bfd_reloc_outofrange: 2629 abort (); 2630 2631 case bfd_reloc_overflow: 2632 { 2633 const char *name; 2634 2635 /* The Solaris native linker silently disregards 2636 overflows. We don't, but this breaks stabs debugging 2637 info, whose relocations are only 32-bits wide. Ignore 2638 overflows for discarded entries. */ 2639 if ((r_type == R_SPARC_32 || r_type == R_SPARC_DISP32) 2640 && _bfd_elf_section_offset (output_bfd, info, input_section, 2641 rel->r_offset) == (bfd_vma) -1) 2642 break; 2643 2644 if (h != NULL) 2645 { 2646 if (h->root.type == bfd_link_hash_undefweak 2647 && howto->pc_relative) 2648 { 2649 /* Assume this is a call protected by other code that 2650 detect the symbol is undefined. If this is the case, 2651 we can safely ignore the overflow. If not, the 2652 program is hosed anyway, and a little warning isn't 2653 going to help. */ 2654 break; 2655 } 2656 2657 name = h->root.root.string; 2658 } 2659 else 2660 { 2661 name = (bfd_elf_string_from_elf_section 2662 (input_bfd, 2663 symtab_hdr->sh_link, 2664 sym->st_name)); 2665 if (name == NULL) 2666 return FALSE; 2667 if (*name == '\0') 2668 name = bfd_section_name (input_bfd, sec); 2669 } 2670 if (! ((*info->callbacks->reloc_overflow) 2671 (info, name, howto->name, (bfd_vma) 0, 2672 input_bfd, input_section, rel->r_offset))) 2673 return FALSE; 2674 } 2675 break; 2676 } 2677 } 2678 2679 return TRUE; 2680 } 2681 2682 /* Finish up dynamic symbol handling. We set the contents of various 2683 dynamic sections here. */ 2684 2685 static bfd_boolean 2686 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym) 2687 bfd *output_bfd; 2688 struct bfd_link_info *info; 2689 struct elf_link_hash_entry *h; 2690 Elf_Internal_Sym *sym; 2691 { 2692 bfd *dynobj; 2693 2694 dynobj = elf_hash_table (info)->dynobj; 2695 2696 if (h->plt.offset != (bfd_vma) -1) 2697 { 2698 asection *splt; 2699 asection *srela; 2700 Elf_Internal_Rela rela; 2701 bfd_byte *loc; 2702 2703 /* This symbol has an entry in the PLT. Set it up. */ 2704 2705 BFD_ASSERT (h->dynindx != -1); 2706 2707 splt = bfd_get_section_by_name (dynobj, ".plt"); 2708 srela = bfd_get_section_by_name (dynobj, ".rela.plt"); 2709 BFD_ASSERT (splt != NULL && srela != NULL); 2710 2711 /* Fill in the entry in the .rela.plt section. */ 2712 2713 if (h->plt.offset < LARGE_PLT_THRESHOLD) 2714 { 2715 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset); 2716 rela.r_addend = 0; 2717 } 2718 else 2719 { 2720 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE; 2721 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max); 2722 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4) 2723 -(splt->output_section->vma + splt->output_offset); 2724 } 2725 rela.r_offset += (splt->output_section->vma + splt->output_offset); 2726 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT); 2727 2728 /* Adjust for the first 4 reserved elements in the .plt section 2729 when setting the offset in the .rela.plt section. 2730 Sun forgot to read their own ABI and copied elf32-sparc behaviour, 2731 thus .plt[4] has corresponding .rela.plt[0] and so on. */ 2732 2733 loc = srela->contents; 2734 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela); 2735 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 2736 2737 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) 2738 { 2739 /* Mark the symbol as undefined, rather than as defined in 2740 the .plt section. Leave the value alone. */ 2741 sym->st_shndx = SHN_UNDEF; 2742 /* If the symbol is weak, we do need to clear the value. 2743 Otherwise, the PLT entry would provide a definition for 2744 the symbol even if the symbol wasn't defined anywhere, 2745 and so the symbol would never be NULL. */ 2746 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) 2747 == 0) 2748 sym->st_value = 0; 2749 } 2750 } 2751 2752 if (h->got.offset != (bfd_vma) -1) 2753 { 2754 asection *sgot; 2755 asection *srela; 2756 Elf_Internal_Rela rela; 2757 bfd_byte *loc; 2758 2759 /* This symbol has an entry in the GOT. Set it up. */ 2760 2761 sgot = bfd_get_section_by_name (dynobj, ".got"); 2762 srela = bfd_get_section_by_name (dynobj, ".rela.got"); 2763 BFD_ASSERT (sgot != NULL && srela != NULL); 2764 2765 rela.r_offset = (sgot->output_section->vma 2766 + sgot->output_offset 2767 + (h->got.offset &~ (bfd_vma) 1)); 2768 2769 /* If this is a -Bsymbolic link, and the symbol is defined 2770 locally, we just want to emit a RELATIVE reloc. Likewise if 2771 the symbol was forced to be local because of a version file. 2772 The entry in the global offset table will already have been 2773 initialized in the relocate_section function. */ 2774 if (info->shared 2775 && (info->symbolic || h->dynindx == -1) 2776 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) 2777 { 2778 asection *sec = h->root.u.def.section; 2779 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE); 2780 rela.r_addend = (h->root.u.def.value 2781 + sec->output_section->vma 2782 + sec->output_offset); 2783 } 2784 else 2785 { 2786 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT); 2787 rela.r_addend = 0; 2788 } 2789 2790 bfd_put_64 (output_bfd, (bfd_vma) 0, 2791 sgot->contents + (h->got.offset &~ (bfd_vma) 1)); 2792 loc = srela->contents; 2793 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela); 2794 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 2795 } 2796 2797 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) 2798 { 2799 asection *s; 2800 Elf_Internal_Rela rela; 2801 bfd_byte *loc; 2802 2803 /* This symbols needs a copy reloc. Set it up. */ 2804 BFD_ASSERT (h->dynindx != -1); 2805 2806 s = bfd_get_section_by_name (h->root.u.def.section->owner, 2807 ".rela.bss"); 2808 BFD_ASSERT (s != NULL); 2809 2810 rela.r_offset = (h->root.u.def.value 2811 + h->root.u.def.section->output_section->vma 2812 + h->root.u.def.section->output_offset); 2813 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY); 2814 rela.r_addend = 0; 2815 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela); 2816 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc); 2817 } 2818 2819 /* Mark some specially defined symbols as absolute. */ 2820 if (strcmp (h->root.root.string, "_DYNAMIC") == 0 2821 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0 2822 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0) 2823 sym->st_shndx = SHN_ABS; 2824 2825 return TRUE; 2826 } 2827 2828 /* Finish up the dynamic sections. */ 2829 2830 static bfd_boolean 2831 sparc64_elf_finish_dynamic_sections (output_bfd, info) 2832 bfd *output_bfd; 2833 struct bfd_link_info *info; 2834 { 2835 bfd *dynobj; 2836 int stt_regidx = -1; 2837 asection *sdyn; 2838 asection *sgot; 2839 2840 dynobj = elf_hash_table (info)->dynobj; 2841 2842 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 2843 2844 if (elf_hash_table (info)->dynamic_sections_created) 2845 { 2846 asection *splt; 2847 Elf64_External_Dyn *dyncon, *dynconend; 2848 2849 splt = bfd_get_section_by_name (dynobj, ".plt"); 2850 BFD_ASSERT (splt != NULL && sdyn != NULL); 2851 2852 dyncon = (Elf64_External_Dyn *) sdyn->contents; 2853 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size); 2854 for (; dyncon < dynconend; dyncon++) 2855 { 2856 Elf_Internal_Dyn dyn; 2857 const char *name; 2858 bfd_boolean size; 2859 2860 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); 2861 2862 switch (dyn.d_tag) 2863 { 2864 case DT_PLTGOT: name = ".plt"; size = FALSE; break; 2865 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break; 2866 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break; 2867 case DT_SPARC_REGISTER: 2868 if (stt_regidx == -1) 2869 { 2870 stt_regidx = 2871 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1); 2872 if (stt_regidx == -1) 2873 return FALSE; 2874 } 2875 dyn.d_un.d_val = stt_regidx++; 2876 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2877 /* fallthrough */ 2878 default: name = NULL; size = FALSE; break; 2879 } 2880 2881 if (name != NULL) 2882 { 2883 asection *s; 2884 2885 s = bfd_get_section_by_name (output_bfd, name); 2886 if (s == NULL) 2887 dyn.d_un.d_val = 0; 2888 else 2889 { 2890 if (! size) 2891 dyn.d_un.d_ptr = s->vma; 2892 else 2893 { 2894 if (s->_cooked_size != 0) 2895 dyn.d_un.d_val = s->_cooked_size; 2896 else 2897 dyn.d_un.d_val = s->_raw_size; 2898 } 2899 } 2900 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); 2901 } 2902 } 2903 2904 /* Initialize the contents of the .plt section. */ 2905 if (splt->_raw_size > 0) 2906 sparc64_elf_build_plt (output_bfd, splt->contents, 2907 (int) (splt->_raw_size / PLT_ENTRY_SIZE)); 2908 2909 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 2910 PLT_ENTRY_SIZE; 2911 } 2912 2913 /* Set the first entry in the global offset table to the address of 2914 the dynamic section. */ 2915 sgot = bfd_get_section_by_name (dynobj, ".got"); 2916 BFD_ASSERT (sgot != NULL); 2917 if (sgot->_raw_size > 0) 2918 { 2919 if (sdyn == NULL) 2920 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents); 2921 else 2922 bfd_put_64 (output_bfd, 2923 sdyn->output_section->vma + sdyn->output_offset, 2924 sgot->contents); 2925 } 2926 2927 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8; 2928 2929 return TRUE; 2930 } 2931 2932 static enum elf_reloc_type_class 2933 sparc64_elf_reloc_type_class (rela) 2934 const Elf_Internal_Rela *rela; 2935 { 2936 switch ((int) ELF64_R_TYPE (rela->r_info)) 2937 { 2938 case R_SPARC_RELATIVE: 2939 return reloc_class_relative; 2940 case R_SPARC_JMP_SLOT: 2941 return reloc_class_plt; 2942 case R_SPARC_COPY: 2943 return reloc_class_copy; 2944 default: 2945 return reloc_class_normal; 2946 } 2947 } 2948 2949 /* Functions for dealing with the e_flags field. */ 2950 2951 /* Merge backend specific data from an object file to the output 2952 object file when linking. */ 2953 2954 static bfd_boolean 2955 sparc64_elf_merge_private_bfd_data (ibfd, obfd) 2956 bfd *ibfd; 2957 bfd *obfd; 2958 { 2959 bfd_boolean error; 2960 flagword new_flags, old_flags; 2961 int new_mm, old_mm; 2962 2963 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 2964 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 2965 return TRUE; 2966 2967 new_flags = elf_elfheader (ibfd)->e_flags; 2968 old_flags = elf_elfheader (obfd)->e_flags; 2969 2970 if (!elf_flags_init (obfd)) /* First call, no flags set */ 2971 { 2972 elf_flags_init (obfd) = TRUE; 2973 elf_elfheader (obfd)->e_flags = new_flags; 2974 } 2975 2976 else if (new_flags == old_flags) /* Compatible flags are ok */ 2977 ; 2978 2979 else /* Incompatible flags */ 2980 { 2981 error = FALSE; 2982 2983 #define EF_SPARC_ISA_EXTENSIONS \ 2984 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1) 2985 2986 if ((ibfd->flags & DYNAMIC) != 0) 2987 { 2988 /* We don't want dynamic objects memory ordering and 2989 architecture to have any role. That's what dynamic linker 2990 should do. */ 2991 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS); 2992 new_flags |= (old_flags 2993 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS)); 2994 } 2995 else 2996 { 2997 /* Choose the highest architecture requirements. */ 2998 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS); 2999 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS); 3000 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3)) 3001 && (old_flags & EF_SPARC_HAL_R1)) 3002 { 3003 error = TRUE; 3004 (*_bfd_error_handler) 3005 (_("%s: linking UltraSPARC specific with HAL specific code"), 3006 bfd_archive_filename (ibfd)); 3007 } 3008 /* Choose the most restrictive memory ordering. */ 3009 old_mm = (old_flags & EF_SPARCV9_MM); 3010 new_mm = (new_flags & EF_SPARCV9_MM); 3011 old_flags &= ~EF_SPARCV9_MM; 3012 new_flags &= ~EF_SPARCV9_MM; 3013 if (new_mm < old_mm) 3014 old_mm = new_mm; 3015 old_flags |= old_mm; 3016 new_flags |= old_mm; 3017 } 3018 3019 /* Warn about any other mismatches */ 3020 if (new_flags != old_flags) 3021 { 3022 error = TRUE; 3023 (*_bfd_error_handler) 3024 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 3025 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags); 3026 } 3027 3028 elf_elfheader (obfd)->e_flags = old_flags; 3029 3030 if (error) 3031 { 3032 bfd_set_error (bfd_error_bad_value); 3033 return FALSE; 3034 } 3035 } 3036 return TRUE; 3037 } 3038 3039 /* MARCO: Set the correct entry size for the .stab section. */ 3040 3041 static bfd_boolean 3042 sparc64_elf_fake_sections (abfd, hdr, sec) 3043 bfd *abfd ATTRIBUTE_UNUSED; 3044 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED; 3045 asection *sec; 3046 { 3047 const char *name; 3048 3049 name = bfd_get_section_name (abfd, sec); 3050 3051 if (strcmp (name, ".stab") == 0) 3052 { 3053 /* Even in the 64bit case the stab entries are only 12 bytes long. */ 3054 elf_section_data (sec)->this_hdr.sh_entsize = 12; 3055 } 3056 3057 return TRUE; 3058 } 3059 3060 /* Print a STT_REGISTER symbol to file FILE. */ 3061 3062 static const char * 3063 sparc64_elf_print_symbol_all (abfd, filep, symbol) 3064 bfd *abfd ATTRIBUTE_UNUSED; 3065 PTR filep; 3066 asymbol *symbol; 3067 { 3068 FILE *file = (FILE *) filep; 3069 int reg, type; 3070 3071 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info) 3072 != STT_REGISTER) 3073 return NULL; 3074 3075 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 3076 type = symbol->flags; 3077 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "", 3078 ((type & BSF_LOCAL) 3079 ? (type & BSF_GLOBAL) ? '!' : 'l' 3080 : (type & BSF_GLOBAL) ? 'g' : ' '), 3081 (type & BSF_WEAK) ? 'w' : ' '); 3082 if (symbol->name == NULL || symbol->name [0] == '\0') 3083 return "#scratch"; 3084 else 3085 return symbol->name; 3086 } 3087 3088 /* Set the right machine number for a SPARC64 ELF file. */ 3089 3090 static bfd_boolean 3091 sparc64_elf_object_p (abfd) 3092 bfd *abfd; 3093 { 3094 unsigned long mach = bfd_mach_sparc_v9; 3095 3096 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3) 3097 mach = bfd_mach_sparc_v9b; 3098 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1) 3099 mach = bfd_mach_sparc_v9a; 3100 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach); 3101 } 3102 3103 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in 3104 standard ELF, because R_SPARC_OLO10 has secondary addend in 3105 ELF64_R_TYPE_DATA field. This structure is used to redirect the 3106 relocation handling routines. */ 3107 3108 const struct elf_size_info sparc64_elf_size_info = 3109 { 3110 sizeof (Elf64_External_Ehdr), 3111 sizeof (Elf64_External_Phdr), 3112 sizeof (Elf64_External_Shdr), 3113 sizeof (Elf64_External_Rel), 3114 sizeof (Elf64_External_Rela), 3115 sizeof (Elf64_External_Sym), 3116 sizeof (Elf64_External_Dyn), 3117 sizeof (Elf_External_Note), 3118 4, /* hash-table entry size. */ 3119 /* Internal relocations per external relocations. 3120 For link purposes we use just 1 internal per 3121 1 external, for assembly and slurp symbol table 3122 we use 2. */ 3123 1, 3124 64, /* arch_size. */ 3125 3, /* log_file_align. */ 3126 ELFCLASS64, 3127 EV_CURRENT, 3128 bfd_elf64_write_out_phdrs, 3129 bfd_elf64_write_shdrs_and_ehdr, 3130 sparc64_elf_write_relocs, 3131 bfd_elf64_swap_symbol_in, 3132 bfd_elf64_swap_symbol_out, 3133 sparc64_elf_slurp_reloc_table, 3134 bfd_elf64_slurp_symbol_table, 3135 bfd_elf64_swap_dyn_in, 3136 bfd_elf64_swap_dyn_out, 3137 bfd_elf64_swap_reloc_in, 3138 bfd_elf64_swap_reloc_out, 3139 bfd_elf64_swap_reloca_in, 3140 bfd_elf64_swap_reloca_out 3141 }; 3142 3143 #define TARGET_BIG_SYM bfd_elf64_sparc_vec 3144 #define TARGET_BIG_NAME "elf64-sparc" 3145 #define ELF_ARCH bfd_arch_sparc 3146 #define ELF_MAXPAGESIZE 0x100000 3147 3148 /* This is the official ABI value. */ 3149 #define ELF_MACHINE_CODE EM_SPARCV9 3150 3151 /* This is the value that we used before the ABI was released. */ 3152 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9 3153 3154 #define bfd_elf64_bfd_link_hash_table_create \ 3155 sparc64_elf_bfd_link_hash_table_create 3156 3157 #define elf_info_to_howto \ 3158 sparc64_elf_info_to_howto 3159 #define bfd_elf64_get_reloc_upper_bound \ 3160 sparc64_elf_get_reloc_upper_bound 3161 #define bfd_elf64_get_dynamic_reloc_upper_bound \ 3162 sparc64_elf_get_dynamic_reloc_upper_bound 3163 #define bfd_elf64_canonicalize_reloc \ 3164 sparc64_elf_canonicalize_reloc 3165 #define bfd_elf64_canonicalize_dynamic_reloc \ 3166 sparc64_elf_canonicalize_dynamic_reloc 3167 #define bfd_elf64_bfd_reloc_type_lookup \ 3168 sparc64_elf_reloc_type_lookup 3169 #define bfd_elf64_bfd_relax_section \ 3170 sparc64_elf_relax_section 3171 #define bfd_elf64_new_section_hook \ 3172 sparc64_elf_new_section_hook 3173 3174 #define elf_backend_create_dynamic_sections \ 3175 _bfd_elf_create_dynamic_sections 3176 #define elf_backend_add_symbol_hook \ 3177 sparc64_elf_add_symbol_hook 3178 #define elf_backend_get_symbol_type \ 3179 sparc64_elf_get_symbol_type 3180 #define elf_backend_symbol_processing \ 3181 sparc64_elf_symbol_processing 3182 #define elf_backend_check_relocs \ 3183 sparc64_elf_check_relocs 3184 #define elf_backend_adjust_dynamic_symbol \ 3185 sparc64_elf_adjust_dynamic_symbol 3186 #define elf_backend_size_dynamic_sections \ 3187 sparc64_elf_size_dynamic_sections 3188 #define elf_backend_relocate_section \ 3189 sparc64_elf_relocate_section 3190 #define elf_backend_finish_dynamic_symbol \ 3191 sparc64_elf_finish_dynamic_symbol 3192 #define elf_backend_finish_dynamic_sections \ 3193 sparc64_elf_finish_dynamic_sections 3194 #define elf_backend_print_symbol_all \ 3195 sparc64_elf_print_symbol_all 3196 #define elf_backend_output_arch_syms \ 3197 sparc64_elf_output_arch_syms 3198 #define bfd_elf64_bfd_merge_private_bfd_data \ 3199 sparc64_elf_merge_private_bfd_data 3200 #define elf_backend_fake_sections \ 3201 sparc64_elf_fake_sections 3202 3203 #define elf_backend_size_info \ 3204 sparc64_elf_size_info 3205 #define elf_backend_object_p \ 3206 sparc64_elf_object_p 3207 #define elf_backend_reloc_type_class \ 3208 sparc64_elf_reloc_type_class 3209 3210 #define elf_backend_want_got_plt 0 3211 #define elf_backend_plt_readonly 0 3212 #define elf_backend_want_plt_sym 1 3213 #define elf_backend_rela_normal 1 3214 3215 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */ 3216 #define elf_backend_plt_alignment 8 3217 3218 #define elf_backend_got_header_size 8 3219 3220 #include "elf64-target.h" 3221