1 /* bfd back-end for HP PA-RISC SOM objects. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001 4 Free Software Foundation, Inc. 5 6 Contributed by the Center for Software Science at the 7 University of Utah. 8 9 This file is part of BFD, the Binary File Descriptor library. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 2 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program; if not, write to the Free Software 23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 24 02111-1307, USA. */ 25 26 #include "alloca-conf.h" 27 #include "bfd.h" 28 #include "sysdep.h" 29 30 #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX) 31 32 #include "libbfd.h" 33 #include "som.h" 34 35 #include <sys/param.h> 36 #include <signal.h> 37 #include <machine/reg.h> 38 #include <sys/file.h> 39 #include <ctype.h> 40 41 /* Magic not defined in standard HP-UX header files until 8.0 */ 42 43 #ifndef CPU_PA_RISC1_0 44 #define CPU_PA_RISC1_0 0x20B 45 #endif /* CPU_PA_RISC1_0 */ 46 47 #ifndef CPU_PA_RISC1_1 48 #define CPU_PA_RISC1_1 0x210 49 #endif /* CPU_PA_RISC1_1 */ 50 51 #ifndef CPU_PA_RISC2_0 52 #define CPU_PA_RISC2_0 0x214 53 #endif /* CPU_PA_RISC2_0 */ 54 55 #ifndef _PA_RISC1_0_ID 56 #define _PA_RISC1_0_ID CPU_PA_RISC1_0 57 #endif /* _PA_RISC1_0_ID */ 58 59 #ifndef _PA_RISC1_1_ID 60 #define _PA_RISC1_1_ID CPU_PA_RISC1_1 61 #endif /* _PA_RISC1_1_ID */ 62 63 #ifndef _PA_RISC2_0_ID 64 #define _PA_RISC2_0_ID CPU_PA_RISC2_0 65 #endif /* _PA_RISC2_0_ID */ 66 67 #ifndef _PA_RISC_MAXID 68 #define _PA_RISC_MAXID 0x2FF 69 #endif /* _PA_RISC_MAXID */ 70 71 #ifndef _PA_RISC_ID 72 #define _PA_RISC_ID(__m_num) \ 73 (((__m_num) == _PA_RISC1_0_ID) || \ 74 ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID)) 75 #endif /* _PA_RISC_ID */ 76 77 /* HIUX in it's infinite stupidity changed the names for several "well 78 known" constants. Work around such braindamage. Try the HPUX version 79 first, then the HIUX version, and finally provide a default. */ 80 #ifdef HPUX_AUX_ID 81 #define EXEC_AUX_ID HPUX_AUX_ID 82 #endif 83 84 #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID) 85 #define EXEC_AUX_ID HIUX_AUX_ID 86 #endif 87 88 #ifndef EXEC_AUX_ID 89 #define EXEC_AUX_ID 0 90 #endif 91 92 /* Size (in chars) of the temporary buffers used during fixup and string 93 table writes. */ 94 95 #define SOM_TMP_BUFSIZE 8192 96 97 /* Size of the hash table in archives. */ 98 #define SOM_LST_HASH_SIZE 31 99 100 /* Max number of SOMs to be found in an archive. */ 101 #define SOM_LST_MODULE_LIMIT 1024 102 103 /* Generic alignment macro. */ 104 #define SOM_ALIGN(val, alignment) \ 105 (((val) + (alignment) - 1) & ~((alignment) - 1)) 106 107 /* SOM allows any one of the four previous relocations to be reused 108 with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP 109 relocations are always a single byte, using a R_PREV_FIXUP instead 110 of some multi-byte relocation makes object files smaller. 111 112 Note one side effect of using a R_PREV_FIXUP is the relocation that 113 is being repeated moves to the front of the queue. */ 114 struct reloc_queue { 115 unsigned char *reloc; 116 unsigned int size; 117 } reloc_queue[4]; 118 119 /* This fully describes the symbol types which may be attached to 120 an EXPORT or IMPORT directive. Only SOM uses this formation 121 (ELF has no need for it). */ 122 typedef enum { 123 SYMBOL_TYPE_UNKNOWN, 124 SYMBOL_TYPE_ABSOLUTE, 125 SYMBOL_TYPE_CODE, 126 SYMBOL_TYPE_DATA, 127 SYMBOL_TYPE_ENTRY, 128 SYMBOL_TYPE_MILLICODE, 129 SYMBOL_TYPE_PLABEL, 130 SYMBOL_TYPE_PRI_PROG, 131 SYMBOL_TYPE_SEC_PROG, 132 } pa_symbol_type; 133 134 struct section_to_type { 135 char *section; 136 char type; 137 }; 138 139 /* Assorted symbol information that needs to be derived from the BFD symbol 140 and/or the BFD backend private symbol data. */ 141 struct som_misc_symbol_info { 142 unsigned int symbol_type; 143 unsigned int symbol_scope; 144 unsigned int arg_reloc; 145 unsigned int symbol_info; 146 unsigned int symbol_value; 147 unsigned int priv_level; 148 unsigned int secondary_def; 149 }; 150 151 /* Forward declarations */ 152 153 static boolean som_mkobject PARAMS ((bfd *)); 154 static const bfd_target * som_object_setup PARAMS ((bfd *, 155 struct header *, 156 struct som_exec_auxhdr *, 157 unsigned long)); 158 static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long)); 159 static const bfd_target * som_object_p PARAMS ((bfd *)); 160 static boolean som_write_object_contents PARAMS ((bfd *)); 161 static boolean som_slurp_string_table PARAMS ((bfd *)); 162 static unsigned int som_slurp_symbol_table PARAMS ((bfd *)); 163 static long som_get_symtab_upper_bound PARAMS ((bfd *)); 164 static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr, 165 arelent **, asymbol **)); 166 static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr)); 167 static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int, 168 arelent *, asection *, 169 asymbol **, boolean)); 170 static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *, 171 asymbol **, boolean)); 172 static long som_get_symtab PARAMS ((bfd *, asymbol **)); 173 static asymbol * som_make_empty_symbol PARAMS ((bfd *)); 174 static void som_print_symbol PARAMS ((bfd *, PTR, 175 asymbol *, bfd_print_symbol_type)); 176 static boolean som_new_section_hook PARAMS ((bfd *, asection *)); 177 static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *, 178 bfd *, asymbol *)); 179 static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *, 180 bfd *, asection *)); 181 static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *)); 182 #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data 183 #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags 184 static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *)); 185 static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR, 186 file_ptr, bfd_size_type)); 187 static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR, 188 file_ptr, bfd_size_type)); 189 static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture, 190 unsigned long)); 191 static boolean som_find_nearest_line PARAMS ((bfd *, asection *, 192 asymbol **, bfd_vma, 193 CONST char **, 194 CONST char **, 195 unsigned int *)); 196 static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *)); 197 static asection * bfd_section_from_som_symbol PARAMS ((bfd *, 198 struct symbol_dictionary_record *)); 199 static int log2 PARAMS ((unsigned int)); 200 static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *, 201 asymbol *, PTR, 202 asection *, bfd *, 203 char **)); 204 static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *)); 205 static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int, 206 struct reloc_queue *)); 207 static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int)); 208 static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int, 209 struct reloc_queue *)); 210 static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *, 211 unsigned int, 212 struct reloc_queue *)); 213 214 static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int, 215 unsigned char *, unsigned int *, 216 struct reloc_queue *)); 217 static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *, 218 unsigned int *, 219 struct reloc_queue *)); 220 static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *, 221 unsigned int *, 222 arelent *, int, 223 struct reloc_queue *)); 224 static unsigned long som_count_spaces PARAMS ((bfd *)); 225 static unsigned long som_count_subspaces PARAMS ((bfd *)); 226 static int compare_syms PARAMS ((const void *, const void *)); 227 static int compare_subspaces PARAMS ((const void *, const void *)); 228 static unsigned long som_compute_checksum PARAMS ((bfd *)); 229 static boolean som_prep_headers PARAMS ((bfd *)); 230 static int som_sizeof_headers PARAMS ((bfd *, boolean)); 231 static boolean som_finish_writing PARAMS ((bfd *)); 232 static boolean som_build_and_write_symbol_table PARAMS ((bfd *)); 233 static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long)); 234 static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *)); 235 static boolean som_write_space_strings PARAMS ((bfd *, unsigned long, 236 unsigned int *)); 237 static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long, 238 asymbol **, unsigned int, 239 unsigned *, 240 COMPUNIT *)); 241 static boolean som_begin_writing PARAMS ((bfd *)); 242 static reloc_howto_type * som_bfd_reloc_type_lookup 243 PARAMS ((bfd *, bfd_reloc_code_real_type)); 244 static char som_section_type PARAMS ((const char *)); 245 static int som_decode_symclass PARAMS ((asymbol *)); 246 static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *, 247 symindex *)); 248 249 static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *, 250 carsym **syms)); 251 static boolean som_slurp_armap PARAMS ((bfd *)); 252 static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *, 253 unsigned int, int)); 254 static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *, 255 struct som_misc_symbol_info *)); 256 static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *, 257 unsigned int *)); 258 static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *)); 259 static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int, 260 unsigned int, 261 struct lst_header, 262 unsigned int)); 263 static boolean som_is_space PARAMS ((asection *)); 264 static boolean som_is_subspace PARAMS ((asection *)); 265 static boolean som_is_container PARAMS ((asection *, asection *)); 266 static boolean som_bfd_free_cached_info PARAMS ((bfd *)); 267 static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *)); 268 269 /* Map SOM section names to POSIX/BSD single-character symbol types. 270 271 This table includes all the standard subspaces as defined in the 272 current "PRO ABI for PA-RISC Systems", $UNWIND$ which for 273 some reason was left out, and sections specific to embedded stabs. */ 274 275 static const struct section_to_type stt[] = { 276 {"$TEXT$", 't'}, 277 {"$SHLIB_INFO$", 't'}, 278 {"$MILLICODE$", 't'}, 279 {"$LIT$", 't'}, 280 {"$CODE$", 't'}, 281 {"$UNWIND_START$", 't'}, 282 {"$UNWIND$", 't'}, 283 {"$PRIVATE$", 'd'}, 284 {"$PLT$", 'd'}, 285 {"$SHLIB_DATA$", 'd'}, 286 {"$DATA$", 'd'}, 287 {"$SHORTDATA$", 'g'}, 288 {"$DLT$", 'd'}, 289 {"$GLOBAL$", 'g'}, 290 {"$SHORTBSS$", 's'}, 291 {"$BSS$", 'b'}, 292 {"$GDB_STRINGS$", 'N'}, 293 {"$GDB_SYMBOLS$", 'N'}, 294 {0, 0} 295 }; 296 297 /* About the relocation formatting table... 298 299 There are 256 entries in the table, one for each possible 300 relocation opcode available in SOM. We index the table by 301 the relocation opcode. The names and operations are those 302 defined by a.out_800 (4). 303 304 Right now this table is only used to count and perform minimal 305 processing on relocation streams so that they can be internalized 306 into BFD and symbolically printed by utilities. To make actual use 307 of them would be much more difficult, BFD's concept of relocations 308 is far too simple to handle SOM relocations. The basic assumption 309 that a relocation can be completely processed independent of other 310 relocations before an object file is written is invalid for SOM. 311 312 The SOM relocations are meant to be processed as a stream, they 313 specify copying of data from the input section to the output section 314 while possibly modifying the data in some manner. They also can 315 specify that a variable number of zeros or uninitialized data be 316 inserted on in the output segment at the current offset. Some 317 relocations specify that some previous relocation be re-applied at 318 the current location in the input/output sections. And finally a number 319 of relocations have effects on other sections (R_ENTRY, R_EXIT, 320 R_UNWIND_AUX and a variety of others). There isn't even enough room 321 in the BFD relocation data structure to store enough information to 322 perform all the relocations. 323 324 Each entry in the table has three fields. 325 326 The first entry is an index into this "class" of relocations. This 327 index can then be used as a variable within the relocation itself. 328 329 The second field is a format string which actually controls processing 330 of the relocation. It uses a simple postfix machine to do calculations 331 based on variables/constants found in the string and the relocation 332 stream. 333 334 The third field specifys whether or not this relocation may use 335 a constant (V) from the previous R_DATA_OVERRIDE rather than a constant 336 stored in the instruction. 337 338 Variables: 339 340 L = input space byte count 341 D = index into class of relocations 342 M = output space byte count 343 N = statement number (unused?) 344 O = stack operation 345 R = parameter relocation bits 346 S = symbol index 347 T = first 32 bits of stack unwind information 348 U = second 32 bits of stack unwind information 349 V = a literal constant (usually used in the next relocation) 350 P = a previous relocation 351 352 Lower case letters (starting with 'b') refer to following 353 bytes in the relocation stream. 'b' is the next 1 byte, 354 c is the next 2 bytes, d is the next 3 bytes, etc... 355 This is the variable part of the relocation entries that 356 makes our life a living hell. 357 358 numerical constants are also used in the format string. Note 359 the constants are represented in decimal. 360 361 '+', "*" and "=" represents the obvious postfix operators. 362 '<' represents a left shift. 363 364 Stack Operations: 365 366 Parameter Relocation Bits: 367 368 Unwind Entries: 369 370 Previous Relocations: The index field represents which in the queue 371 of 4 previous fixups should be re-applied. 372 373 Literal Constants: These are generally used to represent addend 374 parts of relocations when these constants are not stored in the 375 fields of the instructions themselves. For example the instruction 376 addil foo-$global$-0x1234 would use an override for "0x1234" rather 377 than storing it into the addil itself. */ 378 379 struct fixup_format { 380 int D; 381 const char *format; 382 }; 383 384 static const struct fixup_format som_fixup_formats[256] = { 385 /* R_NO_RELOCATION */ 386 0, "LD1+4*=", /* 0x00 */ 387 1, "LD1+4*=", /* 0x01 */ 388 2, "LD1+4*=", /* 0x02 */ 389 3, "LD1+4*=", /* 0x03 */ 390 4, "LD1+4*=", /* 0x04 */ 391 5, "LD1+4*=", /* 0x05 */ 392 6, "LD1+4*=", /* 0x06 */ 393 7, "LD1+4*=", /* 0x07 */ 394 8, "LD1+4*=", /* 0x08 */ 395 9, "LD1+4*=", /* 0x09 */ 396 10, "LD1+4*=", /* 0x0a */ 397 11, "LD1+4*=", /* 0x0b */ 398 12, "LD1+4*=", /* 0x0c */ 399 13, "LD1+4*=", /* 0x0d */ 400 14, "LD1+4*=", /* 0x0e */ 401 15, "LD1+4*=", /* 0x0f */ 402 16, "LD1+4*=", /* 0x10 */ 403 17, "LD1+4*=", /* 0x11 */ 404 18, "LD1+4*=", /* 0x12 */ 405 19, "LD1+4*=", /* 0x13 */ 406 20, "LD1+4*=", /* 0x14 */ 407 21, "LD1+4*=", /* 0x15 */ 408 22, "LD1+4*=", /* 0x16 */ 409 23, "LD1+4*=", /* 0x17 */ 410 0, "LD8<b+1+4*=", /* 0x18 */ 411 1, "LD8<b+1+4*=", /* 0x19 */ 412 2, "LD8<b+1+4*=", /* 0x1a */ 413 3, "LD8<b+1+4*=", /* 0x1b */ 414 0, "LD16<c+1+4*=", /* 0x1c */ 415 1, "LD16<c+1+4*=", /* 0x1d */ 416 2, "LD16<c+1+4*=", /* 0x1e */ 417 0, "Ld1+=", /* 0x1f */ 418 /* R_ZEROES */ 419 0, "Lb1+4*=", /* 0x20 */ 420 1, "Ld1+=", /* 0x21 */ 421 /* R_UNINIT */ 422 0, "Lb1+4*=", /* 0x22 */ 423 1, "Ld1+=", /* 0x23 */ 424 /* R_RELOCATION */ 425 0, "L4=", /* 0x24 */ 426 /* R_DATA_ONE_SYMBOL */ 427 0, "L4=Sb=", /* 0x25 */ 428 1, "L4=Sd=", /* 0x26 */ 429 /* R_DATA_PLEBEL */ 430 0, "L4=Sb=", /* 0x27 */ 431 1, "L4=Sd=", /* 0x28 */ 432 /* R_SPACE_REF */ 433 0, "L4=", /* 0x29 */ 434 /* R_REPEATED_INIT */ 435 0, "L4=Mb1+4*=", /* 0x2a */ 436 1, "Lb4*=Mb1+L*=", /* 0x2b */ 437 2, "Lb4*=Md1+4*=", /* 0x2c */ 438 3, "Ld1+=Me1+=", /* 0x2d */ 439 0, "", /* 0x2e */ 440 0, "", /* 0x2f */ 441 /* R_PCREL_CALL */ 442 0, "L4=RD=Sb=", /* 0x30 */ 443 1, "L4=RD=Sb=", /* 0x31 */ 444 2, "L4=RD=Sb=", /* 0x32 */ 445 3, "L4=RD=Sb=", /* 0x33 */ 446 4, "L4=RD=Sb=", /* 0x34 */ 447 5, "L4=RD=Sb=", /* 0x35 */ 448 6, "L4=RD=Sb=", /* 0x36 */ 449 7, "L4=RD=Sb=", /* 0x37 */ 450 8, "L4=RD=Sb=", /* 0x38 */ 451 9, "L4=RD=Sb=", /* 0x39 */ 452 0, "L4=RD8<b+=Sb=",/* 0x3a */ 453 1, "L4=RD8<b+=Sb=",/* 0x3b */ 454 0, "L4=RD8<b+=Sd=",/* 0x3c */ 455 1, "L4=RD8<b+=Sd=",/* 0x3d */ 456 /* R_SHORT_PCREL_MODE */ 457 0, "", /* 0x3e */ 458 /* R_LONG_PCREL_MODE */ 459 0, "", /* 0x3f */ 460 /* R_ABS_CALL */ 461 0, "L4=RD=Sb=", /* 0x40 */ 462 1, "L4=RD=Sb=", /* 0x41 */ 463 2, "L4=RD=Sb=", /* 0x42 */ 464 3, "L4=RD=Sb=", /* 0x43 */ 465 4, "L4=RD=Sb=", /* 0x44 */ 466 5, "L4=RD=Sb=", /* 0x45 */ 467 6, "L4=RD=Sb=", /* 0x46 */ 468 7, "L4=RD=Sb=", /* 0x47 */ 469 8, "L4=RD=Sb=", /* 0x48 */ 470 9, "L4=RD=Sb=", /* 0x49 */ 471 0, "L4=RD8<b+=Sb=",/* 0x4a */ 472 1, "L4=RD8<b+=Sb=",/* 0x4b */ 473 0, "L4=RD8<b+=Sd=",/* 0x4c */ 474 1, "L4=RD8<b+=Sd=",/* 0x4d */ 475 /* R_RESERVED */ 476 0, "", /* 0x4e */ 477 0, "", /* 0x4f */ 478 /* R_DP_RELATIVE */ 479 0, "L4=SD=", /* 0x50 */ 480 1, "L4=SD=", /* 0x51 */ 481 2, "L4=SD=", /* 0x52 */ 482 3, "L4=SD=", /* 0x53 */ 483 4, "L4=SD=", /* 0x54 */ 484 5, "L4=SD=", /* 0x55 */ 485 6, "L4=SD=", /* 0x56 */ 486 7, "L4=SD=", /* 0x57 */ 487 8, "L4=SD=", /* 0x58 */ 488 9, "L4=SD=", /* 0x59 */ 489 10, "L4=SD=", /* 0x5a */ 490 11, "L4=SD=", /* 0x5b */ 491 12, "L4=SD=", /* 0x5c */ 492 13, "L4=SD=", /* 0x5d */ 493 14, "L4=SD=", /* 0x5e */ 494 15, "L4=SD=", /* 0x5f */ 495 16, "L4=SD=", /* 0x60 */ 496 17, "L4=SD=", /* 0x61 */ 497 18, "L4=SD=", /* 0x62 */ 498 19, "L4=SD=", /* 0x63 */ 499 20, "L4=SD=", /* 0x64 */ 500 21, "L4=SD=", /* 0x65 */ 501 22, "L4=SD=", /* 0x66 */ 502 23, "L4=SD=", /* 0x67 */ 503 24, "L4=SD=", /* 0x68 */ 504 25, "L4=SD=", /* 0x69 */ 505 26, "L4=SD=", /* 0x6a */ 506 27, "L4=SD=", /* 0x6b */ 507 28, "L4=SD=", /* 0x6c */ 508 29, "L4=SD=", /* 0x6d */ 509 30, "L4=SD=", /* 0x6e */ 510 31, "L4=SD=", /* 0x6f */ 511 32, "L4=Sb=", /* 0x70 */ 512 33, "L4=Sd=", /* 0x71 */ 513 /* R_RESERVED */ 514 0, "", /* 0x72 */ 515 0, "", /* 0x73 */ 516 0, "", /* 0x74 */ 517 0, "", /* 0x75 */ 518 0, "", /* 0x76 */ 519 0, "", /* 0x77 */ 520 /* R_DLT_REL */ 521 0, "L4=Sb=", /* 0x78 */ 522 1, "L4=Sd=", /* 0x79 */ 523 /* R_RESERVED */ 524 0, "", /* 0x7a */ 525 0, "", /* 0x7b */ 526 0, "", /* 0x7c */ 527 0, "", /* 0x7d */ 528 0, "", /* 0x7e */ 529 0, "", /* 0x7f */ 530 /* R_CODE_ONE_SYMBOL */ 531 0, "L4=SD=", /* 0x80 */ 532 1, "L4=SD=", /* 0x81 */ 533 2, "L4=SD=", /* 0x82 */ 534 3, "L4=SD=", /* 0x83 */ 535 4, "L4=SD=", /* 0x84 */ 536 5, "L4=SD=", /* 0x85 */ 537 6, "L4=SD=", /* 0x86 */ 538 7, "L4=SD=", /* 0x87 */ 539 8, "L4=SD=", /* 0x88 */ 540 9, "L4=SD=", /* 0x89 */ 541 10, "L4=SD=", /* 0x8q */ 542 11, "L4=SD=", /* 0x8b */ 543 12, "L4=SD=", /* 0x8c */ 544 13, "L4=SD=", /* 0x8d */ 545 14, "L4=SD=", /* 0x8e */ 546 15, "L4=SD=", /* 0x8f */ 547 16, "L4=SD=", /* 0x90 */ 548 17, "L4=SD=", /* 0x91 */ 549 18, "L4=SD=", /* 0x92 */ 550 19, "L4=SD=", /* 0x93 */ 551 20, "L4=SD=", /* 0x94 */ 552 21, "L4=SD=", /* 0x95 */ 553 22, "L4=SD=", /* 0x96 */ 554 23, "L4=SD=", /* 0x97 */ 555 24, "L4=SD=", /* 0x98 */ 556 25, "L4=SD=", /* 0x99 */ 557 26, "L4=SD=", /* 0x9a */ 558 27, "L4=SD=", /* 0x9b */ 559 28, "L4=SD=", /* 0x9c */ 560 29, "L4=SD=", /* 0x9d */ 561 30, "L4=SD=", /* 0x9e */ 562 31, "L4=SD=", /* 0x9f */ 563 32, "L4=Sb=", /* 0xa0 */ 564 33, "L4=Sd=", /* 0xa1 */ 565 /* R_RESERVED */ 566 0, "", /* 0xa2 */ 567 0, "", /* 0xa3 */ 568 0, "", /* 0xa4 */ 569 0, "", /* 0xa5 */ 570 0, "", /* 0xa6 */ 571 0, "", /* 0xa7 */ 572 0, "", /* 0xa8 */ 573 0, "", /* 0xa9 */ 574 0, "", /* 0xaa */ 575 0, "", /* 0xab */ 576 0, "", /* 0xac */ 577 0, "", /* 0xad */ 578 /* R_MILLI_REL */ 579 0, "L4=Sb=", /* 0xae */ 580 1, "L4=Sd=", /* 0xaf */ 581 /* R_CODE_PLABEL */ 582 0, "L4=Sb=", /* 0xb0 */ 583 1, "L4=Sd=", /* 0xb1 */ 584 /* R_BREAKPOINT */ 585 0, "L4=", /* 0xb2 */ 586 /* R_ENTRY */ 587 0, "Te=Ue=", /* 0xb3 */ 588 1, "Uf=", /* 0xb4 */ 589 /* R_ALT_ENTRY */ 590 0, "", /* 0xb5 */ 591 /* R_EXIT */ 592 0, "", /* 0xb6 */ 593 /* R_BEGIN_TRY */ 594 0, "", /* 0xb7 */ 595 /* R_END_TRY */ 596 0, "R0=", /* 0xb8 */ 597 1, "Rb4*=", /* 0xb9 */ 598 2, "Rd4*=", /* 0xba */ 599 /* R_BEGIN_BRTAB */ 600 0, "", /* 0xbb */ 601 /* R_END_BRTAB */ 602 0, "", /* 0xbc */ 603 /* R_STATEMENT */ 604 0, "Nb=", /* 0xbd */ 605 1, "Nc=", /* 0xbe */ 606 2, "Nd=", /* 0xbf */ 607 /* R_DATA_EXPR */ 608 0, "L4=", /* 0xc0 */ 609 /* R_CODE_EXPR */ 610 0, "L4=", /* 0xc1 */ 611 /* R_FSEL */ 612 0, "", /* 0xc2 */ 613 /* R_LSEL */ 614 0, "", /* 0xc3 */ 615 /* R_RSEL */ 616 0, "", /* 0xc4 */ 617 /* R_N_MODE */ 618 0, "", /* 0xc5 */ 619 /* R_S_MODE */ 620 0, "", /* 0xc6 */ 621 /* R_D_MODE */ 622 0, "", /* 0xc7 */ 623 /* R_R_MODE */ 624 0, "", /* 0xc8 */ 625 /* R_DATA_OVERRIDE */ 626 0, "V0=", /* 0xc9 */ 627 1, "Vb=", /* 0xca */ 628 2, "Vc=", /* 0xcb */ 629 3, "Vd=", /* 0xcc */ 630 4, "Ve=", /* 0xcd */ 631 /* R_TRANSLATED */ 632 0, "", /* 0xce */ 633 /* R_AUX_UNWIND */ 634 0, "Sd=Vf=Ef=", /* 0xcf */ 635 /* R_COMP1 */ 636 0, "Ob=", /* 0xd0 */ 637 /* R_COMP2 */ 638 0, "Ob=Sd=", /* 0xd1 */ 639 /* R_COMP3 */ 640 0, "Ob=Ve=", /* 0xd2 */ 641 /* R_PREV_FIXUP */ 642 0, "P", /* 0xd3 */ 643 1, "P", /* 0xd4 */ 644 2, "P", /* 0xd5 */ 645 3, "P", /* 0xd6 */ 646 /* R_SEC_STMT */ 647 0, "", /* 0xd7 */ 648 /* R_N0SEL */ 649 0, "", /* 0xd8 */ 650 /* R_N1SEL */ 651 0, "", /* 0xd9 */ 652 /* R_LINETAB */ 653 0, "Eb=Sd=Ve=", /* 0xda */ 654 /* R_LINETAB_ESC */ 655 0, "Eb=Mb=", /* 0xdb */ 656 /* R_LTP_OVERRIDE */ 657 0, "", /* 0xdc */ 658 /* R_COMMENT */ 659 0, "Ob=Ve=", /* 0xdd */ 660 /* R_RESERVED */ 661 0, "", /* 0xde */ 662 0, "", /* 0xdf */ 663 0, "", /* 0xe0 */ 664 0, "", /* 0xe1 */ 665 0, "", /* 0xe2 */ 666 0, "", /* 0xe3 */ 667 0, "", /* 0xe4 */ 668 0, "", /* 0xe5 */ 669 0, "", /* 0xe6 */ 670 0, "", /* 0xe7 */ 671 0, "", /* 0xe8 */ 672 0, "", /* 0xe9 */ 673 0, "", /* 0xea */ 674 0, "", /* 0xeb */ 675 0, "", /* 0xec */ 676 0, "", /* 0xed */ 677 0, "", /* 0xee */ 678 0, "", /* 0xef */ 679 0, "", /* 0xf0 */ 680 0, "", /* 0xf1 */ 681 0, "", /* 0xf2 */ 682 0, "", /* 0xf3 */ 683 0, "", /* 0xf4 */ 684 0, "", /* 0xf5 */ 685 0, "", /* 0xf6 */ 686 0, "", /* 0xf7 */ 687 0, "", /* 0xf8 */ 688 0, "", /* 0xf9 */ 689 0, "", /* 0xfa */ 690 0, "", /* 0xfb */ 691 0, "", /* 0xfc */ 692 0, "", /* 0xfd */ 693 0, "", /* 0xfe */ 694 0, "", /* 0xff */ 695 }; 696 697 static const int comp1_opcodes[] = { 698 0x00, 699 0x40, 700 0x41, 701 0x42, 702 0x43, 703 0x44, 704 0x45, 705 0x46, 706 0x47, 707 0x48, 708 0x49, 709 0x4a, 710 0x4b, 711 0x60, 712 0x80, 713 0xa0, 714 0xc0, 715 -1 716 }; 717 718 static const int comp2_opcodes[] = { 719 0x00, 720 0x80, 721 0x82, 722 0xc0, 723 -1 724 }; 725 726 static const int comp3_opcodes[] = { 727 0x00, 728 0x02, 729 -1 730 }; 731 732 /* These apparently are not in older versions of hpux reloc.h (hpux7). */ 733 #ifndef R_DLT_REL 734 #define R_DLT_REL 0x78 735 #endif 736 737 #ifndef R_AUX_UNWIND 738 #define R_AUX_UNWIND 0xcf 739 #endif 740 741 #ifndef R_SEC_STMT 742 #define R_SEC_STMT 0xd7 743 #endif 744 745 /* And these first appeared in hpux10. */ 746 #ifndef R_SHORT_PCREL_MODE 747 #define NO_PCREL_MODES 748 #define R_SHORT_PCREL_MODE 0x3e 749 #endif 750 751 #ifndef R_LONG_PCREL_MODE 752 #define R_LONG_PCREL_MODE 0x3f 753 #endif 754 755 #ifndef R_N0SEL 756 #define R_N0SEL 0xd8 757 #endif 758 759 #ifndef R_N1SEL 760 #define R_N1SEL 0xd9 761 #endif 762 763 #ifndef R_LINETAB 764 #define R_LINETAB 0xda 765 #endif 766 767 #ifndef R_LINETAB_ESC 768 #define R_LINETAB_ESC 0xdb 769 #endif 770 771 #ifndef R_LTP_OVERRIDE 772 #define R_LTP_OVERRIDE 0xdc 773 #endif 774 775 #ifndef R_COMMENT 776 #define R_COMMENT 0xdd 777 #endif 778 779 #define SOM_HOWTO(TYPE, NAME) \ 780 HOWTO(TYPE, 0, 0, 32, false, 0, 0, hppa_som_reloc, NAME, false, 0, 0, false) 781 782 static reloc_howto_type som_hppa_howto_table[] = { 783 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 784 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 785 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 786 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 787 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 788 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 789 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 790 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 791 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 792 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 793 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 794 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 795 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 796 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 797 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 798 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 799 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 800 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 801 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 802 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 803 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 804 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 805 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 806 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 807 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 808 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 809 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 810 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 811 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 812 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 813 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 814 SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"), 815 SOM_HOWTO (R_ZEROES, "R_ZEROES"), 816 SOM_HOWTO (R_ZEROES, "R_ZEROES"), 817 SOM_HOWTO (R_UNINIT, "R_UNINIT"), 818 SOM_HOWTO (R_UNINIT, "R_UNINIT"), 819 SOM_HOWTO (R_RELOCATION, "R_RELOCATION"), 820 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"), 821 SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"), 822 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"), 823 SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"), 824 SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"), 825 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 826 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 827 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 828 SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"), 829 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 830 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 831 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 832 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 833 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 834 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 835 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 836 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 837 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 838 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 839 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 840 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 841 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 842 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 843 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 844 SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"), 845 SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"), 846 SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"), 847 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 848 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 849 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 850 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 851 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 852 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 853 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 854 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 855 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 856 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 857 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 858 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 859 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 860 SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"), 861 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 862 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 863 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 864 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 865 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 866 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 867 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 868 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 869 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 870 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 871 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 872 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 873 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 874 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 875 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 876 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 877 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 878 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 879 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 880 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 881 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 882 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 883 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 884 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 885 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 886 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 887 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 888 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 889 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 890 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 891 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 892 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 893 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 894 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 895 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 896 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 897 SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"), 898 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 899 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 900 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 901 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 902 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 903 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"), 904 SOM_HOWTO (R_DLT_REL, "R_DLT_REL"), 905 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 906 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 907 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 908 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 909 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 910 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 911 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 912 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 913 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 914 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 915 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 916 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 917 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 918 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 919 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 920 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 921 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 922 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 923 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 924 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 925 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 926 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 927 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 928 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 929 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 930 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 931 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 932 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 933 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 934 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 935 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 936 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 937 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 938 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 939 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 940 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 941 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 942 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 943 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 944 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 945 SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"), 946 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 947 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 948 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 949 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 950 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 951 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 952 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 953 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 954 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 955 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 956 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 957 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"), 958 SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"), 959 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"), 960 SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"), 961 SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"), 962 SOM_HOWTO (R_ENTRY, "R_ENTRY"), 963 SOM_HOWTO (R_ENTRY, "R_ENTRY"), 964 SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"), 965 SOM_HOWTO (R_EXIT, "R_EXIT"), 966 SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"), 967 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 968 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 969 SOM_HOWTO (R_END_TRY, "R_END_TRY"), 970 SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"), 971 SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"), 972 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 973 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 974 SOM_HOWTO (R_STATEMENT, "R_STATEMENT"), 975 SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"), 976 SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"), 977 SOM_HOWTO (R_FSEL, "R_FSEL"), 978 SOM_HOWTO (R_LSEL, "R_LSEL"), 979 SOM_HOWTO (R_RSEL, "R_RSEL"), 980 SOM_HOWTO (R_N_MODE, "R_N_MODE"), 981 SOM_HOWTO (R_S_MODE, "R_S_MODE"), 982 SOM_HOWTO (R_D_MODE, "R_D_MODE"), 983 SOM_HOWTO (R_R_MODE, "R_R_MODE"), 984 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 985 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 986 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 987 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 988 SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"), 989 SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"), 990 SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"), 991 SOM_HOWTO (R_COMP1, "R_COMP1"), 992 SOM_HOWTO (R_COMP2, "R_COMP2"), 993 SOM_HOWTO (R_COMP3, "R_COMP3"), 994 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 995 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 996 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 997 SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"), 998 SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"), 999 SOM_HOWTO (R_N0SEL, "R_N0SEL"), 1000 SOM_HOWTO (R_N1SEL, "R_N1SEL"), 1001 SOM_HOWTO (R_LINETAB, "R_LINETAB"), 1002 SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"), 1003 SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"), 1004 SOM_HOWTO (R_COMMENT, "R_COMMENT"), 1005 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1006 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1007 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1008 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1009 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1010 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1011 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1012 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1013 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1014 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1015 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1016 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1017 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1018 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1019 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1020 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1021 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1022 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1023 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1024 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1025 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1026 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1027 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1028 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1029 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1030 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1031 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1032 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1033 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1034 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1035 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1036 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1037 SOM_HOWTO (R_RESERVED, "R_RESERVED"), 1038 SOM_HOWTO (R_RESERVED, "R_RESERVED") 1039 }; 1040 1041 /* Initialize the SOM relocation queue. By definition the queue holds 1042 the last four multibyte fixups. */ 1043 1044 static void 1045 som_initialize_reloc_queue (queue) 1046 struct reloc_queue *queue; 1047 { 1048 queue[0].reloc = NULL; 1049 queue[0].size = 0; 1050 queue[1].reloc = NULL; 1051 queue[1].size = 0; 1052 queue[2].reloc = NULL; 1053 queue[2].size = 0; 1054 queue[3].reloc = NULL; 1055 queue[3].size = 0; 1056 } 1057 1058 /* Insert a new relocation into the relocation queue. */ 1059 1060 static void 1061 som_reloc_queue_insert (p, size, queue) 1062 unsigned char *p; 1063 unsigned int size; 1064 struct reloc_queue *queue; 1065 { 1066 queue[3].reloc = queue[2].reloc; 1067 queue[3].size = queue[2].size; 1068 queue[2].reloc = queue[1].reloc; 1069 queue[2].size = queue[1].size; 1070 queue[1].reloc = queue[0].reloc; 1071 queue[1].size = queue[0].size; 1072 queue[0].reloc = p; 1073 queue[0].size = size; 1074 } 1075 1076 /* When an entry in the relocation queue is reused, the entry moves 1077 to the front of the queue. */ 1078 1079 static void 1080 som_reloc_queue_fix (queue, index) 1081 struct reloc_queue *queue; 1082 unsigned int index; 1083 { 1084 if (index == 0) 1085 return; 1086 1087 if (index == 1) 1088 { 1089 unsigned char *tmp1 = queue[0].reloc; 1090 unsigned int tmp2 = queue[0].size; 1091 queue[0].reloc = queue[1].reloc; 1092 queue[0].size = queue[1].size; 1093 queue[1].reloc = tmp1; 1094 queue[1].size = tmp2; 1095 return; 1096 } 1097 1098 if (index == 2) 1099 { 1100 unsigned char *tmp1 = queue[0].reloc; 1101 unsigned int tmp2 = queue[0].size; 1102 queue[0].reloc = queue[2].reloc; 1103 queue[0].size = queue[2].size; 1104 queue[2].reloc = queue[1].reloc; 1105 queue[2].size = queue[1].size; 1106 queue[1].reloc = tmp1; 1107 queue[1].size = tmp2; 1108 return; 1109 } 1110 1111 if (index == 3) 1112 { 1113 unsigned char *tmp1 = queue[0].reloc; 1114 unsigned int tmp2 = queue[0].size; 1115 queue[0].reloc = queue[3].reloc; 1116 queue[0].size = queue[3].size; 1117 queue[3].reloc = queue[2].reloc; 1118 queue[3].size = queue[2].size; 1119 queue[2].reloc = queue[1].reloc; 1120 queue[2].size = queue[1].size; 1121 queue[1].reloc = tmp1; 1122 queue[1].size = tmp2; 1123 return; 1124 } 1125 abort (); 1126 } 1127 1128 /* Search for a particular relocation in the relocation queue. */ 1129 1130 static int 1131 som_reloc_queue_find (p, size, queue) 1132 unsigned char *p; 1133 unsigned int size; 1134 struct reloc_queue *queue; 1135 { 1136 if (queue[0].reloc && !memcmp (p, queue[0].reloc, size) 1137 && size == queue[0].size) 1138 return 0; 1139 if (queue[1].reloc && !memcmp (p, queue[1].reloc, size) 1140 && size == queue[1].size) 1141 return 1; 1142 if (queue[2].reloc && !memcmp (p, queue[2].reloc, size) 1143 && size == queue[2].size) 1144 return 2; 1145 if (queue[3].reloc && !memcmp (p, queue[3].reloc, size) 1146 && size == queue[3].size) 1147 return 3; 1148 return -1; 1149 } 1150 1151 static unsigned char * 1152 try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue) 1153 bfd *abfd ATTRIBUTE_UNUSED; 1154 int *subspace_reloc_sizep; 1155 unsigned char *p; 1156 unsigned int size; 1157 struct reloc_queue *queue; 1158 { 1159 int queue_index = som_reloc_queue_find (p, size, queue); 1160 1161 if (queue_index != -1) 1162 { 1163 /* Found this in a previous fixup. Undo the fixup we 1164 just built and use R_PREV_FIXUP instead. We saved 1165 a total of size - 1 bytes in the fixup stream. */ 1166 bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p); 1167 p += 1; 1168 *subspace_reloc_sizep += 1; 1169 som_reloc_queue_fix (queue, queue_index); 1170 } 1171 else 1172 { 1173 som_reloc_queue_insert (p, size, queue); 1174 *subspace_reloc_sizep += size; 1175 p += size; 1176 } 1177 return p; 1178 } 1179 1180 /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP 1181 bytes without any relocation. Update the size of the subspace 1182 relocation stream via SUBSPACE_RELOC_SIZE_P; also return the 1183 current pointer into the relocation stream. */ 1184 1185 static unsigned char * 1186 som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue) 1187 bfd *abfd; 1188 unsigned int skip; 1189 unsigned char *p; 1190 unsigned int *subspace_reloc_sizep; 1191 struct reloc_queue *queue; 1192 { 1193 /* Use a 4 byte R_NO_RELOCATION entry with a maximal value 1194 then R_PREV_FIXUPs to get the difference down to a 1195 reasonable size. */ 1196 if (skip >= 0x1000000) 1197 { 1198 skip -= 0x1000000; 1199 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); 1200 bfd_put_8 (abfd, 0xff, p + 1); 1201 bfd_put_16 (abfd, 0xffff, p + 2); 1202 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1203 while (skip >= 0x1000000) 1204 { 1205 skip -= 0x1000000; 1206 bfd_put_8 (abfd, R_PREV_FIXUP, p); 1207 p++; 1208 *subspace_reloc_sizep += 1; 1209 /* No need to adjust queue here since we are repeating the 1210 most recent fixup. */ 1211 } 1212 } 1213 1214 /* The difference must be less than 0x1000000. Use one 1215 more R_NO_RELOCATION entry to get to the right difference. */ 1216 if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0) 1217 { 1218 /* Difference can be handled in a simple single-byte 1219 R_NO_RELOCATION entry. */ 1220 if (skip <= 0x60) 1221 { 1222 bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p); 1223 *subspace_reloc_sizep += 1; 1224 p++; 1225 } 1226 /* Handle it with a two byte R_NO_RELOCATION entry. */ 1227 else if (skip <= 0x1000) 1228 { 1229 bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p); 1230 bfd_put_8 (abfd, (skip >> 2) - 1, p + 1); 1231 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1232 } 1233 /* Handle it with a three byte R_NO_RELOCATION entry. */ 1234 else 1235 { 1236 bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p); 1237 bfd_put_16 (abfd, (skip >> 2) - 1, p + 1); 1238 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1239 } 1240 } 1241 /* Ugh. Punt and use a 4 byte entry. */ 1242 else if (skip > 0) 1243 { 1244 bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); 1245 bfd_put_8 (abfd, (skip - 1) >> 16, p + 1); 1246 bfd_put_16 (abfd, skip - 1, p + 2); 1247 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1248 } 1249 return p; 1250 } 1251 1252 /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend 1253 from a BFD relocation. Update the size of the subspace relocation 1254 stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer 1255 into the relocation stream. */ 1256 1257 static unsigned char * 1258 som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue) 1259 bfd *abfd; 1260 int addend; 1261 unsigned char *p; 1262 unsigned int *subspace_reloc_sizep; 1263 struct reloc_queue *queue; 1264 { 1265 if ((unsigned) (addend) + 0x80 < 0x100) 1266 { 1267 bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p); 1268 bfd_put_8 (abfd, addend, p + 1); 1269 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1270 } 1271 else if ((unsigned) (addend) + 0x8000 < 0x10000) 1272 { 1273 bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p); 1274 bfd_put_16 (abfd, addend, p + 1); 1275 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1276 } 1277 else if ((unsigned) (addend) + 0x800000 < 0x1000000) 1278 { 1279 bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p); 1280 bfd_put_8 (abfd, addend >> 16, p + 1); 1281 bfd_put_16 (abfd, addend, p + 2); 1282 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); 1283 } 1284 else 1285 { 1286 bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p); 1287 bfd_put_32 (abfd, addend, p + 1); 1288 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); 1289 } 1290 return p; 1291 } 1292 1293 /* Handle a single function call relocation. */ 1294 1295 static unsigned char * 1296 som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue) 1297 bfd *abfd; 1298 unsigned char *p; 1299 unsigned int *subspace_reloc_sizep; 1300 arelent *bfd_reloc; 1301 int sym_num; 1302 struct reloc_queue *queue; 1303 { 1304 int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend); 1305 int rtn_bits = arg_bits & 0x3; 1306 int type, done = 0; 1307 1308 /* You'll never believe all this is necessary to handle relocations 1309 for function calls. Having to compute and pack the argument 1310 relocation bits is the real nightmare. 1311 1312 If you're interested in how this works, just forget it. You really 1313 do not want to know about this braindamage. */ 1314 1315 /* First see if this can be done with a "simple" relocation. Simple 1316 relocations have a symbol number < 0x100 and have simple encodings 1317 of argument relocations. */ 1318 1319 if (sym_num < 0x100) 1320 { 1321 switch (arg_bits) 1322 { 1323 case 0: 1324 case 1: 1325 type = 0; 1326 break; 1327 case 1 << 8: 1328 case 1 << 8 | 1: 1329 type = 1; 1330 break; 1331 case 1 << 8 | 1 << 6: 1332 case 1 << 8 | 1 << 6 | 1: 1333 type = 2; 1334 break; 1335 case 1 << 8 | 1 << 6 | 1 << 4: 1336 case 1 << 8 | 1 << 6 | 1 << 4 | 1: 1337 type = 3; 1338 break; 1339 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2: 1340 case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1: 1341 type = 4; 1342 break; 1343 default: 1344 /* Not one of the easy encodings. This will have to be 1345 handled by the more complex code below. */ 1346 type = -1; 1347 break; 1348 } 1349 if (type != -1) 1350 { 1351 /* Account for the return value too. */ 1352 if (rtn_bits) 1353 type += 5; 1354 1355 /* Emit a 2 byte relocation. Then see if it can be handled 1356 with a relocation which is already in the relocation queue. */ 1357 bfd_put_8 (abfd, bfd_reloc->howto->type + type, p); 1358 bfd_put_8 (abfd, sym_num, p + 1); 1359 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 1360 done = 1; 1361 } 1362 } 1363 1364 /* If this could not be handled with a simple relocation, then do a hard 1365 one. Hard relocations occur if the symbol number was too high or if 1366 the encoding of argument relocation bits is too complex. */ 1367 if (! done) 1368 { 1369 /* Don't ask about these magic sequences. I took them straight 1370 from gas-1.36 which took them from the a.out man page. */ 1371 type = rtn_bits; 1372 if ((arg_bits >> 6 & 0xf) == 0xe) 1373 type += 9 * 40; 1374 else 1375 type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40; 1376 if ((arg_bits >> 2 & 0xf) == 0xe) 1377 type += 9 * 4; 1378 else 1379 type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4; 1380 1381 /* Output the first two bytes of the relocation. These describe 1382 the length of the relocation and encoding style. */ 1383 bfd_put_8 (abfd, bfd_reloc->howto->type + 10 1384 + 2 * (sym_num >= 0x100) + (type >= 0x100), 1385 p); 1386 bfd_put_8 (abfd, type, p + 1); 1387 1388 /* Now output the symbol index and see if this bizarre relocation 1389 just happened to be in the relocation queue. */ 1390 if (sym_num < 0x100) 1391 { 1392 bfd_put_8 (abfd, sym_num, p + 2); 1393 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); 1394 } 1395 else 1396 { 1397 bfd_put_8 (abfd, sym_num >> 16, p + 2); 1398 bfd_put_16 (abfd, sym_num, p + 3); 1399 p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); 1400 } 1401 } 1402 return p; 1403 } 1404 1405 /* Return the logarithm of X, base 2, considering X unsigned. 1406 Abort -1 if X is not a power or two or is zero. */ 1407 1408 static int 1409 log2 (x) 1410 unsigned int x; 1411 { 1412 int log = 0; 1413 1414 /* Test for 0 or a power of 2. */ 1415 if (x == 0 || x != (x & -x)) 1416 return -1; 1417 1418 while ((x >>= 1) != 0) 1419 log++; 1420 return log; 1421 } 1422 1423 static bfd_reloc_status_type 1424 hppa_som_reloc (abfd, reloc_entry, symbol_in, data, 1425 input_section, output_bfd, error_message) 1426 bfd *abfd ATTRIBUTE_UNUSED; 1427 arelent *reloc_entry; 1428 asymbol *symbol_in ATTRIBUTE_UNUSED; 1429 PTR data ATTRIBUTE_UNUSED; 1430 asection *input_section; 1431 bfd *output_bfd; 1432 char **error_message ATTRIBUTE_UNUSED; 1433 { 1434 if (output_bfd) 1435 { 1436 reloc_entry->address += input_section->output_offset; 1437 return bfd_reloc_ok; 1438 } 1439 return bfd_reloc_ok; 1440 } 1441 1442 /* Given a generic HPPA relocation type, the instruction format, 1443 and a field selector, return one or more appropriate SOM relocations. */ 1444 1445 int ** 1446 hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym) 1447 bfd *abfd; 1448 int base_type; 1449 int format; 1450 enum hppa_reloc_field_selector_type_alt field; 1451 int sym_diff; 1452 asymbol *sym; 1453 { 1454 int *final_type, **final_types; 1455 1456 final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6); 1457 final_type = (int *) bfd_alloc (abfd, sizeof (int)); 1458 if (!final_types || !final_type) 1459 return NULL; 1460 1461 /* The field selector may require additional relocations to be 1462 generated. It's impossible to know at this moment if additional 1463 relocations will be needed, so we make them. The code to actually 1464 write the relocation/fixup stream is responsible for removing 1465 any redundant relocations. */ 1466 switch (field) 1467 { 1468 case e_fsel: 1469 case e_psel: 1470 case e_lpsel: 1471 case e_rpsel: 1472 final_types[0] = final_type; 1473 final_types[1] = NULL; 1474 final_types[2] = NULL; 1475 *final_type = base_type; 1476 break; 1477 1478 case e_tsel: 1479 case e_ltsel: 1480 case e_rtsel: 1481 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1482 if (!final_types[0]) 1483 return NULL; 1484 if (field == e_tsel) 1485 *final_types[0] = R_FSEL; 1486 else if (field == e_ltsel) 1487 *final_types[0] = R_LSEL; 1488 else 1489 *final_types[0] = R_RSEL; 1490 final_types[1] = final_type; 1491 final_types[2] = NULL; 1492 *final_type = base_type; 1493 break; 1494 1495 case e_lssel: 1496 case e_rssel: 1497 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1498 if (!final_types[0]) 1499 return NULL; 1500 *final_types[0] = R_S_MODE; 1501 final_types[1] = final_type; 1502 final_types[2] = NULL; 1503 *final_type = base_type; 1504 break; 1505 1506 case e_lsel: 1507 case e_rsel: 1508 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1509 if (!final_types[0]) 1510 return NULL; 1511 *final_types[0] = R_N_MODE; 1512 final_types[1] = final_type; 1513 final_types[2] = NULL; 1514 *final_type = base_type; 1515 break; 1516 1517 case e_ldsel: 1518 case e_rdsel: 1519 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1520 if (!final_types[0]) 1521 return NULL; 1522 *final_types[0] = R_D_MODE; 1523 final_types[1] = final_type; 1524 final_types[2] = NULL; 1525 *final_type = base_type; 1526 break; 1527 1528 case e_lrsel: 1529 case e_rrsel: 1530 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1531 if (!final_types[0]) 1532 return NULL; 1533 *final_types[0] = R_R_MODE; 1534 final_types[1] = final_type; 1535 final_types[2] = NULL; 1536 *final_type = base_type; 1537 break; 1538 1539 case e_nsel: 1540 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1541 if (!final_types[0]) 1542 return NULL; 1543 *final_types[0] = R_N1SEL; 1544 final_types[1] = final_type; 1545 final_types[2] = NULL; 1546 *final_type = base_type; 1547 break; 1548 1549 case e_nlsel: 1550 case e_nlrsel: 1551 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1552 if (!final_types[0]) 1553 return NULL; 1554 *final_types[0] = R_N0SEL; 1555 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int)); 1556 if (!final_types[1]) 1557 return NULL; 1558 if (field == e_nlsel) 1559 *final_types[1] = R_N_MODE; 1560 else 1561 *final_types[1] = R_R_MODE; 1562 final_types[2] = final_type; 1563 final_types[3] = NULL; 1564 *final_type = base_type; 1565 break; 1566 } 1567 1568 switch (base_type) 1569 { 1570 case R_HPPA: 1571 /* The difference of two symbols needs *very* special handling. */ 1572 if (sym_diff) 1573 { 1574 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1575 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int)); 1576 final_types[2] = (int *) bfd_alloc (abfd, sizeof (int)); 1577 final_types[3] = (int *) bfd_alloc (abfd, sizeof (int)); 1578 if (!final_types[0] || !final_types[1] || !final_types[2]) 1579 return NULL; 1580 if (field == e_fsel) 1581 *final_types[0] = R_FSEL; 1582 else if (field == e_rsel) 1583 *final_types[0] = R_RSEL; 1584 else if (field == e_lsel) 1585 *final_types[0] = R_LSEL; 1586 *final_types[1] = R_COMP2; 1587 *final_types[2] = R_COMP2; 1588 *final_types[3] = R_COMP1; 1589 final_types[4] = final_type; 1590 if (format == 32) 1591 *final_types[4] = R_DATA_EXPR; 1592 else 1593 *final_types[4] = R_CODE_EXPR; 1594 final_types[5] = NULL; 1595 break; 1596 } 1597 /* PLABELs get their own relocation type. */ 1598 else if (field == e_psel 1599 || field == e_lpsel 1600 || field == e_rpsel) 1601 { 1602 /* A PLABEL relocation that has a size of 32 bits must 1603 be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */ 1604 if (format == 32) 1605 *final_type = R_DATA_PLABEL; 1606 else 1607 *final_type = R_CODE_PLABEL; 1608 } 1609 /* PIC stuff. */ 1610 else if (field == e_tsel 1611 || field == e_ltsel 1612 || field == e_rtsel) 1613 *final_type = R_DLT_REL; 1614 /* A relocation in the data space is always a full 32bits. */ 1615 else if (format == 32) 1616 { 1617 *final_type = R_DATA_ONE_SYMBOL; 1618 1619 /* If there's no SOM symbol type associated with this BFD 1620 symbol, then set the symbol type to ST_DATA. 1621 1622 Only do this if the type is going to default later when 1623 we write the object file. 1624 1625 This is done so that the linker never encounters an 1626 R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol. 1627 1628 This allows the compiler to generate exception handling 1629 tables. 1630 1631 Note that one day we may need to also emit BEGIN_BRTAB and 1632 END_BRTAB to prevent the linker from optimizing away insns 1633 in exception handling regions. */ 1634 if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 1635 && (sym->flags & BSF_SECTION_SYM) == 0 1636 && (sym->flags & BSF_FUNCTION) == 0 1637 && ! bfd_is_com_section (sym->section)) 1638 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; 1639 } 1640 break; 1641 1642 case R_HPPA_GOTOFF: 1643 /* More PLABEL special cases. */ 1644 if (field == e_psel 1645 || field == e_lpsel 1646 || field == e_rpsel) 1647 *final_type = R_DATA_PLABEL; 1648 break; 1649 1650 case R_HPPA_COMPLEX: 1651 /* The difference of two symbols needs *very* special handling. */ 1652 if (sym_diff) 1653 { 1654 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1655 final_types[1] = (int *) bfd_alloc (abfd, sizeof (int)); 1656 final_types[2] = (int *) bfd_alloc (abfd, sizeof (int)); 1657 final_types[3] = (int *) bfd_alloc (abfd, sizeof (int)); 1658 if (!final_types[0] || !final_types[1] || !final_types[2]) 1659 return NULL; 1660 if (field == e_fsel) 1661 *final_types[0] = R_FSEL; 1662 else if (field == e_rsel) 1663 *final_types[0] = R_RSEL; 1664 else if (field == e_lsel) 1665 *final_types[0] = R_LSEL; 1666 *final_types[1] = R_COMP2; 1667 *final_types[2] = R_COMP2; 1668 *final_types[3] = R_COMP1; 1669 final_types[4] = final_type; 1670 if (format == 32) 1671 *final_types[4] = R_DATA_EXPR; 1672 else 1673 *final_types[4] = R_CODE_EXPR; 1674 final_types[5] = NULL; 1675 break; 1676 } 1677 else 1678 break; 1679 1680 case R_HPPA_NONE: 1681 case R_HPPA_ABS_CALL: 1682 /* Right now we can default all these. */ 1683 break; 1684 1685 case R_HPPA_PCREL_CALL: 1686 { 1687 #ifndef NO_PCREL_MODES 1688 /* If we have short and long pcrel modes, then generate the proper 1689 mode selector, then the pcrel relocation. Redundant selectors 1690 will be eliminted as the relocs are sized and emitted. */ 1691 final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); 1692 if (!final_types[0]) 1693 return NULL; 1694 if (format == 17) 1695 *final_types[0] = R_SHORT_PCREL_MODE; 1696 else 1697 *final_types[0] = R_LONG_PCREL_MODE; 1698 final_types[1] = final_type; 1699 final_types[2] = NULL; 1700 *final_type = base_type; 1701 #endif 1702 break; 1703 } 1704 } 1705 return final_types; 1706 } 1707 1708 /* Return the address of the correct entry in the PA SOM relocation 1709 howto table. */ 1710 1711 static reloc_howto_type * 1712 som_bfd_reloc_type_lookup (abfd, code) 1713 bfd *abfd ATTRIBUTE_UNUSED; 1714 bfd_reloc_code_real_type code; 1715 { 1716 if ((int) code < (int) R_NO_RELOCATION + 255) 1717 { 1718 BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code); 1719 return &som_hppa_howto_table[(int) code]; 1720 } 1721 1722 return (reloc_howto_type *) 0; 1723 } 1724 1725 /* Perform some initialization for an object. Save results of this 1726 initialization in the BFD. */ 1727 1728 static const bfd_target * 1729 som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset) 1730 bfd *abfd; 1731 struct header *file_hdrp; 1732 struct som_exec_auxhdr *aux_hdrp; 1733 unsigned long current_offset; 1734 { 1735 asection *section; 1736 int found; 1737 1738 /* som_mkobject will set bfd_error if som_mkobject fails. */ 1739 if (som_mkobject (abfd) != true) 1740 return 0; 1741 1742 /* Set BFD flags based on what information is available in the SOM. */ 1743 abfd->flags = BFD_NO_FLAGS; 1744 if (file_hdrp->symbol_total) 1745 abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; 1746 1747 switch (file_hdrp->a_magic) 1748 { 1749 case DEMAND_MAGIC: 1750 abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P); 1751 break; 1752 case SHARE_MAGIC: 1753 abfd->flags |= (WP_TEXT | EXEC_P); 1754 break; 1755 case EXEC_MAGIC: 1756 abfd->flags |= (EXEC_P); 1757 break; 1758 case RELOC_MAGIC: 1759 abfd->flags |= HAS_RELOC; 1760 break; 1761 #ifdef SHL_MAGIC 1762 case SHL_MAGIC: 1763 #endif 1764 #ifdef DL_MAGIC 1765 case DL_MAGIC: 1766 #endif 1767 abfd->flags |= DYNAMIC; 1768 break; 1769 1770 default: 1771 break; 1772 } 1773 1774 /* Allocate space to hold the saved exec header information. */ 1775 obj_som_exec_data (abfd) = (struct som_exec_data *) 1776 bfd_zalloc (abfd, sizeof (struct som_exec_data)); 1777 if (obj_som_exec_data (abfd) == NULL) 1778 return NULL; 1779 1780 /* The braindamaged OSF1 linker switched exec_flags and exec_entry! 1781 1782 We used to identify OSF1 binaries based on NEW_VERSION_ID, but 1783 apparently the latest HPUX linker is using NEW_VERSION_ID now. 1784 1785 It's about time, OSF has used the new id since at least 1992; 1786 HPUX didn't start till nearly 1995!. 1787 1788 The new approach examines the entry field. If it's zero or not 4 1789 byte aligned then it's not a proper code address and we guess it's 1790 really the executable flags. */ 1791 found = 0; 1792 for (section = abfd->sections; section; section = section->next) 1793 { 1794 if ((section->flags & SEC_CODE) == 0) 1795 continue; 1796 if (aux_hdrp->exec_entry >= section->vma 1797 && aux_hdrp->exec_entry < section->vma + section->_cooked_size) 1798 found = 1; 1799 } 1800 if (aux_hdrp->exec_entry == 0 1801 || (aux_hdrp->exec_entry & 0x3) != 0 1802 || ! found) 1803 { 1804 bfd_get_start_address (abfd) = aux_hdrp->exec_flags; 1805 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry; 1806 } 1807 else 1808 { 1809 bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset; 1810 obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags; 1811 } 1812 1813 bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10); 1814 bfd_get_symcount (abfd) = file_hdrp->symbol_total; 1815 1816 /* Initialize the saved symbol table and string table to NULL. 1817 Save important offsets and sizes from the SOM header into 1818 the BFD. */ 1819 obj_som_stringtab (abfd) = (char *) NULL; 1820 obj_som_symtab (abfd) = (som_symbol_type *) NULL; 1821 obj_som_sorted_syms (abfd) = NULL; 1822 obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size; 1823 obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset; 1824 obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location 1825 + current_offset); 1826 obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location 1827 + current_offset); 1828 obj_som_exec_data (abfd)->system_id = file_hdrp->system_id; 1829 1830 return abfd->xvec; 1831 } 1832 1833 /* Convert all of the space and subspace info into BFD sections. Each space 1834 contains a number of subspaces, which in turn describe the mapping between 1835 regions of the exec file, and the address space that the program runs in. 1836 BFD sections which correspond to spaces will overlap the sections for the 1837 associated subspaces. */ 1838 1839 static boolean 1840 setup_sections (abfd, file_hdr, current_offset) 1841 bfd *abfd; 1842 struct header *file_hdr; 1843 unsigned long current_offset; 1844 { 1845 char *space_strings; 1846 unsigned int space_index, i; 1847 unsigned int total_subspaces = 0; 1848 asection **subspace_sections, *section; 1849 1850 /* First, read in space names. */ 1851 1852 space_strings = bfd_malloc (file_hdr->space_strings_size); 1853 if (!space_strings && file_hdr->space_strings_size != 0) 1854 goto error_return; 1855 1856 if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location, 1857 SEEK_SET) < 0) 1858 goto error_return; 1859 if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd) 1860 != file_hdr->space_strings_size) 1861 goto error_return; 1862 1863 /* Loop over all of the space dictionaries, building up sections. */ 1864 for (space_index = 0; space_index < file_hdr->space_total; space_index++) 1865 { 1866 struct space_dictionary_record space; 1867 struct subspace_dictionary_record subspace, save_subspace; 1868 int subspace_index; 1869 asection *space_asect; 1870 char *newname; 1871 1872 /* Read the space dictionary element. */ 1873 if (bfd_seek (abfd, 1874 (current_offset + file_hdr->space_location 1875 + space_index * sizeof space), 1876 SEEK_SET) < 0) 1877 goto error_return; 1878 if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space) 1879 goto error_return; 1880 1881 /* Setup the space name string. */ 1882 space.name.n_name = space.name.n_strx + space_strings; 1883 1884 /* Make a section out of it. */ 1885 newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1); 1886 if (!newname) 1887 goto error_return; 1888 strcpy (newname, space.name.n_name); 1889 1890 space_asect = bfd_make_section_anyway (abfd, newname); 1891 if (!space_asect) 1892 goto error_return; 1893 1894 if (space.is_loadable == 0) 1895 space_asect->flags |= SEC_DEBUGGING; 1896 1897 /* Set up all the attributes for the space. */ 1898 if (bfd_som_set_section_attributes (space_asect, space.is_defined, 1899 space.is_private, space.sort_key, 1900 space.space_number) == false) 1901 goto error_return; 1902 1903 /* If the space has no subspaces, then we're done. */ 1904 if (space.subspace_quantity == 0) 1905 continue; 1906 1907 /* Now, read in the first subspace for this space. */ 1908 if (bfd_seek (abfd, 1909 (current_offset + file_hdr->subspace_location 1910 + space.subspace_index * sizeof subspace), 1911 SEEK_SET) < 0) 1912 goto error_return; 1913 if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace) 1914 goto error_return; 1915 /* Seek back to the start of the subspaces for loop below. */ 1916 if (bfd_seek (abfd, 1917 (current_offset + file_hdr->subspace_location 1918 + space.subspace_index * sizeof subspace), 1919 SEEK_SET) < 0) 1920 goto error_return; 1921 1922 /* Setup the start address and file loc from the first subspace 1923 record. */ 1924 space_asect->vma = subspace.subspace_start; 1925 space_asect->filepos = subspace.file_loc_init_value + current_offset; 1926 space_asect->alignment_power = log2 (subspace.alignment); 1927 if (space_asect->alignment_power == -1) 1928 goto error_return; 1929 1930 /* Initialize save_subspace so we can reliably determine if this 1931 loop placed any useful values into it. */ 1932 memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record)); 1933 1934 /* Loop over the rest of the subspaces, building up more sections. */ 1935 for (subspace_index = 0; subspace_index < space.subspace_quantity; 1936 subspace_index++) 1937 { 1938 asection *subspace_asect; 1939 1940 /* Read in the next subspace. */ 1941 if (bfd_read (&subspace, 1, sizeof subspace, abfd) 1942 != sizeof subspace) 1943 goto error_return; 1944 1945 /* Setup the subspace name string. */ 1946 subspace.name.n_name = subspace.name.n_strx + space_strings; 1947 1948 newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1); 1949 if (!newname) 1950 goto error_return; 1951 strcpy (newname, subspace.name.n_name); 1952 1953 /* Make a section out of this subspace. */ 1954 subspace_asect = bfd_make_section_anyway (abfd, newname); 1955 if (!subspace_asect) 1956 goto error_return; 1957 1958 /* Store private information about the section. */ 1959 if (bfd_som_set_subsection_attributes (subspace_asect, space_asect, 1960 subspace.access_control_bits, 1961 subspace.sort_key, 1962 subspace.quadrant) == false) 1963 goto error_return; 1964 1965 /* Keep an easy mapping between subspaces and sections. 1966 Note we do not necessarily read the subspaces in the 1967 same order in which they appear in the object file. 1968 1969 So to make the target index come out correctly, we 1970 store the location of the subspace header in target 1971 index, then sort using the location of the subspace 1972 header as the key. Then we can assign correct 1973 subspace indices. */ 1974 total_subspaces++; 1975 subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace); 1976 1977 /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified 1978 by the access_control_bits in the subspace header. */ 1979 switch (subspace.access_control_bits >> 4) 1980 { 1981 /* Readonly data. */ 1982 case 0x0: 1983 subspace_asect->flags |= SEC_DATA | SEC_READONLY; 1984 break; 1985 1986 /* Normal data. */ 1987 case 0x1: 1988 subspace_asect->flags |= SEC_DATA; 1989 break; 1990 1991 /* Readonly code and the gateways. 1992 Gateways have other attributes which do not map 1993 into anything BFD knows about. */ 1994 case 0x2: 1995 case 0x4: 1996 case 0x5: 1997 case 0x6: 1998 case 0x7: 1999 subspace_asect->flags |= SEC_CODE | SEC_READONLY; 2000 break; 2001 2002 /* dynamic (writable) code. */ 2003 case 0x3: 2004 subspace_asect->flags |= SEC_CODE; 2005 break; 2006 } 2007 2008 if (subspace.dup_common || subspace.is_common) 2009 subspace_asect->flags |= SEC_IS_COMMON; 2010 else if (subspace.subspace_length > 0) 2011 subspace_asect->flags |= SEC_HAS_CONTENTS; 2012 2013 if (subspace.is_loadable) 2014 subspace_asect->flags |= SEC_ALLOC | SEC_LOAD; 2015 else 2016 subspace_asect->flags |= SEC_DEBUGGING; 2017 2018 if (subspace.code_only) 2019 subspace_asect->flags |= SEC_CODE; 2020 2021 /* Both file_loc_init_value and initialization_length will 2022 be zero for a BSS like subspace. */ 2023 if (subspace.file_loc_init_value == 0 2024 && subspace.initialization_length == 0) 2025 subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS); 2026 2027 /* This subspace has relocations. 2028 The fixup_request_quantity is a byte count for the number of 2029 entries in the relocation stream; it is not the actual number 2030 of relocations in the subspace. */ 2031 if (subspace.fixup_request_quantity != 0) 2032 { 2033 subspace_asect->flags |= SEC_RELOC; 2034 subspace_asect->rel_filepos = subspace.fixup_request_index; 2035 som_section_data (subspace_asect)->reloc_size 2036 = subspace.fixup_request_quantity; 2037 /* We can not determine this yet. When we read in the 2038 relocation table the correct value will be filled in. */ 2039 subspace_asect->reloc_count = -1; 2040 } 2041 2042 /* Update save_subspace if appropriate. */ 2043 if (subspace.file_loc_init_value > save_subspace.file_loc_init_value) 2044 save_subspace = subspace; 2045 2046 subspace_asect->vma = subspace.subspace_start; 2047 subspace_asect->_cooked_size = subspace.subspace_length; 2048 subspace_asect->_raw_size = subspace.subspace_length; 2049 subspace_asect->filepos = (subspace.file_loc_init_value 2050 + current_offset); 2051 subspace_asect->alignment_power = log2 (subspace.alignment); 2052 if (subspace_asect->alignment_power == -1) 2053 goto error_return; 2054 } 2055 2056 /* This can happen for a .o which defines symbols in otherwise 2057 empty subspaces. */ 2058 if (!save_subspace.file_loc_init_value) 2059 { 2060 space_asect->_cooked_size = 0; 2061 space_asect->_raw_size = 0; 2062 } 2063 else 2064 { 2065 /* Setup the sizes for the space section based upon the info in the 2066 last subspace of the space. */ 2067 space_asect->_cooked_size = (save_subspace.subspace_start 2068 - space_asect->vma 2069 + save_subspace.subspace_length); 2070 space_asect->_raw_size = (save_subspace.file_loc_init_value 2071 - space_asect->filepos 2072 + save_subspace.initialization_length); 2073 } 2074 } 2075 /* Now that we've read in all the subspace records, we need to assign 2076 a target index to each subspace. */ 2077 subspace_sections = (asection **) bfd_malloc (total_subspaces 2078 * sizeof (asection *)); 2079 if (subspace_sections == NULL) 2080 goto error_return; 2081 2082 for (i = 0, section = abfd->sections; section; section = section->next) 2083 { 2084 if (!som_is_subspace (section)) 2085 continue; 2086 2087 subspace_sections[i] = section; 2088 i++; 2089 } 2090 qsort (subspace_sections, total_subspaces, 2091 sizeof (asection *), compare_subspaces); 2092 2093 /* subspace_sections is now sorted in the order in which the subspaces 2094 appear in the object file. Assign an index to each one now. */ 2095 for (i = 0; i < total_subspaces; i++) 2096 subspace_sections[i]->target_index = i; 2097 2098 if (space_strings != NULL) 2099 free (space_strings); 2100 2101 if (subspace_sections != NULL) 2102 free (subspace_sections); 2103 2104 return true; 2105 2106 error_return: 2107 if (space_strings != NULL) 2108 free (space_strings); 2109 2110 if (subspace_sections != NULL) 2111 free (subspace_sections); 2112 return false; 2113 } 2114 2115 /* Read in a SOM object and make it into a BFD. */ 2116 2117 static const bfd_target * 2118 som_object_p (abfd) 2119 bfd *abfd; 2120 { 2121 struct header file_hdr; 2122 struct som_exec_auxhdr aux_hdr; 2123 unsigned long current_offset = 0; 2124 struct lst_header lst_header; 2125 struct som_entry som_entry; 2126 #define ENTRY_SIZE sizeof (struct som_entry) 2127 2128 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE) 2129 { 2130 if (bfd_get_error () != bfd_error_system_call) 2131 bfd_set_error (bfd_error_wrong_format); 2132 return 0; 2133 } 2134 2135 if (!_PA_RISC_ID (file_hdr.system_id)) 2136 { 2137 bfd_set_error (bfd_error_wrong_format); 2138 return 0; 2139 } 2140 2141 switch (file_hdr.a_magic) 2142 { 2143 case RELOC_MAGIC: 2144 case EXEC_MAGIC: 2145 case SHARE_MAGIC: 2146 case DEMAND_MAGIC: 2147 #ifdef DL_MAGIC 2148 case DL_MAGIC: 2149 #endif 2150 #ifdef SHL_MAGIC 2151 case SHL_MAGIC: 2152 #endif 2153 #ifdef SHARED_MAGIC_CNX 2154 case SHARED_MAGIC_CNX: 2155 #endif 2156 break; 2157 2158 #ifdef EXECLIBMAGIC 2159 case EXECLIBMAGIC: 2160 /* Read the lst header and determine where the SOM directory begins. */ 2161 2162 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0) 2163 { 2164 if (bfd_get_error () != bfd_error_system_call) 2165 bfd_set_error (bfd_error_wrong_format); 2166 return 0; 2167 } 2168 2169 if (bfd_read ((PTR) & lst_header, 1, SLSTHDR, abfd) != SLSTHDR) 2170 { 2171 if (bfd_get_error () != bfd_error_system_call) 2172 bfd_set_error (bfd_error_wrong_format); 2173 return 0; 2174 } 2175 2176 /* Position to and read the first directory entry. */ 2177 2178 if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) < 0) 2179 { 2180 if (bfd_get_error () != bfd_error_system_call) 2181 bfd_set_error (bfd_error_wrong_format); 2182 return 0; 2183 } 2184 2185 if (bfd_read ((PTR) & som_entry, 1, ENTRY_SIZE, abfd) != ENTRY_SIZE) 2186 { 2187 if (bfd_get_error () != bfd_error_system_call) 2188 bfd_set_error (bfd_error_wrong_format); 2189 return 0; 2190 } 2191 2192 /* Now position to the first SOM. */ 2193 2194 if (bfd_seek (abfd, som_entry.location, SEEK_SET) < 0) 2195 { 2196 if (bfd_get_error () != bfd_error_system_call) 2197 bfd_set_error (bfd_error_wrong_format); 2198 return 0; 2199 } 2200 2201 current_offset = som_entry.location; 2202 2203 /* And finally, re-read the som header. */ 2204 2205 if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE) 2206 { 2207 if (bfd_get_error () != bfd_error_system_call) 2208 bfd_set_error (bfd_error_wrong_format); 2209 return 0; 2210 } 2211 2212 break; 2213 #endif 2214 2215 default: 2216 bfd_set_error (bfd_error_wrong_format); 2217 return 0; 2218 } 2219 2220 if (file_hdr.version_id != VERSION_ID 2221 && file_hdr.version_id != NEW_VERSION_ID) 2222 { 2223 bfd_set_error (bfd_error_wrong_format); 2224 return 0; 2225 } 2226 2227 /* If the aux_header_size field in the file header is zero, then this 2228 object is an incomplete executable (a .o file). Do not try to read 2229 a non-existant auxiliary header. */ 2230 memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr)); 2231 if (file_hdr.aux_header_size != 0) 2232 { 2233 if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE) 2234 { 2235 if (bfd_get_error () != bfd_error_system_call) 2236 bfd_set_error (bfd_error_wrong_format); 2237 return 0; 2238 } 2239 } 2240 2241 if (!setup_sections (abfd, &file_hdr, current_offset)) 2242 { 2243 /* setup_sections does not bubble up a bfd error code. */ 2244 bfd_set_error (bfd_error_bad_value); 2245 return 0; 2246 } 2247 2248 /* This appears to be a valid SOM object. Do some initialization. */ 2249 return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset); 2250 } 2251 2252 /* Create a SOM object. */ 2253 2254 static boolean 2255 som_mkobject (abfd) 2256 bfd *abfd; 2257 { 2258 /* Allocate memory to hold backend information. */ 2259 abfd->tdata.som_data = (struct som_data_struct *) 2260 bfd_zalloc (abfd, sizeof (struct som_data_struct)); 2261 if (abfd->tdata.som_data == NULL) 2262 return false; 2263 return true; 2264 } 2265 2266 /* Initialize some information in the file header. This routine makes 2267 not attempt at doing the right thing for a full executable; it 2268 is only meant to handle relocatable objects. */ 2269 2270 static boolean 2271 som_prep_headers (abfd) 2272 bfd *abfd; 2273 { 2274 struct header *file_hdr; 2275 asection *section; 2276 2277 /* Make and attach a file header to the BFD. */ 2278 file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header)); 2279 if (file_hdr == NULL) 2280 return false; 2281 obj_som_file_hdr (abfd) = file_hdr; 2282 2283 if (abfd->flags & (EXEC_P | DYNAMIC)) 2284 { 2285 2286 /* Make and attach an exec header to the BFD. */ 2287 obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *) 2288 bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr)); 2289 if (obj_som_exec_hdr (abfd) == NULL) 2290 return false; 2291 2292 if (abfd->flags & D_PAGED) 2293 file_hdr->a_magic = DEMAND_MAGIC; 2294 else if (abfd->flags & WP_TEXT) 2295 file_hdr->a_magic = SHARE_MAGIC; 2296 #ifdef SHL_MAGIC 2297 else if (abfd->flags & DYNAMIC) 2298 file_hdr->a_magic = SHL_MAGIC; 2299 #endif 2300 else 2301 file_hdr->a_magic = EXEC_MAGIC; 2302 } 2303 else 2304 file_hdr->a_magic = RELOC_MAGIC; 2305 2306 /* Only new format SOM is supported. */ 2307 file_hdr->version_id = NEW_VERSION_ID; 2308 2309 /* These fields are optional, and embedding timestamps is not always 2310 a wise thing to do, it makes comparing objects during a multi-stage 2311 bootstrap difficult. */ 2312 file_hdr->file_time.secs = 0; 2313 file_hdr->file_time.nanosecs = 0; 2314 2315 file_hdr->entry_space = 0; 2316 file_hdr->entry_subspace = 0; 2317 file_hdr->entry_offset = 0; 2318 file_hdr->presumed_dp = 0; 2319 2320 /* Now iterate over the sections translating information from 2321 BFD sections to SOM spaces/subspaces. */ 2322 2323 for (section = abfd->sections; section != NULL; section = section->next) 2324 { 2325 /* Ignore anything which has not been marked as a space or 2326 subspace. */ 2327 if (!som_is_space (section) && !som_is_subspace (section)) 2328 continue; 2329 2330 if (som_is_space (section)) 2331 { 2332 /* Allocate space for the space dictionary. */ 2333 som_section_data (section)->space_dict = 2334 (struct space_dictionary_record *) 2335 bfd_zalloc (abfd, sizeof (struct space_dictionary_record)); 2336 if (som_section_data (section)->space_dict == NULL) 2337 return false; 2338 /* Set space attributes. Note most attributes of SOM spaces 2339 are set based on the subspaces it contains. */ 2340 som_section_data (section)->space_dict->loader_fix_index = -1; 2341 som_section_data (section)->space_dict->init_pointer_index = -1; 2342 2343 /* Set more attributes that were stuffed away in private data. */ 2344 som_section_data (section)->space_dict->sort_key = 2345 som_section_data (section)->copy_data->sort_key; 2346 som_section_data (section)->space_dict->is_defined = 2347 som_section_data (section)->copy_data->is_defined; 2348 som_section_data (section)->space_dict->is_private = 2349 som_section_data (section)->copy_data->is_private; 2350 som_section_data (section)->space_dict->space_number = 2351 som_section_data (section)->copy_data->space_number; 2352 } 2353 else 2354 { 2355 /* Allocate space for the subspace dictionary. */ 2356 som_section_data (section)->subspace_dict 2357 = (struct subspace_dictionary_record *) 2358 bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record)); 2359 if (som_section_data (section)->subspace_dict == NULL) 2360 return false; 2361 2362 /* Set subspace attributes. Basic stuff is done here, additional 2363 attributes are filled in later as more information becomes 2364 available. */ 2365 if (section->flags & SEC_IS_COMMON) 2366 { 2367 som_section_data (section)->subspace_dict->dup_common = 1; 2368 som_section_data (section)->subspace_dict->is_common = 1; 2369 } 2370 2371 if (section->flags & SEC_ALLOC) 2372 som_section_data (section)->subspace_dict->is_loadable = 1; 2373 2374 if (section->flags & SEC_CODE) 2375 som_section_data (section)->subspace_dict->code_only = 1; 2376 2377 som_section_data (section)->subspace_dict->subspace_start = 2378 section->vma; 2379 som_section_data (section)->subspace_dict->subspace_length = 2380 bfd_section_size (abfd, section); 2381 som_section_data (section)->subspace_dict->initialization_length = 2382 bfd_section_size (abfd, section); 2383 som_section_data (section)->subspace_dict->alignment = 2384 1 << section->alignment_power; 2385 2386 /* Set more attributes that were stuffed away in private data. */ 2387 som_section_data (section)->subspace_dict->sort_key = 2388 som_section_data (section)->copy_data->sort_key; 2389 som_section_data (section)->subspace_dict->access_control_bits = 2390 som_section_data (section)->copy_data->access_control_bits; 2391 som_section_data (section)->subspace_dict->quadrant = 2392 som_section_data (section)->copy_data->quadrant; 2393 } 2394 } 2395 return true; 2396 } 2397 2398 /* Return true if the given section is a SOM space, false otherwise. */ 2399 2400 static boolean 2401 som_is_space (section) 2402 asection *section; 2403 { 2404 /* If no copy data is available, then it's neither a space nor a 2405 subspace. */ 2406 if (som_section_data (section)->copy_data == NULL) 2407 return false; 2408 2409 /* If the containing space isn't the same as the given section, 2410 then this isn't a space. */ 2411 if (som_section_data (section)->copy_data->container != section 2412 && (som_section_data (section)->copy_data->container->output_section 2413 != section)) 2414 return false; 2415 2416 /* OK. Must be a space. */ 2417 return true; 2418 } 2419 2420 /* Return true if the given section is a SOM subspace, false otherwise. */ 2421 2422 static boolean 2423 som_is_subspace (section) 2424 asection *section; 2425 { 2426 /* If no copy data is available, then it's neither a space nor a 2427 subspace. */ 2428 if (som_section_data (section)->copy_data == NULL) 2429 return false; 2430 2431 /* If the containing space is the same as the given section, 2432 then this isn't a subspace. */ 2433 if (som_section_data (section)->copy_data->container == section 2434 || (som_section_data (section)->copy_data->container->output_section 2435 == section)) 2436 return false; 2437 2438 /* OK. Must be a subspace. */ 2439 return true; 2440 } 2441 2442 /* Return true if the given space containins the given subspace. It 2443 is safe to assume space really is a space, and subspace really 2444 is a subspace. */ 2445 2446 static boolean 2447 som_is_container (space, subspace) 2448 asection *space, *subspace; 2449 { 2450 return (som_section_data (subspace)->copy_data->container == space 2451 || (som_section_data (subspace)->copy_data->container->output_section 2452 == space)); 2453 } 2454 2455 /* Count and return the number of spaces attached to the given BFD. */ 2456 2457 static unsigned long 2458 som_count_spaces (abfd) 2459 bfd *abfd; 2460 { 2461 int count = 0; 2462 asection *section; 2463 2464 for (section = abfd->sections; section != NULL; section = section->next) 2465 count += som_is_space (section); 2466 2467 return count; 2468 } 2469 2470 /* Count the number of subspaces attached to the given BFD. */ 2471 2472 static unsigned long 2473 som_count_subspaces (abfd) 2474 bfd *abfd; 2475 { 2476 int count = 0; 2477 asection *section; 2478 2479 for (section = abfd->sections; section != NULL; section = section->next) 2480 count += som_is_subspace (section); 2481 2482 return count; 2483 } 2484 2485 /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2. 2486 2487 We desire symbols to be ordered starting with the symbol with the 2488 highest relocation count down to the symbol with the lowest relocation 2489 count. Doing so compacts the relocation stream. */ 2490 2491 static int 2492 compare_syms (arg1, arg2) 2493 const PTR arg1; 2494 const PTR arg2; 2495 2496 { 2497 asymbol **sym1 = (asymbol **) arg1; 2498 asymbol **sym2 = (asymbol **) arg2; 2499 unsigned int count1, count2; 2500 2501 /* Get relocation count for each symbol. Note that the count 2502 is stored in the udata pointer for section symbols! */ 2503 if ((*sym1)->flags & BSF_SECTION_SYM) 2504 count1 = (*sym1)->udata.i; 2505 else 2506 count1 = som_symbol_data (*sym1)->reloc_count; 2507 2508 if ((*sym2)->flags & BSF_SECTION_SYM) 2509 count2 = (*sym2)->udata.i; 2510 else 2511 count2 = som_symbol_data (*sym2)->reloc_count; 2512 2513 /* Return the appropriate value. */ 2514 if (count1 < count2) 2515 return 1; 2516 else if (count1 > count2) 2517 return -1; 2518 return 0; 2519 } 2520 2521 /* Return -1, 0, 1 indicating the relative ordering of subspace1 2522 and subspace. */ 2523 2524 static int 2525 compare_subspaces (arg1, arg2) 2526 const PTR arg1; 2527 const PTR arg2; 2528 2529 { 2530 asection **subspace1 = (asection **) arg1; 2531 asection **subspace2 = (asection **) arg2; 2532 2533 if ((*subspace1)->target_index < (*subspace2)->target_index) 2534 return -1; 2535 else if ((*subspace2)->target_index < (*subspace1)->target_index) 2536 return 1; 2537 else 2538 return 0; 2539 } 2540 2541 /* Perform various work in preparation for emitting the fixup stream. */ 2542 2543 static void 2544 som_prep_for_fixups (abfd, syms, num_syms) 2545 bfd *abfd; 2546 asymbol **syms; 2547 unsigned long num_syms; 2548 { 2549 int i; 2550 asection *section; 2551 asymbol **sorted_syms; 2552 2553 /* Most SOM relocations involving a symbol have a length which is 2554 dependent on the index of the symbol. So symbols which are 2555 used often in relocations should have a small index. */ 2556 2557 /* First initialize the counters for each symbol. */ 2558 for (i = 0; i < num_syms; i++) 2559 { 2560 /* Handle a section symbol; these have no pointers back to the 2561 SOM symbol info. So we just use the udata field to hold the 2562 relocation count. */ 2563 if (som_symbol_data (syms[i]) == NULL 2564 || syms[i]->flags & BSF_SECTION_SYM) 2565 { 2566 syms[i]->flags |= BSF_SECTION_SYM; 2567 syms[i]->udata.i = 0; 2568 } 2569 else 2570 som_symbol_data (syms[i])->reloc_count = 0; 2571 } 2572 2573 /* Now that the counters are initialized, make a weighted count 2574 of how often a given symbol is used in a relocation. */ 2575 for (section = abfd->sections; section != NULL; section = section->next) 2576 { 2577 int i; 2578 2579 /* Does this section have any relocations? */ 2580 if (section->reloc_count <= 0) 2581 continue; 2582 2583 /* Walk through each relocation for this section. */ 2584 for (i = 1; i < section->reloc_count; i++) 2585 { 2586 arelent *reloc = section->orelocation[i]; 2587 int scale; 2588 2589 /* A relocation against a symbol in the *ABS* section really 2590 does not have a symbol. Likewise if the symbol isn't associated 2591 with any section. */ 2592 if (reloc->sym_ptr_ptr == NULL 2593 || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section)) 2594 continue; 2595 2596 /* Scaling to encourage symbols involved in R_DP_RELATIVE 2597 and R_CODE_ONE_SYMBOL relocations to come first. These 2598 two relocations have single byte versions if the symbol 2599 index is very small. */ 2600 if (reloc->howto->type == R_DP_RELATIVE 2601 || reloc->howto->type == R_CODE_ONE_SYMBOL) 2602 scale = 2; 2603 else 2604 scale = 1; 2605 2606 /* Handle section symbols by storing the count in the udata 2607 field. It will not be used and the count is very important 2608 for these symbols. */ 2609 if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) 2610 { 2611 (*reloc->sym_ptr_ptr)->udata.i = 2612 (*reloc->sym_ptr_ptr)->udata.i + scale; 2613 continue; 2614 } 2615 2616 /* A normal symbol. Increment the count. */ 2617 som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale; 2618 } 2619 } 2620 2621 /* Sort a copy of the symbol table, rather than the canonical 2622 output symbol table. */ 2623 sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *)); 2624 memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *)); 2625 qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms); 2626 obj_som_sorted_syms (abfd) = sorted_syms; 2627 2628 /* Compute the symbol indexes, they will be needed by the relocation 2629 code. */ 2630 for (i = 0; i < num_syms; i++) 2631 { 2632 /* A section symbol. Again, there is no pointer to backend symbol 2633 information, so we reuse the udata field again. */ 2634 if (sorted_syms[i]->flags & BSF_SECTION_SYM) 2635 sorted_syms[i]->udata.i = i; 2636 else 2637 som_symbol_data (sorted_syms[i])->index = i; 2638 } 2639 } 2640 2641 static boolean 2642 som_write_fixups (abfd, current_offset, total_reloc_sizep) 2643 bfd *abfd; 2644 unsigned long current_offset; 2645 unsigned int *total_reloc_sizep; 2646 { 2647 unsigned int i, j; 2648 /* Chunk of memory that we can use as buffer space, then throw 2649 away. */ 2650 unsigned char tmp_space[SOM_TMP_BUFSIZE]; 2651 unsigned char *p; 2652 unsigned int total_reloc_size = 0; 2653 unsigned int subspace_reloc_size = 0; 2654 unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total; 2655 asection *section = abfd->sections; 2656 2657 memset (tmp_space, 0, SOM_TMP_BUFSIZE); 2658 p = tmp_space; 2659 2660 /* All the fixups for a particular subspace are emitted in a single 2661 stream. All the subspaces for a particular space are emitted 2662 as a single stream. 2663 2664 So, to get all the locations correct one must iterate through all the 2665 spaces, for each space iterate through its subspaces and output a 2666 fixups stream. */ 2667 for (i = 0; i < num_spaces; i++) 2668 { 2669 asection *subsection; 2670 2671 /* Find a space. */ 2672 while (!som_is_space (section)) 2673 section = section->next; 2674 2675 /* Now iterate through each of its subspaces. */ 2676 for (subsection = abfd->sections; 2677 subsection != NULL; 2678 subsection = subsection->next) 2679 { 2680 int reloc_offset, current_rounding_mode; 2681 #ifndef NO_PCREL_MODES 2682 int current_call_mode; 2683 #endif 2684 2685 /* Find a subspace of this space. */ 2686 if (!som_is_subspace (subsection) 2687 || !som_is_container (section, subsection)) 2688 continue; 2689 2690 /* If this subspace does not have real data, then we are 2691 finised with it. */ 2692 if ((subsection->flags & SEC_HAS_CONTENTS) == 0) 2693 { 2694 som_section_data (subsection)->subspace_dict->fixup_request_index 2695 = -1; 2696 continue; 2697 } 2698 2699 /* This subspace has some relocations. Put the relocation stream 2700 index into the subspace record. */ 2701 som_section_data (subsection)->subspace_dict->fixup_request_index 2702 = total_reloc_size; 2703 2704 /* To make life easier start over with a clean slate for 2705 each subspace. Seek to the start of the relocation stream 2706 for this subspace in preparation for writing out its fixup 2707 stream. */ 2708 if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0) 2709 return false; 2710 2711 /* Buffer space has already been allocated. Just perform some 2712 initialization here. */ 2713 p = tmp_space; 2714 subspace_reloc_size = 0; 2715 reloc_offset = 0; 2716 som_initialize_reloc_queue (reloc_queue); 2717 current_rounding_mode = R_N_MODE; 2718 #ifndef NO_PCREL_MODES 2719 current_call_mode = R_SHORT_PCREL_MODE; 2720 #endif 2721 2722 /* Translate each BFD relocation into one or more SOM 2723 relocations. */ 2724 for (j = 0; j < subsection->reloc_count; j++) 2725 { 2726 arelent *bfd_reloc = subsection->orelocation[j]; 2727 unsigned int skip; 2728 int sym_num; 2729 2730 /* Get the symbol number. Remember it's stored in a 2731 special place for section symbols. */ 2732 if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) 2733 sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i; 2734 else 2735 sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index; 2736 2737 /* If there is not enough room for the next couple relocations, 2738 then dump the current buffer contents now. Also reinitialize 2739 the relocation queue. 2740 2741 No single BFD relocation could ever translate into more 2742 than 100 bytes of SOM relocations (20bytes is probably the 2743 upper limit, but leave lots of space for growth). */ 2744 if (p - tmp_space + 100 > SOM_TMP_BUFSIZE) 2745 { 2746 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) 2747 != p - tmp_space) 2748 return false; 2749 2750 p = tmp_space; 2751 som_initialize_reloc_queue (reloc_queue); 2752 } 2753 2754 /* Emit R_NO_RELOCATION fixups to map any bytes which were 2755 skipped. */ 2756 skip = bfd_reloc->address - reloc_offset; 2757 p = som_reloc_skip (abfd, skip, p, 2758 &subspace_reloc_size, reloc_queue); 2759 2760 /* Update reloc_offset for the next iteration. 2761 2762 Many relocations do not consume input bytes. They 2763 are markers, or set state necessary to perform some 2764 later relocation. */ 2765 switch (bfd_reloc->howto->type) 2766 { 2767 case R_ENTRY: 2768 case R_ALT_ENTRY: 2769 case R_EXIT: 2770 case R_N_MODE: 2771 case R_S_MODE: 2772 case R_D_MODE: 2773 case R_R_MODE: 2774 case R_FSEL: 2775 case R_LSEL: 2776 case R_RSEL: 2777 case R_COMP1: 2778 case R_COMP2: 2779 case R_BEGIN_BRTAB: 2780 case R_END_BRTAB: 2781 case R_BEGIN_TRY: 2782 case R_END_TRY: 2783 case R_N0SEL: 2784 case R_N1SEL: 2785 #ifndef NO_PCREL_MODES 2786 case R_SHORT_PCREL_MODE: 2787 case R_LONG_PCREL_MODE: 2788 #endif 2789 reloc_offset = bfd_reloc->address; 2790 break; 2791 2792 default: 2793 reloc_offset = bfd_reloc->address + 4; 2794 break; 2795 } 2796 2797 /* Now the actual relocation we care about. */ 2798 switch (bfd_reloc->howto->type) 2799 { 2800 case R_PCREL_CALL: 2801 case R_ABS_CALL: 2802 p = som_reloc_call (abfd, p, &subspace_reloc_size, 2803 bfd_reloc, sym_num, reloc_queue); 2804 break; 2805 2806 case R_CODE_ONE_SYMBOL: 2807 case R_DP_RELATIVE: 2808 /* Account for any addend. */ 2809 if (bfd_reloc->addend) 2810 p = som_reloc_addend (abfd, bfd_reloc->addend, p, 2811 &subspace_reloc_size, reloc_queue); 2812 2813 if (sym_num < 0x20) 2814 { 2815 bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p); 2816 subspace_reloc_size += 1; 2817 p += 1; 2818 } 2819 else if (sym_num < 0x100) 2820 { 2821 bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p); 2822 bfd_put_8 (abfd, sym_num, p + 1); 2823 p = try_prev_fixup (abfd, &subspace_reloc_size, p, 2824 2, reloc_queue); 2825 } 2826 else if (sym_num < 0x10000000) 2827 { 2828 bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p); 2829 bfd_put_8 (abfd, sym_num >> 16, p + 1); 2830 bfd_put_16 (abfd, sym_num, p + 2); 2831 p = try_prev_fixup (abfd, &subspace_reloc_size, 2832 p, 4, reloc_queue); 2833 } 2834 else 2835 abort (); 2836 break; 2837 2838 case R_DATA_ONE_SYMBOL: 2839 case R_DATA_PLABEL: 2840 case R_CODE_PLABEL: 2841 case R_DLT_REL: 2842 /* Account for any addend using R_DATA_OVERRIDE. */ 2843 if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL 2844 && bfd_reloc->addend) 2845 p = som_reloc_addend (abfd, bfd_reloc->addend, p, 2846 &subspace_reloc_size, reloc_queue); 2847 2848 if (sym_num < 0x100) 2849 { 2850 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2851 bfd_put_8 (abfd, sym_num, p + 1); 2852 p = try_prev_fixup (abfd, &subspace_reloc_size, p, 2853 2, reloc_queue); 2854 } 2855 else if (sym_num < 0x10000000) 2856 { 2857 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); 2858 bfd_put_8 (abfd, sym_num >> 16, p + 1); 2859 bfd_put_16 (abfd, sym_num, p + 2); 2860 p = try_prev_fixup (abfd, &subspace_reloc_size, 2861 p, 4, reloc_queue); 2862 } 2863 else 2864 abort (); 2865 break; 2866 2867 case R_ENTRY: 2868 { 2869 int tmp; 2870 arelent *tmp_reloc = NULL; 2871 bfd_put_8 (abfd, R_ENTRY, p); 2872 2873 /* R_ENTRY relocations have 64 bits of associated 2874 data. Unfortunately the addend field of a bfd 2875 relocation is only 32 bits. So, we split up 2876 the 64bit unwind information and store part in 2877 the R_ENTRY relocation, and the rest in the R_EXIT 2878 relocation. */ 2879 bfd_put_32 (abfd, bfd_reloc->addend, p + 1); 2880 2881 /* Find the next R_EXIT relocation. */ 2882 for (tmp = j; tmp < subsection->reloc_count; tmp++) 2883 { 2884 tmp_reloc = subsection->orelocation[tmp]; 2885 if (tmp_reloc->howto->type == R_EXIT) 2886 break; 2887 } 2888 2889 if (tmp == subsection->reloc_count) 2890 abort (); 2891 2892 bfd_put_32 (abfd, tmp_reloc->addend, p + 5); 2893 p = try_prev_fixup (abfd, &subspace_reloc_size, 2894 p, 9, reloc_queue); 2895 break; 2896 } 2897 2898 case R_N_MODE: 2899 case R_S_MODE: 2900 case R_D_MODE: 2901 case R_R_MODE: 2902 /* If this relocation requests the current rounding 2903 mode, then it is redundant. */ 2904 if (bfd_reloc->howto->type != current_rounding_mode) 2905 { 2906 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2907 subspace_reloc_size += 1; 2908 p += 1; 2909 current_rounding_mode = bfd_reloc->howto->type; 2910 } 2911 break; 2912 2913 #ifndef NO_PCREL_MODES 2914 case R_LONG_PCREL_MODE: 2915 case R_SHORT_PCREL_MODE: 2916 if (bfd_reloc->howto->type != current_call_mode) 2917 { 2918 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2919 subspace_reloc_size += 1; 2920 p += 1; 2921 current_call_mode = bfd_reloc->howto->type; 2922 } 2923 break; 2924 #endif 2925 2926 case R_EXIT: 2927 case R_ALT_ENTRY: 2928 case R_FSEL: 2929 case R_LSEL: 2930 case R_RSEL: 2931 case R_BEGIN_BRTAB: 2932 case R_END_BRTAB: 2933 case R_BEGIN_TRY: 2934 case R_N0SEL: 2935 case R_N1SEL: 2936 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2937 subspace_reloc_size += 1; 2938 p += 1; 2939 break; 2940 2941 case R_END_TRY: 2942 /* The end of a exception handling region. The reloc's 2943 addend contains the offset of the exception handling 2944 code. */ 2945 if (bfd_reloc->addend == 0) 2946 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2947 else if (bfd_reloc->addend < 1024) 2948 { 2949 bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); 2950 bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1); 2951 p = try_prev_fixup (abfd, &subspace_reloc_size, 2952 p, 2, reloc_queue); 2953 } 2954 else 2955 { 2956 bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p); 2957 bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1); 2958 bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2); 2959 p = try_prev_fixup (abfd, &subspace_reloc_size, 2960 p, 4, reloc_queue); 2961 } 2962 break; 2963 2964 case R_COMP1: 2965 /* The only time we generate R_COMP1, R_COMP2 and 2966 R_CODE_EXPR relocs is for the difference of two 2967 symbols. Hence we can cheat here. */ 2968 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2969 bfd_put_8 (abfd, 0x44, p + 1); 2970 p = try_prev_fixup (abfd, &subspace_reloc_size, 2971 p, 2, reloc_queue); 2972 break; 2973 2974 case R_COMP2: 2975 /* The only time we generate R_COMP1, R_COMP2 and 2976 R_CODE_EXPR relocs is for the difference of two 2977 symbols. Hence we can cheat here. */ 2978 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2979 bfd_put_8 (abfd, 0x80, p + 1); 2980 bfd_put_8 (abfd, sym_num >> 16, p + 2); 2981 bfd_put_16 (abfd, sym_num, p + 3); 2982 p = try_prev_fixup (abfd, &subspace_reloc_size, 2983 p, 5, reloc_queue); 2984 break; 2985 2986 case R_CODE_EXPR: 2987 case R_DATA_EXPR: 2988 /* The only time we generate R_COMP1, R_COMP2 and 2989 R_CODE_EXPR relocs is for the difference of two 2990 symbols. Hence we can cheat here. */ 2991 bfd_put_8 (abfd, bfd_reloc->howto->type, p); 2992 subspace_reloc_size += 1; 2993 p += 1; 2994 break; 2995 2996 /* Put a "R_RESERVED" relocation in the stream if 2997 we hit something we do not understand. The linker 2998 will complain loudly if this ever happens. */ 2999 default: 3000 bfd_put_8 (abfd, 0xff, p); 3001 subspace_reloc_size += 1; 3002 p += 1; 3003 break; 3004 } 3005 } 3006 3007 /* Last BFD relocation for a subspace has been processed. 3008 Map the rest of the subspace with R_NO_RELOCATION fixups. */ 3009 p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection) 3010 - reloc_offset, 3011 p, &subspace_reloc_size, reloc_queue); 3012 3013 /* Scribble out the relocations. */ 3014 if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) 3015 != p - tmp_space) 3016 return false; 3017 p = tmp_space; 3018 3019 total_reloc_size += subspace_reloc_size; 3020 som_section_data (subsection)->subspace_dict->fixup_request_quantity 3021 = subspace_reloc_size; 3022 } 3023 section = section->next; 3024 } 3025 *total_reloc_sizep = total_reloc_size; 3026 return true; 3027 } 3028 3029 /* Write out the space/subspace string table. */ 3030 3031 static boolean 3032 som_write_space_strings (abfd, current_offset, string_sizep) 3033 bfd *abfd; 3034 unsigned long current_offset; 3035 unsigned int *string_sizep; 3036 { 3037 /* Chunk of memory that we can use as buffer space, then throw 3038 away. */ 3039 size_t tmp_space_size = SOM_TMP_BUFSIZE; 3040 unsigned char *tmp_space = alloca (tmp_space_size); 3041 unsigned char *p = tmp_space; 3042 unsigned int strings_size = 0; 3043 asection *section; 3044 3045 /* Seek to the start of the space strings in preparation for writing 3046 them out. */ 3047 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) 3048 return false; 3049 3050 /* Walk through all the spaces and subspaces (order is not important) 3051 building up and writing string table entries for their names. */ 3052 for (section = abfd->sections; section != NULL; section = section->next) 3053 { 3054 size_t length; 3055 3056 /* Only work with space/subspaces; avoid any other sections 3057 which might have been made (.text for example). */ 3058 if (!som_is_space (section) && !som_is_subspace (section)) 3059 continue; 3060 3061 /* Get the length of the space/subspace name. */ 3062 length = strlen (section->name); 3063 3064 /* If there is not enough room for the next entry, then dump the 3065 current buffer contents now and maybe allocate a larger 3066 buffer. Each entry will take 4 bytes to hold the string 3067 length + the string itself + null terminator. */ 3068 if (p - tmp_space + 5 + length > tmp_space_size) 3069 { 3070 /* Flush buffer before refilling or reallocating. */ 3071 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) 3072 != p - tmp_space) 3073 return false; 3074 3075 /* Reallocate if now empty buffer still too small. */ 3076 if (5 + length > tmp_space_size) 3077 { 3078 /* Ensure a minimum growth factor to avoid O(n**2) space 3079 consumption for n strings. The optimal minimum 3080 factor seems to be 2, as no other value can guarantee 3081 wasting less then 50% space. (Note that we cannot 3082 deallocate space allocated by `alloca' without 3083 returning from this function.) The same technique is 3084 used a few more times below when a buffer is 3085 reallocated. */ 3086 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3087 tmp_space = alloca (tmp_space_size); 3088 } 3089 3090 /* Reset to beginning of the (possibly new) buffer space. */ 3091 p = tmp_space; 3092 } 3093 3094 /* First element in a string table entry is the length of the 3095 string. Alignment issues are already handled. */ 3096 bfd_put_32 (abfd, length, p); 3097 p += 4; 3098 strings_size += 4; 3099 3100 /* Record the index in the space/subspace records. */ 3101 if (som_is_space (section)) 3102 som_section_data (section)->space_dict->name.n_strx = strings_size; 3103 else 3104 som_section_data (section)->subspace_dict->name.n_strx = strings_size; 3105 3106 /* Next comes the string itself + a null terminator. */ 3107 strcpy (p, section->name); 3108 p += length + 1; 3109 strings_size += length + 1; 3110 3111 /* Always align up to the next word boundary. */ 3112 while (strings_size % 4) 3113 { 3114 bfd_put_8 (abfd, 0, p); 3115 p++; 3116 strings_size++; 3117 } 3118 } 3119 3120 /* Done with the space/subspace strings. Write out any information 3121 contained in a partial block. */ 3122 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space) 3123 return false; 3124 *string_sizep = strings_size; 3125 return true; 3126 } 3127 3128 /* Write out the symbol string table. */ 3129 3130 static boolean 3131 som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep, 3132 compilation_unit) 3133 bfd *abfd; 3134 unsigned long current_offset; 3135 asymbol **syms; 3136 unsigned int num_syms; 3137 unsigned int *string_sizep; 3138 COMPUNIT *compilation_unit; 3139 { 3140 unsigned int i; 3141 3142 /* Chunk of memory that we can use as buffer space, then throw 3143 away. */ 3144 size_t tmp_space_size = SOM_TMP_BUFSIZE; 3145 unsigned char *tmp_space = alloca (tmp_space_size); 3146 unsigned char *p = tmp_space; 3147 3148 unsigned int strings_size = 0; 3149 unsigned char *comp[4]; 3150 3151 /* This gets a bit gruesome because of the compilation unit. The 3152 strings within the compilation unit are part of the symbol 3153 strings, but don't have symbol_dictionary entries. So, manually 3154 write them and update the compliation unit header. On input, the 3155 compilation unit header contains local copies of the strings. 3156 Move them aside. */ 3157 if (compilation_unit) 3158 { 3159 comp[0] = compilation_unit->name.n_name; 3160 comp[1] = compilation_unit->language_name.n_name; 3161 comp[2] = compilation_unit->product_id.n_name; 3162 comp[3] = compilation_unit->version_id.n_name; 3163 } 3164 3165 /* Seek to the start of the space strings in preparation for writing 3166 them out. */ 3167 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) 3168 return false; 3169 3170 if (compilation_unit) 3171 { 3172 for (i = 0; i < 4; i++) 3173 { 3174 size_t length = strlen (comp[i]); 3175 3176 /* If there is not enough room for the next entry, then dump 3177 the current buffer contents now and maybe allocate a 3178 larger buffer. */ 3179 if (p - tmp_space + 5 + length > tmp_space_size) 3180 { 3181 /* Flush buffer before refilling or reallocating. */ 3182 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) 3183 != p - tmp_space) 3184 return false; 3185 3186 /* Reallocate if now empty buffer still too small. */ 3187 if (5 + length > tmp_space_size) 3188 { 3189 /* See alloca above for discussion of new size. */ 3190 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3191 tmp_space = alloca (tmp_space_size); 3192 } 3193 3194 /* Reset to beginning of the (possibly new) buffer 3195 space. */ 3196 p = tmp_space; 3197 } 3198 3199 /* First element in a string table entry is the length of 3200 the string. This must always be 4 byte aligned. This is 3201 also an appropriate time to fill in the string index 3202 field in the symbol table entry. */ 3203 bfd_put_32 (abfd, length, p); 3204 strings_size += 4; 3205 p += 4; 3206 3207 /* Next comes the string itself + a null terminator. */ 3208 strcpy (p, comp[i]); 3209 3210 switch (i) 3211 { 3212 case 0: 3213 obj_som_compilation_unit (abfd)->name.n_strx = strings_size; 3214 break; 3215 case 1: 3216 obj_som_compilation_unit (abfd)->language_name.n_strx = 3217 strings_size; 3218 break; 3219 case 2: 3220 obj_som_compilation_unit (abfd)->product_id.n_strx = 3221 strings_size; 3222 break; 3223 case 3: 3224 obj_som_compilation_unit (abfd)->version_id.n_strx = 3225 strings_size; 3226 break; 3227 } 3228 3229 p += length + 1; 3230 strings_size += length + 1; 3231 3232 /* Always align up to the next word boundary. */ 3233 while (strings_size % 4) 3234 { 3235 bfd_put_8 (abfd, 0, p); 3236 strings_size++; 3237 p++; 3238 } 3239 } 3240 } 3241 3242 for (i = 0; i < num_syms; i++) 3243 { 3244 size_t length = strlen (syms[i]->name); 3245 3246 /* If there is not enough room for the next entry, then dump the 3247 current buffer contents now and maybe allocate a larger buffer. */ 3248 if (p - tmp_space + 5 + length > tmp_space_size) 3249 { 3250 /* Flush buffer before refilling or reallocating. */ 3251 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) 3252 != p - tmp_space) 3253 return false; 3254 3255 /* Reallocate if now empty buffer still too small. */ 3256 if (5 + length > tmp_space_size) 3257 { 3258 /* See alloca above for discussion of new size. */ 3259 tmp_space_size = MAX (2 * tmp_space_size, 5 + length); 3260 tmp_space = alloca (tmp_space_size); 3261 } 3262 3263 /* Reset to beginning of the (possibly new) buffer space. */ 3264 p = tmp_space; 3265 } 3266 3267 /* First element in a string table entry is the length of the 3268 string. This must always be 4 byte aligned. This is also 3269 an appropriate time to fill in the string index field in the 3270 symbol table entry. */ 3271 bfd_put_32 (abfd, length, p); 3272 strings_size += 4; 3273 p += 4; 3274 3275 /* Next comes the string itself + a null terminator. */ 3276 strcpy (p, syms[i]->name); 3277 3278 som_symbol_data (syms[i])->stringtab_offset = strings_size; 3279 p += length + 1; 3280 strings_size += length + 1; 3281 3282 /* Always align up to the next word boundary. */ 3283 while (strings_size % 4) 3284 { 3285 bfd_put_8 (abfd, 0, p); 3286 strings_size++; 3287 p++; 3288 } 3289 } 3290 3291 /* Scribble out any partial block. */ 3292 if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space) 3293 return false; 3294 3295 *string_sizep = strings_size; 3296 return true; 3297 } 3298 3299 /* Compute variable information to be placed in the SOM headers, 3300 space/subspace dictionaries, relocation streams, etc. Begin 3301 writing parts of the object file. */ 3302 3303 static boolean 3304 som_begin_writing (abfd) 3305 bfd *abfd; 3306 { 3307 unsigned long current_offset = 0; 3308 int strings_size = 0; 3309 unsigned long num_spaces, num_subspaces, i; 3310 asection *section; 3311 unsigned int total_subspaces = 0; 3312 struct som_exec_auxhdr *exec_header = NULL; 3313 3314 /* The file header will always be first in an object file, 3315 everything else can be in random locations. To keep things 3316 "simple" BFD will lay out the object file in the manner suggested 3317 by the PRO ABI for PA-RISC Systems. */ 3318 3319 /* Before any output can really begin offsets for all the major 3320 portions of the object file must be computed. So, starting 3321 with the initial file header compute (and sometimes write) 3322 each portion of the object file. */ 3323 3324 /* Make room for the file header, it's contents are not complete 3325 yet, so it can not be written at this time. */ 3326 current_offset += sizeof (struct header); 3327 3328 /* Any auxiliary headers will follow the file header. Right now 3329 we support only the copyright and version headers. */ 3330 obj_som_file_hdr (abfd)->aux_header_location = current_offset; 3331 obj_som_file_hdr (abfd)->aux_header_size = 0; 3332 if (abfd->flags & (EXEC_P | DYNAMIC)) 3333 { 3334 /* Parts of the exec header will be filled in later, so 3335 delay writing the header itself. Fill in the defaults, 3336 and write it later. */ 3337 current_offset += sizeof (struct som_exec_auxhdr); 3338 obj_som_file_hdr (abfd)->aux_header_size 3339 += sizeof (struct som_exec_auxhdr); 3340 exec_header = obj_som_exec_hdr (abfd); 3341 exec_header->som_auxhdr.type = EXEC_AUX_ID; 3342 exec_header->som_auxhdr.length = 40; 3343 } 3344 if (obj_som_version_hdr (abfd) != NULL) 3345 { 3346 unsigned int len; 3347 3348 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) 3349 return false; 3350 3351 /* Write the aux_id structure and the string length. */ 3352 len = sizeof (struct aux_id) + sizeof (unsigned int); 3353 obj_som_file_hdr (abfd)->aux_header_size += len; 3354 current_offset += len; 3355 if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len) 3356 return false; 3357 3358 /* Write the version string. */ 3359 len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int); 3360 obj_som_file_hdr (abfd)->aux_header_size += len; 3361 current_offset += len; 3362 if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string, 3363 len, 1, abfd) != len) 3364 return false; 3365 } 3366 3367 if (obj_som_copyright_hdr (abfd) != NULL) 3368 { 3369 unsigned int len; 3370 3371 if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) 3372 return false; 3373 3374 /* Write the aux_id structure and the string length. */ 3375 len = sizeof (struct aux_id) + sizeof (unsigned int); 3376 obj_som_file_hdr (abfd)->aux_header_size += len; 3377 current_offset += len; 3378 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len) 3379 return false; 3380 3381 /* Write the copyright string. */ 3382 len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int); 3383 obj_som_file_hdr (abfd)->aux_header_size += len; 3384 current_offset += len; 3385 if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright, 3386 len, 1, abfd) != len) 3387 return false; 3388 } 3389 3390 /* Next comes the initialization pointers; we have no initialization 3391 pointers, so current offset does not change. */ 3392 obj_som_file_hdr (abfd)->init_array_location = current_offset; 3393 obj_som_file_hdr (abfd)->init_array_total = 0; 3394 3395 /* Next are the space records. These are fixed length records. 3396 3397 Count the number of spaces to determine how much room is needed 3398 in the object file for the space records. 3399 3400 The names of the spaces are stored in a separate string table, 3401 and the index for each space into the string table is computed 3402 below. Therefore, it is not possible to write the space headers 3403 at this time. */ 3404 num_spaces = som_count_spaces (abfd); 3405 obj_som_file_hdr (abfd)->space_location = current_offset; 3406 obj_som_file_hdr (abfd)->space_total = num_spaces; 3407 current_offset += num_spaces * sizeof (struct space_dictionary_record); 3408 3409 /* Next are the subspace records. These are fixed length records. 3410 3411 Count the number of subspaes to determine how much room is needed 3412 in the object file for the subspace records. 3413 3414 A variety if fields in the subspace record are still unknown at 3415 this time (index into string table, fixup stream location/size, etc). */ 3416 num_subspaces = som_count_subspaces (abfd); 3417 obj_som_file_hdr (abfd)->subspace_location = current_offset; 3418 obj_som_file_hdr (abfd)->subspace_total = num_subspaces; 3419 current_offset += num_subspaces * sizeof (struct subspace_dictionary_record); 3420 3421 /* Next is the string table for the space/subspace names. We will 3422 build and write the string table on the fly. At the same time 3423 we will fill in the space/subspace name index fields. */ 3424 3425 /* The string table needs to be aligned on a word boundary. */ 3426 if (current_offset % 4) 3427 current_offset += (4 - (current_offset % 4)); 3428 3429 /* Mark the offset of the space/subspace string table in the 3430 file header. */ 3431 obj_som_file_hdr (abfd)->space_strings_location = current_offset; 3432 3433 /* Scribble out the space strings. */ 3434 if (som_write_space_strings (abfd, current_offset, &strings_size) == false) 3435 return false; 3436 3437 /* Record total string table size in the header and update the 3438 current offset. */ 3439 obj_som_file_hdr (abfd)->space_strings_size = strings_size; 3440 current_offset += strings_size; 3441 3442 /* Next is the compilation unit. */ 3443 obj_som_file_hdr (abfd)->compiler_location = current_offset; 3444 obj_som_file_hdr (abfd)->compiler_total = 0; 3445 if (obj_som_compilation_unit (abfd)) 3446 { 3447 obj_som_file_hdr (abfd)->compiler_total = 1; 3448 current_offset += COMPUNITSZ; 3449 } 3450 3451 /* Now compute the file positions for the loadable subspaces, taking 3452 care to make sure everything stays properly aligned. */ 3453 3454 section = abfd->sections; 3455 for (i = 0; i < num_spaces; i++) 3456 { 3457 asection *subsection; 3458 int first_subspace; 3459 unsigned int subspace_offset = 0; 3460 3461 /* Find a space. */ 3462 while (!som_is_space (section)) 3463 section = section->next; 3464 3465 first_subspace = 1; 3466 /* Now look for all its subspaces. */ 3467 for (subsection = abfd->sections; 3468 subsection != NULL; 3469 subsection = subsection->next) 3470 { 3471 3472 if (!som_is_subspace (subsection) 3473 || !som_is_container (section, subsection) 3474 || (subsection->flags & SEC_ALLOC) == 0) 3475 continue; 3476 3477 /* If this is the first subspace in the space, and we are 3478 building an executable, then take care to make sure all 3479 the alignments are correct and update the exec header. */ 3480 if (first_subspace 3481 && (abfd->flags & (EXEC_P | DYNAMIC))) 3482 { 3483 /* Demand paged executables have each space aligned to a 3484 page boundary. Sharable executables (write-protected 3485 text) have just the private (aka data & bss) space aligned 3486 to a page boundary. Ugh. Not true for HPUX. 3487 3488 The HPUX kernel requires the text to always be page aligned 3489 within the file regardless of the executable's type. */ 3490 if (abfd->flags & (D_PAGED | DYNAMIC) 3491 || (subsection->flags & SEC_CODE) 3492 || ((abfd->flags & WP_TEXT) 3493 && (subsection->flags & SEC_DATA))) 3494 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3495 3496 /* Update the exec header. */ 3497 if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0) 3498 { 3499 exec_header->exec_tmem = section->vma; 3500 exec_header->exec_tfile = current_offset; 3501 } 3502 if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0) 3503 { 3504 exec_header->exec_dmem = section->vma; 3505 exec_header->exec_dfile = current_offset; 3506 } 3507 3508 /* Keep track of exactly where we are within a particular 3509 space. This is necessary as the braindamaged HPUX 3510 loader will create holes between subspaces *and* 3511 subspace alignments are *NOT* preserved. What a crock. */ 3512 subspace_offset = subsection->vma; 3513 3514 /* Only do this for the first subspace within each space. */ 3515 first_subspace = 0; 3516 } 3517 else if (abfd->flags & (EXEC_P | DYNAMIC)) 3518 { 3519 /* The braindamaged HPUX loader may have created a hole 3520 between two subspaces. It is *not* sufficient to use 3521 the alignment specifications within the subspaces to 3522 account for these holes -- I've run into at least one 3523 case where the loader left one code subspace unaligned 3524 in a final executable. 3525 3526 To combat this we keep a current offset within each space, 3527 and use the subspace vma fields to detect and preserve 3528 holes. What a crock! 3529 3530 ps. This is not necessary for unloadable space/subspaces. */ 3531 current_offset += subsection->vma - subspace_offset; 3532 if (subsection->flags & SEC_CODE) 3533 exec_header->exec_tsize += subsection->vma - subspace_offset; 3534 else 3535 exec_header->exec_dsize += subsection->vma - subspace_offset; 3536 subspace_offset += subsection->vma - subspace_offset; 3537 } 3538 3539 subsection->target_index = total_subspaces++; 3540 /* This is real data to be loaded from the file. */ 3541 if (subsection->flags & SEC_LOAD) 3542 { 3543 /* Update the size of the code & data. */ 3544 if (abfd->flags & (EXEC_P | DYNAMIC) 3545 && subsection->flags & SEC_CODE) 3546 exec_header->exec_tsize += subsection->_cooked_size; 3547 else if (abfd->flags & (EXEC_P | DYNAMIC) 3548 && subsection->flags & SEC_DATA) 3549 exec_header->exec_dsize += subsection->_cooked_size; 3550 som_section_data (subsection)->subspace_dict->file_loc_init_value 3551 = current_offset; 3552 subsection->filepos = current_offset; 3553 current_offset += bfd_section_size (abfd, subsection); 3554 subspace_offset += bfd_section_size (abfd, subsection); 3555 } 3556 /* Looks like uninitialized data. */ 3557 else 3558 { 3559 /* Update the size of the bss section. */ 3560 if (abfd->flags & (EXEC_P | DYNAMIC)) 3561 exec_header->exec_bsize += subsection->_cooked_size; 3562 3563 som_section_data (subsection)->subspace_dict->file_loc_init_value 3564 = 0; 3565 som_section_data (subsection)->subspace_dict-> 3566 initialization_length = 0; 3567 } 3568 } 3569 /* Goto the next section. */ 3570 section = section->next; 3571 } 3572 3573 /* Finally compute the file positions for unloadable subspaces. 3574 If building an executable, start the unloadable stuff on its 3575 own page. */ 3576 3577 if (abfd->flags & (EXEC_P | DYNAMIC)) 3578 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3579 3580 obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset; 3581 section = abfd->sections; 3582 for (i = 0; i < num_spaces; i++) 3583 { 3584 asection *subsection; 3585 3586 /* Find a space. */ 3587 while (!som_is_space (section)) 3588 section = section->next; 3589 3590 if (abfd->flags & (EXEC_P | DYNAMIC)) 3591 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3592 3593 /* Now look for all its subspaces. */ 3594 for (subsection = abfd->sections; 3595 subsection != NULL; 3596 subsection = subsection->next) 3597 { 3598 3599 if (!som_is_subspace (subsection) 3600 || !som_is_container (section, subsection) 3601 || (subsection->flags & SEC_ALLOC) != 0) 3602 continue; 3603 3604 subsection->target_index = total_subspaces++; 3605 /* This is real data to be loaded from the file. */ 3606 if ((subsection->flags & SEC_LOAD) == 0) 3607 { 3608 som_section_data (subsection)->subspace_dict->file_loc_init_value 3609 = current_offset; 3610 subsection->filepos = current_offset; 3611 current_offset += bfd_section_size (abfd, subsection); 3612 } 3613 /* Looks like uninitialized data. */ 3614 else 3615 { 3616 som_section_data (subsection)->subspace_dict->file_loc_init_value 3617 = 0; 3618 som_section_data (subsection)->subspace_dict-> 3619 initialization_length = bfd_section_size (abfd, subsection); 3620 } 3621 } 3622 /* Goto the next section. */ 3623 section = section->next; 3624 } 3625 3626 /* If building an executable, then make sure to seek to and write 3627 one byte at the end of the file to make sure any necessary 3628 zeros are filled in. Ugh. */ 3629 if (abfd->flags & (EXEC_P | DYNAMIC)) 3630 current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); 3631 if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0) 3632 return false; 3633 if (bfd_write ((PTR) "", 1, 1, abfd) != 1) 3634 return false; 3635 3636 obj_som_file_hdr (abfd)->unloadable_sp_size 3637 = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location; 3638 3639 /* Loader fixups are not supported in any way shape or form. */ 3640 obj_som_file_hdr (abfd)->loader_fixup_location = 0; 3641 obj_som_file_hdr (abfd)->loader_fixup_total = 0; 3642 3643 /* Done. Store the total size of the SOM so far. */ 3644 obj_som_file_hdr (abfd)->som_length = current_offset; 3645 3646 return true; 3647 } 3648 3649 /* Finally, scribble out the various headers to the disk. */ 3650 3651 static boolean 3652 som_finish_writing (abfd) 3653 bfd *abfd; 3654 { 3655 int num_spaces = som_count_spaces (abfd); 3656 asymbol **syms = bfd_get_outsymbols (abfd); 3657 int i, num_syms, strings_size; 3658 int subspace_index = 0; 3659 file_ptr location; 3660 asection *section; 3661 unsigned long current_offset; 3662 unsigned int total_reloc_size; 3663 3664 /* Next is the symbol table. These are fixed length records. 3665 3666 Count the number of symbols to determine how much room is needed 3667 in the object file for the symbol table. 3668 3669 The names of the symbols are stored in a separate string table, 3670 and the index for each symbol name into the string table is computed 3671 below. Therefore, it is not possible to write the symbol table 3672 at this time. 3673 3674 These used to be output before the subspace contents, but they 3675 were moved here to work around a stupid bug in the hpux linker 3676 (fixed in hpux10). */ 3677 current_offset = obj_som_file_hdr (abfd)->som_length; 3678 3679 /* Make sure we're on a word boundary. */ 3680 if (current_offset % 4) 3681 current_offset += (4 - (current_offset % 4)); 3682 3683 num_syms = bfd_get_symcount (abfd); 3684 obj_som_file_hdr (abfd)->symbol_location = current_offset; 3685 obj_som_file_hdr (abfd)->symbol_total = num_syms; 3686 current_offset += num_syms * sizeof (struct symbol_dictionary_record); 3687 3688 /* Next are the symbol strings. 3689 Align them to a word boundary. */ 3690 if (current_offset % 4) 3691 current_offset += (4 - (current_offset % 4)); 3692 obj_som_file_hdr (abfd)->symbol_strings_location = current_offset; 3693 3694 /* Scribble out the symbol strings. */ 3695 if (som_write_symbol_strings (abfd, current_offset, syms, 3696 num_syms, &strings_size, 3697 obj_som_compilation_unit (abfd)) 3698 == false) 3699 return false; 3700 3701 /* Record total string table size in header and update the 3702 current offset. */ 3703 obj_som_file_hdr (abfd)->symbol_strings_size = strings_size; 3704 current_offset += strings_size; 3705 3706 /* Do prep work before handling fixups. */ 3707 som_prep_for_fixups (abfd, 3708 bfd_get_outsymbols (abfd), 3709 bfd_get_symcount (abfd)); 3710 3711 /* At the end of the file is the fixup stream which starts on a 3712 word boundary. */ 3713 if (current_offset % 4) 3714 current_offset += (4 - (current_offset % 4)); 3715 obj_som_file_hdr (abfd)->fixup_request_location = current_offset; 3716 3717 /* Write the fixups and update fields in subspace headers which 3718 relate to the fixup stream. */ 3719 if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false) 3720 return false; 3721 3722 /* Record the total size of the fixup stream in the file header. */ 3723 obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size; 3724 3725 /* Done. Store the total size of the SOM. */ 3726 obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size; 3727 3728 /* Now that the symbol table information is complete, build and 3729 write the symbol table. */ 3730 if (som_build_and_write_symbol_table (abfd) == false) 3731 return false; 3732 3733 /* Subspaces are written first so that we can set up information 3734 about them in their containing spaces as the subspace is written. */ 3735 3736 /* Seek to the start of the subspace dictionary records. */ 3737 location = obj_som_file_hdr (abfd)->subspace_location; 3738 if (bfd_seek (abfd, location, SEEK_SET) < 0) 3739 return false; 3740 3741 section = abfd->sections; 3742 /* Now for each loadable space write out records for its subspaces. */ 3743 for (i = 0; i < num_spaces; i++) 3744 { 3745 asection *subsection; 3746 3747 /* Find a space. */ 3748 while (!som_is_space (section)) 3749 section = section->next; 3750 3751 /* Now look for all its subspaces. */ 3752 for (subsection = abfd->sections; 3753 subsection != NULL; 3754 subsection = subsection->next) 3755 { 3756 3757 /* Skip any section which does not correspond to a space 3758 or subspace. Or does not have SEC_ALLOC set (and therefore 3759 has no real bits on the disk). */ 3760 if (!som_is_subspace (subsection) 3761 || !som_is_container (section, subsection) 3762 || (subsection->flags & SEC_ALLOC) == 0) 3763 continue; 3764 3765 /* If this is the first subspace for this space, then save 3766 the index of the subspace in its containing space. Also 3767 set "is_loadable" in the containing space. */ 3768 3769 if (som_section_data (section)->space_dict->subspace_quantity == 0) 3770 { 3771 som_section_data (section)->space_dict->is_loadable = 1; 3772 som_section_data (section)->space_dict->subspace_index 3773 = subspace_index; 3774 } 3775 3776 /* Increment the number of subspaces seen and the number of 3777 subspaces contained within the current space. */ 3778 subspace_index++; 3779 som_section_data (section)->space_dict->subspace_quantity++; 3780 3781 /* Mark the index of the current space within the subspace's 3782 dictionary record. */ 3783 som_section_data (subsection)->subspace_dict->space_index = i; 3784 3785 /* Dump the current subspace header. */ 3786 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict, 3787 sizeof (struct subspace_dictionary_record), 1, abfd) 3788 != sizeof (struct subspace_dictionary_record)) 3789 return false; 3790 } 3791 /* Goto the next section. */ 3792 section = section->next; 3793 } 3794 3795 /* Now repeat the process for unloadable subspaces. */ 3796 section = abfd->sections; 3797 /* Now for each space write out records for its subspaces. */ 3798 for (i = 0; i < num_spaces; i++) 3799 { 3800 asection *subsection; 3801 3802 /* Find a space. */ 3803 while (!som_is_space (section)) 3804 section = section->next; 3805 3806 /* Now look for all its subspaces. */ 3807 for (subsection = abfd->sections; 3808 subsection != NULL; 3809 subsection = subsection->next) 3810 { 3811 3812 /* Skip any section which does not correspond to a space or 3813 subspace, or which SEC_ALLOC set (and therefore handled 3814 in the loadable spaces/subspaces code above). */ 3815 3816 if (!som_is_subspace (subsection) 3817 || !som_is_container (section, subsection) 3818 || (subsection->flags & SEC_ALLOC) != 0) 3819 continue; 3820 3821 /* If this is the first subspace for this space, then save 3822 the index of the subspace in its containing space. Clear 3823 "is_loadable". */ 3824 3825 if (som_section_data (section)->space_dict->subspace_quantity == 0) 3826 { 3827 som_section_data (section)->space_dict->is_loadable = 0; 3828 som_section_data (section)->space_dict->subspace_index 3829 = subspace_index; 3830 } 3831 3832 /* Increment the number of subspaces seen and the number of 3833 subspaces contained within the current space. */ 3834 som_section_data (section)->space_dict->subspace_quantity++; 3835 subspace_index++; 3836 3837 /* Mark the index of the current space within the subspace's 3838 dictionary record. */ 3839 som_section_data (subsection)->subspace_dict->space_index = i; 3840 3841 /* Dump this subspace header. */ 3842 if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict, 3843 sizeof (struct subspace_dictionary_record), 1, abfd) 3844 != sizeof (struct subspace_dictionary_record)) 3845 return false; 3846 } 3847 /* Goto the next section. */ 3848 section = section->next; 3849 } 3850 3851 /* All the subspace dictiondary records are written, and all the 3852 fields are set up in the space dictionary records. 3853 3854 Seek to the right location and start writing the space 3855 dictionary records. */ 3856 location = obj_som_file_hdr (abfd)->space_location; 3857 if (bfd_seek (abfd, location, SEEK_SET) < 0) 3858 return false; 3859 3860 section = abfd->sections; 3861 for (i = 0; i < num_spaces; i++) 3862 { 3863 /* Find a space. */ 3864 while (!som_is_space (section)) 3865 section = section->next; 3866 3867 /* Dump its header. */ 3868 if (bfd_write ((PTR) som_section_data (section)->space_dict, 3869 sizeof (struct space_dictionary_record), 1, abfd) 3870 != sizeof (struct space_dictionary_record)) 3871 return false; 3872 3873 /* Goto the next section. */ 3874 section = section->next; 3875 } 3876 3877 /* Write the compilation unit record if there is one. */ 3878 if (obj_som_compilation_unit (abfd)) 3879 { 3880 location = obj_som_file_hdr (abfd)->compiler_location; 3881 if (bfd_seek (abfd, location, SEEK_SET) < 0) 3882 return false; 3883 3884 if (bfd_write ((PTR) obj_som_compilation_unit (abfd), 3885 COMPUNITSZ, 1, abfd) != COMPUNITSZ) 3886 return false; 3887 } 3888 3889 /* Setting of the system_id has to happen very late now that copying of 3890 BFD private data happens *after* section contents are set. */ 3891 if (abfd->flags & (EXEC_P | DYNAMIC)) 3892 obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id; 3893 else if (bfd_get_mach (abfd) == pa20) 3894 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0; 3895 else if (bfd_get_mach (abfd) == pa11) 3896 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1; 3897 else 3898 obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0; 3899 3900 /* Compute the checksum for the file header just before writing 3901 the header to disk. */ 3902 obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd); 3903 3904 /* Only thing left to do is write out the file header. It is always 3905 at location zero. Seek there and write it. */ 3906 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0) 3907 return false; 3908 if (bfd_write ((PTR) obj_som_file_hdr (abfd), 3909 sizeof (struct header), 1, abfd) 3910 != sizeof (struct header)) 3911 return false; 3912 3913 /* Now write the exec header. */ 3914 if (abfd->flags & (EXEC_P | DYNAMIC)) 3915 { 3916 long tmp, som_length; 3917 struct som_exec_auxhdr *exec_header; 3918 3919 exec_header = obj_som_exec_hdr (abfd); 3920 exec_header->exec_entry = bfd_get_start_address (abfd); 3921 exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags; 3922 3923 /* Oh joys. Ram some of the BSS data into the DATA section 3924 to be compatable with how the hp linker makes objects 3925 (saves memory space). */ 3926 tmp = exec_header->exec_dsize; 3927 tmp = SOM_ALIGN (tmp, PA_PAGESIZE); 3928 exec_header->exec_bsize -= (tmp - exec_header->exec_dsize); 3929 if (exec_header->exec_bsize < 0) 3930 exec_header->exec_bsize = 0; 3931 exec_header->exec_dsize = tmp; 3932 3933 /* Now perform some sanity checks. The idea is to catch bogons now and 3934 inform the user, instead of silently generating a bogus file. */ 3935 som_length = obj_som_file_hdr (abfd)->som_length; 3936 if (exec_header->exec_tfile + exec_header->exec_tsize > som_length 3937 || exec_header->exec_dfile + exec_header->exec_dsize > som_length) 3938 { 3939 bfd_set_error (bfd_error_bad_value); 3940 return false; 3941 } 3942 3943 if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, 3944 SEEK_SET) < 0) 3945 return false; 3946 3947 if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd) 3948 != AUX_HDR_SIZE) 3949 return false; 3950 } 3951 return true; 3952 } 3953 3954 /* Compute and return the checksum for a SOM file header. */ 3955 3956 static unsigned long 3957 som_compute_checksum (abfd) 3958 bfd *abfd; 3959 { 3960 unsigned long checksum, count, i; 3961 unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd); 3962 3963 checksum = 0; 3964 count = sizeof (struct header) / sizeof (unsigned long); 3965 for (i = 0; i < count; i++) 3966 checksum ^= *(buffer + i); 3967 3968 return checksum; 3969 } 3970 3971 static void 3972 som_bfd_derive_misc_symbol_info (abfd, sym, info) 3973 bfd *abfd ATTRIBUTE_UNUSED; 3974 asymbol *sym; 3975 struct som_misc_symbol_info *info; 3976 { 3977 /* Initialize. */ 3978 memset (info, 0, sizeof (struct som_misc_symbol_info)); 3979 3980 /* The HP SOM linker requires detailed type information about 3981 all symbols (including undefined symbols!). Unfortunately, 3982 the type specified in an import/export statement does not 3983 always match what the linker wants. Severe braindamage. */ 3984 3985 /* Section symbols will not have a SOM symbol type assigned to 3986 them yet. Assign all section symbols type ST_DATA. */ 3987 if (sym->flags & BSF_SECTION_SYM) 3988 info->symbol_type = ST_DATA; 3989 else 3990 { 3991 /* Common symbols must have scope SS_UNSAT and type 3992 ST_STORAGE or the linker will choke. */ 3993 if (bfd_is_com_section (sym->section)) 3994 { 3995 info->symbol_scope = SS_UNSAT; 3996 info->symbol_type = ST_STORAGE; 3997 } 3998 3999 /* It is possible to have a symbol without an associated 4000 type. This happens if the user imported the symbol 4001 without a type and the symbol was never defined 4002 locally. If BSF_FUNCTION is set for this symbol, then 4003 assign it type ST_CODE (the HP linker requires undefined 4004 external functions to have type ST_CODE rather than ST_ENTRY). */ 4005 else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 4006 || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) 4007 && bfd_is_und_section (sym->section) 4008 && sym->flags & BSF_FUNCTION) 4009 info->symbol_type = ST_CODE; 4010 4011 /* Handle function symbols which were defined in this file. 4012 They should have type ST_ENTRY. Also retrieve the argument 4013 relocation bits from the SOM backend information. */ 4014 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY 4015 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE 4016 && (sym->flags & BSF_FUNCTION)) 4017 || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN 4018 && (sym->flags & BSF_FUNCTION))) 4019 { 4020 info->symbol_type = ST_ENTRY; 4021 info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc; 4022 info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level; 4023 } 4024 4025 /* For unknown symbols set the symbol's type based on the symbol's 4026 section (ST_DATA for DATA sections, ST_CODE for CODE sections). */ 4027 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) 4028 { 4029 if (sym->section->flags & SEC_CODE) 4030 info->symbol_type = ST_CODE; 4031 else 4032 info->symbol_type = ST_DATA; 4033 } 4034 4035 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) 4036 info->symbol_type = ST_DATA; 4037 4038 /* From now on it's a very simple mapping. */ 4039 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE) 4040 info->symbol_type = ST_ABSOLUTE; 4041 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) 4042 info->symbol_type = ST_CODE; 4043 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA) 4044 info->symbol_type = ST_DATA; 4045 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE) 4046 info->symbol_type = ST_MILLICODE; 4047 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL) 4048 info->symbol_type = ST_PLABEL; 4049 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG) 4050 info->symbol_type = ST_PRI_PROG; 4051 else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG) 4052 info->symbol_type = ST_SEC_PROG; 4053 } 4054 4055 /* Now handle the symbol's scope. Exported data which is not 4056 in the common section has scope SS_UNIVERSAL. Note scope 4057 of common symbols was handled earlier! */ 4058 if (bfd_is_und_section (sym->section)) 4059 info->symbol_scope = SS_UNSAT; 4060 else if (sym->flags & (BSF_EXPORT | BSF_WEAK) 4061 && ! bfd_is_com_section (sym->section)) 4062 info->symbol_scope = SS_UNIVERSAL; 4063 /* Anything else which is not in the common section has scope 4064 SS_LOCAL. */ 4065 else if (! bfd_is_com_section (sym->section)) 4066 info->symbol_scope = SS_LOCAL; 4067 4068 /* Now set the symbol_info field. It has no real meaning 4069 for undefined or common symbols, but the HP linker will 4070 choke if it's not set to some "reasonable" value. We 4071 use zero as a reasonable value. */ 4072 if (bfd_is_com_section (sym->section) 4073 || bfd_is_und_section (sym->section) 4074 || bfd_is_abs_section (sym->section)) 4075 info->symbol_info = 0; 4076 /* For all other symbols, the symbol_info field contains the 4077 subspace index of the space this symbol is contained in. */ 4078 else 4079 info->symbol_info = sym->section->target_index; 4080 4081 /* Set the symbol's value. */ 4082 info->symbol_value = sym->value + sym->section->vma; 4083 4084 /* The secondary_def field is for weak symbols. */ 4085 if (sym->flags & BSF_WEAK) 4086 info->secondary_def = true; 4087 else 4088 info->secondary_def = false; 4089 4090 } 4091 4092 /* Build and write, in one big chunk, the entire symbol table for 4093 this BFD. */ 4094 4095 static boolean 4096 som_build_and_write_symbol_table (abfd) 4097 bfd *abfd; 4098 { 4099 unsigned int num_syms = bfd_get_symcount (abfd); 4100 file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location; 4101 asymbol **bfd_syms = obj_som_sorted_syms (abfd); 4102 struct symbol_dictionary_record *som_symtab = NULL; 4103 int i, symtab_size; 4104 4105 /* Compute total symbol table size and allocate a chunk of memory 4106 to hold the symbol table as we build it. */ 4107 symtab_size = num_syms * sizeof (struct symbol_dictionary_record); 4108 som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size); 4109 if (som_symtab == NULL && symtab_size != 0) 4110 goto error_return; 4111 memset (som_symtab, 0, symtab_size); 4112 4113 /* Walk over each symbol. */ 4114 for (i = 0; i < num_syms; i++) 4115 { 4116 struct som_misc_symbol_info info; 4117 4118 /* This is really an index into the symbol strings table. 4119 By the time we get here, the index has already been 4120 computed and stored into the name field in the BFD symbol. */ 4121 som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset; 4122 4123 /* Derive SOM information from the BFD symbol. */ 4124 som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info); 4125 4126 /* Now use it. */ 4127 som_symtab[i].symbol_type = info.symbol_type; 4128 som_symtab[i].symbol_scope = info.symbol_scope; 4129 som_symtab[i].arg_reloc = info.arg_reloc; 4130 som_symtab[i].symbol_info = info.symbol_info; 4131 som_symtab[i].xleast = 3; 4132 som_symtab[i].symbol_value = info.symbol_value | info.priv_level; 4133 som_symtab[i].secondary_def = info.secondary_def; 4134 } 4135 4136 /* Everything is ready, seek to the right location and 4137 scribble out the symbol table. */ 4138 if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0) 4139 return false; 4140 4141 if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size) 4142 goto error_return; 4143 4144 if (som_symtab != NULL) 4145 free (som_symtab); 4146 return true; 4147 error_return: 4148 if (som_symtab != NULL) 4149 free (som_symtab); 4150 return false; 4151 } 4152 4153 /* Write an object in SOM format. */ 4154 4155 static boolean 4156 som_write_object_contents (abfd) 4157 bfd *abfd; 4158 { 4159 if (abfd->output_has_begun == false) 4160 { 4161 /* Set up fixed parts of the file, space, and subspace headers. 4162 Notify the world that output has begun. */ 4163 som_prep_headers (abfd); 4164 abfd->output_has_begun = true; 4165 /* Start writing the object file. This include all the string 4166 tables, fixup streams, and other portions of the object file. */ 4167 som_begin_writing (abfd); 4168 } 4169 4170 return (som_finish_writing (abfd)); 4171 } 4172 4173 /* Read and save the string table associated with the given BFD. */ 4174 4175 static boolean 4176 som_slurp_string_table (abfd) 4177 bfd *abfd; 4178 { 4179 char *stringtab; 4180 4181 /* Use the saved version if its available. */ 4182 if (obj_som_stringtab (abfd) != NULL) 4183 return true; 4184 4185 /* I don't think this can currently happen, and I'm not sure it should 4186 really be an error, but it's better than getting unpredictable results 4187 from the host's malloc when passed a size of zero. */ 4188 if (obj_som_stringtab_size (abfd) == 0) 4189 { 4190 bfd_set_error (bfd_error_no_symbols); 4191 return false; 4192 } 4193 4194 /* Allocate and read in the string table. */ 4195 stringtab = bfd_malloc (obj_som_stringtab_size (abfd)); 4196 if (stringtab == NULL) 4197 return false; 4198 memset (stringtab, 0, obj_som_stringtab_size (abfd)); 4199 4200 if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0) 4201 return false; 4202 4203 if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd) 4204 != obj_som_stringtab_size (abfd)) 4205 return false; 4206 4207 /* Save our results and return success. */ 4208 obj_som_stringtab (abfd) = stringtab; 4209 return true; 4210 } 4211 4212 /* Return the amount of data (in bytes) required to hold the symbol 4213 table for this object. */ 4214 4215 static long 4216 som_get_symtab_upper_bound (abfd) 4217 bfd *abfd; 4218 { 4219 if (!som_slurp_symbol_table (abfd)) 4220 return -1; 4221 4222 return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *)); 4223 } 4224 4225 /* Convert from a SOM subspace index to a BFD section. */ 4226 4227 static asection * 4228 bfd_section_from_som_symbol (abfd, symbol) 4229 bfd *abfd; 4230 struct symbol_dictionary_record *symbol; 4231 { 4232 asection *section; 4233 4234 /* The meaning of the symbol_info field changes for functions 4235 within executables. So only use the quick symbol_info mapping for 4236 incomplete objects and non-function symbols in executables. */ 4237 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 4238 || (symbol->symbol_type != ST_ENTRY 4239 && symbol->symbol_type != ST_PRI_PROG 4240 && symbol->symbol_type != ST_SEC_PROG 4241 && symbol->symbol_type != ST_MILLICODE)) 4242 { 4243 unsigned int index = symbol->symbol_info; 4244 for (section = abfd->sections; section != NULL; section = section->next) 4245 if (section->target_index == index && som_is_subspace (section)) 4246 return section; 4247 4248 /* Could be a symbol from an external library (such as an OMOS 4249 shared library). Don't abort. */ 4250 return bfd_abs_section_ptr; 4251 4252 } 4253 else 4254 { 4255 unsigned int value = symbol->symbol_value; 4256 4257 /* For executables we will have to use the symbol's address and 4258 find out what section would contain that address. Yuk. */ 4259 for (section = abfd->sections; section; section = section->next) 4260 { 4261 if (value >= section->vma 4262 && value <= section->vma + section->_cooked_size 4263 && som_is_subspace (section)) 4264 return section; 4265 } 4266 4267 /* Could be a symbol from an external library (such as an OMOS 4268 shared library). Don't abort. */ 4269 return bfd_abs_section_ptr; 4270 4271 } 4272 } 4273 4274 /* Read and save the symbol table associated with the given BFD. */ 4275 4276 static unsigned int 4277 som_slurp_symbol_table (abfd) 4278 bfd *abfd; 4279 { 4280 int symbol_count = bfd_get_symcount (abfd); 4281 int symsize = sizeof (struct symbol_dictionary_record); 4282 char *stringtab; 4283 struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp; 4284 som_symbol_type *sym, *symbase; 4285 4286 /* Return saved value if it exists. */ 4287 if (obj_som_symtab (abfd) != NULL) 4288 goto successful_return; 4289 4290 /* Special case. This is *not* an error. */ 4291 if (symbol_count == 0) 4292 goto successful_return; 4293 4294 if (!som_slurp_string_table (abfd)) 4295 goto error_return; 4296 4297 stringtab = obj_som_stringtab (abfd); 4298 4299 symbase = ((som_symbol_type *) 4300 bfd_malloc (symbol_count * sizeof (som_symbol_type))); 4301 if (symbase == NULL) 4302 goto error_return; 4303 memset (symbase, 0, symbol_count * sizeof (som_symbol_type)); 4304 4305 /* Read in the external SOM representation. */ 4306 buf = bfd_malloc (symbol_count * symsize); 4307 if (buf == NULL && symbol_count * symsize != 0) 4308 goto error_return; 4309 if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0) 4310 goto error_return; 4311 if (bfd_read (buf, symbol_count * symsize, 1, abfd) 4312 != symbol_count * symsize) 4313 goto error_return; 4314 4315 /* Iterate over all the symbols and internalize them. */ 4316 endbufp = buf + symbol_count; 4317 for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp) 4318 { 4319 4320 /* I don't think we care about these. */ 4321 if (bufp->symbol_type == ST_SYM_EXT 4322 || bufp->symbol_type == ST_ARG_EXT) 4323 continue; 4324 4325 /* Set some private data we care about. */ 4326 if (bufp->symbol_type == ST_NULL) 4327 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; 4328 else if (bufp->symbol_type == ST_ABSOLUTE) 4329 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE; 4330 else if (bufp->symbol_type == ST_DATA) 4331 som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; 4332 else if (bufp->symbol_type == ST_CODE) 4333 som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE; 4334 else if (bufp->symbol_type == ST_PRI_PROG) 4335 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG; 4336 else if (bufp->symbol_type == ST_SEC_PROG) 4337 som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG; 4338 else if (bufp->symbol_type == ST_ENTRY) 4339 som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY; 4340 else if (bufp->symbol_type == ST_MILLICODE) 4341 som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE; 4342 else if (bufp->symbol_type == ST_PLABEL) 4343 som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL; 4344 else 4345 som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; 4346 som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc; 4347 4348 /* Some reasonable defaults. */ 4349 sym->symbol.the_bfd = abfd; 4350 sym->symbol.name = bufp->name.n_strx + stringtab; 4351 sym->symbol.value = bufp->symbol_value; 4352 sym->symbol.section = 0; 4353 sym->symbol.flags = 0; 4354 4355 switch (bufp->symbol_type) 4356 { 4357 case ST_ENTRY: 4358 case ST_MILLICODE: 4359 sym->symbol.flags |= BSF_FUNCTION; 4360 som_symbol_data (sym)->tc_data.ap.hppa_priv_level = 4361 sym->symbol.value & 0x3; 4362 sym->symbol.value &= ~0x3; 4363 break; 4364 4365 case ST_STUB: 4366 case ST_CODE: 4367 case ST_PRI_PROG: 4368 case ST_SEC_PROG: 4369 som_symbol_data (sym)->tc_data.ap.hppa_priv_level = 4370 sym->symbol.value & 0x3; 4371 sym->symbol.value &= ~0x3; 4372 /* If the symbol's scope is SS_UNSAT, then these are 4373 undefined function symbols. */ 4374 if (bufp->symbol_scope == SS_UNSAT) 4375 sym->symbol.flags |= BSF_FUNCTION; 4376 4377 default: 4378 break; 4379 } 4380 4381 /* Handle scoping and section information. */ 4382 switch (bufp->symbol_scope) 4383 { 4384 /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols, 4385 so the section associated with this symbol can't be known. */ 4386 case SS_EXTERNAL: 4387 if (bufp->symbol_type != ST_STORAGE) 4388 sym->symbol.section = bfd_und_section_ptr; 4389 else 4390 sym->symbol.section = bfd_com_section_ptr; 4391 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); 4392 break; 4393 4394 case SS_UNSAT: 4395 if (bufp->symbol_type != ST_STORAGE) 4396 sym->symbol.section = bfd_und_section_ptr; 4397 else 4398 sym->symbol.section = bfd_com_section_ptr; 4399 break; 4400 4401 case SS_UNIVERSAL: 4402 sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); 4403 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); 4404 sym->symbol.value -= sym->symbol.section->vma; 4405 break; 4406 4407 #if 0 4408 /* SS_GLOBAL and SS_LOCAL are two names for the same thing. 4409 Sound dumb? It is. */ 4410 case SS_GLOBAL: 4411 #endif 4412 case SS_LOCAL: 4413 sym->symbol.flags |= BSF_LOCAL; 4414 sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); 4415 sym->symbol.value -= sym->symbol.section->vma; 4416 break; 4417 } 4418 4419 /* Check for a weak symbol. */ 4420 if (bufp->secondary_def) 4421 sym->symbol.flags |= BSF_WEAK; 4422 4423 /* Mark section symbols and symbols used by the debugger. 4424 Note $START$ is a magic code symbol, NOT a section symbol. */ 4425 if (sym->symbol.name[0] == '$' 4426 && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$' 4427 && !strcmp (sym->symbol.name, sym->symbol.section->name)) 4428 sym->symbol.flags |= BSF_SECTION_SYM; 4429 else if (!strncmp (sym->symbol.name, "L$0\002", 4)) 4430 { 4431 sym->symbol.flags |= BSF_SECTION_SYM; 4432 sym->symbol.name = sym->symbol.section->name; 4433 } 4434 else if (!strncmp (sym->symbol.name, "L$0\001", 4)) 4435 sym->symbol.flags |= BSF_DEBUGGING; 4436 4437 /* Note increment at bottom of loop, since we skip some symbols 4438 we can not include it as part of the for statement. */ 4439 sym++; 4440 } 4441 4442 /* We modify the symbol count to record the number of BFD symbols we 4443 created. */ 4444 bfd_get_symcount (abfd) = sym - symbase; 4445 4446 /* Save our results and return success. */ 4447 obj_som_symtab (abfd) = symbase; 4448 successful_return: 4449 if (buf != NULL) 4450 free (buf); 4451 return (true); 4452 4453 error_return: 4454 if (buf != NULL) 4455 free (buf); 4456 return false; 4457 } 4458 4459 /* Canonicalize a SOM symbol table. Return the number of entries 4460 in the symbol table. */ 4461 4462 static long 4463 som_get_symtab (abfd, location) 4464 bfd *abfd; 4465 asymbol **location; 4466 { 4467 int i; 4468 som_symbol_type *symbase; 4469 4470 if (!som_slurp_symbol_table (abfd)) 4471 return -1; 4472 4473 i = bfd_get_symcount (abfd); 4474 symbase = obj_som_symtab (abfd); 4475 4476 for (; i > 0; i--, location++, symbase++) 4477 *location = &symbase->symbol; 4478 4479 /* Final null pointer. */ 4480 *location = 0; 4481 return (bfd_get_symcount (abfd)); 4482 } 4483 4484 /* Make a SOM symbol. There is nothing special to do here. */ 4485 4486 static asymbol * 4487 som_make_empty_symbol (abfd) 4488 bfd *abfd; 4489 { 4490 som_symbol_type *new = 4491 (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type)); 4492 if (new == NULL) 4493 return 0; 4494 new->symbol.the_bfd = abfd; 4495 4496 return &new->symbol; 4497 } 4498 4499 /* Print symbol information. */ 4500 4501 static void 4502 som_print_symbol (ignore_abfd, afile, symbol, how) 4503 bfd *ignore_abfd ATTRIBUTE_UNUSED; 4504 PTR afile; 4505 asymbol *symbol; 4506 bfd_print_symbol_type how; 4507 { 4508 FILE *file = (FILE *) afile; 4509 switch (how) 4510 { 4511 case bfd_print_symbol_name: 4512 fprintf (file, "%s", symbol->name); 4513 break; 4514 case bfd_print_symbol_more: 4515 fprintf (file, "som "); 4516 fprintf_vma (file, symbol->value); 4517 fprintf (file, " %lx", (long) symbol->flags); 4518 break; 4519 case bfd_print_symbol_all: 4520 { 4521 CONST char *section_name; 4522 section_name = symbol->section ? symbol->section->name : "(*none*)"; 4523 bfd_print_symbol_vandf ((PTR) file, symbol); 4524 fprintf (file, " %s\t%s", section_name, symbol->name); 4525 break; 4526 } 4527 } 4528 } 4529 4530 static boolean 4531 som_bfd_is_local_label_name (abfd, name) 4532 bfd *abfd ATTRIBUTE_UNUSED; 4533 const char *name; 4534 { 4535 return (name[0] == 'L' && name[1] == '$'); 4536 } 4537 4538 /* Count or process variable-length SOM fixup records. 4539 4540 To avoid code duplication we use this code both to compute the number 4541 of relocations requested by a stream, and to internalize the stream. 4542 4543 When computing the number of relocations requested by a stream the 4544 variables rptr, section, and symbols have no meaning. 4545 4546 Return the number of relocations requested by the fixup stream. When 4547 not just counting 4548 4549 This needs at least two or three more passes to get it cleaned up. */ 4550 4551 static unsigned int 4552 som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count) 4553 unsigned char *fixup; 4554 unsigned int end; 4555 arelent *internal_relocs; 4556 asection *section; 4557 asymbol **symbols; 4558 boolean just_count; 4559 { 4560 unsigned int op, varname, deallocate_contents = 0; 4561 unsigned char *end_fixups = &fixup[end]; 4562 const struct fixup_format *fp; 4563 const char *cp; 4564 unsigned char *save_fixup; 4565 int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits; 4566 const int *subop; 4567 arelent *rptr = internal_relocs; 4568 unsigned int offset = 0; 4569 4570 #define var(c) variables[(c) - 'A'] 4571 #define push(v) (*sp++ = (v)) 4572 #define pop() (*--sp) 4573 #define emptystack() (sp == stack) 4574 4575 som_initialize_reloc_queue (reloc_queue); 4576 memset (variables, 0, sizeof (variables)); 4577 memset (stack, 0, sizeof (stack)); 4578 count = 0; 4579 prev_fixup = 0; 4580 saved_unwind_bits = 0; 4581 sp = stack; 4582 4583 while (fixup < end_fixups) 4584 { 4585 4586 /* Save pointer to the start of this fixup. We'll use 4587 it later to determine if it is necessary to put this fixup 4588 on the queue. */ 4589 save_fixup = fixup; 4590 4591 /* Get the fixup code and its associated format. */ 4592 op = *fixup++; 4593 fp = &som_fixup_formats[op]; 4594 4595 /* Handle a request for a previous fixup. */ 4596 if (*fp->format == 'P') 4597 { 4598 /* Get pointer to the beginning of the prev fixup, move 4599 the repeated fixup to the head of the queue. */ 4600 fixup = reloc_queue[fp->D].reloc; 4601 som_reloc_queue_fix (reloc_queue, fp->D); 4602 prev_fixup = 1; 4603 4604 /* Get the fixup code and its associated format. */ 4605 op = *fixup++; 4606 fp = &som_fixup_formats[op]; 4607 } 4608 4609 /* If this fixup will be passed to BFD, set some reasonable defaults. */ 4610 if (! just_count 4611 && som_hppa_howto_table[op].type != R_NO_RELOCATION 4612 && som_hppa_howto_table[op].type != R_DATA_OVERRIDE) 4613 { 4614 rptr->address = offset; 4615 rptr->howto = &som_hppa_howto_table[op]; 4616 rptr->addend = 0; 4617 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 4618 } 4619 4620 /* Set default input length to 0. Get the opcode class index 4621 into D. */ 4622 var ('L') = 0; 4623 var ('D') = fp->D; 4624 var ('U') = saved_unwind_bits; 4625 4626 /* Get the opcode format. */ 4627 cp = fp->format; 4628 4629 /* Process the format string. Parsing happens in two phases, 4630 parse RHS, then assign to LHS. Repeat until no more 4631 characters in the format string. */ 4632 while (*cp) 4633 { 4634 /* The variable this pass is going to compute a value for. */ 4635 varname = *cp++; 4636 4637 /* Start processing RHS. Continue until a NULL or '=' is found. */ 4638 do 4639 { 4640 c = *cp++; 4641 4642 /* If this is a variable, push it on the stack. */ 4643 if (isupper (c)) 4644 push (var (c)); 4645 4646 /* If this is a lower case letter, then it represents 4647 additional data from the fixup stream to be pushed onto 4648 the stack. */ 4649 else if (islower (c)) 4650 { 4651 int bits = (c - 'a') * 8; 4652 for (v = 0; c > 'a'; --c) 4653 v = (v << 8) | *fixup++; 4654 if (varname == 'V') 4655 v = sign_extend (v, bits); 4656 push (v); 4657 } 4658 4659 /* A decimal constant. Push it on the stack. */ 4660 else if (isdigit (c)) 4661 { 4662 v = c - '0'; 4663 while (isdigit (*cp)) 4664 v = (v * 10) + (*cp++ - '0'); 4665 push (v); 4666 } 4667 else 4668 /* An operator. Pop two two values from the stack and 4669 use them as operands to the given operation. Push 4670 the result of the operation back on the stack. */ 4671 switch (c) 4672 { 4673 case '+': 4674 v = pop (); 4675 v += pop (); 4676 push (v); 4677 break; 4678 case '*': 4679 v = pop (); 4680 v *= pop (); 4681 push (v); 4682 break; 4683 case '<': 4684 v = pop (); 4685 v = pop () << v; 4686 push (v); 4687 break; 4688 default: 4689 abort (); 4690 } 4691 } 4692 while (*cp && *cp != '='); 4693 4694 /* Move over the equal operator. */ 4695 cp++; 4696 4697 /* Pop the RHS off the stack. */ 4698 c = pop (); 4699 4700 /* Perform the assignment. */ 4701 var (varname) = c; 4702 4703 /* Handle side effects. and special 'O' stack cases. */ 4704 switch (varname) 4705 { 4706 /* Consume some bytes from the input space. */ 4707 case 'L': 4708 offset += c; 4709 break; 4710 /* A symbol to use in the relocation. Make a note 4711 of this if we are not just counting. */ 4712 case 'S': 4713 if (! just_count) 4714 rptr->sym_ptr_ptr = &symbols[c]; 4715 break; 4716 /* Argument relocation bits for a function call. */ 4717 case 'R': 4718 if (! just_count) 4719 { 4720 unsigned int tmp = var ('R'); 4721 rptr->addend = 0; 4722 4723 if ((som_hppa_howto_table[op].type == R_PCREL_CALL 4724 && R_PCREL_CALL + 10 > op) 4725 || (som_hppa_howto_table[op].type == R_ABS_CALL 4726 && R_ABS_CALL + 10 > op)) 4727 { 4728 /* Simple encoding. */ 4729 if (tmp > 4) 4730 { 4731 tmp -= 5; 4732 rptr->addend |= 1; 4733 } 4734 if (tmp == 4) 4735 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2; 4736 else if (tmp == 3) 4737 rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4; 4738 else if (tmp == 2) 4739 rptr->addend |= 1 << 8 | 1 << 6; 4740 else if (tmp == 1) 4741 rptr->addend |= 1 << 8; 4742 } 4743 else 4744 { 4745 unsigned int tmp1, tmp2; 4746 4747 /* First part is easy -- low order two bits are 4748 directly copied, then shifted away. */ 4749 rptr->addend = tmp & 0x3; 4750 tmp >>= 2; 4751 4752 /* Diving the result by 10 gives us the second 4753 part. If it is 9, then the first two words 4754 are a double precision paramater, else it is 4755 3 * the first arg bits + the 2nd arg bits. */ 4756 tmp1 = tmp / 10; 4757 tmp -= tmp1 * 10; 4758 if (tmp1 == 9) 4759 rptr->addend += (0xe << 6); 4760 else 4761 { 4762 /* Get the two pieces. */ 4763 tmp2 = tmp1 / 3; 4764 tmp1 -= tmp2 * 3; 4765 /* Put them in the addend. */ 4766 rptr->addend += (tmp2 << 8) + (tmp1 << 6); 4767 } 4768 4769 /* What's left is the third part. It's unpacked 4770 just like the second. */ 4771 if (tmp == 9) 4772 rptr->addend += (0xe << 2); 4773 else 4774 { 4775 tmp2 = tmp / 3; 4776 tmp -= tmp2 * 3; 4777 rptr->addend += (tmp2 << 4) + (tmp << 2); 4778 } 4779 } 4780 rptr->addend = HPPA_R_ADDEND (rptr->addend, 0); 4781 } 4782 break; 4783 /* Handle the linker expression stack. */ 4784 case 'O': 4785 switch (op) 4786 { 4787 case R_COMP1: 4788 subop = comp1_opcodes; 4789 break; 4790 case R_COMP2: 4791 subop = comp2_opcodes; 4792 break; 4793 case R_COMP3: 4794 subop = comp3_opcodes; 4795 break; 4796 default: 4797 abort (); 4798 } 4799 while (*subop <= (unsigned char) c) 4800 ++subop; 4801 --subop; 4802 break; 4803 /* The lower 32unwind bits must be persistent. */ 4804 case 'U': 4805 saved_unwind_bits = var ('U'); 4806 break; 4807 4808 default: 4809 break; 4810 } 4811 } 4812 4813 /* If we used a previous fixup, clean up after it. */ 4814 if (prev_fixup) 4815 { 4816 fixup = save_fixup + 1; 4817 prev_fixup = 0; 4818 } 4819 /* Queue it. */ 4820 else if (fixup > save_fixup + 1) 4821 som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue); 4822 4823 /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION 4824 fixups to BFD. */ 4825 if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE 4826 && som_hppa_howto_table[op].type != R_NO_RELOCATION) 4827 { 4828 /* Done with a single reloction. Loop back to the top. */ 4829 if (! just_count) 4830 { 4831 if (som_hppa_howto_table[op].type == R_ENTRY) 4832 rptr->addend = var ('T'); 4833 else if (som_hppa_howto_table[op].type == R_EXIT) 4834 rptr->addend = var ('U'); 4835 else if (som_hppa_howto_table[op].type == R_PCREL_CALL 4836 || som_hppa_howto_table[op].type == R_ABS_CALL) 4837 ; 4838 else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL) 4839 { 4840 /* Try what was specified in R_DATA_OVERRIDE first 4841 (if anything). Then the hard way using the 4842 section contents. */ 4843 rptr->addend = var ('V'); 4844 4845 if (rptr->addend == 0 && !section->contents) 4846 { 4847 /* Got to read the damn contents first. We don't 4848 bother saving the contents (yet). Add it one 4849 day if the need arises. */ 4850 section->contents = bfd_malloc (section->_raw_size); 4851 if (section->contents == NULL) 4852 return -1; 4853 4854 deallocate_contents = 1; 4855 bfd_get_section_contents (section->owner, 4856 section, 4857 section->contents, 4858 0, 4859 section->_raw_size); 4860 } 4861 else if (rptr->addend == 0) 4862 rptr->addend = bfd_get_32 (section->owner, 4863 (section->contents 4864 + offset - var ('L'))); 4865 4866 } 4867 else 4868 rptr->addend = var ('V'); 4869 rptr++; 4870 } 4871 count++; 4872 /* Now that we've handled a "full" relocation, reset 4873 some state. */ 4874 memset (variables, 0, sizeof (variables)); 4875 memset (stack, 0, sizeof (stack)); 4876 } 4877 } 4878 if (deallocate_contents) 4879 free (section->contents); 4880 4881 return count; 4882 4883 #undef var 4884 #undef push 4885 #undef pop 4886 #undef emptystack 4887 } 4888 4889 /* Read in the relocs (aka fixups in SOM terms) for a section. 4890 4891 som_get_reloc_upper_bound calls this routine with JUST_COUNT 4892 set to true to indicate it only needs a count of the number 4893 of actual relocations. */ 4894 4895 static boolean 4896 som_slurp_reloc_table (abfd, section, symbols, just_count) 4897 bfd *abfd; 4898 asection *section; 4899 asymbol **symbols; 4900 boolean just_count; 4901 { 4902 char *external_relocs; 4903 unsigned int fixup_stream_size; 4904 arelent *internal_relocs; 4905 unsigned int num_relocs; 4906 4907 fixup_stream_size = som_section_data (section)->reloc_size; 4908 /* If there were no relocations, then there is nothing to do. */ 4909 if (section->reloc_count == 0) 4910 return true; 4911 4912 /* If reloc_count is -1, then the relocation stream has not been 4913 parsed. We must do so now to know how many relocations exist. */ 4914 if (section->reloc_count == -1) 4915 { 4916 external_relocs = (char *) bfd_malloc (fixup_stream_size); 4917 if (external_relocs == (char *) NULL) 4918 return false; 4919 /* Read in the external forms. */ 4920 if (bfd_seek (abfd, 4921 obj_som_reloc_filepos (abfd) + section->rel_filepos, 4922 SEEK_SET) 4923 != 0) 4924 return false; 4925 if (bfd_read (external_relocs, 1, fixup_stream_size, abfd) 4926 != fixup_stream_size) 4927 return false; 4928 4929 /* Let callers know how many relocations found. 4930 also save the relocation stream as we will 4931 need it again. */ 4932 section->reloc_count = som_set_reloc_info (external_relocs, 4933 fixup_stream_size, 4934 NULL, NULL, NULL, true); 4935 4936 som_section_data (section)->reloc_stream = external_relocs; 4937 } 4938 4939 /* If the caller only wanted a count, then return now. */ 4940 if (just_count) 4941 return true; 4942 4943 num_relocs = section->reloc_count; 4944 external_relocs = som_section_data (section)->reloc_stream; 4945 /* Return saved information about the relocations if it is available. */ 4946 if (section->relocation != (arelent *) NULL) 4947 return true; 4948 4949 internal_relocs = (arelent *) 4950 bfd_zalloc (abfd, (num_relocs * sizeof (arelent))); 4951 if (internal_relocs == (arelent *) NULL) 4952 return false; 4953 4954 /* Process and internalize the relocations. */ 4955 som_set_reloc_info (external_relocs, fixup_stream_size, 4956 internal_relocs, section, symbols, false); 4957 4958 /* We're done with the external relocations. Free them. */ 4959 free (external_relocs); 4960 som_section_data (section)->reloc_stream = NULL; 4961 4962 /* Save our results and return success. */ 4963 section->relocation = internal_relocs; 4964 return (true); 4965 } 4966 4967 /* Return the number of bytes required to store the relocation 4968 information associated with the given section. */ 4969 4970 static long 4971 som_get_reloc_upper_bound (abfd, asect) 4972 bfd *abfd; 4973 sec_ptr asect; 4974 { 4975 /* If section has relocations, then read in the relocation stream 4976 and parse it to determine how many relocations exist. */ 4977 if (asect->flags & SEC_RELOC) 4978 { 4979 if (! som_slurp_reloc_table (abfd, asect, NULL, true)) 4980 return -1; 4981 return (asect->reloc_count + 1) * sizeof (arelent *); 4982 } 4983 /* There are no relocations. */ 4984 return 0; 4985 } 4986 4987 /* Convert relocations from SOM (external) form into BFD internal 4988 form. Return the number of relocations. */ 4989 4990 static long 4991 som_canonicalize_reloc (abfd, section, relptr, symbols) 4992 bfd *abfd; 4993 sec_ptr section; 4994 arelent **relptr; 4995 asymbol **symbols; 4996 { 4997 arelent *tblptr; 4998 int count; 4999 5000 if (som_slurp_reloc_table (abfd, section, symbols, false) == false) 5001 return -1; 5002 5003 count = section->reloc_count; 5004 tblptr = section->relocation; 5005 5006 while (count--) 5007 *relptr++ = tblptr++; 5008 5009 *relptr = (arelent *) NULL; 5010 return section->reloc_count; 5011 } 5012 5013 extern const bfd_target som_vec; 5014 5015 /* A hook to set up object file dependent section information. */ 5016 5017 static boolean 5018 som_new_section_hook (abfd, newsect) 5019 bfd *abfd; 5020 asection *newsect; 5021 { 5022 newsect->used_by_bfd = 5023 (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct)); 5024 if (!newsect->used_by_bfd) 5025 return false; 5026 newsect->alignment_power = 3; 5027 5028 /* We allow more than three sections internally. */ 5029 return true; 5030 } 5031 5032 /* Copy any private info we understand from the input symbol 5033 to the output symbol. */ 5034 5035 static boolean 5036 som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol) 5037 bfd *ibfd; 5038 asymbol *isymbol; 5039 bfd *obfd; 5040 asymbol *osymbol; 5041 { 5042 struct som_symbol *input_symbol = (struct som_symbol *) isymbol; 5043 struct som_symbol *output_symbol = (struct som_symbol *) osymbol; 5044 5045 /* One day we may try to grok other private data. */ 5046 if (ibfd->xvec->flavour != bfd_target_som_flavour 5047 || obfd->xvec->flavour != bfd_target_som_flavour) 5048 return false; 5049 5050 /* The only private information we need to copy is the argument relocation 5051 bits. */ 5052 output_symbol->tc_data.ap.hppa_arg_reloc = 5053 input_symbol->tc_data.ap.hppa_arg_reloc; 5054 5055 return true; 5056 } 5057 5058 /* Copy any private info we understand from the input section 5059 to the output section. */ 5060 5061 static boolean 5062 som_bfd_copy_private_section_data (ibfd, isection, obfd, osection) 5063 bfd *ibfd; 5064 asection *isection; 5065 bfd *obfd; 5066 asection *osection; 5067 { 5068 /* One day we may try to grok other private data. */ 5069 if (ibfd->xvec->flavour != bfd_target_som_flavour 5070 || obfd->xvec->flavour != bfd_target_som_flavour 5071 || (!som_is_space (isection) && !som_is_subspace (isection))) 5072 return true; 5073 5074 som_section_data (osection)->copy_data = 5075 (struct som_copyable_section_data_struct *) 5076 bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct)); 5077 if (som_section_data (osection)->copy_data == NULL) 5078 return false; 5079 5080 memcpy (som_section_data (osection)->copy_data, 5081 som_section_data (isection)->copy_data, 5082 sizeof (struct som_copyable_section_data_struct)); 5083 5084 /* Reparent if necessary. */ 5085 if (som_section_data (osection)->copy_data->container) 5086 som_section_data (osection)->copy_data->container = 5087 som_section_data (osection)->copy_data->container->output_section; 5088 5089 return true; 5090 } 5091 5092 /* Copy any private info we understand from the input bfd 5093 to the output bfd. */ 5094 5095 static boolean 5096 som_bfd_copy_private_bfd_data (ibfd, obfd) 5097 bfd *ibfd, *obfd; 5098 { 5099 /* One day we may try to grok other private data. */ 5100 if (ibfd->xvec->flavour != bfd_target_som_flavour 5101 || obfd->xvec->flavour != bfd_target_som_flavour) 5102 return true; 5103 5104 /* Allocate some memory to hold the data we need. */ 5105 obj_som_exec_data (obfd) = (struct som_exec_data *) 5106 bfd_zalloc (obfd, sizeof (struct som_exec_data)); 5107 if (obj_som_exec_data (obfd) == NULL) 5108 return false; 5109 5110 /* Now copy the data. */ 5111 memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd), 5112 sizeof (struct som_exec_data)); 5113 5114 return true; 5115 } 5116 5117 /* Set backend info for sections which can not be described 5118 in the BFD data structures. */ 5119 5120 boolean 5121 bfd_som_set_section_attributes (section, defined, private, sort_key, spnum) 5122 asection *section; 5123 int defined; 5124 int private; 5125 unsigned int sort_key; 5126 int spnum; 5127 { 5128 /* Allocate memory to hold the magic information. */ 5129 if (som_section_data (section)->copy_data == NULL) 5130 { 5131 som_section_data (section)->copy_data = 5132 (struct som_copyable_section_data_struct *) 5133 bfd_zalloc (section->owner, 5134 sizeof (struct som_copyable_section_data_struct)); 5135 if (som_section_data (section)->copy_data == NULL) 5136 return false; 5137 } 5138 som_section_data (section)->copy_data->sort_key = sort_key; 5139 som_section_data (section)->copy_data->is_defined = defined; 5140 som_section_data (section)->copy_data->is_private = private; 5141 som_section_data (section)->copy_data->container = section; 5142 som_section_data (section)->copy_data->space_number = spnum; 5143 return true; 5144 } 5145 5146 /* Set backend info for subsections which can not be described 5147 in the BFD data structures. */ 5148 5149 boolean 5150 bfd_som_set_subsection_attributes (section, container, access, 5151 sort_key, quadrant) 5152 asection *section; 5153 asection *container; 5154 int access; 5155 unsigned int sort_key; 5156 int quadrant; 5157 { 5158 /* Allocate memory to hold the magic information. */ 5159 if (som_section_data (section)->copy_data == NULL) 5160 { 5161 som_section_data (section)->copy_data = 5162 (struct som_copyable_section_data_struct *) 5163 bfd_zalloc (section->owner, 5164 sizeof (struct som_copyable_section_data_struct)); 5165 if (som_section_data (section)->copy_data == NULL) 5166 return false; 5167 } 5168 som_section_data (section)->copy_data->sort_key = sort_key; 5169 som_section_data (section)->copy_data->access_control_bits = access; 5170 som_section_data (section)->copy_data->quadrant = quadrant; 5171 som_section_data (section)->copy_data->container = container; 5172 return true; 5173 } 5174 5175 /* Set the full SOM symbol type. SOM needs far more symbol information 5176 than any other object file format I'm aware of. It is mandatory 5177 to be able to know if a symbol is an entry point, millicode, data, 5178 code, absolute, storage request, or procedure label. If you get 5179 the symbol type wrong your program will not link. */ 5180 5181 void 5182 bfd_som_set_symbol_type (symbol, type) 5183 asymbol *symbol; 5184 unsigned int type; 5185 { 5186 som_symbol_data (symbol)->som_type = type; 5187 } 5188 5189 /* Attach an auxiliary header to the BFD backend so that it may be 5190 written into the object file. */ 5191 5192 boolean 5193 bfd_som_attach_aux_hdr (abfd, type, string) 5194 bfd *abfd; 5195 int type; 5196 char *string; 5197 { 5198 if (type == VERSION_AUX_ID) 5199 { 5200 int len = strlen (string); 5201 int pad = 0; 5202 5203 if (len % 4) 5204 pad = (4 - (len % 4)); 5205 obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *) 5206 bfd_zalloc (abfd, sizeof (struct aux_id) 5207 + sizeof (unsigned int) + len + pad); 5208 if (!obj_som_version_hdr (abfd)) 5209 return false; 5210 obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID; 5211 obj_som_version_hdr (abfd)->header_id.length = len + pad; 5212 obj_som_version_hdr (abfd)->header_id.length += sizeof (int); 5213 obj_som_version_hdr (abfd)->string_length = len; 5214 strncpy (obj_som_version_hdr (abfd)->user_string, string, len); 5215 } 5216 else if (type == COPYRIGHT_AUX_ID) 5217 { 5218 int len = strlen (string); 5219 int pad = 0; 5220 5221 if (len % 4) 5222 pad = (4 - (len % 4)); 5223 obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *) 5224 bfd_zalloc (abfd, sizeof (struct aux_id) 5225 + sizeof (unsigned int) + len + pad); 5226 if (!obj_som_copyright_hdr (abfd)) 5227 return false; 5228 obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID; 5229 obj_som_copyright_hdr (abfd)->header_id.length = len + pad; 5230 obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int); 5231 obj_som_copyright_hdr (abfd)->string_length = len; 5232 strcpy (obj_som_copyright_hdr (abfd)->copyright, string); 5233 } 5234 return true; 5235 } 5236 5237 /* Attach an compilation unit header to the BFD backend so that it may be 5238 written into the object file. */ 5239 5240 boolean 5241 bfd_som_attach_compilation_unit (abfd, name, language_name, product_id, 5242 version_id) 5243 bfd *abfd; 5244 const char *name; 5245 const char *language_name; 5246 const char *product_id; 5247 const char *version_id; 5248 { 5249 COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, COMPUNITSZ); 5250 if (n == NULL) 5251 return false; 5252 5253 #define STRDUP(f) \ 5254 if (f != NULL) \ 5255 { \ 5256 n->f.n_name = bfd_alloc (abfd, strlen (f) + 1); \ 5257 if (n->f.n_name == NULL) \ 5258 return false; \ 5259 strcpy (n->f.n_name, f); \ 5260 } 5261 5262 STRDUP (name); 5263 STRDUP (language_name); 5264 STRDUP (product_id); 5265 STRDUP (version_id); 5266 5267 #undef STRDUP 5268 5269 obj_som_compilation_unit (abfd) = n; 5270 5271 return true; 5272 } 5273 5274 static boolean 5275 som_get_section_contents (abfd, section, location, offset, count) 5276 bfd *abfd; 5277 sec_ptr section; 5278 PTR location; 5279 file_ptr offset; 5280 bfd_size_type count; 5281 { 5282 if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0)) 5283 return true; 5284 if ((bfd_size_type) (offset+count) > section->_raw_size 5285 || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) == -1 5286 || bfd_read (location, (bfd_size_type) 1, count, abfd) != count) 5287 return (false); /* on error */ 5288 return (true); 5289 } 5290 5291 static boolean 5292 som_set_section_contents (abfd, section, location, offset, count) 5293 bfd *abfd; 5294 sec_ptr section; 5295 PTR location; 5296 file_ptr offset; 5297 bfd_size_type count; 5298 { 5299 if (abfd->output_has_begun == false) 5300 { 5301 /* Set up fixed parts of the file, space, and subspace headers. 5302 Notify the world that output has begun. */ 5303 som_prep_headers (abfd); 5304 abfd->output_has_begun = true; 5305 /* Start writing the object file. This include all the string 5306 tables, fixup streams, and other portions of the object file. */ 5307 som_begin_writing (abfd); 5308 } 5309 5310 /* Only write subspaces which have "real" contents (eg. the contents 5311 are not generated at run time by the OS). */ 5312 if (!som_is_subspace (section) 5313 || ((section->flags & SEC_HAS_CONTENTS) == 0)) 5314 return true; 5315 5316 /* Seek to the proper offset within the object file and write the 5317 data. */ 5318 offset += som_section_data (section)->subspace_dict->file_loc_init_value; 5319 if (bfd_seek (abfd, offset, SEEK_SET) == -1) 5320 return false; 5321 5322 if (bfd_write ((PTR) location, 1, count, abfd) != count) 5323 return false; 5324 return true; 5325 } 5326 5327 static boolean 5328 som_set_arch_mach (abfd, arch, machine) 5329 bfd *abfd; 5330 enum bfd_architecture arch; 5331 unsigned long machine; 5332 { 5333 /* Allow any architecture to be supported by the SOM backend. */ 5334 return bfd_default_set_arch_mach (abfd, arch, machine); 5335 } 5336 5337 static boolean 5338 som_find_nearest_line (abfd, section, symbols, offset, filename_ptr, 5339 functionname_ptr, line_ptr) 5340 bfd *abfd ATTRIBUTE_UNUSED; 5341 asection *section ATTRIBUTE_UNUSED; 5342 asymbol **symbols ATTRIBUTE_UNUSED; 5343 bfd_vma offset ATTRIBUTE_UNUSED; 5344 CONST char **filename_ptr ATTRIBUTE_UNUSED; 5345 CONST char **functionname_ptr ATTRIBUTE_UNUSED; 5346 unsigned int *line_ptr ATTRIBUTE_UNUSED; 5347 { 5348 return (false); 5349 } 5350 5351 static int 5352 som_sizeof_headers (abfd, reloc) 5353 bfd *abfd ATTRIBUTE_UNUSED; 5354 boolean reloc ATTRIBUTE_UNUSED; 5355 { 5356 (*_bfd_error_handler) (_("som_sizeof_headers unimplemented")); 5357 fflush (stderr); 5358 abort (); 5359 return (0); 5360 } 5361 5362 /* Return the single-character symbol type corresponding to 5363 SOM section S, or '?' for an unknown SOM section. */ 5364 5365 static char 5366 som_section_type (s) 5367 const char *s; 5368 { 5369 const struct section_to_type *t; 5370 5371 for (t = &stt[0]; t->section; t++) 5372 if (!strcmp (s, t->section)) 5373 return t->type; 5374 return '?'; 5375 } 5376 5377 static int 5378 som_decode_symclass (symbol) 5379 asymbol *symbol; 5380 { 5381 char c; 5382 5383 if (bfd_is_com_section (symbol->section)) 5384 return 'C'; 5385 if (bfd_is_und_section (symbol->section)) 5386 return 'U'; 5387 if (bfd_is_ind_section (symbol->section)) 5388 return 'I'; 5389 if (symbol->flags & BSF_WEAK) 5390 return 'W'; 5391 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) 5392 return '?'; 5393 5394 if (bfd_is_abs_section (symbol->section) 5395 || (som_symbol_data (symbol) != NULL 5396 && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE)) 5397 c = 'a'; 5398 else if (symbol->section) 5399 c = som_section_type (symbol->section->name); 5400 else 5401 return '?'; 5402 if (symbol->flags & BSF_GLOBAL) 5403 c = toupper (c); 5404 return c; 5405 } 5406 5407 /* Return information about SOM symbol SYMBOL in RET. */ 5408 5409 static void 5410 som_get_symbol_info (ignore_abfd, symbol, ret) 5411 bfd *ignore_abfd ATTRIBUTE_UNUSED; 5412 asymbol *symbol; 5413 symbol_info *ret; 5414 { 5415 ret->type = som_decode_symclass (symbol); 5416 if (ret->type != 'U') 5417 ret->value = symbol->value + symbol->section->vma; 5418 else 5419 ret->value = 0; 5420 ret->name = symbol->name; 5421 } 5422 5423 /* Count the number of symbols in the archive symbol table. Necessary 5424 so that we can allocate space for all the carsyms at once. */ 5425 5426 static boolean 5427 som_bfd_count_ar_symbols (abfd, lst_header, count) 5428 bfd *abfd; 5429 struct lst_header *lst_header; 5430 symindex *count; 5431 { 5432 unsigned int i; 5433 unsigned int *hash_table = NULL; 5434 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5435 5436 hash_table = 5437 (unsigned int *) bfd_malloc (lst_header->hash_size 5438 * sizeof (unsigned int)); 5439 if (hash_table == NULL && lst_header->hash_size != 0) 5440 goto error_return; 5441 5442 /* Don't forget to initialize the counter! */ 5443 *count = 0; 5444 5445 /* Read in the hash table. The has table is an array of 32bit file offsets 5446 which point to the hash chains. */ 5447 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd) 5448 != lst_header->hash_size * 4) 5449 goto error_return; 5450 5451 /* Walk each chain counting the number of symbols found on that particular 5452 chain. */ 5453 for (i = 0; i < lst_header->hash_size; i++) 5454 { 5455 struct lst_symbol_record lst_symbol; 5456 5457 /* An empty chain has zero as it's file offset. */ 5458 if (hash_table[i] == 0) 5459 continue; 5460 5461 /* Seek to the first symbol in this hash chain. */ 5462 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0) 5463 goto error_return; 5464 5465 /* Read in this symbol and update the counter. */ 5466 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) 5467 != sizeof (lst_symbol)) 5468 goto error_return; 5469 5470 (*count)++; 5471 5472 /* Now iterate through the rest of the symbols on this chain. */ 5473 while (lst_symbol.next_entry) 5474 { 5475 5476 /* Seek to the next symbol. */ 5477 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) 5478 < 0) 5479 goto error_return; 5480 5481 /* Read the symbol in and update the counter. */ 5482 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) 5483 != sizeof (lst_symbol)) 5484 goto error_return; 5485 5486 (*count)++; 5487 } 5488 } 5489 if (hash_table != NULL) 5490 free (hash_table); 5491 return true; 5492 5493 error_return: 5494 if (hash_table != NULL) 5495 free (hash_table); 5496 return false; 5497 } 5498 5499 /* Fill in the canonical archive symbols (SYMS) from the archive described 5500 by ABFD and LST_HEADER. */ 5501 5502 static boolean 5503 som_bfd_fill_in_ar_symbols (abfd, lst_header, syms) 5504 bfd *abfd; 5505 struct lst_header *lst_header; 5506 carsym **syms; 5507 { 5508 unsigned int i, len; 5509 carsym *set = syms[0]; 5510 unsigned int *hash_table = NULL; 5511 struct som_entry *som_dict = NULL; 5512 file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5513 5514 hash_table = 5515 (unsigned int *) bfd_malloc (lst_header->hash_size 5516 * sizeof (unsigned int)); 5517 if (hash_table == NULL && lst_header->hash_size != 0) 5518 goto error_return; 5519 5520 som_dict = 5521 (struct som_entry *) bfd_malloc (lst_header->module_count 5522 * sizeof (struct som_entry)); 5523 if (som_dict == NULL && lst_header->module_count != 0) 5524 goto error_return; 5525 5526 /* Read in the hash table. The has table is an array of 32bit file offsets 5527 which point to the hash chains. */ 5528 if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd) 5529 != lst_header->hash_size * 4) 5530 goto error_return; 5531 5532 /* Seek to and read in the SOM dictionary. We will need this to fill 5533 in the carsym's filepos field. */ 5534 if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0) 5535 goto error_return; 5536 5537 if (bfd_read ((PTR) som_dict, lst_header->module_count, 5538 sizeof (struct som_entry), abfd) 5539 != lst_header->module_count * sizeof (struct som_entry)) 5540 goto error_return; 5541 5542 /* Walk each chain filling in the carsyms as we go along. */ 5543 for (i = 0; i < lst_header->hash_size; i++) 5544 { 5545 struct lst_symbol_record lst_symbol; 5546 5547 /* An empty chain has zero as it's file offset. */ 5548 if (hash_table[i] == 0) 5549 continue; 5550 5551 /* Seek to and read the first symbol on the chain. */ 5552 if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0) 5553 goto error_return; 5554 5555 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) 5556 != sizeof (lst_symbol)) 5557 goto error_return; 5558 5559 /* Get the name of the symbol, first get the length which is stored 5560 as a 32bit integer just before the symbol. 5561 5562 One might ask why we don't just read in the entire string table 5563 and index into it. Well, according to the SOM ABI the string 5564 index can point *anywhere* in the archive to save space, so just 5565 using the string table would not be safe. */ 5566 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc 5567 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0) 5568 goto error_return; 5569 5570 if (bfd_read (&len, 1, 4, abfd) != 4) 5571 goto error_return; 5572 5573 /* Allocate space for the name and null terminate it too. */ 5574 set->name = bfd_zalloc (abfd, len + 1); 5575 if (!set->name) 5576 goto error_return; 5577 if (bfd_read (set->name, 1, len, abfd) != len) 5578 goto error_return; 5579 5580 set->name[len] = 0; 5581 5582 /* Fill in the file offset. Note that the "location" field points 5583 to the SOM itself, not the ar_hdr in front of it. */ 5584 set->file_offset = som_dict[lst_symbol.som_index].location 5585 - sizeof (struct ar_hdr); 5586 5587 /* Go to the next symbol. */ 5588 set++; 5589 5590 /* Iterate through the rest of the chain. */ 5591 while (lst_symbol.next_entry) 5592 { 5593 /* Seek to the next symbol and read it in. */ 5594 if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0) 5595 goto error_return; 5596 5597 if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) 5598 != sizeof (lst_symbol)) 5599 goto error_return; 5600 5601 /* Seek to the name length & string and read them in. */ 5602 if (bfd_seek (abfd, lst_filepos + lst_header->string_loc 5603 + lst_symbol.name.n_strx - 4, SEEK_SET) < 0) 5604 goto error_return; 5605 5606 if (bfd_read (&len, 1, 4, abfd) != 4) 5607 goto error_return; 5608 5609 /* Allocate space for the name and null terminate it too. */ 5610 set->name = bfd_zalloc (abfd, len + 1); 5611 if (!set->name) 5612 goto error_return; 5613 5614 if (bfd_read (set->name, 1, len, abfd) != len) 5615 goto error_return; 5616 set->name[len] = 0; 5617 5618 /* Fill in the file offset. Note that the "location" field points 5619 to the SOM itself, not the ar_hdr in front of it. */ 5620 set->file_offset = som_dict[lst_symbol.som_index].location 5621 - sizeof (struct ar_hdr); 5622 5623 /* Go on to the next symbol. */ 5624 set++; 5625 } 5626 } 5627 /* If we haven't died by now, then we successfully read the entire 5628 archive symbol table. */ 5629 if (hash_table != NULL) 5630 free (hash_table); 5631 if (som_dict != NULL) 5632 free (som_dict); 5633 return true; 5634 5635 error_return: 5636 if (hash_table != NULL) 5637 free (hash_table); 5638 if (som_dict != NULL) 5639 free (som_dict); 5640 return false; 5641 } 5642 5643 /* Read in the LST from the archive. */ 5644 5645 static boolean 5646 som_slurp_armap (abfd) 5647 bfd *abfd; 5648 { 5649 struct lst_header lst_header; 5650 struct ar_hdr ar_header; 5651 unsigned int parsed_size; 5652 struct artdata *ardata = bfd_ardata (abfd); 5653 char nextname[17]; 5654 int i = bfd_read ((PTR) nextname, 1, 16, abfd); 5655 5656 /* Special cases. */ 5657 if (i == 0) 5658 return true; 5659 if (i != 16) 5660 return false; 5661 5662 if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0) 5663 return false; 5664 5665 /* For archives without .o files there is no symbol table. */ 5666 if (strncmp (nextname, "/ ", 16)) 5667 { 5668 bfd_has_map (abfd) = false; 5669 return true; 5670 } 5671 5672 /* Read in and sanity check the archive header. */ 5673 if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd) 5674 != sizeof (struct ar_hdr)) 5675 return false; 5676 5677 if (strncmp (ar_header.ar_fmag, ARFMAG, 2)) 5678 { 5679 bfd_set_error (bfd_error_malformed_archive); 5680 return false; 5681 } 5682 5683 /* How big is the archive symbol table entry? */ 5684 errno = 0; 5685 parsed_size = strtol (ar_header.ar_size, NULL, 10); 5686 if (errno != 0) 5687 { 5688 bfd_set_error (bfd_error_malformed_archive); 5689 return false; 5690 } 5691 5692 /* Save off the file offset of the first real user data. */ 5693 ardata->first_file_filepos = bfd_tell (abfd) + parsed_size; 5694 5695 /* Read in the library symbol table. We'll make heavy use of this 5696 in just a minute. */ 5697 if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd) 5698 != sizeof (struct lst_header)) 5699 return false; 5700 5701 /* Sanity check. */ 5702 if (lst_header.a_magic != LIBMAGIC) 5703 { 5704 bfd_set_error (bfd_error_malformed_archive); 5705 return false; 5706 } 5707 5708 /* Count the number of symbols in the library symbol table. */ 5709 if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count) 5710 == false) 5711 return false; 5712 5713 /* Get back to the start of the library symbol table. */ 5714 if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size 5715 + sizeof (struct lst_header), SEEK_SET) < 0) 5716 return false; 5717 5718 /* Initializae the cache and allocate space for the library symbols. */ 5719 ardata->cache = 0; 5720 ardata->symdefs = (carsym *) bfd_alloc (abfd, 5721 (ardata->symdef_count 5722 * sizeof (carsym))); 5723 if (!ardata->symdefs) 5724 return false; 5725 5726 /* Now fill in the canonical archive symbols. */ 5727 if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs) 5728 == false) 5729 return false; 5730 5731 /* Seek back to the "first" file in the archive. Note the "first" 5732 file may be the extended name table. */ 5733 if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0) 5734 return false; 5735 5736 /* Notify the generic archive code that we have a symbol map. */ 5737 bfd_has_map (abfd) = true; 5738 return true; 5739 } 5740 5741 /* Begin preparing to write a SOM library symbol table. 5742 5743 As part of the prep work we need to determine the number of symbols 5744 and the size of the associated string section. */ 5745 5746 static boolean 5747 som_bfd_prep_for_ar_write (abfd, num_syms, stringsize) 5748 bfd *abfd; 5749 unsigned int *num_syms, *stringsize; 5750 { 5751 bfd *curr_bfd = abfd->archive_head; 5752 5753 /* Some initialization. */ 5754 *num_syms = 0; 5755 *stringsize = 0; 5756 5757 /* Iterate over each BFD within this archive. */ 5758 while (curr_bfd != NULL) 5759 { 5760 unsigned int curr_count, i; 5761 som_symbol_type *sym; 5762 5763 /* Don't bother for non-SOM objects. */ 5764 if (curr_bfd->format != bfd_object 5765 || curr_bfd->xvec->flavour != bfd_target_som_flavour) 5766 { 5767 curr_bfd = curr_bfd->next; 5768 continue; 5769 } 5770 5771 /* Make sure the symbol table has been read, then snag a pointer 5772 to it. It's a little slimey to grab the symbols via obj_som_symtab, 5773 but doing so avoids allocating lots of extra memory. */ 5774 if (som_slurp_symbol_table (curr_bfd) == false) 5775 return false; 5776 5777 sym = obj_som_symtab (curr_bfd); 5778 curr_count = bfd_get_symcount (curr_bfd); 5779 5780 /* Examine each symbol to determine if it belongs in the 5781 library symbol table. */ 5782 for (i = 0; i < curr_count; i++, sym++) 5783 { 5784 struct som_misc_symbol_info info; 5785 5786 /* Derive SOM information from the BFD symbol. */ 5787 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); 5788 5789 /* Should we include this symbol? */ 5790 if (info.symbol_type == ST_NULL 5791 || info.symbol_type == ST_SYM_EXT 5792 || info.symbol_type == ST_ARG_EXT) 5793 continue; 5794 5795 /* Only global symbols and unsatisfied commons. */ 5796 if (info.symbol_scope != SS_UNIVERSAL 5797 && info.symbol_type != ST_STORAGE) 5798 continue; 5799 5800 /* Do no include undefined symbols. */ 5801 if (bfd_is_und_section (sym->symbol.section)) 5802 continue; 5803 5804 /* Bump the various counters, being careful to honor 5805 alignment considerations in the string table. */ 5806 (*num_syms)++; 5807 *stringsize = *stringsize + strlen (sym->symbol.name) + 5; 5808 while (*stringsize % 4) 5809 (*stringsize)++; 5810 } 5811 5812 curr_bfd = curr_bfd->next; 5813 } 5814 return true; 5815 } 5816 5817 /* Hash a symbol name based on the hashing algorithm presented in the 5818 SOM ABI. */ 5819 5820 static unsigned int 5821 som_bfd_ar_symbol_hash (symbol) 5822 asymbol *symbol; 5823 { 5824 unsigned int len = strlen (symbol->name); 5825 5826 /* Names with length 1 are special. */ 5827 if (len == 1) 5828 return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0]; 5829 5830 return ((len & 0x7f) << 24) | (symbol->name[1] << 16) 5831 | (symbol->name[len - 2] << 8) | symbol->name[len - 1]; 5832 } 5833 5834 /* Do the bulk of the work required to write the SOM library 5835 symbol table. */ 5836 5837 static boolean 5838 som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength) 5839 bfd *abfd; 5840 unsigned int nsyms, string_size; 5841 struct lst_header lst; 5842 unsigned elength; 5843 { 5844 file_ptr lst_filepos; 5845 char *strings = NULL, *p; 5846 struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym; 5847 bfd *curr_bfd; 5848 unsigned int *hash_table = NULL; 5849 struct som_entry *som_dict = NULL; 5850 struct lst_symbol_record **last_hash_entry = NULL; 5851 unsigned int curr_som_offset, som_index = 0; 5852 5853 hash_table = 5854 (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int)); 5855 if (hash_table == NULL && lst.hash_size != 0) 5856 goto error_return; 5857 som_dict = 5858 (struct som_entry *) bfd_malloc (lst.module_count 5859 * sizeof (struct som_entry)); 5860 if (som_dict == NULL && lst.module_count != 0) 5861 goto error_return; 5862 5863 last_hash_entry = 5864 ((struct lst_symbol_record **) 5865 bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *))); 5866 if (last_hash_entry == NULL && lst.hash_size != 0) 5867 goto error_return; 5868 5869 /* Lots of fields are file positions relative to the start 5870 of the lst record. So save its location. */ 5871 lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); 5872 5873 /* Some initialization. */ 5874 memset (hash_table, 0, 4 * lst.hash_size); 5875 memset (som_dict, 0, lst.module_count * sizeof (struct som_entry)); 5876 memset (last_hash_entry, 0, 5877 lst.hash_size * sizeof (struct lst_symbol_record *)); 5878 5879 /* Symbols have som_index fields, so we have to keep track of the 5880 index of each SOM in the archive. 5881 5882 The SOM dictionary has (among other things) the absolute file 5883 position for the SOM which a particular dictionary entry 5884 describes. We have to compute that information as we iterate 5885 through the SOMs/symbols. */ 5886 som_index = 0; 5887 5888 /* We add in the size of the archive header twice as the location 5889 in the SOM dictionary is the actual offset of the SOM, not the 5890 archive header before the SOM. */ 5891 curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end; 5892 5893 /* Make room for the archive header and the contents of the 5894 extended string table. Note that elength includes the size 5895 of the archive header for the extended name table! */ 5896 if (elength) 5897 curr_som_offset += elength; 5898 5899 /* Make sure we're properly aligned. */ 5900 curr_som_offset = (curr_som_offset + 0x1) & ~0x1; 5901 5902 /* FIXME should be done with buffers just like everything else... */ 5903 lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record)); 5904 if (lst_syms == NULL && nsyms != 0) 5905 goto error_return; 5906 strings = bfd_malloc (string_size); 5907 if (strings == NULL && string_size != 0) 5908 goto error_return; 5909 5910 p = strings; 5911 curr_lst_sym = lst_syms; 5912 5913 curr_bfd = abfd->archive_head; 5914 while (curr_bfd != NULL) 5915 { 5916 unsigned int curr_count, i; 5917 som_symbol_type *sym; 5918 5919 /* Don't bother for non-SOM objects. */ 5920 if (curr_bfd->format != bfd_object 5921 || curr_bfd->xvec->flavour != bfd_target_som_flavour) 5922 { 5923 curr_bfd = curr_bfd->next; 5924 continue; 5925 } 5926 5927 /* Make sure the symbol table has been read, then snag a pointer 5928 to it. It's a little slimey to grab the symbols via obj_som_symtab, 5929 but doing so avoids allocating lots of extra memory. */ 5930 if (som_slurp_symbol_table (curr_bfd) == false) 5931 goto error_return; 5932 5933 sym = obj_som_symtab (curr_bfd); 5934 curr_count = bfd_get_symcount (curr_bfd); 5935 5936 for (i = 0; i < curr_count; i++, sym++) 5937 { 5938 struct som_misc_symbol_info info; 5939 5940 /* Derive SOM information from the BFD symbol. */ 5941 som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); 5942 5943 /* Should we include this symbol? */ 5944 if (info.symbol_type == ST_NULL 5945 || info.symbol_type == ST_SYM_EXT 5946 || info.symbol_type == ST_ARG_EXT) 5947 continue; 5948 5949 /* Only global symbols and unsatisfied commons. */ 5950 if (info.symbol_scope != SS_UNIVERSAL 5951 && info.symbol_type != ST_STORAGE) 5952 continue; 5953 5954 /* Do no include undefined symbols. */ 5955 if (bfd_is_und_section (sym->symbol.section)) 5956 continue; 5957 5958 /* If this is the first symbol from this SOM, then update 5959 the SOM dictionary too. */ 5960 if (som_dict[som_index].location == 0) 5961 { 5962 som_dict[som_index].location = curr_som_offset; 5963 som_dict[som_index].length = arelt_size (curr_bfd); 5964 } 5965 5966 /* Fill in the lst symbol record. */ 5967 curr_lst_sym->hidden = 0; 5968 curr_lst_sym->secondary_def = info.secondary_def; 5969 curr_lst_sym->symbol_type = info.symbol_type; 5970 curr_lst_sym->symbol_scope = info.symbol_scope; 5971 curr_lst_sym->check_level = 0; 5972 curr_lst_sym->must_qualify = 0; 5973 curr_lst_sym->initially_frozen = 0; 5974 curr_lst_sym->memory_resident = 0; 5975 curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section); 5976 curr_lst_sym->dup_common = 0; 5977 curr_lst_sym->xleast = 3; 5978 curr_lst_sym->arg_reloc = info.arg_reloc; 5979 curr_lst_sym->name.n_strx = p - strings + 4; 5980 curr_lst_sym->qualifier_name.n_strx = 0; 5981 curr_lst_sym->symbol_info = info.symbol_info; 5982 curr_lst_sym->symbol_value = info.symbol_value | info.priv_level; 5983 curr_lst_sym->symbol_descriptor = 0; 5984 curr_lst_sym->reserved = 0; 5985 curr_lst_sym->som_index = som_index; 5986 curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol); 5987 curr_lst_sym->next_entry = 0; 5988 5989 /* Insert into the hash table. */ 5990 if (hash_table[curr_lst_sym->symbol_key % lst.hash_size]) 5991 { 5992 struct lst_symbol_record *tmp; 5993 5994 /* There is already something at the head of this hash chain, 5995 so tack this symbol onto the end of the chain. */ 5996 tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]; 5997 tmp->next_entry 5998 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) 5999 + lst.hash_size * 4 6000 + lst.module_count * sizeof (struct som_entry) 6001 + sizeof (struct lst_header); 6002 } 6003 else 6004 { 6005 /* First entry in this hash chain. */ 6006 hash_table[curr_lst_sym->symbol_key % lst.hash_size] 6007 = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) 6008 + lst.hash_size * 4 6009 + lst.module_count * sizeof (struct som_entry) 6010 + sizeof (struct lst_header); 6011 } 6012 6013 /* Keep track of the last symbol we added to this chain so we can 6014 easily update its next_entry pointer. */ 6015 last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size] 6016 = curr_lst_sym; 6017 6018 /* Update the string table. */ 6019 bfd_put_32 (abfd, strlen (sym->symbol.name), p); 6020 p += 4; 6021 strcpy (p, sym->symbol.name); 6022 p += strlen (sym->symbol.name) + 1; 6023 while ((int) p % 4) 6024 { 6025 bfd_put_8 (abfd, 0, p); 6026 p++; 6027 } 6028 6029 /* Head to the next symbol. */ 6030 curr_lst_sym++; 6031 } 6032 6033 /* Keep track of where each SOM will finally reside; then look 6034 at the next BFD. */ 6035 curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr); 6036 6037 /* A particular object in the archive may have an odd length; the 6038 linker requires objects begin on an even boundary. So round 6039 up the current offset as necessary. */ 6040 curr_som_offset = (curr_som_offset + 0x1) & ~0x1; 6041 curr_bfd = curr_bfd->next; 6042 som_index++; 6043 } 6044 6045 /* Now scribble out the hash table. */ 6046 if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd) 6047 != lst.hash_size * 4) 6048 goto error_return; 6049 6050 /* Then the SOM dictionary. */ 6051 if (bfd_write ((PTR) som_dict, lst.module_count, 6052 sizeof (struct som_entry), abfd) 6053 != lst.module_count * sizeof (struct som_entry)) 6054 goto error_return; 6055 6056 /* The library symbols. */ 6057 if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd) 6058 != nsyms * sizeof (struct lst_symbol_record)) 6059 goto error_return; 6060 6061 /* And finally the strings. */ 6062 if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size) 6063 goto error_return; 6064 6065 if (hash_table != NULL) 6066 free (hash_table); 6067 if (som_dict != NULL) 6068 free (som_dict); 6069 if (last_hash_entry != NULL) 6070 free (last_hash_entry); 6071 if (lst_syms != NULL) 6072 free (lst_syms); 6073 if (strings != NULL) 6074 free (strings); 6075 return true; 6076 6077 error_return: 6078 if (hash_table != NULL) 6079 free (hash_table); 6080 if (som_dict != NULL) 6081 free (som_dict); 6082 if (last_hash_entry != NULL) 6083 free (last_hash_entry); 6084 if (lst_syms != NULL) 6085 free (lst_syms); 6086 if (strings != NULL) 6087 free (strings); 6088 6089 return false; 6090 } 6091 6092 /* Write out the LST for the archive. 6093 6094 You'll never believe this is really how armaps are handled in SOM... */ 6095 6096 static boolean 6097 som_write_armap (abfd, elength, map, orl_count, stridx) 6098 bfd *abfd; 6099 unsigned int elength; 6100 struct orl *map ATTRIBUTE_UNUSED; 6101 unsigned int orl_count ATTRIBUTE_UNUSED; 6102 int stridx ATTRIBUTE_UNUSED; 6103 { 6104 bfd *curr_bfd; 6105 struct stat statbuf; 6106 unsigned int i, lst_size, nsyms, stringsize; 6107 struct ar_hdr hdr; 6108 struct lst_header lst; 6109 int *p; 6110 6111 /* We'll use this for the archive's date and mode later. */ 6112 if (stat (abfd->filename, &statbuf) != 0) 6113 { 6114 bfd_set_error (bfd_error_system_call); 6115 return false; 6116 } 6117 /* Fudge factor. */ 6118 bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60; 6119 6120 /* Account for the lst header first. */ 6121 lst_size = sizeof (struct lst_header); 6122 6123 /* Start building the LST header. */ 6124 /* FIXME: Do we need to examine each element to determine the 6125 largest id number? */ 6126 lst.system_id = CPU_PA_RISC1_0; 6127 lst.a_magic = LIBMAGIC; 6128 lst.version_id = VERSION_ID; 6129 lst.file_time.secs = 0; 6130 lst.file_time.nanosecs = 0; 6131 6132 lst.hash_loc = lst_size; 6133 lst.hash_size = SOM_LST_HASH_SIZE; 6134 6135 /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */ 6136 lst_size += 4 * SOM_LST_HASH_SIZE; 6137 6138 /* We need to count the number of SOMs in this archive. */ 6139 curr_bfd = abfd->archive_head; 6140 lst.module_count = 0; 6141 while (curr_bfd != NULL) 6142 { 6143 /* Only true SOM objects count. */ 6144 if (curr_bfd->format == bfd_object 6145 && curr_bfd->xvec->flavour == bfd_target_som_flavour) 6146 lst.module_count++; 6147 curr_bfd = curr_bfd->next; 6148 } 6149 lst.module_limit = lst.module_count; 6150 lst.dir_loc = lst_size; 6151 lst_size += sizeof (struct som_entry) * lst.module_count; 6152 6153 /* We don't support import/export tables, auxiliary headers, 6154 or free lists yet. Make the linker work a little harder 6155 to make our life easier. */ 6156 6157 lst.export_loc = 0; 6158 lst.export_count = 0; 6159 lst.import_loc = 0; 6160 lst.aux_loc = 0; 6161 lst.aux_size = 0; 6162 6163 /* Count how many symbols we will have on the hash chains and the 6164 size of the associated string table. */ 6165 if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false) 6166 return false; 6167 6168 lst_size += sizeof (struct lst_symbol_record) * nsyms; 6169 6170 /* For the string table. One day we might actually use this info 6171 to avoid small seeks/reads when reading archives. */ 6172 lst.string_loc = lst_size; 6173 lst.string_size = stringsize; 6174 lst_size += stringsize; 6175 6176 /* SOM ABI says this must be zero. */ 6177 lst.free_list = 0; 6178 lst.file_end = lst_size; 6179 6180 /* Compute the checksum. Must happen after the entire lst header 6181 has filled in. */ 6182 p = (int *) &lst; 6183 lst.checksum = 0; 6184 for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++) 6185 lst.checksum ^= *p++; 6186 6187 sprintf (hdr.ar_name, "/ "); 6188 sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp); 6189 sprintf (hdr.ar_uid, "%ld", (long) getuid ()); 6190 sprintf (hdr.ar_gid, "%ld", (long) getgid ()); 6191 sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode); 6192 sprintf (hdr.ar_size, "%-10d", (int) lst_size); 6193 hdr.ar_fmag[0] = '`'; 6194 hdr.ar_fmag[1] = '\012'; 6195 6196 /* Turn any nulls into spaces. */ 6197 for (i = 0; i < sizeof (struct ar_hdr); i++) 6198 if (((char *) (&hdr))[i] == '\0') 6199 (((char *) (&hdr))[i]) = ' '; 6200 6201 /* Scribble out the ar header. */ 6202 if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd) 6203 != sizeof (struct ar_hdr)) 6204 return false; 6205 6206 /* Now scribble out the lst header. */ 6207 if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd) 6208 != sizeof (struct lst_header)) 6209 return false; 6210 6211 /* Build and write the armap. */ 6212 if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength) 6213 == false) 6214 return false; 6215 6216 /* Done. */ 6217 return true; 6218 } 6219 6220 /* Free all information we have cached for this BFD. We can always 6221 read it again later if we need it. */ 6222 6223 static boolean 6224 som_bfd_free_cached_info (abfd) 6225 bfd *abfd; 6226 { 6227 asection *o; 6228 6229 if (bfd_get_format (abfd) != bfd_object) 6230 return true; 6231 6232 #define FREE(x) if (x != NULL) { free (x); x = NULL; } 6233 /* Free the native string and symbol tables. */ 6234 FREE (obj_som_symtab (abfd)); 6235 FREE (obj_som_stringtab (abfd)); 6236 for (o = abfd->sections; o != (asection *) NULL; o = o->next) 6237 { 6238 /* Free the native relocations. */ 6239 o->reloc_count = -1; 6240 FREE (som_section_data (o)->reloc_stream); 6241 /* Free the generic relocations. */ 6242 FREE (o->relocation); 6243 } 6244 #undef FREE 6245 6246 return true; 6247 } 6248 6249 /* End of miscellaneous support functions. */ 6250 6251 /* Linker support functions. */ 6252 6253 static boolean 6254 som_bfd_link_split_section (abfd, sec) 6255 bfd *abfd ATTRIBUTE_UNUSED; 6256 asection *sec; 6257 { 6258 return (som_is_subspace (sec) && sec->_raw_size > 240000); 6259 } 6260 6261 #define som_close_and_cleanup som_bfd_free_cached_info 6262 6263 #define som_read_ar_hdr _bfd_generic_read_ar_hdr 6264 #define som_openr_next_archived_file bfd_generic_openr_next_archived_file 6265 #define som_get_elt_at_index _bfd_generic_get_elt_at_index 6266 #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt 6267 #define som_truncate_arname bfd_bsd_truncate_arname 6268 #define som_slurp_extended_name_table _bfd_slurp_extended_name_table 6269 #define som_construct_extended_name_table \ 6270 _bfd_archive_coff_construct_extended_name_table 6271 #define som_update_armap_timestamp bfd_true 6272 #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data 6273 6274 #define som_get_lineno _bfd_nosymbols_get_lineno 6275 #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol 6276 #define som_read_minisymbols _bfd_generic_read_minisymbols 6277 #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol 6278 #define som_get_section_contents_in_window \ 6279 _bfd_generic_get_section_contents_in_window 6280 6281 #define som_bfd_get_relocated_section_contents \ 6282 bfd_generic_get_relocated_section_contents 6283 #define som_bfd_relax_section bfd_generic_relax_section 6284 #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create 6285 #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols 6286 #define som_bfd_final_link _bfd_generic_final_link 6287 6288 #define som_bfd_gc_sections bfd_generic_gc_sections 6289 6290 const bfd_target som_vec = { 6291 "som", /* name */ 6292 bfd_target_som_flavour, 6293 BFD_ENDIAN_BIG, /* target byte order */ 6294 BFD_ENDIAN_BIG, /* target headers byte order */ 6295 (HAS_RELOC | EXEC_P | /* object flags */ 6296 HAS_LINENO | HAS_DEBUG | 6297 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC), 6298 (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS 6299 | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ 6300 6301 /* leading_symbol_char: is the first char of a user symbol 6302 predictable, and if so what is it */ 6303 0, 6304 '/', /* ar_pad_char */ 6305 14, /* ar_max_namelen */ 6306 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 6307 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 6308 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ 6309 bfd_getb64, bfd_getb_signed_64, bfd_putb64, 6310 bfd_getb32, bfd_getb_signed_32, bfd_putb32, 6311 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ 6312 {_bfd_dummy_target, 6313 som_object_p, /* bfd_check_format */ 6314 bfd_generic_archive_p, 6315 _bfd_dummy_target 6316 }, 6317 { 6318 bfd_false, 6319 som_mkobject, 6320 _bfd_generic_mkarchive, 6321 bfd_false 6322 }, 6323 { 6324 bfd_false, 6325 som_write_object_contents, 6326 _bfd_write_archive_contents, 6327 bfd_false, 6328 }, 6329 #undef som 6330 6331 BFD_JUMP_TABLE_GENERIC (som), 6332 BFD_JUMP_TABLE_COPY (som), 6333 BFD_JUMP_TABLE_CORE (_bfd_nocore), 6334 BFD_JUMP_TABLE_ARCHIVE (som), 6335 BFD_JUMP_TABLE_SYMBOLS (som), 6336 BFD_JUMP_TABLE_RELOCS (som), 6337 BFD_JUMP_TABLE_WRITE (som), 6338 BFD_JUMP_TABLE_LINK (som), 6339 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 6340 6341 NULL, 6342 6343 (PTR) 0 6344 }; 6345 6346 #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */ 6347