1 /* Generic symbol-table support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003 4 Free Software Foundation, Inc. 5 Written by Cygnus Support. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 22 23 /* 24 SECTION 25 Symbols 26 27 BFD tries to maintain as much symbol information as it can when 28 it moves information from file to file. BFD passes information 29 to applications though the <<asymbol>> structure. When the 30 application requests the symbol table, BFD reads the table in 31 the native form and translates parts of it into the internal 32 format. To maintain more than the information passed to 33 applications, some targets keep some information ``behind the 34 scenes'' in a structure only the particular back end knows 35 about. For example, the coff back end keeps the original 36 symbol table structure as well as the canonical structure when 37 a BFD is read in. On output, the coff back end can reconstruct 38 the output symbol table so that no information is lost, even 39 information unique to coff which BFD doesn't know or 40 understand. If a coff symbol table were read, but were written 41 through an a.out back end, all the coff specific information 42 would be lost. The symbol table of a BFD 43 is not necessarily read in until a canonicalize request is 44 made. Then the BFD back end fills in a table provided by the 45 application with pointers to the canonical information. To 46 output symbols, the application provides BFD with a table of 47 pointers to pointers to <<asymbol>>s. This allows applications 48 like the linker to output a symbol as it was read, since the ``behind 49 the scenes'' information will be still available. 50 @menu 51 @* Reading Symbols:: 52 @* Writing Symbols:: 53 @* Mini Symbols:: 54 @* typedef asymbol:: 55 @* symbol handling functions:: 56 @end menu 57 58 INODE 59 Reading Symbols, Writing Symbols, Symbols, Symbols 60 SUBSECTION 61 Reading symbols 62 63 There are two stages to reading a symbol table from a BFD: 64 allocating storage, and the actual reading process. This is an 65 excerpt from an application which reads the symbol table: 66 67 | long storage_needed; 68 | asymbol **symbol_table; 69 | long number_of_symbols; 70 | long i; 71 | 72 | storage_needed = bfd_get_symtab_upper_bound (abfd); 73 | 74 | if (storage_needed < 0) 75 | FAIL 76 | 77 | if (storage_needed == 0) 78 | return; 79 | 80 | symbol_table = xmalloc (storage_needed); 81 | ... 82 | number_of_symbols = 83 | bfd_canonicalize_symtab (abfd, symbol_table); 84 | 85 | if (number_of_symbols < 0) 86 | FAIL 87 | 88 | for (i = 0; i < number_of_symbols; i++) 89 | process_symbol (symbol_table[i]); 90 91 All storage for the symbols themselves is in an objalloc 92 connected to the BFD; it is freed when the BFD is closed. 93 94 INODE 95 Writing Symbols, Mini Symbols, Reading Symbols, Symbols 96 SUBSECTION 97 Writing symbols 98 99 Writing of a symbol table is automatic when a BFD open for 100 writing is closed. The application attaches a vector of 101 pointers to pointers to symbols to the BFD being written, and 102 fills in the symbol count. The close and cleanup code reads 103 through the table provided and performs all the necessary 104 operations. The BFD output code must always be provided with an 105 ``owned'' symbol: one which has come from another BFD, or one 106 which has been created using <<bfd_make_empty_symbol>>. Here is an 107 example showing the creation of a symbol table with only one element: 108 109 | #include "bfd.h" 110 | int main (void) 111 | { 112 | bfd *abfd; 113 | asymbol *ptrs[2]; 114 | asymbol *new; 115 | 116 | abfd = bfd_openw ("foo","a.out-sunos-big"); 117 | bfd_set_format (abfd, bfd_object); 118 | new = bfd_make_empty_symbol (abfd); 119 | new->name = "dummy_symbol"; 120 | new->section = bfd_make_section_old_way (abfd, ".text"); 121 | new->flags = BSF_GLOBAL; 122 | new->value = 0x12345; 123 | 124 | ptrs[0] = new; 125 | ptrs[1] = 0; 126 | 127 | bfd_set_symtab (abfd, ptrs, 1); 128 | bfd_close (abfd); 129 | return 0; 130 | } 131 | 132 | ./makesym 133 | nm foo 134 | 00012345 A dummy_symbol 135 136 Many formats cannot represent arbitrary symbol information; for 137 instance, the <<a.out>> object format does not allow an 138 arbitrary number of sections. A symbol pointing to a section 139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot 140 be described. 141 142 INODE 143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols 144 SUBSECTION 145 Mini Symbols 146 147 Mini symbols provide read-only access to the symbol table. 148 They use less memory space, but require more time to access. 149 They can be useful for tools like nm or objdump, which may 150 have to handle symbol tables of extremely large executables. 151 152 The <<bfd_read_minisymbols>> function will read the symbols 153 into memory in an internal form. It will return a <<void *>> 154 pointer to a block of memory, a symbol count, and the size of 155 each symbol. The pointer is allocated using <<malloc>>, and 156 should be freed by the caller when it is no longer needed. 157 158 The function <<bfd_minisymbol_to_symbol>> will take a pointer 159 to a minisymbol, and a pointer to a structure returned by 160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure. 161 The return value may or may not be the same as the value from 162 <<bfd_make_empty_symbol>> which was passed in. 163 164 */ 165 166 /* 167 DOCDD 168 INODE 169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols 170 171 */ 172 /* 173 SUBSECTION 174 typedef asymbol 175 176 An <<asymbol>> has the form: 177 178 */ 179 180 /* 181 CODE_FRAGMENT 182 183 . 184 .typedef struct bfd_symbol 185 .{ 186 . {* A pointer to the BFD which owns the symbol. This information 187 . is necessary so that a back end can work out what additional 188 . information (invisible to the application writer) is carried 189 . with the symbol. 190 . 191 . This field is *almost* redundant, since you can use section->owner 192 . instead, except that some symbols point to the global sections 193 . bfd_{abs,com,und}_section. This could be fixed by making 194 . these globals be per-bfd (or per-target-flavor). FIXME. *} 195 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *} 196 . 197 . {* The text of the symbol. The name is left alone, and not copied; the 198 . application may not alter it. *} 199 . const char *name; 200 . 201 . {* The value of the symbol. This really should be a union of a 202 . numeric value with a pointer, since some flags indicate that 203 . a pointer to another symbol is stored here. *} 204 . symvalue value; 205 . 206 . {* Attributes of a symbol. *} 207 .#define BSF_NO_FLAGS 0x00 208 . 209 . {* The symbol has local scope; <<static>> in <<C>>. The value 210 . is the offset into the section of the data. *} 211 .#define BSF_LOCAL 0x01 212 . 213 . {* The symbol has global scope; initialized data in <<C>>. The 214 . value is the offset into the section of the data. *} 215 .#define BSF_GLOBAL 0x02 216 . 217 . {* The symbol has global scope and is exported. The value is 218 . the offset into the section of the data. *} 219 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *} 220 . 221 . {* A normal C symbol would be one of: 222 . <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or 223 . <<BSF_GLOBAL>>. *} 224 . 225 . {* The symbol is a debugging record. The value has an arbitrary 226 . meaning, unless BSF_DEBUGGING_RELOC is also set. *} 227 .#define BSF_DEBUGGING 0x08 228 . 229 . {* The symbol denotes a function entry point. Used in ELF, 230 . perhaps others someday. *} 231 .#define BSF_FUNCTION 0x10 232 . 233 . {* Used by the linker. *} 234 .#define BSF_KEEP 0x20 235 .#define BSF_KEEP_G 0x40 236 . 237 . {* A weak global symbol, overridable without warnings by 238 . a regular global symbol of the same name. *} 239 .#define BSF_WEAK 0x80 240 . 241 . {* This symbol was created to point to a section, e.g. ELF's 242 . STT_SECTION symbols. *} 243 .#define BSF_SECTION_SYM 0x100 244 . 245 . {* The symbol used to be a common symbol, but now it is 246 . allocated. *} 247 .#define BSF_OLD_COMMON 0x200 248 . 249 . {* The default value for common data. *} 250 .#define BFD_FORT_COMM_DEFAULT_VALUE 0 251 . 252 . {* In some files the type of a symbol sometimes alters its 253 . location in an output file - ie in coff a <<ISFCN>> symbol 254 . which is also <<C_EXT>> symbol appears where it was 255 . declared and not at the end of a section. This bit is set 256 . by the target BFD part to convey this information. *} 257 .#define BSF_NOT_AT_END 0x400 258 . 259 . {* Signal that the symbol is the label of constructor section. *} 260 .#define BSF_CONSTRUCTOR 0x800 261 . 262 . {* Signal that the symbol is a warning symbol. The name is a 263 . warning. The name of the next symbol is the one to warn about; 264 . if a reference is made to a symbol with the same name as the next 265 . symbol, a warning is issued by the linker. *} 266 .#define BSF_WARNING 0x1000 267 . 268 . {* Signal that the symbol is indirect. This symbol is an indirect 269 . pointer to the symbol with the same name as the next symbol. *} 270 .#define BSF_INDIRECT 0x2000 271 . 272 . {* BSF_FILE marks symbols that contain a file name. This is used 273 . for ELF STT_FILE symbols. *} 274 .#define BSF_FILE 0x4000 275 . 276 . {* Symbol is from dynamic linking information. *} 277 .#define BSF_DYNAMIC 0x8000 278 . 279 . {* The symbol denotes a data object. Used in ELF, and perhaps 280 . others someday. *} 281 .#define BSF_OBJECT 0x10000 282 . 283 . {* This symbol is a debugging symbol. The value is the offset 284 . into the section of the data. BSF_DEBUGGING should be set 285 . as well. *} 286 .#define BSF_DEBUGGING_RELOC 0x20000 287 . 288 . {* This symbol is thread local. Used in ELF. *} 289 .#define BSF_THREAD_LOCAL 0x40000 290 . 291 . flagword flags; 292 . 293 . {* A pointer to the section to which this symbol is 294 . relative. This will always be non NULL, there are special 295 . sections for undefined and absolute symbols. *} 296 . struct bfd_section *section; 297 . 298 . {* Back end special data. *} 299 . union 300 . { 301 . void *p; 302 . bfd_vma i; 303 . } 304 . udata; 305 .} 306 .asymbol; 307 . 308 */ 309 310 #include "bfd.h" 311 #include "sysdep.h" 312 #include "libbfd.h" 313 #include "safe-ctype.h" 314 #include "bfdlink.h" 315 #include "aout/stab_gnu.h" 316 317 /* 318 DOCDD 319 INODE 320 symbol handling functions, , typedef asymbol, Symbols 321 SUBSECTION 322 Symbol handling functions 323 */ 324 325 /* 326 FUNCTION 327 bfd_get_symtab_upper_bound 328 329 DESCRIPTION 330 Return the number of bytes required to store a vector of pointers 331 to <<asymbols>> for all the symbols in the BFD @var{abfd}, 332 including a terminal NULL pointer. If there are no symbols in 333 the BFD, then return 0. If an error occurs, return -1. 334 335 .#define bfd_get_symtab_upper_bound(abfd) \ 336 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) 337 . 338 */ 339 340 /* 341 FUNCTION 342 bfd_is_local_label 343 344 SYNOPSIS 345 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); 346 347 DESCRIPTION 348 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is 349 a compiler generated local label, else return FALSE. 350 */ 351 352 bfd_boolean 353 bfd_is_local_label (bfd *abfd, asymbol *sym) 354 { 355 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that 356 starts with '.' is local. This would accidentally catch section names 357 if we didn't reject them here. */ 358 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0) 359 return FALSE; 360 if (sym->name == NULL) 361 return FALSE; 362 return bfd_is_local_label_name (abfd, sym->name); 363 } 364 365 /* 366 FUNCTION 367 bfd_is_local_label_name 368 369 SYNOPSIS 370 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); 371 372 DESCRIPTION 373 Return TRUE if a symbol with the name @var{name} in the BFD 374 @var{abfd} is a compiler generated local label, else return 375 FALSE. This just checks whether the name has the form of a 376 local label. 377 378 .#define bfd_is_local_label_name(abfd, name) \ 379 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) 380 . 381 */ 382 383 /* 384 FUNCTION 385 bfd_canonicalize_symtab 386 387 DESCRIPTION 388 Read the symbols from the BFD @var{abfd}, and fills in 389 the vector @var{location} with pointers to the symbols and 390 a trailing NULL. 391 Return the actual number of symbol pointers, not 392 including the NULL. 393 394 .#define bfd_canonicalize_symtab(abfd, location) \ 395 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) 396 . 397 */ 398 399 /* 400 FUNCTION 401 bfd_set_symtab 402 403 SYNOPSIS 404 bfd_boolean bfd_set_symtab 405 (bfd *abfd, asymbol **location, unsigned int count); 406 407 DESCRIPTION 408 Arrange that when the output BFD @var{abfd} is closed, 409 the table @var{location} of @var{count} pointers to symbols 410 will be written. 411 */ 412 413 bfd_boolean 414 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount) 415 { 416 if (abfd->format != bfd_object || bfd_read_p (abfd)) 417 { 418 bfd_set_error (bfd_error_invalid_operation); 419 return FALSE; 420 } 421 422 bfd_get_outsymbols (abfd) = location; 423 bfd_get_symcount (abfd) = symcount; 424 return TRUE; 425 } 426 427 /* 428 FUNCTION 429 bfd_print_symbol_vandf 430 431 SYNOPSIS 432 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); 433 434 DESCRIPTION 435 Print the value and flags of the @var{symbol} supplied to the 436 stream @var{file}. 437 */ 438 void 439 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol) 440 { 441 FILE *file = arg; 442 443 flagword type = symbol->flags; 444 445 if (symbol->section != NULL) 446 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma); 447 else 448 bfd_fprintf_vma (abfd, file, symbol->value); 449 450 /* This presumes that a symbol can not be both BSF_DEBUGGING and 451 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and 452 BSF_OBJECT. */ 453 fprintf (file, " %c%c%c%c%c%c%c", 454 ((type & BSF_LOCAL) 455 ? (type & BSF_GLOBAL) ? '!' : 'l' 456 : (type & BSF_GLOBAL) ? 'g' : ' '), 457 (type & BSF_WEAK) ? 'w' : ' ', 458 (type & BSF_CONSTRUCTOR) ? 'C' : ' ', 459 (type & BSF_WARNING) ? 'W' : ' ', 460 (type & BSF_INDIRECT) ? 'I' : ' ', 461 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ', 462 ((type & BSF_FUNCTION) 463 ? 'F' 464 : ((type & BSF_FILE) 465 ? 'f' 466 : ((type & BSF_OBJECT) ? 'O' : ' ')))); 467 } 468 469 /* 470 FUNCTION 471 bfd_make_empty_symbol 472 473 DESCRIPTION 474 Create a new <<asymbol>> structure for the BFD @var{abfd} 475 and return a pointer to it. 476 477 This routine is necessary because each back end has private 478 information surrounding the <<asymbol>>. Building your own 479 <<asymbol>> and pointing to it will not create the private 480 information, and will cause problems later on. 481 482 .#define bfd_make_empty_symbol(abfd) \ 483 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) 484 . 485 */ 486 487 /* 488 FUNCTION 489 _bfd_generic_make_empty_symbol 490 491 SYNOPSIS 492 asymbol *_bfd_generic_make_empty_symbol (bfd *); 493 494 DESCRIPTION 495 Create a new <<asymbol>> structure for the BFD @var{abfd} 496 and return a pointer to it. Used by core file routines, 497 binary back-end and anywhere else where no private info 498 is needed. 499 */ 500 501 asymbol * 502 _bfd_generic_make_empty_symbol (bfd *abfd) 503 { 504 bfd_size_type amt = sizeof (asymbol); 505 asymbol *new = bfd_zalloc (abfd, amt); 506 if (new) 507 new->the_bfd = abfd; 508 return new; 509 } 510 511 /* 512 FUNCTION 513 bfd_make_debug_symbol 514 515 DESCRIPTION 516 Create a new <<asymbol>> structure for the BFD @var{abfd}, 517 to be used as a debugging symbol. Further details of its use have 518 yet to be worked out. 519 520 .#define bfd_make_debug_symbol(abfd,ptr,size) \ 521 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) 522 . 523 */ 524 525 struct section_to_type 526 { 527 const char *section; 528 char type; 529 }; 530 531 /* Map section names to POSIX/BSD single-character symbol types. 532 This table is probably incomplete. It is sorted for convenience of 533 adding entries. Since it is so short, a linear search is used. */ 534 static const struct section_to_type stt[] = 535 { 536 {".bss", 'b'}, 537 {"code", 't'}, /* MRI .text */ 538 {".data", 'd'}, 539 {"*DEBUG*", 'N'}, 540 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */ 541 {".drectve", 'i'}, /* MSVC's .drective section */ 542 {".edata", 'e'}, /* MSVC's .edata (export) section */ 543 {".fini", 't'}, /* ELF fini section */ 544 {".idata", 'i'}, /* MSVC's .idata (import) section */ 545 {".init", 't'}, /* ELF init section */ 546 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */ 547 {".rdata", 'r'}, /* Read only data. */ 548 {".rodata", 'r'}, /* Read only data. */ 549 {".sbss", 's'}, /* Small BSS (uninitialized data). */ 550 {".scommon", 'c'}, /* Small common. */ 551 {".sdata", 'g'}, /* Small initialized data. */ 552 {".text", 't'}, 553 {"vars", 'd'}, /* MRI .data */ 554 {"zerovars", 'b'}, /* MRI .bss */ 555 {0, 0} 556 }; 557 558 /* Return the single-character symbol type corresponding to 559 section S, or '?' for an unknown COFF section. 560 561 Check for any leading string which matches, so .text5 returns 562 't' as well as .text */ 563 564 static char 565 coff_section_type (const char *s) 566 { 567 const struct section_to_type *t; 568 569 for (t = &stt[0]; t->section; t++) 570 if (!strncmp (s, t->section, strlen (t->section))) 571 return t->type; 572 573 return '?'; 574 } 575 576 /* Return the single-character symbol type corresponding to section 577 SECTION, or '?' for an unknown section. This uses section flags to 578 identify sections. 579 580 FIXME These types are unhandled: c, i, e, p. If we handled these also, 581 we could perhaps obsolete coff_section_type. */ 582 583 static char 584 decode_section_type (const struct bfd_section *section) 585 { 586 if (section->flags & SEC_CODE) 587 return 't'; 588 if (section->flags & SEC_DATA) 589 { 590 if (section->flags & SEC_READONLY) 591 return 'r'; 592 else if (section->flags & SEC_SMALL_DATA) 593 return 'g'; 594 else 595 return 'd'; 596 } 597 if ((section->flags & SEC_HAS_CONTENTS) == 0) 598 { 599 if (section->flags & SEC_SMALL_DATA) 600 return 's'; 601 else 602 return 'b'; 603 } 604 if (section->flags & SEC_DEBUGGING) 605 return 'N'; 606 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY)) 607 return 'n'; 608 609 return '?'; 610 } 611 612 /* 613 FUNCTION 614 bfd_decode_symclass 615 616 DESCRIPTION 617 Return a character corresponding to the symbol 618 class of @var{symbol}, or '?' for an unknown class. 619 620 SYNOPSIS 621 int bfd_decode_symclass (asymbol *symbol); 622 */ 623 int 624 bfd_decode_symclass (asymbol *symbol) 625 { 626 char c; 627 628 if (bfd_is_com_section (symbol->section)) 629 return 'C'; 630 if (bfd_is_und_section (symbol->section)) 631 { 632 if (symbol->flags & BSF_WEAK) 633 { 634 /* If weak, determine if it's specifically an object 635 or non-object weak. */ 636 if (symbol->flags & BSF_OBJECT) 637 return 'v'; 638 else 639 return 'w'; 640 } 641 else 642 return 'U'; 643 } 644 if (bfd_is_ind_section (symbol->section)) 645 return 'I'; 646 if (symbol->flags & BSF_WEAK) 647 { 648 /* If weak, determine if it's specifically an object 649 or non-object weak. */ 650 if (symbol->flags & BSF_OBJECT) 651 return 'V'; 652 else 653 return 'W'; 654 } 655 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) 656 return '?'; 657 658 if (bfd_is_abs_section (symbol->section)) 659 c = 'a'; 660 else if (symbol->section) 661 { 662 c = coff_section_type (symbol->section->name); 663 if (c == '?') 664 c = decode_section_type (symbol->section); 665 } 666 else 667 return '?'; 668 if (symbol->flags & BSF_GLOBAL) 669 c = TOUPPER (c); 670 return c; 671 672 /* We don't have to handle these cases just yet, but we will soon: 673 N_SETV: 'v'; 674 N_SETA: 'l'; 675 N_SETT: 'x'; 676 N_SETD: 'z'; 677 N_SETB: 's'; 678 N_INDR: 'i'; 679 */ 680 } 681 682 /* 683 FUNCTION 684 bfd_is_undefined_symclass 685 686 DESCRIPTION 687 Returns non-zero if the class symbol returned by 688 bfd_decode_symclass represents an undefined symbol. 689 Returns zero otherwise. 690 691 SYNOPSIS 692 bfd_boolean bfd_is_undefined_symclass (int symclass); 693 */ 694 695 bfd_boolean 696 bfd_is_undefined_symclass (int symclass) 697 { 698 return symclass == 'U' || symclass == 'w' || symclass == 'v'; 699 } 700 701 /* 702 FUNCTION 703 bfd_symbol_info 704 705 DESCRIPTION 706 Fill in the basic info about symbol that nm needs. 707 Additional info may be added by the back-ends after 708 calling this function. 709 710 SYNOPSIS 711 void bfd_symbol_info (asymbol *symbol, symbol_info *ret); 712 */ 713 714 void 715 bfd_symbol_info (asymbol *symbol, symbol_info *ret) 716 { 717 ret->type = bfd_decode_symclass (symbol); 718 719 if (bfd_is_undefined_symclass (ret->type)) 720 ret->value = 0; 721 else 722 ret->value = symbol->value + symbol->section->vma; 723 724 ret->name = symbol->name; 725 } 726 727 /* 728 FUNCTION 729 bfd_copy_private_symbol_data 730 731 SYNOPSIS 732 bfd_boolean bfd_copy_private_symbol_data 733 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); 734 735 DESCRIPTION 736 Copy private symbol information from @var{isym} in the BFD 737 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. 738 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 739 returns are: 740 741 o <<bfd_error_no_memory>> - 742 Not enough memory exists to create private data for @var{osec}. 743 744 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ 745 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ 746 . (ibfd, isymbol, obfd, osymbol)) 747 . 748 */ 749 750 /* The generic version of the function which returns mini symbols. 751 This is used when the backend does not provide a more efficient 752 version. It just uses BFD asymbol structures as mini symbols. */ 753 754 long 755 _bfd_generic_read_minisymbols (bfd *abfd, 756 bfd_boolean dynamic, 757 void **minisymsp, 758 unsigned int *sizep) 759 { 760 long storage; 761 asymbol **syms = NULL; 762 long symcount; 763 764 if (dynamic) 765 storage = bfd_get_dynamic_symtab_upper_bound (abfd); 766 else 767 storage = bfd_get_symtab_upper_bound (abfd); 768 if (storage < 0) 769 goto error_return; 770 if (storage == 0) 771 return 0; 772 773 syms = bfd_malloc (storage); 774 if (syms == NULL) 775 goto error_return; 776 777 if (dynamic) 778 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms); 779 else 780 symcount = bfd_canonicalize_symtab (abfd, syms); 781 if (symcount < 0) 782 goto error_return; 783 784 *minisymsp = syms; 785 *sizep = sizeof (asymbol *); 786 return symcount; 787 788 error_return: 789 bfd_set_error (bfd_error_no_symbols); 790 if (syms != NULL) 791 free (syms); 792 return -1; 793 } 794 795 /* The generic version of the function which converts a minisymbol to 796 an asymbol. We don't worry about the sym argument we are passed; 797 we just return the asymbol the minisymbol points to. */ 798 799 asymbol * 800 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED, 801 bfd_boolean dynamic ATTRIBUTE_UNUSED, 802 const void *minisym, 803 asymbol *sym ATTRIBUTE_UNUSED) 804 { 805 return *(asymbol **) minisym; 806 } 807 808 /* Look through stabs debugging information in .stab and .stabstr 809 sections to find the source file and line closest to a desired 810 location. This is used by COFF and ELF targets. It sets *pfound 811 to TRUE if it finds some information. The *pinfo field is used to 812 pass cached information in and out of this routine; this first time 813 the routine is called for a BFD, *pinfo should be NULL. The value 814 placed in *pinfo should be saved with the BFD, and passed back each 815 time this function is called. */ 816 817 /* We use a cache by default. */ 818 819 #define ENABLE_CACHING 820 821 /* We keep an array of indexentry structures to record where in the 822 stabs section we should look to find line number information for a 823 particular address. */ 824 825 struct indexentry 826 { 827 bfd_vma val; 828 bfd_byte *stab; 829 bfd_byte *str; 830 char *directory_name; 831 char *file_name; 832 char *function_name; 833 }; 834 835 /* Compare two indexentry structures. This is called via qsort. */ 836 837 static int 838 cmpindexentry (const void *a, const void *b) 839 { 840 const struct indexentry *contestantA = a; 841 const struct indexentry *contestantB = b; 842 843 if (contestantA->val < contestantB->val) 844 return -1; 845 else if (contestantA->val > contestantB->val) 846 return 1; 847 else 848 return 0; 849 } 850 851 /* A pointer to this structure is stored in *pinfo. */ 852 853 struct stab_find_info 854 { 855 /* The .stab section. */ 856 asection *stabsec; 857 /* The .stabstr section. */ 858 asection *strsec; 859 /* The contents of the .stab section. */ 860 bfd_byte *stabs; 861 /* The contents of the .stabstr section. */ 862 bfd_byte *strs; 863 864 /* A table that indexes stabs by memory address. */ 865 struct indexentry *indextable; 866 /* The number of entries in indextable. */ 867 int indextablesize; 868 869 #ifdef ENABLE_CACHING 870 /* Cached values to restart quickly. */ 871 struct indexentry *cached_indexentry; 872 bfd_vma cached_offset; 873 bfd_byte *cached_stab; 874 char *cached_file_name; 875 #endif 876 877 /* Saved ptr to malloc'ed filename. */ 878 char *filename; 879 }; 880 881 bfd_boolean 882 _bfd_stab_section_find_nearest_line (bfd *abfd, 883 asymbol **symbols, 884 asection *section, 885 bfd_vma offset, 886 bfd_boolean *pfound, 887 const char **pfilename, 888 const char **pfnname, 889 unsigned int *pline, 890 void **pinfo) 891 { 892 struct stab_find_info *info; 893 bfd_size_type stabsize, strsize; 894 bfd_byte *stab, *str; 895 bfd_byte *last_stab = NULL; 896 bfd_size_type stroff; 897 struct indexentry *indexentry; 898 char *file_name; 899 char *directory_name; 900 int saw_fun; 901 bfd_boolean saw_line, saw_func; 902 903 *pfound = FALSE; 904 *pfilename = bfd_get_filename (abfd); 905 *pfnname = NULL; 906 *pline = 0; 907 908 /* Stabs entries use a 12 byte format: 909 4 byte string table index 910 1 byte stab type 911 1 byte stab other field 912 2 byte stab desc field 913 4 byte stab value 914 FIXME: This will have to change for a 64 bit object format. 915 916 The stabs symbols are divided into compilation units. For the 917 first entry in each unit, the type of 0, the value is the length 918 of the string table for this unit, and the desc field is the 919 number of stabs symbols for this unit. */ 920 921 #define STRDXOFF (0) 922 #define TYPEOFF (4) 923 #define OTHEROFF (5) 924 #define DESCOFF (6) 925 #define VALOFF (8) 926 #define STABSIZE (12) 927 928 info = *pinfo; 929 if (info != NULL) 930 { 931 if (info->stabsec == NULL || info->strsec == NULL) 932 { 933 /* No stabs debugging information. */ 934 return TRUE; 935 } 936 937 stabsize = info->stabsec->_raw_size; 938 strsize = info->strsec->_raw_size; 939 } 940 else 941 { 942 long reloc_size, reloc_count; 943 arelent **reloc_vector; 944 int i; 945 char *name; 946 char *function_name; 947 bfd_size_type amt = sizeof *info; 948 949 info = bfd_zalloc (abfd, amt); 950 if (info == NULL) 951 return FALSE; 952 953 /* FIXME: When using the linker --split-by-file or 954 --split-by-reloc options, it is possible for the .stab and 955 .stabstr sections to be split. We should handle that. */ 956 957 info->stabsec = bfd_get_section_by_name (abfd, ".stab"); 958 info->strsec = bfd_get_section_by_name (abfd, ".stabstr"); 959 960 if (info->stabsec == NULL || info->strsec == NULL) 961 { 962 /* No stabs debugging information. Set *pinfo so that we 963 can return quickly in the info != NULL case above. */ 964 *pinfo = info; 965 return TRUE; 966 } 967 968 stabsize = info->stabsec->_raw_size; 969 strsize = info->strsec->_raw_size; 970 971 info->stabs = bfd_alloc (abfd, stabsize); 972 info->strs = bfd_alloc (abfd, strsize); 973 if (info->stabs == NULL || info->strs == NULL) 974 return FALSE; 975 976 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs, 977 (bfd_vma) 0, stabsize) 978 || ! bfd_get_section_contents (abfd, info->strsec, info->strs, 979 (bfd_vma) 0, strsize)) 980 return FALSE; 981 982 /* If this is a relocatable object file, we have to relocate 983 the entries in .stab. This should always be simple 32 bit 984 relocations against symbols defined in this object file, so 985 this should be no big deal. */ 986 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec); 987 if (reloc_size < 0) 988 return FALSE; 989 reloc_vector = bfd_malloc (reloc_size); 990 if (reloc_vector == NULL && reloc_size != 0) 991 return FALSE; 992 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector, 993 symbols); 994 if (reloc_count < 0) 995 { 996 if (reloc_vector != NULL) 997 free (reloc_vector); 998 return FALSE; 999 } 1000 if (reloc_count > 0) 1001 { 1002 arelent **pr; 1003 1004 for (pr = reloc_vector; *pr != NULL; pr++) 1005 { 1006 arelent *r; 1007 unsigned long val; 1008 asymbol *sym; 1009 1010 r = *pr; 1011 if (r->howto->rightshift != 0 1012 || r->howto->size != 2 1013 || r->howto->bitsize != 32 1014 || r->howto->pc_relative 1015 || r->howto->bitpos != 0 1016 || r->howto->dst_mask != 0xffffffff) 1017 { 1018 (*_bfd_error_handler) 1019 (_("Unsupported .stab relocation")); 1020 bfd_set_error (bfd_error_invalid_operation); 1021 if (reloc_vector != NULL) 1022 free (reloc_vector); 1023 return FALSE; 1024 } 1025 1026 val = bfd_get_32 (abfd, info->stabs + r->address); 1027 val &= r->howto->src_mask; 1028 sym = *r->sym_ptr_ptr; 1029 val += sym->value + sym->section->vma + r->addend; 1030 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address); 1031 } 1032 } 1033 1034 if (reloc_vector != NULL) 1035 free (reloc_vector); 1036 1037 /* First time through this function, build a table matching 1038 function VM addresses to stabs, then sort based on starting 1039 VM address. Do this in two passes: once to count how many 1040 table entries we'll need, and a second to actually build the 1041 table. */ 1042 1043 info->indextablesize = 0; 1044 saw_fun = 1; 1045 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE) 1046 { 1047 if (stab[TYPEOFF] == (bfd_byte) N_SO) 1048 { 1049 /* N_SO with null name indicates EOF */ 1050 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0) 1051 continue; 1052 1053 /* if we did not see a function def, leave space for one. */ 1054 if (saw_fun == 0) 1055 ++info->indextablesize; 1056 1057 saw_fun = 0; 1058 1059 /* two N_SO's in a row is a filename and directory. Skip */ 1060 if (stab + STABSIZE < info->stabs + stabsize 1061 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) 1062 { 1063 stab += STABSIZE; 1064 } 1065 } 1066 else if (stab[TYPEOFF] == (bfd_byte) N_FUN) 1067 { 1068 saw_fun = 1; 1069 ++info->indextablesize; 1070 } 1071 } 1072 1073 if (saw_fun == 0) 1074 ++info->indextablesize; 1075 1076 if (info->indextablesize == 0) 1077 return TRUE; 1078 ++info->indextablesize; 1079 1080 amt = info->indextablesize; 1081 amt *= sizeof (struct indexentry); 1082 info->indextable = bfd_alloc (abfd, amt); 1083 if (info->indextable == NULL) 1084 return FALSE; 1085 1086 file_name = NULL; 1087 directory_name = NULL; 1088 saw_fun = 1; 1089 1090 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs; 1091 i < info->indextablesize && stab < info->stabs + stabsize; 1092 stab += STABSIZE) 1093 { 1094 switch (stab[TYPEOFF]) 1095 { 1096 case 0: 1097 /* This is the first entry in a compilation unit. */ 1098 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff) 1099 break; 1100 str += stroff; 1101 stroff = bfd_get_32 (abfd, stab + VALOFF); 1102 break; 1103 1104 case N_SO: 1105 /* The main file name. */ 1106 1107 /* The following code creates a new indextable entry with 1108 a NULL function name if there were no N_FUNs in a file. 1109 Note that a N_SO without a file name is an EOF and 1110 there could be 2 N_SO following it with the new filename 1111 and directory. */ 1112 if (saw_fun == 0) 1113 { 1114 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF); 1115 info->indextable[i].stab = last_stab; 1116 info->indextable[i].str = str; 1117 info->indextable[i].directory_name = directory_name; 1118 info->indextable[i].file_name = file_name; 1119 info->indextable[i].function_name = NULL; 1120 ++i; 1121 } 1122 saw_fun = 0; 1123 1124 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1125 if (*file_name == '\0') 1126 { 1127 directory_name = NULL; 1128 file_name = NULL; 1129 saw_fun = 1; 1130 } 1131 else 1132 { 1133 last_stab = stab; 1134 if (stab + STABSIZE >= info->stabs + stabsize 1135 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO) 1136 { 1137 directory_name = NULL; 1138 } 1139 else 1140 { 1141 /* Two consecutive N_SOs are a directory and a 1142 file name. */ 1143 stab += STABSIZE; 1144 directory_name = file_name; 1145 file_name = ((char *) str 1146 + bfd_get_32 (abfd, stab + STRDXOFF)); 1147 } 1148 } 1149 break; 1150 1151 case N_SOL: 1152 /* The name of an include file. */ 1153 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1154 break; 1155 1156 case N_FUN: 1157 /* A function name. */ 1158 saw_fun = 1; 1159 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1160 1161 if (*name == '\0') 1162 name = NULL; 1163 1164 function_name = name; 1165 1166 if (name == NULL) 1167 continue; 1168 1169 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF); 1170 info->indextable[i].stab = stab; 1171 info->indextable[i].str = str; 1172 info->indextable[i].directory_name = directory_name; 1173 info->indextable[i].file_name = file_name; 1174 info->indextable[i].function_name = function_name; 1175 ++i; 1176 break; 1177 } 1178 } 1179 1180 if (saw_fun == 0) 1181 { 1182 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF); 1183 info->indextable[i].stab = last_stab; 1184 info->indextable[i].str = str; 1185 info->indextable[i].directory_name = directory_name; 1186 info->indextable[i].file_name = file_name; 1187 info->indextable[i].function_name = NULL; 1188 ++i; 1189 } 1190 1191 info->indextable[i].val = (bfd_vma) -1; 1192 info->indextable[i].stab = info->stabs + stabsize; 1193 info->indextable[i].str = str; 1194 info->indextable[i].directory_name = NULL; 1195 info->indextable[i].file_name = NULL; 1196 info->indextable[i].function_name = NULL; 1197 ++i; 1198 1199 info->indextablesize = i; 1200 qsort (info->indextable, (size_t) i, sizeof (struct indexentry), 1201 cmpindexentry); 1202 1203 *pinfo = info; 1204 } 1205 1206 /* We are passed a section relative offset. The offsets in the 1207 stabs information are absolute. */ 1208 offset += bfd_get_section_vma (abfd, section); 1209 1210 #ifdef ENABLE_CACHING 1211 if (info->cached_indexentry != NULL 1212 && offset >= info->cached_offset 1213 && offset < (info->cached_indexentry + 1)->val) 1214 { 1215 stab = info->cached_stab; 1216 indexentry = info->cached_indexentry; 1217 file_name = info->cached_file_name; 1218 } 1219 else 1220 #endif 1221 { 1222 long low, high; 1223 long mid = -1; 1224 1225 /* Cache non-existent or invalid. Do binary search on 1226 indextable. */ 1227 indexentry = NULL; 1228 1229 low = 0; 1230 high = info->indextablesize - 1; 1231 while (low != high) 1232 { 1233 mid = (high + low) / 2; 1234 if (offset >= info->indextable[mid].val 1235 && offset < info->indextable[mid + 1].val) 1236 { 1237 indexentry = &info->indextable[mid]; 1238 break; 1239 } 1240 1241 if (info->indextable[mid].val > offset) 1242 high = mid; 1243 else 1244 low = mid + 1; 1245 } 1246 1247 if (indexentry == NULL) 1248 return TRUE; 1249 1250 stab = indexentry->stab + STABSIZE; 1251 file_name = indexentry->file_name; 1252 } 1253 1254 directory_name = indexentry->directory_name; 1255 str = indexentry->str; 1256 1257 saw_line = FALSE; 1258 saw_func = FALSE; 1259 for (; stab < (indexentry+1)->stab; stab += STABSIZE) 1260 { 1261 bfd_boolean done; 1262 bfd_vma val; 1263 1264 done = FALSE; 1265 1266 switch (stab[TYPEOFF]) 1267 { 1268 case N_SOL: 1269 /* The name of an include file. */ 1270 val = bfd_get_32 (abfd, stab + VALOFF); 1271 if (val <= offset) 1272 { 1273 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1274 *pline = 0; 1275 } 1276 break; 1277 1278 case N_SLINE: 1279 case N_DSLINE: 1280 case N_BSLINE: 1281 /* A line number. If the function was specified, then the value 1282 is relative to the start of the function. Otherwise, the 1283 value is an absolute address. */ 1284 val = ((indexentry->function_name ? indexentry->val : 0) 1285 + bfd_get_32 (abfd, stab + VALOFF)); 1286 /* If this line starts before our desired offset, or if it's 1287 the first line we've been able to find, use it. The 1288 !saw_line check works around a bug in GCC 2.95.3, which emits 1289 the first N_SLINE late. */ 1290 if (!saw_line || val <= offset) 1291 { 1292 *pline = bfd_get_16 (abfd, stab + DESCOFF); 1293 1294 #ifdef ENABLE_CACHING 1295 info->cached_stab = stab; 1296 info->cached_offset = val; 1297 info->cached_file_name = file_name; 1298 info->cached_indexentry = indexentry; 1299 #endif 1300 } 1301 if (val > offset) 1302 done = TRUE; 1303 saw_line = TRUE; 1304 break; 1305 1306 case N_FUN: 1307 case N_SO: 1308 if (saw_func || saw_line) 1309 done = TRUE; 1310 saw_func = TRUE; 1311 break; 1312 } 1313 1314 if (done) 1315 break; 1316 } 1317 1318 *pfound = TRUE; 1319 1320 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name) 1321 || directory_name == NULL) 1322 *pfilename = file_name; 1323 else 1324 { 1325 size_t dirlen; 1326 1327 dirlen = strlen (directory_name); 1328 if (info->filename == NULL 1329 || strncmp (info->filename, directory_name, dirlen) != 0 1330 || strcmp (info->filename + dirlen, file_name) != 0) 1331 { 1332 size_t len; 1333 1334 if (info->filename != NULL) 1335 free (info->filename); 1336 len = strlen (file_name) + 1; 1337 info->filename = bfd_malloc (dirlen + len); 1338 if (info->filename == NULL) 1339 return FALSE; 1340 memcpy (info->filename, directory_name, dirlen); 1341 memcpy (info->filename + dirlen, file_name, len); 1342 } 1343 1344 *pfilename = info->filename; 1345 } 1346 1347 if (indexentry->function_name != NULL) 1348 { 1349 char *s; 1350 1351 /* This will typically be something like main:F(0,1), so we want 1352 to clobber the colon. It's OK to change the name, since the 1353 string is in our own local storage anyhow. */ 1354 s = strchr (indexentry->function_name, ':'); 1355 if (s != NULL) 1356 *s = '\0'; 1357 1358 *pfnname = indexentry->function_name; 1359 } 1360 1361 return TRUE; 1362 } 1363