1 /* tc-i960.c - All the i80960-specific stuff 2 Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 3 1999, 2000, 2001, 2002, 2003 4 Free Software Foundation, Inc. 5 6 This file is part of GAS. 7 8 GAS is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2, or (at your option) 11 any later version. 12 13 GAS is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GAS; see the file COPYING. If not, write to the Free 20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 21 02111-1307, USA. */ 22 23 /* See comment on md_parse_option for 80960-specific invocation options. */ 24 25 /* There are 4 different lengths of (potentially) symbol-based displacements 26 in the 80960 instruction set, each of which could require address fix-ups 27 and (in the case of external symbols) emission of relocation directives: 28 29 32-bit (MEMB) 30 This is a standard length for the base assembler and requires no 31 special action. 32 33 13-bit (COBR) 34 This is a non-standard length, but the base assembler has a 35 hook for bit field address fixups: the fixS structure can 36 point to a descriptor of the field, in which case our 37 md_number_to_field() routine gets called to process it. 38 39 I made the hook a little cleaner by having fix_new() (in the base 40 assembler) return a pointer to the fixS in question. And I made it a 41 little simpler by storing the field size (in this case 13) instead of 42 of a pointer to another structure: 80960 displacements are ALWAYS 43 stored in the low-order bits of a 4-byte word. 44 45 Since the target of a COBR cannot be external, no relocation 46 directives for this size displacement have to be generated. 47 But the base assembler had to be modified to issue error 48 messages if the symbol did turn out to be external. 49 50 24-bit (CTRL) 51 Fixups are handled as for the 13-bit case (except that 24 is stored 52 in the fixS). 53 54 The relocation directive generated is the same as that for the 32-bit 55 displacement, except that it's PC-relative (the 32-bit displacement 56 never is). The i80960 version of the linker needs a mod to 57 distinguish and handle the 24-bit case. 58 59 12-bit (MEMA) 60 MEMA formats are always promoted to MEMB (32-bit) if the displacement 61 is based on a symbol, because it could be relocated at link time. 62 The only time we use the 12-bit format is if an absolute value of 63 less than 4096 is specified, in which case we need neither a fixup nor 64 a relocation directive. */ 65 66 #include <stdio.h> 67 68 #include "as.h" 69 70 #include "safe-ctype.h" 71 #include "obstack.h" 72 73 #include "opcode/i960.h" 74 75 #if defined (OBJ_AOUT) || defined (OBJ_BOUT) 76 77 #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32)) 78 #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME) 79 #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME) 80 #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s)) 81 82 #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1)) 83 #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1) 84 85 #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME)) 86 #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME)) 87 #define TC_S_FORCE_TO_SYSPROC(s) {;} 88 89 #else /* ! OBJ_A/BOUT */ 90 #ifdef OBJ_COFF 91 92 #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL) 93 #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s)) 94 #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s)) 95 #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s)) 96 97 #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p)) 98 #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx) 99 100 #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s)) 101 #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s)) 102 #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL)) 103 104 #else /* ! OBJ_COFF */ 105 #ifdef OBJ_ELF 106 #define TC_S_IS_SYSPROC(s) 0 107 108 #define TC_S_IS_BALNAME(s) 0 109 #define TC_S_IS_CALLNAME(s) 0 110 #define TC_S_IS_BADPROC(s) 0 111 112 #define TC_S_SET_SYSPROC(s, p) 113 #define TC_S_GET_SYSPROC(s) 0 114 115 #define TC_S_FORCE_TO_BALNAME(s) 116 #define TC_S_FORCE_TO_CALLNAME(s) 117 #define TC_S_FORCE_TO_SYSPROC(s) 118 #else 119 #error COFF, a.out, b.out, and ELF are the only supported formats. 120 #endif /* ! OBJ_ELF */ 121 #endif /* ! OBJ_COFF */ 122 #endif /* ! OBJ_A/BOUT */ 123 124 extern char *input_line_pointer; 125 126 #if !defined (BFD_ASSEMBLER) && !defined (BFD) 127 #ifdef OBJ_COFF 128 const int md_reloc_size = sizeof (struct reloc); 129 #else /* OBJ_COFF */ 130 const int md_reloc_size = sizeof (struct relocation_info); 131 #endif /* OBJ_COFF */ 132 #endif 133 134 /* Local i80960 routines. */ 135 struct memS; 136 struct regop; 137 138 /* Emit branch-prediction instrumentation code */ 139 static void brcnt_emit PARAMS ((void)); 140 /* Return next branch local label */ 141 static char *brlab_next PARAMS ((void)); 142 /* Generate COBR instruction */ 143 static void cobr_fmt PARAMS ((char *[], long, struct i960_opcode *)); 144 /* Generate CTRL instruction */ 145 static void ctrl_fmt PARAMS ((char *, long, int)); 146 /* Emit (internally) binary */ 147 static char *emit PARAMS ((long)); 148 /* Break arguments out of comma-separated list */ 149 static int get_args PARAMS ((char *, char *[])); 150 /* Handle COBR or CTRL displacement */ 151 static void get_cdisp PARAMS ((char *, char *, long, int, int, int)); 152 /* Find index specification string */ 153 static char *get_ispec PARAMS ((char *)); 154 /* Translate text to register number */ 155 static int get_regnum PARAMS ((char *)); 156 /* Lexical scan of instruction source */ 157 static int i_scan PARAMS ((char *, char *[])); 158 /* Generate MEMA or MEMB instruction */ 159 static void mem_fmt PARAMS ((char *[], struct i960_opcode *, int)); 160 /* Convert MEMA instruction to MEMB format */ 161 static void mema_to_memb PARAMS ((char *)); 162 /* Parse an expression */ 163 static void parse_expr PARAMS ((char *, expressionS *)); 164 /* Parse and replace a 'ldconst' pseudo-op */ 165 static int parse_ldconst PARAMS ((char *[])); 166 /* Parse a memory operand */ 167 static void parse_memop PARAMS ((struct memS *, char *, int)); 168 /* Parse machine-dependent pseudo-op */ 169 static void parse_po PARAMS ((int)); 170 /* Parse a register operand */ 171 static void parse_regop PARAMS ((struct regop *, char *, char)); 172 /* Generate a REG format instruction */ 173 static void reg_fmt PARAMS ((char *[], struct i960_opcode *)); 174 /* "De-optimize" cobr into compare/branch */ 175 static void relax_cobr PARAMS ((fragS *)); 176 /* Process '.leafproc' pseudo-op */ 177 static void s_leafproc PARAMS ((int, char *[])); 178 /* Process '.sysproc' pseudo-op */ 179 static void s_sysproc PARAMS ((int, char *[])); 180 /* Will a 'shlo' substitute for a 'ldconst'? */ 181 static int shift_ok PARAMS ((int)); 182 /* Give syntax error */ 183 static void syntax PARAMS ((void)); 184 /* Target chip supports spec-func register? */ 185 static int targ_has_sfr PARAMS ((int)); 186 /* Target chip supports instruction set? */ 187 static int targ_has_iclass PARAMS ((int)); 188 189 /* See md_parse_option() for meanings of these options */ 190 static char norelax; /* True if -norelax switch seen */ 191 static char instrument_branches; /* True if -b switch seen */ 192 193 /* Characters that always start a comment. 194 If the pre-processor is disabled, these aren't very useful. 195 */ 196 const char comment_chars[] = "#"; 197 198 /* Characters that only start a comment at the beginning of 199 a line. If the line seems to have the form '# 123 filename' 200 .line and .file directives will appear in the pre-processed output. 201 202 Note that input_file.c hand checks for '#' at the beginning of the 203 first line of the input file. This is because the compiler outputs 204 #NO_APP at the beginning of its output. 205 */ 206 207 /* Also note that comments started like this one will always work. */ 208 209 const char line_comment_chars[] = "#"; 210 211 const char line_separator_chars[] = ";"; 212 213 /* Chars that can be used to separate mant from exp in floating point nums */ 214 const char EXP_CHARS[] = "eE"; 215 216 /* Chars that mean this number is a floating point constant, 217 as in 0f12.456 or 0d1.2345e12 218 */ 219 const char FLT_CHARS[] = "fFdDtT"; 220 221 /* Table used by base assembler to relax addresses based on varying length 222 instructions. The fields are: 223 1) most positive reach of this state, 224 2) most negative reach of this state, 225 3) how many bytes this mode will add to the size of the current frag 226 4) which index into the table to try if we can't fit into this one. 227 228 For i80960, the only application is the (de-)optimization of cobr 229 instructions into separate compare and branch instructions when a 13-bit 230 displacement won't hack it. 231 */ 232 const relax_typeS md_relax_table[] = 233 { 234 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */ 235 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */ 236 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */ 237 }; 238 239 static void s_endian PARAMS ((int)); 240 241 /* These are the machine dependent pseudo-ops. 242 243 This table describes all the machine specific pseudo-ops the assembler 244 has to support. The fields are: 245 pseudo-op name without dot 246 function to call to execute this pseudo-op 247 integer arg to pass to the function 248 */ 249 #define S_LEAFPROC 1 250 #define S_SYSPROC 2 251 252 const pseudo_typeS md_pseudo_table[] = 253 { 254 {"bss", s_lcomm, 1}, 255 {"endian", s_endian, 0}, 256 {"extended", float_cons, 't'}, 257 {"leafproc", parse_po, S_LEAFPROC}, 258 {"sysproc", parse_po, S_SYSPROC}, 259 260 {"word", cons, 4}, 261 {"quad", cons, 16}, 262 263 {0, 0, 0} 264 }; 265 266 /* Macros to extract info from an 'expressionS' structure 'e' */ 267 #define adds(e) e.X_add_symbol 268 #define offs(e) e.X_add_number 269 270 /* Branch-prediction bits for CTRL/COBR format opcodes */ 271 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */ 272 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */ 273 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */ 274 275 /* Some instruction opcodes that we need explicitly */ 276 #define BE 0x12000000 277 #define BG 0x11000000 278 #define BGE 0x13000000 279 #define BL 0x14000000 280 #define BLE 0x16000000 281 #define BNE 0x15000000 282 #define BNO 0x10000000 283 #define BO 0x17000000 284 #define CHKBIT 0x5a002700 285 #define CMPI 0x5a002080 286 #define CMPO 0x5a002000 287 288 #define B 0x08000000 289 #define BAL 0x0b000000 290 #define CALL 0x09000000 291 #define CALLS 0x66003800 292 #define RET 0x0a000000 293 294 /* These masks are used to build up a set of MEMB mode bits. */ 295 #define A_BIT 0x0400 296 #define I_BIT 0x0800 297 #define MEMB_BIT 0x1000 298 #define D_BIT 0x2000 299 300 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is 301 used). */ 302 #define MEMA_ABASE 0x2000 303 304 /* Info from which a MEMA or MEMB format instruction can be generated */ 305 typedef struct memS 306 { 307 /* (First) 32 bits of instruction */ 308 long opcode; 309 /* 0-(none), 12- or, 32-bit displacement needed */ 310 int disp; 311 /* The expression in the source instruction from which the 312 displacement should be determined. */ 313 char *e; 314 } 315 memS; 316 317 /* The two pieces of info we need to generate a register operand */ 318 struct regop 319 { 320 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */ 321 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */ 322 int n; /* Register number or literal value */ 323 }; 324 325 /* Number and assembler mnemonic for all registers that can appear in 326 operands. */ 327 static const struct 328 { 329 char *reg_name; 330 int reg_num; 331 } 332 regnames[] = 333 { 334 { "pfp", 0 }, 335 { "sp", 1 }, 336 { "rip", 2 }, 337 { "r3", 3 }, 338 { "r4", 4 }, 339 { "r5", 5 }, 340 { "r6", 6 }, 341 { "r7", 7 }, 342 { "r8", 8 }, 343 { "r9", 9 }, 344 { "r10", 10 }, 345 { "r11", 11 }, 346 { "r12", 12 }, 347 { "r13", 13 }, 348 { "r14", 14 }, 349 { "r15", 15 }, 350 { "g0", 16 }, 351 { "g1", 17 }, 352 { "g2", 18 }, 353 { "g3", 19 }, 354 { "g4", 20 }, 355 { "g5", 21 }, 356 { "g6", 22 }, 357 { "g7", 23 }, 358 { "g8", 24 }, 359 { "g9", 25 }, 360 { "g10", 26 }, 361 { "g11", 27 }, 362 { "g12", 28 }, 363 { "g13", 29 }, 364 { "g14", 30 }, 365 { "fp", 31 }, 366 367 /* Numbers for special-function registers are for assembler internal 368 use only: they are scaled back to range [0-31] for binary output. */ 369 #define SF0 32 370 371 { "sf0", 32 }, 372 { "sf1", 33 }, 373 { "sf2", 34 }, 374 { "sf3", 35 }, 375 { "sf4", 36 }, 376 { "sf5", 37 }, 377 { "sf6", 38 }, 378 { "sf7", 39 }, 379 { "sf8", 40 }, 380 { "sf9", 41 }, 381 { "sf10", 42 }, 382 { "sf11", 43 }, 383 { "sf12", 44 }, 384 { "sf13", 45 }, 385 { "sf14", 46 }, 386 { "sf15", 47 }, 387 { "sf16", 48 }, 388 { "sf17", 49 }, 389 { "sf18", 50 }, 390 { "sf19", 51 }, 391 { "sf20", 52 }, 392 { "sf21", 53 }, 393 { "sf22", 54 }, 394 { "sf23", 55 }, 395 { "sf24", 56 }, 396 { "sf25", 57 }, 397 { "sf26", 58 }, 398 { "sf27", 59 }, 399 { "sf28", 60 }, 400 { "sf29", 61 }, 401 { "sf30", 62 }, 402 { "sf31", 63 }, 403 404 /* Numbers for floating point registers are for assembler internal 405 use only: they are scaled back to [0-3] for binary output. */ 406 #define FP0 64 407 408 { "fp0", 64 }, 409 { "fp1", 65 }, 410 { "fp2", 66 }, 411 { "fp3", 67 }, 412 413 { NULL, 0 }, /* END OF LIST */ 414 }; 415 416 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) 417 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) 418 #define IS_FP_REG(n) ((n) >= FP0) 419 420 /* Number and assembler mnemonic for all registers that can appear as 421 'abase' (indirect addressing) registers. */ 422 static const struct 423 { 424 char *areg_name; 425 int areg_num; 426 } 427 aregs[] = 428 { 429 { "(pfp)", 0 }, 430 { "(sp)", 1 }, 431 { "(rip)", 2 }, 432 { "(r3)", 3 }, 433 { "(r4)", 4 }, 434 { "(r5)", 5 }, 435 { "(r6)", 6 }, 436 { "(r7)", 7 }, 437 { "(r8)", 8 }, 438 { "(r9)", 9 }, 439 { "(r10)", 10 }, 440 { "(r11)", 11 }, 441 { "(r12)", 12 }, 442 { "(r13)", 13 }, 443 { "(r14)", 14 }, 444 { "(r15)", 15 }, 445 { "(g0)", 16 }, 446 { "(g1)", 17 }, 447 { "(g2)", 18 }, 448 { "(g3)", 19 }, 449 { "(g4)", 20 }, 450 { "(g5)", 21 }, 451 { "(g6)", 22 }, 452 { "(g7)", 23 }, 453 { "(g8)", 24 }, 454 { "(g9)", 25 }, 455 { "(g10)", 26 }, 456 { "(g11)", 27 }, 457 { "(g12)", 28 }, 458 { "(g13)", 29 }, 459 { "(g14)", 30 }, 460 { "(fp)", 31 }, 461 462 #define IPREL 32 463 /* For assembler internal use only: this number never appears in binary 464 output. */ 465 { "(ip)", IPREL }, 466 467 { NULL, 0 }, /* END OF LIST */ 468 }; 469 470 /* Hash tables */ 471 static struct hash_control *op_hash; /* Opcode mnemonics */ 472 static struct hash_control *reg_hash; /* Register name hash table */ 473 static struct hash_control *areg_hash; /* Abase register hash table */ 474 475 /* Architecture for which we are assembling */ 476 #define ARCH_ANY 0 /* Default: no architecture checking done */ 477 #define ARCH_KA 1 478 #define ARCH_KB 2 479 #define ARCH_MC 3 480 #define ARCH_CA 4 481 #define ARCH_JX 5 482 #define ARCH_HX 6 483 int architecture = ARCH_ANY; /* Architecture requested on invocation line */ 484 int iclasses_seen; /* OR of instruction classes (I_* constants) 485 * for which we've actually assembled 486 * instructions. 487 */ 488 489 /* BRANCH-PREDICTION INSTRUMENTATION 490 491 The following supports generation of branch-prediction instrumentation 492 (turned on by -b switch). The instrumentation collects counts 493 of branches taken/not-taken for later input to a utility that will 494 set the branch prediction bits of the instructions in accordance with 495 the behavior observed. (Note that the KX series does not have 496 brach-prediction.) 497 498 The instrumentation consists of: 499 500 (1) before and after each conditional branch, a call to an external 501 routine that increments and steps over an inline counter. The 502 counter itself, initialized to 0, immediately follows the call 503 instruction. For each branch, the counter following the branch 504 is the number of times the branch was not taken, and the difference 505 between the counters is the number of times it was taken. An 506 example of an instrumented conditional branch: 507 508 call BR_CNT_FUNC 509 .word 0 510 LBRANCH23: be label 511 call BR_CNT_FUNC 512 .word 0 513 514 (2) a table of pointers to the instrumented branches, so that an 515 external postprocessing routine can locate all of the counters. 516 the table begins with a 2-word header: a pointer to the next in 517 a linked list of such tables (initialized to 0); and a count 518 of the number of entries in the table (exclusive of the header. 519 520 Note that input source code is expected to already contain calls 521 an external routine that will link the branch local table into a 522 list of such tables. 523 */ 524 525 /* Number of branches instrumented so far. Also used to generate 526 unique local labels for each instrumented branch. */ 527 static int br_cnt; 528 529 #define BR_LABEL_BASE "LBRANCH" 530 /* Basename of local labels on instrumented branches, to avoid 531 conflict with compiler- generated local labels. */ 532 533 #define BR_CNT_FUNC "__inc_branch" 534 /* Name of the external routine that will increment (and step over) an 535 inline counter. */ 536 537 #define BR_TAB_NAME "__BRANCH_TABLE__" 538 /* Name of the table of pointers to branches. A local (i.e., 539 non-external) symbol. */ 540 541 /***************************************************************************** 542 md_begin: One-time initialization. 543 544 Set up hash tables. 545 546 *************************************************************************** */ 547 void 548 md_begin () 549 { 550 int i; /* Loop counter */ 551 const struct i960_opcode *oP; /* Pointer into opcode table */ 552 const char *retval; /* Value returned by hash functions */ 553 554 op_hash = hash_new (); 555 reg_hash = hash_new (); 556 areg_hash = hash_new (); 557 558 /* For some reason, the base assembler uses an empty string for "no 559 error message", instead of a NULL pointer. */ 560 retval = 0; 561 562 for (oP = i960_opcodes; oP->name && !retval; oP++) 563 retval = hash_insert (op_hash, oP->name, (PTR) oP); 564 565 for (i = 0; regnames[i].reg_name && !retval; i++) 566 retval = hash_insert (reg_hash, regnames[i].reg_name, 567 (char *) ®names[i].reg_num); 568 569 for (i = 0; aregs[i].areg_name && !retval; i++) 570 retval = hash_insert (areg_hash, aregs[i].areg_name, 571 (char *) &aregs[i].areg_num); 572 573 if (retval) 574 as_fatal (_("Hashing returned \"%s\"."), retval); 575 } 576 577 /***************************************************************************** 578 md_assemble: Assemble an instruction 579 580 Assumptions about the passed-in text: 581 - all comments, labels removed 582 - text is an instruction 583 - all white space compressed to single blanks 584 - all character constants have been replaced with decimal 585 586 *************************************************************************** */ 587 void 588 md_assemble (textP) 589 char *textP; /* Source text of instruction */ 590 { 591 /* Parsed instruction text, containing NO whitespace: arg[0]->opcode 592 mnemonic arg[1-3]->operands, with char constants replaced by 593 decimal numbers. */ 594 char *args[4]; 595 596 int n_ops; /* Number of instruction operands */ 597 /* Pointer to instruction description */ 598 struct i960_opcode *oP; 599 /* TRUE iff opcode mnemonic included branch-prediction suffix (".f" 600 or ".t"). */ 601 int branch_predict; 602 /* Setting of branch-prediction bit(s) to be OR'd into instruction 603 opcode of CTRL/COBR format instructions. */ 604 long bp_bits; 605 606 int n; /* Offset of last character in opcode mnemonic */ 607 608 const char *bp_error_msg = _("branch prediction invalid on this opcode"); 609 610 /* Parse instruction into opcode and operands */ 611 memset (args, '\0', sizeof (args)); 612 n_ops = i_scan (textP, args); 613 if (n_ops == -1) 614 { 615 return; /* Error message already issued */ 616 } 617 618 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */ 619 if (!strcmp (args[0], "ldconst")) 620 { 621 n_ops = parse_ldconst (args); 622 if (n_ops == -1) 623 { 624 return; 625 } 626 } 627 628 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */ 629 n = strlen (args[0]) - 1; 630 branch_predict = 0; 631 bp_bits = 0; 632 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')) 633 { 634 /* We could check here to see if the target architecture 635 supports branch prediction, but why bother? The bit will 636 just be ignored by processors that don't use it. */ 637 branch_predict = 1; 638 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; 639 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */ 640 } 641 642 /* Look up opcode mnemonic in table and check number of operands. 643 Check that opcode is legal for the target architecture. If all 644 looks good, assemble instruction. */ 645 oP = (struct i960_opcode *) hash_find (op_hash, args[0]); 646 if (!oP || !targ_has_iclass (oP->iclass)) 647 { 648 as_bad (_("invalid opcode, \"%s\"."), args[0]); 649 650 } 651 else if (n_ops != oP->num_ops) 652 { 653 as_bad (_("improper number of operands. expecting %d, got %d"), 654 oP->num_ops, n_ops); 655 } 656 else 657 { 658 switch (oP->format) 659 { 660 case FBRA: 661 case CTRL: 662 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops); 663 if (oP->format == FBRA) 664 { 665 /* Now generate a 'bno' to same arg */ 666 ctrl_fmt (args[1], BNO | bp_bits, 1); 667 } 668 break; 669 case COBR: 670 case COJ: 671 cobr_fmt (args, oP->opcode | bp_bits, oP); 672 break; 673 case REG: 674 if (branch_predict) 675 { 676 as_warn ("%s", bp_error_msg); 677 } 678 reg_fmt (args, oP); 679 break; 680 case MEM1: 681 if (args[0][0] == 'c' && args[0][1] == 'a') 682 { 683 if (branch_predict) 684 { 685 as_warn ("%s", bp_error_msg); 686 } 687 mem_fmt (args, oP, 1); 688 break; 689 } 690 case MEM2: 691 case MEM4: 692 case MEM8: 693 case MEM12: 694 case MEM16: 695 if (branch_predict) 696 { 697 as_warn ("%s", bp_error_msg); 698 } 699 mem_fmt (args, oP, 0); 700 break; 701 case CALLJ: 702 if (branch_predict) 703 { 704 as_warn ("%s", bp_error_msg); 705 } 706 /* Output opcode & set up "fixup" (relocation); flag 707 relocation as 'callj' type. */ 708 know (oP->num_ops == 1); 709 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1); 710 break; 711 default: 712 BAD_CASE (oP->format); 713 break; 714 } 715 } 716 } /* md_assemble() */ 717 718 /***************************************************************************** 719 md_number_to_chars: convert a number to target byte order 720 721 *************************************************************************** */ 722 void 723 md_number_to_chars (buf, value, n) 724 char *buf; 725 valueT value; 726 int n; 727 { 728 number_to_chars_littleendian (buf, value, n); 729 } 730 731 /***************************************************************************** 732 md_chars_to_number: convert from target byte order to host byte order. 733 734 *************************************************************************** */ 735 static int md_chars_to_number PARAMS ((unsigned char *, int)); 736 737 static int 738 md_chars_to_number (val, n) 739 unsigned char *val; /* Value in target byte order */ 740 int n; /* Number of bytes in the input */ 741 { 742 int retval; 743 744 for (retval = 0; n--;) 745 { 746 retval <<= 8; 747 retval |= val[n]; 748 } 749 return retval; 750 } 751 752 #define MAX_LITTLENUMS 6 753 #define LNUM_SIZE sizeof (LITTLENUM_TYPE) 754 755 /***************************************************************************** 756 md_atof: convert ascii to floating point 757 758 Turn a string at input_line_pointer into a floating point constant of type 759 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS 760 emitted is returned at 'sizeP'. An error message is returned, or a pointer 761 to an empty message if OK. 762 763 Note we call the i386 floating point routine, rather than complicating 764 things with more files or symbolic links. 765 766 *************************************************************************** */ 767 char * 768 md_atof (type, litP, sizeP) 769 int type; 770 char *litP; 771 int *sizeP; 772 { 773 LITTLENUM_TYPE words[MAX_LITTLENUMS]; 774 LITTLENUM_TYPE *wordP; 775 int prec; 776 char *t; 777 778 switch (type) 779 { 780 case 'f': 781 case 'F': 782 prec = 2; 783 break; 784 785 case 'd': 786 case 'D': 787 prec = 4; 788 break; 789 790 case 't': 791 case 'T': 792 prec = 5; 793 type = 'x'; /* That's what atof_ieee() understands */ 794 break; 795 796 default: 797 *sizeP = 0; 798 return _("Bad call to md_atof()"); 799 } 800 801 t = atof_ieee (input_line_pointer, type, words); 802 if (t) 803 { 804 input_line_pointer = t; 805 } 806 807 *sizeP = prec * LNUM_SIZE; 808 809 /* Output the LITTLENUMs in REVERSE order in accord with i80960 810 word-order. (Dunno why atof_ieee doesn't do it in the right 811 order in the first place -- probably because it's a hack of 812 atof_m68k.) */ 813 814 for (wordP = words + prec - 1; prec--;) 815 { 816 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE); 817 litP += sizeof (LITTLENUM_TYPE); 818 } 819 820 return 0; 821 } 822 823 /***************************************************************************** 824 md_number_to_imm 825 826 *************************************************************************** */ 827 static void md_number_to_imm PARAMS ((char *, long, int)); 828 829 static void 830 md_number_to_imm (buf, val, n) 831 char *buf; 832 long val; 833 int n; 834 { 835 md_number_to_chars (buf, val, n); 836 } 837 838 /***************************************************************************** 839 md_number_to_field: 840 841 Stick a value (an address fixup) into a bit field of 842 previously-generated instruction. 843 844 *************************************************************************** */ 845 static void md_number_to_field PARAMS ((char *, long, bit_fixS *)); 846 847 static void 848 md_number_to_field (instrP, val, bfixP) 849 char *instrP; /* Pointer to instruction to be fixed */ 850 long val; /* Address fixup value */ 851 bit_fixS *bfixP; /* Description of bit field to be fixed up */ 852 { 853 int numbits; /* Length of bit field to be fixed */ 854 long instr; /* 32-bit instruction to be fixed-up */ 855 long sign; /* 0 or -1, according to sign bit of 'val' */ 856 857 /* Convert instruction back to host byte order. */ 858 instr = md_chars_to_number (instrP, 4); 859 860 /* Surprise! -- we stored the number of bits to be modified rather 861 than a pointer to a structure. */ 862 numbits = (int) bfixP; 863 if (numbits == 1) 864 { 865 /* This is a no-op, stuck here by reloc_callj() */ 866 return; 867 } 868 869 know ((numbits == 13) || (numbits == 24)); 870 871 /* Propagate sign bit of 'val' for the given number of bits. Result 872 should be all 0 or all 1. */ 873 sign = val >> ((int) numbits - 1); 874 if (((val < 0) && (sign != -1)) 875 || ((val > 0) && (sign != 0))) 876 { 877 as_bad (_("Fixup of %ld too large for field width of %d"), 878 val, numbits); 879 } 880 else 881 { 882 /* Put bit field into instruction and write back in target 883 * byte order. 884 */ 885 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */ 886 instr |= val; 887 md_number_to_chars (instrP, instr, 4); 888 } 889 } /* md_number_to_field() */ 890 891 892 /***************************************************************************** 893 md_parse_option 894 Invocation line includes a switch not recognized by the base assembler. 895 See if it's a processor-specific option. For the 960, these are: 896 897 -norelax: 898 Conditional branch instructions that require displacements 899 greater than 13 bits (or that have external targets) should 900 generate errors. The default is to replace each such 901 instruction with the corresponding compare (or chkbit) and 902 branch instructions. Note that the Intel "j" cobr directives 903 are ALWAYS "de-optimized" in this way when necessary, 904 regardless of the setting of this option. 905 906 -b: 907 Add code to collect information about branches taken, for 908 later optimization of branch prediction bits by a separate 909 tool. COBR and CNTL format instructions have branch 910 prediction bits (in the CX architecture); if "BR" represents 911 an instruction in one of these classes, the following rep- 912 resents the code generated by the assembler: 913 914 call <increment routine> 915 .word 0 # pre-counter 916 Label: BR 917 call <increment routine> 918 .word 0 # post-counter 919 920 A table of all such "Labels" is also generated. 921 922 -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: 923 Select the 80960 architecture. Instructions or features not 924 supported by the selected architecture cause fatal errors. 925 The default is to generate code for any instruction or feature 926 that is supported by SOME version of the 960 (even if this 927 means mixing architectures!). 928 929 ****************************************************************************/ 930 931 const char *md_shortopts = "A:b"; 932 struct option md_longopts[] = 933 { 934 #define OPTION_LINKRELAX (OPTION_MD_BASE) 935 {"linkrelax", no_argument, NULL, OPTION_LINKRELAX}, 936 {"link-relax", no_argument, NULL, OPTION_LINKRELAX}, 937 #define OPTION_NORELAX (OPTION_MD_BASE + 1) 938 {"norelax", no_argument, NULL, OPTION_NORELAX}, 939 {"no-relax", no_argument, NULL, OPTION_NORELAX}, 940 {NULL, no_argument, NULL, 0} 941 }; 942 size_t md_longopts_size = sizeof (md_longopts); 943 944 struct tabentry 945 { 946 char *flag; 947 int arch; 948 }; 949 static const struct tabentry arch_tab[] = 950 { 951 {"KA", ARCH_KA}, 952 {"KB", ARCH_KB}, 953 {"SA", ARCH_KA}, /* Synonym for KA */ 954 {"SB", ARCH_KB}, /* Synonym for KB */ 955 {"KC", ARCH_MC}, /* Synonym for MC */ 956 {"MC", ARCH_MC}, 957 {"CA", ARCH_CA}, 958 {"JX", ARCH_JX}, 959 {"HX", ARCH_HX}, 960 {NULL, 0} 961 }; 962 963 int 964 md_parse_option (c, arg) 965 int c; 966 char *arg; 967 { 968 switch (c) 969 { 970 case OPTION_LINKRELAX: 971 linkrelax = 1; 972 flag_keep_locals = 1; 973 break; 974 975 case OPTION_NORELAX: 976 norelax = 1; 977 break; 978 979 case 'b': 980 instrument_branches = 1; 981 break; 982 983 case 'A': 984 { 985 const struct tabentry *tp; 986 char *p = arg; 987 988 for (tp = arch_tab; tp->flag != NULL; tp++) 989 if (!strcmp (p, tp->flag)) 990 break; 991 992 if (tp->flag == NULL) 993 { 994 as_bad (_("invalid architecture %s"), p); 995 return 0; 996 } 997 else 998 architecture = tp->arch; 999 } 1000 break; 1001 1002 default: 1003 return 0; 1004 } 1005 1006 return 1; 1007 } 1008 1009 void 1010 md_show_usage (stream) 1011 FILE *stream; 1012 { 1013 int i; 1014 fprintf (stream, _("I960 options:\n")); 1015 for (i = 0; arch_tab[i].flag; i++) 1016 fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag); 1017 fprintf (stream, _("\n\ 1018 specify variant of 960 architecture\n\ 1019 -b add code to collect statistics about branches taken\n\ 1020 -link-relax preserve individual alignment directives so linker\n\ 1021 can do relaxing (b.out format only)\n\ 1022 -no-relax don't alter compare-and-branch instructions for\n\ 1023 long displacements\n")); 1024 } 1025 1026 1027 /***************************************************************************** 1028 md_convert_frag: 1029 Called by base assembler after address relaxation is finished: modify 1030 variable fragments according to how much relaxation was done. 1031 1032 If the fragment substate is still 1, a 13-bit displacement was enough 1033 to reach the symbol in question. Set up an address fixup, but otherwise 1034 leave the cobr instruction alone. 1035 1036 If the fragment substate is 2, a 13-bit displacement was not enough. 1037 Replace the cobr with a two instructions (a compare and a branch). 1038 1039 *************************************************************************** */ 1040 #ifndef BFD_ASSEMBLER 1041 void 1042 md_convert_frag (headers, seg, fragP) 1043 object_headers *headers ATTRIBUTE_UNUSED; 1044 segT seg ATTRIBUTE_UNUSED; 1045 fragS *fragP; 1046 #else 1047 void 1048 md_convert_frag (abfd, sec, fragP) 1049 bfd *abfd ATTRIBUTE_UNUSED; 1050 segT sec ATTRIBUTE_UNUSED; 1051 fragS *fragP; 1052 #endif 1053 { 1054 fixS *fixP; /* Structure describing needed address fix */ 1055 1056 switch (fragP->fr_subtype) 1057 { 1058 case 1: 1059 /* LEAVE SINGLE COBR INSTRUCTION */ 1060 fixP = fix_new (fragP, 1061 fragP->fr_opcode - fragP->fr_literal, 1062 4, 1063 fragP->fr_symbol, 1064 fragP->fr_offset, 1065 1, 1066 NO_RELOC); 1067 1068 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */ 1069 break; 1070 case 2: 1071 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */ 1072 relax_cobr (fragP); 1073 break; 1074 default: 1075 BAD_CASE (fragP->fr_subtype); 1076 break; 1077 } 1078 } 1079 1080 /***************************************************************************** 1081 md_estimate_size_before_relax: How much does it look like *fragP will grow? 1082 1083 Called by base assembler just before address relaxation. 1084 Return the amount by which the fragment will grow. 1085 1086 Any symbol that is now undefined will not become defined; cobr's 1087 based on undefined symbols will have to be replaced with a compare 1088 instruction and a branch instruction, and the code fragment will grow 1089 by 4 bytes. 1090 1091 *************************************************************************** */ 1092 int 1093 md_estimate_size_before_relax (fragP, segment_type) 1094 register fragS *fragP; 1095 register segT segment_type; 1096 { 1097 /* If symbol is undefined in this segment, go to "relaxed" state 1098 (compare and branch instructions instead of cobr) right now. */ 1099 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type) 1100 { 1101 relax_cobr (fragP); 1102 return 4; 1103 } 1104 1105 return md_relax_table[fragP->fr_subtype].rlx_length; 1106 } /* md_estimate_size_before_relax() */ 1107 1108 #if defined(OBJ_AOUT) | defined(OBJ_BOUT) 1109 1110 /***************************************************************************** 1111 md_ri_to_chars: 1112 This routine exists in order to overcome machine byte-order problems 1113 when dealing with bit-field entries in the relocation_info struct. 1114 1115 But relocation info will be used on the host machine only (only 1116 executable code is actually downloaded to the i80960). Therefore, 1117 we leave it in host byte order. 1118 1119 The above comment is no longer true. This routine now really 1120 does do the reordering (Ian Taylor 28 Aug 92). 1121 1122 *************************************************************************** */ 1123 static void md_ri_to_chars PARAMS ((char *, struct relocation_info *)); 1124 1125 static void 1126 md_ri_to_chars (where, ri) 1127 char *where; 1128 struct relocation_info *ri; 1129 { 1130 md_number_to_chars (where, ri->r_address, 1131 sizeof (ri->r_address)); 1132 where[4] = ri->r_index & 0x0ff; 1133 where[5] = (ri->r_index >> 8) & 0x0ff; 1134 where[6] = (ri->r_index >> 16) & 0x0ff; 1135 where[7] = ((ri->r_pcrel << 0) 1136 | (ri->r_length << 1) 1137 | (ri->r_extern << 3) 1138 | (ri->r_bsr << 4) 1139 | (ri->r_disp << 5) 1140 | (ri->r_callj << 6)); 1141 } 1142 1143 #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */ 1144 1145 1146 /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */ 1147 1148 /***************************************************************************** 1149 brcnt_emit: Emit code to increment inline branch counter. 1150 1151 See the comments above the declaration of 'br_cnt' for details on 1152 branch-prediction instrumentation. 1153 *************************************************************************** */ 1154 static void 1155 brcnt_emit () 1156 { 1157 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */ 1158 emit (0); /* Emit inline counter to be incremented */ 1159 } 1160 1161 /***************************************************************************** 1162 brlab_next: generate the next branch local label 1163 1164 See the comments above the declaration of 'br_cnt' for details on 1165 branch-prediction instrumentation. 1166 *************************************************************************** */ 1167 static char * 1168 brlab_next () 1169 { 1170 static char buf[20]; 1171 1172 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++); 1173 return buf; 1174 } 1175 1176 /***************************************************************************** 1177 brtab_emit: generate the fetch-prediction branch table. 1178 1179 See the comments above the declaration of 'br_cnt' for details on 1180 branch-prediction instrumentation. 1181 1182 The code emitted here would be functionally equivalent to the following 1183 example assembler source. 1184 1185 .data 1186 .align 2 1187 BR_TAB_NAME: 1188 .word 0 # link to next table 1189 .word 3 # length of table 1190 .word LBRANCH0 # 1st entry in table proper 1191 .word LBRANCH1 1192 .word LBRANCH2 1193 **************************************************************************** */ 1194 void 1195 brtab_emit () 1196 { 1197 int i; 1198 char buf[20]; 1199 char *p; /* Where the binary was output to */ 1200 /* Pointer to description of deferred address fixup. */ 1201 fixS *fixP; 1202 1203 if (!instrument_branches) 1204 { 1205 return; 1206 } 1207 1208 subseg_set (data_section, 0); /* .data */ 1209 frag_align (2, 0, 0); /* .align 2 */ 1210 record_alignment (now_seg, 2); 1211 colon (BR_TAB_NAME); /* BR_TAB_NAME: */ 1212 emit (0); /* .word 0 #link to next table */ 1213 emit (br_cnt); /* .word n #length of table */ 1214 1215 for (i = 0; i < br_cnt; i++) 1216 { 1217 sprintf (buf, "%s%d", BR_LABEL_BASE, i); 1218 p = emit (0); 1219 fixP = fix_new (frag_now, 1220 p - frag_now->fr_literal, 1221 4, 1222 symbol_find (buf), 1223 0, 1224 0, 1225 NO_RELOC); 1226 } 1227 } 1228 1229 /***************************************************************************** 1230 cobr_fmt: generate a COBR-format instruction 1231 1232 *************************************************************************** */ 1233 static void 1234 cobr_fmt (arg, opcode, oP) 1235 /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ 1236 char *arg[]; 1237 /* Opcode, with branch-prediction bits already set if necessary. */ 1238 long opcode; 1239 /* Pointer to description of instruction. */ 1240 struct i960_opcode *oP; 1241 { 1242 long instr; /* 32-bit instruction */ 1243 struct regop regop; /* Description of register operand */ 1244 int n; /* Number of operands */ 1245 int var_frag; /* 1 if varying length code fragment should 1246 * be emitted; 0 if an address fix 1247 * should be emitted. 1248 */ 1249 1250 instr = opcode; 1251 n = oP->num_ops; 1252 1253 if (n >= 1) 1254 { 1255 /* First operand (if any) of a COBR is always a register 1256 operand. Parse it. */ 1257 parse_regop (®op, arg[1], oP->operand[0]); 1258 instr |= (regop.n << 19) | (regop.mode << 13); 1259 } 1260 if (n >= 2) 1261 { 1262 /* Second operand (if any) of a COBR is always a register 1263 operand. Parse it. */ 1264 parse_regop (®op, arg[2], oP->operand[1]); 1265 instr |= (regop.n << 14) | regop.special; 1266 } 1267 1268 if (n < 3) 1269 { 1270 emit (instr); 1271 1272 } 1273 else 1274 { 1275 if (instrument_branches) 1276 { 1277 brcnt_emit (); 1278 colon (brlab_next ()); 1279 } 1280 1281 /* A third operand to a COBR is always a displacement. Parse 1282 it; if it's relaxable (a cobr "j" directive, or any cobr 1283 other than bbs/bbc when the "-norelax" option is not in use) 1284 set up a variable code fragment; otherwise set up an address 1285 fix. */ 1286 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ 1287 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0); 1288 1289 if (instrument_branches) 1290 { 1291 brcnt_emit (); 1292 } 1293 } 1294 } /* cobr_fmt() */ 1295 1296 /***************************************************************************** 1297 ctrl_fmt: generate a CTRL-format instruction 1298 1299 *************************************************************************** */ 1300 static void 1301 ctrl_fmt (targP, opcode, num_ops) 1302 char *targP; /* Pointer to text of lone operand (if any) */ 1303 long opcode; /* Template of instruction */ 1304 int num_ops; /* Number of operands */ 1305 { 1306 int instrument; /* TRUE iff we should add instrumentation to track 1307 * how often the branch is taken 1308 */ 1309 1310 if (num_ops == 0) 1311 { 1312 emit (opcode); /* Output opcode */ 1313 } 1314 else 1315 { 1316 1317 instrument = instrument_branches && (opcode != CALL) 1318 && (opcode != B) && (opcode != RET) && (opcode != BAL); 1319 1320 if (instrument) 1321 { 1322 brcnt_emit (); 1323 colon (brlab_next ()); 1324 } 1325 1326 /* The operand MUST be an ip-relative displacement. Parse it 1327 * and set up address fix for the instruction we just output. 1328 */ 1329 get_cdisp (targP, "CTRL", opcode, 24, 0, 0); 1330 1331 if (instrument) 1332 { 1333 brcnt_emit (); 1334 } 1335 } 1336 1337 } 1338 1339 /***************************************************************************** 1340 emit: output instruction binary 1341 1342 Output instruction binary, in target byte order, 4 bytes at a time. 1343 Return pointer to where it was placed. 1344 1345 *************************************************************************** */ 1346 static char * 1347 emit (instr) 1348 long instr; /* Word to be output, host byte order */ 1349 { 1350 char *toP; /* Where to output it */ 1351 1352 toP = frag_more (4); /* Allocate storage */ 1353 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */ 1354 return toP; 1355 } 1356 1357 /***************************************************************************** 1358 get_args: break individual arguments out of comma-separated list 1359 1360 Input assumptions: 1361 - all comments and labels have been removed 1362 - all strings of whitespace have been collapsed to a single blank. 1363 - all character constants ('x') have been replaced with decimal 1364 1365 Output: 1366 args[0] is untouched. args[1] points to first operand, etc. All args: 1367 - are NULL-terminated 1368 - contain no whitespace 1369 1370 Return value: 1371 Number of operands (0,1,2, or 3) or -1 on error. 1372 1373 *************************************************************************** */ 1374 static int 1375 get_args (p, args) 1376 /* Pointer to comma-separated operands; MUCKED BY US */ 1377 register char *p; 1378 /* Output arg: pointers to operands placed in args[1-3]. MUST 1379 ACCOMMODATE 4 ENTRIES (args[0-3]). */ 1380 char *args[]; 1381 { 1382 register int n; /* Number of operands */ 1383 register char *to; 1384 1385 /* Skip lead white space */ 1386 while (*p == ' ') 1387 { 1388 p++; 1389 } 1390 1391 if (*p == '\0') 1392 { 1393 return 0; 1394 } 1395 1396 n = 1; 1397 args[1] = p; 1398 1399 /* Squeze blanks out by moving non-blanks toward start of string. 1400 * Isolate operands, whenever comma is found. 1401 */ 1402 to = p; 1403 while (*p != '\0') 1404 { 1405 1406 if (*p == ' ' 1407 && (! ISALNUM (p[1]) 1408 || ! ISALNUM (p[-1]))) 1409 { 1410 p++; 1411 1412 } 1413 else if (*p == ',') 1414 { 1415 1416 /* Start of operand */ 1417 if (n == 3) 1418 { 1419 as_bad (_("too many operands")); 1420 return -1; 1421 } 1422 *to++ = '\0'; /* Terminate argument */ 1423 args[++n] = to; /* Start next argument */ 1424 p++; 1425 1426 } 1427 else 1428 { 1429 *to++ = *p++; 1430 } 1431 } 1432 *to = '\0'; 1433 return n; 1434 } 1435 1436 /***************************************************************************** 1437 get_cdisp: handle displacement for a COBR or CTRL instruction. 1438 1439 Parse displacement for a COBR or CTRL instruction. 1440 1441 If successful, output the instruction opcode and set up for it, 1442 depending on the arg 'var_frag', either: 1443 o an address fixup to be done when all symbol values are known, or 1444 o a varying length code fragment, with address fixup info. This 1445 will be done for cobr instructions that may have to be relaxed 1446 in to compare/branch instructions (8 bytes) if the final 1447 address displacement is greater than 13 bits. 1448 1449 ****************************************************************************/ 1450 static void 1451 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj) 1452 /* displacement as specified in source instruction */ 1453 char *dispP; 1454 /* "COBR" or "CTRL" (for use in error message) */ 1455 char *ifmtP; 1456 /* Instruction needing the displacement */ 1457 long instr; 1458 /* # bits of displacement (13 for COBR, 24 for CTRL) */ 1459 int numbits; 1460 /* 1 if varying length code fragment should be emitted; 1461 * 0 if an address fix should be emitted. 1462 */ 1463 int var_frag; 1464 /* 1 if callj relocation should be done; else 0 */ 1465 int callj; 1466 { 1467 expressionS e; /* Parsed expression */ 1468 fixS *fixP; /* Structure describing needed address fix */ 1469 char *outP; /* Where instruction binary is output to */ 1470 1471 fixP = NULL; 1472 1473 parse_expr (dispP, &e); 1474 switch (e.X_op) 1475 { 1476 case O_illegal: 1477 as_bad (_("expression syntax error")); 1478 1479 case O_symbol: 1480 if (S_GET_SEGMENT (e.X_add_symbol) == now_seg 1481 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section) 1482 { 1483 if (var_frag) 1484 { 1485 outP = frag_more (8); /* Allocate worst-case storage */ 1486 md_number_to_chars (outP, instr, 4); 1487 frag_variant (rs_machine_dependent, 4, 4, 1, 1488 adds (e), offs (e), outP); 1489 } 1490 else 1491 { 1492 /* Set up a new fix structure, so address can be updated 1493 * when all symbol values are known. 1494 */ 1495 outP = emit (instr); 1496 fixP = fix_new (frag_now, 1497 outP - frag_now->fr_literal, 1498 4, 1499 adds (e), 1500 offs (e), 1501 1, 1502 NO_RELOC); 1503 1504 fixP->fx_tcbit = callj; 1505 1506 /* We want to modify a bit field when the address is 1507 * known. But we don't need all the garbage in the 1508 * bit_fix structure. So we're going to lie and store 1509 * the number of bits affected instead of a pointer. 1510 */ 1511 fixP->fx_bit_fixP = (bit_fixS *) numbits; 1512 } 1513 } 1514 else 1515 as_bad (_("attempt to branch into different segment")); 1516 break; 1517 1518 default: 1519 as_bad (_("target of %s instruction must be a label"), ifmtP); 1520 break; 1521 } 1522 } 1523 1524 /***************************************************************************** 1525 get_ispec: parse a memory operand for an index specification 1526 1527 Here, an "index specification" is taken to be anything surrounded 1528 by square brackets and NOT followed by anything else. 1529 1530 If it's found, detach it from the input string, remove the surrounding 1531 square brackets, and return a pointer to it. Otherwise, return NULL. 1532 1533 *************************************************************************** */ 1534 static char * 1535 get_ispec (textP) 1536 /* Pointer to memory operand from source instruction, no white space. */ 1537 char *textP; 1538 { 1539 /* Points to start of index specification. */ 1540 char *start; 1541 /* Points to end of index specification. */ 1542 char *end; 1543 1544 /* Find opening square bracket, if any. */ 1545 start = strchr (textP, '['); 1546 1547 if (start != NULL) 1548 { 1549 1550 /* Eliminate '[', detach from rest of operand */ 1551 *start++ = '\0'; 1552 1553 end = strchr (start, ']'); 1554 1555 if (end == NULL) 1556 { 1557 as_bad (_("unmatched '['")); 1558 1559 } 1560 else 1561 { 1562 /* Eliminate ']' and make sure it was the last thing 1563 * in the string. 1564 */ 1565 *end = '\0'; 1566 if (*(end + 1) != '\0') 1567 { 1568 as_bad (_("garbage after index spec ignored")); 1569 } 1570 } 1571 } 1572 return start; 1573 } 1574 1575 /***************************************************************************** 1576 get_regnum: 1577 1578 Look up a (suspected) register name in the register table and return the 1579 associated register number (or -1 if not found). 1580 1581 *************************************************************************** */ 1582 static int 1583 get_regnum (regname) 1584 char *regname; /* Suspected register name */ 1585 { 1586 int *rP; 1587 1588 rP = (int *) hash_find (reg_hash, regname); 1589 return (rP == NULL) ? -1 : *rP; 1590 } 1591 1592 /***************************************************************************** 1593 i_scan: perform lexical scan of ascii assembler instruction. 1594 1595 Input assumptions: 1596 - input string is an i80960 instruction (not a pseudo-op) 1597 - all comments and labels have been removed 1598 - all strings of whitespace have been collapsed to a single blank. 1599 1600 Output: 1601 args[0] points to opcode, other entries point to operands. All strings: 1602 - are NULL-terminated 1603 - contain no whitespace 1604 - have character constants ('x') replaced with a decimal number 1605 1606 Return value: 1607 Number of operands (0,1,2, or 3) or -1 on error. 1608 1609 *************************************************************************** */ 1610 static int 1611 i_scan (iP, args) 1612 /* Pointer to ascii instruction; MUCKED BY US. */ 1613 register char *iP; 1614 /* Output arg: pointers to opcode and operands placed here. MUST 1615 ACCOMMODATE 4 ENTRIES. */ 1616 char *args[]; 1617 { 1618 1619 /* Isolate opcode */ 1620 if (*(iP) == ' ') 1621 { 1622 iP++; 1623 } /* Skip lead space, if any */ 1624 args[0] = iP; 1625 for (; *iP != ' '; iP++) 1626 { 1627 if (*iP == '\0') 1628 { 1629 /* There are no operands */ 1630 if (args[0] == iP) 1631 { 1632 /* We never moved: there was no opcode either! */ 1633 as_bad (_("missing opcode")); 1634 return -1; 1635 } 1636 return 0; 1637 } 1638 } 1639 *iP++ = '\0'; /* Terminate opcode */ 1640 return (get_args (iP, args)); 1641 } /* i_scan() */ 1642 1643 /***************************************************************************** 1644 mem_fmt: generate a MEMA- or MEMB-format instruction 1645 1646 *************************************************************************** */ 1647 static void 1648 mem_fmt (args, oP, callx) 1649 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ 1650 struct i960_opcode *oP; /* Pointer to description of instruction */ 1651 int callx; /* Is this a callx opcode */ 1652 { 1653 int i; /* Loop counter */ 1654 struct regop regop; /* Description of register operand */ 1655 char opdesc; /* Operand descriptor byte */ 1656 memS instr; /* Description of binary to be output */ 1657 char *outP; /* Where the binary was output to */ 1658 expressionS expr; /* Parsed expression */ 1659 /* ->description of deferred address fixup */ 1660 fixS *fixP; 1661 1662 #ifdef OBJ_COFF 1663 /* COFF support isn't in place yet for callx relaxing. */ 1664 callx = 0; 1665 #endif 1666 1667 memset (&instr, '\0', sizeof (memS)); 1668 instr.opcode = oP->opcode; 1669 1670 /* Process operands. */ 1671 for (i = 1; i <= oP->num_ops; i++) 1672 { 1673 opdesc = oP->operand[i - 1]; 1674 1675 if (MEMOP (opdesc)) 1676 { 1677 parse_memop (&instr, args[i], oP->format); 1678 } 1679 else 1680 { 1681 parse_regop (®op, args[i], opdesc); 1682 instr.opcode |= regop.n << 19; 1683 } 1684 } 1685 1686 /* Parse the displacement; this must be done before emitting the 1687 opcode, in case it is an expression using `.'. */ 1688 parse_expr (instr.e, &expr); 1689 1690 /* Output opcode */ 1691 outP = emit (instr.opcode); 1692 1693 if (instr.disp == 0) 1694 { 1695 return; 1696 } 1697 1698 /* Process the displacement */ 1699 switch (expr.X_op) 1700 { 1701 case O_illegal: 1702 as_bad (_("expression syntax error")); 1703 break; 1704 1705 case O_constant: 1706 if (instr.disp == 32) 1707 { 1708 (void) emit (offs (expr)); /* Output displacement */ 1709 } 1710 else 1711 { 1712 /* 12-bit displacement */ 1713 if (offs (expr) & ~0xfff) 1714 { 1715 /* Won't fit in 12 bits: convert already-output 1716 * instruction to MEMB format, output 1717 * displacement. 1718 */ 1719 mema_to_memb (outP); 1720 (void) emit (offs (expr)); 1721 } 1722 else 1723 { 1724 /* WILL fit in 12 bits: OR into opcode and 1725 * overwrite the binary we already put out 1726 */ 1727 instr.opcode |= offs (expr); 1728 md_number_to_chars (outP, instr.opcode, 4); 1729 } 1730 } 1731 break; 1732 1733 default: 1734 if (instr.disp == 12) 1735 { 1736 /* Displacement is dependent on a symbol, whose value 1737 * may change at link time. We HAVE to reserve 32 bits. 1738 * Convert already-output opcode to MEMB format. 1739 */ 1740 mema_to_memb (outP); 1741 } 1742 1743 /* Output 0 displacement and set up address fixup for when 1744 * this symbol's value becomes known. 1745 */ 1746 outP = emit ((long) 0); 1747 fixP = fix_new_exp (frag_now, 1748 outP - frag_now->fr_literal, 1749 4, 1750 &expr, 1751 0, 1752 NO_RELOC); 1753 /* Steve's linker relaxing hack. Mark this 32-bit relocation as 1754 being in the instruction stream, specifically as part of a callx 1755 instruction. */ 1756 fixP->fx_bsr = callx; 1757 break; 1758 } 1759 } /* memfmt() */ 1760 1761 /***************************************************************************** 1762 mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. 1763 1764 There are 2 possible MEMA formats: 1765 - displacement only 1766 - displacement + abase 1767 1768 They are distinguished by the setting of the MEMA_ABASE bit. 1769 1770 *************************************************************************** */ 1771 static void 1772 mema_to_memb (opcodeP) 1773 char *opcodeP; /* Where to find the opcode, in target byte order */ 1774 { 1775 long opcode; /* Opcode in host byte order */ 1776 long mode; /* Mode bits for MEMB instruction */ 1777 1778 opcode = md_chars_to_number (opcodeP, 4); 1779 know (!(opcode & MEMB_BIT)); 1780 1781 mode = MEMB_BIT | D_BIT; 1782 if (opcode & MEMA_ABASE) 1783 { 1784 mode |= A_BIT; 1785 } 1786 1787 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */ 1788 opcode |= mode; /* Set MEMB mode bits */ 1789 1790 md_number_to_chars (opcodeP, opcode, 4); 1791 } /* mema_to_memb() */ 1792 1793 /***************************************************************************** 1794 parse_expr: parse an expression 1795 1796 Use base assembler's expression parser to parse an expression. 1797 It, unfortunately, runs off a global which we have to save/restore 1798 in order to make it work for us. 1799 1800 An empty expression string is treated as an absolute 0. 1801 1802 Sets O_illegal regardless of expression evaluation if entire input 1803 string is not consumed in the evaluation -- tolerate no dangling junk! 1804 1805 *************************************************************************** */ 1806 static void 1807 parse_expr (textP, expP) 1808 char *textP; /* Text of expression to be parsed */ 1809 expressionS *expP; /* Where to put the results of parsing */ 1810 { 1811 char *save_in; /* Save global here */ 1812 symbolS *symP; 1813 1814 know (textP); 1815 1816 if (*textP == '\0') 1817 { 1818 /* Treat empty string as absolute 0 */ 1819 expP->X_add_symbol = expP->X_op_symbol = NULL; 1820 expP->X_add_number = 0; 1821 expP->X_op = O_constant; 1822 } 1823 else 1824 { 1825 save_in = input_line_pointer; /* Save global */ 1826 input_line_pointer = textP; /* Make parser work for us */ 1827 1828 (void) expression (expP); 1829 if ((size_t) (input_line_pointer - textP) != strlen (textP)) 1830 { 1831 /* Did not consume all of the input */ 1832 expP->X_op = O_illegal; 1833 } 1834 symP = expP->X_add_symbol; 1835 if (symP && (hash_find (reg_hash, S_GET_NAME (symP)))) 1836 { 1837 /* Register name in an expression */ 1838 /* FIXME: this isn't much of a check any more. */ 1839 expP->X_op = O_illegal; 1840 } 1841 1842 input_line_pointer = save_in; /* Restore global */ 1843 } 1844 } 1845 1846 /***************************************************************************** 1847 parse_ldcont: 1848 Parse and replace a 'ldconst' pseudo-instruction with an appropriate 1849 i80960 instruction. 1850 1851 Assumes the input consists of: 1852 arg[0] opcode mnemonic ('ldconst') 1853 arg[1] first operand (constant) 1854 arg[2] name of register to be loaded 1855 1856 Replaces opcode and/or operands as appropriate. 1857 1858 Returns the new number of arguments, or -1 on failure. 1859 1860 *************************************************************************** */ 1861 static int 1862 parse_ldconst (arg) 1863 char *arg[]; /* See above */ 1864 { 1865 int n; /* Constant to be loaded */ 1866 int shift; /* Shift count for "shlo" instruction */ 1867 static char buf[5]; /* Literal for first operand */ 1868 static char buf2[5]; /* Literal for second operand */ 1869 expressionS e; /* Parsed expression */ 1870 1871 arg[3] = NULL; /* So we can tell at the end if it got used or not */ 1872 1873 parse_expr (arg[1], &e); 1874 switch (e.X_op) 1875 { 1876 default: 1877 /* We're dependent on one or more symbols -- use "lda" */ 1878 arg[0] = "lda"; 1879 break; 1880 1881 case O_constant: 1882 /* Try the following mappings: 1883 * ldconst 0,<reg> ->mov 0,<reg> 1884 * ldconst 31,<reg> ->mov 31,<reg> 1885 * ldconst 32,<reg> ->addo 1,31,<reg> 1886 * ldconst 62,<reg> ->addo 31,31,<reg> 1887 * ldconst 64,<reg> ->shlo 8,3,<reg> 1888 * ldconst -1,<reg> ->subo 1,0,<reg> 1889 * ldconst -31,<reg>->subo 31,0,<reg> 1890 * 1891 * anything else becomes: 1892 * lda xxx,<reg> 1893 */ 1894 n = offs (e); 1895 if ((0 <= n) && (n <= 31)) 1896 { 1897 arg[0] = "mov"; 1898 1899 } 1900 else if ((-31 <= n) && (n <= -1)) 1901 { 1902 arg[0] = "subo"; 1903 arg[3] = arg[2]; 1904 sprintf (buf, "%d", -n); 1905 arg[1] = buf; 1906 arg[2] = "0"; 1907 1908 } 1909 else if ((32 <= n) && (n <= 62)) 1910 { 1911 arg[0] = "addo"; 1912 arg[3] = arg[2]; 1913 arg[1] = "31"; 1914 sprintf (buf, "%d", n - 31); 1915 arg[2] = buf; 1916 1917 } 1918 else if ((shift = shift_ok (n)) != 0) 1919 { 1920 arg[0] = "shlo"; 1921 arg[3] = arg[2]; 1922 sprintf (buf, "%d", shift); 1923 arg[1] = buf; 1924 sprintf (buf2, "%d", n >> shift); 1925 arg[2] = buf2; 1926 1927 } 1928 else 1929 { 1930 arg[0] = "lda"; 1931 } 1932 break; 1933 1934 case O_illegal: 1935 as_bad (_("invalid constant")); 1936 return -1; 1937 break; 1938 } 1939 return (arg[3] == 0) ? 2 : 3; 1940 } 1941 1942 /***************************************************************************** 1943 parse_memop: parse a memory operand 1944 1945 This routine is based on the observation that the 4 mode bits of the 1946 MEMB format, taken individually, have fairly consistent meaning: 1947 1948 M3 (bit 13): 1 if displacement is present (D_BIT) 1949 M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) 1950 M1 (bit 11): 1 if index is present (I_BIT) 1951 M0 (bit 10): 1 if abase is present (A_BIT) 1952 1953 So we parse the memory operand and set bits in the mode as we find 1954 things. Then at the end, if we go to MEMB format, we need only set 1955 the MEMB bit (M2) and our mode is built for us. 1956 1957 Unfortunately, I said "fairly consistent". The exceptions: 1958 1959 DBIA 1960 0100 Would seem illegal, but means "abase-only". 1961 1962 0101 Would seem to mean "abase-only" -- it means IP-relative. 1963 Must be converted to 0100. 1964 1965 0110 Would seem to mean "index-only", but is reserved. 1966 We turn on the D bit and provide a 0 displacement. 1967 1968 The other thing to observe is that we parse from the right, peeling 1969 things * off as we go: first any index spec, then any abase, then 1970 the displacement. 1971 1972 *************************************************************************** */ 1973 static void 1974 parse_memop (memP, argP, optype) 1975 memS *memP; /* Where to put the results */ 1976 char *argP; /* Text of the operand to be parsed */ 1977 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */ 1978 { 1979 char *indexP; /* Pointer to index specification with "[]" removed */ 1980 char *p; /* Temp char pointer */ 1981 char iprel_flag; /* True if this is an IP-relative operand */ 1982 int regnum; /* Register number */ 1983 /* Scale factor: 1,2,4,8, or 16. Later converted to internal format 1984 (0,1,2,3,4 respectively). */ 1985 int scale; 1986 int mode; /* MEMB mode bits */ 1987 int *intP; /* Pointer to register number */ 1988 1989 /* The following table contains the default scale factors for each 1990 type of memory instruction. It is accessed using (optype-MEM1) 1991 as an index -- thus it assumes the 'optype' constants are 1992 assigned consecutive values, in the order they appear in this 1993 table. */ 1994 static const int def_scale[] = 1995 { 1996 1, /* MEM1 */ 1997 2, /* MEM2 */ 1998 4, /* MEM4 */ 1999 8, /* MEM8 */ 2000 -1, /* MEM12 -- no valid default */ 2001 16 /* MEM16 */ 2002 }; 2003 2004 iprel_flag = mode = 0; 2005 2006 /* Any index present? */ 2007 indexP = get_ispec (argP); 2008 if (indexP) 2009 { 2010 p = strchr (indexP, '*'); 2011 if (p == NULL) 2012 { 2013 /* No explicit scale -- use default for this instruction 2014 type and assembler mode. */ 2015 if (flag_mri) 2016 scale = 1; 2017 else 2018 /* GNU960 compatibility */ 2019 scale = def_scale[optype - MEM1]; 2020 } 2021 else 2022 { 2023 *p++ = '\0'; /* Eliminate '*' */ 2024 2025 /* Now indexP->a '\0'-terminated register name, 2026 * and p->a scale factor. 2027 */ 2028 2029 if (!strcmp (p, "16")) 2030 { 2031 scale = 16; 2032 } 2033 else if (strchr ("1248", *p) && (p[1] == '\0')) 2034 { 2035 scale = *p - '0'; 2036 } 2037 else 2038 { 2039 scale = -1; 2040 } 2041 } 2042 2043 regnum = get_regnum (indexP); /* Get index reg. # */ 2044 if (!IS_RG_REG (regnum)) 2045 { 2046 as_bad (_("invalid index register")); 2047 return; 2048 } 2049 2050 /* Convert scale to its binary encoding */ 2051 switch (scale) 2052 { 2053 case 1: 2054 scale = 0 << 7; 2055 break; 2056 case 2: 2057 scale = 1 << 7; 2058 break; 2059 case 4: 2060 scale = 2 << 7; 2061 break; 2062 case 8: 2063 scale = 3 << 7; 2064 break; 2065 case 16: 2066 scale = 4 << 7; 2067 break; 2068 default: 2069 as_bad (_("invalid scale factor")); 2070 return; 2071 }; 2072 2073 memP->opcode |= scale | regnum; /* Set index bits in opcode */ 2074 mode |= I_BIT; /* Found a valid index spec */ 2075 } 2076 2077 /* Any abase (Register Indirect) specification present? */ 2078 if ((p = strrchr (argP, '(')) != NULL) 2079 { 2080 /* "(" is there -- does it start a legal abase spec? If not, it 2081 could be part of a displacement expression. */ 2082 intP = (int *) hash_find (areg_hash, p); 2083 if (intP != NULL) 2084 { 2085 /* Got an abase here */ 2086 regnum = *intP; 2087 *p = '\0'; /* discard register spec */ 2088 if (regnum == IPREL) 2089 { 2090 /* We have to specialcase ip-rel mode */ 2091 iprel_flag = 1; 2092 } 2093 else 2094 { 2095 memP->opcode |= regnum << 14; 2096 mode |= A_BIT; 2097 } 2098 } 2099 } 2100 2101 /* Any expression present? */ 2102 memP->e = argP; 2103 if (*argP != '\0') 2104 { 2105 mode |= D_BIT; 2106 } 2107 2108 /* Special-case ip-relative addressing */ 2109 if (iprel_flag) 2110 { 2111 if (mode & I_BIT) 2112 { 2113 syntax (); 2114 } 2115 else 2116 { 2117 memP->opcode |= 5 << 10; /* IP-relative mode */ 2118 memP->disp = 32; 2119 } 2120 return; 2121 } 2122 2123 /* Handle all other modes */ 2124 switch (mode) 2125 { 2126 case D_BIT | A_BIT: 2127 /* Go with MEMA instruction format for now (grow to MEMB later 2128 if 12 bits is not enough for the displacement). MEMA format 2129 has a single mode bit: set it to indicate that abase is 2130 present. */ 2131 memP->opcode |= MEMA_ABASE; 2132 memP->disp = 12; 2133 break; 2134 2135 case D_BIT: 2136 /* Go with MEMA instruction format for now (grow to MEMB later 2137 if 12 bits is not enough for the displacement). */ 2138 memP->disp = 12; 2139 break; 2140 2141 case A_BIT: 2142 /* For some reason, the bit string for this mode is not 2143 consistent: it should be 0 (exclusive of the MEMB bit), so we 2144 set it "by hand" here. */ 2145 memP->opcode |= MEMB_BIT; 2146 break; 2147 2148 case A_BIT | I_BIT: 2149 /* set MEMB bit in mode, and OR in mode bits */ 2150 memP->opcode |= mode | MEMB_BIT; 2151 break; 2152 2153 case I_BIT: 2154 /* Treat missing displacement as displacement of 0. */ 2155 mode |= D_BIT; 2156 /* Fall into next case. */ 2157 case D_BIT | A_BIT | I_BIT: 2158 case D_BIT | I_BIT: 2159 /* set MEMB bit in mode, and OR in mode bits */ 2160 memP->opcode |= mode | MEMB_BIT; 2161 memP->disp = 32; 2162 break; 2163 2164 default: 2165 syntax (); 2166 break; 2167 } 2168 } 2169 2170 /***************************************************************************** 2171 parse_po: parse machine-dependent pseudo-op 2172 2173 This is a top-level routine for machine-dependent pseudo-ops. It slurps 2174 up the rest of the input line, breaks out the individual arguments, 2175 and dispatches them to the correct handler. 2176 *************************************************************************** */ 2177 static void 2178 parse_po (po_num) 2179 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */ 2180 { 2181 /* Pointers operands, with no embedded whitespace. 2182 arg[0] unused, arg[1-3]->operands */ 2183 char *args[4]; 2184 int n_ops; /* Number of operands */ 2185 char *p; /* Pointer to beginning of unparsed argument string */ 2186 char eol; /* Character that indicated end of line */ 2187 2188 extern char is_end_of_line[]; 2189 2190 /* Advance input pointer to end of line. */ 2191 p = input_line_pointer; 2192 while (!is_end_of_line[(unsigned char) *input_line_pointer]) 2193 { 2194 input_line_pointer++; 2195 } 2196 eol = *input_line_pointer; /* Save end-of-line char */ 2197 *input_line_pointer = '\0'; /* Terminate argument list */ 2198 2199 /* Parse out operands */ 2200 n_ops = get_args (p, args); 2201 if (n_ops == -1) 2202 { 2203 return; 2204 } 2205 2206 /* Dispatch to correct handler */ 2207 switch (po_num) 2208 { 2209 case S_SYSPROC: 2210 s_sysproc (n_ops, args); 2211 break; 2212 case S_LEAFPROC: 2213 s_leafproc (n_ops, args); 2214 break; 2215 default: 2216 BAD_CASE (po_num); 2217 break; 2218 } 2219 2220 /* Restore eol, so line numbers get updated correctly. Base 2221 assembler assumes we leave input pointer pointing at char 2222 following the eol. */ 2223 *input_line_pointer++ = eol; 2224 } 2225 2226 /***************************************************************************** 2227 parse_regop: parse a register operand. 2228 2229 In case of illegal operand, issue a message and return some valid 2230 information so instruction processing can continue. 2231 *************************************************************************** */ 2232 static void 2233 parse_regop (regopP, optext, opdesc) 2234 struct regop *regopP; /* Where to put description of register operand */ 2235 char *optext; /* Text of operand */ 2236 char opdesc; /* Descriptor byte: what's legal for this operand */ 2237 { 2238 int n; /* Register number */ 2239 expressionS e; /* Parsed expression */ 2240 2241 /* See if operand is a register */ 2242 n = get_regnum (optext); 2243 if (n >= 0) 2244 { 2245 if (IS_RG_REG (n)) 2246 { 2247 /* global or local register */ 2248 if (!REG_ALIGN (opdesc, n)) 2249 { 2250 as_bad (_("unaligned register")); 2251 } 2252 regopP->n = n; 2253 regopP->mode = 0; 2254 regopP->special = 0; 2255 return; 2256 } 2257 else if (IS_FP_REG (n) && FP_OK (opdesc)) 2258 { 2259 /* Floating point register, and it's allowed */ 2260 regopP->n = n - FP0; 2261 regopP->mode = 1; 2262 regopP->special = 0; 2263 return; 2264 } 2265 else if (IS_SF_REG (n) && SFR_OK (opdesc)) 2266 { 2267 /* Special-function register, and it's allowed */ 2268 regopP->n = n - SF0; 2269 regopP->mode = 0; 2270 regopP->special = 1; 2271 if (!targ_has_sfr (regopP->n)) 2272 { 2273 as_bad (_("no such sfr in this architecture")); 2274 } 2275 return; 2276 } 2277 } 2278 else if (LIT_OK (opdesc)) 2279 { 2280 /* How about a literal? */ 2281 regopP->mode = 1; 2282 regopP->special = 0; 2283 if (FP_OK (opdesc)) 2284 { /* floating point literal acceptable */ 2285 /* Skip over 0f, 0d, or 0e prefix */ 2286 if ((optext[0] == '0') 2287 && (optext[1] >= 'd') 2288 && (optext[1] <= 'f')) 2289 { 2290 optext += 2; 2291 } 2292 2293 if (!strcmp (optext, "0.0") || !strcmp (optext, "0")) 2294 { 2295 regopP->n = 0x10; 2296 return; 2297 } 2298 if (!strcmp (optext, "1.0") || !strcmp (optext, "1")) 2299 { 2300 regopP->n = 0x16; 2301 return; 2302 } 2303 2304 } 2305 else 2306 { /* fixed point literal acceptable */ 2307 parse_expr (optext, &e); 2308 if (e.X_op != O_constant 2309 || (offs (e) < 0) || (offs (e) > 31)) 2310 { 2311 as_bad (_("illegal literal")); 2312 offs (e) = 0; 2313 } 2314 regopP->n = offs (e); 2315 return; 2316 } 2317 } 2318 2319 /* Nothing worked */ 2320 syntax (); 2321 regopP->mode = 0; /* Register r0 is always a good one */ 2322 regopP->n = 0; 2323 regopP->special = 0; 2324 } /* parse_regop() */ 2325 2326 /***************************************************************************** 2327 reg_fmt: generate a REG-format instruction 2328 2329 *************************************************************************** */ 2330 static void 2331 reg_fmt (args, oP) 2332 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ 2333 struct i960_opcode *oP; /* Pointer to description of instruction */ 2334 { 2335 long instr; /* Binary to be output */ 2336 struct regop regop; /* Description of register operand */ 2337 int n_ops; /* Number of operands */ 2338 2339 instr = oP->opcode; 2340 n_ops = oP->num_ops; 2341 2342 if (n_ops >= 1) 2343 { 2344 parse_regop (®op, args[1], oP->operand[0]); 2345 2346 if ((n_ops == 1) && !(instr & M3)) 2347 { 2348 /* 1-operand instruction in which the dst field should 2349 * be used (instead of src1). 2350 */ 2351 regop.n <<= 19; 2352 if (regop.special) 2353 { 2354 regop.mode = regop.special; 2355 } 2356 regop.mode <<= 13; 2357 regop.special = 0; 2358 } 2359 else 2360 { 2361 /* regop.n goes in bit 0, needs no shifting */ 2362 regop.mode <<= 11; 2363 regop.special <<= 5; 2364 } 2365 instr |= regop.n | regop.mode | regop.special; 2366 } 2367 2368 if (n_ops >= 2) 2369 { 2370 parse_regop (®op, args[2], oP->operand[1]); 2371 2372 if ((n_ops == 2) && !(instr & M3)) 2373 { 2374 /* 2-operand instruction in which the dst field should 2375 * be used instead of src2). 2376 */ 2377 regop.n <<= 19; 2378 if (regop.special) 2379 { 2380 regop.mode = regop.special; 2381 } 2382 regop.mode <<= 13; 2383 regop.special = 0; 2384 } 2385 else 2386 { 2387 regop.n <<= 14; 2388 regop.mode <<= 12; 2389 regop.special <<= 6; 2390 } 2391 instr |= regop.n | regop.mode | regop.special; 2392 } 2393 if (n_ops == 3) 2394 { 2395 parse_regop (®op, args[3], oP->operand[2]); 2396 if (regop.special) 2397 { 2398 regop.mode = regop.special; 2399 } 2400 instr |= (regop.n <<= 19) | (regop.mode <<= 13); 2401 } 2402 emit (instr); 2403 } 2404 2405 /***************************************************************************** 2406 relax_cobr: 2407 Replace cobr instruction in a code fragment with equivalent branch and 2408 compare instructions, so it can reach beyond a 13-bit displacement. 2409 Set up an address fix/relocation for the new branch instruction. 2410 2411 *************************************************************************** */ 2412 2413 /* This "conditional jump" table maps cobr instructions into 2414 equivalent compare and branch opcodes. */ 2415 static const 2416 struct 2417 { 2418 long compare; 2419 long branch; 2420 } 2421 2422 coj[] = 2423 { /* COBR OPCODE: */ 2424 { CHKBIT, BNO }, /* 0x30 - bbc */ 2425 { CMPO, BG }, /* 0x31 - cmpobg */ 2426 { CMPO, BE }, /* 0x32 - cmpobe */ 2427 { CMPO, BGE }, /* 0x33 - cmpobge */ 2428 { CMPO, BL }, /* 0x34 - cmpobl */ 2429 { CMPO, BNE }, /* 0x35 - cmpobne */ 2430 { CMPO, BLE }, /* 0x36 - cmpoble */ 2431 { CHKBIT, BO }, /* 0x37 - bbs */ 2432 { CMPI, BNO }, /* 0x38 - cmpibno */ 2433 { CMPI, BG }, /* 0x39 - cmpibg */ 2434 { CMPI, BE }, /* 0x3a - cmpibe */ 2435 { CMPI, BGE }, /* 0x3b - cmpibge */ 2436 { CMPI, BL }, /* 0x3c - cmpibl */ 2437 { CMPI, BNE }, /* 0x3d - cmpibne */ 2438 { CMPI, BLE }, /* 0x3e - cmpible */ 2439 { CMPI, BO }, /* 0x3f - cmpibo */ 2440 }; 2441 2442 static void 2443 relax_cobr (fragP) 2444 register fragS *fragP; /* fragP->fr_opcode is assumed to point to 2445 * the cobr instruction, which comes at the 2446 * end of the code fragment. 2447 */ 2448 { 2449 int opcode, src1, src2, m1, s2; 2450 /* Bit fields from cobr instruction */ 2451 long bp_bits; /* Branch prediction bits from cobr instruction */ 2452 long instr; /* A single i960 instruction */ 2453 /* ->instruction to be replaced */ 2454 char *iP; 2455 fixS *fixP; /* Relocation that can be done at assembly time */ 2456 2457 /* PICK UP & PARSE COBR INSTRUCTION */ 2458 iP = fragP->fr_opcode; 2459 instr = md_chars_to_number (iP, 4); 2460 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */ 2461 src1 = (instr >> 19) & 0x1f; 2462 m1 = (instr >> 13) & 1; 2463 s2 = instr & 1; 2464 src2 = (instr >> 14) & 0x1f; 2465 bp_bits = instr & BP_MASK; 2466 2467 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */ 2468 instr = coj[opcode].compare 2469 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); 2470 md_number_to_chars (iP, instr, 4); 2471 2472 /* OUTPUT BRANCH INSTRUCTION */ 2473 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4); 2474 2475 /* SET UP ADDRESS FIXUP/RELOCATION */ 2476 fixP = fix_new (fragP, 2477 iP + 4 - fragP->fr_literal, 2478 4, 2479 fragP->fr_symbol, 2480 fragP->fr_offset, 2481 1, 2482 NO_RELOC); 2483 2484 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */ 2485 2486 fragP->fr_fix += 4; 2487 frag_wane (fragP); 2488 } 2489 2490 /***************************************************************************** 2491 reloc_callj: Relocate a 'callj' instruction 2492 2493 This is a "non-(GNU)-standard" machine-dependent hook. The base 2494 assembler calls it when it decides it can relocate an address at 2495 assembly time instead of emitting a relocation directive. 2496 2497 Check to see if the relocation involves a 'callj' instruction to a: 2498 sysproc: Replace the default 'call' instruction with a 'calls' 2499 leafproc: Replace the default 'call' instruction with a 'bal'. 2500 other proc: Do nothing. 2501 2502 See b.out.h for details on the 'n_other' field in a symbol structure. 2503 2504 IMPORTANT!: 2505 Assumes the caller has already figured out, in the case of a leafproc, 2506 to use the 'bal' entry point, and has substituted that symbol into the 2507 passed fixup structure. 2508 2509 *************************************************************************** */ 2510 int 2511 reloc_callj (fixP) 2512 /* Relocation that can be done at assembly time */ 2513 fixS *fixP; 2514 { 2515 /* Points to the binary for the instruction being relocated. */ 2516 char *where; 2517 2518 if (!fixP->fx_tcbit) 2519 { 2520 /* This wasn't a callj instruction in the first place */ 2521 return 0; 2522 } 2523 2524 where = fixP->fx_frag->fr_literal + fixP->fx_where; 2525 2526 if (TC_S_IS_SYSPROC (fixP->fx_addsy)) 2527 { 2528 /* Symbol is a .sysproc: replace 'call' with 'calls'. System 2529 procedure number is (other-1). */ 2530 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4); 2531 2532 /* Nothing else needs to be done for this instruction. Make 2533 sure 'md_number_to_field()' will perform a no-op. */ 2534 fixP->fx_bit_fixP = (bit_fixS *) 1; 2535 } 2536 else if (TC_S_IS_CALLNAME (fixP->fx_addsy)) 2537 { 2538 /* Should not happen: see block comment above */ 2539 as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy)); 2540 } 2541 else if (TC_S_IS_BALNAME (fixP->fx_addsy)) 2542 { 2543 /* Replace 'call' with 'bal'; both instructions have the same 2544 format, so calling code should complete relocation as if 2545 nothing happened here. */ 2546 md_number_to_chars (where, BAL, 4); 2547 } 2548 else if (TC_S_IS_BADPROC (fixP->fx_addsy)) 2549 { 2550 as_bad (_("Looks like a proc, but can't tell what kind.\n")); 2551 } /* switch on proc type */ 2552 2553 /* else Symbol is neither a sysproc nor a leafproc */ 2554 return 0; 2555 } 2556 2557 /***************************************************************************** 2558 s_leafproc: process .leafproc pseudo-op 2559 2560 .leafproc takes two arguments, the second one is optional: 2561 arg[1]: name of 'call' entry point to leaf procedure 2562 arg[2]: name of 'bal' entry point to leaf procedure 2563 2564 If the two arguments are identical, or if the second one is missing, 2565 the first argument is taken to be the 'bal' entry point. 2566 2567 If there are 2 distinct arguments, we must make sure that the 'bal' 2568 entry point immediately follows the 'call' entry point in the linked 2569 list of symbols. 2570 2571 *************************************************************************** */ 2572 static void 2573 s_leafproc (n_ops, args) 2574 int n_ops; /* Number of operands */ 2575 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ 2576 { 2577 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */ 2578 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */ 2579 2580 if ((n_ops != 1) && (n_ops != 2)) 2581 { 2582 as_bad (_("should have 1 or 2 operands")); 2583 return; 2584 } /* Check number of arguments */ 2585 2586 /* Find or create symbol for 'call' entry point. */ 2587 callP = symbol_find_or_make (args[1]); 2588 2589 if (TC_S_IS_CALLNAME (callP)) 2590 { 2591 as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP)); 2592 } /* is leafproc */ 2593 2594 /* If that was the only argument, use it as the 'bal' entry point. 2595 * Otherwise, mark it as the 'call' entry point and find or create 2596 * another symbol for the 'bal' entry point. 2597 */ 2598 if ((n_ops == 1) || !strcmp (args[1], args[2])) 2599 { 2600 TC_S_FORCE_TO_BALNAME (callP); 2601 2602 } 2603 else 2604 { 2605 TC_S_FORCE_TO_CALLNAME (callP); 2606 2607 balP = symbol_find_or_make (args[2]); 2608 if (TC_S_IS_CALLNAME (balP)) 2609 { 2610 as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP)); 2611 } 2612 TC_S_FORCE_TO_BALNAME (balP); 2613 2614 #ifndef OBJ_ELF 2615 tc_set_bal_of_call (callP, balP); 2616 #endif 2617 } /* if only one arg, or the args are the same */ 2618 } 2619 2620 /* 2621 s_sysproc: process .sysproc pseudo-op 2622 2623 .sysproc takes two arguments: 2624 arg[1]: name of entry point to system procedure 2625 arg[2]: 'entry_num' (index) of system procedure in the range 2626 [0,31] inclusive. 2627 2628 For [ab].out, we store the 'entrynum' in the 'n_other' field of 2629 the symbol. Since that entry is normally 0, we bias 'entrynum' 2630 by adding 1 to it. It must be unbiased before it is used. */ 2631 static void 2632 s_sysproc (n_ops, args) 2633 int n_ops; /* Number of operands */ 2634 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ 2635 { 2636 expressionS exp; 2637 symbolS *symP; 2638 2639 if (n_ops != 2) 2640 { 2641 as_bad (_("should have two operands")); 2642 return; 2643 } /* bad arg count */ 2644 2645 /* Parse "entry_num" argument and check it for validity. */ 2646 parse_expr (args[2], &exp); 2647 if (exp.X_op != O_constant 2648 || (offs (exp) < 0) 2649 || (offs (exp) > 31)) 2650 { 2651 as_bad (_("'entry_num' must be absolute number in [0,31]")); 2652 return; 2653 } 2654 2655 /* Find/make symbol and stick entry number (biased by +1) into it */ 2656 symP = symbol_find_or_make (args[1]); 2657 2658 if (TC_S_IS_SYSPROC (symP)) 2659 { 2660 as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP)); 2661 } /* redefining */ 2662 2663 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */ 2664 TC_S_FORCE_TO_SYSPROC (symP); 2665 } 2666 2667 /***************************************************************************** 2668 shift_ok: 2669 Determine if a "shlo" instruction can be used to implement a "ldconst". 2670 This means that some number X < 32 can be shifted left to produce the 2671 constant of interest. 2672 2673 Return the shift count, or 0 if we can't do it. 2674 Caller calculates X by shifting original constant right 'shift' places. 2675 2676 *************************************************************************** */ 2677 static int 2678 shift_ok (n) 2679 int n; /* The constant of interest */ 2680 { 2681 int shift; /* The shift count */ 2682 2683 if (n <= 0) 2684 { 2685 /* Can't do it for negative numbers */ 2686 return 0; 2687 } 2688 2689 /* Shift 'n' right until a 1 is about to be lost */ 2690 for (shift = 0; (n & 1) == 0; shift++) 2691 { 2692 n >>= 1; 2693 } 2694 2695 if (n >= 32) 2696 { 2697 return 0; 2698 } 2699 return shift; 2700 } 2701 2702 /* syntax: issue syntax error */ 2703 2704 static void 2705 syntax () 2706 { 2707 as_bad (_("syntax error")); 2708 } /* syntax() */ 2709 2710 /* targ_has_sfr: 2711 2712 Return TRUE iff the target architecture supports the specified 2713 special-function register (sfr). */ 2714 2715 static int 2716 targ_has_sfr (n) 2717 int n; /* Number (0-31) of sfr */ 2718 { 2719 switch (architecture) 2720 { 2721 case ARCH_KA: 2722 case ARCH_KB: 2723 case ARCH_MC: 2724 case ARCH_JX: 2725 return 0; 2726 case ARCH_HX: 2727 return ((0 <= n) && (n <= 4)); 2728 case ARCH_CA: 2729 default: 2730 return ((0 <= n) && (n <= 2)); 2731 } 2732 } 2733 2734 /* targ_has_iclass: 2735 2736 Return TRUE iff the target architecture supports the indicated 2737 class of instructions. */ 2738 static int 2739 targ_has_iclass (ic) 2740 /* Instruction class; one of: 2741 I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2 2742 */ 2743 int ic; 2744 { 2745 iclasses_seen |= ic; 2746 switch (architecture) 2747 { 2748 case ARCH_KA: 2749 return ic & (I_BASE | I_KX); 2750 case ARCH_KB: 2751 return ic & (I_BASE | I_KX | I_FP | I_DEC); 2752 case ARCH_MC: 2753 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); 2754 case ARCH_CA: 2755 return ic & (I_BASE | I_CX | I_CX2 | I_CASIM); 2756 case ARCH_JX: 2757 return ic & (I_BASE | I_CX2 | I_JX); 2758 case ARCH_HX: 2759 return ic & (I_BASE | I_CX2 | I_JX | I_HX); 2760 default: 2761 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL)) 2762 && (iclasses_seen & (I_CX | I_CX2))) 2763 { 2764 as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)")); 2765 iclasses_seen &= ~ic; 2766 } 2767 return 1; 2768 } 2769 } 2770 2771 /* Handle the MRI .endian pseudo-op. */ 2772 2773 static void 2774 s_endian (ignore) 2775 int ignore ATTRIBUTE_UNUSED; 2776 { 2777 char *name; 2778 char c; 2779 2780 name = input_line_pointer; 2781 c = get_symbol_end (); 2782 if (strcasecmp (name, "little") == 0) 2783 ; 2784 else if (strcasecmp (name, "big") == 0) 2785 as_bad (_("big endian mode is not supported")); 2786 else 2787 as_warn (_("ignoring unrecognized .endian type `%s'"), name); 2788 2789 *input_line_pointer = c; 2790 2791 demand_empty_rest_of_line (); 2792 } 2793 2794 /* We have no need to default values of symbols. */ 2795 2796 symbolS * 2797 md_undefined_symbol (name) 2798 char *name ATTRIBUTE_UNUSED; 2799 { 2800 return 0; 2801 } 2802 2803 /* Exactly what point is a PC-relative offset relative TO? 2804 On the i960, they're relative to the address of the instruction, 2805 which we have set up as the address of the fixup too. */ 2806 long 2807 md_pcrel_from (fixP) 2808 fixS *fixP; 2809 { 2810 return fixP->fx_where + fixP->fx_frag->fr_address; 2811 } 2812 2813 void 2814 md_apply_fix3 (fixP, valP, seg) 2815 fixS *fixP; 2816 valueT *valP; 2817 segT seg ATTRIBUTE_UNUSED; 2818 { 2819 long val = *valP; 2820 char *place = fixP->fx_where + fixP->fx_frag->fr_literal; 2821 2822 if (!fixP->fx_bit_fixP) 2823 { 2824 #ifndef BFD_ASSEMBLER 2825 /* For callx, we always want to write out zero, and emit a 2826 symbolic relocation. */ 2827 if (fixP->fx_bsr) 2828 val = 0; 2829 2830 fixP->fx_addnumber = val; 2831 #endif 2832 2833 md_number_to_imm (place, val, fixP->fx_size); 2834 } 2835 else if ((int) fixP->fx_bit_fixP == 13 2836 && fixP->fx_addsy != NULL 2837 && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section) 2838 { 2839 /* This is a COBR instruction. They have only a 2840 13-bit displacement and are only to be used 2841 for local branches: flag as error, don't generate 2842 relocation. */ 2843 as_bad_where (fixP->fx_file, fixP->fx_line, 2844 _("can't use COBR format with external label")); 2845 fixP->fx_addsy = NULL; 2846 } 2847 else 2848 md_number_to_field (place, val, fixP->fx_bit_fixP); 2849 2850 if (fixP->fx_addsy == NULL) 2851 fixP->fx_done = 1; 2852 } 2853 2854 #if defined(OBJ_AOUT) | defined(OBJ_BOUT) 2855 void 2856 tc_bout_fix_to_chars (where, fixP, segment_address_in_file) 2857 char *where; 2858 fixS *fixP; 2859 relax_addressT segment_address_in_file; 2860 { 2861 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; 2862 struct relocation_info ri; 2863 symbolS *symbolP; 2864 2865 memset ((char *) &ri, '\0', sizeof (ri)); 2866 symbolP = fixP->fx_addsy; 2867 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC); 2868 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */ 2869 /* These two 'cuz of NS32K */ 2870 ri.r_callj = fixP->fx_tcbit; 2871 if (fixP->fx_bit_fixP) 2872 ri.r_length = 2; 2873 else 2874 ri.r_length = nbytes_r_length[fixP->fx_size]; 2875 ri.r_pcrel = fixP->fx_pcrel; 2876 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; 2877 2878 if (fixP->fx_r_type != NO_RELOC) 2879 { 2880 switch (fixP->fx_r_type) 2881 { 2882 case rs_align: 2883 ri.r_index = -2; 2884 ri.r_pcrel = 1; 2885 ri.r_length = fixP->fx_size - 1; 2886 break; 2887 case rs_org: 2888 ri.r_index = -2; 2889 ri.r_pcrel = 0; 2890 break; 2891 case rs_fill: 2892 ri.r_index = -1; 2893 break; 2894 default: 2895 abort (); 2896 } 2897 ri.r_extern = 0; 2898 } 2899 else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr) 2900 { 2901 ri.r_extern = 1; 2902 ri.r_index = symbolP->sy_number; 2903 } 2904 else 2905 { 2906 ri.r_extern = 0; 2907 ri.r_index = S_GET_TYPE (symbolP); 2908 } 2909 2910 /* Output the relocation information in machine-dependent form. */ 2911 md_ri_to_chars (where, &ri); 2912 } 2913 2914 #endif /* OBJ_AOUT or OBJ_BOUT */ 2915 2916 #if defined (OBJ_COFF) && defined (BFD) 2917 short 2918 tc_coff_fix2rtype (fixP) 2919 fixS *fixP; 2920 { 2921 if (fixP->fx_bsr) 2922 abort (); 2923 2924 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) 2925 return R_RELLONG; 2926 2927 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) 2928 return R_IPRMED; 2929 2930 abort (); 2931 return 0; 2932 } 2933 2934 int 2935 tc_coff_sizemachdep (frag) 2936 fragS *frag; 2937 { 2938 if (frag->fr_next) 2939 return frag->fr_next->fr_address - frag->fr_address; 2940 else 2941 return 0; 2942 } 2943 #endif 2944 2945 /* Align an address by rounding it up to the specified boundary. */ 2946 valueT 2947 md_section_align (seg, addr) 2948 segT seg; 2949 valueT addr; /* Address to be rounded up */ 2950 { 2951 int align; 2952 #ifdef BFD_ASSEMBLER 2953 align = bfd_get_section_alignment (stdoutput, seg); 2954 #else 2955 align = section_alignment[(int) seg]; 2956 #endif 2957 return (addr + (1 << align) - 1) & (-1 << align); 2958 } 2959 2960 extern int coff_flags; 2961 2962 #ifdef OBJ_COFF 2963 void 2964 tc_headers_hook (headers) 2965 object_headers *headers; 2966 { 2967 switch (architecture) 2968 { 2969 case ARCH_KA: 2970 coff_flags |= F_I960KA; 2971 break; 2972 2973 case ARCH_KB: 2974 coff_flags |= F_I960KB; 2975 break; 2976 2977 case ARCH_MC: 2978 coff_flags |= F_I960MC; 2979 break; 2980 2981 case ARCH_CA: 2982 coff_flags |= F_I960CA; 2983 break; 2984 2985 case ARCH_JX: 2986 coff_flags |= F_I960JX; 2987 break; 2988 2989 case ARCH_HX: 2990 coff_flags |= F_I960HX; 2991 break; 2992 2993 default: 2994 if (iclasses_seen == I_BASE) 2995 coff_flags |= F_I960CORE; 2996 else if (iclasses_seen & I_CX) 2997 coff_flags |= F_I960CA; 2998 else if (iclasses_seen & I_HX) 2999 coff_flags |= F_I960HX; 3000 else if (iclasses_seen & I_JX) 3001 coff_flags |= F_I960JX; 3002 else if (iclasses_seen & I_CX2) 3003 coff_flags |= F_I960CA; 3004 else if (iclasses_seen & I_MIL) 3005 coff_flags |= F_I960MC; 3006 else if (iclasses_seen & (I_DEC | I_FP)) 3007 coff_flags |= F_I960KB; 3008 else 3009 coff_flags |= F_I960KA; 3010 break; 3011 } 3012 3013 if (flag_readonly_data_in_text) 3014 { 3015 headers->filehdr.f_magic = I960RWMAGIC; 3016 headers->aouthdr.magic = OMAGIC; 3017 } 3018 else 3019 { 3020 headers->filehdr.f_magic = I960ROMAGIC; 3021 headers->aouthdr.magic = NMAGIC; 3022 } /* set magic numbers */ 3023 } 3024 3025 #endif /* OBJ_COFF */ 3026 3027 #ifndef BFD_ASSEMBLER 3028 3029 /* Things going on here: 3030 3031 For bout, We need to assure a couple of simplifying 3032 assumptions about leafprocs for the linker: the leafproc 3033 entry symbols will be defined in the same assembly in 3034 which they're declared with the '.leafproc' directive; 3035 and if a leafproc has both 'call' and 'bal' entry points 3036 they are both global or both local. 3037 3038 For coff, the call symbol has a second aux entry that 3039 contains the bal entry point. The bal symbol becomes a 3040 label. 3041 3042 For coff representation, the call symbol has a second aux entry that 3043 contains the bal entry point. The bal symbol becomes a label. */ 3044 3045 void 3046 tc_crawl_symbol_chain (headers) 3047 object_headers *headers ATTRIBUTE_UNUSED; 3048 { 3049 symbolS *symbolP; 3050 3051 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP)) 3052 { 3053 #ifdef OBJ_COFF 3054 if (TC_S_IS_SYSPROC (symbolP)) 3055 { 3056 /* second aux entry already contains the sysproc number */ 3057 S_SET_NUMBER_AUXILIARY (symbolP, 2); 3058 S_SET_STORAGE_CLASS (symbolP, C_SCALL); 3059 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); 3060 continue; 3061 } /* rewrite sysproc */ 3062 #endif /* OBJ_COFF */ 3063 3064 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP)) 3065 { 3066 continue; 3067 } /* Not a leafproc symbol */ 3068 3069 if (!S_IS_DEFINED (symbolP)) 3070 { 3071 as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP)); 3072 } /* undefined leaf */ 3073 3074 if (TC_S_IS_CALLNAME (symbolP)) 3075 { 3076 symbolS *balP = tc_get_bal_of_call (symbolP); 3077 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP)) 3078 { 3079 S_SET_EXTERNAL (symbolP); 3080 S_SET_EXTERNAL (balP); 3081 as_warn (_("Warning: making leafproc entries %s and %s both global\n"), 3082 S_GET_NAME (symbolP), S_GET_NAME (balP)); 3083 } /* externality mismatch */ 3084 } /* if callname */ 3085 } /* walk the symbol chain */ 3086 } 3087 3088 #endif /* ! BFD_ASSEMBLER */ 3089 3090 /* For aout or bout, the bal immediately follows the call. 3091 3092 For coff, we cheat and store a pointer to the bal symbol in the 3093 second aux entry of the call. */ 3094 3095 #undef OBJ_ABOUT 3096 #ifdef OBJ_AOUT 3097 #define OBJ_ABOUT 3098 #endif 3099 #ifdef OBJ_BOUT 3100 #define OBJ_ABOUT 3101 #endif 3102 3103 void 3104 tc_set_bal_of_call (callP, balP) 3105 symbolS *callP ATTRIBUTE_UNUSED; 3106 symbolS *balP ATTRIBUTE_UNUSED; 3107 { 3108 know (TC_S_IS_CALLNAME (callP)); 3109 know (TC_S_IS_BALNAME (balP)); 3110 3111 #ifdef OBJ_COFF 3112 3113 callP->sy_tc = balP; 3114 S_SET_NUMBER_AUXILIARY (callP, 2); 3115 3116 #else /* ! OBJ_COFF */ 3117 #ifdef OBJ_ABOUT 3118 3119 /* If the 'bal' entry doesn't immediately follow the 'call' 3120 * symbol, unlink it from the symbol list and re-insert it. 3121 */ 3122 if (symbol_next (callP) != balP) 3123 { 3124 symbol_remove (balP, &symbol_rootP, &symbol_lastP); 3125 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP); 3126 } /* if not in order */ 3127 3128 #else /* ! OBJ_ABOUT */ 3129 as_fatal ("Only supported for a.out, b.out, or COFF"); 3130 #endif /* ! OBJ_ABOUT */ 3131 #endif /* ! OBJ_COFF */ 3132 } 3133 3134 symbolS * 3135 tc_get_bal_of_call (callP) 3136 symbolS *callP ATTRIBUTE_UNUSED; 3137 { 3138 symbolS *retval; 3139 3140 know (TC_S_IS_CALLNAME (callP)); 3141 3142 #ifdef OBJ_COFF 3143 retval = callP->sy_tc; 3144 #else 3145 #ifdef OBJ_ABOUT 3146 retval = symbol_next (callP); 3147 #else 3148 as_fatal ("Only supported for a.out, b.out, or COFF"); 3149 #endif /* ! OBJ_ABOUT */ 3150 #endif /* ! OBJ_COFF */ 3151 3152 know (TC_S_IS_BALNAME (retval)); 3153 return retval; 3154 } /* _tc_get_bal_of_call() */ 3155 3156 #ifdef OBJ_COFF 3157 void 3158 tc_coff_symbol_emit_hook (symbolP) 3159 symbolS *symbolP ATTRIBUTE_UNUSED; 3160 { 3161 if (TC_S_IS_CALLNAME (symbolP)) 3162 { 3163 symbolS *balP = tc_get_bal_of_call (symbolP); 3164 3165 #if 0 3166 /* second aux entry contains the bal entry point */ 3167 S_SET_NUMBER_AUXILIARY (symbolP, 2); 3168 #endif 3169 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP); 3170 if (S_GET_STORAGE_CLASS (symbolP) == C_EXT) 3171 S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT); 3172 else 3173 S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT); 3174 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); 3175 /* fix up the bal symbol */ 3176 S_SET_STORAGE_CLASS (balP, C_LABEL); 3177 } /* only on calls */ 3178 } 3179 #endif /* OBJ_COFF */ 3180 3181 void 3182 i960_handle_align (fragp) 3183 fragS *fragp ATTRIBUTE_UNUSED; 3184 { 3185 if (!linkrelax) 3186 return; 3187 3188 #ifndef OBJ_BOUT 3189 3190 as_bad (_("option --link-relax is only supported in b.out format")); 3191 linkrelax = 0; 3192 return; 3193 3194 #else 3195 3196 /* The text section "ends" with another alignment reloc, to which we 3197 aren't adding padding. */ 3198 if (fragp->fr_next == text_last_frag 3199 || fragp->fr_next == data_last_frag) 3200 return; 3201 3202 /* alignment directive */ 3203 fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, 3204 (int) fragp->fr_type); 3205 #endif /* OBJ_BOUT */ 3206 } 3207 3208 int 3209 i960_validate_fix (fixP, this_segment_type) 3210 fixS *fixP; 3211 segT this_segment_type ATTRIBUTE_UNUSED; 3212 { 3213 if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy)) 3214 { 3215 /* Relocation should be done via the associated 'bal' 3216 entry point symbol. */ 3217 3218 if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy))) 3219 { 3220 as_bad_where (fixP->fx_file, fixP->fx_line, 3221 _("No 'bal' entry point for leafproc %s"), 3222 S_GET_NAME (fixP->fx_addsy)); 3223 return 0; 3224 } 3225 fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy); 3226 } 3227 3228 return 1; 3229 } 3230 3231 #ifdef BFD_ASSEMBLER 3232 3233 /* From cgen.c: */ 3234 3235 static short tc_bfd_fix2rtype PARAMS ((fixS *)); 3236 3237 static short 3238 tc_bfd_fix2rtype (fixP) 3239 fixS *fixP; 3240 { 3241 #if 0 3242 if (fixP->fx_bsr) 3243 abort (); 3244 #endif 3245 3246 if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) 3247 return BFD_RELOC_32; 3248 3249 if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) 3250 return BFD_RELOC_24_PCREL; 3251 3252 abort (); 3253 return 0; 3254 } 3255 3256 /* Translate internal representation of relocation info to BFD target 3257 format. 3258 3259 FIXME: To what extent can we get all relevant targets to use this? */ 3260 3261 arelent * 3262 tc_gen_reloc (section, fixP) 3263 asection *section ATTRIBUTE_UNUSED; 3264 fixS *fixP; 3265 { 3266 arelent * reloc; 3267 3268 reloc = (arelent *) xmalloc (sizeof (arelent)); 3269 3270 /* HACK: Is this right? */ 3271 fixP->fx_r_type = tc_bfd_fix2rtype (fixP); 3272 3273 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); 3274 if (reloc->howto == (reloc_howto_type *) NULL) 3275 { 3276 as_bad_where (fixP->fx_file, fixP->fx_line, 3277 "internal error: can't export reloc type %d (`%s')", 3278 fixP->fx_r_type, 3279 bfd_get_reloc_code_name (fixP->fx_r_type)); 3280 return NULL; 3281 } 3282 3283 assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); 3284 3285 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); 3286 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); 3287 reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; 3288 reloc->addend = fixP->fx_addnumber; 3289 3290 return reloc; 3291 } 3292 3293 /* end from cgen.c */ 3294 3295 #endif /* BFD_ASSEMBLER */ 3296 3297 /* end of tc-i960.c */ 3298