1 /* itbl-ops.c 2 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc. 3 4 This file is part of GAS, the GNU Assembler. 5 6 GAS is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2, or (at your option) 9 any later version. 10 11 GAS is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GAS; see the file COPYING. If not, write to the Free 18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 19 02111-1307, USA. */ 20 21 /*======================================================================*/ 22 /* 23 * Herein lies the support for dynamic specification of processor 24 * instructions and registers. Mnemonics, values, and formats for each 25 * instruction and register are specified in an ascii file consisting of 26 * table entries. The grammar for the table is defined in the document 27 * "Processor instruction table specification". 28 * 29 * Instructions use the gnu assembler syntax, with the addition of 30 * allowing mnemonics for register. 31 * Eg. "func $2,reg3,0x100,symbol ; comment" 32 * func - opcode name 33 * $n - register n 34 * reg3 - mnemonic for processor's register defined in table 35 * 0xddd..d - immediate value 36 * symbol - address of label or external symbol 37 * 38 * First, itbl_parse reads in the table of register and instruction 39 * names and formats, and builds a list of entries for each 40 * processor/type combination. lex and yacc are used to parse 41 * the entries in the table and call functions defined here to 42 * add each entry to our list. 43 * 44 * Then, when assembling or disassembling, these functions are called to 45 * 1) get information on a processor's registers and 46 * 2) assemble/disassemble an instruction. 47 * To assemble(disassemble) an instruction, the function 48 * itbl_assemble(itbl_disassemble) is called to search the list of 49 * instruction entries, and if a match is found, uses the format 50 * described in the instruction entry structure to complete the action. 51 * 52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2" 53 * and we want to define function "pig" which takes two operands. 54 * 55 * Given the table entries: 56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0" 57 * "p3 dreg d2 0x2" 58 * and that the instruction encoding for coprocessor pz has encoding: 59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25) 60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum) 61 * 62 * a structure to describe the instruction might look something like: 63 * struct itbl_entry = { 64 * e_processor processor = e_p3 65 * e_type type = e_insn 66 * char *name = "pig" 67 * uint value = 0x1 68 * uint flags = 0 69 * struct itbl_range range = 24-21 70 * struct itbl_field *field = { 71 * e_type type = e_dreg 72 * struct itbl_range range = 20-16 73 * struct itbl_field *next = { 74 * e_type type = e_immed 75 * struct itbl_range range = 15-0 76 * struct itbl_field *next = 0 77 * }; 78 * }; 79 * struct itbl_entry *next = 0 80 * }; 81 * 82 * And the assembler instructions: 83 * "pig d2,0x100" 84 * "pig $2,0x100" 85 * 86 * would both assemble to the hex value: 87 * "0x4e220100" 88 * 89 */ 90 91 #include <stdio.h> 92 #include <stdlib.h> 93 #include <string.h> 94 #include "itbl-ops.h" 95 #include "itbl-parse.h" 96 97 /* #define DEBUG */ 98 99 #ifdef DEBUG 100 #include <assert.h> 101 #define ASSERT(x) assert(x) 102 #define DBG(x) printf x 103 #else 104 #define ASSERT(x) 105 #define DBG(x) 106 #endif 107 108 #ifndef min 109 #define min(a,b) (a<b?a:b) 110 #endif 111 112 int itbl_have_entries = 0; 113 114 /*======================================================================*/ 115 /* structures for keeping itbl format entries */ 116 117 struct itbl_range 118 { 119 int sbit; /* mask starting bit position */ 120 int ebit; /* mask ending bit position */ 121 }; 122 123 struct itbl_field 124 { 125 e_type type; /* dreg/creg/greg/immed/symb */ 126 struct itbl_range range; /* field's bitfield range within instruction */ 127 unsigned long flags; /* field flags */ 128 struct itbl_field *next; /* next field in list */ 129 }; 130 131 132 /* These structures define the instructions and registers for a processor. 133 * If the type is an instruction, the structure defines the format of an 134 * instruction where the fields are the list of operands. 135 * The flags field below uses the same values as those defined in the 136 * gnu assembler and are machine specific. */ 137 struct itbl_entry 138 { 139 e_processor processor; /* processor number */ 140 e_type type; /* dreg/creg/greg/insn */ 141 char *name; /* mnemionic name for insn/register */ 142 unsigned long value; /* opcode/instruction mask/register number */ 143 unsigned long flags; /* effects of the instruction */ 144 struct itbl_range range; /* bit range within instruction for value */ 145 struct itbl_field *fields; /* list of operand definitions (if any) */ 146 struct itbl_entry *next; /* next entry */ 147 }; 148 149 150 /* local data and structures */ 151 152 static int itbl_num_opcodes = 0; 153 /* Array of entries for each processor and entry type */ 154 static struct itbl_entry *entries[e_nprocs][e_ntypes] = 155 { 156 {0, 0, 0, 0, 0, 0}, 157 {0, 0, 0, 0, 0, 0}, 158 {0, 0, 0, 0, 0, 0}, 159 {0, 0, 0, 0, 0, 0} 160 }; 161 162 /* local prototypes */ 163 static unsigned long build_opcode PARAMS ((struct itbl_entry *e)); 164 static e_type get_type PARAMS ((int yytype)); 165 static e_processor get_processor PARAMS ((int yyproc)); 166 static struct itbl_entry **get_entries PARAMS ((e_processor processor, 167 e_type type)); 168 static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor, 169 e_type type, char *name)); 170 static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor, 171 e_type type, unsigned long val, struct itbl_range *r)); 172 static struct itbl_entry *alloc_entry PARAMS ((e_processor processor, 173 e_type type, char *name, unsigned long value)); 174 static unsigned long apply_range PARAMS ((unsigned long value, 175 struct itbl_range r)); 176 static unsigned long extract_range PARAMS ((unsigned long value, 177 struct itbl_range r)); 178 static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit, 179 int ebit, unsigned long flags)); 180 181 182 /*======================================================================*/ 183 /* Interfaces to the parser */ 184 185 186 /* Open the table and use lex and yacc to parse the entries. 187 * Return 1 for failure; 0 for success. */ 188 189 int 190 itbl_parse (char *insntbl) 191 { 192 extern FILE *yyin; 193 extern int yyparse (void); 194 yyin = fopen (insntbl, "r"); 195 if (yyin == 0) 196 { 197 printf ("Can't open processor instruction specification file \"%s\"\n", 198 insntbl); 199 return 1; 200 } 201 else 202 { 203 while (yyparse ()); 204 } 205 fclose (yyin); 206 itbl_have_entries = 1; 207 return 0; 208 } 209 210 /* Add a register entry */ 211 212 struct itbl_entry * 213 itbl_add_reg (int yyprocessor, int yytype, char *regname, 214 int regnum) 215 { 216 #if 0 217 #include "as.h" 218 #include "symbols.h" 219 /* Since register names don't have a prefix, we put them in the symbol table so 220 they can't be used as symbols. This also simplifies argument parsing as 221 we can let gas parse registers for us. The recorded register number is 222 regnum. */ 223 /* Use symbol_create here instead of symbol_new so we don't try to 224 output registers into the object file's symbol table. */ 225 symbol_table_insert (symbol_create (regname, reg_section, 226 regnum, &zero_address_frag)); 227 #endif 228 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname, 229 (unsigned long) regnum); 230 } 231 232 /* Add an instruction entry */ 233 234 struct itbl_entry * 235 itbl_add_insn (int yyprocessor, char *name, unsigned long value, 236 int sbit, int ebit, unsigned long flags) 237 { 238 struct itbl_entry *e; 239 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value); 240 if (e) 241 { 242 e->range.sbit = sbit; 243 e->range.ebit = ebit; 244 e->flags = flags; 245 itbl_num_opcodes++; 246 } 247 return e; 248 } 249 250 /* Add an operand to an instruction entry */ 251 252 struct itbl_field * 253 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit, 254 int ebit, unsigned long flags) 255 { 256 struct itbl_field *f, **last_f; 257 if (!e) 258 return 0; 259 /* Add to end of fields' list. */ 260 f = alloc_field (get_type (yytype), sbit, ebit, flags); 261 if (f) 262 { 263 last_f = &e->fields; 264 while (*last_f) 265 last_f = &(*last_f)->next; 266 *last_f = f; 267 f->next = 0; 268 } 269 return f; 270 } 271 272 273 /*======================================================================*/ 274 /* Interfaces for assembler and disassembler */ 275 276 #ifndef STAND_ALONE 277 #include "as.h" 278 #include "symbols.h" 279 static void append_insns_as_macros (void); 280 281 /* initialize for gas */ 282 void 283 itbl_init (void) 284 { 285 struct itbl_entry *e, **es; 286 e_processor procn; 287 e_type type; 288 289 if (!itbl_have_entries) 290 return; 291 292 /* Since register names don't have a prefix, put them in the symbol table so 293 they can't be used as symbols. This simplifies argument parsing as 294 we can let gas parse registers for us. */ 295 /* Use symbol_create instead of symbol_new so we don't try to 296 output registers into the object file's symbol table. */ 297 298 for (type = e_regtype0; type < e_nregtypes; type++) 299 for (procn = e_p0; procn < e_nprocs; procn++) 300 { 301 es = get_entries (procn, type); 302 for (e = *es; e; e = e->next) 303 { 304 symbol_table_insert (symbol_create (e->name, reg_section, 305 e->value, &zero_address_frag)); 306 } 307 } 308 append_insns_as_macros (); 309 } 310 311 312 /* Append insns to opcodes table and increase number of opcodes 313 * Structure of opcodes table: 314 * struct itbl_opcode 315 * { 316 * const char *name; 317 * const char *args; - string describing the arguments. 318 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO 319 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO 320 * unsigned long pinfo; - insn flags, or INSN_MACRO 321 * }; 322 * examples: 323 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, 324 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, 325 */ 326 327 static char *form_args (struct itbl_entry *e); 328 static void 329 append_insns_as_macros (void) 330 { 331 struct ITBL_OPCODE_STRUCT *new_opcodes, *o; 332 struct itbl_entry *e, **es; 333 int n, id, size, new_size, new_num_opcodes; 334 335 if (!itbl_have_entries) 336 return; 337 338 if (!itbl_num_opcodes) /* no new instructions to add! */ 339 { 340 return; 341 } 342 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES)); 343 344 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes; 345 ASSERT (new_num_opcodes >= itbl_num_opcodes); 346 347 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES; 348 ASSERT (size >= 0); 349 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0]))); 350 351 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes; 352 ASSERT (new_size > size); 353 354 /* FIXME since ITBL_OPCODES culd be a static table, 355 we can't realloc or delete the old memory. */ 356 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size); 357 if (!new_opcodes) 358 { 359 printf (_("Unable to allocate memory for new instructions\n")); 360 return; 361 } 362 if (size) /* copy prexisting opcodes table */ 363 memcpy (new_opcodes, ITBL_OPCODES, size); 364 365 /* FIXME! some NUMOPCODES are calculated expressions. 366 These need to be changed before itbls can be supported. */ 367 368 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */ 369 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */ 370 for (n = e_p0; n < e_nprocs; n++) 371 { 372 es = get_entries (n, e_insn); 373 for (e = *es; e; e = e->next) 374 { 375 /* name, args, mask, match, pinfo 376 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t }, 377 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO }, 378 * Construct args from itbl_fields. 379 */ 380 o->name = e->name; 381 o->args = strdup (form_args (e)); 382 o->mask = apply_range (e->value, e->range); 383 /* FIXME how to catch durring assembly? */ 384 /* mask to identify this insn */ 385 o->match = apply_range (e->value, e->range); 386 o->pinfo = 0; 387 388 #ifdef USE_MACROS 389 o->mask = id++; /* FIXME how to catch durring assembly? */ 390 o->match = 0; /* for macros, the insn_isa number */ 391 o->pinfo = INSN_MACRO; 392 #endif 393 394 /* Don't add instructions which caused an error */ 395 if (o->args) 396 o++; 397 else 398 new_num_opcodes--; 399 } 400 } 401 ITBL_OPCODES = new_opcodes; 402 ITBL_NUM_OPCODES = new_num_opcodes; 403 404 /* FIXME 405 At this point, we can free the entries, as they should have 406 been added to the assembler's tables. 407 Don't free name though, since name is being used by the new 408 opcodes table. 409 410 Eventually, we should also free the new opcodes table itself 411 on exit. 412 */ 413 } 414 415 static char * 416 form_args (struct itbl_entry *e) 417 { 418 static char s[31]; 419 char c = 0, *p = s; 420 struct itbl_field *f; 421 422 ASSERT (e); 423 for (f = e->fields; f; f = f->next) 424 { 425 switch (f->type) 426 { 427 case e_dreg: 428 c = 'd'; 429 break; 430 case e_creg: 431 c = 't'; 432 break; 433 case e_greg: 434 c = 's'; 435 break; 436 case e_immed: 437 c = 'i'; 438 break; 439 case e_addr: 440 c = 'a'; 441 break; 442 default: 443 c = 0; /* ignore; unknown field type */ 444 } 445 if (c) 446 { 447 if (p != s) 448 *p++ = ','; 449 *p++ = c; 450 } 451 } 452 *p = 0; 453 return s; 454 } 455 #endif /* !STAND_ALONE */ 456 457 458 /* Get processor's register name from val */ 459 460 int 461 itbl_get_reg_val (char *name, unsigned long *pval) 462 { 463 e_type t; 464 e_processor p; 465 466 for (p = e_p0; p < e_nprocs; p++) 467 { 468 for (t = e_regtype0; t < e_nregtypes; t++) 469 { 470 if (itbl_get_val (p, t, name, pval)) 471 return 1; 472 } 473 } 474 return 0; 475 } 476 477 char * 478 itbl_get_name (e_processor processor, e_type type, unsigned long val) 479 { 480 struct itbl_entry *r; 481 /* type depends on instruction passed */ 482 r = find_entry_byval (processor, type, val, 0); 483 if (r) 484 return r->name; 485 else 486 return 0; /* error; invalid operand */ 487 } 488 489 /* Get processor's register value from name */ 490 491 int 492 itbl_get_val (e_processor processor, e_type type, char *name, 493 unsigned long *pval) 494 { 495 struct itbl_entry *r; 496 /* type depends on instruction passed */ 497 r = find_entry_byname (processor, type, name); 498 if (r == NULL) 499 return 0; 500 *pval = r->value; 501 return 1; 502 } 503 504 505 /* Assemble instruction "name" with operands "s". 506 * name - name of instruction 507 * s - operands 508 * returns - long word for assembled instruction */ 509 510 unsigned long 511 itbl_assemble (char *name, char *s) 512 { 513 unsigned long opcode; 514 struct itbl_entry *e; 515 struct itbl_field *f; 516 char *n; 517 int processor; 518 519 if (!name || !*name) 520 return 0; /* error! must have a opcode name/expr */ 521 522 /* find entry in list of instructions for all processors */ 523 for (processor = 0; processor < e_nprocs; processor++) 524 { 525 e = find_entry_byname (processor, e_insn, name); 526 if (e) 527 break; 528 } 529 if (!e) 530 return 0; /* opcode not in table; invalid instrustion */ 531 opcode = build_opcode (e); 532 533 /* parse opcode's args (if any) */ 534 for (f = e->fields; f; f = f->next) /* for each arg, ... */ 535 { 536 struct itbl_entry *r; 537 unsigned long value; 538 if (!s || !*s) 539 return 0; /* error - not enough operands */ 540 n = itbl_get_field (&s); 541 /* n should be in form $n or 0xhhh (are symbol names valid?? */ 542 switch (f->type) 543 { 544 case e_dreg: 545 case e_creg: 546 case e_greg: 547 /* Accept either a string name 548 * or '$' followed by the register number */ 549 if (*n == '$') 550 { 551 n++; 552 value = strtol (n, 0, 10); 553 /* FIXME! could have "0l"... then what?? */ 554 if (value == 0 && *n != '0') 555 return 0; /* error; invalid operand */ 556 } 557 else 558 { 559 r = find_entry_byname (e->processor, f->type, n); 560 if (r) 561 value = r->value; 562 else 563 return 0; /* error; invalid operand */ 564 } 565 break; 566 case e_addr: 567 /* use assembler's symbol table to find symbol */ 568 /* FIXME!! Do we need this? 569 if so, what about relocs?? 570 my_getExpression (&imm_expr, s); 571 return 0; /-* error; invalid operand *-/ 572 break; 573 */ 574 /* If not a symbol, fall thru to IMMED */ 575 case e_immed: 576 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */ 577 { 578 n += 2; 579 value = strtol (n, 0, 16); 580 /* FIXME! could have "0xl"... then what?? */ 581 } 582 else 583 { 584 value = strtol (n, 0, 10); 585 /* FIXME! could have "0l"... then what?? */ 586 if (value == 0 && *n != '0') 587 return 0; /* error; invalid operand */ 588 } 589 break; 590 default: 591 return 0; /* error; invalid field spec */ 592 } 593 opcode |= apply_range (value, f->range); 594 } 595 if (s && *s) 596 return 0; /* error - too many operands */ 597 return opcode; /* done! */ 598 } 599 600 /* Disassemble instruction "insn". 601 * insn - instruction 602 * s - buffer to hold disassembled instruction 603 * returns - 1 if succeeded; 0 if failed 604 */ 605 606 int 607 itbl_disassemble (char *s, unsigned long insn) 608 { 609 e_processor processor; 610 struct itbl_entry *e; 611 struct itbl_field *f; 612 613 if (!ITBL_IS_INSN (insn)) 614 return 0; /* error*/ 615 processor = get_processor (ITBL_DECODE_PNUM (insn)); 616 617 /* find entry in list */ 618 e = find_entry_byval (processor, e_insn, insn, 0); 619 if (!e) 620 return 0; /* opcode not in table; invalid instrustion */ 621 strcpy (s, e->name); 622 623 /* parse insn's args (if any) */ 624 for (f = e->fields; f; f = f->next) /* for each arg, ... */ 625 { 626 struct itbl_entry *r; 627 unsigned long value; 628 629 if (f == e->fields) /* first operand is preceeded by tab */ 630 strcat (s, "\t"); 631 else /* ','s separate following operands */ 632 strcat (s, ","); 633 value = extract_range (insn, f->range); 634 /* n should be in form $n or 0xhhh (are symbol names valid?? */ 635 switch (f->type) 636 { 637 case e_dreg: 638 case e_creg: 639 case e_greg: 640 /* Accept either a string name 641 * or '$' followed by the register number */ 642 r = find_entry_byval (e->processor, f->type, value, &f->range); 643 if (r) 644 strcat (s, r->name); 645 else 646 sprintf (s, "%s$%lu", s, value); 647 break; 648 case e_addr: 649 /* use assembler's symbol table to find symbol */ 650 /* FIXME!! Do we need this? 651 * if so, what about relocs?? 652 */ 653 /* If not a symbol, fall thru to IMMED */ 654 case e_immed: 655 sprintf (s, "%s0x%lx", s, value); 656 break; 657 default: 658 return 0; /* error; invalid field spec */ 659 } 660 } 661 return 1; /* done! */ 662 } 663 664 /*======================================================================*/ 665 /* 666 * Local functions for manipulating private structures containing 667 * the names and format for the new instructions and registers 668 * for each processor. 669 */ 670 671 /* Calculate instruction's opcode and function values from entry */ 672 673 static unsigned long 674 build_opcode (struct itbl_entry *e) 675 { 676 unsigned long opcode; 677 678 opcode = apply_range (e->value, e->range); 679 opcode |= ITBL_ENCODE_PNUM (e->processor); 680 return opcode; 681 } 682 683 /* Calculate absolute value given the relative value and bit position range 684 * within the instruction. 685 * The range is inclusive where 0 is least significant bit. 686 * A range of { 24, 20 } will have a mask of 687 * bit 3 2 1 688 * pos: 1098 7654 3210 9876 5432 1098 7654 3210 689 * bin: 0000 0001 1111 0000 0000 0000 0000 0000 690 * hex: 0 1 f 0 0 0 0 0 691 * mask: 0x01f00000. 692 */ 693 694 static unsigned long 695 apply_range (unsigned long rval, struct itbl_range r) 696 { 697 unsigned long mask; 698 unsigned long aval; 699 int len = MAX_BITPOS - r.sbit; 700 701 ASSERT (r.sbit >= r.ebit); 702 ASSERT (MAX_BITPOS >= r.sbit); 703 ASSERT (r.ebit >= 0); 704 705 /* create mask by truncating 1s by shifting */ 706 mask = 0xffffffff << len; 707 mask = mask >> len; 708 mask = mask >> r.ebit; 709 mask = mask << r.ebit; 710 711 aval = (rval << r.ebit) & mask; 712 return aval; 713 } 714 715 /* Calculate relative value given the absolute value and bit position range 716 * within the instruction. */ 717 718 static unsigned long 719 extract_range (unsigned long aval, struct itbl_range r) 720 { 721 unsigned long mask; 722 unsigned long rval; 723 int len = MAX_BITPOS - r.sbit; 724 725 /* create mask by truncating 1s by shifting */ 726 mask = 0xffffffff << len; 727 mask = mask >> len; 728 mask = mask >> r.ebit; 729 mask = mask << r.ebit; 730 731 rval = (aval & mask) >> r.ebit; 732 return rval; 733 } 734 735 /* Extract processor's assembly instruction field name from s; 736 * forms are "n args" "n,args" or "n" */ 737 /* Return next argument from string pointer "s" and advance s. 738 * delimiters are " ,()" */ 739 740 char * 741 itbl_get_field (char **S) 742 { 743 static char n[128]; 744 char *s; 745 int len; 746 747 s = *S; 748 if (!s || !*s) 749 return 0; 750 /* FIXME: This is a weird set of delimiters. */ 751 len = strcspn (s, " \t,()"); 752 ASSERT (128 > len + 1); 753 strncpy (n, s, len); 754 n[len] = 0; 755 if (s[len] == '\0') 756 s = 0; /* no more args */ 757 else 758 s += len + 1; /* advance to next arg */ 759 760 *S = s; 761 return n; 762 } 763 764 /* Search entries for a given processor and type 765 * to find one matching the name "n". 766 * Return a pointer to the entry */ 767 768 static struct itbl_entry * 769 find_entry_byname (e_processor processor, 770 e_type type, char *n) 771 { 772 struct itbl_entry *e, **es; 773 774 es = get_entries (processor, type); 775 for (e = *es; e; e = e->next) /* for each entry, ... */ 776 { 777 if (!strcmp (e->name, n)) 778 return e; 779 } 780 return 0; 781 } 782 783 /* Search entries for a given processor and type 784 * to find one matching the value "val" for the range "r". 785 * Return a pointer to the entry. 786 * This function is used for disassembling fields of an instruction. 787 */ 788 789 static struct itbl_entry * 790 find_entry_byval (e_processor processor, e_type type, 791 unsigned long val, struct itbl_range *r) 792 { 793 struct itbl_entry *e, **es; 794 unsigned long eval; 795 796 es = get_entries (processor, type); 797 for (e = *es; e; e = e->next) /* for each entry, ... */ 798 { 799 if (processor != e->processor) 800 continue; 801 /* For insns, we might not know the range of the opcode, 802 * so a range of 0 will allow this routine to match against 803 * the range of the entry to be compared with. 804 * This could cause ambiguities. 805 * For operands, we get an extracted value and a range. 806 */ 807 /* if range is 0, mask val against the range of the compared entry. */ 808 if (r == 0) /* if no range passed, must be whole 32-bits 809 * so create 32-bit value from entry's range */ 810 { 811 eval = apply_range (e->value, e->range); 812 val &= apply_range (0xffffffff, e->range); 813 } 814 else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit) 815 || (e->range.sbit == 0 && e->range.ebit == 0)) 816 { 817 eval = apply_range (e->value, *r); 818 val = apply_range (val, *r); 819 } 820 else 821 continue; 822 if (val == eval) 823 return e; 824 } 825 return 0; 826 } 827 828 /* Return a pointer to the list of entries for a given processor and type. */ 829 830 static struct itbl_entry ** 831 get_entries (e_processor processor, e_type type) 832 { 833 return &entries[processor][type]; 834 } 835 836 /* Return an integral value for the processor passed from yyparse. */ 837 838 static e_processor 839 get_processor (int yyproc) 840 { 841 /* translate from yacc's processor to enum */ 842 if (yyproc >= e_p0 && yyproc < e_nprocs) 843 return (e_processor) yyproc; 844 return e_invproc; /* error; invalid processor */ 845 } 846 847 /* Return an integral value for the entry type passed from yyparse. */ 848 849 static e_type 850 get_type (int yytype) 851 { 852 switch (yytype) 853 { 854 /* translate from yacc's type to enum */ 855 case INSN: 856 return e_insn; 857 case DREG: 858 return e_dreg; 859 case CREG: 860 return e_creg; 861 case GREG: 862 return e_greg; 863 case ADDR: 864 return e_addr; 865 case IMMED: 866 return e_immed; 867 default: 868 return e_invtype; /* error; invalid type */ 869 } 870 } 871 872 873 /* Allocate and initialize an entry */ 874 875 static struct itbl_entry * 876 alloc_entry (e_processor processor, e_type type, 877 char *name, unsigned long value) 878 { 879 struct itbl_entry *e, **es; 880 if (!name) 881 return 0; 882 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry)); 883 if (e) 884 { 885 memset (e, 0, sizeof (struct itbl_entry)); 886 e->name = (char *) malloc (sizeof (strlen (name)) + 1); 887 if (e->name) 888 strcpy (e->name, name); 889 e->processor = processor; 890 e->type = type; 891 e->value = value; 892 es = get_entries (e->processor, e->type); 893 e->next = *es; 894 *es = e; 895 } 896 return e; 897 } 898 899 /* Allocate and initialize an entry's field */ 900 901 static struct itbl_field * 902 alloc_field (e_type type, int sbit, int ebit, 903 unsigned long flags) 904 { 905 struct itbl_field *f; 906 f = (struct itbl_field *) malloc (sizeof (struct itbl_field)); 907 if (f) 908 { 909 memset (f, 0, sizeof (struct itbl_field)); 910 f->type = type; 911 f->range.sbit = sbit; 912 f->range.ebit = ebit; 913 f->flags = flags; 914 } 915 return f; 916 } 917