xref: /openbsd/gnu/usr.bin/binutils/gas/itbl-ops.c (revision db3296cf)
1 /* itbl-ops.c
2    Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 2, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19    02111-1307, USA.  */
20 
21 /*======================================================================*/
22 /*
23  * Herein lies the support for dynamic specification of processor
24  * instructions and registers.  Mnemonics, values, and formats for each
25  * instruction and register are specified in an ascii file consisting of
26  * table entries.  The grammar for the table is defined in the document
27  * "Processor instruction table specification".
28  *
29  * Instructions use the gnu assembler syntax, with the addition of
30  * allowing mnemonics for register.
31  * Eg. "func $2,reg3,0x100,symbol ; comment"
32  * 	func - opcode name
33  * 	$n - register n
34  * 	reg3 - mnemonic for processor's register defined in table
35  * 	0xddd..d - immediate value
36  * 	symbol - address of label or external symbol
37  *
38  * First, itbl_parse reads in the table of register and instruction
39  * names and formats, and builds a list of entries for each
40  * processor/type combination.  lex and yacc are used to parse
41  * the entries in the table and call functions defined here to
42  * add each entry to our list.
43  *
44  * Then, when assembling or disassembling, these functions are called to
45  * 1) get information on a processor's registers and
46  * 2) assemble/disassemble an instruction.
47  * To assemble(disassemble) an instruction, the function
48  * itbl_assemble(itbl_disassemble) is called to search the list of
49  * instruction entries, and if a match is found, uses the format
50  * described in the instruction entry structure to complete the action.
51  *
52  * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53  * and we want to define function "pig" which takes two operands.
54  *
55  * Given the table entries:
56  * 	"p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57  * 	"p3 dreg d2 0x2"
58  * and that the instruction encoding for coprocessor pz has encoding:
59  * 	#define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60  * 	#define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61  *
62  * a structure to describe the instruction might look something like:
63  *      struct itbl_entry = {
64  *      e_processor processor = e_p3
65  *      e_type type = e_insn
66  *      char *name = "pig"
67  *      uint value = 0x1
68  *      uint flags = 0
69  *      struct itbl_range range = 24-21
70  *      struct itbl_field *field = {
71  *              e_type type = e_dreg
72  *              struct itbl_range range = 20-16
73  *              struct itbl_field *next = {
74  *                      e_type type = e_immed
75  *                      struct itbl_range range = 15-0
76  *                      struct itbl_field *next = 0
77  *                      };
78  *              };
79  *      struct itbl_entry *next = 0
80  *      };
81  *
82  * And the assembler instructions:
83  * 	"pig d2,0x100"
84  * 	"pig $2,0x100"
85  *
86  * would both assemble to the hex value:
87  * 	"0x4e220100"
88  *
89  */
90 
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include "itbl-ops.h"
95 #include "itbl-parse.h"
96 
97 /* #define DEBUG */
98 
99 #ifdef DEBUG
100 #include <assert.h>
101 #define ASSERT(x) assert(x)
102 #define DBG(x) printf x
103 #else
104 #define ASSERT(x)
105 #define DBG(x)
106 #endif
107 
108 #ifndef min
109 #define min(a,b) (a<b?a:b)
110 #endif
111 
112 int itbl_have_entries = 0;
113 
114 /*======================================================================*/
115 /* structures for keeping itbl format entries */
116 
117 struct itbl_range {
118   int sbit;			/* mask starting bit position */
119   int ebit;			/* mask ending bit position */
120 };
121 
122 struct itbl_field {
123   e_type type;			/* dreg/creg/greg/immed/symb */
124   struct itbl_range range;	/* field's bitfield range within instruction */
125   unsigned long flags;		/* field flags */
126   struct itbl_field *next;	/* next field in list */
127 };
128 
129 /* These structures define the instructions and registers for a processor.
130  * If the type is an instruction, the structure defines the format of an
131  * instruction where the fields are the list of operands.
132  * The flags field below uses the same values as those defined in the
133  * gnu assembler and are machine specific.  */
134 struct itbl_entry {
135   e_processor processor;	/* processor number */
136   e_type type;			/* dreg/creg/greg/insn */
137   char *name;			/* mnemionic name for insn/register */
138   unsigned long value;		/* opcode/instruction mask/register number */
139   unsigned long flags;		/* effects of the instruction */
140   struct itbl_range range;	/* bit range within instruction for value */
141   struct itbl_field *fields;	/* list of operand definitions (if any) */
142   struct itbl_entry *next;	/* next entry */
143 };
144 
145 /* local data and structures */
146 
147 static int itbl_num_opcodes = 0;
148 /* Array of entries for each processor and entry type */
149 static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
150   {0, 0, 0, 0, 0, 0},
151   {0, 0, 0, 0, 0, 0},
152   {0, 0, 0, 0, 0, 0},
153   {0, 0, 0, 0, 0, 0}
154 };
155 
156 /* local prototypes */
157 static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
158 static e_type get_type PARAMS ((int yytype));
159 static e_processor get_processor PARAMS ((int yyproc));
160 static struct itbl_entry **get_entries PARAMS ((e_processor processor,
161 						e_type type));
162 static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
163 					e_type type, char *name));
164 static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
165 			e_type type, unsigned long val, struct itbl_range *r));
166 static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
167 		e_type type, char *name, unsigned long value));
168 static unsigned long apply_range PARAMS ((unsigned long value,
169 						struct itbl_range r));
170 static unsigned long extract_range PARAMS ((unsigned long value,
171 						struct itbl_range r));
172 static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
173 					int ebit, unsigned long flags));
174 
175 /*======================================================================*/
176 /* Interfaces to the parser */
177 
178 /* Open the table and use lex and yacc to parse the entries.
179  * Return 1 for failure; 0 for success.  */
180 
181 int
182 itbl_parse (char *insntbl)
183 {
184   extern FILE *yyin;
185   extern int yyparse (void);
186   yyin = fopen (insntbl, "r");
187   if (yyin == 0)
188     {
189       printf ("Can't open processor instruction specification file \"%s\"\n",
190 	      insntbl);
191       return 1;
192     }
193   else
194     {
195       while (yyparse ());
196     }
197   fclose (yyin);
198   itbl_have_entries = 1;
199   return 0;
200 }
201 
202 /* Add a register entry */
203 
204 struct itbl_entry *
205 itbl_add_reg (int yyprocessor, int yytype, char *regname,
206 	      int regnum)
207 {
208 #if 0
209 #include "as.h"
210 #include "symbols.h"
211   /* Since register names don't have a prefix, we put them in the symbol table so
212      they can't be used as symbols.  This also simplifies argument parsing as
213      we can let gas parse registers for us.  The recorded register number is
214      regnum.  */
215   /* Use symbol_create here instead of symbol_new so we don't try to
216      output registers into the object file's symbol table.  */
217   symbol_table_insert (symbol_create (regname, reg_section,
218 				      regnum, &zero_address_frag));
219 #endif
220   return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
221 		      (unsigned long) regnum);
222 }
223 
224 /* Add an instruction entry */
225 
226 struct itbl_entry *
227 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
228 	       int sbit, int ebit, unsigned long flags)
229 {
230   struct itbl_entry *e;
231   e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
232   if (e)
233     {
234       e->range.sbit = sbit;
235       e->range.ebit = ebit;
236       e->flags = flags;
237       itbl_num_opcodes++;
238     }
239   return e;
240 }
241 
242 /* Add an operand to an instruction entry */
243 
244 struct itbl_field *
245 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
246 		  int ebit, unsigned long flags)
247 {
248   struct itbl_field *f, **last_f;
249   if (!e)
250     return 0;
251   /* Add to end of fields' list.  */
252   f = alloc_field (get_type (yytype), sbit, ebit, flags);
253   if (f)
254     {
255       last_f = &e->fields;
256       while (*last_f)
257 	last_f = &(*last_f)->next;
258       *last_f = f;
259       f->next = 0;
260     }
261   return f;
262 }
263 
264 /*======================================================================*/
265 /* Interfaces for assembler and disassembler */
266 
267 #ifndef STAND_ALONE
268 #include "as.h"
269 #include "symbols.h"
270 static void append_insns_as_macros (void);
271 
272 /* Initialize for gas.  */
273 
274 void
275 itbl_init (void)
276 {
277   struct itbl_entry *e, **es;
278   e_processor procn;
279   e_type type;
280 
281   if (!itbl_have_entries)
282     return;
283 
284   /* Since register names don't have a prefix, put them in the symbol table so
285      they can't be used as symbols.  This simplifies argument parsing as
286      we can let gas parse registers for us.  */
287   /* Use symbol_create instead of symbol_new so we don't try to
288      output registers into the object file's symbol table.  */
289 
290   for (type = e_regtype0; type < e_nregtypes; type++)
291     for (procn = e_p0; procn < e_nprocs; procn++)
292       {
293 	es = get_entries (procn, type);
294 	for (e = *es; e; e = e->next)
295 	  {
296 	    symbol_table_insert (symbol_create (e->name, reg_section,
297 						e->value, &zero_address_frag));
298 	  }
299       }
300   append_insns_as_macros ();
301 }
302 
303 /* Append insns to opcodes table and increase number of opcodes
304  * Structure of opcodes table:
305  * struct itbl_opcode
306  * {
307  *   const char *name;
308  *   const char *args; 		- string describing the arguments.
309  *   unsigned long match; 	- opcode, or ISA level if pinfo=INSN_MACRO
310  *   unsigned long mask; 	- opcode mask, or macro id if pinfo=INSN_MACRO
311  *   unsigned long pinfo; 	- insn flags, or INSN_MACRO
312  * };
313  * examples:
314  *	{"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
315  *	{"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
316  */
317 
318 static char *form_args (struct itbl_entry *e);
319 static void
320 append_insns_as_macros (void)
321 {
322   struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
323   struct itbl_entry *e, **es;
324   int n, id, size, new_size, new_num_opcodes;
325 
326   if (!itbl_have_entries)
327     return;
328 
329   if (!itbl_num_opcodes)	/* no new instructions to add! */
330     {
331       return;
332     }
333   DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
334 
335   new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
336   ASSERT (new_num_opcodes >= itbl_num_opcodes);
337 
338   size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
339   ASSERT (size >= 0);
340   DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
341 
342   new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
343   ASSERT (new_size > size);
344 
345   /* FIXME since ITBL_OPCODES culd be a static table,
346 		we can't realloc or delete the old memory.  */
347   new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
348   if (!new_opcodes)
349     {
350       printf (_("Unable to allocate memory for new instructions\n"));
351       return;
352     }
353   if (size)			/* copy prexisting opcodes table */
354     memcpy (new_opcodes, ITBL_OPCODES, size);
355 
356   /* FIXME! some NUMOPCODES are calculated expressions.
357 		These need to be changed before itbls can be supported.  */
358 
359   id = ITBL_NUM_MACROS;		/* begin the next macro id after the last */
360   o = &new_opcodes[ITBL_NUM_OPCODES];	/* append macro to opcodes list */
361   for (n = e_p0; n < e_nprocs; n++)
362     {
363       es = get_entries (n, e_insn);
364       for (e = *es; e; e = e->next)
365 	{
366 	  /* name,    args,   mask,       match,  pinfo
367 		 * {"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
368 		 * {"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
369 		 * Construct args from itbl_fields.
370 		*/
371 	  o->name = e->name;
372 	  o->args = strdup (form_args (e));
373 	  o->mask = apply_range (e->value, e->range);
374 	  /* FIXME how to catch durring assembly? */
375 	  /* mask to identify this insn */
376 	  o->match = apply_range (e->value, e->range);
377 	  o->pinfo = 0;
378 
379 #ifdef USE_MACROS
380 	  o->mask = id++;	/* FIXME how to catch durring assembly? */
381 	  o->match = 0;		/* for macros, the insn_isa number */
382 	  o->pinfo = INSN_MACRO;
383 #endif
384 
385 	  /* Don't add instructions which caused an error */
386 	  if (o->args)
387 	    o++;
388 	  else
389 	    new_num_opcodes--;
390 	}
391     }
392   ITBL_OPCODES = new_opcodes;
393   ITBL_NUM_OPCODES = new_num_opcodes;
394 
395   /* FIXME
396 		At this point, we can free the entries, as they should have
397 		been added to the assembler's tables.
398 		Don't free name though, since name is being used by the new
399 		opcodes table.
400 
401 		Eventually, we should also free the new opcodes table itself
402 		on exit.
403 	*/
404 }
405 
406 static char *
407 form_args (struct itbl_entry *e)
408 {
409   static char s[31];
410   char c = 0, *p = s;
411   struct itbl_field *f;
412 
413   ASSERT (e);
414   for (f = e->fields; f; f = f->next)
415     {
416       switch (f->type)
417 	{
418 	case e_dreg:
419 	  c = 'd';
420 	  break;
421 	case e_creg:
422 	  c = 't';
423 	  break;
424 	case e_greg:
425 	  c = 's';
426 	  break;
427 	case e_immed:
428 	  c = 'i';
429 	  break;
430 	case e_addr:
431 	  c = 'a';
432 	  break;
433 	default:
434 	  c = 0;		/* ignore; unknown field type */
435 	}
436       if (c)
437 	{
438 	  if (p != s)
439 	    *p++ = ',';
440 	  *p++ = c;
441 	}
442     }
443   *p = 0;
444   return s;
445 }
446 #endif /* !STAND_ALONE */
447 
448 /* Get processor's register name from val */
449 
450 int
451 itbl_get_reg_val (char *name, unsigned long *pval)
452 {
453   e_type t;
454   e_processor p;
455 
456   for (p = e_p0; p < e_nprocs; p++)
457     {
458       for (t = e_regtype0; t < e_nregtypes; t++)
459 	{
460 	  if (itbl_get_val (p, t, name, pval))
461 	    return 1;
462 	}
463     }
464   return 0;
465 }
466 
467 char *
468 itbl_get_name (e_processor processor, e_type type, unsigned long val)
469 {
470   struct itbl_entry *r;
471   /* type depends on instruction passed */
472   r = find_entry_byval (processor, type, val, 0);
473   if (r)
474     return r->name;
475   else
476     return 0;			/* error; invalid operand */
477 }
478 
479 /* Get processor's register value from name */
480 
481 int
482 itbl_get_val (e_processor processor, e_type type, char *name,
483 	      unsigned long *pval)
484 {
485   struct itbl_entry *r;
486   /* type depends on instruction passed */
487   r = find_entry_byname (processor, type, name);
488   if (r == NULL)
489     return 0;
490   *pval = r->value;
491   return 1;
492 }
493 
494 /* Assemble instruction "name" with operands "s".
495  * name - name of instruction
496  * s - operands
497  * returns - long word for assembled instruction */
498 
499 unsigned long
500 itbl_assemble (char *name, char *s)
501 {
502   unsigned long opcode;
503   struct itbl_entry *e = NULL;
504   struct itbl_field *f;
505   char *n;
506   int processor;
507 
508   if (!name || !*name)
509     return 0;			/* error!  must have a opcode name/expr */
510 
511   /* find entry in list of instructions for all processors */
512   for (processor = 0; processor < e_nprocs; processor++)
513     {
514       e = find_entry_byname (processor, e_insn, name);
515       if (e)
516 	break;
517     }
518   if (!e)
519     return 0;			/* opcode not in table; invalid instruction */
520   opcode = build_opcode (e);
521 
522   /* parse opcode's args (if any) */
523   for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
524     {
525       struct itbl_entry *r;
526       unsigned long value;
527       if (!s || !*s)
528 	return 0;		/* error - not enough operands */
529       n = itbl_get_field (&s);
530       /* n should be in form $n or 0xhhh (are symbol names valid?? */
531       switch (f->type)
532 	{
533 	case e_dreg:
534 	case e_creg:
535 	case e_greg:
536 	  /* Accept either a string name
537 			 * or '$' followed by the register number */
538 	  if (*n == '$')
539 	    {
540 	      n++;
541 	      value = strtol (n, 0, 10);
542 	      /* FIXME! could have "0l"... then what?? */
543 	      if (value == 0 && *n != '0')
544 		return 0;	/* error; invalid operand */
545 	    }
546 	  else
547 	    {
548 	      r = find_entry_byname (e->processor, f->type, n);
549 	      if (r)
550 		value = r->value;
551 	      else
552 		return 0;	/* error; invalid operand */
553 	    }
554 	  break;
555 	case e_addr:
556 	  /* use assembler's symbol table to find symbol */
557 	  /* FIXME!! Do we need this?
558 				if so, what about relocs??
559 				my_getExpression (&imm_expr, s);
560 				return 0;	/-* error; invalid operand *-/
561 				break;
562 			*/
563 	  /* If not a symbol, fall thru to IMMED */
564 	case e_immed:
565 	  if (*n == '0' && *(n + 1) == 'x')	/* hex begins 0x...  */
566 	    {
567 	      n += 2;
568 	      value = strtol (n, 0, 16);
569 	      /* FIXME! could have "0xl"... then what?? */
570 	    }
571 	  else
572 	    {
573 	      value = strtol (n, 0, 10);
574 	      /* FIXME! could have "0l"... then what?? */
575 	      if (value == 0 && *n != '0')
576 		return 0;	/* error; invalid operand */
577 	    }
578 	  break;
579 	default:
580 	  return 0;		/* error; invalid field spec */
581 	}
582       opcode |= apply_range (value, f->range);
583     }
584   if (s && *s)
585     return 0;			/* error - too many operands */
586   return opcode;		/* done! */
587 }
588 
589 /* Disassemble instruction "insn".
590  * insn - instruction
591  * s - buffer to hold disassembled instruction
592  * returns - 1 if succeeded; 0 if failed
593  */
594 
595 int
596 itbl_disassemble (char *s, unsigned long insn)
597 {
598   e_processor processor;
599   struct itbl_entry *e;
600   struct itbl_field *f;
601 
602   if (!ITBL_IS_INSN (insn))
603     return 0;			/* error */
604   processor = get_processor (ITBL_DECODE_PNUM (insn));
605 
606   /* find entry in list */
607   e = find_entry_byval (processor, e_insn, insn, 0);
608   if (!e)
609     return 0;			/* opcode not in table; invalid instruction */
610   strcpy (s, e->name);
611 
612   /* Parse insn's args (if any).  */
613   for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
614     {
615       struct itbl_entry *r;
616       unsigned long value;
617 
618       if (f == e->fields)	/* First operand is preceeded by tab.  */
619 	strcat (s, "\t");
620       else			/* ','s separate following operands.  */
621 	strcat (s, ",");
622       value = extract_range (insn, f->range);
623       /* n should be in form $n or 0xhhh (are symbol names valid?? */
624       switch (f->type)
625 	{
626 	case e_dreg:
627 	case e_creg:
628 	case e_greg:
629 	  /* Accept either a string name
630 	     or '$' followed by the register number.  */
631 	  r = find_entry_byval (e->processor, f->type, value, &f->range);
632 	  if (r)
633 	    strcat (s, r->name);
634 	  else
635 	    sprintf (s, "%s$%lu", s, value);
636 	  break;
637 	case e_addr:
638 	  /* Use assembler's symbol table to find symbol.  */
639 	  /* FIXME!! Do we need this?  If so, what about relocs??  */
640 	  /* If not a symbol, fall through to IMMED.  */
641 	case e_immed:
642 	  sprintf (s, "%s0x%lx", s, value);
643 	  break;
644 	default:
645 	  return 0;		/* error; invalid field spec */
646 	}
647     }
648   return 1;			/* Done!  */
649 }
650 
651 /*======================================================================*/
652 /*
653  * Local functions for manipulating private structures containing
654  * the names and format for the new instructions and registers
655  * for each processor.
656  */
657 
658 /* Calculate instruction's opcode and function values from entry */
659 
660 static unsigned long
661 build_opcode (struct itbl_entry *e)
662 {
663   unsigned long opcode;
664 
665   opcode = apply_range (e->value, e->range);
666   opcode |= ITBL_ENCODE_PNUM (e->processor);
667   return opcode;
668 }
669 
670 /* Calculate absolute value given the relative value and bit position range
671  * within the instruction.
672  * The range is inclusive where 0 is least significant bit.
673  * A range of { 24, 20 } will have a mask of
674  * bit   3           2            1
675  * pos: 1098 7654 3210 9876 5432 1098 7654 3210
676  * bin: 0000 0001 1111 0000 0000 0000 0000 0000
677  * hex:    0    1    f    0    0    0    0    0
678  * mask: 0x01f00000.
679  */
680 
681 static unsigned long
682 apply_range (unsigned long rval, struct itbl_range r)
683 {
684   unsigned long mask;
685   unsigned long aval;
686   int len = MAX_BITPOS - r.sbit;
687 
688   ASSERT (r.sbit >= r.ebit);
689   ASSERT (MAX_BITPOS >= r.sbit);
690   ASSERT (r.ebit >= 0);
691 
692   /* create mask by truncating 1s by shifting */
693   mask = 0xffffffff << len;
694   mask = mask >> len;
695   mask = mask >> r.ebit;
696   mask = mask << r.ebit;
697 
698   aval = (rval << r.ebit) & mask;
699   return aval;
700 }
701 
702 /* Calculate relative value given the absolute value and bit position range
703  * within the instruction.  */
704 
705 static unsigned long
706 extract_range (unsigned long aval, struct itbl_range r)
707 {
708   unsigned long mask;
709   unsigned long rval;
710   int len = MAX_BITPOS - r.sbit;
711 
712   /* create mask by truncating 1s by shifting */
713   mask = 0xffffffff << len;
714   mask = mask >> len;
715   mask = mask >> r.ebit;
716   mask = mask << r.ebit;
717 
718   rval = (aval & mask) >> r.ebit;
719   return rval;
720 }
721 
722 /* Extract processor's assembly instruction field name from s;
723  * forms are "n args" "n,args" or "n" */
724 /* Return next argument from string pointer "s" and advance s.
725  * delimiters are " ,()" */
726 
727 char *
728 itbl_get_field (char **S)
729 {
730   static char n[128];
731   char *s;
732   int len;
733 
734   s = *S;
735   if (!s || !*s)
736     return 0;
737   /* FIXME: This is a weird set of delimiters.  */
738   len = strcspn (s, " \t,()");
739   ASSERT (128 > len + 1);
740   strncpy (n, s, len);
741   n[len] = 0;
742   if (s[len] == '\0')
743     s = 0;			/* no more args */
744   else
745     s += len + 1;		/* advance to next arg */
746 
747   *S = s;
748   return n;
749 }
750 
751 /* Search entries for a given processor and type
752  * to find one matching the name "n".
753  * Return a pointer to the entry */
754 
755 static struct itbl_entry *
756 find_entry_byname (e_processor processor,
757 		   e_type type, char *n)
758 {
759   struct itbl_entry *e, **es;
760 
761   es = get_entries (processor, type);
762   for (e = *es; e; e = e->next)	/* for each entry, ...  */
763     {
764       if (!strcmp (e->name, n))
765 	return e;
766     }
767   return 0;
768 }
769 
770 /* Search entries for a given processor and type
771  * to find one matching the value "val" for the range "r".
772  * Return a pointer to the entry.
773  * This function is used for disassembling fields of an instruction.
774  */
775 
776 static struct itbl_entry *
777 find_entry_byval (e_processor processor, e_type type,
778 		  unsigned long val, struct itbl_range *r)
779 {
780   struct itbl_entry *e, **es;
781   unsigned long eval;
782 
783   es = get_entries (processor, type);
784   for (e = *es; e; e = e->next)	/* for each entry, ...  */
785     {
786       if (processor != e->processor)
787 	continue;
788       /* For insns, we might not know the range of the opcode,
789 	 * so a range of 0 will allow this routine to match against
790 	 * the range of the entry to be compared with.
791 	 * This could cause ambiguities.
792 	 * For operands, we get an extracted value and a range.
793 	 */
794       /* if range is 0, mask val against the range of the compared entry.  */
795       if (r == 0)		/* if no range passed, must be whole 32-bits
796 			 * so create 32-bit value from entry's range */
797 	{
798 	  eval = apply_range (e->value, e->range);
799 	  val &= apply_range (0xffffffff, e->range);
800 	}
801       else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
802 	       || (e->range.sbit == 0 && e->range.ebit == 0))
803 	{
804 	  eval = apply_range (e->value, *r);
805 	  val = apply_range (val, *r);
806 	}
807       else
808 	continue;
809       if (val == eval)
810 	return e;
811     }
812   return 0;
813 }
814 
815 /* Return a pointer to the list of entries for a given processor and type.  */
816 
817 static struct itbl_entry **
818 get_entries (e_processor processor, e_type type)
819 {
820   return &entries[processor][type];
821 }
822 
823 /* Return an integral value for the processor passed from yyparse.  */
824 
825 static e_processor
826 get_processor (int yyproc)
827 {
828   /* translate from yacc's processor to enum */
829   if (yyproc >= e_p0 && yyproc < e_nprocs)
830     return (e_processor) yyproc;
831   return e_invproc;		/* error; invalid processor */
832 }
833 
834 /* Return an integral value for the entry type passed from yyparse.  */
835 
836 static e_type
837 get_type (int yytype)
838 {
839   switch (yytype)
840     {
841       /* translate from yacc's type to enum */
842     case INSN:
843       return e_insn;
844     case DREG:
845       return e_dreg;
846     case CREG:
847       return e_creg;
848     case GREG:
849       return e_greg;
850     case ADDR:
851       return e_addr;
852     case IMMED:
853       return e_immed;
854     default:
855       return e_invtype;		/* error; invalid type */
856     }
857 }
858 
859 /* Allocate and initialize an entry */
860 
861 static struct itbl_entry *
862 alloc_entry (e_processor processor, e_type type,
863 	     char *name, unsigned long value)
864 {
865   struct itbl_entry *e, **es;
866   if (!name)
867     return 0;
868   e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
869   if (e)
870     {
871       memset (e, 0, sizeof (struct itbl_entry));
872       e->name = (char *) malloc (sizeof (strlen (name)) + 1);
873       if (e->name)
874 	strcpy (e->name, name);
875       e->processor = processor;
876       e->type = type;
877       e->value = value;
878       es = get_entries (e->processor, e->type);
879       e->next = *es;
880       *es = e;
881     }
882   return e;
883 }
884 
885 /* Allocate and initialize an entry's field */
886 
887 static struct itbl_field *
888 alloc_field (e_type type, int sbit, int ebit,
889 	     unsigned long flags)
890 {
891   struct itbl_field *f;
892   f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
893   if (f)
894     {
895       memset (f, 0, sizeof (struct itbl_field));
896       f->type = type;
897       f->range.sbit = sbit;
898       f->range.ebit = ebit;
899       f->flags = flags;
900     }
901   return f;
902 }
903