1 /* Implement a cached obstack. 2 Written by Fred Fish <fnf@cygnus.com> 3 Rewritten by Jim Blandy <jimb@cygnus.com> 4 5 Copyright 1999, 2000, 2002, 2003 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "gdb_obstack.h" 26 #include "bcache.h" 27 #include "gdb_string.h" /* For memcpy declaration */ 28 #include "gdb_assert.h" 29 30 #include <stddef.h> 31 #include <stdlib.h> 32 33 /* The type used to hold a single bcache string. The user data is 34 stored in d.data. Since it can be any type, it needs to have the 35 same alignment as the most strict alignment of any type on the host 36 machine. I don't know of any really correct way to do this in 37 stock ANSI C, so just do it the same way obstack.h does. */ 38 39 struct bstring 40 { 41 /* Hash chain. */ 42 struct bstring *next; 43 /* Assume the data length is no more than 64k. */ 44 unsigned short length; 45 /* The half hash hack. This contains the upper 16 bits of the hash 46 value and is used as a pre-check when comparing two strings and 47 avoids the need to do length or memcmp calls. It proves to be 48 roughly 100% effective. */ 49 unsigned short half_hash; 50 51 union 52 { 53 char data[1]; 54 double dummy; 55 } 56 d; 57 }; 58 59 60 /* The structure for a bcache itself. The bcache is initialized, in 61 bcache_xmalloc(), by filling it with zeros and then setting the 62 corresponding obstack's malloc() and free() methods. */ 63 64 struct bcache 65 { 66 /* All the bstrings are allocated here. */ 67 struct obstack cache; 68 69 /* How many hash buckets we're using. */ 70 unsigned int num_buckets; 71 72 /* Hash buckets. This table is allocated using malloc, so when we 73 grow the table we can return the old table to the system. */ 74 struct bstring **bucket; 75 76 /* Statistics. */ 77 unsigned long unique_count; /* number of unique strings */ 78 long total_count; /* total number of strings cached, including dups */ 79 long unique_size; /* size of unique strings, in bytes */ 80 long total_size; /* total number of bytes cached, including dups */ 81 long structure_size; /* total size of bcache, including infrastructure */ 82 /* Number of times that the hash table is expanded and hence 83 re-built, and the corresponding number of times that a string is 84 [re]hashed as part of entering it into the expanded table. The 85 total number of hashes can be computed by adding TOTAL_COUNT to 86 expand_hash_count. */ 87 unsigned long expand_count; 88 unsigned long expand_hash_count; 89 /* Number of times that the half-hash compare hit (compare the upper 90 16 bits of hash values) hit, but the corresponding combined 91 length/data compare missed. */ 92 unsigned long half_hash_miss_count; 93 }; 94 95 /* The old hash function was stolen from SDBM. This is what DB 3.0 uses now, 96 * and is better than the old one. 97 */ 98 99 unsigned long 100 hash(const void *addr, int length) 101 { 102 const unsigned char *k, *e; 103 unsigned long h; 104 105 k = (const unsigned char *)addr; 106 e = k+length; 107 for (h=0; k< e;++k) 108 { 109 h *=16777619; 110 h ^= *k; 111 } 112 return (h); 113 } 114 115 /* Growing the bcache's hash table. */ 116 117 /* If the average chain length grows beyond this, then we want to 118 resize our hash table. */ 119 #define CHAIN_LENGTH_THRESHOLD (5) 120 121 static void 122 expand_hash_table (struct bcache *bcache) 123 { 124 /* A table of good hash table sizes. Whenever we grow, we pick the 125 next larger size from this table. sizes[i] is close to 1 << (i+10), 126 so we roughly double the table size each time. After we fall off 127 the end of this table, we just double. Don't laugh --- there have 128 been executables sighted with a gigabyte of debug info. */ 129 static unsigned long sizes[] = { 130 1021, 2053, 4099, 8191, 16381, 32771, 131 65537, 131071, 262144, 524287, 1048573, 2097143, 132 4194301, 8388617, 16777213, 33554467, 67108859, 134217757, 133 268435459, 536870923, 1073741827, 2147483659UL 134 }; 135 unsigned int new_num_buckets; 136 struct bstring **new_buckets; 137 unsigned int i; 138 139 /* Count the stats. Every unique item needs to be re-hashed and 140 re-entered. */ 141 bcache->expand_count++; 142 bcache->expand_hash_count += bcache->unique_count; 143 144 /* Find the next size. */ 145 new_num_buckets = bcache->num_buckets * 2; 146 for (i = 0; i < (sizeof (sizes) / sizeof (sizes[0])); i++) 147 if (sizes[i] > bcache->num_buckets) 148 { 149 new_num_buckets = sizes[i]; 150 break; 151 } 152 153 /* Allocate the new table. */ 154 { 155 size_t new_size = new_num_buckets * sizeof (new_buckets[0]); 156 new_buckets = (struct bstring **) xmalloc (new_size); 157 memset (new_buckets, 0, new_size); 158 159 bcache->structure_size -= (bcache->num_buckets 160 * sizeof (bcache->bucket[0])); 161 bcache->structure_size += new_size; 162 } 163 164 /* Rehash all existing strings. */ 165 for (i = 0; i < bcache->num_buckets; i++) 166 { 167 struct bstring *s, *next; 168 169 for (s = bcache->bucket[i]; s; s = next) 170 { 171 struct bstring **new_bucket; 172 next = s->next; 173 174 new_bucket = &new_buckets[(hash (&s->d.data, s->length) 175 % new_num_buckets)]; 176 s->next = *new_bucket; 177 *new_bucket = s; 178 } 179 } 180 181 /* Plug in the new table. */ 182 if (bcache->bucket) 183 xfree (bcache->bucket); 184 bcache->bucket = new_buckets; 185 bcache->num_buckets = new_num_buckets; 186 } 187 188 189 /* Looking up things in the bcache. */ 190 191 /* The number of bytes needed to allocate a struct bstring whose data 192 is N bytes long. */ 193 #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n)) 194 195 /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has 196 never seen those bytes before, add a copy of them to BCACHE. In 197 either case, return a pointer to BCACHE's copy of that string. */ 198 static void * 199 bcache_data (const void *addr, int length, struct bcache *bcache) 200 { 201 unsigned long full_hash; 202 unsigned short half_hash; 203 int hash_index; 204 struct bstring *s; 205 206 /* If our average chain length is too high, expand the hash table. */ 207 if (bcache->unique_count >= bcache->num_buckets * CHAIN_LENGTH_THRESHOLD) 208 expand_hash_table (bcache); 209 210 bcache->total_count++; 211 bcache->total_size += length; 212 213 full_hash = hash (addr, length); 214 half_hash = (full_hash >> 16); 215 hash_index = full_hash % bcache->num_buckets; 216 217 /* Search the hash bucket for a string identical to the caller's. 218 As a short-circuit first compare the upper part of each hash 219 values. */ 220 for (s = bcache->bucket[hash_index]; s; s = s->next) 221 { 222 if (s->half_hash == half_hash) 223 { 224 if (s->length == length 225 && ! memcmp (&s->d.data, addr, length)) 226 return &s->d.data; 227 else 228 bcache->half_hash_miss_count++; 229 } 230 } 231 232 /* The user's string isn't in the list. Insert it after *ps. */ 233 { 234 struct bstring *new 235 = obstack_alloc (&bcache->cache, BSTRING_SIZE (length)); 236 memcpy (&new->d.data, addr, length); 237 new->length = length; 238 new->next = bcache->bucket[hash_index]; 239 new->half_hash = half_hash; 240 bcache->bucket[hash_index] = new; 241 242 bcache->unique_count++; 243 bcache->unique_size += length; 244 bcache->structure_size += BSTRING_SIZE (length); 245 246 return &new->d.data; 247 } 248 } 249 250 void * 251 deprecated_bcache (const void *addr, int length, struct bcache *bcache) 252 { 253 return bcache_data (addr, length, bcache); 254 } 255 256 const void * 257 bcache (const void *addr, int length, struct bcache *bcache) 258 { 259 return bcache_data (addr, length, bcache); 260 } 261 262 /* Allocating and freeing bcaches. */ 263 264 struct bcache * 265 bcache_xmalloc (void) 266 { 267 /* Allocate the bcache pre-zeroed. */ 268 struct bcache *b = XCALLOC (1, struct bcache); 269 /* We could use obstack_specify_allocation here instead, but 270 gdb_obstack.h specifies the allocation/deallocation 271 functions. */ 272 obstack_init (&b->cache); 273 return b; 274 } 275 276 /* Free all the storage associated with BCACHE. */ 277 void 278 bcache_xfree (struct bcache *bcache) 279 { 280 if (bcache == NULL) 281 return; 282 obstack_free (&bcache->cache, 0); 283 xfree (bcache->bucket); 284 xfree (bcache); 285 } 286 287 288 289 /* Printing statistics. */ 290 291 static int 292 compare_ints (const void *ap, const void *bp) 293 { 294 /* Because we know we're comparing two ints which are positive, 295 there's no danger of overflow here. */ 296 return * (int *) ap - * (int *) bp; 297 } 298 299 300 static void 301 print_percentage (int portion, int total) 302 { 303 if (total == 0) 304 printf_filtered ("(not applicable)\n"); 305 else 306 printf_filtered ("%3d%%\n", (int) (portion * 100.0 / total)); 307 } 308 309 310 /* Print statistics on BCACHE's memory usage and efficacity at 311 eliminating duplication. NAME should describe the kind of data 312 BCACHE holds. Statistics are printed using `printf_filtered' and 313 its ilk. */ 314 void 315 print_bcache_statistics (struct bcache *c, char *type) 316 { 317 int occupied_buckets; 318 int max_chain_length; 319 int median_chain_length; 320 int max_entry_size; 321 int median_entry_size; 322 323 /* Count the number of occupied buckets, tally the various string 324 lengths, and measure chain lengths. */ 325 { 326 unsigned int b; 327 int *chain_length = XCALLOC (c->num_buckets + 1, int); 328 int *entry_size = XCALLOC (c->unique_count + 1, int); 329 int stringi = 0; 330 331 occupied_buckets = 0; 332 333 for (b = 0; b < c->num_buckets; b++) 334 { 335 struct bstring *s = c->bucket[b]; 336 337 chain_length[b] = 0; 338 339 if (s) 340 { 341 occupied_buckets++; 342 343 while (s) 344 { 345 gdb_assert (b < c->num_buckets); 346 chain_length[b]++; 347 gdb_assert (stringi < c->unique_count); 348 entry_size[stringi++] = s->length; 349 s = s->next; 350 } 351 } 352 } 353 354 /* To compute the median, we need the set of chain lengths sorted. */ 355 qsort (chain_length, c->num_buckets, sizeof (chain_length[0]), 356 compare_ints); 357 qsort (entry_size, c->unique_count, sizeof (entry_size[0]), 358 compare_ints); 359 360 if (c->num_buckets > 0) 361 { 362 max_chain_length = chain_length[c->num_buckets - 1]; 363 median_chain_length = chain_length[c->num_buckets / 2]; 364 } 365 else 366 { 367 max_chain_length = 0; 368 median_chain_length = 0; 369 } 370 if (c->unique_count > 0) 371 { 372 max_entry_size = entry_size[c->unique_count - 1]; 373 median_entry_size = entry_size[c->unique_count / 2]; 374 } 375 else 376 { 377 max_entry_size = 0; 378 median_entry_size = 0; 379 } 380 381 xfree (chain_length); 382 xfree (entry_size); 383 } 384 385 printf_filtered (" Cached '%s' statistics:\n", type); 386 printf_filtered (" Total object count: %ld\n", c->total_count); 387 printf_filtered (" Unique object count: %lu\n", c->unique_count); 388 printf_filtered (" Percentage of duplicates, by count: "); 389 print_percentage (c->total_count - c->unique_count, c->total_count); 390 printf_filtered ("\n"); 391 392 printf_filtered (" Total object size: %ld\n", c->total_size); 393 printf_filtered (" Unique object size: %ld\n", c->unique_size); 394 printf_filtered (" Percentage of duplicates, by size: "); 395 print_percentage (c->total_size - c->unique_size, c->total_size); 396 printf_filtered ("\n"); 397 398 printf_filtered (" Max entry size: %d\n", max_entry_size); 399 printf_filtered (" Average entry size: "); 400 if (c->unique_count > 0) 401 printf_filtered ("%ld\n", c->unique_size / c->unique_count); 402 else 403 printf_filtered ("(not applicable)\n"); 404 printf_filtered (" Median entry size: %d\n", median_entry_size); 405 printf_filtered ("\n"); 406 407 printf_filtered (" Total memory used by bcache, including overhead: %ld\n", 408 c->structure_size); 409 printf_filtered (" Percentage memory overhead: "); 410 print_percentage (c->structure_size - c->unique_size, c->unique_size); 411 printf_filtered (" Net memory savings: "); 412 print_percentage (c->total_size - c->structure_size, c->total_size); 413 printf_filtered ("\n"); 414 415 printf_filtered (" Hash table size: %3d\n", c->num_buckets); 416 printf_filtered (" Hash table expands: %lu\n", 417 c->expand_count); 418 printf_filtered (" Hash table hashes: %lu\n", 419 c->total_count + c->expand_hash_count); 420 printf_filtered (" Half hash misses: %lu\n", 421 c->half_hash_miss_count); 422 printf_filtered (" Hash table population: "); 423 print_percentage (occupied_buckets, c->num_buckets); 424 printf_filtered (" Median hash chain length: %3d\n", 425 median_chain_length); 426 printf_filtered (" Average hash chain length: "); 427 if (c->num_buckets > 0) 428 printf_filtered ("%3lu\n", c->unique_count / c->num_buckets); 429 else 430 printf_filtered ("(not applicable)\n"); 431 printf_filtered (" Maximum hash chain length: %3d\n", max_chain_length); 432 printf_filtered ("\n"); 433 } 434 435 int 436 bcache_memory_used (struct bcache *bcache) 437 { 438 return obstack_memory_used (&bcache->cache); 439 } 440