1 /* Frame unwinder for frames with DWARF Call Frame Information. 2 3 Copyright 2003, 2004 Free Software Foundation, Inc. 4 5 Contributed by Mark Kettenis. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 #include "dwarf2expr.h" 26 #include "elf/dwarf2.h" 27 #include "frame.h" 28 #include "frame-base.h" 29 #include "frame-unwind.h" 30 #include "gdbcore.h" 31 #include "gdbtypes.h" 32 #include "symtab.h" 33 #include "objfiles.h" 34 #include "regcache.h" 35 36 #include "gdb_assert.h" 37 #include "gdb_string.h" 38 39 #include "complaints.h" 40 #include "dwarf2-frame.h" 41 42 /* Call Frame Information (CFI). */ 43 44 /* Common Information Entry (CIE). */ 45 46 struct dwarf2_cie 47 { 48 /* Offset into the .debug_frame section where this CIE was found. 49 Used to identify this CIE. */ 50 ULONGEST cie_pointer; 51 52 /* Constant that is factored out of all advance location 53 instructions. */ 54 ULONGEST code_alignment_factor; 55 56 /* Constants that is factored out of all offset instructions. */ 57 LONGEST data_alignment_factor; 58 59 /* Return address column. */ 60 ULONGEST return_address_register; 61 62 /* Instruction sequence to initialize a register set. */ 63 unsigned char *initial_instructions; 64 unsigned char *end; 65 66 /* Encoding of addresses. */ 67 unsigned char encoding; 68 69 /* True if a 'z' augmentation existed. */ 70 unsigned char saw_z_augmentation; 71 72 struct dwarf2_cie *next; 73 }; 74 75 /* Frame Description Entry (FDE). */ 76 77 struct dwarf2_fde 78 { 79 /* CIE for this FDE. */ 80 struct dwarf2_cie *cie; 81 82 /* First location associated with this FDE. */ 83 CORE_ADDR initial_location; 84 85 /* Number of bytes of program instructions described by this FDE. */ 86 CORE_ADDR address_range; 87 88 /* Instruction sequence. */ 89 unsigned char *instructions; 90 unsigned char *end; 91 92 struct dwarf2_fde *next; 93 }; 94 95 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc); 96 97 98 /* Structure describing a frame state. */ 99 100 struct dwarf2_frame_state 101 { 102 /* Each register save state can be described in terms of a CFA slot, 103 another register, or a location expression. */ 104 struct dwarf2_frame_state_reg_info 105 { 106 struct dwarf2_frame_state_reg *reg; 107 int num_regs; 108 109 /* Used to implement DW_CFA_remember_state. */ 110 struct dwarf2_frame_state_reg_info *prev; 111 } regs; 112 113 LONGEST cfa_offset; 114 ULONGEST cfa_reg; 115 unsigned char *cfa_exp; 116 enum { 117 CFA_UNSET, 118 CFA_REG_OFFSET, 119 CFA_EXP 120 } cfa_how; 121 122 /* The PC described by the current frame state. */ 123 CORE_ADDR pc; 124 125 /* Initial register set from the CIE. 126 Used to implement DW_CFA_restore. */ 127 struct dwarf2_frame_state_reg_info initial; 128 129 /* The information we care about from the CIE. */ 130 LONGEST data_align; 131 ULONGEST code_align; 132 ULONGEST retaddr_column; 133 }; 134 135 /* Store the length the expression for the CFA in the `cfa_reg' field, 136 which is unused in that case. */ 137 #define cfa_exp_len cfa_reg 138 139 /* Assert that the register set RS is large enough to store NUM_REGS 140 columns. If necessary, enlarge the register set. */ 141 142 static void 143 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, 144 int num_regs) 145 { 146 size_t size = sizeof (struct dwarf2_frame_state_reg); 147 148 if (num_regs <= rs->num_regs) 149 return; 150 151 rs->reg = (struct dwarf2_frame_state_reg *) 152 xrealloc (rs->reg, num_regs * size); 153 154 /* Initialize newly allocated registers. */ 155 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); 156 rs->num_regs = num_regs; 157 } 158 159 /* Copy the register columns in register set RS into newly allocated 160 memory and return a pointer to this newly created copy. */ 161 162 static struct dwarf2_frame_state_reg * 163 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) 164 { 165 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg_info); 166 struct dwarf2_frame_state_reg *reg; 167 168 reg = (struct dwarf2_frame_state_reg *) xmalloc (size); 169 memcpy (reg, rs->reg, size); 170 171 return reg; 172 } 173 174 /* Release the memory allocated to register set RS. */ 175 176 static void 177 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) 178 { 179 if (rs) 180 { 181 dwarf2_frame_state_free_regs (rs->prev); 182 183 xfree (rs->reg); 184 xfree (rs); 185 } 186 } 187 188 /* Release the memory allocated to the frame state FS. */ 189 190 static void 191 dwarf2_frame_state_free (void *p) 192 { 193 struct dwarf2_frame_state *fs = p; 194 195 dwarf2_frame_state_free_regs (fs->initial.prev); 196 dwarf2_frame_state_free_regs (fs->regs.prev); 197 xfree (fs->initial.reg); 198 xfree (fs->regs.reg); 199 xfree (fs); 200 } 201 202 203 /* Helper functions for execute_stack_op. */ 204 205 static CORE_ADDR 206 read_reg (void *baton, int reg) 207 { 208 struct frame_info *next_frame = (struct frame_info *) baton; 209 struct gdbarch *gdbarch = get_frame_arch (next_frame); 210 int regnum; 211 char *buf; 212 213 regnum = DWARF2_REG_TO_REGNUM (reg); 214 215 buf = (char *) alloca (register_size (gdbarch, regnum)); 216 frame_unwind_register (next_frame, regnum, buf); 217 return extract_typed_address (buf, builtin_type_void_data_ptr); 218 } 219 220 static void 221 read_mem (void *baton, char *buf, CORE_ADDR addr, size_t len) 222 { 223 read_memory (addr, buf, len); 224 } 225 226 static void 227 no_get_frame_base (void *baton, unsigned char **start, size_t *length) 228 { 229 internal_error (__FILE__, __LINE__, 230 "Support for DW_OP_fbreg is unimplemented"); 231 } 232 233 static CORE_ADDR 234 no_get_tls_address (void *baton, CORE_ADDR offset) 235 { 236 internal_error (__FILE__, __LINE__, 237 "Support for DW_OP_GNU_push_tls_address is unimplemented"); 238 } 239 240 static CORE_ADDR 241 execute_stack_op (unsigned char *exp, ULONGEST len, 242 struct frame_info *next_frame, CORE_ADDR initial) 243 { 244 struct dwarf_expr_context *ctx; 245 CORE_ADDR result; 246 247 ctx = new_dwarf_expr_context (); 248 ctx->baton = next_frame; 249 ctx->read_reg = read_reg; 250 ctx->read_mem = read_mem; 251 ctx->get_frame_base = no_get_frame_base; 252 ctx->get_tls_address = no_get_tls_address; 253 254 dwarf_expr_push (ctx, initial); 255 dwarf_expr_eval (ctx, exp, len); 256 result = dwarf_expr_fetch (ctx, 0); 257 258 if (ctx->in_reg) 259 result = read_reg (next_frame, result); 260 261 free_dwarf_expr_context (ctx); 262 263 return result; 264 } 265 266 267 static void 268 execute_cfa_program (unsigned char *insn_ptr, unsigned char *insn_end, 269 struct frame_info *next_frame, 270 struct dwarf2_frame_state *fs) 271 { 272 CORE_ADDR pc = frame_pc_unwind (next_frame); 273 int bytes_read; 274 275 while (insn_ptr < insn_end && fs->pc <= pc) 276 { 277 unsigned char insn = *insn_ptr++; 278 ULONGEST utmp, reg; 279 LONGEST offset; 280 281 if ((insn & 0xc0) == DW_CFA_advance_loc) 282 fs->pc += (insn & 0x3f) * fs->code_align; 283 else if ((insn & 0xc0) == DW_CFA_offset) 284 { 285 reg = insn & 0x3f; 286 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 287 offset = utmp * fs->data_align; 288 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 289 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 290 fs->regs.reg[reg].loc.offset = offset; 291 } 292 else if ((insn & 0xc0) == DW_CFA_restore) 293 { 294 gdb_assert (fs->initial.reg); 295 reg = insn & 0x3f; 296 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 297 fs->regs.reg[reg] = fs->initial.reg[reg]; 298 } 299 else 300 { 301 switch (insn) 302 { 303 case DW_CFA_set_loc: 304 fs->pc = dwarf2_read_address (insn_ptr, insn_end, &bytes_read); 305 insn_ptr += bytes_read; 306 break; 307 308 case DW_CFA_advance_loc1: 309 utmp = extract_unsigned_integer (insn_ptr, 1); 310 fs->pc += utmp * fs->code_align; 311 insn_ptr++; 312 break; 313 case DW_CFA_advance_loc2: 314 utmp = extract_unsigned_integer (insn_ptr, 2); 315 fs->pc += utmp * fs->code_align; 316 insn_ptr += 2; 317 break; 318 case DW_CFA_advance_loc4: 319 utmp = extract_unsigned_integer (insn_ptr, 4); 320 fs->pc += utmp * fs->code_align; 321 insn_ptr += 4; 322 break; 323 324 case DW_CFA_offset_extended: 325 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 326 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 327 offset = utmp * fs->data_align; 328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 329 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 330 fs->regs.reg[reg].loc.offset = offset; 331 break; 332 333 case DW_CFA_restore_extended: 334 gdb_assert (fs->initial.reg); 335 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 336 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 337 fs->regs.reg[reg] = fs->initial.reg[reg]; 338 break; 339 340 case DW_CFA_undefined: 341 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 342 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 343 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; 344 break; 345 346 case DW_CFA_same_value: 347 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 348 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 349 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; 350 break; 351 352 case DW_CFA_register: 353 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 354 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 355 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 356 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; 357 fs->regs.reg[reg].loc.reg = utmp; 358 break; 359 360 case DW_CFA_remember_state: 361 { 362 struct dwarf2_frame_state_reg_info *new_rs; 363 364 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); 365 *new_rs = fs->regs; 366 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); 367 fs->regs.prev = new_rs; 368 } 369 break; 370 371 case DW_CFA_restore_state: 372 { 373 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; 374 375 if (old_rs == NULL) 376 { 377 complaint (&symfile_complaints, "\ 378 bad CFI data; mismatched DW_CFA_restore_state at 0x%s", paddr (fs->pc)); 379 } 380 else 381 { 382 xfree (fs->regs.reg); 383 fs->regs = *old_rs; 384 xfree (old_rs); 385 } 386 } 387 break; 388 389 case DW_CFA_def_cfa: 390 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 391 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 392 fs->cfa_offset = utmp; 393 fs->cfa_how = CFA_REG_OFFSET; 394 break; 395 396 case DW_CFA_def_cfa_register: 397 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 398 fs->cfa_how = CFA_REG_OFFSET; 399 break; 400 401 case DW_CFA_def_cfa_offset: 402 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_offset); 403 /* cfa_how deliberately not set. */ 404 break; 405 406 case DW_CFA_nop: 407 break; 408 409 case DW_CFA_def_cfa_expression: 410 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_exp_len); 411 fs->cfa_exp = insn_ptr; 412 fs->cfa_how = CFA_EXP; 413 insn_ptr += fs->cfa_exp_len; 414 break; 415 416 case DW_CFA_expression: 417 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 418 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 419 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 420 fs->regs.reg[reg].loc.exp = insn_ptr; 421 fs->regs.reg[reg].exp_len = utmp; 422 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; 423 insn_ptr += utmp; 424 break; 425 426 case DW_CFA_offset_extended_sf: 427 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 428 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 429 offset *= fs->data_align; 430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 432 fs->regs.reg[reg].loc.offset = offset; 433 break; 434 435 case DW_CFA_def_cfa_sf: 436 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->cfa_reg); 437 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 438 fs->cfa_offset = offset * fs->data_align; 439 fs->cfa_how = CFA_REG_OFFSET; 440 break; 441 442 case DW_CFA_def_cfa_offset_sf: 443 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 444 fs->cfa_offset = offset * fs->data_align; 445 /* cfa_how deliberately not set. */ 446 break; 447 448 case DW_CFA_GNU_args_size: 449 /* Ignored. */ 450 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 451 break; 452 453 default: 454 internal_error (__FILE__, __LINE__, "Unknown CFI encountered."); 455 } 456 } 457 } 458 459 /* Don't allow remember/restore between CIE and FDE programs. */ 460 dwarf2_frame_state_free_regs (fs->regs.prev); 461 fs->regs.prev = NULL; 462 } 463 464 465 /* Architecture-specific operations. */ 466 467 /* Per-architecture data key. */ 468 static struct gdbarch_data *dwarf2_frame_data; 469 470 struct dwarf2_frame_ops 471 { 472 /* Pre-initialize the register state REG for register REGNUM. */ 473 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *); 474 }; 475 476 /* Default architecture-specific register state initialization 477 function. */ 478 479 static void 480 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, 481 struct dwarf2_frame_state_reg *reg) 482 { 483 /* If we have a register that acts as a program counter, mark it as 484 a destination for the return address. If we have a register that 485 serves as the stack pointer, arrange for it to be filled with the 486 call frame address (CFA). The other registers are marked as 487 unspecified. 488 489 We copy the return address to the program counter, since many 490 parts in GDB assume that it is possible to get the return address 491 by unwinding the program counter register. However, on ISA's 492 with a dedicated return address register, the CFI usually only 493 contains information to unwind that return address register. 494 495 The reason we're treating the stack pointer special here is 496 because in many cases GCC doesn't emit CFI for the stack pointer 497 and implicitly assumes that it is equal to the CFA. This makes 498 some sense since the DWARF specification (version 3, draft 8, 499 p. 102) says that: 500 501 "Typically, the CFA is defined to be the value of the stack 502 pointer at the call site in the previous frame (which may be 503 different from its value on entry to the current frame)." 504 505 However, this isn't true for all platforms supported by GCC 506 (e.g. IBM S/390 and zSeries). Those architectures should provide 507 their own architecture-specific initialization function. */ 508 509 if (regnum == PC_REGNUM) 510 reg->how = DWARF2_FRAME_REG_RA; 511 else if (regnum == SP_REGNUM) 512 reg->how = DWARF2_FRAME_REG_CFA; 513 } 514 515 /* Return a default for the architecture-specific operations. */ 516 517 static void * 518 dwarf2_frame_init (struct obstack *obstack) 519 { 520 struct dwarf2_frame_ops *ops; 521 522 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); 523 ops->init_reg = dwarf2_frame_default_init_reg; 524 return ops; 525 } 526 527 /* Set the architecture-specific register state initialization 528 function for GDBARCH to INIT_REG. */ 529 530 void 531 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, 532 void (*init_reg) (struct gdbarch *, int, 533 struct dwarf2_frame_state_reg *)) 534 { 535 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 536 537 ops->init_reg = init_reg; 538 } 539 540 /* Pre-initialize the register state REG for register REGNUM. */ 541 542 static void 543 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 544 struct dwarf2_frame_state_reg *reg) 545 { 546 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 547 548 ops->init_reg (gdbarch, regnum, reg); 549 } 550 551 552 struct dwarf2_frame_cache 553 { 554 /* DWARF Call Frame Address. */ 555 CORE_ADDR cfa; 556 557 /* Saved registers, indexed by GDB register number, not by DWARF 558 register number. */ 559 struct dwarf2_frame_state_reg *reg; 560 }; 561 562 static struct dwarf2_frame_cache * 563 dwarf2_frame_cache (struct frame_info *next_frame, void **this_cache) 564 { 565 struct cleanup *old_chain; 566 struct gdbarch *gdbarch = get_frame_arch (next_frame); 567 const int num_regs = NUM_REGS + NUM_PSEUDO_REGS; 568 struct dwarf2_frame_cache *cache; 569 struct dwarf2_frame_state *fs; 570 struct dwarf2_fde *fde; 571 572 if (*this_cache) 573 return *this_cache; 574 575 /* Allocate a new cache. */ 576 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); 577 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); 578 579 /* Allocate and initialize the frame state. */ 580 fs = XMALLOC (struct dwarf2_frame_state); 581 memset (fs, 0, sizeof (struct dwarf2_frame_state)); 582 old_chain = make_cleanup (dwarf2_frame_state_free, fs); 583 584 /* Unwind the PC. 585 586 Note that if NEXT_FRAME is never supposed to return (i.e. a call 587 to abort), the compiler might optimize away the instruction at 588 NEXT_FRAME's return address. As a result the return address will 589 point at some random instruction, and the CFI for that 590 instruction is probably worthless to us. GCC's unwinder solves 591 this problem by substracting 1 from the return address to get an 592 address in the middle of a presumed call instruction (or the 593 instruction in the associated delay slot). This should only be 594 done for "normal" frames and not for resume-type frames (signal 595 handlers, sentinel frames, dummy frames). The function 596 frame_unwind_address_in_block does just this. It's not clear how 597 reliable the method is though; there is the potential for the 598 register state pre-call being different to that on return. */ 599 fs->pc = frame_unwind_address_in_block (next_frame); 600 601 /* Find the correct FDE. */ 602 fde = dwarf2_frame_find_fde (&fs->pc); 603 gdb_assert (fde != NULL); 604 605 /* Extract any interesting information from the CIE. */ 606 fs->data_align = fde->cie->data_alignment_factor; 607 fs->code_align = fde->cie->code_alignment_factor; 608 fs->retaddr_column = fde->cie->return_address_register; 609 610 /* First decode all the insns in the CIE. */ 611 execute_cfa_program (fde->cie->initial_instructions, 612 fde->cie->end, next_frame, fs); 613 614 /* Save the initialized register set. */ 615 fs->initial = fs->regs; 616 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); 617 618 /* Then decode the insns in the FDE up to our target PC. */ 619 execute_cfa_program (fde->instructions, fde->end, next_frame, fs); 620 621 /* Caclulate the CFA. */ 622 switch (fs->cfa_how) 623 { 624 case CFA_REG_OFFSET: 625 cache->cfa = read_reg (next_frame, fs->cfa_reg); 626 cache->cfa += fs->cfa_offset; 627 break; 628 629 case CFA_EXP: 630 cache->cfa = 631 execute_stack_op (fs->cfa_exp, fs->cfa_exp_len, next_frame, 0); 632 break; 633 634 default: 635 internal_error (__FILE__, __LINE__, "Unknown CFA rule."); 636 } 637 638 /* Initialize the register state. */ 639 { 640 int regnum; 641 642 for (regnum = 0; regnum < num_regs; regnum++) 643 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum]); 644 } 645 646 /* Go through the DWARF2 CFI generated table and save its register 647 location information in the cache. Note that we don't skip the 648 return address column; it's perfectly all right for it to 649 correspond to a real register. If it doesn't correspond to a 650 real register, or if we shouldn't treat it as such, 651 DWARF2_REG_TO_REGNUM should be defined to return a number outside 652 the range [0, NUM_REGS). */ 653 { 654 int column; /* CFI speak for "register number". */ 655 656 for (column = 0; column < fs->regs.num_regs; column++) 657 { 658 /* Use the GDB register number as the destination index. */ 659 int regnum = DWARF2_REG_TO_REGNUM (column); 660 661 /* If there's no corresponding GDB register, ignore it. */ 662 if (regnum < 0 || regnum >= num_regs) 663 continue; 664 665 /* NOTE: cagney/2003-09-05: CFI should specify the disposition 666 of all debug info registers. If it doesn't, complain (but 667 not too loudly). It turns out that GCC assumes that an 668 unspecified register implies "same value" when CFI (draft 669 7) specifies nothing at all. Such a register could equally 670 be interpreted as "undefined". Also note that this check 671 isn't sufficient; it only checks that all registers in the 672 range [0 .. max column] are specified, and won't detect 673 problems when a debug info register falls outside of the 674 table. We need a way of iterating through all the valid 675 DWARF2 register numbers. */ 676 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) 677 complaint (&symfile_complaints, 678 "Incomplete CFI data; unspecified registers at 0x%s", 679 paddr (fs->pc)); 680 else 681 cache->reg[regnum] = fs->regs.reg[column]; 682 } 683 } 684 685 /* Eliminate any DWARF2_FRAME_REG_RA rules. */ 686 { 687 int regnum; 688 689 for (regnum = 0; regnum < num_regs; regnum++) 690 { 691 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) 692 { 693 struct dwarf2_frame_state_reg *retaddr_reg = 694 &fs->regs.reg[fs->retaddr_column]; 695 696 /* It seems rather bizarre to specify an "empty" column as 697 the return adress column. However, this is exactly 698 what GCC does on some targets. It turns out that GCC 699 assumes that the return address can be found in the 700 register corresponding to the return address column. 701 Incidentally, that's how should treat a return address 702 column specifying "same value" too. */ 703 if (fs->retaddr_column < fs->regs.num_regs 704 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED 705 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) 706 cache->reg[regnum] = *retaddr_reg; 707 else 708 { 709 cache->reg[regnum].loc.reg = fs->retaddr_column; 710 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; 711 } 712 } 713 } 714 } 715 716 do_cleanups (old_chain); 717 718 *this_cache = cache; 719 return cache; 720 } 721 722 static void 723 dwarf2_frame_this_id (struct frame_info *next_frame, void **this_cache, 724 struct frame_id *this_id) 725 { 726 struct dwarf2_frame_cache *cache = 727 dwarf2_frame_cache (next_frame, this_cache); 728 729 (*this_id) = frame_id_build (cache->cfa, frame_func_unwind (next_frame)); 730 } 731 732 static void 733 dwarf2_frame_prev_register (struct frame_info *next_frame, void **this_cache, 734 int regnum, int *optimizedp, 735 enum lval_type *lvalp, CORE_ADDR *addrp, 736 int *realnump, void *valuep) 737 { 738 struct gdbarch *gdbarch = get_frame_arch (next_frame); 739 struct dwarf2_frame_cache *cache = 740 dwarf2_frame_cache (next_frame, this_cache); 741 742 switch (cache->reg[regnum].how) 743 { 744 case DWARF2_FRAME_REG_UNDEFINED: 745 /* If CFI explicitly specified that the value isn't defined, 746 mark it as optimized away; the value isn't available. */ 747 *optimizedp = 1; 748 *lvalp = not_lval; 749 *addrp = 0; 750 *realnump = -1; 751 if (valuep) 752 { 753 /* In some cases, for example %eflags on the i386, we have 754 to provide a sane value, even though this register wasn't 755 saved. Assume we can get it from NEXT_FRAME. */ 756 frame_unwind_register (next_frame, regnum, valuep); 757 } 758 break; 759 760 case DWARF2_FRAME_REG_SAVED_OFFSET: 761 *optimizedp = 0; 762 *lvalp = lval_memory; 763 *addrp = cache->cfa + cache->reg[regnum].loc.offset; 764 *realnump = -1; 765 if (valuep) 766 { 767 /* Read the value in from memory. */ 768 read_memory (*addrp, valuep, register_size (gdbarch, regnum)); 769 } 770 break; 771 772 case DWARF2_FRAME_REG_SAVED_REG: 773 regnum = DWARF2_REG_TO_REGNUM (cache->reg[regnum].loc.reg); 774 frame_register_unwind (next_frame, regnum, 775 optimizedp, lvalp, addrp, realnump, valuep); 776 break; 777 778 case DWARF2_FRAME_REG_SAVED_EXP: 779 *optimizedp = 0; 780 *lvalp = lval_memory; 781 *addrp = execute_stack_op (cache->reg[regnum].loc.exp, 782 cache->reg[regnum].exp_len, 783 next_frame, cache->cfa); 784 *realnump = -1; 785 if (valuep) 786 { 787 /* Read the value in from memory. */ 788 read_memory (*addrp, valuep, register_size (gdbarch, regnum)); 789 } 790 break; 791 792 case DWARF2_FRAME_REG_UNSPECIFIED: 793 /* GCC, in its infinite wisdom decided to not provide unwind 794 information for registers that are "same value". Since 795 DWARF2 (3 draft 7) doesn't define such behavior, said 796 registers are actually undefined (which is different to CFI 797 "undefined"). Code above issues a complaint about this. 798 Here just fudge the books, assume GCC, and that the value is 799 more inner on the stack. */ 800 frame_register_unwind (next_frame, regnum, 801 optimizedp, lvalp, addrp, realnump, valuep); 802 break; 803 804 case DWARF2_FRAME_REG_SAME_VALUE: 805 frame_register_unwind (next_frame, regnum, 806 optimizedp, lvalp, addrp, realnump, valuep); 807 break; 808 809 case DWARF2_FRAME_REG_CFA: 810 *optimizedp = 0; 811 *lvalp = not_lval; 812 *addrp = 0; 813 *realnump = -1; 814 if (valuep) 815 { 816 /* Store the value. */ 817 store_typed_address (valuep, builtin_type_void_data_ptr, cache->cfa); 818 } 819 break; 820 821 default: 822 internal_error (__FILE__, __LINE__, "Unknown register rule."); 823 } 824 } 825 826 static const struct frame_unwind dwarf2_frame_unwind = 827 { 828 NORMAL_FRAME, 829 dwarf2_frame_this_id, 830 dwarf2_frame_prev_register 831 }; 832 833 const struct frame_unwind * 834 dwarf2_frame_sniffer (struct frame_info *next_frame) 835 { 836 /* Grab an address that is guarenteed to reside somewhere within the 837 function. frame_pc_unwind(), for a no-return next function, can 838 end up returning something past the end of this function's body. */ 839 CORE_ADDR block_addr = frame_unwind_address_in_block (next_frame); 840 if (dwarf2_frame_find_fde (&block_addr)) 841 return &dwarf2_frame_unwind; 842 843 return NULL; 844 } 845 846 847 /* There is no explicitly defined relationship between the CFA and the 848 location of frame's local variables and arguments/parameters. 849 Therefore, frame base methods on this page should probably only be 850 used as a last resort, just to avoid printing total garbage as a 851 response to the "info frame" command. */ 852 853 static CORE_ADDR 854 dwarf2_frame_base_address (struct frame_info *next_frame, void **this_cache) 855 { 856 struct dwarf2_frame_cache *cache = 857 dwarf2_frame_cache (next_frame, this_cache); 858 859 return cache->cfa; 860 } 861 862 static const struct frame_base dwarf2_frame_base = 863 { 864 &dwarf2_frame_unwind, 865 dwarf2_frame_base_address, 866 dwarf2_frame_base_address, 867 dwarf2_frame_base_address 868 }; 869 870 const struct frame_base * 871 dwarf2_frame_base_sniffer (struct frame_info *next_frame) 872 { 873 CORE_ADDR pc = frame_pc_unwind (next_frame); 874 if (dwarf2_frame_find_fde (&pc)) 875 return &dwarf2_frame_base; 876 877 return NULL; 878 } 879 880 /* A minimal decoding of DWARF2 compilation units. We only decode 881 what's needed to get to the call frame information. */ 882 883 struct comp_unit 884 { 885 /* Keep the bfd convenient. */ 886 bfd *abfd; 887 888 struct objfile *objfile; 889 890 /* Linked list of CIEs for this object. */ 891 struct dwarf2_cie *cie; 892 893 /* Pointer to the .debug_frame section loaded into memory. */ 894 char *dwarf_frame_buffer; 895 896 /* Length of the loaded .debug_frame section. */ 897 unsigned long dwarf_frame_size; 898 899 /* Pointer to the .debug_frame section. */ 900 asection *dwarf_frame_section; 901 902 /* Base for DW_EH_PE_datarel encodings. */ 903 bfd_vma dbase; 904 905 /* Base for DW_EH_PE_textrel encodings. */ 906 bfd_vma tbase; 907 }; 908 909 const struct objfile_data *dwarf2_frame_objfile_data; 910 911 static unsigned int 912 read_1_byte (bfd *bfd, char *buf) 913 { 914 return bfd_get_8 (abfd, (bfd_byte *) buf); 915 } 916 917 static unsigned int 918 read_4_bytes (bfd *abfd, char *buf) 919 { 920 return bfd_get_32 (abfd, (bfd_byte *) buf); 921 } 922 923 static ULONGEST 924 read_8_bytes (bfd *abfd, char *buf) 925 { 926 return bfd_get_64 (abfd, (bfd_byte *) buf); 927 } 928 929 static ULONGEST 930 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 931 { 932 ULONGEST result; 933 unsigned int num_read; 934 int shift; 935 unsigned char byte; 936 937 result = 0; 938 shift = 0; 939 num_read = 0; 940 941 do 942 { 943 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 944 buf++; 945 num_read++; 946 result |= ((byte & 0x7f) << shift); 947 shift += 7; 948 } 949 while (byte & 0x80); 950 951 *bytes_read_ptr = num_read; 952 953 return result; 954 } 955 956 static LONGEST 957 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 958 { 959 LONGEST result; 960 int shift; 961 unsigned int num_read; 962 unsigned char byte; 963 964 result = 0; 965 shift = 0; 966 num_read = 0; 967 968 do 969 { 970 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 971 buf++; 972 num_read++; 973 result |= ((byte & 0x7f) << shift); 974 shift += 7; 975 } 976 while (byte & 0x80); 977 978 if ((shift < 32) && (byte & 0x40)) 979 result |= -(1 << shift); 980 981 *bytes_read_ptr = num_read; 982 983 return result; 984 } 985 986 static ULONGEST 987 read_initial_length (bfd *abfd, char *buf, unsigned int *bytes_read_ptr) 988 { 989 LONGEST result; 990 991 result = bfd_get_32 (abfd, (bfd_byte *) buf); 992 if (result == 0xffffffff) 993 { 994 result = bfd_get_64 (abfd, (bfd_byte *) buf + 4); 995 *bytes_read_ptr = 12; 996 } 997 else 998 *bytes_read_ptr = 4; 999 1000 return result; 1001 } 1002 1003 1004 /* Pointer encoding helper functions. */ 1005 1006 /* GCC supports exception handling based on DWARF2 CFI. However, for 1007 technical reasons, it encodes addresses in its FDE's in a different 1008 way. Several "pointer encodings" are supported. The encoding 1009 that's used for a particular FDE is determined by the 'R' 1010 augmentation in the associated CIE. The argument of this 1011 augmentation is a single byte. 1012 1013 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a 1014 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether 1015 the address is signed or unsigned. Bits 4, 5 and 6 encode how the 1016 address should be interpreted (absolute, relative to the current 1017 position in the FDE, ...). Bit 7, indicates that the address 1018 should be dereferenced. */ 1019 1020 static unsigned char 1021 encoding_for_size (unsigned int size) 1022 { 1023 switch (size) 1024 { 1025 case 2: 1026 return DW_EH_PE_udata2; 1027 case 4: 1028 return DW_EH_PE_udata4; 1029 case 8: 1030 return DW_EH_PE_udata8; 1031 default: 1032 internal_error (__FILE__, __LINE__, "Unsupported address size"); 1033 } 1034 } 1035 1036 static unsigned int 1037 size_of_encoded_value (unsigned char encoding) 1038 { 1039 if (encoding == DW_EH_PE_omit) 1040 return 0; 1041 1042 switch (encoding & 0x07) 1043 { 1044 case DW_EH_PE_absptr: 1045 return TYPE_LENGTH (builtin_type_void_data_ptr); 1046 case DW_EH_PE_udata2: 1047 return 2; 1048 case DW_EH_PE_udata4: 1049 return 4; 1050 case DW_EH_PE_udata8: 1051 return 8; 1052 default: 1053 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1054 } 1055 } 1056 1057 static CORE_ADDR 1058 read_encoded_value (struct comp_unit *unit, unsigned char encoding, 1059 char *buf, unsigned int *bytes_read_ptr) 1060 { 1061 int ptr_len = size_of_encoded_value (DW_EH_PE_absptr); 1062 ptrdiff_t offset; 1063 CORE_ADDR base; 1064 1065 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for 1066 FDE's. */ 1067 if (encoding & DW_EH_PE_indirect) 1068 internal_error (__FILE__, __LINE__, 1069 "Unsupported encoding: DW_EH_PE_indirect"); 1070 1071 *bytes_read_ptr = 0; 1072 1073 switch (encoding & 0x70) 1074 { 1075 case DW_EH_PE_absptr: 1076 base = 0; 1077 break; 1078 case DW_EH_PE_pcrel: 1079 base = bfd_get_section_vma (unit->bfd, unit->dwarf_frame_section); 1080 base += (buf - unit->dwarf_frame_buffer); 1081 break; 1082 case DW_EH_PE_datarel: 1083 base = unit->dbase; 1084 break; 1085 case DW_EH_PE_textrel: 1086 base = unit->tbase; 1087 break; 1088 case DW_EH_PE_funcrel: 1089 /* FIXME: kettenis/20040501: For now just pretend 1090 DW_EH_PE_funcrel is equivalent to DW_EH_PE_absptr. For 1091 reading the initial location of an FDE it should be treated 1092 as such, and currently that's the only place where this code 1093 is used. */ 1094 base = 0; 1095 break; 1096 case DW_EH_PE_aligned: 1097 base = 0; 1098 offset = buf - unit->dwarf_frame_buffer; 1099 if ((offset % ptr_len) != 0) 1100 { 1101 *bytes_read_ptr = ptr_len - (offset % ptr_len); 1102 buf += *bytes_read_ptr; 1103 } 1104 break; 1105 default: 1106 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1107 } 1108 1109 if ((encoding & 0x07) == 0x00) 1110 encoding |= encoding_for_size (ptr_len); 1111 1112 switch (encoding & 0x0f) 1113 { 1114 case DW_EH_PE_udata2: 1115 *bytes_read_ptr += 2; 1116 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); 1117 case DW_EH_PE_udata4: 1118 *bytes_read_ptr += 4; 1119 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); 1120 case DW_EH_PE_udata8: 1121 *bytes_read_ptr += 8; 1122 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); 1123 case DW_EH_PE_sdata2: 1124 *bytes_read_ptr += 2; 1125 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); 1126 case DW_EH_PE_sdata4: 1127 *bytes_read_ptr += 4; 1128 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); 1129 case DW_EH_PE_sdata8: 1130 *bytes_read_ptr += 8; 1131 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); 1132 default: 1133 internal_error (__FILE__, __LINE__, "Invalid or unsupported encoding"); 1134 } 1135 } 1136 1137 1138 /* GCC uses a single CIE for all FDEs in a .debug_frame section. 1139 That's why we use a simple linked list here. */ 1140 1141 static struct dwarf2_cie * 1142 find_cie (struct comp_unit *unit, ULONGEST cie_pointer) 1143 { 1144 struct dwarf2_cie *cie = unit->cie; 1145 1146 while (cie) 1147 { 1148 if (cie->cie_pointer == cie_pointer) 1149 return cie; 1150 1151 cie = cie->next; 1152 } 1153 1154 return NULL; 1155 } 1156 1157 static void 1158 add_cie (struct comp_unit *unit, struct dwarf2_cie *cie) 1159 { 1160 cie->next = unit->cie; 1161 unit->cie = cie; 1162 } 1163 1164 /* Find the FDE for *PC. Return a pointer to the FDE, and store the 1165 inital location associated with it into *PC. */ 1166 1167 static struct dwarf2_fde * 1168 dwarf2_frame_find_fde (CORE_ADDR *pc) 1169 { 1170 struct objfile *objfile; 1171 1172 ALL_OBJFILES (objfile) 1173 { 1174 struct dwarf2_fde *fde; 1175 CORE_ADDR offset; 1176 1177 fde = objfile_data (objfile, dwarf2_frame_objfile_data); 1178 if (fde == NULL) 1179 continue; 1180 1181 gdb_assert (objfile->section_offsets); 1182 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 1183 1184 while (fde) 1185 { 1186 if (*pc >= fde->initial_location + offset 1187 && *pc < fde->initial_location + offset + fde->address_range) 1188 { 1189 *pc = fde->initial_location + offset; 1190 return fde; 1191 } 1192 1193 fde = fde->next; 1194 } 1195 } 1196 1197 return NULL; 1198 } 1199 1200 static void 1201 add_fde (struct comp_unit *unit, struct dwarf2_fde *fde) 1202 { 1203 fde->next = objfile_data (unit->objfile, dwarf2_frame_objfile_data); 1204 set_objfile_data (unit->objfile, dwarf2_frame_objfile_data, fde); 1205 } 1206 1207 #ifdef CC_HAS_LONG_LONG 1208 #define DW64_CIE_ID 0xffffffffffffffffULL 1209 #else 1210 #define DW64_CIE_ID ~0 1211 #endif 1212 1213 static char *decode_frame_entry (struct comp_unit *unit, char *start, 1214 int eh_frame_p); 1215 1216 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise 1217 the next byte to be processed. */ 1218 static char * 1219 decode_frame_entry_1 (struct comp_unit *unit, char *start, int eh_frame_p) 1220 { 1221 char *buf; 1222 LONGEST length; 1223 unsigned int bytes_read; 1224 int dwarf64_p; 1225 ULONGEST cie_id; 1226 ULONGEST cie_pointer; 1227 char *end; 1228 1229 buf = start; 1230 length = read_initial_length (unit->abfd, buf, &bytes_read); 1231 buf += bytes_read; 1232 end = buf + length; 1233 1234 /* Are we still within the section? */ 1235 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) 1236 return NULL; 1237 1238 if (length == 0) 1239 return end; 1240 1241 /* Distinguish between 32 and 64-bit encoded frame info. */ 1242 dwarf64_p = (bytes_read == 12); 1243 1244 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ 1245 if (eh_frame_p) 1246 cie_id = 0; 1247 else if (dwarf64_p) 1248 cie_id = DW64_CIE_ID; 1249 else 1250 cie_id = DW_CIE_ID; 1251 1252 if (dwarf64_p) 1253 { 1254 cie_pointer = read_8_bytes (unit->abfd, buf); 1255 buf += 8; 1256 } 1257 else 1258 { 1259 cie_pointer = read_4_bytes (unit->abfd, buf); 1260 buf += 4; 1261 } 1262 1263 if (cie_pointer == cie_id) 1264 { 1265 /* This is a CIE. */ 1266 struct dwarf2_cie *cie; 1267 char *augmentation; 1268 unsigned int cie_version; 1269 1270 /* Record the offset into the .debug_frame section of this CIE. */ 1271 cie_pointer = start - unit->dwarf_frame_buffer; 1272 1273 /* Check whether we've already read it. */ 1274 if (find_cie (unit, cie_pointer)) 1275 return end; 1276 1277 cie = (struct dwarf2_cie *) 1278 obstack_alloc (&unit->objfile->objfile_obstack, 1279 sizeof (struct dwarf2_cie)); 1280 cie->initial_instructions = NULL; 1281 cie->cie_pointer = cie_pointer; 1282 1283 /* The encoding for FDE's in a normal .debug_frame section 1284 depends on the target address size. */ 1285 cie->encoding = DW_EH_PE_absptr; 1286 1287 /* Check version number. */ 1288 cie_version = read_1_byte (unit->abfd, buf); 1289 if (cie_version != 1 && cie_version != 3) 1290 return NULL; 1291 buf += 1; 1292 1293 /* Interpret the interesting bits of the augmentation. */ 1294 augmentation = buf; 1295 buf = augmentation + strlen (augmentation) + 1; 1296 1297 /* The GCC 2.x "eh" augmentation has a pointer immediately 1298 following the augmentation string, so it must be handled 1299 first. */ 1300 if (augmentation[0] == 'e' && augmentation[1] == 'h') 1301 { 1302 /* Skip. */ 1303 buf += TYPE_LENGTH (builtin_type_void_data_ptr); 1304 augmentation += 2; 1305 } 1306 1307 cie->code_alignment_factor = 1308 read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1309 buf += bytes_read; 1310 1311 cie->data_alignment_factor = 1312 read_signed_leb128 (unit->abfd, buf, &bytes_read); 1313 buf += bytes_read; 1314 1315 if (cie_version == 1) 1316 { 1317 cie->return_address_register = read_1_byte (unit->abfd, buf); 1318 bytes_read = 1; 1319 } 1320 else 1321 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf, 1322 &bytes_read); 1323 buf += bytes_read; 1324 1325 cie->saw_z_augmentation = (*augmentation == 'z'); 1326 if (cie->saw_z_augmentation) 1327 { 1328 ULONGEST length; 1329 1330 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1331 buf += bytes_read; 1332 if (buf > end) 1333 return NULL; 1334 cie->initial_instructions = buf + length; 1335 augmentation++; 1336 } 1337 1338 while (*augmentation) 1339 { 1340 /* "L" indicates a byte showing how the LSDA pointer is encoded. */ 1341 if (*augmentation == 'L') 1342 { 1343 /* Skip. */ 1344 buf++; 1345 augmentation++; 1346 } 1347 1348 /* "R" indicates a byte indicating how FDE addresses are encoded. */ 1349 else if (*augmentation == 'R') 1350 { 1351 cie->encoding = *buf++; 1352 augmentation++; 1353 } 1354 1355 /* "P" indicates a personality routine in the CIE augmentation. */ 1356 else if (*augmentation == 'P') 1357 { 1358 /* Skip. */ 1359 buf += size_of_encoded_value (*buf++); 1360 augmentation++; 1361 } 1362 1363 /* Otherwise we have an unknown augmentation. 1364 Bail out unless we saw a 'z' prefix. */ 1365 else 1366 { 1367 if (cie->initial_instructions == NULL) 1368 return end; 1369 1370 /* Skip unknown augmentations. */ 1371 buf = cie->initial_instructions; 1372 break; 1373 } 1374 } 1375 1376 cie->initial_instructions = buf; 1377 cie->end = end; 1378 1379 add_cie (unit, cie); 1380 } 1381 else 1382 { 1383 /* This is a FDE. */ 1384 struct dwarf2_fde *fde; 1385 1386 /* In an .eh_frame section, the CIE pointer is the delta between the 1387 address within the FDE where the CIE pointer is stored and the 1388 address of the CIE. Convert it to an offset into the .eh_frame 1389 section. */ 1390 if (eh_frame_p) 1391 { 1392 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; 1393 cie_pointer -= (dwarf64_p ? 8 : 4); 1394 } 1395 1396 /* In either case, validate the result is still within the section. */ 1397 if (cie_pointer >= unit->dwarf_frame_size) 1398 return NULL; 1399 1400 fde = (struct dwarf2_fde *) 1401 obstack_alloc (&unit->objfile->objfile_obstack, 1402 sizeof (struct dwarf2_fde)); 1403 fde->cie = find_cie (unit, cie_pointer); 1404 if (fde->cie == NULL) 1405 { 1406 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, 1407 eh_frame_p); 1408 fde->cie = find_cie (unit, cie_pointer); 1409 } 1410 1411 gdb_assert (fde->cie != NULL); 1412 1413 fde->initial_location = 1414 read_encoded_value (unit, fde->cie->encoding, buf, &bytes_read); 1415 buf += bytes_read; 1416 1417 fde->address_range = 1418 read_encoded_value (unit, fde->cie->encoding & 0x0f, buf, &bytes_read); 1419 buf += bytes_read; 1420 1421 /* A 'z' augmentation in the CIE implies the presence of an 1422 augmentation field in the FDE as well. The only thing known 1423 to be in here at present is the LSDA entry for EH. So we 1424 can skip the whole thing. */ 1425 if (fde->cie->saw_z_augmentation) 1426 { 1427 ULONGEST length; 1428 1429 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1430 buf += bytes_read + length; 1431 if (buf > end) 1432 return NULL; 1433 } 1434 1435 fde->instructions = buf; 1436 fde->end = end; 1437 1438 add_fde (unit, fde); 1439 } 1440 1441 return end; 1442 } 1443 1444 /* Read a CIE or FDE in BUF and decode it. */ 1445 static char * 1446 decode_frame_entry (struct comp_unit *unit, char *start, int eh_frame_p) 1447 { 1448 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; 1449 char *ret; 1450 const char *msg; 1451 ptrdiff_t start_offset; 1452 1453 while (1) 1454 { 1455 ret = decode_frame_entry_1 (unit, start, eh_frame_p); 1456 if (ret != NULL) 1457 break; 1458 1459 /* We have corrupt input data of some form. */ 1460 1461 /* ??? Try, weakly, to work around compiler/assembler/linker bugs 1462 and mismatches wrt padding and alignment of debug sections. */ 1463 /* Note that there is no requirement in the standard for any 1464 alignment at all in the frame unwind sections. Testing for 1465 alignment before trying to interpret data would be incorrect. 1466 1467 However, GCC traditionally arranged for frame sections to be 1468 sized such that the FDE length and CIE fields happen to be 1469 aligned (in theory, for performance). This, unfortunately, 1470 was done with .align directives, which had the side effect of 1471 forcing the section to be aligned by the linker. 1472 1473 This becomes a problem when you have some other producer that 1474 creates frame sections that are not as strictly aligned. That 1475 produces a hole in the frame info that gets filled by the 1476 linker with zeros. 1477 1478 The GCC behaviour is arguably a bug, but it's effectively now 1479 part of the ABI, so we're now stuck with it, at least at the 1480 object file level. A smart linker may decide, in the process 1481 of compressing duplicate CIE information, that it can rewrite 1482 the entire output section without this extra padding. */ 1483 1484 start_offset = start - unit->dwarf_frame_buffer; 1485 if (workaround < ALIGN4 && (start_offset & 3) != 0) 1486 { 1487 start += 4 - (start_offset & 3); 1488 workaround = ALIGN4; 1489 continue; 1490 } 1491 if (workaround < ALIGN8 && (start_offset & 7) != 0) 1492 { 1493 start += 8 - (start_offset & 7); 1494 workaround = ALIGN8; 1495 continue; 1496 } 1497 1498 /* Nothing left to try. Arrange to return as if we've consumed 1499 the entire input section. Hopefully we'll get valid info from 1500 the other of .debug_frame/.eh_frame. */ 1501 workaround = FAIL; 1502 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; 1503 break; 1504 } 1505 1506 switch (workaround) 1507 { 1508 case NONE: 1509 break; 1510 1511 case ALIGN4: 1512 complaint (&symfile_complaints, 1513 "Corrupt data in %s:%s; align 4 workaround apparently succeeded", 1514 unit->dwarf_frame_section->owner->filename, 1515 unit->dwarf_frame_section->name); 1516 break; 1517 1518 case ALIGN8: 1519 complaint (&symfile_complaints, 1520 "Corrupt data in %s:%s; align 8 workaround apparently succeeded", 1521 unit->dwarf_frame_section->owner->filename, 1522 unit->dwarf_frame_section->name); 1523 break; 1524 1525 default: 1526 complaint (&symfile_complaints, 1527 "Corrupt data in %s:%s", 1528 unit->dwarf_frame_section->owner->filename, 1529 unit->dwarf_frame_section->name); 1530 break; 1531 } 1532 1533 return ret; 1534 } 1535 1536 1537 /* FIXME: kettenis/20030504: This still needs to be integrated with 1538 dwarf2read.c in a better way. */ 1539 1540 /* Imported from dwarf2read.c. */ 1541 extern asection *dwarf_frame_section; 1542 extern asection *dwarf_eh_frame_section; 1543 1544 /* Imported from dwarf2read.c. */ 1545 extern char *dwarf2_read_section (struct objfile *objfile, asection *sectp); 1546 1547 void 1548 dwarf2_build_frame_info (struct objfile *objfile) 1549 { 1550 struct comp_unit unit; 1551 char *frame_ptr; 1552 1553 /* Build a minimal decoding of the DWARF2 compilation unit. */ 1554 unit.abfd = objfile->obfd; 1555 unit.objfile = objfile; 1556 unit.dbase = 0; 1557 unit.tbase = 0; 1558 1559 /* First add the information from the .eh_frame section. That way, 1560 the FDEs from that section are searched last. */ 1561 if (dwarf_eh_frame_section) 1562 { 1563 asection *got, *txt; 1564 1565 unit.cie = NULL; 1566 unit.dwarf_frame_buffer = dwarf2_read_section (objfile, 1567 dwarf_eh_frame_section); 1568 1569 unit.dwarf_frame_size = bfd_get_section_size (dwarf_eh_frame_section); 1570 unit.dwarf_frame_section = dwarf_eh_frame_section; 1571 1572 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base 1573 that is used for the i386/amd64 target, which currently is 1574 the only target in GCC that supports/uses the 1575 DW_EH_PE_datarel encoding. */ 1576 got = bfd_get_section_by_name (unit.abfd, ".got"); 1577 if (got) 1578 unit.dbase = got->vma; 1579 1580 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 1581 so far. */ 1582 txt = bfd_get_section_by_name (unit.abfd, ".text"); 1583 if (txt) 1584 unit.tbase = txt->vma; 1585 1586 frame_ptr = unit.dwarf_frame_buffer; 1587 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size) 1588 frame_ptr = decode_frame_entry (&unit, frame_ptr, 1); 1589 } 1590 1591 if (dwarf_frame_section) 1592 { 1593 unit.cie = NULL; 1594 unit.dwarf_frame_buffer = dwarf2_read_section (objfile, 1595 dwarf_frame_section); 1596 unit.dwarf_frame_size = bfd_get_section_size (dwarf_frame_section); 1597 unit.dwarf_frame_section = dwarf_frame_section; 1598 1599 frame_ptr = unit.dwarf_frame_buffer; 1600 while (frame_ptr < unit.dwarf_frame_buffer + unit.dwarf_frame_size) 1601 frame_ptr = decode_frame_entry (&unit, frame_ptr, 0); 1602 } 1603 } 1604 1605 /* Provide a prototype to silence -Wmissing-prototypes. */ 1606 void _initialize_dwarf2_frame (void); 1607 1608 void 1609 _initialize_dwarf2_frame (void) 1610 { 1611 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); 1612 dwarf2_frame_objfile_data = register_objfile_data (); 1613 } 1614