1 /* Support for printing Fortran values for GDB, the GNU debugger. 2 Copyright 1993, 1994, 1995 Free Software Foundation, Inc. 3 Contributed by Motorola. Adapted from the C definitions by Farooq Butt 4 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 21 22 #include "defs.h" 23 #include "gdb_string.h" 24 #include "symtab.h" 25 #include "gdbtypes.h" 26 #include "expression.h" 27 #include "value.h" 28 #include "demangle.h" 29 #include "valprint.h" 30 #include "language.h" 31 #include "f-lang.h" 32 #include "frame.h" 33 #include "gdbcore.h" 34 #include "command.h" 35 36 #if 0 37 static int there_is_a_visible_common_named PARAMS ((char *)); 38 #endif 39 40 static void info_common_command PARAMS ((char *, int)); 41 static void list_all_visible_commons PARAMS ((char *)); 42 static void f77_print_array PARAMS ((struct type *, char *, CORE_ADDR, 43 FILE *, int, int, int, 44 enum val_prettyprint)); 45 static void f77_print_array_1 PARAMS ((int, int, struct type *, char *, 46 CORE_ADDR, FILE *, int, int, int, 47 enum val_prettyprint)); 48 static void f77_create_arrayprint_offset_tbl PARAMS ((struct type *, FILE *)); 49 static void f77_get_dynamic_length_of_aggregate PARAMS ((struct type *)); 50 51 int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2]; 52 53 /* Array which holds offsets to be applied to get a row's elements 54 for a given array. Array also holds the size of each subarray. */ 55 56 /* The following macro gives us the size of the nth dimension, Where 57 n is 1 based. */ 58 59 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1]) 60 61 /* The following gives us the offset for row n where n is 1-based. */ 62 63 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0]) 64 65 int 66 f77_get_dynamic_lowerbound (type, lower_bound) 67 struct type *type; 68 int *lower_bound; 69 { 70 CORE_ADDR current_frame_addr; 71 CORE_ADDR ptr_to_lower_bound; 72 73 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type)) 74 { 75 case BOUND_BY_VALUE_ON_STACK: 76 current_frame_addr = selected_frame->frame; 77 if (current_frame_addr > 0) 78 { 79 *lower_bound = 80 read_memory_integer (current_frame_addr + 81 TYPE_ARRAY_LOWER_BOUND_VALUE (type), 82 4); 83 } 84 else 85 { 86 *lower_bound = DEFAULT_LOWER_BOUND; 87 return BOUND_FETCH_ERROR; 88 } 89 break; 90 91 case BOUND_SIMPLE: 92 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type); 93 break; 94 95 case BOUND_CANNOT_BE_DETERMINED: 96 error ("Lower bound may not be '*' in F77"); 97 break; 98 99 case BOUND_BY_REF_ON_STACK: 100 current_frame_addr = selected_frame->frame; 101 if (current_frame_addr > 0) 102 { 103 ptr_to_lower_bound = 104 read_memory_integer (current_frame_addr + 105 TYPE_ARRAY_LOWER_BOUND_VALUE (type), 106 4); 107 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4); 108 } 109 else 110 { 111 *lower_bound = DEFAULT_LOWER_BOUND; 112 return BOUND_FETCH_ERROR; 113 } 114 break; 115 116 case BOUND_BY_REF_IN_REG: 117 case BOUND_BY_VALUE_IN_REG: 118 default: 119 error ("??? unhandled dynamic array bound type ???"); 120 break; 121 } 122 return BOUND_FETCH_OK; 123 } 124 125 int 126 f77_get_dynamic_upperbound (type, upper_bound) 127 struct type *type; 128 int *upper_bound; 129 { 130 CORE_ADDR current_frame_addr = 0; 131 CORE_ADDR ptr_to_upper_bound; 132 133 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type)) 134 { 135 case BOUND_BY_VALUE_ON_STACK: 136 current_frame_addr = selected_frame->frame; 137 if (current_frame_addr > 0) 138 { 139 *upper_bound = 140 read_memory_integer (current_frame_addr + 141 TYPE_ARRAY_UPPER_BOUND_VALUE (type), 142 4); 143 } 144 else 145 { 146 *upper_bound = DEFAULT_UPPER_BOUND; 147 return BOUND_FETCH_ERROR; 148 } 149 break; 150 151 case BOUND_SIMPLE: 152 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type); 153 break; 154 155 case BOUND_CANNOT_BE_DETERMINED: 156 /* we have an assumed size array on our hands. Assume that 157 upper_bound == lower_bound so that we show at least 158 1 element.If the user wants to see more elements, let 159 him manually ask for 'em and we'll subscript the 160 array and show him */ 161 f77_get_dynamic_lowerbound (type, upper_bound); 162 break; 163 164 case BOUND_BY_REF_ON_STACK: 165 current_frame_addr = selected_frame->frame; 166 if (current_frame_addr > 0) 167 { 168 ptr_to_upper_bound = 169 read_memory_integer (current_frame_addr + 170 TYPE_ARRAY_UPPER_BOUND_VALUE (type), 171 4); 172 *upper_bound = read_memory_integer(ptr_to_upper_bound, 4); 173 } 174 else 175 { 176 *upper_bound = DEFAULT_UPPER_BOUND; 177 return BOUND_FETCH_ERROR; 178 } 179 break; 180 181 case BOUND_BY_REF_IN_REG: 182 case BOUND_BY_VALUE_IN_REG: 183 default: 184 error ("??? unhandled dynamic array bound type ???"); 185 break; 186 } 187 return BOUND_FETCH_OK; 188 } 189 190 /* Obtain F77 adjustable array dimensions */ 191 192 static void 193 f77_get_dynamic_length_of_aggregate (type) 194 struct type *type; 195 { 196 int upper_bound = -1; 197 int lower_bound = 1; 198 int retcode; 199 200 /* Recursively go all the way down into a possibly multi-dimensional 201 F77 array and get the bounds. For simple arrays, this is pretty 202 easy but when the bounds are dynamic, we must be very careful 203 to add up all the lengths correctly. Not doing this right 204 will lead to horrendous-looking arrays in parameter lists. 205 206 This function also works for strings which behave very 207 similarly to arrays. */ 208 209 if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY 210 || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING) 211 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type)); 212 213 /* Recursion ends here, start setting up lengths. */ 214 retcode = f77_get_dynamic_lowerbound (type, &lower_bound); 215 if (retcode == BOUND_FETCH_ERROR) 216 error ("Cannot obtain valid array lower bound"); 217 218 retcode = f77_get_dynamic_upperbound (type, &upper_bound); 219 if (retcode == BOUND_FETCH_ERROR) 220 error ("Cannot obtain valid array upper bound"); 221 222 /* Patch in a valid length value. */ 223 224 TYPE_LENGTH (type) = 225 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type))); 226 } 227 228 /* Function that sets up the array offset,size table for the array 229 type "type". */ 230 231 static void 232 f77_create_arrayprint_offset_tbl (type, stream) 233 struct type *type; 234 FILE *stream; 235 { 236 struct type *tmp_type; 237 int eltlen; 238 int ndimen = 1; 239 int upper, lower, retcode; 240 241 tmp_type = type; 242 243 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)) 244 { 245 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED) 246 fprintf_filtered (stream, "<assumed size array> "); 247 248 retcode = f77_get_dynamic_upperbound (tmp_type, &upper); 249 if (retcode == BOUND_FETCH_ERROR) 250 error ("Cannot obtain dynamic upper bound"); 251 252 retcode = f77_get_dynamic_lowerbound(tmp_type,&lower); 253 if (retcode == BOUND_FETCH_ERROR) 254 error("Cannot obtain dynamic lower bound"); 255 256 F77_DIM_SIZE (ndimen) = upper - lower + 1; 257 258 tmp_type = TYPE_TARGET_TYPE (tmp_type); 259 ndimen++; 260 } 261 262 /* Now we multiply eltlen by all the offsets, so that later we 263 can print out array elements correctly. Up till now we 264 know an offset to apply to get the item but we also 265 have to know how much to add to get to the next item */ 266 267 ndimen--; 268 eltlen = TYPE_LENGTH (tmp_type); 269 F77_DIM_OFFSET (ndimen) = eltlen; 270 while (--ndimen > 0) 271 { 272 eltlen *= F77_DIM_SIZE (ndimen + 1); 273 F77_DIM_OFFSET (ndimen) = eltlen; 274 } 275 } 276 277 /* Actual function which prints out F77 arrays, Valaddr == address in 278 the superior. Address == the address in the inferior. */ 279 280 static void 281 f77_print_array_1 (nss, ndimensions, type, valaddr, address, 282 stream, format, deref_ref, recurse, pretty) 283 int nss; 284 int ndimensions; 285 struct type *type; 286 char *valaddr; 287 CORE_ADDR address; 288 FILE *stream; 289 int format; 290 int deref_ref; 291 int recurse; 292 enum val_prettyprint pretty; 293 { 294 int i; 295 296 if (nss != ndimensions) 297 { 298 for (i = 0; i< F77_DIM_SIZE(nss); i++) 299 { 300 fprintf_filtered (stream, "( "); 301 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type), 302 valaddr + i * F77_DIM_OFFSET (nss), 303 address + i * F77_DIM_OFFSET (nss), 304 stream, format, deref_ref, recurse, pretty); 305 fprintf_filtered (stream, ") "); 306 } 307 } 308 else 309 { 310 for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++) 311 { 312 val_print (TYPE_TARGET_TYPE (type), 313 valaddr + i * F77_DIM_OFFSET (ndimensions), 314 address + i * F77_DIM_OFFSET (ndimensions), 315 stream, format, deref_ref, recurse, pretty); 316 317 if (i != (F77_DIM_SIZE (nss) - 1)) 318 fprintf_filtered (stream, ", "); 319 320 if (i == print_max - 1) 321 fprintf_filtered (stream, "..."); 322 } 323 } 324 } 325 326 /* This function gets called to print an F77 array, we set up some 327 stuff and then immediately call f77_print_array_1() */ 328 329 static void 330 f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse, 331 pretty) 332 struct type *type; 333 char *valaddr; 334 CORE_ADDR address; 335 FILE *stream; 336 int format; 337 int deref_ref; 338 int recurse; 339 enum val_prettyprint pretty; 340 { 341 int ndimensions; 342 343 ndimensions = calc_f77_array_dims (type); 344 345 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0) 346 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)", 347 ndimensions, MAX_FORTRAN_DIMS); 348 349 /* Since F77 arrays are stored column-major, we set up an 350 offset table to get at the various row's elements. The 351 offset table contains entries for both offset and subarray size. */ 352 353 f77_create_arrayprint_offset_tbl (type, stream); 354 355 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format, 356 deref_ref, recurse, pretty); 357 } 358 359 360 /* Print data of type TYPE located at VALADDR (within GDB), which came from 361 the inferior at address ADDRESS, onto stdio stream STREAM according to 362 FORMAT (a letter or 0 for natural format). The data at VALADDR is in 363 target byte order. 364 365 If the data are a string pointer, returns the number of string characters 366 printed. 367 368 If DEREF_REF is nonzero, then dereference references, otherwise just print 369 them like pointers. 370 371 The PRETTY parameter controls prettyprinting. */ 372 373 int 374 f_val_print (type, valaddr, address, stream, format, deref_ref, recurse, 375 pretty) 376 struct type *type; 377 char *valaddr; 378 CORE_ADDR address; 379 FILE *stream; 380 int format; 381 int deref_ref; 382 int recurse; 383 enum val_prettyprint pretty; 384 { 385 register unsigned int i = 0; /* Number of characters printed */ 386 struct type *elttype; 387 LONGEST val; 388 CORE_ADDR addr; 389 390 CHECK_TYPEDEF (type); 391 switch (TYPE_CODE (type)) 392 { 393 case TYPE_CODE_STRING: 394 f77_get_dynamic_length_of_aggregate (type); 395 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 0); 396 break; 397 398 case TYPE_CODE_ARRAY: 399 fprintf_filtered (stream, "("); 400 f77_print_array (type, valaddr, address, stream, format, 401 deref_ref, recurse, pretty); 402 fprintf_filtered (stream, ")"); 403 break; 404 #if 0 405 /* Array of unspecified length: treat like pointer to first elt. */ 406 valaddr = (char *) &address; 407 /* FALL THROUGH */ 408 #endif 409 case TYPE_CODE_PTR: 410 if (format && format != 's') 411 { 412 print_scalar_formatted (valaddr, type, format, 0, stream); 413 break; 414 } 415 else 416 { 417 addr = unpack_pointer (type, valaddr); 418 elttype = check_typedef (TYPE_TARGET_TYPE (type)); 419 420 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) 421 { 422 /* Try to print what function it points to. */ 423 print_address_demangle (addr, stream, demangle); 424 /* Return value is irrelevant except for string pointers. */ 425 return 0; 426 } 427 428 if (addressprint && format != 's') 429 fprintf_filtered (stream, "0x%x", addr); 430 431 /* For a pointer to char or unsigned char, also print the string 432 pointed to, unless pointer is null. */ 433 if (TYPE_LENGTH (elttype) == 1 434 && TYPE_CODE (elttype) == TYPE_CODE_INT 435 && (format == 0 || format == 's') 436 && addr != 0) 437 i = val_print_string (addr, 0, stream); 438 439 /* Return number of characters printed, plus one for the 440 terminating null if we have "reached the end". */ 441 return (i + (print_max && i != print_max)); 442 } 443 break; 444 445 case TYPE_CODE_FUNC: 446 if (format) 447 { 448 print_scalar_formatted (valaddr, type, format, 0, stream); 449 break; 450 } 451 /* FIXME, we should consider, at least for ANSI C language, eliminating 452 the distinction made between FUNCs and POINTERs to FUNCs. */ 453 fprintf_filtered (stream, "{"); 454 type_print (type, "", stream, -1); 455 fprintf_filtered (stream, "} "); 456 /* Try to print what function it points to, and its address. */ 457 print_address_demangle (address, stream, demangle); 458 break; 459 460 case TYPE_CODE_INT: 461 format = format ? format : output_format; 462 if (format) 463 print_scalar_formatted (valaddr, type, format, 0, stream); 464 else 465 { 466 val_print_type_code_int (type, valaddr, stream); 467 /* C and C++ has no single byte int type, char is used instead. 468 Since we don't know whether the value is really intended to 469 be used as an integer or a character, print the character 470 equivalent as well. */ 471 if (TYPE_LENGTH (type) == 1) 472 { 473 fputs_filtered (" ", stream); 474 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr), 475 stream); 476 } 477 } 478 break; 479 480 case TYPE_CODE_FLT: 481 if (format) 482 print_scalar_formatted (valaddr, type, format, 0, stream); 483 else 484 print_floating (valaddr, type, stream); 485 break; 486 487 case TYPE_CODE_VOID: 488 fprintf_filtered (stream, "VOID"); 489 break; 490 491 case TYPE_CODE_ERROR: 492 fprintf_filtered (stream, "<error type>"); 493 break; 494 495 case TYPE_CODE_RANGE: 496 /* FIXME, we should not ever have to print one of these yet. */ 497 fprintf_filtered (stream, "<range type>"); 498 break; 499 500 case TYPE_CODE_BOOL: 501 format = format ? format : output_format; 502 if (format) 503 print_scalar_formatted (valaddr, type, format, 0, stream); 504 else 505 { 506 val = 0; 507 switch (TYPE_LENGTH(type)) 508 { 509 case 1: 510 val = unpack_long (builtin_type_f_logical_s1, valaddr); 511 break ; 512 513 case 2: 514 val = unpack_long (builtin_type_f_logical_s2, valaddr); 515 break ; 516 517 case 4: 518 val = unpack_long (builtin_type_f_logical, valaddr); 519 break ; 520 521 default: 522 error ("Logicals of length %d bytes not supported", 523 TYPE_LENGTH (type)); 524 525 } 526 527 if (val == 0) 528 fprintf_filtered (stream, ".FALSE."); 529 else 530 if (val == 1) 531 fprintf_filtered (stream, ".TRUE."); 532 else 533 /* Not a legitimate logical type, print as an integer. */ 534 { 535 /* Bash the type code temporarily. */ 536 TYPE_CODE (type) = TYPE_CODE_INT; 537 f_val_print (type, valaddr, address, stream, format, 538 deref_ref, recurse, pretty); 539 /* Restore the type code so later uses work as intended. */ 540 TYPE_CODE (type) = TYPE_CODE_BOOL; 541 } 542 } 543 break; 544 545 case TYPE_CODE_COMPLEX: 546 switch (TYPE_LENGTH (type)) 547 { 548 case 8: type = builtin_type_f_real; break; 549 case 16: type = builtin_type_f_real_s8; break; 550 case 32: type = builtin_type_f_real_s16; break; 551 default: 552 error ("Cannot print out complex*%d variables", TYPE_LENGTH(type)); 553 } 554 fputs_filtered ("(", stream); 555 print_floating (valaddr, type, stream); 556 fputs_filtered (",", stream); 557 print_floating (valaddr, type, stream); 558 fputs_filtered (")", stream); 559 break; 560 561 case TYPE_CODE_UNDEF: 562 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use 563 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar" 564 and no complete type for struct foo in that file. */ 565 fprintf_filtered (stream, "<incomplete type>"); 566 break; 567 568 default: 569 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type)); 570 } 571 fflush (stream); 572 return 0; 573 } 574 575 static void 576 list_all_visible_commons (funname) 577 char *funname; 578 { 579 SAVED_F77_COMMON_PTR tmp; 580 581 tmp = head_common_list; 582 583 printf_filtered ("All COMMON blocks visible at this level:\n\n"); 584 585 while (tmp != NULL) 586 { 587 if (STREQ(tmp->owning_function,funname)) 588 printf_filtered ("%s\n", tmp->name); 589 590 tmp = tmp->next; 591 } 592 } 593 594 /* This function is used to print out the values in a given COMMON 595 block. It will always use the most local common block of the 596 given name */ 597 598 static void 599 info_common_command (comname, from_tty) 600 char *comname; 601 int from_tty; 602 { 603 SAVED_F77_COMMON_PTR the_common; 604 COMMON_ENTRY_PTR entry; 605 struct frame_info *fi; 606 register char *funname = 0; 607 struct symbol *func; 608 609 /* We have been told to display the contents of F77 COMMON 610 block supposedly visible in this function. Let us 611 first make sure that it is visible and if so, let 612 us display its contents */ 613 614 fi = selected_frame; 615 616 if (fi == NULL) 617 error ("No frame selected"); 618 619 /* The following is generally ripped off from stack.c's routine 620 print_frame_info() */ 621 622 func = find_pc_function (fi->pc); 623 if (func) 624 { 625 /* In certain pathological cases, the symtabs give the wrong 626 function (when we are in the first function in a file which 627 is compiled without debugging symbols, the previous function 628 is compiled with debugging symbols, and the "foo.o" symbol 629 that is supposed to tell us where the file with debugging symbols 630 ends has been truncated by ar because it is longer than 15 631 characters). 632 633 So look in the minimal symbol tables as well, and if it comes 634 up with a larger address for the function use that instead. 635 I don't think this can ever cause any problems; there shouldn't 636 be any minimal symbols in the middle of a function. 637 FIXME: (Not necessarily true. What about text labels) */ 638 639 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); 640 641 if (msymbol != NULL 642 && (SYMBOL_VALUE_ADDRESS (msymbol) 643 > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) 644 funname = SYMBOL_NAME (msymbol); 645 else 646 funname = SYMBOL_NAME (func); 647 } 648 else 649 { 650 register struct minimal_symbol *msymbol = 651 lookup_minimal_symbol_by_pc (fi->pc); 652 653 if (msymbol != NULL) 654 funname = SYMBOL_NAME (msymbol); 655 } 656 657 /* If comname is NULL, we assume the user wishes to see the 658 which COMMON blocks are visible here and then return */ 659 660 if (comname == 0) 661 { 662 list_all_visible_commons (funname); 663 return; 664 } 665 666 the_common = find_common_for_function (comname,funname); 667 668 if (the_common) 669 { 670 if (STREQ(comname,BLANK_COMMON_NAME_LOCAL)) 671 printf_filtered ("Contents of blank COMMON block:\n"); 672 else 673 printf_filtered ("Contents of F77 COMMON block '%s':\n",comname); 674 675 printf_filtered ("\n"); 676 entry = the_common->entries; 677 678 while (entry != NULL) 679 { 680 printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol)); 681 print_variable_value (entry->symbol,fi,stdout); 682 printf_filtered ("\n"); 683 entry = entry->next; 684 } 685 } 686 else 687 printf_filtered ("Cannot locate the common block %s in function '%s'\n", 688 comname, funname); 689 } 690 691 /* This function is used to determine whether there is a 692 F77 common block visible at the current scope called 'comname'. */ 693 694 #if 0 695 static int 696 there_is_a_visible_common_named (comname) 697 char *comname; 698 { 699 SAVED_F77_COMMON_PTR the_common; 700 struct frame_info *fi; 701 register char *funname = 0; 702 struct symbol *func; 703 704 if (comname == NULL) 705 error ("Cannot deal with NULL common name!"); 706 707 fi = selected_frame; 708 709 if (fi == NULL) 710 error ("No frame selected"); 711 712 /* The following is generally ripped off from stack.c's routine 713 print_frame_info() */ 714 715 func = find_pc_function (fi->pc); 716 if (func) 717 { 718 /* In certain pathological cases, the symtabs give the wrong 719 function (when we are in the first function in a file which 720 is compiled without debugging symbols, the previous function 721 is compiled with debugging symbols, and the "foo.o" symbol 722 that is supposed to tell us where the file with debugging symbols 723 ends has been truncated by ar because it is longer than 15 724 characters). 725 726 So look in the minimal symbol tables as well, and if it comes 727 up with a larger address for the function use that instead. 728 I don't think this can ever cause any problems; there shouldn't 729 be any minimal symbols in the middle of a function. 730 FIXME: (Not necessarily true. What about text labels) */ 731 732 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc); 733 734 if (msymbol != NULL 735 && (SYMBOL_VALUE_ADDRESS (msymbol) 736 > BLOCK_START (SYMBOL_BLOCK_VALUE (func)))) 737 funname = SYMBOL_NAME (msymbol); 738 else 739 funname = SYMBOL_NAME (func); 740 } 741 else 742 { 743 register struct minimal_symbol *msymbol = 744 lookup_minimal_symbol_by_pc (fi->pc); 745 746 if (msymbol != NULL) 747 funname = SYMBOL_NAME (msymbol); 748 } 749 750 the_common = find_common_for_function (comname, funname); 751 752 return (the_common ? 1 : 0); 753 } 754 #endif 755 756 void 757 _initialize_f_valprint () 758 { 759 add_info ("common", info_common_command, 760 "Print out the values contained in a Fortran COMMON block."); 761 } 762