1 /* Native-dependent code for GNU/Linux i386. 2 3 Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, 20 Boston, MA 02111-1307, USA. */ 21 22 #include "defs.h" 23 #include "inferior.h" 24 #include "gdbcore.h" 25 #include "regcache.h" 26 #include "linux-nat.h" 27 28 #include "gdb_assert.h" 29 #include "gdb_string.h" 30 #include <sys/ptrace.h> 31 #include <sys/user.h> 32 #include <sys/procfs.h> 33 34 #ifdef HAVE_SYS_REG_H 35 #include <sys/reg.h> 36 #endif 37 38 #ifndef ORIG_EAX 39 #define ORIG_EAX -1 40 #endif 41 42 #ifdef HAVE_SYS_DEBUGREG_H 43 #include <sys/debugreg.h> 44 #endif 45 46 #ifndef DR_FIRSTADDR 47 #define DR_FIRSTADDR 0 48 #endif 49 50 #ifndef DR_LASTADDR 51 #define DR_LASTADDR 3 52 #endif 53 54 #ifndef DR_STATUS 55 #define DR_STATUS 6 56 #endif 57 58 #ifndef DR_CONTROL 59 #define DR_CONTROL 7 60 #endif 61 62 /* Prototypes for supply_gregset etc. */ 63 #include "gregset.h" 64 65 #include "i387-tdep.h" 66 #include "i386-tdep.h" 67 #include "i386-linux-tdep.h" 68 69 /* Defines ps_err_e, struct ps_prochandle. */ 70 #include "gdb_proc_service.h" 71 72 73 /* The register sets used in GNU/Linux ELF core-dumps are identical to 74 the register sets in `struct user' that is used for a.out 75 core-dumps, and is also used by `ptrace'. The corresponding types 76 are `elf_gregset_t' for the general-purpose registers (with 77 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t' 78 for the floating-point registers. 79 80 Those types used to be available under the names `gregset_t' and 81 `fpregset_t' too, and this file used those names in the past. But 82 those names are now used for the register sets used in the 83 `mcontext_t' type, and have a different size and layout. */ 84 85 /* Mapping between the general-purpose registers in `struct user' 86 format and GDB's register array layout. */ 87 static int regmap[] = 88 { 89 EAX, ECX, EDX, EBX, 90 UESP, EBP, ESI, EDI, 91 EIP, EFL, CS, SS, 92 DS, ES, FS, GS, 93 -1, -1, -1, -1, /* st0, st1, st2, st3 */ 94 -1, -1, -1, -1, /* st4, st5, st6, st7 */ 95 -1, -1, -1, -1, /* fctrl, fstat, ftag, fiseg */ 96 -1, -1, -1, -1, /* fioff, foseg, fooff, fop */ 97 -1, -1, -1, -1, /* xmm0, xmm1, xmm2, xmm3 */ 98 -1, -1, -1, -1, /* xmm4, xmm5, xmm6, xmm6 */ 99 -1, /* mxcsr */ 100 ORIG_EAX 101 }; 102 103 /* Which ptrace request retrieves which registers? 104 These apply to the corresponding SET requests as well. */ 105 106 #define GETREGS_SUPPLIES(regno) \ 107 ((0 <= (regno) && (regno) <= 15) || (regno) == I386_LINUX_ORIG_EAX_REGNUM) 108 109 #define GETFPXREGS_SUPPLIES(regno) \ 110 (I386_ST0_REGNUM <= (regno) && (regno) < I386_SSE_NUM_REGS) 111 112 /* Does the current host support the GETREGS request? */ 113 int have_ptrace_getregs = 114 #ifdef HAVE_PTRACE_GETREGS 115 1 116 #else 117 0 118 #endif 119 ; 120 121 /* Does the current host support the GETFPXREGS request? The header 122 file may or may not define it, and even if it is defined, the 123 kernel will return EIO if it's running on a pre-SSE processor. 124 125 My instinct is to attach this to some architecture- or 126 target-specific data structure, but really, a particular GDB 127 process can only run on top of one kernel at a time. So it's okay 128 for this to be a simple variable. */ 129 int have_ptrace_getfpxregs = 130 #ifdef HAVE_PTRACE_GETFPXREGS 131 1 132 #else 133 0 134 #endif 135 ; 136 137 138 /* Support for the user struct. */ 139 140 /* Return the address of register REGNUM. BLOCKEND is the value of 141 u.u_ar0, which should point to the registers. */ 142 143 CORE_ADDR 144 register_u_addr (CORE_ADDR blockend, int regnum) 145 { 146 return (blockend + 4 * regmap[regnum]); 147 } 148 149 /* Return the size of the user struct. */ 150 151 int 152 kernel_u_size (void) 153 { 154 return (sizeof (struct user)); 155 } 156 157 158 /* Accessing registers through the U area, one at a time. */ 159 160 /* Fetch one register. */ 161 162 static void 163 fetch_register (int regno) 164 { 165 int tid; 166 int val; 167 168 gdb_assert (!have_ptrace_getregs); 169 if (cannot_fetch_register (regno)) 170 { 171 regcache_raw_supply (current_regcache, regno, NULL); 172 return; 173 } 174 175 /* GNU/Linux LWP ID's are process ID's. */ 176 tid = TIDGET (inferior_ptid); 177 if (tid == 0) 178 tid = PIDGET (inferior_ptid); /* Not a threaded program. */ 179 180 errno = 0; 181 val = ptrace (PTRACE_PEEKUSER, tid, register_addr (regno, 0), 0); 182 if (errno != 0) 183 error ("Couldn't read register %s (#%d): %s.", REGISTER_NAME (regno), 184 regno, safe_strerror (errno)); 185 186 regcache_raw_supply (current_regcache, regno, &val); 187 } 188 189 /* Store one register. */ 190 191 static void 192 store_register (int regno) 193 { 194 int tid; 195 int val; 196 197 gdb_assert (!have_ptrace_getregs); 198 if (cannot_store_register (regno)) 199 return; 200 201 /* GNU/Linux LWP ID's are process ID's. */ 202 tid = TIDGET (inferior_ptid); 203 if (tid == 0) 204 tid = PIDGET (inferior_ptid); /* Not a threaded program. */ 205 206 errno = 0; 207 regcache_raw_collect (current_regcache, regno, &val); 208 ptrace (PTRACE_POKEUSER, tid, register_addr (regno, 0), val); 209 if (errno != 0) 210 error ("Couldn't write register %s (#%d): %s.", REGISTER_NAME (regno), 211 regno, safe_strerror (errno)); 212 } 213 214 215 /* Transfering the general-purpose registers between GDB, inferiors 216 and core files. */ 217 218 /* Fill GDB's register array with the general-purpose register values 219 in *GREGSETP. */ 220 221 void 222 supply_gregset (elf_gregset_t *gregsetp) 223 { 224 elf_greg_t *regp = (elf_greg_t *) gregsetp; 225 int i; 226 227 for (i = 0; i < I386_NUM_GREGS; i++) 228 regcache_raw_supply (current_regcache, i, regp + regmap[i]); 229 230 if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS) 231 regcache_raw_supply (current_regcache, I386_LINUX_ORIG_EAX_REGNUM, 232 regp + ORIG_EAX); 233 } 234 235 /* Fill register REGNO (if it is a general-purpose register) in 236 *GREGSETPS with the value in GDB's register array. If REGNO is -1, 237 do this for all registers. */ 238 239 void 240 fill_gregset (elf_gregset_t *gregsetp, int regno) 241 { 242 elf_greg_t *regp = (elf_greg_t *) gregsetp; 243 int i; 244 245 for (i = 0; i < I386_NUM_GREGS; i++) 246 if (regno == -1 || regno == i) 247 regcache_raw_collect (current_regcache, i, regp + regmap[i]); 248 249 if ((regno == -1 || regno == I386_LINUX_ORIG_EAX_REGNUM) 250 && I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS) 251 regcache_raw_collect (current_regcache, I386_LINUX_ORIG_EAX_REGNUM, 252 regp + ORIG_EAX); 253 } 254 255 #ifdef HAVE_PTRACE_GETREGS 256 257 /* Fetch all general-purpose registers from process/thread TID and 258 store their values in GDB's register array. */ 259 260 static void 261 fetch_regs (int tid) 262 { 263 elf_gregset_t regs; 264 265 if (ptrace (PTRACE_GETREGS, tid, 0, (int) ®s) < 0) 266 { 267 if (errno == EIO) 268 { 269 /* The kernel we're running on doesn't support the GETREGS 270 request. Reset `have_ptrace_getregs'. */ 271 have_ptrace_getregs = 0; 272 return; 273 } 274 275 perror_with_name ("Couldn't get registers"); 276 } 277 278 supply_gregset (®s); 279 } 280 281 /* Store all valid general-purpose registers in GDB's register array 282 into the process/thread specified by TID. */ 283 284 static void 285 store_regs (int tid, int regno) 286 { 287 elf_gregset_t regs; 288 289 if (ptrace (PTRACE_GETREGS, tid, 0, (int) ®s) < 0) 290 perror_with_name ("Couldn't get registers"); 291 292 fill_gregset (®s, regno); 293 294 if (ptrace (PTRACE_SETREGS, tid, 0, (int) ®s) < 0) 295 perror_with_name ("Couldn't write registers"); 296 } 297 298 #else 299 300 static void fetch_regs (int tid) {} 301 static void store_regs (int tid, int regno) {} 302 303 #endif 304 305 306 /* Transfering floating-point registers between GDB, inferiors and cores. */ 307 308 /* Fill GDB's register array with the floating-point register values in 309 *FPREGSETP. */ 310 311 void 312 supply_fpregset (elf_fpregset_t *fpregsetp) 313 { 314 i387_supply_fsave (current_regcache, -1, fpregsetp); 315 } 316 317 /* Fill register REGNO (if it is a floating-point register) in 318 *FPREGSETP with the value in GDB's register array. If REGNO is -1, 319 do this for all registers. */ 320 321 void 322 fill_fpregset (elf_fpregset_t *fpregsetp, int regno) 323 { 324 i387_fill_fsave ((char *) fpregsetp, regno); 325 } 326 327 #ifdef HAVE_PTRACE_GETREGS 328 329 /* Fetch all floating-point registers from process/thread TID and store 330 thier values in GDB's register array. */ 331 332 static void 333 fetch_fpregs (int tid) 334 { 335 elf_fpregset_t fpregs; 336 337 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0) 338 perror_with_name ("Couldn't get floating point status"); 339 340 supply_fpregset (&fpregs); 341 } 342 343 /* Store all valid floating-point registers in GDB's register array 344 into the process/thread specified by TID. */ 345 346 static void 347 store_fpregs (int tid, int regno) 348 { 349 elf_fpregset_t fpregs; 350 351 if (ptrace (PTRACE_GETFPREGS, tid, 0, (int) &fpregs) < 0) 352 perror_with_name ("Couldn't get floating point status"); 353 354 fill_fpregset (&fpregs, regno); 355 356 if (ptrace (PTRACE_SETFPREGS, tid, 0, (int) &fpregs) < 0) 357 perror_with_name ("Couldn't write floating point status"); 358 } 359 360 #else 361 362 static void fetch_fpregs (int tid) {} 363 static void store_fpregs (int tid, int regno) {} 364 365 #endif 366 367 368 /* Transfering floating-point and SSE registers to and from GDB. */ 369 370 #ifdef HAVE_PTRACE_GETFPXREGS 371 372 /* Fill GDB's register array with the floating-point and SSE register 373 values in *FPXREGSETP. */ 374 375 void 376 supply_fpxregset (elf_fpxregset_t *fpxregsetp) 377 { 378 i387_supply_fxsave (current_regcache, -1, fpxregsetp); 379 } 380 381 /* Fill register REGNO (if it is a floating-point or SSE register) in 382 *FPXREGSETP with the value in GDB's register array. If REGNO is 383 -1, do this for all registers. */ 384 385 void 386 fill_fpxregset (elf_fpxregset_t *fpxregsetp, int regno) 387 { 388 i387_fill_fxsave ((char *) fpxregsetp, regno); 389 } 390 391 /* Fetch all registers covered by the PTRACE_GETFPXREGS request from 392 process/thread TID and store their values in GDB's register array. 393 Return non-zero if successful, zero otherwise. */ 394 395 static int 396 fetch_fpxregs (int tid) 397 { 398 elf_fpxregset_t fpxregs; 399 400 if (! have_ptrace_getfpxregs) 401 return 0; 402 403 if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0) 404 { 405 if (errno == EIO) 406 { 407 have_ptrace_getfpxregs = 0; 408 return 0; 409 } 410 411 perror_with_name ("Couldn't read floating-point and SSE registers"); 412 } 413 414 supply_fpxregset (&fpxregs); 415 return 1; 416 } 417 418 /* Store all valid registers in GDB's register array covered by the 419 PTRACE_SETFPXREGS request into the process/thread specified by TID. 420 Return non-zero if successful, zero otherwise. */ 421 422 static int 423 store_fpxregs (int tid, int regno) 424 { 425 elf_fpxregset_t fpxregs; 426 427 if (! have_ptrace_getfpxregs) 428 return 0; 429 430 if (ptrace (PTRACE_GETFPXREGS, tid, 0, &fpxregs) == -1) 431 { 432 if (errno == EIO) 433 { 434 have_ptrace_getfpxregs = 0; 435 return 0; 436 } 437 438 perror_with_name ("Couldn't read floating-point and SSE registers"); 439 } 440 441 fill_fpxregset (&fpxregs, regno); 442 443 if (ptrace (PTRACE_SETFPXREGS, tid, 0, &fpxregs) == -1) 444 perror_with_name ("Couldn't write floating-point and SSE registers"); 445 446 return 1; 447 } 448 449 #else 450 451 static int fetch_fpxregs (int tid) { return 0; } 452 static int store_fpxregs (int tid, int regno) { return 0; } 453 454 #endif /* HAVE_PTRACE_GETFPXREGS */ 455 456 457 /* Transferring arbitrary registers between GDB and inferior. */ 458 459 /* Check if register REGNO in the child process is accessible. 460 If we are accessing registers directly via the U area, only the 461 general-purpose registers are available. 462 All registers should be accessible if we have GETREGS support. */ 463 464 int 465 cannot_fetch_register (int regno) 466 { 467 gdb_assert (regno >= 0 && regno < NUM_REGS); 468 return (!have_ptrace_getregs && regmap[regno] == -1); 469 } 470 471 int 472 cannot_store_register (int regno) 473 { 474 gdb_assert (regno >= 0 && regno < NUM_REGS); 475 return (!have_ptrace_getregs && regmap[regno] == -1); 476 } 477 478 /* Fetch register REGNO from the child process. If REGNO is -1, do 479 this for all registers (including the floating point and SSE 480 registers). */ 481 482 void 483 fetch_inferior_registers (int regno) 484 { 485 int tid; 486 487 /* Use the old method of peeking around in `struct user' if the 488 GETREGS request isn't available. */ 489 if (!have_ptrace_getregs) 490 { 491 int i; 492 493 for (i = 0; i < NUM_REGS; i++) 494 if (regno == -1 || regno == i) 495 fetch_register (i); 496 497 return; 498 } 499 500 /* GNU/Linux LWP ID's are process ID's. */ 501 tid = TIDGET (inferior_ptid); 502 if (tid == 0) 503 tid = PIDGET (inferior_ptid); /* Not a threaded program. */ 504 505 /* Use the PTRACE_GETFPXREGS request whenever possible, since it 506 transfers more registers in one system call, and we'll cache the 507 results. But remember that fetch_fpxregs can fail, and return 508 zero. */ 509 if (regno == -1) 510 { 511 fetch_regs (tid); 512 513 /* The call above might reset `have_ptrace_getregs'. */ 514 if (!have_ptrace_getregs) 515 { 516 fetch_inferior_registers (regno); 517 return; 518 } 519 520 if (fetch_fpxregs (tid)) 521 return; 522 fetch_fpregs (tid); 523 return; 524 } 525 526 if (GETREGS_SUPPLIES (regno)) 527 { 528 fetch_regs (tid); 529 return; 530 } 531 532 if (GETFPXREGS_SUPPLIES (regno)) 533 { 534 if (fetch_fpxregs (tid)) 535 return; 536 537 /* Either our processor or our kernel doesn't support the SSE 538 registers, so read the FP registers in the traditional way, 539 and fill the SSE registers with dummy values. It would be 540 more graceful to handle differences in the register set using 541 gdbarch. Until then, this will at least make things work 542 plausibly. */ 543 fetch_fpregs (tid); 544 return; 545 } 546 547 internal_error (__FILE__, __LINE__, 548 "Got request for bad register number %d.", regno); 549 } 550 551 /* Store register REGNO back into the child process. If REGNO is -1, 552 do this for all registers (including the floating point and SSE 553 registers). */ 554 void 555 store_inferior_registers (int regno) 556 { 557 int tid; 558 559 /* Use the old method of poking around in `struct user' if the 560 SETREGS request isn't available. */ 561 if (!have_ptrace_getregs) 562 { 563 int i; 564 565 for (i = 0; i < NUM_REGS; i++) 566 if (regno == -1 || regno == i) 567 store_register (i); 568 569 return; 570 } 571 572 /* GNU/Linux LWP ID's are process ID's. */ 573 tid = TIDGET (inferior_ptid); 574 if (tid == 0) 575 tid = PIDGET (inferior_ptid); /* Not a threaded program. */ 576 577 /* Use the PTRACE_SETFPXREGS requests whenever possible, since it 578 transfers more registers in one system call. But remember that 579 store_fpxregs can fail, and return zero. */ 580 if (regno == -1) 581 { 582 store_regs (tid, regno); 583 if (store_fpxregs (tid, regno)) 584 return; 585 store_fpregs (tid, regno); 586 return; 587 } 588 589 if (GETREGS_SUPPLIES (regno)) 590 { 591 store_regs (tid, regno); 592 return; 593 } 594 595 if (GETFPXREGS_SUPPLIES (regno)) 596 { 597 if (store_fpxregs (tid, regno)) 598 return; 599 600 /* Either our processor or our kernel doesn't support the SSE 601 registers, so just write the FP registers in the traditional 602 way. */ 603 store_fpregs (tid, regno); 604 return; 605 } 606 607 internal_error (__FILE__, __LINE__, 608 "Got request to store bad register number %d.", regno); 609 } 610 611 612 /* Support for debug registers. */ 613 614 static unsigned long 615 i386_linux_dr_get (int regnum) 616 { 617 int tid; 618 unsigned long value; 619 620 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with 621 multi-threaded processes here. For now, pretend there is just 622 one thread. */ 623 tid = PIDGET (inferior_ptid); 624 625 /* FIXME: kettenis/2001-03-27: Calling perror_with_name if the 626 ptrace call fails breaks debugging remote targets. The correct 627 way to fix this is to add the hardware breakpoint and watchpoint 628 stuff to the target vector. For now, just return zero if the 629 ptrace call fails. */ 630 errno = 0; 631 value = ptrace (PTRACE_PEEKUSER, tid, 632 offsetof (struct user, u_debugreg[regnum]), 0); 633 if (errno != 0) 634 #if 0 635 perror_with_name ("Couldn't read debug register"); 636 #else 637 return 0; 638 #endif 639 640 return value; 641 } 642 643 static void 644 i386_linux_dr_set (int regnum, unsigned long value) 645 { 646 int tid; 647 648 /* FIXME: kettenis/2001-01-29: It's not clear what we should do with 649 multi-threaded processes here. For now, pretend there is just 650 one thread. */ 651 tid = PIDGET (inferior_ptid); 652 653 errno = 0; 654 ptrace (PTRACE_POKEUSER, tid, 655 offsetof (struct user, u_debugreg[regnum]), value); 656 if (errno != 0) 657 perror_with_name ("Couldn't write debug register"); 658 } 659 660 void 661 i386_linux_dr_set_control (unsigned long control) 662 { 663 i386_linux_dr_set (DR_CONTROL, control); 664 } 665 666 void 667 i386_linux_dr_set_addr (int regnum, CORE_ADDR addr) 668 { 669 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR); 670 671 i386_linux_dr_set (DR_FIRSTADDR + regnum, addr); 672 } 673 674 void 675 i386_linux_dr_reset_addr (int regnum) 676 { 677 gdb_assert (regnum >= 0 && regnum <= DR_LASTADDR - DR_FIRSTADDR); 678 679 i386_linux_dr_set (DR_FIRSTADDR + regnum, 0L); 680 } 681 682 unsigned long 683 i386_linux_dr_get_status (void) 684 { 685 return i386_linux_dr_get (DR_STATUS); 686 } 687 688 689 /* Called by libthread_db. Returns a pointer to the thread local 690 storage (or its descriptor). */ 691 692 ps_err_e 693 ps_get_thread_area (const struct ps_prochandle *ph, 694 lwpid_t lwpid, int idx, void **base) 695 { 696 /* NOTE: cagney/2003-08-26: The definition of this buffer is found 697 in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x 698 4 byte integers in size: `entry_number', `base_addr', `limit', 699 and a bunch of status bits. 700 701 The values returned by this ptrace call should be part of the 702 regcache buffer, and ps_get_thread_area should channel its 703 request through the regcache. That way remote targets could 704 provide the value using the remote protocol and not this direct 705 call. 706 707 Is this function needed? I'm guessing that the `base' is the 708 address of a a descriptor that libthread_db uses to find the 709 thread local address base that GDB needs. Perhaps that 710 descriptor is defined by the ABI. Anyway, given that 711 libthread_db calls this function without prompting (gdb 712 requesting tls base) I guess it needs info in there anyway. */ 713 unsigned int desc[4]; 714 gdb_assert (sizeof (int) == 4); 715 716 #ifndef PTRACE_GET_THREAD_AREA 717 #define PTRACE_GET_THREAD_AREA 25 718 #endif 719 720 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, 721 (void *) idx, (unsigned long) &desc) < 0) 722 return PS_ERR; 723 724 *(int *)base = desc[1]; 725 return PS_OK; 726 } 727 728 729 /* The instruction for a GNU/Linux system call is: 730 int $0x80 731 or 0xcd 0x80. */ 732 733 static const unsigned char linux_syscall[] = { 0xcd, 0x80 }; 734 735 #define LINUX_SYSCALL_LEN (sizeof linux_syscall) 736 737 /* The system call number is stored in the %eax register. */ 738 #define LINUX_SYSCALL_REGNUM I386_EAX_REGNUM 739 740 /* We are specifically interested in the sigreturn and rt_sigreturn 741 system calls. */ 742 743 #ifndef SYS_sigreturn 744 #define SYS_sigreturn 0x77 745 #endif 746 #ifndef SYS_rt_sigreturn 747 #define SYS_rt_sigreturn 0xad 748 #endif 749 750 /* Offset to saved processor flags, from <asm/sigcontext.h>. */ 751 #define LINUX_SIGCONTEXT_EFLAGS_OFFSET (64) 752 753 /* Resume execution of the inferior process. 754 If STEP is nonzero, single-step it. 755 If SIGNAL is nonzero, give it that signal. */ 756 757 void 758 child_resume (ptid_t ptid, int step, enum target_signal signal) 759 { 760 int pid = PIDGET (ptid); 761 762 int request = PTRACE_CONT; 763 764 if (pid == -1) 765 /* Resume all threads. */ 766 /* I think this only gets used in the non-threaded case, where "resume 767 all threads" and "resume inferior_ptid" are the same. */ 768 pid = PIDGET (inferior_ptid); 769 770 if (step) 771 { 772 CORE_ADDR pc = read_pc_pid (pid_to_ptid (pid)); 773 unsigned char buf[LINUX_SYSCALL_LEN]; 774 775 request = PTRACE_SINGLESTEP; 776 777 /* Returning from a signal trampoline is done by calling a 778 special system call (sigreturn or rt_sigreturn, see 779 i386-linux-tdep.c for more information). This system call 780 restores the registers that were saved when the signal was 781 raised, including %eflags. That means that single-stepping 782 won't work. Instead, we'll have to modify the signal context 783 that's about to be restored, and set the trace flag there. */ 784 785 /* First check if PC is at a system call. */ 786 if (deprecated_read_memory_nobpt (pc, (char *) buf, LINUX_SYSCALL_LEN) == 0 787 && memcmp (buf, linux_syscall, LINUX_SYSCALL_LEN) == 0) 788 { 789 int syscall = read_register_pid (LINUX_SYSCALL_REGNUM, 790 pid_to_ptid (pid)); 791 792 /* Then check the system call number. */ 793 if (syscall == SYS_sigreturn || syscall == SYS_rt_sigreturn) 794 { 795 CORE_ADDR sp = read_register (I386_ESP_REGNUM); 796 CORE_ADDR addr = sp; 797 unsigned long int eflags; 798 799 if (syscall == SYS_rt_sigreturn) 800 addr = read_memory_integer (sp + 8, 4) + 20; 801 802 /* Set the trace flag in the context that's about to be 803 restored. */ 804 addr += LINUX_SIGCONTEXT_EFLAGS_OFFSET; 805 read_memory (addr, (char *) &eflags, 4); 806 eflags |= 0x0100; 807 write_memory (addr, (char *) &eflags, 4); 808 } 809 } 810 } 811 812 if (ptrace (request, pid, 0, target_signal_to_host (signal)) == -1) 813 perror_with_name ("ptrace"); 814 } 815 816 void 817 child_post_startup_inferior (ptid_t ptid) 818 { 819 i386_cleanup_dregs (); 820 linux_child_post_startup_inferior (ptid); 821 } 822