xref: /openbsd/gnu/usr.bin/binutils/gdb/m88k-tdep.c (revision 09467b48)
1 /* Target-dependent code for the Motorola 88000 series.
2 
3    Copyright 2004 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "dis-asm.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "symtab.h"
33 #include "trad-frame.h"
34 #include "value.h"
35 
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38 
39 #include "m88k-tdep.h"
40 
41 /* Fetch the instruction at PC.  */
42 
43 static unsigned long
44 m88k_fetch_instruction (CORE_ADDR pc)
45 {
46   return read_memory_unsigned_integer (pc, 4);
47 }
48 
49 /* Register information.  */
50 
51 /* Return the name of register REGNUM.  */
52 
53 static const char *
54 m88k_register_name (int regnum)
55 {
56   static char *register_names[] =
57   {
58     "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
59     "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15",
60     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
61     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
62     "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
63   };
64 
65   if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
66     return register_names[regnum];
67 
68   return NULL;
69 }
70 
71 /* Return the GDB type object for the "standard" data type of data in
72    register REGNUM. */
73 
74 static struct type *
75 m88k_register_type (struct gdbarch *gdbarch, int regnum)
76 {
77   /* SXIP, SNIP, SFIP and R1 contain code addresses.  */
78   if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
79       || regnum == M88K_R1_REGNUM)
80     return builtin_type_void_func_ptr;
81 
82   /* R30 and R31 typically contains data addresses.  */
83   if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
84     return builtin_type_void_data_ptr;
85 
86   return builtin_type_int32;
87 }
88 
89 
90 static CORE_ADDR
91 m88k_addr_bits_remove (CORE_ADDR addr)
92 {
93   /* All instructures are 4-byte aligned.  The lower 2 bits of SXIP,
94      SNIP and SFIP are used for special purposes: bit 0 is the
95      exception bit and bit 1 is the valid bit.  */
96   return addr & ~0x3;
97 }
98 
99 /* Use the program counter to determine the contents and size of a
100    breakpoint instruction.  Return a pointer to a string of bytes that
101    encode a breakpoint instruction, store the length of the string in
102    *LEN and optionally adjust *PC to point to the correct memory
103    location for inserting the breakpoint.  */
104 
105 static const unsigned char *
106 m88k_breakpoint_from_pc (CORE_ADDR *pc, int *len)
107 {
108   /* tb 0,r0,511 */
109   static unsigned char break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
110 
111   *len = sizeof (break_insn);
112   return break_insn;
113 }
114 
115 static CORE_ADDR
116 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
117 {
118   CORE_ADDR pc;
119 
120   pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
121   return m88k_addr_bits_remove (pc);
122 }
123 
124 static void
125 m88k_write_pc (CORE_ADDR pc, ptid_t ptid)
126 {
127   /* According to the MC88100 RISC Microprocessor User's Manual,
128      section 6.4.3.1.2:
129 
130      "... can be made to return to a particular instruction by placing
131      a valid instruction address in the SNIP and the next sequential
132      instruction address in the SFIP (with V bits set and E bits
133      clear).  The rte resumes execution at the instruction pointed to
134      by the SNIP, then the SFIP."
135 
136      The E bit is the least significant bit (bit 0).  The V (valid)
137      bit is bit 1.  This is why we logical or 2 into the values we are
138      writing below.  It turns out that SXIP plays no role when
139      returning from an exception so nothing special has to be done
140      with it.  We could even (presumably) give it a totally bogus
141      value.  */
142 
143   write_register_pid (M88K_SXIP_REGNUM, pc, ptid);
144   write_register_pid (M88K_SNIP_REGNUM, pc | 2, ptid);
145   write_register_pid (M88K_SFIP_REGNUM, (pc + 4) | 2, ptid);
146 }
147 
148 
149 /* The functions on this page are intended to be used to classify
150    function arguments.  */
151 
152 /* Check whether TYPE is "Integral or Pointer".  */
153 
154 static int
155 m88k_integral_or_pointer_p (const struct type *type)
156 {
157   switch (TYPE_CODE (type))
158     {
159     case TYPE_CODE_INT:
160     case TYPE_CODE_BOOL:
161     case TYPE_CODE_CHAR:
162     case TYPE_CODE_ENUM:
163     case TYPE_CODE_RANGE:
164       {
165 	/* We have byte, half-word, word and extended-word/doubleword
166            integral types.  */
167 	int len = TYPE_LENGTH (type);
168 	return (len == 1 || len == 2 || len == 4 || len == 8);
169       }
170       return 1;
171     case TYPE_CODE_PTR:
172     case TYPE_CODE_REF:
173       {
174 	/* Allow only 32-bit pointers.  */
175 	return (TYPE_LENGTH (type) == 4);
176       }
177       return 1;
178     default:
179       break;
180     }
181 
182   return 0;
183 }
184 
185 /* Check whether TYPE is "Floating".  */
186 
187 static int
188 m88k_floating_p (const struct type *type)
189 {
190   switch (TYPE_CODE (type))
191     {
192     case TYPE_CODE_FLT:
193       {
194 	int len = TYPE_LENGTH (type);
195 	return (len == 4 || len == 8);
196       }
197     default:
198       break;
199     }
200 
201   return 0;
202 }
203 
204 /* Check whether TYPE is "Structure or Union".  */
205 
206 static int
207 m88k_structure_or_union_p (const struct type *type)
208 {
209   switch (TYPE_CODE (type))
210     {
211     case TYPE_CODE_STRUCT:
212     case TYPE_CODE_UNION:
213       return 1;
214     default:
215       break;
216     }
217 
218   return 0;
219 }
220 
221 /* Check whether TYPE has 8-byte alignment.  */
222 
223 static int
224 m88k_8_byte_align_p (struct type *type)
225 {
226   if (m88k_structure_or_union_p (type))
227     {
228       int i;
229 
230       for (i = 0; i < TYPE_NFIELDS (type); i++)
231 	{
232 	  struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
233 
234 	  if (m88k_8_byte_align_p (subtype))
235 	    return 1;
236 	}
237     }
238 
239   if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
240     return (TYPE_LENGTH (type) == 8);
241 
242   return 0;
243 }
244 
245 /* Check whether TYPE can be passed in a register.  */
246 
247 static int
248 m88k_in_register_p (struct type *type)
249 {
250   if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
251     return 1;
252 
253   if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
254     return 1;
255 
256   return 0;
257 }
258 
259 static CORE_ADDR
260 m88k_store_arguments (struct regcache *regcache, int nargs,
261 		      struct value **args, CORE_ADDR sp)
262 {
263   int num_register_words = 0;
264   int num_stack_words = 0;
265   int i;
266 
267   for (i = 0; i < nargs; i++)
268     {
269       struct type *type = VALUE_TYPE (args[i]);
270       int len = TYPE_LENGTH (type);
271 
272       if (m88k_integral_or_pointer_p (type) && len < 4)
273 	{
274 	  args[i] = value_cast (builtin_type_int32, args[i]);
275 	  type = VALUE_TYPE (args[i]);
276 	  len = TYPE_LENGTH (type);
277 	}
278 
279       if (m88k_in_register_p (type))
280 	{
281 	  int num_words = 0;
282 
283 	  if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
284 	    num_words++;
285 
286 	  num_words += ((len + 3) / 4);
287 	  if (num_register_words + num_words <= 8)
288 	    {
289 	      num_register_words += num_words;
290 	      continue;
291 	    }
292 
293 	  /* We've run out of available registers.  Pass the argument
294              on the stack.  */
295 	}
296 
297       if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
298 	num_stack_words++;
299 
300       num_stack_words += ((len + 3) / 4);
301     }
302 
303   /* Allocate stack space.  */
304   sp = align_down (sp - 32 - num_stack_words * 4, 16);
305   num_stack_words = num_register_words = 0;
306 
307   for (i = 0; i < nargs; i++)
308     {
309       char *valbuf = VALUE_CONTENTS (args[i]);
310       struct type *type = VALUE_TYPE (args[i]);
311       int len = TYPE_LENGTH (type);
312       int stack_word = num_stack_words;
313 
314       if (m88k_in_register_p (type))
315 	{
316 	  int register_word = num_register_words;
317 
318 	  if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
319 	    register_word++;
320 
321 	  gdb_assert (len == 4 || len == 8);
322 
323 	  if (register_word + len / 8 < 8)
324 	    {
325 	      int regnum = M88K_R2_REGNUM + register_word;
326 
327 	      regcache_raw_write (regcache, regnum, valbuf);
328 	      if (len > 4)
329 		regcache_raw_write (regcache, regnum + 1, valbuf + 4);
330 
331 	      num_register_words = (register_word + len / 4);
332 	      continue;
333 	    }
334 	}
335 
336       if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
337 	stack_word++;
338 
339       write_memory (sp + stack_word * 4, valbuf, len);
340       num_stack_words = (stack_word + (len + 3) / 4);
341     }
342 
343   return sp;
344 }
345 
346 static CORE_ADDR
347 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
348 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
349 		      struct value **args, CORE_ADDR sp, int struct_return,
350 		      CORE_ADDR struct_addr)
351 {
352   /* Set up the function arguments.  */
353   sp = m88k_store_arguments (regcache, nargs, args, sp);
354   gdb_assert (sp % 16 == 0);
355 
356   /* Store return value address.  */
357   if (struct_return)
358     regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
359 
360   /* Store the stack pointer and return address in the appropriate
361      registers.  */
362   regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
363   regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
364 
365   /* Return the stack pointer.  */
366   return sp;
367 }
368 
369 static struct frame_id
370 m88k_unwind_dummy_id (struct gdbarch *arch, struct frame_info *next_frame)
371 {
372   CORE_ADDR sp;
373 
374   sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
375   return frame_id_build (sp, frame_pc_unwind (next_frame));
376 }
377 
378 
379 /* Determine, for architecture GDBARCH, how a return value of TYPE
380    should be returned.  If it is supposed to be returned in registers,
381    and READBUF is non-zero, read the appropriate value from REGCACHE,
382    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
383    from WRITEBUF into REGCACHE.  */
384 
385 static enum return_value_convention
386 m88k_return_value (struct gdbarch *gdbarch, struct type *type,
387 		   struct regcache *regcache, void *readbuf,
388 		   const void *writebuf)
389 {
390   int len = TYPE_LENGTH (type);
391   char buf[8];
392 
393   if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
394     return RETURN_VALUE_STRUCT_CONVENTION;
395 
396   if (readbuf)
397     {
398       /* Read the contents of R2 and (if necessary) R3.  */
399       regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
400       if (len > 4)
401 	{
402 	  regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
403 	  gdb_assert (len == 8);
404 	  memcpy (readbuf, buf, len);
405 	}
406       else
407 	{
408 	  /* Just stripping off any unused bytes should preserve the
409              signed-ness just fine.  */
410 	  memcpy (readbuf, buf + 4 - len, len);
411 	}
412     }
413 
414   if (writebuf)
415     {
416       /* Read the contents to R2 and (if necessary) R3.  */
417       if (len > 4)
418 	{
419 	  gdb_assert (len == 8);
420 	  memcpy (buf, writebuf, 8);
421 	  regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
422 	}
423       else
424 	{
425 	  /* ??? Do we need to do any sign-extension here?  */
426 	  memcpy (buf + 4 - len, writebuf, len);
427 	}
428       regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
429     }
430 
431   return RETURN_VALUE_REGISTER_CONVENTION;
432 }
433 
434 /* Default frame unwinder.  */
435 
436 struct m88k_frame_cache
437 {
438   /* Base address.  */
439   CORE_ADDR base;
440   CORE_ADDR pc;
441 
442   int sp_offset;
443   int fp_offset;
444 
445   /* Table of saved registers.  */
446   struct trad_frame_saved_reg *saved_regs;
447 };
448 
449 /* Prologue analysis.  */
450 
451 /* Macros for extracting fields from instructions.  */
452 
453 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
454 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
455 #define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
456 #define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
457 #define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
458 #define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))
459 
460 /* Possible actions to be taken by the prologue analyzer for the
461    instructions it encounters.  */
462 
463 enum m88k_prologue_insn_action
464 {
465   M88K_PIA_SKIP,		/* Ignore.  */
466   M88K_PIA_NOTE_ST,		/* Note register store.  */
467   M88K_PIA_NOTE_STD,		/* Note register pair store.  */
468   M88K_PIA_NOTE_SP_ADJUSTMENT,	/* Note stack pointer adjustment.  */
469   M88K_PIA_NOTE_FP_ASSIGNMENT,	/* Note frame pointer assignment.  */
470   M88K_PIA_NOTE_BRANCH,		/* Note branch.  */
471   M88K_PIA_NOTE_PROLOGUE_END	/* Note end of prologue.  */
472 };
473 
474 /* Table of instructions that may comprise a function prologue.  */
475 
476 struct m88k_prologue_insn
477 {
478   unsigned long insn;
479   unsigned long mask;
480   enum m88k_prologue_insn_action action;
481 };
482 
483 struct m88k_prologue_insn m88k_prologue_insn_table[] =
484 {
485   /* Various register move instructions.  */
486   { 0x58000000, 0xf800ffff, M88K_PIA_SKIP },     /* or/or.u with immed of 0 */
487   { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP },     /* or rd,r0,rs */
488   { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP },     /* or rd,rs,r0 */
489 
490   /* Various other instructions.  */
491   { 0x58000000, 0xf8000000, M88K_PIA_SKIP },     /* or/or.u */
492 
493   /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8.  */
494   { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
495 
496   /* Frame pointer assignment: "addu r30,r31,n".  */
497   { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
498 
499   /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n".  */
500   { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST },  /* st rx,sp,n */
501   { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
502 
503   /* Instructions needed for setting up r25 for pic code.  */
504   { 0x5f200000, 0xffff0000, M88K_PIA_SKIP },     /* or.u r25,r0,offset_high */
505   { 0xcc000002, 0xffffffff, M88K_PIA_SKIP },     /* bsr.n Lab */
506   { 0x5b390000, 0xffff0000, M88K_PIA_SKIP },     /* or r25,r25,offset_low */
507   { 0xf7396001, 0xffffffff, M88K_PIA_SKIP },     /* Lab: addu r25,r25,r1 */
508 
509   /* Various branch or jump instructions which have a delay slot --
510      these do not form part of the prologue, but the instruction in
511      the delay slot might be a store instruction which should be
512      noted.  */
513   { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
514                                       /* br.n, bsr.n, bb0.n, or bb1.n */
515   { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
516   { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
517 
518   /* Catch all.  Ends prologue analysis.  */
519   { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
520 };
521 
522 /* Do a full analysis of the function prologue at PC and update CACHE
523    accordingly.  Bail out early if LIMIT is reached.  Return the
524    address where the analysis stopped.  If LIMIT points beyond the
525    function prologue, the return address should be the end of the
526    prologue.  */
527 
528 static CORE_ADDR
529 m88k_analyze_prologue (CORE_ADDR pc, CORE_ADDR limit,
530 		       struct m88k_frame_cache *cache)
531 {
532   CORE_ADDR end = limit;
533 
534   /* Provide a dummy cache if necessary.  */
535   if (cache == NULL)
536     {
537       size_t sizeof_saved_regs =
538 	(M88K_R31_REGNUM + 1) * sizeof (struct trad_frame_saved_reg);
539 
540       cache = alloca (sizeof (struct m88k_frame_cache));
541       cache->saved_regs = alloca (sizeof_saved_regs);
542 
543       /* We only initialize the members we care about.  */
544       cache->saved_regs[M88K_R1_REGNUM].addr = -1;
545       cache->fp_offset = -1;
546     }
547 
548   while (pc < limit)
549     {
550       struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
551       unsigned long insn = m88k_fetch_instruction (pc);
552 
553       while ((insn & pi->mask) != pi->insn)
554 	pi++;
555 
556       switch (pi->action)
557 	{
558 	case M88K_PIA_SKIP:
559 	  /* If we have a frame pointer, and R1 has been saved,
560              consider this instruction as not being part of the
561              prologue.  */
562 	  if (cache->fp_offset != -1
563 	      && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
564 	    return min (pc, end);
565 	  break;
566 
567 	case M88K_PIA_NOTE_ST:
568 	case M88K_PIA_NOTE_STD:
569 	  /* If no frame has been allocated, the stores aren't part of
570              the prologue.  */
571 	  if (cache->sp_offset == 0)
572 	    return min (pc, end);
573 
574 	  /* Record location of saved registers.  */
575 	  {
576 	    int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
577 	    ULONGEST offset = ST_OFFSET (insn);
578 
579 	    cache->saved_regs[regnum].addr = offset;
580 	    if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
581 	      cache->saved_regs[regnum + 1].addr = offset + 4;
582 	  }
583 	  break;
584 
585 	case M88K_PIA_NOTE_SP_ADJUSTMENT:
586 	  /* A second stack pointer adjustment isn't part of the
587              prologue.  */
588 	  if (cache->sp_offset != 0)
589 	    return min (pc, end);
590 
591 	  /* Store stack pointer adjustment.  */
592 	  cache->sp_offset = -SUBU_OFFSET (insn);
593 	  break;
594 
595 	case M88K_PIA_NOTE_FP_ASSIGNMENT:
596 	  /* A second frame pointer assignment isn't part of the
597              prologue.  */
598 	  if (cache->fp_offset != -1)
599 	    return min (pc, end);
600 
601 	  /* Record frame pointer assignment.  */
602 	  cache->fp_offset = ADDU_OFFSET (insn);
603 	  break;
604 
605 	case M88K_PIA_NOTE_BRANCH:
606 	  /* The branch instruction isn't part of the prologue, but
607              the instruction in the delay slot might be.  Limit the
608              prologue analysis to the delay slot and record the branch
609              instruction as the end of the prologue.  */
610 	  limit = min (limit, pc + 2 * M88K_INSN_SIZE);
611 	  end = pc;
612 	  break;
613 
614 	case M88K_PIA_NOTE_PROLOGUE_END:
615 	  return min (pc, end);
616 	}
617 
618       pc += M88K_INSN_SIZE;
619     }
620 
621   return end;
622 }
623 
624 /* An upper limit to the size of the prologue.  */
625 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
626 
627 /* Return the address of first real instruction of the function
628    starting at PC.  */
629 
630 static CORE_ADDR
631 m88k_skip_prologue (CORE_ADDR pc)
632 {
633   struct symtab_and_line sal;
634   CORE_ADDR func_start, func_end;
635 
636   /* This is the preferred method, find the end of the prologue by
637      using the debugging information.  */
638   if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
639     {
640       sal = find_pc_line (func_start, 0);
641 
642       if (sal.end < func_end && pc <= sal.end)
643 	return sal.end;
644     }
645 
646   return m88k_analyze_prologue (pc, pc + m88k_max_prologue_size, NULL);
647 }
648 
649 struct m88k_frame_cache *
650 m88k_frame_cache (struct frame_info *next_frame, void **this_cache)
651 {
652   struct m88k_frame_cache *cache;
653   CORE_ADDR frame_sp;
654 
655   if (*this_cache)
656     return *this_cache;
657 
658   cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
659   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
660   cache->fp_offset = -1;
661 
662   cache->pc = frame_func_unwind (next_frame);
663   if (cache->pc != 0)
664     {
665       CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame);
666       m88k_analyze_prologue (cache->pc, addr_in_block, cache);
667     }
668 
669   /* Calculate the stack pointer used in the prologue.  */
670   if (cache->fp_offset != -1)
671     {
672       CORE_ADDR fp;
673 
674       fp = frame_unwind_register_unsigned (next_frame, M88K_R30_REGNUM);
675       frame_sp = fp - cache->fp_offset;
676     }
677   else
678     {
679       /* If we know where the return address is saved, we can take a
680          solid guess at what the frame pointer should be.  */
681       if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
682 	cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
683       frame_sp = frame_unwind_register_unsigned (next_frame, M88K_R31_REGNUM);
684     }
685 
686   /* Now that we know the stack pointer, adjust the location of the
687      saved registers.  */
688   {
689     int regnum;
690 
691     for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
692       if (cache->saved_regs[regnum].addr != -1)
693 	cache->saved_regs[regnum].addr += frame_sp;
694   }
695 
696   /* Calculate the frame's base.  */
697   cache->base = frame_sp - cache->sp_offset;
698   trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
699 
700   /* Identify SXIP with the return address in R1.  */
701   cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
702 
703   *this_cache = cache;
704   return cache;
705 }
706 
707 static void
708 m88k_frame_this_id (struct frame_info *next_frame, void **this_cache,
709 		    struct frame_id *this_id)
710 {
711   struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
712 
713   /* This marks the outermost frame.  */
714   if (cache->base == 0)
715     return;
716 
717   (*this_id) = frame_id_build (cache->base, cache->pc);
718 }
719 
720 static void
721 m88k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
722 			  int regnum, int *optimizedp,
723 			  enum lval_type *lvalp, CORE_ADDR *addrp,
724 			  int *realnump, void *valuep)
725 {
726   struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
727 
728   if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
729     {
730       if (valuep)
731 	{
732 	  CORE_ADDR pc;
733 
734 	  trad_frame_get_prev_register (next_frame, cache->saved_regs,
735 					M88K_SXIP_REGNUM, optimizedp,
736 					lvalp, addrp, realnump, valuep);
737 
738 	  pc = extract_unsigned_integer (valuep, 4);
739 	  if (regnum == M88K_SFIP_REGNUM)
740 	    pc += 4;
741 	  store_unsigned_integer (valuep, 4, pc + 4);
742 	}
743 
744       /* It's a computed value.  */
745       *optimizedp = 0;
746       *lvalp = not_lval;
747       *addrp = 0;
748       *realnump = -1;
749       return;
750     }
751 
752   trad_frame_get_prev_register (next_frame, cache->saved_regs, regnum,
753 				optimizedp, lvalp, addrp, realnump, valuep);
754 }
755 
756 static const struct frame_unwind m88k_frame_unwind =
757 {
758   NORMAL_FRAME,
759   m88k_frame_this_id,
760   m88k_frame_prev_register
761 };
762 
763 static const struct frame_unwind *
764 m88k_frame_sniffer (struct frame_info *next_frame)
765 {
766   return &m88k_frame_unwind;
767 }
768 
769 
770 static CORE_ADDR
771 m88k_frame_base_address (struct frame_info *next_frame, void **this_cache)
772 {
773   struct m88k_frame_cache *cache = m88k_frame_cache (next_frame, this_cache);
774 
775   if (cache->fp_offset != -1)
776     return cache->base + cache->sp_offset + cache->fp_offset;
777 
778   return 0;
779 }
780 
781 static const struct frame_base m88k_frame_base =
782 {
783   &m88k_frame_unwind,
784   m88k_frame_base_address,
785   m88k_frame_base_address,
786   m88k_frame_base_address
787 };
788 
789 
790 /* Core file support.  */
791 
792 /* Supply register REGNUM from the buffer specified by GREGS and LEN
793    in the general-purpose register set REGSET to register cache
794    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
795 
796 static void
797 m88k_supply_gregset (const struct regset *regset,
798 		     struct regcache *regcache,
799 		     int regnum, const void *gregs, size_t len)
800 {
801   const char *regs = gregs;
802   int i;
803 
804   for (i = 0; i < M88K_NUM_REGS; i++)
805     {
806       if (regnum == i || regnum == -1)
807 	regcache_raw_supply (regcache, i, regs + i * 4);
808     }
809 }
810 
811 /* Motorola 88000 register set.  */
812 
813 static struct regset m88k_gregset =
814 {
815   NULL,
816   m88k_supply_gregset
817 };
818 
819 /* Return the appropriate register set for the core section identified
820    by SECT_NAME and SECT_SIZE.  */
821 
822 static const struct regset *
823 m88k_regset_from_core_section (struct gdbarch *gdbarch,
824 			       const char *sect_name, size_t sect_size)
825 {
826   if (strcmp (sect_name, ".reg") == 0 && sect_size >= M88K_NUM_REGS * 4)
827     return &m88k_gregset;
828 
829   return NULL;
830 }
831 
832 
833 static struct gdbarch *
834 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
835 {
836   struct gdbarch *gdbarch;
837 
838   /* If there is already a candidate, use it.  */
839   arches = gdbarch_list_lookup_by_info (arches, &info);
840   if (arches != NULL)
841     return arches->gdbarch;
842 
843   /* Allocate space for the new architecture.  */
844   gdbarch = gdbarch_alloc (&info, NULL);
845 
846   /* There is no real `long double'.  */
847   set_gdbarch_long_double_bit (gdbarch, 64);
848   set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
849 
850   set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
851   set_gdbarch_register_name (gdbarch, m88k_register_name);
852   set_gdbarch_register_type (gdbarch, m88k_register_type);
853 
854   /* Register numbers of various important registers.  */
855   set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
856   set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
857 
858   /* Core file support.  */
859   set_gdbarch_regset_from_core_section
860     (gdbarch, m88k_regset_from_core_section);
861 
862   set_gdbarch_print_insn (gdbarch, print_insn_m88k);
863 
864   set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
865 
866   /* Stack grows downward.  */
867   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
868 
869   /* Call dummy code.  */
870   set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
871   set_gdbarch_unwind_dummy_id (gdbarch, m88k_unwind_dummy_id);
872 
873   /* Return value info */
874   set_gdbarch_return_value (gdbarch, m88k_return_value);
875 
876   set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
877   set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
878   set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
879   set_gdbarch_write_pc (gdbarch, m88k_write_pc);
880 
881   frame_base_set_default (gdbarch, &m88k_frame_base);
882 
883   /* Hook in ABI-specific overrides, if they have been registered.  */
884   gdbarch_init_osabi (info, gdbarch);
885 
886   frame_unwind_append_sniffer (gdbarch, m88k_frame_sniffer);
887 
888   return gdbarch;
889 }
890 
891 
892 /* Provide a prototype to silence -Wmissing-prototypes.  */
893 void _initialize_m88k_tdep (void);
894 
895 void
896 _initialize_m88k_tdep (void)
897 {
898   gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
899 }
900