1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger. 2 3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free 4 Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 #include "frame.h" 25 #include "inferior.h" 26 #include "target.h" 27 #include "value.h" 28 #include "bfd.h" 29 #include "gdb_string.h" 30 #include "gdbcore.h" 31 #include "objfiles.h" 32 #include "regcache.h" 33 #include "arch-utils.h" 34 #include "gdb_assert.h" 35 #include "dis-asm.h" 36 37 #define D0_REGNUM 0 38 #define D2_REGNUM 2 39 #define D3_REGNUM 3 40 #define A0_REGNUM 4 41 #define A2_REGNUM 6 42 #define A3_REGNUM 7 43 #define MDR_REGNUM 10 44 #define PSW_REGNUM 11 45 #define LIR_REGNUM 12 46 #define LAR_REGNUM 13 47 #define MDRQ_REGNUM 14 48 #define E0_REGNUM 15 49 #define MCRH_REGNUM 26 50 #define MCRL_REGNUM 27 51 #define MCVF_REGNUM 28 52 53 enum movm_register_bits { 54 movm_exother_bit = 0x01, 55 movm_exreg1_bit = 0x02, 56 movm_exreg0_bit = 0x04, 57 movm_other_bit = 0x08, 58 movm_a3_bit = 0x10, 59 movm_a2_bit = 0x20, 60 movm_d3_bit = 0x40, 61 movm_d2_bit = 0x80 62 }; 63 64 extern void _initialize_mn10300_tdep (void); 65 static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi, 66 CORE_ADDR pc); 67 68 /* mn10300 private data */ 69 struct gdbarch_tdep 70 { 71 int am33_mode; 72 #define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode) 73 }; 74 75 /* Additional info used by the frame */ 76 77 struct frame_extra_info 78 { 79 int status; 80 int stack_size; 81 }; 82 83 84 static char * 85 register_name (int reg, char **regs, long sizeof_regs) 86 { 87 if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0])) 88 return NULL; 89 else 90 return regs[reg]; 91 } 92 93 static const char * 94 mn10300_generic_register_name (int reg) 95 { 96 static char *regs[] = 97 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", 98 "sp", "pc", "mdr", "psw", "lir", "lar", "", "", 99 "", "", "", "", "", "", "", "", 100 "", "", "", "", "", "", "", "fp" 101 }; 102 return register_name (reg, regs, sizeof regs); 103 } 104 105 106 static const char * 107 am33_register_name (int reg) 108 { 109 static char *regs[] = 110 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", 111 "sp", "pc", "mdr", "psw", "lir", "lar", "", 112 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 113 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", "" 114 }; 115 return register_name (reg, regs, sizeof regs); 116 } 117 118 static CORE_ADDR 119 mn10300_saved_pc_after_call (struct frame_info *fi) 120 { 121 return read_memory_integer (read_register (SP_REGNUM), 4); 122 } 123 124 static void 125 mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type, 126 struct regcache *regcache, void *valbuf) 127 { 128 char buf[MAX_REGISTER_SIZE]; 129 int len = TYPE_LENGTH (type); 130 int reg, regsz; 131 132 if (TYPE_CODE (type) == TYPE_CODE_PTR) 133 reg = 4; 134 else 135 reg = 0; 136 137 regsz = register_size (gdbarch, reg); 138 if (len <= regsz) 139 { 140 regcache_raw_read (regcache, reg, buf); 141 memcpy (valbuf, buf, len); 142 } 143 else if (len <= 2 * regsz) 144 { 145 regcache_raw_read (regcache, reg, buf); 146 memcpy (valbuf, buf, regsz); 147 gdb_assert (regsz == register_size (gdbarch, reg + 1)); 148 regcache_raw_read (regcache, reg + 1, buf); 149 memcpy ((char *) valbuf + regsz, buf, len - regsz); 150 } 151 else 152 internal_error (__FILE__, __LINE__, 153 "Cannot extract return value %d bytes long.", len); 154 } 155 156 static void 157 mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type, 158 struct regcache *regcache, const void *valbuf) 159 { 160 int len = TYPE_LENGTH (type); 161 int reg, regsz; 162 163 if (TYPE_CODE (type) == TYPE_CODE_PTR) 164 reg = 4; 165 else 166 reg = 0; 167 168 regsz = register_size (gdbarch, reg); 169 170 if (len <= regsz) 171 regcache_raw_write_part (regcache, reg, 0, len, valbuf); 172 else if (len <= 2 * regsz) 173 { 174 regcache_raw_write (regcache, reg, valbuf); 175 gdb_assert (regsz == register_size (gdbarch, reg + 1)); 176 regcache_raw_write_part (regcache, reg+1, 0, 177 len - regsz, (char *) valbuf + regsz); 178 } 179 else 180 internal_error (__FILE__, __LINE__, 181 "Cannot store return value %d bytes long.", len); 182 } 183 184 static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR); 185 static struct frame_info * 186 analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame) 187 { 188 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 189 struct frame_info *dummy 190 = deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS, 191 sizeof (struct frame_extra_info)); 192 deprecated_update_frame_pc_hack (dummy, pc); 193 deprecated_update_frame_base_hack (dummy, frame); 194 get_frame_extra_info (dummy)->status = 0; 195 get_frame_extra_info (dummy)->stack_size = 0; 196 mn10300_analyze_prologue (dummy, pc); 197 do_cleanups (old_chain); 198 return dummy; 199 } 200 201 /* Values for frame_info.status */ 202 203 #define MY_FRAME_IN_SP 0x1 204 #define MY_FRAME_IN_FP 0x2 205 #define NO_MORE_FRAMES 0x4 206 207 /* Compute the alignment required by a type. */ 208 209 static int 210 mn10300_type_align (struct type *type) 211 { 212 int i, align = 1; 213 214 switch (TYPE_CODE (type)) 215 { 216 case TYPE_CODE_INT: 217 case TYPE_CODE_ENUM: 218 case TYPE_CODE_SET: 219 case TYPE_CODE_RANGE: 220 case TYPE_CODE_CHAR: 221 case TYPE_CODE_BOOL: 222 case TYPE_CODE_FLT: 223 case TYPE_CODE_PTR: 224 case TYPE_CODE_REF: 225 return TYPE_LENGTH (type); 226 227 case TYPE_CODE_COMPLEX: 228 return TYPE_LENGTH (type) / 2; 229 230 case TYPE_CODE_STRUCT: 231 case TYPE_CODE_UNION: 232 for (i = 0; i < TYPE_NFIELDS (type); i++) 233 { 234 int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i)); 235 while (align < falign) 236 align <<= 1; 237 } 238 return align; 239 240 case TYPE_CODE_ARRAY: 241 /* HACK! Structures containing arrays, even small ones, are not 242 elligible for returning in registers. */ 243 return 256; 244 245 case TYPE_CODE_TYPEDEF: 246 return mn10300_type_align (check_typedef (type)); 247 248 default: 249 internal_error (__FILE__, __LINE__, "bad switch"); 250 } 251 } 252 253 /* Should call_function allocate stack space for a struct return? */ 254 static int 255 mn10300_use_struct_convention (struct type *type) 256 { 257 /* Structures bigger than a pair of words can't be returned in 258 registers. */ 259 if (TYPE_LENGTH (type) > 8) 260 return 1; 261 262 switch (TYPE_CODE (type)) 263 { 264 case TYPE_CODE_STRUCT: 265 case TYPE_CODE_UNION: 266 /* Structures with a single field are handled as the field 267 itself. */ 268 if (TYPE_NFIELDS (type) == 1) 269 return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0)); 270 271 /* Structures with word or double-word size are passed in memory, as 272 long as they require at least word alignment. */ 273 if (mn10300_type_align (type) >= 4) 274 return 0; 275 276 return 1; 277 278 /* Arrays are addressable, so they're never returned in 279 registers. This condition can only hold when the array is 280 the only field of a struct or union. */ 281 case TYPE_CODE_ARRAY: 282 return 1; 283 284 case TYPE_CODE_TYPEDEF: 285 return mn10300_use_struct_convention (check_typedef (type)); 286 287 default: 288 return 0; 289 } 290 } 291 292 /* Determine, for architecture GDBARCH, how a return value of TYPE 293 should be returned. If it is supposed to be returned in registers, 294 and READBUF is non-zero, read the appropriate value from REGCACHE, 295 and copy it into READBUF. If WRITEBUF is non-zero, write the value 296 from WRITEBUF into REGCACHE. */ 297 298 static enum return_value_convention 299 mn10300_return_value (struct gdbarch *gdbarch, struct type *type, 300 struct regcache *regcache, void *readbuf, 301 const void *writebuf) 302 { 303 if (mn10300_use_struct_convention (type)) 304 return RETURN_VALUE_STRUCT_CONVENTION; 305 306 if (readbuf) 307 mn10300_extract_return_value (gdbarch, type, regcache, readbuf); 308 if (writebuf) 309 mn10300_store_return_value (gdbarch, type, regcache, writebuf); 310 311 return RETURN_VALUE_REGISTER_CONVENTION; 312 } 313 314 /* The breakpoint instruction must be the same size as the smallest 315 instruction in the instruction set. 316 317 The Matsushita mn10x00 processors have single byte instructions 318 so we need a single byte breakpoint. Matsushita hasn't defined 319 one, so we defined it ourselves. */ 320 321 const static unsigned char * 322 mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) 323 { 324 static char breakpoint[] = 325 {0xff}; 326 *bp_size = 1; 327 return breakpoint; 328 } 329 330 331 /* Fix fi->frame if it's bogus at this point. This is a helper 332 function for mn10300_analyze_prologue. */ 333 334 static void 335 fix_frame_pointer (struct frame_info *fi, int stack_size) 336 { 337 if (fi && get_next_frame (fi) == NULL) 338 { 339 if (get_frame_extra_info (fi)->status & MY_FRAME_IN_SP) 340 deprecated_update_frame_base_hack (fi, read_sp () - stack_size); 341 else if (get_frame_extra_info (fi)->status & MY_FRAME_IN_FP) 342 deprecated_update_frame_base_hack (fi, read_register (A3_REGNUM)); 343 } 344 } 345 346 347 /* Set offsets of registers saved by movm instruction. 348 This is a helper function for mn10300_analyze_prologue. */ 349 350 static void 351 set_movm_offsets (struct frame_info *fi, int movm_args) 352 { 353 int offset = 0; 354 355 if (fi == NULL || movm_args == 0) 356 return; 357 358 if (movm_args & movm_other_bit) 359 { 360 /* The `other' bit leaves a blank area of four bytes at the 361 beginning of its block of saved registers, making it 32 bytes 362 long in total. */ 363 deprecated_get_frame_saved_regs (fi)[LAR_REGNUM] = get_frame_base (fi) + offset + 4; 364 deprecated_get_frame_saved_regs (fi)[LIR_REGNUM] = get_frame_base (fi) + offset + 8; 365 deprecated_get_frame_saved_regs (fi)[MDR_REGNUM] = get_frame_base (fi) + offset + 12; 366 deprecated_get_frame_saved_regs (fi)[A0_REGNUM + 1] = get_frame_base (fi) + offset + 16; 367 deprecated_get_frame_saved_regs (fi)[A0_REGNUM] = get_frame_base (fi) + offset + 20; 368 deprecated_get_frame_saved_regs (fi)[D0_REGNUM + 1] = get_frame_base (fi) + offset + 24; 369 deprecated_get_frame_saved_regs (fi)[D0_REGNUM] = get_frame_base (fi) + offset + 28; 370 offset += 32; 371 } 372 if (movm_args & movm_a3_bit) 373 { 374 deprecated_get_frame_saved_regs (fi)[A3_REGNUM] = get_frame_base (fi) + offset; 375 offset += 4; 376 } 377 if (movm_args & movm_a2_bit) 378 { 379 deprecated_get_frame_saved_regs (fi)[A2_REGNUM] = get_frame_base (fi) + offset; 380 offset += 4; 381 } 382 if (movm_args & movm_d3_bit) 383 { 384 deprecated_get_frame_saved_regs (fi)[D3_REGNUM] = get_frame_base (fi) + offset; 385 offset += 4; 386 } 387 if (movm_args & movm_d2_bit) 388 { 389 deprecated_get_frame_saved_regs (fi)[D2_REGNUM] = get_frame_base (fi) + offset; 390 offset += 4; 391 } 392 if (AM33_MODE) 393 { 394 if (movm_args & movm_exother_bit) 395 { 396 deprecated_get_frame_saved_regs (fi)[MCVF_REGNUM] = get_frame_base (fi) + offset; 397 deprecated_get_frame_saved_regs (fi)[MCRL_REGNUM] = get_frame_base (fi) + offset + 4; 398 deprecated_get_frame_saved_regs (fi)[MCRH_REGNUM] = get_frame_base (fi) + offset + 8; 399 deprecated_get_frame_saved_regs (fi)[MDRQ_REGNUM] = get_frame_base (fi) + offset + 12; 400 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 1] = get_frame_base (fi) + offset + 16; 401 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 0] = get_frame_base (fi) + offset + 20; 402 offset += 24; 403 } 404 if (movm_args & movm_exreg1_bit) 405 { 406 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 7] = get_frame_base (fi) + offset; 407 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 6] = get_frame_base (fi) + offset + 4; 408 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 5] = get_frame_base (fi) + offset + 8; 409 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 4] = get_frame_base (fi) + offset + 12; 410 offset += 16; 411 } 412 if (movm_args & movm_exreg0_bit) 413 { 414 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 3] = get_frame_base (fi) + offset; 415 deprecated_get_frame_saved_regs (fi)[E0_REGNUM + 2] = get_frame_base (fi) + offset + 4; 416 offset += 8; 417 } 418 } 419 } 420 421 422 /* The main purpose of this file is dealing with prologues to extract 423 information about stack frames and saved registers. 424 425 In gcc/config/mn13000/mn10300.c, the expand_prologue prologue 426 function is pretty readable, and has a nice explanation of how the 427 prologue is generated. The prologues generated by that code will 428 have the following form (NOTE: the current code doesn't handle all 429 this!): 430 431 + If this is an old-style varargs function, then its arguments 432 need to be flushed back to the stack: 433 434 mov d0,(4,sp) 435 mov d1,(4,sp) 436 437 + If we use any of the callee-saved registers, save them now. 438 439 movm [some callee-saved registers],(sp) 440 441 + If we have any floating-point registers to save: 442 443 - Decrement the stack pointer to reserve space for the registers. 444 If the function doesn't need a frame pointer, we may combine 445 this with the adjustment that reserves space for the frame. 446 447 add -SIZE, sp 448 449 - Save the floating-point registers. We have two possible 450 strategies: 451 452 . Save them at fixed offset from the SP: 453 454 fmov fsN,(OFFSETN,sp) 455 fmov fsM,(OFFSETM,sp) 456 ... 457 458 Note that, if OFFSETN happens to be zero, you'll get the 459 different opcode: fmov fsN,(sp) 460 461 . Or, set a0 to the start of the save area, and then use 462 post-increment addressing to save the FP registers. 463 464 mov sp, a0 465 add SIZE, a0 466 fmov fsN,(a0+) 467 fmov fsM,(a0+) 468 ... 469 470 + If the function needs a frame pointer, we set it here. 471 472 mov sp, a3 473 474 + Now we reserve space for the stack frame proper. This could be 475 merged into the `add -SIZE, sp' instruction for FP saves up 476 above, unless we needed to set the frame pointer in the previous 477 step, or the frame is so large that allocating the whole thing at 478 once would put the FP register save slots out of reach of the 479 addressing mode (128 bytes). 480 481 add -SIZE, sp 482 483 One day we might keep the stack pointer constant, that won't 484 change the code for prologues, but it will make the frame 485 pointerless case much more common. */ 486 487 /* Analyze the prologue to determine where registers are saved, 488 the end of the prologue, etc etc. Return the end of the prologue 489 scanned. 490 491 We store into FI (if non-null) several tidbits of information: 492 493 * stack_size -- size of this stack frame. Note that if we stop in 494 certain parts of the prologue/epilogue we may claim the size of the 495 current frame is zero. This happens when the current frame has 496 not been allocated yet or has already been deallocated. 497 498 * fsr -- Addresses of registers saved in the stack by this frame. 499 500 * status -- A (relatively) generic status indicator. It's a bitmask 501 with the following bits: 502 503 MY_FRAME_IN_SP: The base of the current frame is actually in 504 the stack pointer. This can happen for frame pointerless 505 functions, or cases where we're stopped in the prologue/epilogue 506 itself. For these cases mn10300_analyze_prologue will need up 507 update fi->frame before returning or analyzing the register 508 save instructions. 509 510 MY_FRAME_IN_FP: The base of the current frame is in the 511 frame pointer register ($a3). 512 513 NO_MORE_FRAMES: Set this if the current frame is "start" or 514 if the first instruction looks like mov <imm>,sp. This tells 515 frame chain to not bother trying to unwind past this frame. */ 516 517 static CORE_ADDR 518 mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc) 519 { 520 CORE_ADDR func_addr, func_end, addr, stop; 521 CORE_ADDR stack_size; 522 int imm_size; 523 unsigned char buf[4]; 524 int status, movm_args = 0; 525 char *name; 526 527 /* Use the PC in the frame if it's provided to look up the 528 start of this function. 529 530 Note: kevinb/2003-07-16: We used to do the following here: 531 pc = (fi ? get_frame_pc (fi) : pc); 532 But this is (now) badly broken when called from analyze_dummy_frame(). 533 */ 534 pc = (pc ? pc : get_frame_pc (fi)); 535 536 /* Find the start of this function. */ 537 status = find_pc_partial_function (pc, &name, &func_addr, &func_end); 538 539 /* Do nothing if we couldn't find the start of this function or if we're 540 stopped at the first instruction in the prologue. */ 541 if (status == 0) 542 { 543 return pc; 544 } 545 546 /* If we're in start, then give up. */ 547 if (strcmp (name, "start") == 0) 548 { 549 if (fi != NULL) 550 get_frame_extra_info (fi)->status = NO_MORE_FRAMES; 551 return pc; 552 } 553 554 /* At the start of a function our frame is in the stack pointer. */ 555 if (fi) 556 get_frame_extra_info (fi)->status = MY_FRAME_IN_SP; 557 558 /* Get the next two bytes into buf, we need two because rets is a two 559 byte insn and the first isn't enough to uniquely identify it. */ 560 status = deprecated_read_memory_nobpt (pc, buf, 2); 561 if (status != 0) 562 return pc; 563 564 #if 0 565 /* Note: kevinb/2003-07-16: We shouldn't be making these sorts of 566 changes to the frame in prologue examination code. */ 567 /* If we're physically on an "rets" instruction, then our frame has 568 already been deallocated. Note this can also be true for retf 569 and ret if they specify a size of zero. 570 571 In this case fi->frame is bogus, we need to fix it. */ 572 if (fi && buf[0] == 0xf0 && buf[1] == 0xfc) 573 { 574 if (get_next_frame (fi) == NULL) 575 deprecated_update_frame_base_hack (fi, read_sp ()); 576 return get_frame_pc (fi); 577 } 578 579 /* Similarly if we're stopped on the first insn of a prologue as our 580 frame hasn't been allocated yet. */ 581 if (fi && get_frame_pc (fi) == func_addr) 582 { 583 if (get_next_frame (fi) == NULL) 584 deprecated_update_frame_base_hack (fi, read_sp ()); 585 return get_frame_pc (fi); 586 } 587 #endif 588 589 /* Figure out where to stop scanning. */ 590 stop = fi ? pc : func_end; 591 592 /* Don't walk off the end of the function. */ 593 stop = stop > func_end ? func_end : stop; 594 595 /* Start scanning on the first instruction of this function. */ 596 addr = func_addr; 597 598 /* Suck in two bytes. */ 599 if (addr + 2 >= stop 600 || (status = deprecated_read_memory_nobpt (addr, buf, 2)) != 0) 601 { 602 fix_frame_pointer (fi, 0); 603 return addr; 604 } 605 606 /* First see if this insn sets the stack pointer from a register; if 607 so, it's probably the initialization of the stack pointer in _start, 608 so mark this as the bottom-most frame. */ 609 if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0) 610 { 611 if (fi) 612 get_frame_extra_info (fi)->status = NO_MORE_FRAMES; 613 return addr; 614 } 615 616 /* Now look for movm [regs],sp, which saves the callee saved registers. 617 618 At this time we don't know if fi->frame is valid, so we only note 619 that we encountered a movm instruction. Later, we'll set the entries 620 in fsr.regs as needed. */ 621 if (buf[0] == 0xcf) 622 { 623 /* Extract the register list for the movm instruction. */ 624 status = deprecated_read_memory_nobpt (addr + 1, buf, 1); 625 movm_args = *buf; 626 627 addr += 2; 628 629 /* Quit now if we're beyond the stop point. */ 630 if (addr >= stop) 631 { 632 /* Fix fi->frame since it's bogus at this point. */ 633 if (fi && get_next_frame (fi) == NULL) 634 deprecated_update_frame_base_hack (fi, read_sp ()); 635 636 /* Note if/where callee saved registers were saved. */ 637 set_movm_offsets (fi, movm_args); 638 return addr; 639 } 640 641 /* Get the next two bytes so the prologue scan can continue. */ 642 status = deprecated_read_memory_nobpt (addr, buf, 2); 643 if (status != 0) 644 { 645 /* Fix fi->frame since it's bogus at this point. */ 646 if (fi && get_next_frame (fi) == NULL) 647 deprecated_update_frame_base_hack (fi, read_sp ()); 648 649 /* Note if/where callee saved registers were saved. */ 650 set_movm_offsets (fi, movm_args); 651 return addr; 652 } 653 } 654 655 /* Now see if we set up a frame pointer via "mov sp,a3" */ 656 if (buf[0] == 0x3f) 657 { 658 addr += 1; 659 660 /* The frame pointer is now valid. */ 661 if (fi) 662 { 663 get_frame_extra_info (fi)->status |= MY_FRAME_IN_FP; 664 get_frame_extra_info (fi)->status &= ~MY_FRAME_IN_SP; 665 } 666 667 /* Quit now if we're beyond the stop point. */ 668 if (addr >= stop) 669 { 670 /* Fix fi->frame if it's bogus at this point. */ 671 fix_frame_pointer (fi, 0); 672 673 /* Note if/where callee saved registers were saved. */ 674 set_movm_offsets (fi, movm_args); 675 return addr; 676 } 677 678 /* Get two more bytes so scanning can continue. */ 679 status = deprecated_read_memory_nobpt (addr, buf, 2); 680 if (status != 0) 681 { 682 /* Fix fi->frame if it's bogus at this point. */ 683 fix_frame_pointer (fi, 0); 684 685 /* Note if/where callee saved registers were saved. */ 686 set_movm_offsets (fi, movm_args); 687 return addr; 688 } 689 } 690 691 /* Next we should allocate the local frame. No more prologue insns 692 are found after allocating the local frame. 693 694 Search for add imm8,sp (0xf8feXX) 695 or add imm16,sp (0xfafeXXXX) 696 or add imm32,sp (0xfcfeXXXXXXXX). 697 698 If none of the above was found, then this prologue has no 699 additional stack. */ 700 701 status = deprecated_read_memory_nobpt (addr, buf, 2); 702 if (status != 0) 703 { 704 /* Fix fi->frame if it's bogus at this point. */ 705 fix_frame_pointer (fi, 0); 706 707 /* Note if/where callee saved registers were saved. */ 708 set_movm_offsets (fi, movm_args); 709 return addr; 710 } 711 712 imm_size = 0; 713 if (buf[0] == 0xf8 && buf[1] == 0xfe) 714 imm_size = 1; 715 else if (buf[0] == 0xfa && buf[1] == 0xfe) 716 imm_size = 2; 717 else if (buf[0] == 0xfc && buf[1] == 0xfe) 718 imm_size = 4; 719 720 if (imm_size != 0) 721 { 722 /* Suck in imm_size more bytes, they'll hold the size of the 723 current frame. */ 724 status = deprecated_read_memory_nobpt (addr + 2, buf, imm_size); 725 if (status != 0) 726 { 727 /* Fix fi->frame if it's bogus at this point. */ 728 fix_frame_pointer (fi, 0); 729 730 /* Note if/where callee saved registers were saved. */ 731 set_movm_offsets (fi, movm_args); 732 return addr; 733 } 734 735 /* Note the size of the stack in the frame info structure. */ 736 stack_size = extract_signed_integer (buf, imm_size); 737 if (fi) 738 get_frame_extra_info (fi)->stack_size = stack_size; 739 740 /* We just consumed 2 + imm_size bytes. */ 741 addr += 2 + imm_size; 742 743 /* No more prologue insns follow, so begin preparation to return. */ 744 /* Fix fi->frame if it's bogus at this point. */ 745 fix_frame_pointer (fi, stack_size); 746 747 /* Note if/where callee saved registers were saved. */ 748 set_movm_offsets (fi, movm_args); 749 return addr; 750 } 751 752 /* We never found an insn which allocates local stack space, regardless 753 this is the end of the prologue. */ 754 /* Fix fi->frame if it's bogus at this point. */ 755 fix_frame_pointer (fi, 0); 756 757 /* Note if/where callee saved registers were saved. */ 758 set_movm_offsets (fi, movm_args); 759 return addr; 760 } 761 762 763 /* Function: saved_regs_size 764 Return the size in bytes of the register save area, based on the 765 saved_regs array in FI. */ 766 static int 767 saved_regs_size (struct frame_info *fi) 768 { 769 int adjust = 0; 770 int i; 771 772 /* Reserve four bytes for every register saved. */ 773 for (i = 0; i < NUM_REGS; i++) 774 if (deprecated_get_frame_saved_regs (fi)[i]) 775 adjust += 4; 776 777 /* If we saved LIR, then it's most likely we used a `movm' 778 instruction with the `other' bit set, in which case the SP is 779 decremented by an extra four bytes, "to simplify calculation 780 of the transfer area", according to the processor manual. */ 781 if (deprecated_get_frame_saved_regs (fi)[LIR_REGNUM]) 782 adjust += 4; 783 784 return adjust; 785 } 786 787 788 /* Function: frame_chain 789 Figure out and return the caller's frame pointer given current 790 frame_info struct. 791 792 We don't handle dummy frames yet but we would probably just return the 793 stack pointer that was in use at the time the function call was made? */ 794 795 static CORE_ADDR 796 mn10300_frame_chain (struct frame_info *fi) 797 { 798 struct frame_info *dummy; 799 /* Walk through the prologue to determine the stack size, 800 location of saved registers, end of the prologue, etc. */ 801 if (get_frame_extra_info (fi)->status == 0) 802 mn10300_analyze_prologue (fi, (CORE_ADDR) 0); 803 804 /* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */ 805 if (get_frame_extra_info (fi)->status & NO_MORE_FRAMES) 806 return 0; 807 808 /* Now that we've analyzed our prologue, determine the frame 809 pointer for our caller. 810 811 If our caller has a frame pointer, then we need to 812 find the entry value of $a3 to our function. 813 814 If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory 815 location pointed to by fsr.regs[A3_REGNUM]. 816 817 Else it's still in $a3. 818 819 If our caller does not have a frame pointer, then his 820 frame base is fi->frame + -caller's stack size. */ 821 822 /* The easiest way to get that info is to analyze our caller's frame. 823 So we set up a dummy frame and call mn10300_analyze_prologue to 824 find stuff for us. */ 825 dummy = analyze_dummy_frame (DEPRECATED_FRAME_SAVED_PC (fi), get_frame_base (fi)); 826 827 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_FP) 828 { 829 /* Our caller has a frame pointer. So find the frame in $a3 or 830 in the stack. */ 831 if (deprecated_get_frame_saved_regs (fi)[A3_REGNUM]) 832 return (read_memory_integer (deprecated_get_frame_saved_regs (fi)[A3_REGNUM], 833 DEPRECATED_REGISTER_SIZE)); 834 else 835 return read_register (A3_REGNUM); 836 } 837 else 838 { 839 int adjust = saved_regs_size (fi); 840 841 /* Our caller does not have a frame pointer. So his frame starts 842 at the base of our frame (fi->frame) + register save space 843 + <his size>. */ 844 return get_frame_base (fi) + adjust + -get_frame_extra_info (dummy)->stack_size; 845 } 846 } 847 848 /* Function: skip_prologue 849 Return the address of the first inst past the prologue of the function. */ 850 851 static CORE_ADDR 852 mn10300_skip_prologue (CORE_ADDR pc) 853 { 854 /* We used to check the debug symbols, but that can lose if 855 we have a null prologue. */ 856 return mn10300_analyze_prologue (NULL, pc); 857 } 858 859 /* generic_pop_current_frame calls this function if the current 860 frame isn't a dummy frame. */ 861 static void 862 mn10300_pop_frame_regular (struct frame_info *frame) 863 { 864 int regnum; 865 866 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame)); 867 868 /* Restore any saved registers. */ 869 for (regnum = 0; regnum < NUM_REGS; regnum++) 870 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0) 871 { 872 ULONGEST value; 873 874 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum], 875 register_size (current_gdbarch, regnum)); 876 write_register (regnum, value); 877 } 878 879 /* Actually cut back the stack, adjusted by the saved registers like 880 ret would. */ 881 write_register (SP_REGNUM, get_frame_base (frame) + saved_regs_size (frame)); 882 } 883 884 /* Function: pop_frame 885 This routine gets called when either the user uses the `return' 886 command, or the call dummy breakpoint gets hit. */ 887 static void 888 mn10300_pop_frame (void) 889 { 890 struct frame_info *frame = get_current_frame (); 891 if (get_frame_type (frame) == DUMMY_FRAME) 892 /* NOTE: cagney/2002-22-23: Does this ever occure? Surely a dummy 893 frame will have already been poped by the "infrun.c" code. */ 894 deprecated_pop_dummy_frame (); 895 else 896 mn10300_pop_frame_regular (frame); 897 /* Throw away any cached frame information. */ 898 flush_cached_frames (); 899 } 900 901 /* Function: push_arguments 902 Setup arguments for a call to the target. Arguments go in 903 order on the stack. */ 904 905 static CORE_ADDR 906 mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp, 907 int struct_return, CORE_ADDR struct_addr) 908 { 909 int argnum = 0; 910 int len = 0; 911 int stack_offset = 0; 912 int regsused = struct_return ? 1 : 0; 913 914 /* This should be a nop, but align the stack just in case something 915 went wrong. Stacks are four byte aligned on the mn10300. */ 916 sp &= ~3; 917 918 /* Now make space on the stack for the args. 919 920 XXX This doesn't appear to handle pass-by-invisible reference 921 arguments. */ 922 for (argnum = 0; argnum < nargs; argnum++) 923 { 924 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3; 925 926 while (regsused < 2 && arg_length > 0) 927 { 928 regsused++; 929 arg_length -= 4; 930 } 931 len += arg_length; 932 } 933 934 /* Allocate stack space. */ 935 sp -= len; 936 937 regsused = struct_return ? 1 : 0; 938 /* Push all arguments onto the stack. */ 939 for (argnum = 0; argnum < nargs; argnum++) 940 { 941 int len; 942 char *val; 943 944 /* XXX Check this. What about UNIONS? */ 945 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT 946 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8) 947 { 948 /* XXX Wrong, we want a pointer to this argument. */ 949 len = TYPE_LENGTH (VALUE_TYPE (*args)); 950 val = (char *) VALUE_CONTENTS (*args); 951 } 952 else 953 { 954 len = TYPE_LENGTH (VALUE_TYPE (*args)); 955 val = (char *) VALUE_CONTENTS (*args); 956 } 957 958 while (regsused < 2 && len > 0) 959 { 960 write_register (regsused, extract_unsigned_integer (val, 4)); 961 val += 4; 962 len -= 4; 963 regsused++; 964 } 965 966 while (len > 0) 967 { 968 write_memory (sp + stack_offset, val, 4); 969 len -= 4; 970 val += 4; 971 stack_offset += 4; 972 } 973 974 args++; 975 } 976 977 /* Make space for the flushback area. */ 978 sp -= 8; 979 return sp; 980 } 981 982 /* Function: push_return_address (pc) 983 Set up the return address for the inferior function call. 984 Needed for targets where we don't actually execute a JSR/BSR instruction */ 985 986 static CORE_ADDR 987 mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp) 988 { 989 unsigned char buf[4]; 990 991 store_unsigned_integer (buf, 4, entry_point_address ()); 992 write_memory (sp - 4, buf, 4); 993 return sp - 4; 994 } 995 996 /* Function: store_struct_return (addr,sp) 997 Store the structure value return address for an inferior function 998 call. */ 999 1000 static void 1001 mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) 1002 { 1003 /* The structure return address is passed as the first argument. */ 1004 write_register (0, addr); 1005 } 1006 1007 /* Function: frame_saved_pc 1008 Find the caller of this frame. We do this by seeing if RP_REGNUM 1009 is saved in the stack anywhere, otherwise we get it from the 1010 registers. If the inner frame is a dummy frame, return its PC 1011 instead of RP, because that's where "caller" of the dummy-frame 1012 will be found. */ 1013 1014 static CORE_ADDR 1015 mn10300_frame_saved_pc (struct frame_info *fi) 1016 { 1017 int adjust = saved_regs_size (fi); 1018 1019 return (read_memory_integer (get_frame_base (fi) + adjust, 1020 DEPRECATED_REGISTER_SIZE)); 1021 } 1022 1023 /* Function: mn10300_init_extra_frame_info 1024 Setup the frame's frame pointer, pc, and frame addresses for saved 1025 registers. Most of the work is done in mn10300_analyze_prologue(). 1026 1027 Note that when we are called for the last frame (currently active frame), 1028 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will 1029 be valid only if this routine uses FP. For previous frames, fi-frame will 1030 always be correct. mn10300_analyze_prologue will fix fi->frame if 1031 it's not valid. 1032 1033 We can be called with the PC in the call dummy under two 1034 circumstances. First, during normal backtracing, second, while 1035 figuring out the frame pointer just prior to calling the target 1036 function (see call_function_by_hand). */ 1037 1038 static void 1039 mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi) 1040 { 1041 if (get_next_frame (fi)) 1042 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi))); 1043 1044 frame_saved_regs_zalloc (fi); 1045 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info)); 1046 1047 get_frame_extra_info (fi)->status = 0; 1048 get_frame_extra_info (fi)->stack_size = 0; 1049 1050 mn10300_analyze_prologue (fi, 0); 1051 } 1052 1053 1054 /* This function's job is handled by init_extra_frame_info. */ 1055 static void 1056 mn10300_frame_init_saved_regs (struct frame_info *frame) 1057 { 1058 } 1059 1060 1061 /* Function: mn10300_virtual_frame_pointer 1062 Return the register that the function uses for a frame pointer, 1063 plus any necessary offset to be applied to the register before 1064 any frame pointer offsets. */ 1065 1066 static void 1067 mn10300_virtual_frame_pointer (CORE_ADDR pc, 1068 int *reg, 1069 LONGEST *offset) 1070 { 1071 struct frame_info *dummy = analyze_dummy_frame (pc, 0); 1072 /* Set up a dummy frame_info, Analyze the prolog and fill in the 1073 extra info. */ 1074 /* Results will tell us which type of frame it uses. */ 1075 if (get_frame_extra_info (dummy)->status & MY_FRAME_IN_SP) 1076 { 1077 *reg = SP_REGNUM; 1078 *offset = -(get_frame_extra_info (dummy)->stack_size); 1079 } 1080 else 1081 { 1082 *reg = A3_REGNUM; 1083 *offset = 0; 1084 } 1085 } 1086 1087 static int 1088 mn10300_reg_struct_has_addr (int gcc_p, struct type *type) 1089 { 1090 return (TYPE_LENGTH (type) > 8); 1091 } 1092 1093 static struct type * 1094 mn10300_register_virtual_type (int reg) 1095 { 1096 return builtin_type_int; 1097 } 1098 1099 static int 1100 mn10300_register_byte (int reg) 1101 { 1102 return (reg * 4); 1103 } 1104 1105 static int 1106 mn10300_register_virtual_size (int reg) 1107 { 1108 return 4; 1109 } 1110 1111 static int 1112 mn10300_register_raw_size (int reg) 1113 { 1114 return 4; 1115 } 1116 1117 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then 1118 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB 1119 register number. Why don't Dwarf2 and GDB use the same numbering? 1120 Who knows? But since people have object files lying around with 1121 the existing Dwarf2 numbering, and other people have written stubs 1122 to work with the existing GDB, neither of them can change. So we 1123 just have to cope. */ 1124 static int 1125 mn10300_dwarf2_reg_to_regnum (int dwarf2) 1126 { 1127 /* This table is supposed to be shaped like the REGISTER_NAMES 1128 initializer in gcc/config/mn10300/mn10300.h. Registers which 1129 appear in GCC's numbering, but have no counterpart in GDB's 1130 world, are marked with a -1. */ 1131 static int dwarf2_to_gdb[] = { 1132 0, 1, 2, 3, 4, 5, 6, 7, -1, 8, 1133 15, 16, 17, 18, 19, 20, 21, 22 1134 }; 1135 int gdb; 1136 1137 if (dwarf2 < 0 1138 || dwarf2 >= (sizeof (dwarf2_to_gdb) / sizeof (dwarf2_to_gdb[0])) 1139 || dwarf2_to_gdb[dwarf2] == -1) 1140 internal_error (__FILE__, __LINE__, 1141 "bogus register number in debug info: %d", dwarf2); 1142 1143 return dwarf2_to_gdb[dwarf2]; 1144 } 1145 1146 static void 1147 mn10300_print_register (const char *name, int regnum, int reg_width) 1148 { 1149 char raw_buffer[MAX_REGISTER_SIZE]; 1150 1151 if (reg_width) 1152 printf_filtered ("%*s: ", reg_width, name); 1153 else 1154 printf_filtered ("%s: ", name); 1155 1156 /* Get the data */ 1157 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer)) 1158 { 1159 printf_filtered ("[invalid]"); 1160 return; 1161 } 1162 else 1163 { 1164 int byte; 1165 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) 1166 { 1167 for (byte = register_size (current_gdbarch, regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum); 1168 byte < register_size (current_gdbarch, regnum); 1169 byte++) 1170 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); 1171 } 1172 else 1173 { 1174 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1; 1175 byte >= 0; 1176 byte--) 1177 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); 1178 } 1179 } 1180 } 1181 1182 static void 1183 mn10300_do_registers_info (int regnum, int fpregs) 1184 { 1185 if (regnum >= 0) 1186 { 1187 const char *name = REGISTER_NAME (regnum); 1188 if (name == NULL || name[0] == '\0') 1189 error ("Not a valid register for the current processor type"); 1190 mn10300_print_register (name, regnum, 0); 1191 printf_filtered ("\n"); 1192 } 1193 else 1194 { 1195 /* print registers in an array 4x8 */ 1196 int r; 1197 int reg; 1198 const int nr_in_row = 4; 1199 const int reg_width = 4; 1200 for (r = 0; r < NUM_REGS; r += nr_in_row) 1201 { 1202 int c; 1203 int printing = 0; 1204 int padding = 0; 1205 for (c = r; c < r + nr_in_row; c++) 1206 { 1207 const char *name = REGISTER_NAME (c); 1208 if (name != NULL && *name != '\0') 1209 { 1210 printing = 1; 1211 while (padding > 0) 1212 { 1213 printf_filtered (" "); 1214 padding--; 1215 } 1216 mn10300_print_register (name, c, reg_width); 1217 printf_filtered (" "); 1218 } 1219 else 1220 { 1221 padding += (reg_width + 2 + 8 + 1); 1222 } 1223 } 1224 if (printing) 1225 printf_filtered ("\n"); 1226 } 1227 } 1228 } 1229 1230 static CORE_ADDR 1231 mn10300_read_fp (void) 1232 { 1233 /* That's right, we're using the stack pointer as our frame pointer. */ 1234 gdb_assert (SP_REGNUM >= 0); 1235 return read_register (SP_REGNUM); 1236 } 1237 1238 /* Dump out the mn10300 speciic architecture information. */ 1239 1240 static void 1241 mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) 1242 { 1243 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 1244 fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n", 1245 tdep->am33_mode); 1246 } 1247 1248 static struct gdbarch * 1249 mn10300_gdbarch_init (struct gdbarch_info info, 1250 struct gdbarch_list *arches) 1251 { 1252 struct gdbarch *gdbarch; 1253 struct gdbarch_tdep *tdep = NULL; 1254 int am33_mode; 1255 gdbarch_register_name_ftype *register_name; 1256 int mach; 1257 int num_regs; 1258 1259 arches = gdbarch_list_lookup_by_info (arches, &info); 1260 if (arches != NULL) 1261 return arches->gdbarch; 1262 tdep = xmalloc (sizeof (struct gdbarch_tdep)); 1263 gdbarch = gdbarch_alloc (&info, tdep); 1264 1265 if (info.bfd_arch_info != NULL 1266 && info.bfd_arch_info->arch == bfd_arch_mn10300) 1267 mach = info.bfd_arch_info->mach; 1268 else 1269 mach = 0; 1270 switch (mach) 1271 { 1272 case 0: 1273 case bfd_mach_mn10300: 1274 am33_mode = 0; 1275 register_name = mn10300_generic_register_name; 1276 num_regs = 32; 1277 break; 1278 case bfd_mach_am33: 1279 am33_mode = 1; 1280 register_name = am33_register_name; 1281 num_regs = 32; 1282 break; 1283 default: 1284 internal_error (__FILE__, __LINE__, 1285 "mn10300_gdbarch_init: Unknown mn10300 variant"); 1286 return NULL; /* keep GCC happy. */ 1287 } 1288 1289 /* Registers. */ 1290 set_gdbarch_num_regs (gdbarch, num_regs); 1291 set_gdbarch_register_name (gdbarch, register_name); 1292 set_gdbarch_deprecated_register_size (gdbarch, 4); 1293 set_gdbarch_deprecated_register_raw_size (gdbarch, mn10300_register_raw_size); 1294 set_gdbarch_deprecated_register_byte (gdbarch, mn10300_register_byte); 1295 set_gdbarch_deprecated_register_virtual_size (gdbarch, mn10300_register_virtual_size); 1296 set_gdbarch_deprecated_register_virtual_type (gdbarch, mn10300_register_virtual_type); 1297 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum); 1298 set_gdbarch_deprecated_do_registers_info (gdbarch, mn10300_do_registers_info); 1299 set_gdbarch_sp_regnum (gdbarch, 8); 1300 set_gdbarch_pc_regnum (gdbarch, 9); 1301 set_gdbarch_deprecated_fp_regnum (gdbarch, 31); 1302 set_gdbarch_virtual_frame_pointer (gdbarch, mn10300_virtual_frame_pointer); 1303 1304 /* Breakpoints. */ 1305 set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc); 1306 1307 /* Stack unwinding. */ 1308 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1309 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mn10300_saved_pc_after_call); 1310 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mn10300_init_extra_frame_info); 1311 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mn10300_frame_init_saved_regs); 1312 set_gdbarch_deprecated_frame_chain (gdbarch, mn10300_frame_chain); 1313 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mn10300_frame_saved_pc); 1314 set_gdbarch_return_value (gdbarch, mn10300_return_value); 1315 set_gdbarch_deprecated_store_struct_return (gdbarch, mn10300_store_struct_return); 1316 set_gdbarch_deprecated_pop_frame (gdbarch, mn10300_pop_frame); 1317 set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue); 1318 /* That's right, we're using the stack pointer as our frame pointer. */ 1319 set_gdbarch_deprecated_target_read_fp (gdbarch, mn10300_read_fp); 1320 1321 /* Calling functions in the inferior from GDB. */ 1322 set_gdbarch_deprecated_push_arguments (gdbarch, mn10300_push_arguments); 1323 set_gdbarch_deprecated_reg_struct_has_addr 1324 (gdbarch, mn10300_reg_struct_has_addr); 1325 set_gdbarch_deprecated_push_return_address (gdbarch, mn10300_push_return_address); 1326 1327 tdep->am33_mode = am33_mode; 1328 1329 /* Should be using push_dummy_call. */ 1330 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp); 1331 1332 set_gdbarch_print_insn (gdbarch, print_insn_mn10300); 1333 1334 return gdbarch; 1335 } 1336 1337 void 1338 _initialize_mn10300_tdep (void) 1339 { 1340 /* printf("_initialize_mn10300_tdep\n"); */ 1341 gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep); 1342 } 1343