1 /* Target-dependent code for PowerPC systems using the SVR4 ABI 2 for GDB, the GNU debugger. 3 4 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 #include "gdbcore.h" 25 #include "inferior.h" 26 #include "regcache.h" 27 #include "value.h" 28 #include "gdb_string.h" 29 #include "gdb_assert.h" 30 #include "ppc-tdep.h" 31 #include "target.h" 32 #include "objfiles.h" 33 #include "infcall.h" 34 35 /* Pass the arguments in either registers, or in the stack. Using the 36 ppc sysv ABI, the first eight words of the argument list (that might 37 be less than eight parameters if some parameters occupy more than one 38 word) are passed in r3..r10 registers. float and double parameters are 39 passed in fpr's, in addition to that. Rest of the parameters if any 40 are passed in user stack. 41 42 If the function is returning a structure, then the return address is passed 43 in r3, then the first 7 words of the parametes can be passed in registers, 44 starting from r4. */ 45 46 CORE_ADDR 47 ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 48 struct regcache *regcache, CORE_ADDR bp_addr, 49 int nargs, struct value **args, CORE_ADDR sp, 50 int struct_return, CORE_ADDR struct_addr) 51 { 52 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 53 const CORE_ADDR saved_sp = read_sp (); 54 int argspace = 0; /* 0 is an initial wrong guess. */ 55 int write_pass; 56 57 /* Go through the argument list twice. 58 59 Pass 1: Figure out how much new stack space is required for 60 arguments and pushed values. Unlike the PowerOpen ABI, the SysV 61 ABI doesn't reserve any extra space for parameters which are put 62 in registers, but does always push structures and then pass their 63 address. 64 65 Pass 2: Replay the same computation but this time also write the 66 values out to the target. */ 67 68 for (write_pass = 0; write_pass < 2; write_pass++) 69 { 70 int argno; 71 /* Next available floating point register for float and double 72 arguments. */ 73 int freg = 1; 74 /* Next available general register for non-float, non-vector 75 arguments. */ 76 int greg = 3; 77 /* Next available vector register for vector arguments. */ 78 int vreg = 2; 79 /* Arguments start above the "LR save word" and "Back chain". */ 80 int argoffset = 2 * tdep->wordsize; 81 /* Structures start after the arguments. */ 82 int structoffset = argoffset + argspace; 83 84 /* If the function is returning a `struct', then the first word 85 (which will be passed in r3) is used for struct return 86 address. In that case we should advance one word and start 87 from r4 register to copy parameters. */ 88 if (struct_return) 89 { 90 if (write_pass) 91 regcache_cooked_write_signed (regcache, 92 tdep->ppc_gp0_regnum + greg, 93 struct_addr); 94 greg++; 95 } 96 97 for (argno = 0; argno < nargs; argno++) 98 { 99 struct value *arg = args[argno]; 100 struct type *type = check_typedef (VALUE_TYPE (arg)); 101 int len = TYPE_LENGTH (type); 102 char *val = VALUE_CONTENTS (arg); 103 104 if (TYPE_CODE (type) == TYPE_CODE_FLT 105 && ppc_floating_point_unit_p (current_gdbarch) && len <= 8) 106 { 107 /* Floating point value converted to "double" then 108 passed in an FP register, when the registers run out, 109 8 byte aligned stack is used. */ 110 if (freg <= 8) 111 { 112 if (write_pass) 113 { 114 /* Always store the floating point value using 115 the register's floating-point format. */ 116 char regval[MAX_REGISTER_SIZE]; 117 struct type *regtype 118 = register_type (gdbarch, tdep->ppc_fp0_regnum + freg); 119 convert_typed_floating (val, type, regval, regtype); 120 regcache_cooked_write (regcache, 121 tdep->ppc_fp0_regnum + freg, 122 regval); 123 } 124 freg++; 125 } 126 else 127 { 128 /* SysV ABI converts floats to doubles before 129 writing them to an 8 byte aligned stack location. */ 130 argoffset = align_up (argoffset, 8); 131 if (write_pass) 132 { 133 char memval[8]; 134 struct type *memtype; 135 switch (TARGET_BYTE_ORDER) 136 { 137 case BFD_ENDIAN_BIG: 138 memtype = builtin_type_ieee_double_big; 139 break; 140 case BFD_ENDIAN_LITTLE: 141 memtype = builtin_type_ieee_double_little; 142 break; 143 default: 144 internal_error (__FILE__, __LINE__, "bad switch"); 145 } 146 convert_typed_floating (val, type, memval, memtype); 147 write_memory (sp + argoffset, val, len); 148 } 149 argoffset += 8; 150 } 151 } 152 else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT /* long long */ 153 || (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */ 154 { 155 /* "long long" or "double" passed in an odd/even 156 register pair with the low addressed word in the odd 157 register and the high addressed word in the even 158 register, or when the registers run out an 8 byte 159 aligned stack location. */ 160 if (greg > 9) 161 { 162 /* Just in case GREG was 10. */ 163 greg = 11; 164 argoffset = align_up (argoffset, 8); 165 if (write_pass) 166 write_memory (sp + argoffset, val, len); 167 argoffset += 8; 168 } 169 else if (tdep->wordsize == 8) 170 { 171 if (write_pass) 172 regcache_cooked_write (regcache, 173 tdep->ppc_gp0_regnum + greg, val); 174 greg += 1; 175 } 176 else 177 { 178 /* Must start on an odd register - r3/r4 etc. */ 179 if ((greg & 1) == 0) 180 greg++; 181 if (write_pass) 182 { 183 regcache_cooked_write (regcache, 184 tdep->ppc_gp0_regnum + greg + 0, 185 val + 0); 186 regcache_cooked_write (regcache, 187 tdep->ppc_gp0_regnum + greg + 1, 188 val + 4); 189 } 190 greg += 2; 191 } 192 } 193 else if (len == 16 194 && TYPE_CODE (type) == TYPE_CODE_ARRAY 195 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0) 196 { 197 /* Vector parameter passed in an Altivec register, or 198 when that runs out, 16 byte aligned stack location. */ 199 if (vreg <= 13) 200 { 201 if (write_pass) 202 regcache_cooked_write (current_regcache, 203 tdep->ppc_vr0_regnum + vreg, val); 204 vreg++; 205 } 206 else 207 { 208 argoffset = align_up (argoffset, 16); 209 if (write_pass) 210 write_memory (sp + argoffset, val, 16); 211 argoffset += 16; 212 } 213 } 214 else if (len == 8 215 && TYPE_CODE (type) == TYPE_CODE_ARRAY 216 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0) 217 { 218 /* Vector parameter passed in an e500 register, or when 219 that runs out, 8 byte aligned stack location. Note 220 that since e500 vector and general purpose registers 221 both map onto the same underlying register set, a 222 "greg" and not a "vreg" is consumed here. A cooked 223 write stores the value in the correct locations 224 within the raw register cache. */ 225 if (greg <= 10) 226 { 227 if (write_pass) 228 regcache_cooked_write (current_regcache, 229 tdep->ppc_ev0_regnum + greg, val); 230 greg++; 231 } 232 else 233 { 234 argoffset = align_up (argoffset, 8); 235 if (write_pass) 236 write_memory (sp + argoffset, val, 8); 237 argoffset += 8; 238 } 239 } 240 else 241 { 242 /* Reduce the parameter down to something that fits in a 243 "word". */ 244 char word[MAX_REGISTER_SIZE]; 245 memset (word, 0, MAX_REGISTER_SIZE); 246 if (len > tdep->wordsize 247 || TYPE_CODE (type) == TYPE_CODE_STRUCT 248 || TYPE_CODE (type) == TYPE_CODE_UNION) 249 { 250 /* Structs and large values are put on an 8 byte 251 aligned stack ... */ 252 structoffset = align_up (structoffset, 8); 253 if (write_pass) 254 write_memory (sp + structoffset, val, len); 255 /* ... and then a "word" pointing to that address is 256 passed as the parameter. */ 257 store_unsigned_integer (word, tdep->wordsize, 258 sp + structoffset); 259 structoffset += len; 260 } 261 else if (TYPE_CODE (type) == TYPE_CODE_INT) 262 /* Sign or zero extend the "int" into a "word". */ 263 store_unsigned_integer (word, tdep->wordsize, 264 unpack_long (type, val)); 265 else 266 /* Always goes in the low address. */ 267 memcpy (word, val, len); 268 /* Store that "word" in a register, or on the stack. 269 The words have "4" byte alignment. */ 270 if (greg <= 10) 271 { 272 if (write_pass) 273 regcache_cooked_write (regcache, 274 tdep->ppc_gp0_regnum + greg, word); 275 greg++; 276 } 277 else 278 { 279 argoffset = align_up (argoffset, tdep->wordsize); 280 if (write_pass) 281 write_memory (sp + argoffset, word, tdep->wordsize); 282 argoffset += tdep->wordsize; 283 } 284 } 285 } 286 287 /* Compute the actual stack space requirements. */ 288 if (!write_pass) 289 { 290 /* Remember the amount of space needed by the arguments. */ 291 argspace = argoffset; 292 /* Allocate space for both the arguments and the structures. */ 293 sp -= (argoffset + structoffset); 294 /* Ensure that the stack is still 16 byte aligned. */ 295 sp = align_down (sp, 16); 296 } 297 } 298 299 /* Update %sp. */ 300 regcache_cooked_write_signed (regcache, SP_REGNUM, sp); 301 302 /* Write the backchain (it occupies WORDSIZED bytes). */ 303 write_memory_signed_integer (sp, tdep->wordsize, saved_sp); 304 305 /* Point the inferior function call's return address at the dummy's 306 breakpoint. */ 307 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); 308 309 return sp; 310 } 311 312 /* Handle the return-value conventions specified by the SysV 32-bit 313 PowerPC ABI (including all the supplements): 314 315 no floating-point: floating-point values returned using 32-bit 316 general-purpose registers. 317 318 Altivec: 128-bit vectors returned using vector registers. 319 320 e500: 64-bit vectors returned using the full full 64 bit EV 321 register, floating-point values returned using 32-bit 322 general-purpose registers. 323 324 GCC (broken): Small struct values right (instead of left) aligned 325 when returned in general-purpose registers. */ 326 327 static enum return_value_convention 328 do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type, 329 struct regcache *regcache, void *readbuf, 330 const void *writebuf, int broken_gcc) 331 { 332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 333 gdb_assert (tdep->wordsize == 4); 334 if (TYPE_CODE (type) == TYPE_CODE_FLT 335 && TYPE_LENGTH (type) <= 8 336 && ppc_floating_point_unit_p (gdbarch)) 337 { 338 if (readbuf) 339 { 340 /* Floats and doubles stored in "f1". Convert the value to 341 the required type. */ 342 char regval[MAX_REGISTER_SIZE]; 343 struct type *regtype = register_type (gdbarch, 344 tdep->ppc_fp0_regnum + 1); 345 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); 346 convert_typed_floating (regval, regtype, readbuf, type); 347 } 348 if (writebuf) 349 { 350 /* Floats and doubles stored in "f1". Convert the value to 351 the register's "double" type. */ 352 char regval[MAX_REGISTER_SIZE]; 353 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); 354 convert_typed_floating (writebuf, type, regval, regtype); 355 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); 356 } 357 return RETURN_VALUE_REGISTER_CONVENTION; 358 } 359 if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8) 360 || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)) 361 { 362 if (readbuf) 363 { 364 /* A long long, or a double stored in the 32 bit r3/r4. */ 365 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, 366 (bfd_byte *) readbuf + 0); 367 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, 368 (bfd_byte *) readbuf + 4); 369 } 370 if (writebuf) 371 { 372 /* A long long, or a double stored in the 32 bit r3/r4. */ 373 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, 374 (const bfd_byte *) writebuf + 0); 375 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, 376 (const bfd_byte *) writebuf + 4); 377 } 378 return RETURN_VALUE_REGISTER_CONVENTION; 379 } 380 if (TYPE_CODE (type) == TYPE_CODE_INT 381 && TYPE_LENGTH (type) <= tdep->wordsize) 382 { 383 if (readbuf) 384 { 385 /* Some sort of integer stored in r3. Since TYPE isn't 386 bigger than the register, sign extension isn't a problem 387 - just do everything unsigned. */ 388 ULONGEST regval; 389 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 390 ®val); 391 store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval); 392 } 393 if (writebuf) 394 { 395 /* Some sort of integer stored in r3. Use unpack_long since 396 that should handle any required sign extension. */ 397 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 398 unpack_long (type, writebuf)); 399 } 400 return RETURN_VALUE_REGISTER_CONVENTION; 401 } 402 if (TYPE_LENGTH (type) == 16 403 && TYPE_CODE (type) == TYPE_CODE_ARRAY 404 && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0) 405 { 406 if (readbuf) 407 { 408 /* Altivec places the return value in "v2". */ 409 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf); 410 } 411 if (writebuf) 412 { 413 /* Altivec places the return value in "v2". */ 414 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf); 415 } 416 return RETURN_VALUE_REGISTER_CONVENTION; 417 } 418 if (TYPE_LENGTH (type) == 8 419 && TYPE_CODE (type) == TYPE_CODE_ARRAY 420 && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0) 421 { 422 /* The e500 ABI places return values for the 64-bit DSP types 423 (__ev64_opaque__) in r3. However, in GDB-speak, ev3 424 corresponds to the entire r3 value for e500, whereas GDB's r3 425 only corresponds to the least significant 32-bits. So place 426 the 64-bit DSP type's value in ev3. */ 427 if (readbuf) 428 regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf); 429 if (writebuf) 430 regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf); 431 return RETURN_VALUE_REGISTER_CONVENTION; 432 } 433 if (broken_gcc && TYPE_LENGTH (type) <= 8) 434 { 435 if (readbuf) 436 { 437 /* GCC screwed up. The last register isn't "left" aligned. 438 Need to extract the least significant part of each 439 register and then store that. */ 440 /* Transfer any full words. */ 441 int word = 0; 442 while (1) 443 { 444 ULONGEST reg; 445 int len = TYPE_LENGTH (type) - word * tdep->wordsize; 446 if (len <= 0) 447 break; 448 if (len > tdep->wordsize) 449 len = tdep->wordsize; 450 regcache_cooked_read_unsigned (regcache, 451 tdep->ppc_gp0_regnum + 3 + word, 452 ®); 453 store_unsigned_integer (((bfd_byte *) readbuf 454 + word * tdep->wordsize), len, reg); 455 word++; 456 } 457 } 458 if (writebuf) 459 { 460 /* GCC screwed up. The last register isn't "left" aligned. 461 Need to extract the least significant part of each 462 register and then store that. */ 463 /* Transfer any full words. */ 464 int word = 0; 465 while (1) 466 { 467 ULONGEST reg; 468 int len = TYPE_LENGTH (type) - word * tdep->wordsize; 469 if (len <= 0) 470 break; 471 if (len > tdep->wordsize) 472 len = tdep->wordsize; 473 reg = extract_unsigned_integer (((const bfd_byte *) writebuf 474 + word * tdep->wordsize), len); 475 regcache_cooked_write_unsigned (regcache, 476 tdep->ppc_gp0_regnum + 3 + word, 477 reg); 478 word++; 479 } 480 } 481 return RETURN_VALUE_REGISTER_CONVENTION; 482 } 483 if (TYPE_LENGTH (type) <= 8) 484 { 485 if (readbuf) 486 { 487 /* This matches SVr4 PPC, it does not match GCC. */ 488 /* The value is right-padded to 8 bytes and then loaded, as 489 two "words", into r3/r4. */ 490 char regvals[MAX_REGISTER_SIZE * 2]; 491 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, 492 regvals + 0 * tdep->wordsize); 493 if (TYPE_LENGTH (type) > tdep->wordsize) 494 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4, 495 regvals + 1 * tdep->wordsize); 496 memcpy (readbuf, regvals, TYPE_LENGTH (type)); 497 } 498 if (writebuf) 499 { 500 /* This matches SVr4 PPC, it does not match GCC. */ 501 /* The value is padded out to 8 bytes and then loaded, as 502 two "words" into r3/r4. */ 503 char regvals[MAX_REGISTER_SIZE * 2]; 504 memset (regvals, 0, sizeof regvals); 505 memcpy (regvals, writebuf, TYPE_LENGTH (type)); 506 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, 507 regvals + 0 * tdep->wordsize); 508 if (TYPE_LENGTH (type) > tdep->wordsize) 509 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4, 510 regvals + 1 * tdep->wordsize); 511 } 512 return RETURN_VALUE_REGISTER_CONVENTION; 513 } 514 return RETURN_VALUE_STRUCT_CONVENTION; 515 } 516 517 enum return_value_convention 518 ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype, 519 struct regcache *regcache, void *readbuf, 520 const void *writebuf) 521 { 522 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf, 523 writebuf, 0); 524 } 525 526 enum return_value_convention 527 ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch, 528 struct type *valtype, 529 struct regcache *regcache, 530 void *readbuf, const void *writebuf) 531 { 532 return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf, 533 writebuf, 1); 534 } 535 536 /* Pass the arguments in either registers, or in the stack. Using the 537 ppc 64 bit SysV ABI. 538 539 This implements a dumbed down version of the ABI. It always writes 540 values to memory, GPR and FPR, even when not necessary. Doing this 541 greatly simplifies the logic. */ 542 543 CORE_ADDR 544 ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 545 struct regcache *regcache, CORE_ADDR bp_addr, 546 int nargs, struct value **args, CORE_ADDR sp, 547 int struct_return, CORE_ADDR struct_addr) 548 { 549 CORE_ADDR func_addr = find_function_addr (function, NULL); 550 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 551 /* By this stage in the proceedings, SP has been decremented by "red 552 zone size" + "struct return size". Fetch the stack-pointer from 553 before this and use that as the BACK_CHAIN. */ 554 const CORE_ADDR back_chain = read_sp (); 555 /* See for-loop comment below. */ 556 int write_pass; 557 /* Size of the Altivec's vector parameter region, the final value is 558 computed in the for-loop below. */ 559 LONGEST vparam_size = 0; 560 /* Size of the general parameter region, the final value is computed 561 in the for-loop below. */ 562 LONGEST gparam_size = 0; 563 /* Kevin writes ... I don't mind seeing tdep->wordsize used in the 564 calls to align_up(), align_down(), etc. because this makes it 565 easier to reuse this code (in a copy/paste sense) in the future, 566 but it is a 64-bit ABI and asserting that the wordsize is 8 bytes 567 at some point makes it easier to verify that this function is 568 correct without having to do a non-local analysis to figure out 569 the possible values of tdep->wordsize. */ 570 gdb_assert (tdep->wordsize == 8); 571 572 /* Go through the argument list twice. 573 574 Pass 1: Compute the function call's stack space and register 575 requirements. 576 577 Pass 2: Replay the same computation but this time also write the 578 values out to the target. */ 579 580 for (write_pass = 0; write_pass < 2; write_pass++) 581 { 582 int argno; 583 /* Next available floating point register for float and double 584 arguments. */ 585 int freg = 1; 586 /* Next available general register for non-vector (but possibly 587 float) arguments. */ 588 int greg = 3; 589 /* Next available vector register for vector arguments. */ 590 int vreg = 2; 591 /* The address, at which the next general purpose parameter 592 (integer, struct, float, ...) should be saved. */ 593 CORE_ADDR gparam; 594 /* Address, at which the next Altivec vector parameter should be 595 saved. */ 596 CORE_ADDR vparam; 597 598 if (!write_pass) 599 { 600 /* During the first pass, GPARAM and VPARAM are more like 601 offsets (start address zero) than addresses. That way 602 the accumulate the total stack space each region 603 requires. */ 604 gparam = 0; 605 vparam = 0; 606 } 607 else 608 { 609 /* Decrement the stack pointer making space for the Altivec 610 and general on-stack parameters. Set vparam and gparam 611 to their corresponding regions. */ 612 vparam = align_down (sp - vparam_size, 16); 613 gparam = align_down (vparam - gparam_size, 16); 614 /* Add in space for the TOC, link editor double word, 615 compiler double word, LR save area, CR save area. */ 616 sp = align_down (gparam - 48, 16); 617 } 618 619 /* If the function is returning a `struct', then there is an 620 extra hidden parameter (which will be passed in r3) 621 containing the address of that struct.. In that case we 622 should advance one word and start from r4 register to copy 623 parameters. This also consumes one on-stack parameter slot. */ 624 if (struct_return) 625 { 626 if (write_pass) 627 regcache_cooked_write_signed (regcache, 628 tdep->ppc_gp0_regnum + greg, 629 struct_addr); 630 greg++; 631 gparam = align_up (gparam + tdep->wordsize, tdep->wordsize); 632 } 633 634 for (argno = 0; argno < nargs; argno++) 635 { 636 struct value *arg = args[argno]; 637 struct type *type = check_typedef (VALUE_TYPE (arg)); 638 char *val = VALUE_CONTENTS (arg); 639 if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8) 640 { 641 /* Floats and Doubles go in f1 .. f13. They also 642 consume a left aligned GREG,, and can end up in 643 memory. */ 644 if (write_pass) 645 { 646 if (ppc_floating_point_unit_p (current_gdbarch) 647 && freg <= 13) 648 { 649 char regval[MAX_REGISTER_SIZE]; 650 struct type *regtype 651 = register_type (gdbarch, tdep->ppc_fp0_regnum); 652 convert_typed_floating (val, type, regval, regtype); 653 regcache_cooked_write (regcache, 654 tdep->ppc_fp0_regnum + freg, 655 regval); 656 } 657 if (greg <= 10) 658 { 659 /* The ABI states "Single precision floating 660 point values are mapped to the first word in 661 a single doubleword" and "... floating point 662 values mapped to the first eight doublewords 663 of the parameter save area are also passed in 664 general registers"). 665 666 This code interprets that to mean: store it, 667 left aligned, in the general register. */ 668 char regval[MAX_REGISTER_SIZE]; 669 memset (regval, 0, sizeof regval); 670 memcpy (regval, val, TYPE_LENGTH (type)); 671 regcache_cooked_write (regcache, 672 tdep->ppc_gp0_regnum + greg, 673 regval); 674 } 675 write_memory (gparam, val, TYPE_LENGTH (type)); 676 } 677 /* Always consume parameter stack space. */ 678 freg++; 679 greg++; 680 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); 681 } 682 else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type) 683 && TYPE_CODE (type) == TYPE_CODE_ARRAY 684 && tdep->ppc_vr0_regnum >= 0) 685 { 686 /* In the Altivec ABI, vectors go in the vector 687 registers v2 .. v13, or when that runs out, a vector 688 annex which goes above all the normal parameters. 689 NOTE: cagney/2003-09-21: This is a guess based on the 690 PowerOpen Altivec ABI. */ 691 if (vreg <= 13) 692 { 693 if (write_pass) 694 regcache_cooked_write (regcache, 695 tdep->ppc_vr0_regnum + vreg, val); 696 vreg++; 697 } 698 else 699 { 700 if (write_pass) 701 write_memory (vparam, val, TYPE_LENGTH (type)); 702 vparam = align_up (vparam + TYPE_LENGTH (type), 16); 703 } 704 } 705 else if ((TYPE_CODE (type) == TYPE_CODE_INT 706 || TYPE_CODE (type) == TYPE_CODE_ENUM) 707 && TYPE_LENGTH (type) <= 8) 708 { 709 /* Scalars get sign[un]extended and go in gpr3 .. gpr10. 710 They can also end up in memory. */ 711 if (write_pass) 712 { 713 /* Sign extend the value, then store it unsigned. */ 714 ULONGEST word = unpack_long (type, val); 715 if (greg <= 10) 716 regcache_cooked_write_unsigned (regcache, 717 tdep->ppc_gp0_regnum + 718 greg, word); 719 write_memory_unsigned_integer (gparam, tdep->wordsize, 720 word); 721 } 722 greg++; 723 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); 724 } 725 else 726 { 727 int byte; 728 for (byte = 0; byte < TYPE_LENGTH (type); 729 byte += tdep->wordsize) 730 { 731 if (write_pass && greg <= 10) 732 { 733 char regval[MAX_REGISTER_SIZE]; 734 int len = TYPE_LENGTH (type) - byte; 735 if (len > tdep->wordsize) 736 len = tdep->wordsize; 737 memset (regval, 0, sizeof regval); 738 /* WARNING: cagney/2003-09-21: As best I can 739 tell, the ABI specifies that the value should 740 be left aligned. Unfortunately, GCC doesn't 741 do this - it instead right aligns even sized 742 values and puts odd sized values on the 743 stack. Work around that by putting both a 744 left and right aligned value into the 745 register (hopefully no one notices :-^). 746 Arrrgh! */ 747 /* Left aligned (8 byte values such as pointers 748 fill the buffer). */ 749 memcpy (regval, val + byte, len); 750 /* Right aligned (but only if even). */ 751 if (len == 1 || len == 2 || len == 4) 752 memcpy (regval + tdep->wordsize - len, 753 val + byte, len); 754 regcache_cooked_write (regcache, greg, regval); 755 } 756 greg++; 757 } 758 if (write_pass) 759 /* WARNING: cagney/2003-09-21: Strictly speaking, this 760 isn't necessary, unfortunately, GCC appears to get 761 "struct convention" parameter passing wrong putting 762 odd sized structures in memory instead of in a 763 register. Work around this by always writing the 764 value to memory. Fortunately, doing this 765 simplifies the code. */ 766 write_memory (gparam, val, TYPE_LENGTH (type)); 767 /* Always consume parameter stack space. */ 768 gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize); 769 } 770 } 771 772 if (!write_pass) 773 { 774 /* Save the true region sizes ready for the second pass. */ 775 vparam_size = vparam; 776 /* Make certain that the general parameter save area is at 777 least the minimum 8 registers (or doublewords) in size. */ 778 if (greg < 8) 779 gparam_size = 8 * tdep->wordsize; 780 else 781 gparam_size = gparam; 782 } 783 } 784 785 /* Update %sp. */ 786 regcache_cooked_write_signed (regcache, SP_REGNUM, sp); 787 788 /* Write the backchain (it occupies WORDSIZED bytes). */ 789 write_memory_signed_integer (sp, tdep->wordsize, back_chain); 790 791 /* Point the inferior function call's return address at the dummy's 792 breakpoint. */ 793 regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); 794 795 /* Find a value for the TOC register. Every symbol should have both 796 ".FN" and "FN" in the minimal symbol table. "FN" points at the 797 FN's descriptor, while ".FN" points at the entry point (which 798 matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the 799 FN's descriptor address (while at the same time being careful to 800 find "FN" in the same object file as ".FN"). */ 801 { 802 /* Find the minimal symbol that corresponds to FUNC_ADDR (should 803 have the name ".FN"). */ 804 struct minimal_symbol *dot_fn = lookup_minimal_symbol_by_pc (func_addr); 805 if (dot_fn != NULL && SYMBOL_LINKAGE_NAME (dot_fn)[0] == '.') 806 { 807 /* Get the section that contains FUNC_ADR. Need this for the 808 "objfile" that it contains. */ 809 struct obj_section *dot_fn_section = find_pc_section (func_addr); 810 if (dot_fn_section != NULL && dot_fn_section->objfile != NULL) 811 { 812 /* Now find the corresponding "FN" (dropping ".") minimal 813 symbol's address. Only look for the minimal symbol in 814 ".FN"'s object file - avoids problems when two object 815 files (i.e., shared libraries) contain a minimal symbol 816 with the same name. */ 817 struct minimal_symbol *fn = 818 lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL, 819 dot_fn_section->objfile); 820 if (fn != NULL) 821 { 822 /* Got the address of that descriptor. The TOC is the 823 second double word. */ 824 CORE_ADDR toc = 825 read_memory_unsigned_integer (SYMBOL_VALUE_ADDRESS (fn) 826 + tdep->wordsize, 827 tdep->wordsize); 828 regcache_cooked_write_unsigned (regcache, 829 tdep->ppc_gp0_regnum + 2, toc); 830 } 831 } 832 } 833 } 834 835 return sp; 836 } 837 838 839 /* The 64 bit ABI retun value convention. 840 841 Return non-zero if the return-value is stored in a register, return 842 0 if the return-value is instead stored on the stack (a.k.a., 843 struct return convention). 844 845 For a return-value stored in a register: when WRITEBUF is non-NULL, 846 copy the buffer to the corresponding register return-value location 847 location; when READBUF is non-NULL, fill the buffer from the 848 corresponding register return-value location. */ 849 enum return_value_convention 850 ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype, 851 struct regcache *regcache, void *readbuf, 852 const void *writebuf) 853 { 854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 855 856 /* This function exists to support a calling convention that 857 requires floating-point registers. It shouldn't be used on 858 processors that lack them. */ 859 gdb_assert (ppc_floating_point_unit_p (gdbarch)); 860 861 /* Floats and doubles in F1. */ 862 if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8) 863 { 864 char regval[MAX_REGISTER_SIZE]; 865 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); 866 if (writebuf != NULL) 867 { 868 convert_typed_floating (writebuf, valtype, regval, regtype); 869 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval); 870 } 871 if (readbuf != NULL) 872 { 873 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval); 874 convert_typed_floating (regval, regtype, readbuf, valtype); 875 } 876 return RETURN_VALUE_REGISTER_CONVENTION; 877 } 878 if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 8) 879 { 880 /* Integers in r3. */ 881 if (writebuf != NULL) 882 { 883 /* Be careful to sign extend the value. */ 884 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 885 unpack_long (valtype, writebuf)); 886 } 887 if (readbuf != NULL) 888 { 889 /* Extract the integer from r3. Since this is truncating the 890 value, there isn't a sign extension problem. */ 891 ULONGEST regval; 892 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, 893 ®val); 894 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval); 895 } 896 return RETURN_VALUE_REGISTER_CONVENTION; 897 } 898 /* All pointers live in r3. */ 899 if (TYPE_CODE (valtype) == TYPE_CODE_PTR) 900 { 901 /* All pointers live in r3. */ 902 if (writebuf != NULL) 903 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf); 904 if (readbuf != NULL) 905 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf); 906 return RETURN_VALUE_REGISTER_CONVENTION; 907 } 908 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY 909 && TYPE_LENGTH (valtype) <= 8 910 && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT 911 && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1) 912 { 913 /* Small character arrays are returned, right justified, in r3. */ 914 int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3) 915 - TYPE_LENGTH (valtype)); 916 if (writebuf != NULL) 917 regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3, 918 offset, TYPE_LENGTH (valtype), writebuf); 919 if (readbuf != NULL) 920 regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3, 921 offset, TYPE_LENGTH (valtype), readbuf); 922 return RETURN_VALUE_REGISTER_CONVENTION; 923 } 924 /* Big floating point values get stored in adjacent floating 925 point registers. */ 926 if (TYPE_CODE (valtype) == TYPE_CODE_FLT 927 && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32)) 928 { 929 if (writebuf || readbuf != NULL) 930 { 931 int i; 932 for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++) 933 { 934 if (writebuf != NULL) 935 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i, 936 (const bfd_byte *) writebuf + i * 8); 937 if (readbuf != NULL) 938 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i, 939 (bfd_byte *) readbuf + i * 8); 940 } 941 } 942 return RETURN_VALUE_REGISTER_CONVENTION; 943 } 944 /* Complex values get returned in f1:f2, need to convert. */ 945 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX 946 && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16)) 947 { 948 if (regcache != NULL) 949 { 950 int i; 951 for (i = 0; i < 2; i++) 952 { 953 char regval[MAX_REGISTER_SIZE]; 954 struct type *regtype = 955 register_type (current_gdbarch, tdep->ppc_fp0_regnum); 956 if (writebuf != NULL) 957 { 958 convert_typed_floating ((const bfd_byte *) writebuf + 959 i * (TYPE_LENGTH (valtype) / 2), 960 valtype, regval, regtype); 961 regcache_cooked_write (regcache, 962 tdep->ppc_fp0_regnum + 1 + i, 963 regval); 964 } 965 if (readbuf != NULL) 966 { 967 regcache_cooked_read (regcache, 968 tdep->ppc_fp0_regnum + 1 + i, 969 regval); 970 convert_typed_floating (regval, regtype, 971 (bfd_byte *) readbuf + 972 i * (TYPE_LENGTH (valtype) / 2), 973 valtype); 974 } 975 } 976 } 977 return RETURN_VALUE_REGISTER_CONVENTION; 978 } 979 /* Big complex values get stored in f1:f4. */ 980 if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32) 981 { 982 if (regcache != NULL) 983 { 984 int i; 985 for (i = 0; i < 4; i++) 986 { 987 if (writebuf != NULL) 988 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i, 989 (const bfd_byte *) writebuf + i * 8); 990 if (readbuf != NULL) 991 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i, 992 (bfd_byte *) readbuf + i * 8); 993 } 994 } 995 return RETURN_VALUE_REGISTER_CONVENTION; 996 } 997 return RETURN_VALUE_STRUCT_CONVENTION; 998 } 999 1000 CORE_ADDR 1001 ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch, 1002 CORE_ADDR bpaddr) 1003 { 1004 /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at 1005 a function-descriptor while the corresponding minimal-symbol 1006 ".FN" should point at the entry point. Consequently, a command 1007 like "break FN" applied to an object file with only minimal 1008 symbols, will insert the breakpoint into the descriptor at "FN" 1009 and not the function at ".FN". Avoid this confusion by adjusting 1010 any attempt to set a descriptor breakpoint into a corresponding 1011 function breakpoint. Note that GDB warns the user when this 1012 adjustment is applied - that's ok as otherwise the user will have 1013 no way of knowing why their breakpoint at "FN" resulted in the 1014 program stopping at ".FN". */ 1015 return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, ¤t_target); 1016 } 1017