1 /* Remote target communications for serial-line targets in custom GDB protocol 2 3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 /* See the GDB User Guide for details of the GDB remote protocol. */ 25 26 #include "defs.h" 27 #include "gdb_string.h" 28 #include <ctype.h> 29 #include <fcntl.h> 30 #include "inferior.h" 31 #include "bfd.h" 32 #include "symfile.h" 33 #include "target.h" 34 /*#include "terminal.h" */ 35 #include "gdbcmd.h" 36 #include "objfiles.h" 37 #include "gdb-stabs.h" 38 #include "gdbthread.h" 39 #include "remote.h" 40 #include "regcache.h" 41 #include "value.h" 42 #include "gdb_assert.h" 43 44 #include <ctype.h> 45 #include <sys/time.h> 46 47 #include "event-loop.h" 48 #include "event-top.h" 49 #include "inf-loop.h" 50 51 #include <signal.h> 52 #include "serial.h" 53 54 #include "gdbcore.h" /* for exec_bfd */ 55 56 #include "remote-fileio.h" 57 58 /* Prototypes for local functions */ 59 static void cleanup_sigint_signal_handler (void *dummy); 60 static void initialize_sigint_signal_handler (void); 61 static int getpkt_sane (char *buf, long sizeof_buf, int forever); 62 63 static void handle_remote_sigint (int); 64 static void handle_remote_sigint_twice (int); 65 static void async_remote_interrupt (gdb_client_data); 66 void async_remote_interrupt_twice (gdb_client_data); 67 68 static void build_remote_gdbarch_data (void); 69 70 static void remote_files_info (struct target_ops *ignore); 71 72 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr, 73 int len, int should_write, 74 struct mem_attrib *attrib, 75 struct target_ops *target); 76 77 static void remote_prepare_to_store (void); 78 79 static void remote_fetch_registers (int regno); 80 81 static void remote_resume (ptid_t ptid, int step, 82 enum target_signal siggnal); 83 static void remote_async_resume (ptid_t ptid, int step, 84 enum target_signal siggnal); 85 static int remote_start_remote (struct ui_out *uiout, void *dummy); 86 87 static void remote_open (char *name, int from_tty); 88 static void remote_async_open (char *name, int from_tty); 89 90 static void extended_remote_open (char *name, int from_tty); 91 static void extended_remote_async_open (char *name, int from_tty); 92 93 static void remote_open_1 (char *, int, struct target_ops *, int extended_p, 94 int async_p); 95 96 static void remote_close (int quitting); 97 98 static void remote_store_registers (int regno); 99 100 static void remote_mourn (void); 101 static void remote_async_mourn (void); 102 103 static void extended_remote_restart (void); 104 105 static void extended_remote_mourn (void); 106 107 static void remote_mourn_1 (struct target_ops *); 108 109 static void remote_send (char *buf, long sizeof_buf); 110 111 static int readchar (int timeout); 112 113 static ptid_t remote_wait (ptid_t ptid, 114 struct target_waitstatus *status); 115 static ptid_t remote_async_wait (ptid_t ptid, 116 struct target_waitstatus *status); 117 118 static void remote_kill (void); 119 static void remote_async_kill (void); 120 121 static int tohex (int nib); 122 123 static void remote_detach (char *args, int from_tty); 124 125 static void remote_interrupt (int signo); 126 127 static void remote_interrupt_twice (int signo); 128 129 static void interrupt_query (void); 130 131 static void set_thread (int, int); 132 133 static int remote_thread_alive (ptid_t); 134 135 static void get_offsets (void); 136 137 static long read_frame (char *buf, long sizeof_buf); 138 139 static int remote_insert_breakpoint (CORE_ADDR, char *); 140 141 static int remote_remove_breakpoint (CORE_ADDR, char *); 142 143 static int hexnumlen (ULONGEST num); 144 145 static void init_remote_ops (void); 146 147 static void init_extended_remote_ops (void); 148 149 static void remote_stop (void); 150 151 static int ishex (int ch, int *val); 152 153 static int stubhex (int ch); 154 155 static int hexnumstr (char *, ULONGEST); 156 157 static int hexnumnstr (char *, ULONGEST, int); 158 159 static CORE_ADDR remote_address_masked (CORE_ADDR); 160 161 static void print_packet (char *); 162 163 static unsigned long crc32 (unsigned char *, int, unsigned int); 164 165 static void compare_sections_command (char *, int); 166 167 static void packet_command (char *, int); 168 169 static int stub_unpack_int (char *buff, int fieldlength); 170 171 static ptid_t remote_current_thread (ptid_t oldptid); 172 173 static void remote_find_new_threads (void); 174 175 static void record_currthread (int currthread); 176 177 static int fromhex (int a); 178 179 static int hex2bin (const char *hex, char *bin, int count); 180 181 static int bin2hex (const char *bin, char *hex, int count); 182 183 static int putpkt_binary (char *buf, int cnt); 184 185 static void check_binary_download (CORE_ADDR addr); 186 187 struct packet_config; 188 189 static void show_packet_config_cmd (struct packet_config *config); 190 191 static void update_packet_config (struct packet_config *config); 192 193 void _initialize_remote (void); 194 195 /* Description of the remote protocol. Strictly speaking, when the 196 target is open()ed, remote.c should create a per-target description 197 of the remote protocol using that target's architecture. 198 Unfortunately, the target stack doesn't include local state. For 199 the moment keep the information in the target's architecture 200 object. Sigh.. */ 201 202 struct packet_reg 203 { 204 long offset; /* Offset into G packet. */ 205 long regnum; /* GDB's internal register number. */ 206 LONGEST pnum; /* Remote protocol register number. */ 207 int in_g_packet; /* Always part of G packet. */ 208 /* long size in bytes; == register_size (current_gdbarch, regnum); at present. */ 209 /* char *name; == REGISTER_NAME (regnum); at present. */ 210 }; 211 212 struct remote_state 213 { 214 /* Description of the remote protocol registers. */ 215 long sizeof_g_packet; 216 217 /* Description of the remote protocol registers indexed by REGNUM 218 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */ 219 struct packet_reg *regs; 220 221 /* This is the size (in chars) of the first response to the ``g'' 222 packet. It is used as a heuristic when determining the maximum 223 size of memory-read and memory-write packets. A target will 224 typically only reserve a buffer large enough to hold the ``g'' 225 packet. The size does not include packet overhead (headers and 226 trailers). */ 227 long actual_register_packet_size; 228 229 /* This is the maximum size (in chars) of a non read/write packet. 230 It is also used as a cap on the size of read/write packets. */ 231 long remote_packet_size; 232 }; 233 234 235 /* Handle for retreving the remote protocol data from gdbarch. */ 236 static struct gdbarch_data *remote_gdbarch_data_handle; 237 238 static struct remote_state * 239 get_remote_state (void) 240 { 241 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle); 242 } 243 244 static void * 245 init_remote_state (struct gdbarch *gdbarch) 246 { 247 int regnum; 248 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state); 249 250 if (deprecated_register_bytes () != 0) 251 rs->sizeof_g_packet = deprecated_register_bytes (); 252 else 253 rs->sizeof_g_packet = 0; 254 255 /* Assume a 1:1 regnum<->pnum table. */ 256 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS, 257 struct packet_reg); 258 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) 259 { 260 struct packet_reg *r = &rs->regs[regnum]; 261 r->pnum = regnum; 262 r->regnum = regnum; 263 r->offset = DEPRECATED_REGISTER_BYTE (regnum); 264 r->in_g_packet = (regnum < NUM_REGS); 265 /* ...name = REGISTER_NAME (regnum); */ 266 267 /* Compute packet size by accumulating the size of all registers. */ 268 if (deprecated_register_bytes () == 0) 269 rs->sizeof_g_packet += register_size (current_gdbarch, regnum); 270 } 271 272 /* Default maximum number of characters in a packet body. Many 273 remote stubs have a hardwired buffer size of 400 bytes 274 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used 275 as the maximum packet-size to ensure that the packet and an extra 276 NUL character can always fit in the buffer. This stops GDB 277 trashing stubs that try to squeeze an extra NUL into what is 278 already a full buffer (As of 1999-12-04 that was most stubs. */ 279 rs->remote_packet_size = 400 - 1; 280 281 /* Should rs->sizeof_g_packet needs more space than the 282 default, adjust the size accordingly. Remember that each byte is 283 encoded as two characters. 32 is the overhead for the packet 284 header / footer. NOTE: cagney/1999-10-26: I suspect that 8 285 (``$NN:G...#NN'') is a better guess, the below has been padded a 286 little. */ 287 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2)) 288 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32); 289 290 /* This one is filled in when a ``g'' packet is received. */ 291 rs->actual_register_packet_size = 0; 292 293 return rs; 294 } 295 296 static struct packet_reg * 297 packet_reg_from_regnum (struct remote_state *rs, long regnum) 298 { 299 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS) 300 return NULL; 301 else 302 { 303 struct packet_reg *r = &rs->regs[regnum]; 304 gdb_assert (r->regnum == regnum); 305 return r; 306 } 307 } 308 309 static struct packet_reg * 310 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum) 311 { 312 int i; 313 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) 314 { 315 struct packet_reg *r = &rs->regs[i]; 316 if (r->pnum == pnum) 317 return r; 318 } 319 return NULL; 320 } 321 322 /* FIXME: graces/2002-08-08: These variables should eventually be 323 bound to an instance of the target object (as in gdbarch-tdep()), 324 when such a thing exists. */ 325 326 /* This is set to the data address of the access causing the target 327 to stop for a watchpoint. */ 328 static CORE_ADDR remote_watch_data_address; 329 330 /* This is non-zero if taregt stopped for a watchpoint. */ 331 static int remote_stopped_by_watchpoint_p; 332 333 334 static struct target_ops remote_ops; 335 336 static struct target_ops extended_remote_ops; 337 338 /* Temporary target ops. Just like the remote_ops and 339 extended_remote_ops, but with asynchronous support. */ 340 static struct target_ops remote_async_ops; 341 342 static struct target_ops extended_async_remote_ops; 343 344 /* FIXME: cagney/1999-09-23: Even though getpkt was called with 345 ``forever'' still use the normal timeout mechanism. This is 346 currently used by the ASYNC code to guarentee that target reads 347 during the initial connect always time-out. Once getpkt has been 348 modified to return a timeout indication and, in turn 349 remote_wait()/wait_for_inferior() have gained a timeout parameter 350 this can go away. */ 351 static int wait_forever_enabled_p = 1; 352 353 354 /* This variable chooses whether to send a ^C or a break when the user 355 requests program interruption. Although ^C is usually what remote 356 systems expect, and that is the default here, sometimes a break is 357 preferable instead. */ 358 359 static int remote_break; 360 361 /* Descriptor for I/O to remote machine. Initialize it to NULL so that 362 remote_open knows that we don't have a file open when the program 363 starts. */ 364 static struct serial *remote_desc = NULL; 365 366 /* This variable sets the number of bits in an address that are to be 367 sent in a memory ("M" or "m") packet. Normally, after stripping 368 leading zeros, the entire address would be sent. This variable 369 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The 370 initial implementation of remote.c restricted the address sent in 371 memory packets to ``host::sizeof long'' bytes - (typically 32 372 bits). Consequently, for 64 bit targets, the upper 32 bits of an 373 address was never sent. Since fixing this bug may cause a break in 374 some remote targets this variable is principly provided to 375 facilitate backward compatibility. */ 376 377 static int remote_address_size; 378 379 /* Tempoary to track who currently owns the terminal. See 380 target_async_terminal_* for more details. */ 381 382 static int remote_async_terminal_ours_p; 383 384 385 /* User configurable variables for the number of characters in a 386 memory read/write packet. MIN ((rs->remote_packet_size), 387 rs->sizeof_g_packet) is the default. Some targets need smaller 388 values (fifo overruns, et.al.) and some users need larger values 389 (speed up transfers). The variables ``preferred_*'' (the user 390 request), ``current_*'' (what was actually set) and ``forced_*'' 391 (Positive - a soft limit, negative - a hard limit). */ 392 393 struct memory_packet_config 394 { 395 char *name; 396 long size; 397 int fixed_p; 398 }; 399 400 /* Compute the current size of a read/write packet. Since this makes 401 use of ``actual_register_packet_size'' the computation is dynamic. */ 402 403 static long 404 get_memory_packet_size (struct memory_packet_config *config) 405 { 406 struct remote_state *rs = get_remote_state (); 407 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk 408 law?) that some hosts don't cope very well with large alloca() 409 calls. Eventually the alloca() code will be replaced by calls to 410 xmalloc() and make_cleanups() allowing this restriction to either 411 be lifted or removed. */ 412 #ifndef MAX_REMOTE_PACKET_SIZE 413 #define MAX_REMOTE_PACKET_SIZE 16384 414 #endif 415 /* NOTE: 16 is just chosen at random. */ 416 #ifndef MIN_REMOTE_PACKET_SIZE 417 #define MIN_REMOTE_PACKET_SIZE 16 418 #endif 419 long what_they_get; 420 if (config->fixed_p) 421 { 422 if (config->size <= 0) 423 what_they_get = MAX_REMOTE_PACKET_SIZE; 424 else 425 what_they_get = config->size; 426 } 427 else 428 { 429 what_they_get = (rs->remote_packet_size); 430 /* Limit the packet to the size specified by the user. */ 431 if (config->size > 0 432 && what_they_get > config->size) 433 what_they_get = config->size; 434 /* Limit it to the size of the targets ``g'' response. */ 435 if ((rs->actual_register_packet_size) > 0 436 && what_they_get > (rs->actual_register_packet_size)) 437 what_they_get = (rs->actual_register_packet_size); 438 } 439 if (what_they_get > MAX_REMOTE_PACKET_SIZE) 440 what_they_get = MAX_REMOTE_PACKET_SIZE; 441 if (what_they_get < MIN_REMOTE_PACKET_SIZE) 442 what_they_get = MIN_REMOTE_PACKET_SIZE; 443 return what_they_get; 444 } 445 446 /* Update the size of a read/write packet. If they user wants 447 something really big then do a sanity check. */ 448 449 static void 450 set_memory_packet_size (char *args, struct memory_packet_config *config) 451 { 452 int fixed_p = config->fixed_p; 453 long size = config->size; 454 if (args == NULL) 455 error ("Argument required (integer, `fixed' or `limited')."); 456 else if (strcmp (args, "hard") == 0 457 || strcmp (args, "fixed") == 0) 458 fixed_p = 1; 459 else if (strcmp (args, "soft") == 0 460 || strcmp (args, "limit") == 0) 461 fixed_p = 0; 462 else 463 { 464 char *end; 465 size = strtoul (args, &end, 0); 466 if (args == end) 467 error ("Invalid %s (bad syntax).", config->name); 468 #if 0 469 /* Instead of explicitly capping the size of a packet to 470 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is 471 instead allowed to set the size to something arbitrarily 472 large. */ 473 if (size > MAX_REMOTE_PACKET_SIZE) 474 error ("Invalid %s (too large).", config->name); 475 #endif 476 } 477 /* Extra checks? */ 478 if (fixed_p && !config->fixed_p) 479 { 480 if (! query ("The target may not be able to correctly handle a %s\n" 481 "of %ld bytes. Change the packet size? ", 482 config->name, size)) 483 error ("Packet size not changed."); 484 } 485 /* Update the config. */ 486 config->fixed_p = fixed_p; 487 config->size = size; 488 } 489 490 static void 491 show_memory_packet_size (struct memory_packet_config *config) 492 { 493 printf_filtered ("The %s is %ld. ", config->name, config->size); 494 if (config->fixed_p) 495 printf_filtered ("Packets are fixed at %ld bytes.\n", 496 get_memory_packet_size (config)); 497 else 498 printf_filtered ("Packets are limited to %ld bytes.\n", 499 get_memory_packet_size (config)); 500 } 501 502 static struct memory_packet_config memory_write_packet_config = 503 { 504 "memory-write-packet-size", 505 }; 506 507 static void 508 set_memory_write_packet_size (char *args, int from_tty) 509 { 510 set_memory_packet_size (args, &memory_write_packet_config); 511 } 512 513 static void 514 show_memory_write_packet_size (char *args, int from_tty) 515 { 516 show_memory_packet_size (&memory_write_packet_config); 517 } 518 519 static long 520 get_memory_write_packet_size (void) 521 { 522 return get_memory_packet_size (&memory_write_packet_config); 523 } 524 525 static struct memory_packet_config memory_read_packet_config = 526 { 527 "memory-read-packet-size", 528 }; 529 530 static void 531 set_memory_read_packet_size (char *args, int from_tty) 532 { 533 set_memory_packet_size (args, &memory_read_packet_config); 534 } 535 536 static void 537 show_memory_read_packet_size (char *args, int from_tty) 538 { 539 show_memory_packet_size (&memory_read_packet_config); 540 } 541 542 static long 543 get_memory_read_packet_size (void) 544 { 545 struct remote_state *rs = get_remote_state (); 546 long size = get_memory_packet_size (&memory_read_packet_config); 547 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an 548 extra buffer size argument before the memory read size can be 549 increased beyond (rs->remote_packet_size). */ 550 if (size > (rs->remote_packet_size)) 551 size = (rs->remote_packet_size); 552 return size; 553 } 554 555 556 /* Generic configuration support for packets the stub optionally 557 supports. Allows the user to specify the use of the packet as well 558 as allowing GDB to auto-detect support in the remote stub. */ 559 560 enum packet_support 561 { 562 PACKET_SUPPORT_UNKNOWN = 0, 563 PACKET_ENABLE, 564 PACKET_DISABLE 565 }; 566 567 struct packet_config 568 { 569 char *name; 570 char *title; 571 enum auto_boolean detect; 572 enum packet_support support; 573 }; 574 575 /* Analyze a packet's return value and update the packet config 576 accordingly. */ 577 578 enum packet_result 579 { 580 PACKET_ERROR, 581 PACKET_OK, 582 PACKET_UNKNOWN 583 }; 584 585 static void 586 update_packet_config (struct packet_config *config) 587 { 588 switch (config->detect) 589 { 590 case AUTO_BOOLEAN_TRUE: 591 config->support = PACKET_ENABLE; 592 break; 593 case AUTO_BOOLEAN_FALSE: 594 config->support = PACKET_DISABLE; 595 break; 596 case AUTO_BOOLEAN_AUTO: 597 config->support = PACKET_SUPPORT_UNKNOWN; 598 break; 599 } 600 } 601 602 static void 603 show_packet_config_cmd (struct packet_config *config) 604 { 605 char *support = "internal-error"; 606 switch (config->support) 607 { 608 case PACKET_ENABLE: 609 support = "enabled"; 610 break; 611 case PACKET_DISABLE: 612 support = "disabled"; 613 break; 614 case PACKET_SUPPORT_UNKNOWN: 615 support = "unknown"; 616 break; 617 } 618 switch (config->detect) 619 { 620 case AUTO_BOOLEAN_AUTO: 621 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n", 622 config->name, config->title, support); 623 break; 624 case AUTO_BOOLEAN_TRUE: 625 case AUTO_BOOLEAN_FALSE: 626 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n", 627 config->name, config->title, support); 628 break; 629 } 630 } 631 632 static void 633 add_packet_config_cmd (struct packet_config *config, 634 char *name, 635 char *title, 636 cmd_sfunc_ftype *set_func, 637 cmd_sfunc_ftype *show_func, 638 struct cmd_list_element **set_remote_list, 639 struct cmd_list_element **show_remote_list, 640 int legacy) 641 { 642 struct cmd_list_element *set_cmd; 643 struct cmd_list_element *show_cmd; 644 char *set_doc; 645 char *show_doc; 646 char *help_doc; 647 char *print; 648 char *cmd_name; 649 config->name = name; 650 config->title = title; 651 config->detect = AUTO_BOOLEAN_AUTO; 652 config->support = PACKET_SUPPORT_UNKNOWN; 653 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet", 654 name, title); 655 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet", 656 name, title); 657 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s", 658 name, title); 659 /* set/show TITLE-packet {auto,on,off} */ 660 cmd_name = xstrprintf ("%s-packet", title); 661 add_setshow_auto_boolean_cmd (cmd_name, class_obscure, 662 &config->detect, set_doc, show_doc, 663 "", print, 664 set_func, show_func, 665 set_remote_list, show_remote_list); 666 /* set/show remote NAME-packet {auto,on,off} -- legacy */ 667 if (legacy) 668 { 669 char *legacy_name; 670 legacy_name = xstrprintf ("%s-packet", name); 671 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0, 672 set_remote_list); 673 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0, 674 show_remote_list); 675 } 676 } 677 678 static enum packet_result 679 packet_ok (const char *buf, struct packet_config *config) 680 { 681 if (buf[0] != '\0') 682 { 683 /* The stub recognized the packet request. Check that the 684 operation succeeded. */ 685 switch (config->support) 686 { 687 case PACKET_SUPPORT_UNKNOWN: 688 if (remote_debug) 689 fprintf_unfiltered (gdb_stdlog, 690 "Packet %s (%s) is supported\n", 691 config->name, config->title); 692 config->support = PACKET_ENABLE; 693 break; 694 case PACKET_DISABLE: 695 internal_error (__FILE__, __LINE__, 696 "packet_ok: attempt to use a disabled packet"); 697 break; 698 case PACKET_ENABLE: 699 break; 700 } 701 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0') 702 /* "OK" - definitly OK. */ 703 return PACKET_OK; 704 if (buf[0] == 'E' 705 && isxdigit (buf[1]) && isxdigit (buf[2]) 706 && buf[3] == '\0') 707 /* "Enn" - definitly an error. */ 708 return PACKET_ERROR; 709 /* The packet may or may not be OK. Just assume it is */ 710 return PACKET_OK; 711 } 712 else 713 { 714 /* The stub does not support the packet. */ 715 switch (config->support) 716 { 717 case PACKET_ENABLE: 718 if (config->detect == AUTO_BOOLEAN_AUTO) 719 /* If the stub previously indicated that the packet was 720 supported then there is a protocol error.. */ 721 error ("Protocol error: %s (%s) conflicting enabled responses.", 722 config->name, config->title); 723 else 724 /* The user set it wrong. */ 725 error ("Enabled packet %s (%s) not recognized by stub", 726 config->name, config->title); 727 break; 728 case PACKET_SUPPORT_UNKNOWN: 729 if (remote_debug) 730 fprintf_unfiltered (gdb_stdlog, 731 "Packet %s (%s) is NOT supported\n", 732 config->name, config->title); 733 config->support = PACKET_DISABLE; 734 break; 735 case PACKET_DISABLE: 736 break; 737 } 738 return PACKET_UNKNOWN; 739 } 740 } 741 742 /* Should we try the 'vCont' (descriptive resume) request? */ 743 static struct packet_config remote_protocol_vcont; 744 745 static void 746 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty, 747 struct cmd_list_element *c) 748 { 749 update_packet_config (&remote_protocol_vcont); 750 } 751 752 static void 753 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty, 754 struct cmd_list_element *c) 755 { 756 show_packet_config_cmd (&remote_protocol_vcont); 757 } 758 759 /* Should we try the 'qSymbol' (target symbol lookup service) request? */ 760 static struct packet_config remote_protocol_qSymbol; 761 762 static void 763 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty, 764 struct cmd_list_element *c) 765 { 766 update_packet_config (&remote_protocol_qSymbol); 767 } 768 769 static void 770 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty, 771 struct cmd_list_element *c) 772 { 773 show_packet_config_cmd (&remote_protocol_qSymbol); 774 } 775 776 /* Should we try the 'P' (set register) request? */ 777 778 static struct packet_config remote_protocol_P; 779 780 static void 781 set_remote_protocol_P_packet_cmd (char *args, int from_tty, 782 struct cmd_list_element *c) 783 { 784 update_packet_config (&remote_protocol_P); 785 } 786 787 static void 788 show_remote_protocol_P_packet_cmd (char *args, int from_tty, 789 struct cmd_list_element *c) 790 { 791 show_packet_config_cmd (&remote_protocol_P); 792 } 793 794 /* Should we try one of the 'Z' requests? */ 795 796 enum Z_packet_type 797 { 798 Z_PACKET_SOFTWARE_BP, 799 Z_PACKET_HARDWARE_BP, 800 Z_PACKET_WRITE_WP, 801 Z_PACKET_READ_WP, 802 Z_PACKET_ACCESS_WP, 803 NR_Z_PACKET_TYPES 804 }; 805 806 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES]; 807 808 /* FIXME: Instead of having all these boiler plate functions, the 809 command callback should include a context argument. */ 810 811 static void 812 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty, 813 struct cmd_list_element *c) 814 { 815 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]); 816 } 817 818 static void 819 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty, 820 struct cmd_list_element *c) 821 { 822 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]); 823 } 824 825 static void 826 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty, 827 struct cmd_list_element *c) 828 { 829 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]); 830 } 831 832 static void 833 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty, 834 struct cmd_list_element *c) 835 { 836 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]); 837 } 838 839 static void 840 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty, 841 struct cmd_list_element *c) 842 { 843 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]); 844 } 845 846 static void 847 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty, 848 struct cmd_list_element *c) 849 { 850 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]); 851 } 852 853 static void 854 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty, 855 struct cmd_list_element *c) 856 { 857 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]); 858 } 859 860 static void 861 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty, 862 struct cmd_list_element *c) 863 { 864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]); 865 } 866 867 static void 868 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty, 869 struct cmd_list_element *c) 870 { 871 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]); 872 } 873 874 static void 875 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty, 876 struct cmd_list_element *c) 877 { 878 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]); 879 } 880 881 /* For compatibility with older distributions. Provide a ``set remote 882 Z-packet ...'' command that updates all the Z packet types. */ 883 884 static enum auto_boolean remote_Z_packet_detect; 885 886 static void 887 set_remote_protocol_Z_packet_cmd (char *args, int from_tty, 888 struct cmd_list_element *c) 889 { 890 int i; 891 for (i = 0; i < NR_Z_PACKET_TYPES; i++) 892 { 893 remote_protocol_Z[i].detect = remote_Z_packet_detect; 894 update_packet_config (&remote_protocol_Z[i]); 895 } 896 } 897 898 static void 899 show_remote_protocol_Z_packet_cmd (char *args, int from_tty, 900 struct cmd_list_element *c) 901 { 902 int i; 903 for (i = 0; i < NR_Z_PACKET_TYPES; i++) 904 { 905 show_packet_config_cmd (&remote_protocol_Z[i]); 906 } 907 } 908 909 /* Should we try the 'X' (remote binary download) packet? 910 911 This variable (available to the user via "set remote X-packet") 912 dictates whether downloads are sent in binary (via the 'X' packet). 913 We assume that the stub can, and attempt to do it. This will be 914 cleared if the stub does not understand it. This switch is still 915 needed, though in cases when the packet is supported in the stub, 916 but the connection does not allow it (i.e., 7-bit serial connection 917 only). */ 918 919 static struct packet_config remote_protocol_binary_download; 920 921 /* Should we try the 'ThreadInfo' query packet? 922 923 This variable (NOT available to the user: auto-detect only!) 924 determines whether GDB will use the new, simpler "ThreadInfo" 925 query or the older, more complex syntax for thread queries. 926 This is an auto-detect variable (set to true at each connect, 927 and set to false when the target fails to recognize it). */ 928 929 static int use_threadinfo_query; 930 static int use_threadextra_query; 931 932 static void 933 set_remote_protocol_binary_download_cmd (char *args, 934 int from_tty, 935 struct cmd_list_element *c) 936 { 937 update_packet_config (&remote_protocol_binary_download); 938 } 939 940 static void 941 show_remote_protocol_binary_download_cmd (char *args, int from_tty, 942 struct cmd_list_element *c) 943 { 944 show_packet_config_cmd (&remote_protocol_binary_download); 945 } 946 947 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */ 948 static struct packet_config remote_protocol_qPart_auxv; 949 950 static void 951 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty, 952 struct cmd_list_element *c) 953 { 954 update_packet_config (&remote_protocol_qPart_auxv); 955 } 956 957 static void 958 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty, 959 struct cmd_list_element *c) 960 { 961 show_packet_config_cmd (&remote_protocol_qPart_auxv); 962 } 963 964 static struct packet_config remote_protocol_p; 965 966 static void 967 set_remote_protocol_p_packet_cmd (char *args, int from_tty, 968 struct cmd_list_element *c) 969 { 970 update_packet_config (&remote_protocol_p); 971 } 972 973 static void 974 show_remote_protocol_p_packet_cmd (char *args, int from_tty, 975 struct cmd_list_element *c) 976 { 977 show_packet_config_cmd (&remote_protocol_p); 978 } 979 980 981 982 /* Tokens for use by the asynchronous signal handlers for SIGINT */ 983 static void *sigint_remote_twice_token; 984 static void *sigint_remote_token; 985 986 /* These are pointers to hook functions that may be set in order to 987 modify resume/wait behavior for a particular architecture. */ 988 989 void (*deprecated_target_resume_hook) (void); 990 void (*deprecated_target_wait_loop_hook) (void); 991 992 993 994 /* These are the threads which we last sent to the remote system. 995 -1 for all or -2 for not sent yet. */ 996 static int general_thread; 997 static int continue_thread; 998 999 /* Call this function as a result of 1000 1) A halt indication (T packet) containing a thread id 1001 2) A direct query of currthread 1002 3) Successful execution of set thread 1003 */ 1004 1005 static void 1006 record_currthread (int currthread) 1007 { 1008 general_thread = currthread; 1009 1010 /* If this is a new thread, add it to GDB's thread list. 1011 If we leave it up to WFI to do this, bad things will happen. */ 1012 if (!in_thread_list (pid_to_ptid (currthread))) 1013 { 1014 add_thread (pid_to_ptid (currthread)); 1015 ui_out_text (uiout, "[New "); 1016 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread))); 1017 ui_out_text (uiout, "]\n"); 1018 } 1019 } 1020 1021 #define MAGIC_NULL_PID 42000 1022 1023 static void 1024 set_thread (int th, int gen) 1025 { 1026 struct remote_state *rs = get_remote_state (); 1027 char *buf = alloca (rs->remote_packet_size); 1028 int state = gen ? general_thread : continue_thread; 1029 1030 if (state == th) 1031 return; 1032 1033 buf[0] = 'H'; 1034 buf[1] = gen ? 'g' : 'c'; 1035 if (th == MAGIC_NULL_PID) 1036 { 1037 buf[2] = '0'; 1038 buf[3] = '\0'; 1039 } 1040 else if (th < 0) 1041 sprintf (&buf[2], "-%x", -th); 1042 else 1043 sprintf (&buf[2], "%x", th); 1044 putpkt (buf); 1045 getpkt (buf, (rs->remote_packet_size), 0); 1046 if (gen) 1047 general_thread = th; 1048 else 1049 continue_thread = th; 1050 } 1051 1052 /* Return nonzero if the thread TH is still alive on the remote system. */ 1053 1054 static int 1055 remote_thread_alive (ptid_t ptid) 1056 { 1057 int tid = PIDGET (ptid); 1058 char buf[16]; 1059 1060 if (tid < 0) 1061 sprintf (buf, "T-%08x", -tid); 1062 else 1063 sprintf (buf, "T%08x", tid); 1064 putpkt (buf); 1065 getpkt (buf, sizeof (buf), 0); 1066 return (buf[0] == 'O' && buf[1] == 'K'); 1067 } 1068 1069 /* About these extended threadlist and threadinfo packets. They are 1070 variable length packets but, the fields within them are often fixed 1071 length. They are redundent enough to send over UDP as is the 1072 remote protocol in general. There is a matching unit test module 1073 in libstub. */ 1074 1075 #define OPAQUETHREADBYTES 8 1076 1077 /* a 64 bit opaque identifier */ 1078 typedef unsigned char threadref[OPAQUETHREADBYTES]; 1079 1080 /* WARNING: This threadref data structure comes from the remote O.S., libstub 1081 protocol encoding, and remote.c. it is not particularly changable */ 1082 1083 /* Right now, the internal structure is int. We want it to be bigger. 1084 Plan to fix this. 1085 */ 1086 1087 typedef int gdb_threadref; /* internal GDB thread reference */ 1088 1089 /* gdb_ext_thread_info is an internal GDB data structure which is 1090 equivalint to the reply of the remote threadinfo packet */ 1091 1092 struct gdb_ext_thread_info 1093 { 1094 threadref threadid; /* External form of thread reference */ 1095 int active; /* Has state interesting to GDB? , regs, stack */ 1096 char display[256]; /* Brief state display, name, blocked/syspended */ 1097 char shortname[32]; /* To be used to name threads */ 1098 char more_display[256]; /* Long info, statistics, queue depth, whatever */ 1099 }; 1100 1101 /* The volume of remote transfers can be limited by submitting 1102 a mask containing bits specifying the desired information. 1103 Use a union of these values as the 'selection' parameter to 1104 get_thread_info. FIXME: Make these TAG names more thread specific. 1105 */ 1106 1107 #define TAG_THREADID 1 1108 #define TAG_EXISTS 2 1109 #define TAG_DISPLAY 4 1110 #define TAG_THREADNAME 8 1111 #define TAG_MOREDISPLAY 16 1112 1113 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2) 1114 1115 char *unpack_varlen_hex (char *buff, ULONGEST *result); 1116 1117 static char *unpack_nibble (char *buf, int *val); 1118 1119 static char *pack_nibble (char *buf, int nibble); 1120 1121 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte); 1122 1123 static char *unpack_byte (char *buf, int *value); 1124 1125 static char *pack_int (char *buf, int value); 1126 1127 static char *unpack_int (char *buf, int *value); 1128 1129 static char *unpack_string (char *src, char *dest, int length); 1130 1131 static char *pack_threadid (char *pkt, threadref * id); 1132 1133 static char *unpack_threadid (char *inbuf, threadref * id); 1134 1135 void int_to_threadref (threadref * id, int value); 1136 1137 static int threadref_to_int (threadref * ref); 1138 1139 static void copy_threadref (threadref * dest, threadref * src); 1140 1141 static int threadmatch (threadref * dest, threadref * src); 1142 1143 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id); 1144 1145 static int remote_unpack_thread_info_response (char *pkt, 1146 threadref * expectedref, 1147 struct gdb_ext_thread_info 1148 *info); 1149 1150 1151 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */ 1152 struct gdb_ext_thread_info *info); 1153 1154 static char *pack_threadlist_request (char *pkt, int startflag, 1155 int threadcount, 1156 threadref * nextthread); 1157 1158 static int parse_threadlist_response (char *pkt, 1159 int result_limit, 1160 threadref * original_echo, 1161 threadref * resultlist, int *doneflag); 1162 1163 static int remote_get_threadlist (int startflag, 1164 threadref * nextthread, 1165 int result_limit, 1166 int *done, 1167 int *result_count, threadref * threadlist); 1168 1169 typedef int (*rmt_thread_action) (threadref * ref, void *context); 1170 1171 static int remote_threadlist_iterator (rmt_thread_action stepfunction, 1172 void *context, int looplimit); 1173 1174 static int remote_newthread_step (threadref * ref, void *context); 1175 1176 /* encode 64 bits in 16 chars of hex */ 1177 1178 static const char hexchars[] = "0123456789abcdef"; 1179 1180 static int 1181 ishex (int ch, int *val) 1182 { 1183 if ((ch >= 'a') && (ch <= 'f')) 1184 { 1185 *val = ch - 'a' + 10; 1186 return 1; 1187 } 1188 if ((ch >= 'A') && (ch <= 'F')) 1189 { 1190 *val = ch - 'A' + 10; 1191 return 1; 1192 } 1193 if ((ch >= '0') && (ch <= '9')) 1194 { 1195 *val = ch - '0'; 1196 return 1; 1197 } 1198 return 0; 1199 } 1200 1201 static int 1202 stubhex (int ch) 1203 { 1204 if (ch >= 'a' && ch <= 'f') 1205 return ch - 'a' + 10; 1206 if (ch >= '0' && ch <= '9') 1207 return ch - '0'; 1208 if (ch >= 'A' && ch <= 'F') 1209 return ch - 'A' + 10; 1210 return -1; 1211 } 1212 1213 static int 1214 stub_unpack_int (char *buff, int fieldlength) 1215 { 1216 int nibble; 1217 int retval = 0; 1218 1219 while (fieldlength) 1220 { 1221 nibble = stubhex (*buff++); 1222 retval |= nibble; 1223 fieldlength--; 1224 if (fieldlength) 1225 retval = retval << 4; 1226 } 1227 return retval; 1228 } 1229 1230 char * 1231 unpack_varlen_hex (char *buff, /* packet to parse */ 1232 ULONGEST *result) 1233 { 1234 int nibble; 1235 int retval = 0; 1236 1237 while (ishex (*buff, &nibble)) 1238 { 1239 buff++; 1240 retval = retval << 4; 1241 retval |= nibble & 0x0f; 1242 } 1243 *result = retval; 1244 return buff; 1245 } 1246 1247 static char * 1248 unpack_nibble (char *buf, int *val) 1249 { 1250 ishex (*buf++, val); 1251 return buf; 1252 } 1253 1254 static char * 1255 pack_nibble (char *buf, int nibble) 1256 { 1257 *buf++ = hexchars[(nibble & 0x0f)]; 1258 return buf; 1259 } 1260 1261 static char * 1262 pack_hex_byte (char *pkt, int byte) 1263 { 1264 *pkt++ = hexchars[(byte >> 4) & 0xf]; 1265 *pkt++ = hexchars[(byte & 0xf)]; 1266 return pkt; 1267 } 1268 1269 static char * 1270 unpack_byte (char *buf, int *value) 1271 { 1272 *value = stub_unpack_int (buf, 2); 1273 return buf + 2; 1274 } 1275 1276 static char * 1277 pack_int (char *buf, int value) 1278 { 1279 buf = pack_hex_byte (buf, (value >> 24) & 0xff); 1280 buf = pack_hex_byte (buf, (value >> 16) & 0xff); 1281 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff); 1282 buf = pack_hex_byte (buf, (value & 0xff)); 1283 return buf; 1284 } 1285 1286 static char * 1287 unpack_int (char *buf, int *value) 1288 { 1289 *value = stub_unpack_int (buf, 8); 1290 return buf + 8; 1291 } 1292 1293 #if 0 /* currently unused, uncomment when needed */ 1294 static char *pack_string (char *pkt, char *string); 1295 1296 static char * 1297 pack_string (char *pkt, char *string) 1298 { 1299 char ch; 1300 int len; 1301 1302 len = strlen (string); 1303 if (len > 200) 1304 len = 200; /* Bigger than most GDB packets, junk??? */ 1305 pkt = pack_hex_byte (pkt, len); 1306 while (len-- > 0) 1307 { 1308 ch = *string++; 1309 if ((ch == '\0') || (ch == '#')) 1310 ch = '*'; /* Protect encapsulation */ 1311 *pkt++ = ch; 1312 } 1313 return pkt; 1314 } 1315 #endif /* 0 (unused) */ 1316 1317 static char * 1318 unpack_string (char *src, char *dest, int length) 1319 { 1320 while (length--) 1321 *dest++ = *src++; 1322 *dest = '\0'; 1323 return src; 1324 } 1325 1326 static char * 1327 pack_threadid (char *pkt, threadref *id) 1328 { 1329 char *limit; 1330 unsigned char *altid; 1331 1332 altid = (unsigned char *) id; 1333 limit = pkt + BUF_THREAD_ID_SIZE; 1334 while (pkt < limit) 1335 pkt = pack_hex_byte (pkt, *altid++); 1336 return pkt; 1337 } 1338 1339 1340 static char * 1341 unpack_threadid (char *inbuf, threadref *id) 1342 { 1343 char *altref; 1344 char *limit = inbuf + BUF_THREAD_ID_SIZE; 1345 int x, y; 1346 1347 altref = (char *) id; 1348 1349 while (inbuf < limit) 1350 { 1351 x = stubhex (*inbuf++); 1352 y = stubhex (*inbuf++); 1353 *altref++ = (x << 4) | y; 1354 } 1355 return inbuf; 1356 } 1357 1358 /* Externally, threadrefs are 64 bits but internally, they are still 1359 ints. This is due to a mismatch of specifications. We would like 1360 to use 64bit thread references internally. This is an adapter 1361 function. */ 1362 1363 void 1364 int_to_threadref (threadref *id, int value) 1365 { 1366 unsigned char *scan; 1367 1368 scan = (unsigned char *) id; 1369 { 1370 int i = 4; 1371 while (i--) 1372 *scan++ = 0; 1373 } 1374 *scan++ = (value >> 24) & 0xff; 1375 *scan++ = (value >> 16) & 0xff; 1376 *scan++ = (value >> 8) & 0xff; 1377 *scan++ = (value & 0xff); 1378 } 1379 1380 static int 1381 threadref_to_int (threadref *ref) 1382 { 1383 int i, value = 0; 1384 unsigned char *scan; 1385 1386 scan = (char *) ref; 1387 scan += 4; 1388 i = 4; 1389 while (i-- > 0) 1390 value = (value << 8) | ((*scan++) & 0xff); 1391 return value; 1392 } 1393 1394 static void 1395 copy_threadref (threadref *dest, threadref *src) 1396 { 1397 int i; 1398 unsigned char *csrc, *cdest; 1399 1400 csrc = (unsigned char *) src; 1401 cdest = (unsigned char *) dest; 1402 i = 8; 1403 while (i--) 1404 *cdest++ = *csrc++; 1405 } 1406 1407 static int 1408 threadmatch (threadref *dest, threadref *src) 1409 { 1410 /* things are broken right now, so just assume we got a match */ 1411 #if 0 1412 unsigned char *srcp, *destp; 1413 int i, result; 1414 srcp = (char *) src; 1415 destp = (char *) dest; 1416 1417 result = 1; 1418 while (i-- > 0) 1419 result &= (*srcp++ == *destp++) ? 1 : 0; 1420 return result; 1421 #endif 1422 return 1; 1423 } 1424 1425 /* 1426 threadid:1, # always request threadid 1427 context_exists:2, 1428 display:4, 1429 unique_name:8, 1430 more_display:16 1431 */ 1432 1433 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */ 1434 1435 static char * 1436 pack_threadinfo_request (char *pkt, int mode, threadref *id) 1437 { 1438 *pkt++ = 'q'; /* Info Query */ 1439 *pkt++ = 'P'; /* process or thread info */ 1440 pkt = pack_int (pkt, mode); /* mode */ 1441 pkt = pack_threadid (pkt, id); /* threadid */ 1442 *pkt = '\0'; /* terminate */ 1443 return pkt; 1444 } 1445 1446 /* These values tag the fields in a thread info response packet */ 1447 /* Tagging the fields allows us to request specific fields and to 1448 add more fields as time goes by */ 1449 1450 #define TAG_THREADID 1 /* Echo the thread identifier */ 1451 #define TAG_EXISTS 2 /* Is this process defined enough to 1452 fetch registers and its stack */ 1453 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */ 1454 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */ 1455 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about 1456 the process */ 1457 1458 static int 1459 remote_unpack_thread_info_response (char *pkt, threadref *expectedref, 1460 struct gdb_ext_thread_info *info) 1461 { 1462 struct remote_state *rs = get_remote_state (); 1463 int mask, length; 1464 unsigned int tag; 1465 threadref ref; 1466 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */ 1467 int retval = 1; 1468 1469 /* info->threadid = 0; FIXME: implement zero_threadref */ 1470 info->active = 0; 1471 info->display[0] = '\0'; 1472 info->shortname[0] = '\0'; 1473 info->more_display[0] = '\0'; 1474 1475 /* Assume the characters indicating the packet type have been stripped */ 1476 pkt = unpack_int (pkt, &mask); /* arg mask */ 1477 pkt = unpack_threadid (pkt, &ref); 1478 1479 if (mask == 0) 1480 warning ("Incomplete response to threadinfo request\n"); 1481 if (!threadmatch (&ref, expectedref)) 1482 { /* This is an answer to a different request */ 1483 warning ("ERROR RMT Thread info mismatch\n"); 1484 return 0; 1485 } 1486 copy_threadref (&info->threadid, &ref); 1487 1488 /* Loop on tagged fields , try to bail if somthing goes wrong */ 1489 1490 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */ 1491 { 1492 pkt = unpack_int (pkt, &tag); /* tag */ 1493 pkt = unpack_byte (pkt, &length); /* length */ 1494 if (!(tag & mask)) /* tags out of synch with mask */ 1495 { 1496 warning ("ERROR RMT: threadinfo tag mismatch\n"); 1497 retval = 0; 1498 break; 1499 } 1500 if (tag == TAG_THREADID) 1501 { 1502 if (length != 16) 1503 { 1504 warning ("ERROR RMT: length of threadid is not 16\n"); 1505 retval = 0; 1506 break; 1507 } 1508 pkt = unpack_threadid (pkt, &ref); 1509 mask = mask & ~TAG_THREADID; 1510 continue; 1511 } 1512 if (tag == TAG_EXISTS) 1513 { 1514 info->active = stub_unpack_int (pkt, length); 1515 pkt += length; 1516 mask = mask & ~(TAG_EXISTS); 1517 if (length > 8) 1518 { 1519 warning ("ERROR RMT: 'exists' length too long\n"); 1520 retval = 0; 1521 break; 1522 } 1523 continue; 1524 } 1525 if (tag == TAG_THREADNAME) 1526 { 1527 pkt = unpack_string (pkt, &info->shortname[0], length); 1528 mask = mask & ~TAG_THREADNAME; 1529 continue; 1530 } 1531 if (tag == TAG_DISPLAY) 1532 { 1533 pkt = unpack_string (pkt, &info->display[0], length); 1534 mask = mask & ~TAG_DISPLAY; 1535 continue; 1536 } 1537 if (tag == TAG_MOREDISPLAY) 1538 { 1539 pkt = unpack_string (pkt, &info->more_display[0], length); 1540 mask = mask & ~TAG_MOREDISPLAY; 1541 continue; 1542 } 1543 warning ("ERROR RMT: unknown thread info tag\n"); 1544 break; /* Not a tag we know about */ 1545 } 1546 return retval; 1547 } 1548 1549 static int 1550 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */ 1551 struct gdb_ext_thread_info *info) 1552 { 1553 struct remote_state *rs = get_remote_state (); 1554 int result; 1555 char *threadinfo_pkt = alloca (rs->remote_packet_size); 1556 1557 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid); 1558 putpkt (threadinfo_pkt); 1559 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0); 1560 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid, 1561 info); 1562 return result; 1563 } 1564 1565 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */ 1566 1567 static char * 1568 pack_threadlist_request (char *pkt, int startflag, int threadcount, 1569 threadref *nextthread) 1570 { 1571 *pkt++ = 'q'; /* info query packet */ 1572 *pkt++ = 'L'; /* Process LIST or threadLIST request */ 1573 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */ 1574 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */ 1575 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */ 1576 *pkt = '\0'; 1577 return pkt; 1578 } 1579 1580 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */ 1581 1582 static int 1583 parse_threadlist_response (char *pkt, int result_limit, 1584 threadref *original_echo, threadref *resultlist, 1585 int *doneflag) 1586 { 1587 struct remote_state *rs = get_remote_state (); 1588 char *limit; 1589 int count, resultcount, done; 1590 1591 resultcount = 0; 1592 /* Assume the 'q' and 'M chars have been stripped. */ 1593 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */ 1594 pkt = unpack_byte (pkt, &count); /* count field */ 1595 pkt = unpack_nibble (pkt, &done); 1596 /* The first threadid is the argument threadid. */ 1597 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */ 1598 while ((count-- > 0) && (pkt < limit)) 1599 { 1600 pkt = unpack_threadid (pkt, resultlist++); 1601 if (resultcount++ >= result_limit) 1602 break; 1603 } 1604 if (doneflag) 1605 *doneflag = done; 1606 return resultcount; 1607 } 1608 1609 static int 1610 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit, 1611 int *done, int *result_count, threadref *threadlist) 1612 { 1613 struct remote_state *rs = get_remote_state (); 1614 static threadref echo_nextthread; 1615 char *threadlist_packet = alloca (rs->remote_packet_size); 1616 char *t_response = alloca (rs->remote_packet_size); 1617 int result = 1; 1618 1619 /* Trancate result limit to be smaller than the packet size */ 1620 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size)) 1621 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2; 1622 1623 pack_threadlist_request (threadlist_packet, 1624 startflag, result_limit, nextthread); 1625 putpkt (threadlist_packet); 1626 getpkt (t_response, (rs->remote_packet_size), 0); 1627 1628 *result_count = 1629 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread, 1630 threadlist, done); 1631 1632 if (!threadmatch (&echo_nextthread, nextthread)) 1633 { 1634 /* FIXME: This is a good reason to drop the packet */ 1635 /* Possably, there is a duplicate response */ 1636 /* Possabilities : 1637 retransmit immediatly - race conditions 1638 retransmit after timeout - yes 1639 exit 1640 wait for packet, then exit 1641 */ 1642 warning ("HMM: threadlist did not echo arg thread, dropping it\n"); 1643 return 0; /* I choose simply exiting */ 1644 } 1645 if (*result_count <= 0) 1646 { 1647 if (*done != 1) 1648 { 1649 warning ("RMT ERROR : failed to get remote thread list\n"); 1650 result = 0; 1651 } 1652 return result; /* break; */ 1653 } 1654 if (*result_count > result_limit) 1655 { 1656 *result_count = 0; 1657 warning ("RMT ERROR: threadlist response longer than requested\n"); 1658 return 0; 1659 } 1660 return result; 1661 } 1662 1663 /* This is the interface between remote and threads, remotes upper interface */ 1664 1665 /* remote_find_new_threads retrieves the thread list and for each 1666 thread in the list, looks up the thread in GDB's internal list, 1667 ading the thread if it does not already exist. This involves 1668 getting partial thread lists from the remote target so, polling the 1669 quit_flag is required. */ 1670 1671 1672 /* About this many threadisds fit in a packet. */ 1673 1674 #define MAXTHREADLISTRESULTS 32 1675 1676 static int 1677 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context, 1678 int looplimit) 1679 { 1680 int done, i, result_count; 1681 int startflag = 1; 1682 int result = 1; 1683 int loopcount = 0; 1684 static threadref nextthread; 1685 static threadref resultthreadlist[MAXTHREADLISTRESULTS]; 1686 1687 done = 0; 1688 while (!done) 1689 { 1690 if (loopcount++ > looplimit) 1691 { 1692 result = 0; 1693 warning ("Remote fetch threadlist -infinite loop-\n"); 1694 break; 1695 } 1696 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS, 1697 &done, &result_count, resultthreadlist)) 1698 { 1699 result = 0; 1700 break; 1701 } 1702 /* clear for later iterations */ 1703 startflag = 0; 1704 /* Setup to resume next batch of thread references, set nextthread. */ 1705 if (result_count >= 1) 1706 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]); 1707 i = 0; 1708 while (result_count--) 1709 if (!(result = (*stepfunction) (&resultthreadlist[i++], context))) 1710 break; 1711 } 1712 return result; 1713 } 1714 1715 static int 1716 remote_newthread_step (threadref *ref, void *context) 1717 { 1718 ptid_t ptid; 1719 1720 ptid = pid_to_ptid (threadref_to_int (ref)); 1721 1722 if (!in_thread_list (ptid)) 1723 add_thread (ptid); 1724 return 1; /* continue iterator */ 1725 } 1726 1727 #define CRAZY_MAX_THREADS 1000 1728 1729 static ptid_t 1730 remote_current_thread (ptid_t oldpid) 1731 { 1732 struct remote_state *rs = get_remote_state (); 1733 char *buf = alloca (rs->remote_packet_size); 1734 1735 putpkt ("qC"); 1736 getpkt (buf, (rs->remote_packet_size), 0); 1737 if (buf[0] == 'Q' && buf[1] == 'C') 1738 return pid_to_ptid (strtol (&buf[2], NULL, 16)); 1739 else 1740 return oldpid; 1741 } 1742 1743 /* Find new threads for info threads command. 1744 * Original version, using John Metzler's thread protocol. 1745 */ 1746 1747 static void 1748 remote_find_new_threads (void) 1749 { 1750 remote_threadlist_iterator (remote_newthread_step, 0, 1751 CRAZY_MAX_THREADS); 1752 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */ 1753 inferior_ptid = remote_current_thread (inferior_ptid); 1754 } 1755 1756 /* 1757 * Find all threads for info threads command. 1758 * Uses new thread protocol contributed by Cisco. 1759 * Falls back and attempts to use the older method (above) 1760 * if the target doesn't respond to the new method. 1761 */ 1762 1763 static void 1764 remote_threads_info (void) 1765 { 1766 struct remote_state *rs = get_remote_state (); 1767 char *buf = alloca (rs->remote_packet_size); 1768 char *bufp; 1769 int tid; 1770 1771 if (remote_desc == 0) /* paranoia */ 1772 error ("Command can only be used when connected to the remote target."); 1773 1774 if (use_threadinfo_query) 1775 { 1776 putpkt ("qfThreadInfo"); 1777 bufp = buf; 1778 getpkt (bufp, (rs->remote_packet_size), 0); 1779 if (bufp[0] != '\0') /* q packet recognized */ 1780 { 1781 while (*bufp++ == 'm') /* reply contains one or more TID */ 1782 { 1783 do 1784 { 1785 tid = strtol (bufp, &bufp, 16); 1786 if (tid != 0 && !in_thread_list (pid_to_ptid (tid))) 1787 add_thread (pid_to_ptid (tid)); 1788 } 1789 while (*bufp++ == ','); /* comma-separated list */ 1790 putpkt ("qsThreadInfo"); 1791 bufp = buf; 1792 getpkt (bufp, (rs->remote_packet_size), 0); 1793 } 1794 return; /* done */ 1795 } 1796 } 1797 1798 /* Else fall back to old method based on jmetzler protocol. */ 1799 use_threadinfo_query = 0; 1800 remote_find_new_threads (); 1801 return; 1802 } 1803 1804 /* 1805 * Collect a descriptive string about the given thread. 1806 * The target may say anything it wants to about the thread 1807 * (typically info about its blocked / runnable state, name, etc.). 1808 * This string will appear in the info threads display. 1809 * 1810 * Optional: targets are not required to implement this function. 1811 */ 1812 1813 static char * 1814 remote_threads_extra_info (struct thread_info *tp) 1815 { 1816 struct remote_state *rs = get_remote_state (); 1817 int result; 1818 int set; 1819 threadref id; 1820 struct gdb_ext_thread_info threadinfo; 1821 static char display_buf[100]; /* arbitrary... */ 1822 char *bufp = alloca (rs->remote_packet_size); 1823 int n = 0; /* position in display_buf */ 1824 1825 if (remote_desc == 0) /* paranoia */ 1826 internal_error (__FILE__, __LINE__, 1827 "remote_threads_extra_info"); 1828 1829 if (use_threadextra_query) 1830 { 1831 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid)); 1832 putpkt (bufp); 1833 getpkt (bufp, (rs->remote_packet_size), 0); 1834 if (bufp[0] != 0) 1835 { 1836 n = min (strlen (bufp) / 2, sizeof (display_buf)); 1837 result = hex2bin (bufp, display_buf, n); 1838 display_buf [result] = '\0'; 1839 return display_buf; 1840 } 1841 } 1842 1843 /* If the above query fails, fall back to the old method. */ 1844 use_threadextra_query = 0; 1845 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME 1846 | TAG_MOREDISPLAY | TAG_DISPLAY; 1847 int_to_threadref (&id, PIDGET (tp->ptid)); 1848 if (remote_get_threadinfo (&id, set, &threadinfo)) 1849 if (threadinfo.active) 1850 { 1851 if (*threadinfo.shortname) 1852 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname); 1853 if (*threadinfo.display) 1854 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display); 1855 if (*threadinfo.more_display) 1856 n += sprintf(&display_buf[n], " Priority: %s", 1857 threadinfo.more_display); 1858 1859 if (n > 0) 1860 { 1861 /* for purely cosmetic reasons, clear up trailing commas */ 1862 if (',' == display_buf[n-1]) 1863 display_buf[n-1] = ' '; 1864 return display_buf; 1865 } 1866 } 1867 return NULL; 1868 } 1869 1870 1871 1872 /* Restart the remote side; this is an extended protocol operation. */ 1873 1874 static void 1875 extended_remote_restart (void) 1876 { 1877 struct remote_state *rs = get_remote_state (); 1878 char *buf = alloca (rs->remote_packet_size); 1879 1880 /* Send the restart command; for reasons I don't understand the 1881 remote side really expects a number after the "R". */ 1882 buf[0] = 'R'; 1883 sprintf (&buf[1], "%x", 0); 1884 putpkt (buf); 1885 1886 /* Now query for status so this looks just like we restarted 1887 gdbserver from scratch. */ 1888 putpkt ("?"); 1889 getpkt (buf, (rs->remote_packet_size), 0); 1890 } 1891 1892 /* Clean up connection to a remote debugger. */ 1893 1894 static void 1895 remote_close (int quitting) 1896 { 1897 if (remote_desc) 1898 serial_close (remote_desc); 1899 remote_desc = NULL; 1900 } 1901 1902 /* Query the remote side for the text, data and bss offsets. */ 1903 1904 static void 1905 get_offsets (void) 1906 { 1907 struct remote_state *rs = get_remote_state (); 1908 char *buf = alloca (rs->remote_packet_size); 1909 char *ptr; 1910 int lose; 1911 CORE_ADDR text_addr, data_addr, bss_addr; 1912 struct section_offsets *offs; 1913 1914 putpkt ("qOffsets"); 1915 1916 getpkt (buf, (rs->remote_packet_size), 0); 1917 1918 if (buf[0] == '\000') 1919 return; /* Return silently. Stub doesn't support 1920 this command. */ 1921 if (buf[0] == 'E') 1922 { 1923 warning ("Remote failure reply: %s", buf); 1924 return; 1925 } 1926 1927 /* Pick up each field in turn. This used to be done with scanf, but 1928 scanf will make trouble if CORE_ADDR size doesn't match 1929 conversion directives correctly. The following code will work 1930 with any size of CORE_ADDR. */ 1931 text_addr = data_addr = bss_addr = 0; 1932 ptr = buf; 1933 lose = 0; 1934 1935 if (strncmp (ptr, "Text=", 5) == 0) 1936 { 1937 ptr += 5; 1938 /* Don't use strtol, could lose on big values. */ 1939 while (*ptr && *ptr != ';') 1940 text_addr = (text_addr << 4) + fromhex (*ptr++); 1941 } 1942 else 1943 lose = 1; 1944 1945 if (!lose && strncmp (ptr, ";Data=", 6) == 0) 1946 { 1947 ptr += 6; 1948 while (*ptr && *ptr != ';') 1949 data_addr = (data_addr << 4) + fromhex (*ptr++); 1950 } 1951 else 1952 lose = 1; 1953 1954 if (!lose && strncmp (ptr, ";Bss=", 5) == 0) 1955 { 1956 ptr += 5; 1957 while (*ptr && *ptr != ';') 1958 bss_addr = (bss_addr << 4) + fromhex (*ptr++); 1959 } 1960 else 1961 lose = 1; 1962 1963 if (lose) 1964 error ("Malformed response to offset query, %s", buf); 1965 1966 if (symfile_objfile == NULL) 1967 return; 1968 1969 offs = ((struct section_offsets *) 1970 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections))); 1971 memcpy (offs, symfile_objfile->section_offsets, 1972 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)); 1973 1974 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr; 1975 1976 /* This is a temporary kludge to force data and bss to use the same offsets 1977 because that's what nlmconv does now. The real solution requires changes 1978 to the stub and remote.c that I don't have time to do right now. */ 1979 1980 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr; 1981 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr; 1982 1983 objfile_relocate (symfile_objfile, offs); 1984 } 1985 1986 /* Stub for catch_errors. */ 1987 1988 static int 1989 remote_start_remote_dummy (struct ui_out *uiout, void *dummy) 1990 { 1991 start_remote (); /* Initialize gdb process mechanisms */ 1992 /* NOTE: Return something >=0. A -ve value is reserved for 1993 catch_exceptions. */ 1994 return 1; 1995 } 1996 1997 static int 1998 remote_start_remote (struct ui_out *uiout, void *dummy) 1999 { 2000 immediate_quit++; /* Allow user to interrupt it */ 2001 2002 /* Ack any packet which the remote side has already sent. */ 2003 serial_write (remote_desc, "+", 1); 2004 2005 /* Let the stub know that we want it to return the thread. */ 2006 set_thread (-1, 0); 2007 2008 inferior_ptid = remote_current_thread (inferior_ptid); 2009 2010 get_offsets (); /* Get text, data & bss offsets */ 2011 2012 putpkt ("?"); /* initiate a query from remote machine */ 2013 immediate_quit--; 2014 2015 /* NOTE: See comment above in remote_start_remote_dummy(). This 2016 function returns something >=0. */ 2017 return remote_start_remote_dummy (uiout, dummy); 2018 } 2019 2020 /* Open a connection to a remote debugger. 2021 NAME is the filename used for communication. */ 2022 2023 static void 2024 remote_open (char *name, int from_tty) 2025 { 2026 remote_open_1 (name, from_tty, &remote_ops, 0, 0); 2027 } 2028 2029 /* Just like remote_open, but with asynchronous support. */ 2030 static void 2031 remote_async_open (char *name, int from_tty) 2032 { 2033 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1); 2034 } 2035 2036 /* Open a connection to a remote debugger using the extended 2037 remote gdb protocol. NAME is the filename used for communication. */ 2038 2039 static void 2040 extended_remote_open (char *name, int from_tty) 2041 { 2042 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */, 2043 0 /* async_p */); 2044 } 2045 2046 /* Just like extended_remote_open, but with asynchronous support. */ 2047 static void 2048 extended_remote_async_open (char *name, int from_tty) 2049 { 2050 remote_open_1 (name, from_tty, &extended_async_remote_ops, 2051 1 /*extended_p */, 1 /* async_p */); 2052 } 2053 2054 /* Generic code for opening a connection to a remote target. */ 2055 2056 static void 2057 init_all_packet_configs (void) 2058 { 2059 int i; 2060 update_packet_config (&remote_protocol_P); 2061 update_packet_config (&remote_protocol_p); 2062 update_packet_config (&remote_protocol_qSymbol); 2063 update_packet_config (&remote_protocol_vcont); 2064 for (i = 0; i < NR_Z_PACKET_TYPES; i++) 2065 update_packet_config (&remote_protocol_Z[i]); 2066 /* Force remote_write_bytes to check whether target supports binary 2067 downloading. */ 2068 update_packet_config (&remote_protocol_binary_download); 2069 update_packet_config (&remote_protocol_qPart_auxv); 2070 } 2071 2072 /* Symbol look-up. */ 2073 2074 static void 2075 remote_check_symbols (struct objfile *objfile) 2076 { 2077 struct remote_state *rs = get_remote_state (); 2078 char *msg, *reply, *tmp; 2079 struct minimal_symbol *sym; 2080 int end; 2081 2082 if (remote_protocol_qSymbol.support == PACKET_DISABLE) 2083 return; 2084 2085 msg = alloca (rs->remote_packet_size); 2086 reply = alloca (rs->remote_packet_size); 2087 2088 /* Invite target to request symbol lookups. */ 2089 2090 putpkt ("qSymbol::"); 2091 getpkt (reply, (rs->remote_packet_size), 0); 2092 packet_ok (reply, &remote_protocol_qSymbol); 2093 2094 while (strncmp (reply, "qSymbol:", 8) == 0) 2095 { 2096 tmp = &reply[8]; 2097 end = hex2bin (tmp, msg, strlen (tmp) / 2); 2098 msg[end] = '\0'; 2099 sym = lookup_minimal_symbol (msg, NULL, NULL); 2100 if (sym == NULL) 2101 sprintf (msg, "qSymbol::%s", &reply[8]); 2102 else 2103 sprintf (msg, "qSymbol:%s:%s", 2104 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)), 2105 &reply[8]); 2106 putpkt (msg); 2107 getpkt (reply, (rs->remote_packet_size), 0); 2108 } 2109 } 2110 2111 static struct serial * 2112 remote_serial_open (char *name) 2113 { 2114 static int udp_warning = 0; 2115 2116 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead 2117 of in ser-tcp.c, because it is the remote protocol assuming that the 2118 serial connection is reliable and not the serial connection promising 2119 to be. */ 2120 if (!udp_warning && strncmp (name, "udp:", 4) == 0) 2121 { 2122 warning ("The remote protocol may be unreliable over UDP."); 2123 warning ("Some events may be lost, rendering further debugging " 2124 "impossible."); 2125 udp_warning = 1; 2126 } 2127 2128 return serial_open (name); 2129 } 2130 2131 static void 2132 remote_open_1 (char *name, int from_tty, struct target_ops *target, 2133 int extended_p, int async_p) 2134 { 2135 int ex; 2136 struct remote_state *rs = get_remote_state (); 2137 if (name == 0) 2138 error ("To open a remote debug connection, you need to specify what\n" 2139 "serial device is attached to the remote system\n" 2140 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."); 2141 2142 /* See FIXME above */ 2143 if (!async_p) 2144 wait_forever_enabled_p = 1; 2145 2146 reopen_exec_file (); 2147 reread_symbols (); 2148 2149 target_preopen (from_tty); 2150 2151 unpush_target (target); 2152 2153 remote_desc = remote_serial_open (name); 2154 if (!remote_desc) 2155 perror_with_name (name); 2156 2157 if (baud_rate != -1) 2158 { 2159 if (serial_setbaudrate (remote_desc, baud_rate)) 2160 { 2161 /* The requested speed could not be set. Error out to 2162 top level after closing remote_desc. Take care to 2163 set remote_desc to NULL to avoid closing remote_desc 2164 more than once. */ 2165 serial_close (remote_desc); 2166 remote_desc = NULL; 2167 perror_with_name (name); 2168 } 2169 } 2170 2171 serial_raw (remote_desc); 2172 2173 /* If there is something sitting in the buffer we might take it as a 2174 response to a command, which would be bad. */ 2175 serial_flush_input (remote_desc); 2176 2177 if (from_tty) 2178 { 2179 puts_filtered ("Remote debugging using "); 2180 puts_filtered (name); 2181 puts_filtered ("\n"); 2182 } 2183 push_target (target); /* Switch to using remote target now */ 2184 2185 init_all_packet_configs (); 2186 2187 general_thread = -2; 2188 continue_thread = -2; 2189 2190 /* Probe for ability to use "ThreadInfo" query, as required. */ 2191 use_threadinfo_query = 1; 2192 use_threadextra_query = 1; 2193 2194 /* Without this, some commands which require an active target (such 2195 as kill) won't work. This variable serves (at least) double duty 2196 as both the pid of the target process (if it has such), and as a 2197 flag indicating that a target is active. These functions should 2198 be split out into seperate variables, especially since GDB will 2199 someday have a notion of debugging several processes. */ 2200 2201 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID); 2202 2203 if (async_p) 2204 { 2205 /* With this target we start out by owning the terminal. */ 2206 remote_async_terminal_ours_p = 1; 2207 2208 /* FIXME: cagney/1999-09-23: During the initial connection it is 2209 assumed that the target is already ready and able to respond to 2210 requests. Unfortunately remote_start_remote() eventually calls 2211 wait_for_inferior() with no timeout. wait_forever_enabled_p gets 2212 around this. Eventually a mechanism that allows 2213 wait_for_inferior() to expect/get timeouts will be 2214 implemented. */ 2215 wait_forever_enabled_p = 0; 2216 } 2217 2218 #ifdef SOLIB_CREATE_INFERIOR_HOOK 2219 /* First delete any symbols previously loaded from shared libraries. */ 2220 no_shared_libraries (NULL, 0); 2221 #endif 2222 2223 /* Start the remote connection. If error() or QUIT, discard this 2224 target (we'd otherwise be in an inconsistent state) and then 2225 propogate the error on up the exception chain. This ensures that 2226 the caller doesn't stumble along blindly assuming that the 2227 function succeeded. The CLI doesn't have this problem but other 2228 UI's, such as MI do. 2229 2230 FIXME: cagney/2002-05-19: Instead of re-throwing the exception, 2231 this function should return an error indication letting the 2232 caller restore the previous state. Unfortunately the command 2233 ``target remote'' is directly wired to this function making that 2234 impossible. On a positive note, the CLI side of this problem has 2235 been fixed - the function set_cmd_context() makes it possible for 2236 all the ``target ....'' commands to share a common callback 2237 function. See cli-dump.c. */ 2238 ex = catch_exceptions (uiout, 2239 remote_start_remote, NULL, 2240 "Couldn't establish connection to remote" 2241 " target\n", 2242 RETURN_MASK_ALL); 2243 if (ex < 0) 2244 { 2245 pop_target (); 2246 if (async_p) 2247 wait_forever_enabled_p = 1; 2248 throw_exception (ex); 2249 } 2250 2251 if (async_p) 2252 wait_forever_enabled_p = 1; 2253 2254 if (extended_p) 2255 { 2256 /* Tell the remote that we are using the extended protocol. */ 2257 char *buf = alloca (rs->remote_packet_size); 2258 putpkt ("!"); 2259 getpkt (buf, (rs->remote_packet_size), 0); 2260 } 2261 #ifdef SOLIB_CREATE_INFERIOR_HOOK 2262 /* FIXME: need a master target_open vector from which all 2263 remote_opens can be called, so that stuff like this can 2264 go there. Failing that, the following code must be copied 2265 to the open function for any remote target that wants to 2266 support svr4 shared libraries. */ 2267 2268 /* Set up to detect and load shared libraries. */ 2269 if (exec_bfd) /* No use without an exec file. */ 2270 { 2271 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); 2272 remote_check_symbols (symfile_objfile); 2273 } 2274 #endif 2275 } 2276 2277 /* This takes a program previously attached to and detaches it. After 2278 this is done, GDB can be used to debug some other program. We 2279 better not have left any breakpoints in the target program or it'll 2280 die when it hits one. */ 2281 2282 static void 2283 remote_detach (char *args, int from_tty) 2284 { 2285 struct remote_state *rs = get_remote_state (); 2286 char *buf = alloca (rs->remote_packet_size); 2287 2288 if (args) 2289 error ("Argument given to \"detach\" when remotely debugging."); 2290 2291 /* Tell the remote target to detach. */ 2292 strcpy (buf, "D"); 2293 remote_send (buf, (rs->remote_packet_size)); 2294 2295 /* Unregister the file descriptor from the event loop. */ 2296 if (target_is_async_p ()) 2297 serial_async (remote_desc, NULL, 0); 2298 2299 target_mourn_inferior (); 2300 if (from_tty) 2301 puts_filtered ("Ending remote debugging.\n"); 2302 } 2303 2304 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */ 2305 2306 static void 2307 remote_disconnect (char *args, int from_tty) 2308 { 2309 struct remote_state *rs = get_remote_state (); 2310 char *buf = alloca (rs->remote_packet_size); 2311 2312 if (args) 2313 error ("Argument given to \"detach\" when remotely debugging."); 2314 2315 /* Unregister the file descriptor from the event loop. */ 2316 if (target_is_async_p ()) 2317 serial_async (remote_desc, NULL, 0); 2318 2319 target_mourn_inferior (); 2320 if (from_tty) 2321 puts_filtered ("Ending remote debugging.\n"); 2322 } 2323 2324 /* Convert hex digit A to a number. */ 2325 2326 static int 2327 fromhex (int a) 2328 { 2329 if (a >= '0' && a <= '9') 2330 return a - '0'; 2331 else if (a >= 'a' && a <= 'f') 2332 return a - 'a' + 10; 2333 else if (a >= 'A' && a <= 'F') 2334 return a - 'A' + 10; 2335 else 2336 error ("Reply contains invalid hex digit %d", a); 2337 } 2338 2339 static int 2340 hex2bin (const char *hex, char *bin, int count) 2341 { 2342 int i; 2343 2344 for (i = 0; i < count; i++) 2345 { 2346 if (hex[0] == 0 || hex[1] == 0) 2347 { 2348 /* Hex string is short, or of uneven length. 2349 Return the count that has been converted so far. */ 2350 return i; 2351 } 2352 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]); 2353 hex += 2; 2354 } 2355 return i; 2356 } 2357 2358 /* Convert number NIB to a hex digit. */ 2359 2360 static int 2361 tohex (int nib) 2362 { 2363 if (nib < 10) 2364 return '0' + nib; 2365 else 2366 return 'a' + nib - 10; 2367 } 2368 2369 static int 2370 bin2hex (const char *bin, char *hex, int count) 2371 { 2372 int i; 2373 /* May use a length, or a nul-terminated string as input. */ 2374 if (count == 0) 2375 count = strlen (bin); 2376 2377 for (i = 0; i < count; i++) 2378 { 2379 *hex++ = tohex ((*bin >> 4) & 0xf); 2380 *hex++ = tohex (*bin++ & 0xf); 2381 } 2382 *hex = 0; 2383 return i; 2384 } 2385 2386 /* Check for the availability of vCont. This function should also check 2387 the response. */ 2388 2389 static void 2390 remote_vcont_probe (struct remote_state *rs, char *buf) 2391 { 2392 strcpy (buf, "vCont?"); 2393 putpkt (buf); 2394 getpkt (buf, rs->remote_packet_size, 0); 2395 2396 /* Make sure that the features we assume are supported. */ 2397 if (strncmp (buf, "vCont", 5) == 0) 2398 { 2399 char *p = &buf[5]; 2400 int support_s, support_S, support_c, support_C; 2401 2402 support_s = 0; 2403 support_S = 0; 2404 support_c = 0; 2405 support_C = 0; 2406 while (p && *p == ';') 2407 { 2408 p++; 2409 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0)) 2410 support_s = 1; 2411 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0)) 2412 support_S = 1; 2413 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0)) 2414 support_c = 1; 2415 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0)) 2416 support_C = 1; 2417 2418 p = strchr (p, ';'); 2419 } 2420 2421 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing 2422 BUF will make packet_ok disable the packet. */ 2423 if (!support_s || !support_S || !support_c || !support_C) 2424 buf[0] = 0; 2425 } 2426 2427 packet_ok (buf, &remote_protocol_vcont); 2428 } 2429 2430 /* Resume the remote inferior by using a "vCont" packet. The thread 2431 to be resumed is PTID; STEP and SIGGNAL indicate whether the 2432 resumed thread should be single-stepped and/or signalled. If PTID's 2433 PID is -1, then all threads are resumed; the thread to be stepped and/or 2434 signalled is given in the global INFERIOR_PTID. This function returns 2435 non-zero iff it resumes the inferior. 2436 2437 This function issues a strict subset of all possible vCont commands at the 2438 moment. */ 2439 2440 static int 2441 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal) 2442 { 2443 struct remote_state *rs = get_remote_state (); 2444 int pid = PIDGET (ptid); 2445 char *buf = NULL, *outbuf; 2446 struct cleanup *old_cleanup; 2447 2448 buf = xmalloc (rs->remote_packet_size); 2449 old_cleanup = make_cleanup (xfree, buf); 2450 2451 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN) 2452 remote_vcont_probe (rs, buf); 2453 2454 if (remote_protocol_vcont.support == PACKET_DISABLE) 2455 { 2456 do_cleanups (old_cleanup); 2457 return 0; 2458 } 2459 2460 /* If we could generate a wider range of packets, we'd have to worry 2461 about overflowing BUF. Should there be a generic 2462 "multi-part-packet" packet? */ 2463 2464 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) 2465 { 2466 /* MAGIC_NULL_PTID means that we don't have any active threads, so we 2467 don't have any PID numbers the inferior will understand. Make sure 2468 to only send forms that do not specify a PID. */ 2469 if (step && siggnal != TARGET_SIGNAL_0) 2470 outbuf = xstrprintf ("vCont;S%02x", siggnal); 2471 else if (step) 2472 outbuf = xstrprintf ("vCont;s"); 2473 else if (siggnal != TARGET_SIGNAL_0) 2474 outbuf = xstrprintf ("vCont;C%02x", siggnal); 2475 else 2476 outbuf = xstrprintf ("vCont;c"); 2477 } 2478 else if (pid == -1) 2479 { 2480 /* Resume all threads, with preference for INFERIOR_PTID. */ 2481 if (step && siggnal != TARGET_SIGNAL_0) 2482 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal, 2483 PIDGET (inferior_ptid)); 2484 else if (step) 2485 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid)); 2486 else if (siggnal != TARGET_SIGNAL_0) 2487 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal, 2488 PIDGET (inferior_ptid)); 2489 else 2490 outbuf = xstrprintf ("vCont;c"); 2491 } 2492 else 2493 { 2494 /* Scheduler locking; resume only PTID. */ 2495 if (step && siggnal != TARGET_SIGNAL_0) 2496 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid); 2497 else if (step) 2498 outbuf = xstrprintf ("vCont;s:%x", pid); 2499 else if (siggnal != TARGET_SIGNAL_0) 2500 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid); 2501 else 2502 outbuf = xstrprintf ("vCont;c:%x", pid); 2503 } 2504 2505 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size); 2506 make_cleanup (xfree, outbuf); 2507 2508 putpkt (outbuf); 2509 2510 do_cleanups (old_cleanup); 2511 2512 return 1; 2513 } 2514 2515 /* Tell the remote machine to resume. */ 2516 2517 static enum target_signal last_sent_signal = TARGET_SIGNAL_0; 2518 2519 static int last_sent_step; 2520 2521 static void 2522 remote_resume (ptid_t ptid, int step, enum target_signal siggnal) 2523 { 2524 struct remote_state *rs = get_remote_state (); 2525 char *buf = alloca (rs->remote_packet_size); 2526 int pid = PIDGET (ptid); 2527 char *p; 2528 2529 last_sent_signal = siggnal; 2530 last_sent_step = step; 2531 2532 /* A hook for when we need to do something at the last moment before 2533 resumption. */ 2534 if (deprecated_target_resume_hook) 2535 (*deprecated_target_resume_hook) (); 2536 2537 /* The vCont packet doesn't need to specify threads via Hc. */ 2538 if (remote_vcont_resume (ptid, step, siggnal)) 2539 return; 2540 2541 /* All other supported resume packets do use Hc, so call set_thread. */ 2542 if (pid == -1) 2543 set_thread (0, 0); /* run any thread */ 2544 else 2545 set_thread (pid, 0); /* run this thread */ 2546 2547 if (siggnal != TARGET_SIGNAL_0) 2548 { 2549 buf[0] = step ? 'S' : 'C'; 2550 buf[1] = tohex (((int) siggnal >> 4) & 0xf); 2551 buf[2] = tohex (((int) siggnal) & 0xf); 2552 buf[3] = '\0'; 2553 } 2554 else 2555 strcpy (buf, step ? "s" : "c"); 2556 2557 putpkt (buf); 2558 } 2559 2560 /* Same as remote_resume, but with async support. */ 2561 static void 2562 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal) 2563 { 2564 remote_resume (ptid, step, siggnal); 2565 2566 /* We are about to start executing the inferior, let's register it 2567 with the event loop. NOTE: this is the one place where all the 2568 execution commands end up. We could alternatively do this in each 2569 of the execution commands in infcmd.c.*/ 2570 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here 2571 into infcmd.c in order to allow inferior function calls to work 2572 NOT asynchronously. */ 2573 if (target_can_async_p ()) 2574 target_async (inferior_event_handler, 0); 2575 /* Tell the world that the target is now executing. */ 2576 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set 2577 this? Instead, should the client of target just assume (for 2578 async targets) that the target is going to start executing? Is 2579 this information already found in the continuation block? */ 2580 if (target_is_async_p ()) 2581 target_executing = 1; 2582 } 2583 2584 2585 /* Set up the signal handler for SIGINT, while the target is 2586 executing, ovewriting the 'regular' SIGINT signal handler. */ 2587 static void 2588 initialize_sigint_signal_handler (void) 2589 { 2590 sigint_remote_token = 2591 create_async_signal_handler (async_remote_interrupt, NULL); 2592 signal (SIGINT, handle_remote_sigint); 2593 } 2594 2595 /* Signal handler for SIGINT, while the target is executing. */ 2596 static void 2597 handle_remote_sigint (int sig) 2598 { 2599 signal (sig, handle_remote_sigint_twice); 2600 sigint_remote_twice_token = 2601 create_async_signal_handler (async_remote_interrupt_twice, NULL); 2602 mark_async_signal_handler_wrapper (sigint_remote_token); 2603 } 2604 2605 /* Signal handler for SIGINT, installed after SIGINT has already been 2606 sent once. It will take effect the second time that the user sends 2607 a ^C. */ 2608 static void 2609 handle_remote_sigint_twice (int sig) 2610 { 2611 signal (sig, handle_sigint); 2612 sigint_remote_twice_token = 2613 create_async_signal_handler (inferior_event_handler_wrapper, NULL); 2614 mark_async_signal_handler_wrapper (sigint_remote_twice_token); 2615 } 2616 2617 /* Perform the real interruption of the target execution, in response 2618 to a ^C. */ 2619 static void 2620 async_remote_interrupt (gdb_client_data arg) 2621 { 2622 if (remote_debug) 2623 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n"); 2624 2625 target_stop (); 2626 } 2627 2628 /* Perform interrupt, if the first attempt did not succeed. Just give 2629 up on the target alltogether. */ 2630 void 2631 async_remote_interrupt_twice (gdb_client_data arg) 2632 { 2633 if (remote_debug) 2634 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n"); 2635 /* Do something only if the target was not killed by the previous 2636 cntl-C. */ 2637 if (target_executing) 2638 { 2639 interrupt_query (); 2640 signal (SIGINT, handle_remote_sigint); 2641 } 2642 } 2643 2644 /* Reinstall the usual SIGINT handlers, after the target has 2645 stopped. */ 2646 static void 2647 cleanup_sigint_signal_handler (void *dummy) 2648 { 2649 signal (SIGINT, handle_sigint); 2650 if (sigint_remote_twice_token) 2651 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token); 2652 if (sigint_remote_token) 2653 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token); 2654 } 2655 2656 /* Send ^C to target to halt it. Target will respond, and send us a 2657 packet. */ 2658 static void (*ofunc) (int); 2659 2660 /* The command line interface's stop routine. This function is installed 2661 as a signal handler for SIGINT. The first time a user requests a 2662 stop, we call remote_stop to send a break or ^C. If there is no 2663 response from the target (it didn't stop when the user requested it), 2664 we ask the user if he'd like to detach from the target. */ 2665 static void 2666 remote_interrupt (int signo) 2667 { 2668 /* If this doesn't work, try more severe steps. */ 2669 signal (signo, remote_interrupt_twice); 2670 2671 if (remote_debug) 2672 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n"); 2673 2674 target_stop (); 2675 } 2676 2677 /* The user typed ^C twice. */ 2678 2679 static void 2680 remote_interrupt_twice (int signo) 2681 { 2682 signal (signo, ofunc); 2683 interrupt_query (); 2684 signal (signo, remote_interrupt); 2685 } 2686 2687 /* This is the generic stop called via the target vector. When a target 2688 interrupt is requested, either by the command line or the GUI, we 2689 will eventually end up here. */ 2690 static void 2691 remote_stop (void) 2692 { 2693 /* Send a break or a ^C, depending on user preference. */ 2694 if (remote_debug) 2695 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n"); 2696 2697 if (remote_break) 2698 serial_send_break (remote_desc); 2699 else 2700 serial_write (remote_desc, "\003", 1); 2701 } 2702 2703 /* Ask the user what to do when an interrupt is received. */ 2704 2705 static void 2706 interrupt_query (void) 2707 { 2708 target_terminal_ours (); 2709 2710 if (query ("Interrupted while waiting for the program.\n\ 2711 Give up (and stop debugging it)? ")) 2712 { 2713 target_mourn_inferior (); 2714 throw_exception (RETURN_QUIT); 2715 } 2716 2717 target_terminal_inferior (); 2718 } 2719 2720 /* Enable/disable target terminal ownership. Most targets can use 2721 terminal groups to control terminal ownership. Remote targets are 2722 different in that explicit transfer of ownership to/from GDB/target 2723 is required. */ 2724 2725 static void 2726 remote_async_terminal_inferior (void) 2727 { 2728 /* FIXME: cagney/1999-09-27: Shouldn't need to test for 2729 sync_execution here. This function should only be called when 2730 GDB is resuming the inferior in the forground. A background 2731 resume (``run&'') should leave GDB in control of the terminal and 2732 consequently should not call this code. */ 2733 if (!sync_execution) 2734 return; 2735 /* FIXME: cagney/1999-09-27: Closely related to the above. Make 2736 calls target_terminal_*() idenpotent. The event-loop GDB talking 2737 to an asynchronous target with a synchronous command calls this 2738 function from both event-top.c and infrun.c/infcmd.c. Once GDB 2739 stops trying to transfer the terminal to the target when it 2740 shouldn't this guard can go away. */ 2741 if (!remote_async_terminal_ours_p) 2742 return; 2743 delete_file_handler (input_fd); 2744 remote_async_terminal_ours_p = 0; 2745 initialize_sigint_signal_handler (); 2746 /* NOTE: At this point we could also register our selves as the 2747 recipient of all input. Any characters typed could then be 2748 passed on down to the target. */ 2749 } 2750 2751 static void 2752 remote_async_terminal_ours (void) 2753 { 2754 /* See FIXME in remote_async_terminal_inferior. */ 2755 if (!sync_execution) 2756 return; 2757 /* See FIXME in remote_async_terminal_inferior. */ 2758 if (remote_async_terminal_ours_p) 2759 return; 2760 cleanup_sigint_signal_handler (NULL); 2761 add_file_handler (input_fd, stdin_event_handler, 0); 2762 remote_async_terminal_ours_p = 1; 2763 } 2764 2765 /* If nonzero, ignore the next kill. */ 2766 2767 int kill_kludge; 2768 2769 void 2770 remote_console_output (char *msg) 2771 { 2772 char *p; 2773 2774 for (p = msg; p[0] && p[1]; p += 2) 2775 { 2776 char tb[2]; 2777 char c = fromhex (p[0]) * 16 + fromhex (p[1]); 2778 tb[0] = c; 2779 tb[1] = 0; 2780 fputs_unfiltered (tb, gdb_stdtarg); 2781 } 2782 gdb_flush (gdb_stdtarg); 2783 } 2784 2785 /* Wait until the remote machine stops, then return, 2786 storing status in STATUS just as `wait' would. 2787 Returns "pid", which in the case of a multi-threaded 2788 remote OS, is the thread-id. */ 2789 2790 static ptid_t 2791 remote_wait (ptid_t ptid, struct target_waitstatus *status) 2792 { 2793 struct remote_state *rs = get_remote_state (); 2794 unsigned char *buf = alloca (rs->remote_packet_size); 2795 ULONGEST thread_num = -1; 2796 ULONGEST addr; 2797 2798 status->kind = TARGET_WAITKIND_EXITED; 2799 status->value.integer = 0; 2800 2801 while (1) 2802 { 2803 unsigned char *p; 2804 2805 ofunc = signal (SIGINT, remote_interrupt); 2806 getpkt (buf, (rs->remote_packet_size), 1); 2807 signal (SIGINT, ofunc); 2808 2809 /* This is a hook for when we need to do something (perhaps the 2810 collection of trace data) every time the target stops. */ 2811 if (deprecated_target_wait_loop_hook) 2812 (*deprecated_target_wait_loop_hook) (); 2813 2814 remote_stopped_by_watchpoint_p = 0; 2815 2816 switch (buf[0]) 2817 { 2818 case 'E': /* Error of some sort */ 2819 warning ("Remote failure reply: %s", buf); 2820 continue; 2821 case 'F': /* File-I/O request */ 2822 remote_fileio_request (buf); 2823 continue; 2824 case 'T': /* Status with PC, SP, FP, ... */ 2825 { 2826 int i; 2827 char regs[MAX_REGISTER_SIZE]; 2828 2829 /* Expedited reply, containing Signal, {regno, reg} repeat */ 2830 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where 2831 ss = signal number 2832 n... = register number 2833 r... = register contents 2834 */ 2835 p = &buf[3]; /* after Txx */ 2836 2837 while (*p) 2838 { 2839 unsigned char *p1; 2840 char *p_temp; 2841 int fieldsize; 2842 LONGEST pnum = 0; 2843 2844 /* If the packet contains a register number save it in pnum 2845 and set p1 to point to the character following it. 2846 Otherwise p1 points to p. */ 2847 2848 /* If this packet is an awatch packet, don't parse the 'a' 2849 as a register number. */ 2850 2851 if (strncmp (p, "awatch", strlen("awatch")) != 0) 2852 { 2853 /* Read the ``P'' register number. */ 2854 pnum = strtol (p, &p_temp, 16); 2855 p1 = (unsigned char *) p_temp; 2856 } 2857 else 2858 p1 = p; 2859 2860 if (p1 == p) /* No register number present here */ 2861 { 2862 p1 = (unsigned char *) strchr (p, ':'); 2863 if (p1 == NULL) 2864 warning ("Malformed packet(a) (missing colon): %s\n\ 2865 Packet: '%s'\n", 2866 p, buf); 2867 if (strncmp (p, "thread", p1 - p) == 0) 2868 { 2869 p_temp = unpack_varlen_hex (++p1, &thread_num); 2870 record_currthread (thread_num); 2871 p = (unsigned char *) p_temp; 2872 } 2873 else if ((strncmp (p, "watch", p1 - p) == 0) 2874 || (strncmp (p, "rwatch", p1 - p) == 0) 2875 || (strncmp (p, "awatch", p1 - p) == 0)) 2876 { 2877 remote_stopped_by_watchpoint_p = 1; 2878 p = unpack_varlen_hex (++p1, &addr); 2879 remote_watch_data_address = (CORE_ADDR)addr; 2880 } 2881 else 2882 { 2883 /* Silently skip unknown optional info. */ 2884 p_temp = strchr (p1 + 1, ';'); 2885 if (p_temp) 2886 p = (unsigned char *) p_temp; 2887 } 2888 } 2889 else 2890 { 2891 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum); 2892 p = p1; 2893 2894 if (*p++ != ':') 2895 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n", 2896 p, buf); 2897 2898 if (reg == NULL) 2899 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n", 2900 phex_nz (pnum, 0), p, buf); 2901 2902 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum)); 2903 p += 2 * fieldsize; 2904 if (fieldsize < register_size (current_gdbarch, reg->regnum)) 2905 warning ("Remote reply is too short: %s", buf); 2906 regcache_raw_supply (current_regcache, reg->regnum, regs); 2907 } 2908 2909 if (*p++ != ';') 2910 error ("Remote register badly formatted: %s\nhere: %s", buf, p); 2911 } 2912 } 2913 /* fall through */ 2914 case 'S': /* Old style status, just signal only */ 2915 status->kind = TARGET_WAITKIND_STOPPED; 2916 status->value.sig = (enum target_signal) 2917 (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); 2918 2919 if (buf[3] == 'p') 2920 { 2921 thread_num = strtol ((const char *) &buf[4], NULL, 16); 2922 record_currthread (thread_num); 2923 } 2924 goto got_status; 2925 case 'W': /* Target exited */ 2926 { 2927 /* The remote process exited. */ 2928 status->kind = TARGET_WAITKIND_EXITED; 2929 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]); 2930 goto got_status; 2931 } 2932 case 'X': 2933 status->kind = TARGET_WAITKIND_SIGNALLED; 2934 status->value.sig = (enum target_signal) 2935 (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); 2936 kill_kludge = 1; 2937 2938 goto got_status; 2939 case 'O': /* Console output */ 2940 remote_console_output (buf + 1); 2941 continue; 2942 case '\0': 2943 if (last_sent_signal != TARGET_SIGNAL_0) 2944 { 2945 /* Zero length reply means that we tried 'S' or 'C' and 2946 the remote system doesn't support it. */ 2947 target_terminal_ours_for_output (); 2948 printf_filtered 2949 ("Can't send signals to this remote system. %s not sent.\n", 2950 target_signal_to_name (last_sent_signal)); 2951 last_sent_signal = TARGET_SIGNAL_0; 2952 target_terminal_inferior (); 2953 2954 strcpy ((char *) buf, last_sent_step ? "s" : "c"); 2955 putpkt ((char *) buf); 2956 continue; 2957 } 2958 /* else fallthrough */ 2959 default: 2960 warning ("Invalid remote reply: %s", buf); 2961 continue; 2962 } 2963 } 2964 got_status: 2965 if (thread_num != -1) 2966 { 2967 return pid_to_ptid (thread_num); 2968 } 2969 return inferior_ptid; 2970 } 2971 2972 /* Async version of remote_wait. */ 2973 static ptid_t 2974 remote_async_wait (ptid_t ptid, struct target_waitstatus *status) 2975 { 2976 struct remote_state *rs = get_remote_state (); 2977 unsigned char *buf = alloca (rs->remote_packet_size); 2978 ULONGEST thread_num = -1; 2979 ULONGEST addr; 2980 2981 status->kind = TARGET_WAITKIND_EXITED; 2982 status->value.integer = 0; 2983 2984 remote_stopped_by_watchpoint_p = 0; 2985 2986 while (1) 2987 { 2988 unsigned char *p; 2989 2990 if (!target_is_async_p ()) 2991 ofunc = signal (SIGINT, remote_interrupt); 2992 /* FIXME: cagney/1999-09-27: If we're in async mode we should 2993 _never_ wait for ever -> test on target_is_async_p(). 2994 However, before we do that we need to ensure that the caller 2995 knows how to take the target into/out of async mode. */ 2996 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p); 2997 if (!target_is_async_p ()) 2998 signal (SIGINT, ofunc); 2999 3000 /* This is a hook for when we need to do something (perhaps the 3001 collection of trace data) every time the target stops. */ 3002 if (deprecated_target_wait_loop_hook) 3003 (*deprecated_target_wait_loop_hook) (); 3004 3005 switch (buf[0]) 3006 { 3007 case 'E': /* Error of some sort */ 3008 warning ("Remote failure reply: %s", buf); 3009 continue; 3010 case 'F': /* File-I/O request */ 3011 remote_fileio_request (buf); 3012 continue; 3013 case 'T': /* Status with PC, SP, FP, ... */ 3014 { 3015 int i; 3016 char regs[MAX_REGISTER_SIZE]; 3017 3018 /* Expedited reply, containing Signal, {regno, reg} repeat */ 3019 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where 3020 ss = signal number 3021 n... = register number 3022 r... = register contents 3023 */ 3024 p = &buf[3]; /* after Txx */ 3025 3026 while (*p) 3027 { 3028 unsigned char *p1; 3029 char *p_temp; 3030 int fieldsize; 3031 long pnum = 0; 3032 3033 /* If the packet contains a register number, save it in pnum 3034 and set p1 to point to the character following it. 3035 Otherwise p1 points to p. */ 3036 3037 /* If this packet is an awatch packet, don't parse the 'a' 3038 as a register number. */ 3039 3040 if (!strncmp (p, "awatch", strlen ("awatch")) != 0) 3041 { 3042 /* Read the register number. */ 3043 pnum = strtol (p, &p_temp, 16); 3044 p1 = (unsigned char *) p_temp; 3045 } 3046 else 3047 p1 = p; 3048 3049 if (p1 == p) /* No register number present here */ 3050 { 3051 p1 = (unsigned char *) strchr (p, ':'); 3052 if (p1 == NULL) 3053 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n", 3054 p, buf); 3055 if (strncmp (p, "thread", p1 - p) == 0) 3056 { 3057 p_temp = unpack_varlen_hex (++p1, &thread_num); 3058 record_currthread (thread_num); 3059 p = (unsigned char *) p_temp; 3060 } 3061 else if ((strncmp (p, "watch", p1 - p) == 0) 3062 || (strncmp (p, "rwatch", p1 - p) == 0) 3063 || (strncmp (p, "awatch", p1 - p) == 0)) 3064 { 3065 remote_stopped_by_watchpoint_p = 1; 3066 p = unpack_varlen_hex (++p1, &addr); 3067 remote_watch_data_address = (CORE_ADDR)addr; 3068 } 3069 else 3070 { 3071 /* Silently skip unknown optional info. */ 3072 p_temp = (unsigned char *) strchr (p1 + 1, ';'); 3073 if (p_temp) 3074 p = p_temp; 3075 } 3076 } 3077 3078 else 3079 { 3080 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum); 3081 p = p1; 3082 if (*p++ != ':') 3083 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n", 3084 p, buf); 3085 3086 if (reg == NULL) 3087 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n", 3088 pnum, p, buf); 3089 3090 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum)); 3091 p += 2 * fieldsize; 3092 if (fieldsize < register_size (current_gdbarch, reg->regnum)) 3093 warning ("Remote reply is too short: %s", buf); 3094 regcache_raw_supply (current_regcache, reg->regnum, regs); 3095 } 3096 3097 if (*p++ != ';') 3098 error ("Remote register badly formatted: %s\nhere: %s", 3099 buf, p); 3100 } 3101 } 3102 /* fall through */ 3103 case 'S': /* Old style status, just signal only */ 3104 status->kind = TARGET_WAITKIND_STOPPED; 3105 status->value.sig = (enum target_signal) 3106 (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); 3107 3108 if (buf[3] == 'p') 3109 { 3110 thread_num = strtol ((const char *) &buf[4], NULL, 16); 3111 record_currthread (thread_num); 3112 } 3113 goto got_status; 3114 case 'W': /* Target exited */ 3115 { 3116 /* The remote process exited. */ 3117 status->kind = TARGET_WAITKIND_EXITED; 3118 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]); 3119 goto got_status; 3120 } 3121 case 'X': 3122 status->kind = TARGET_WAITKIND_SIGNALLED; 3123 status->value.sig = (enum target_signal) 3124 (((fromhex (buf[1])) << 4) + (fromhex (buf[2]))); 3125 kill_kludge = 1; 3126 3127 goto got_status; 3128 case 'O': /* Console output */ 3129 remote_console_output (buf + 1); 3130 /* Return immediately to the event loop. The event loop will 3131 still be waiting on the inferior afterwards. */ 3132 status->kind = TARGET_WAITKIND_IGNORE; 3133 goto got_status; 3134 case '\0': 3135 if (last_sent_signal != TARGET_SIGNAL_0) 3136 { 3137 /* Zero length reply means that we tried 'S' or 'C' and 3138 the remote system doesn't support it. */ 3139 target_terminal_ours_for_output (); 3140 printf_filtered 3141 ("Can't send signals to this remote system. %s not sent.\n", 3142 target_signal_to_name (last_sent_signal)); 3143 last_sent_signal = TARGET_SIGNAL_0; 3144 target_terminal_inferior (); 3145 3146 strcpy ((char *) buf, last_sent_step ? "s" : "c"); 3147 putpkt ((char *) buf); 3148 continue; 3149 } 3150 /* else fallthrough */ 3151 default: 3152 warning ("Invalid remote reply: %s", buf); 3153 continue; 3154 } 3155 } 3156 got_status: 3157 if (thread_num != -1) 3158 { 3159 return pid_to_ptid (thread_num); 3160 } 3161 return inferior_ptid; 3162 } 3163 3164 /* Number of bytes of registers this stub implements. */ 3165 3166 static int register_bytes_found; 3167 3168 /* Read the remote registers into the block REGS. */ 3169 /* Currently we just read all the registers, so we don't use regnum. */ 3170 3171 static int 3172 fetch_register_using_p (int regnum) 3173 { 3174 struct remote_state *rs = get_remote_state (); 3175 char *buf = alloca (rs->remote_packet_size), *p; 3176 char regp[MAX_REGISTER_SIZE]; 3177 int i; 3178 3179 p = buf; 3180 *p++ = 'p'; 3181 p += hexnumstr (p, regnum); 3182 *p++ = '\0'; 3183 remote_send (buf, rs->remote_packet_size); 3184 if (buf[0] != 0 && buf[0] != 'E') { 3185 p = buf; 3186 i = 0; 3187 while (p[0] != 0) { 3188 if (p[1] == 0) { 3189 error("fetch_register_using_p: early buf termination"); 3190 return 0; 3191 } 3192 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]); 3193 p += 2; 3194 } 3195 regcache_raw_supply (current_regcache, regnum, regp); 3196 return 1; 3197 } 3198 3199 return 0; 3200 } 3201 3202 static void 3203 remote_fetch_registers (int regnum) 3204 { 3205 struct remote_state *rs = get_remote_state (); 3206 char *buf = alloca (rs->remote_packet_size); 3207 int i; 3208 char *p; 3209 char *regs = alloca (rs->sizeof_g_packet); 3210 3211 set_thread (PIDGET (inferior_ptid), 1); 3212 3213 if (regnum >= 0) 3214 { 3215 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum); 3216 gdb_assert (reg != NULL); 3217 if (!reg->in_g_packet) 3218 internal_error (__FILE__, __LINE__, 3219 "Attempt to fetch a non G-packet register when this " 3220 "remote.c does not support the p-packet."); 3221 } 3222 switch (remote_protocol_p.support) 3223 { 3224 case PACKET_DISABLE: 3225 break; 3226 case PACKET_ENABLE: 3227 if (fetch_register_using_p (regnum)) 3228 return; 3229 else 3230 error ("Protocol error: p packet not recognized by stub"); 3231 case PACKET_SUPPORT_UNKNOWN: 3232 if (fetch_register_using_p (regnum)) 3233 { 3234 /* The stub recognized the 'p' packet. Remember this. */ 3235 remote_protocol_p.support = PACKET_ENABLE; 3236 return; 3237 } 3238 else 3239 { 3240 /* The stub does not support the 'P' packet. Use 'G' 3241 instead, and don't try using 'P' in the future (it 3242 will just waste our time). */ 3243 remote_protocol_p.support = PACKET_DISABLE; 3244 break; 3245 } 3246 } 3247 3248 sprintf (buf, "g"); 3249 remote_send (buf, (rs->remote_packet_size)); 3250 3251 /* Save the size of the packet sent to us by the target. Its used 3252 as a heuristic when determining the max size of packets that the 3253 target can safely receive. */ 3254 if ((rs->actual_register_packet_size) == 0) 3255 (rs->actual_register_packet_size) = strlen (buf); 3256 3257 /* Unimplemented registers read as all bits zero. */ 3258 memset (regs, 0, rs->sizeof_g_packet); 3259 3260 /* We can get out of synch in various cases. If the first character 3261 in the buffer is not a hex character, assume that has happened 3262 and try to fetch another packet to read. */ 3263 while ((buf[0] < '0' || buf[0] > '9') 3264 && (buf[0] < 'a' || buf[0] > 'f') 3265 && buf[0] != 'x') /* New: unavailable register value */ 3266 { 3267 if (remote_debug) 3268 fprintf_unfiltered (gdb_stdlog, 3269 "Bad register packet; fetching a new packet\n"); 3270 getpkt (buf, (rs->remote_packet_size), 0); 3271 } 3272 3273 /* Reply describes registers byte by byte, each byte encoded as two 3274 hex characters. Suck them all up, then supply them to the 3275 register cacheing/storage mechanism. */ 3276 3277 p = buf; 3278 for (i = 0; i < rs->sizeof_g_packet; i++) 3279 { 3280 if (p[0] == 0) 3281 break; 3282 if (p[1] == 0) 3283 { 3284 warning ("Remote reply is of odd length: %s", buf); 3285 /* Don't change register_bytes_found in this case, and don't 3286 print a second warning. */ 3287 goto supply_them; 3288 } 3289 if (p[0] == 'x' && p[1] == 'x') 3290 regs[i] = 0; /* 'x' */ 3291 else 3292 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]); 3293 p += 2; 3294 } 3295 3296 if (i != register_bytes_found) 3297 { 3298 register_bytes_found = i; 3299 if (REGISTER_BYTES_OK_P () 3300 && !REGISTER_BYTES_OK (i)) 3301 warning ("Remote reply is too short: %s", buf); 3302 } 3303 3304 supply_them: 3305 { 3306 int i; 3307 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) 3308 { 3309 struct packet_reg *r = &rs->regs[i]; 3310 if (r->in_g_packet) 3311 { 3312 if (r->offset * 2 >= strlen (buf)) 3313 /* A short packet that didn't include the register's 3314 value, this implies that the register is zero (and 3315 not that the register is unavailable). Supply that 3316 zero value. */ 3317 regcache_raw_supply (current_regcache, r->regnum, NULL); 3318 else if (buf[r->offset * 2] == 'x') 3319 { 3320 gdb_assert (r->offset * 2 < strlen (buf)); 3321 /* The register isn't available, mark it as such (at 3322 the same time setting the value to zero). */ 3323 regcache_raw_supply (current_regcache, r->regnum, NULL); 3324 set_register_cached (i, -1); 3325 } 3326 else 3327 regcache_raw_supply (current_regcache, r->regnum, 3328 regs + r->offset); 3329 } 3330 } 3331 } 3332 } 3333 3334 /* Prepare to store registers. Since we may send them all (using a 3335 'G' request), we have to read out the ones we don't want to change 3336 first. */ 3337 3338 static void 3339 remote_prepare_to_store (void) 3340 { 3341 struct remote_state *rs = get_remote_state (); 3342 int i; 3343 char buf[MAX_REGISTER_SIZE]; 3344 3345 /* Make sure the entire registers array is valid. */ 3346 switch (remote_protocol_P.support) 3347 { 3348 case PACKET_DISABLE: 3349 case PACKET_SUPPORT_UNKNOWN: 3350 /* Make sure all the necessary registers are cached. */ 3351 for (i = 0; i < NUM_REGS; i++) 3352 if (rs->regs[i].in_g_packet) 3353 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf); 3354 break; 3355 case PACKET_ENABLE: 3356 break; 3357 } 3358 } 3359 3360 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF 3361 packet was not recognized. */ 3362 3363 static int 3364 store_register_using_P (int regnum) 3365 { 3366 struct remote_state *rs = get_remote_state (); 3367 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum); 3368 /* Try storing a single register. */ 3369 char *buf = alloca (rs->remote_packet_size); 3370 char regp[MAX_REGISTER_SIZE]; 3371 char *p; 3372 int i; 3373 3374 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0)); 3375 p = buf + strlen (buf); 3376 regcache_raw_collect (current_regcache, reg->regnum, regp); 3377 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum)); 3378 remote_send (buf, rs->remote_packet_size); 3379 3380 return buf[0] != '\0'; 3381 } 3382 3383 3384 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents 3385 of the register cache buffer. FIXME: ignores errors. */ 3386 3387 static void 3388 remote_store_registers (int regnum) 3389 { 3390 struct remote_state *rs = get_remote_state (); 3391 char *buf; 3392 char *regs; 3393 int i; 3394 char *p; 3395 3396 set_thread (PIDGET (inferior_ptid), 1); 3397 3398 if (regnum >= 0) 3399 { 3400 switch (remote_protocol_P.support) 3401 { 3402 case PACKET_DISABLE: 3403 break; 3404 case PACKET_ENABLE: 3405 if (store_register_using_P (regnum)) 3406 return; 3407 else 3408 error ("Protocol error: P packet not recognized by stub"); 3409 case PACKET_SUPPORT_UNKNOWN: 3410 if (store_register_using_P (regnum)) 3411 { 3412 /* The stub recognized the 'P' packet. Remember this. */ 3413 remote_protocol_P.support = PACKET_ENABLE; 3414 return; 3415 } 3416 else 3417 { 3418 /* The stub does not support the 'P' packet. Use 'G' 3419 instead, and don't try using 'P' in the future (it 3420 will just waste our time). */ 3421 remote_protocol_P.support = PACKET_DISABLE; 3422 break; 3423 } 3424 } 3425 } 3426 3427 /* Extract all the registers in the regcache copying them into a 3428 local buffer. */ 3429 { 3430 int i; 3431 regs = alloca (rs->sizeof_g_packet); 3432 memset (regs, 0, rs->sizeof_g_packet); 3433 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) 3434 { 3435 struct packet_reg *r = &rs->regs[i]; 3436 if (r->in_g_packet) 3437 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset); 3438 } 3439 } 3440 3441 /* Command describes registers byte by byte, 3442 each byte encoded as two hex characters. */ 3443 buf = alloca (rs->remote_packet_size); 3444 p = buf; 3445 *p++ = 'G'; 3446 /* remote_prepare_to_store insures that register_bytes_found gets set. */ 3447 bin2hex (regs, p, register_bytes_found); 3448 remote_send (buf, (rs->remote_packet_size)); 3449 } 3450 3451 3452 /* Return the number of hex digits in num. */ 3453 3454 static int 3455 hexnumlen (ULONGEST num) 3456 { 3457 int i; 3458 3459 for (i = 0; num != 0; i++) 3460 num >>= 4; 3461 3462 return max (i, 1); 3463 } 3464 3465 /* Set BUF to the minimum number of hex digits representing NUM. */ 3466 3467 static int 3468 hexnumstr (char *buf, ULONGEST num) 3469 { 3470 int len = hexnumlen (num); 3471 return hexnumnstr (buf, num, len); 3472 } 3473 3474 3475 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */ 3476 3477 static int 3478 hexnumnstr (char *buf, ULONGEST num, int width) 3479 { 3480 int i; 3481 3482 buf[width] = '\0'; 3483 3484 for (i = width - 1; i >= 0; i--) 3485 { 3486 buf[i] = "0123456789abcdef"[(num & 0xf)]; 3487 num >>= 4; 3488 } 3489 3490 return width; 3491 } 3492 3493 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */ 3494 3495 static CORE_ADDR 3496 remote_address_masked (CORE_ADDR addr) 3497 { 3498 if (remote_address_size > 0 3499 && remote_address_size < (sizeof (ULONGEST) * 8)) 3500 { 3501 /* Only create a mask when that mask can safely be constructed 3502 in a ULONGEST variable. */ 3503 ULONGEST mask = 1; 3504 mask = (mask << remote_address_size) - 1; 3505 addr &= mask; 3506 } 3507 return addr; 3508 } 3509 3510 /* Determine whether the remote target supports binary downloading. 3511 This is accomplished by sending a no-op memory write of zero length 3512 to the target at the specified address. It does not suffice to send 3513 the whole packet, since many stubs strip the eighth bit and subsequently 3514 compute a wrong checksum, which causes real havoc with remote_write_bytes. 3515 3516 NOTE: This can still lose if the serial line is not eight-bit 3517 clean. In cases like this, the user should clear "remote 3518 X-packet". */ 3519 3520 static void 3521 check_binary_download (CORE_ADDR addr) 3522 { 3523 struct remote_state *rs = get_remote_state (); 3524 switch (remote_protocol_binary_download.support) 3525 { 3526 case PACKET_DISABLE: 3527 break; 3528 case PACKET_ENABLE: 3529 break; 3530 case PACKET_SUPPORT_UNKNOWN: 3531 { 3532 char *buf = alloca (rs->remote_packet_size); 3533 char *p; 3534 3535 p = buf; 3536 *p++ = 'X'; 3537 p += hexnumstr (p, (ULONGEST) addr); 3538 *p++ = ','; 3539 p += hexnumstr (p, (ULONGEST) 0); 3540 *p++ = ':'; 3541 *p = '\0'; 3542 3543 putpkt_binary (buf, (int) (p - buf)); 3544 getpkt (buf, (rs->remote_packet_size), 0); 3545 3546 if (buf[0] == '\0') 3547 { 3548 if (remote_debug) 3549 fprintf_unfiltered (gdb_stdlog, 3550 "binary downloading NOT suppported by target\n"); 3551 remote_protocol_binary_download.support = PACKET_DISABLE; 3552 } 3553 else 3554 { 3555 if (remote_debug) 3556 fprintf_unfiltered (gdb_stdlog, 3557 "binary downloading suppported by target\n"); 3558 remote_protocol_binary_download.support = PACKET_ENABLE; 3559 } 3560 break; 3561 } 3562 } 3563 } 3564 3565 /* Write memory data directly to the remote machine. 3566 This does not inform the data cache; the data cache uses this. 3567 MEMADDR is the address in the remote memory space. 3568 MYADDR is the address of the buffer in our space. 3569 LEN is the number of bytes. 3570 3571 Returns number of bytes transferred, or 0 (setting errno) for 3572 error. Only transfer a single packet. */ 3573 3574 int 3575 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len) 3576 { 3577 unsigned char *buf; 3578 unsigned char *p; 3579 unsigned char *plen; 3580 long sizeof_buf; 3581 int plenlen; 3582 int todo; 3583 int nr_bytes; 3584 int payload_size; 3585 unsigned char *payload_start; 3586 3587 /* Verify that the target can support a binary download. */ 3588 check_binary_download (memaddr); 3589 3590 /* Compute the size, and then allocate space for the largest 3591 possible packet. Include space for an extra trailing NUL. */ 3592 sizeof_buf = get_memory_write_packet_size () + 1; 3593 buf = alloca (sizeof_buf); 3594 3595 /* Compute the size of the actual payload by subtracting out the 3596 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */ 3597 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN") 3598 + hexnumlen (memaddr) 3599 + hexnumlen (len))); 3600 3601 /* Construct the packet header: "[MX]<memaddr>,<len>:". */ 3602 3603 /* Append "[XM]". Compute a best guess of the number of bytes 3604 actually transfered. */ 3605 p = buf; 3606 switch (remote_protocol_binary_download.support) 3607 { 3608 case PACKET_ENABLE: 3609 *p++ = 'X'; 3610 /* Best guess at number of bytes that will fit. */ 3611 todo = min (len, payload_size); 3612 break; 3613 case PACKET_DISABLE: 3614 *p++ = 'M'; 3615 /* num bytes that will fit */ 3616 todo = min (len, payload_size / 2); 3617 break; 3618 case PACKET_SUPPORT_UNKNOWN: 3619 internal_error (__FILE__, __LINE__, 3620 "remote_write_bytes: bad internal state"); 3621 default: 3622 internal_error (__FILE__, __LINE__, "bad switch"); 3623 } 3624 3625 /* Append "<memaddr>". */ 3626 memaddr = remote_address_masked (memaddr); 3627 p += hexnumstr (p, (ULONGEST) memaddr); 3628 3629 /* Append ",". */ 3630 *p++ = ','; 3631 3632 /* Append <len>. Retain the location/size of <len>. It may need to 3633 be adjusted once the packet body has been created. */ 3634 plen = p; 3635 plenlen = hexnumstr (p, (ULONGEST) todo); 3636 p += plenlen; 3637 3638 /* Append ":". */ 3639 *p++ = ':'; 3640 *p = '\0'; 3641 3642 /* Append the packet body. */ 3643 payload_start = p; 3644 switch (remote_protocol_binary_download.support) 3645 { 3646 case PACKET_ENABLE: 3647 /* Binary mode. Send target system values byte by byte, in 3648 increasing byte addresses. Only escape certain critical 3649 characters. */ 3650 for (nr_bytes = 0; 3651 (nr_bytes < todo) && (p - payload_start) < payload_size; 3652 nr_bytes++) 3653 { 3654 switch (myaddr[nr_bytes] & 0xff) 3655 { 3656 case '$': 3657 case '#': 3658 case 0x7d: 3659 /* These must be escaped */ 3660 *p++ = 0x7d; 3661 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20; 3662 break; 3663 default: 3664 *p++ = myaddr[nr_bytes] & 0xff; 3665 break; 3666 } 3667 } 3668 if (nr_bytes < todo) 3669 { 3670 /* Escape chars have filled up the buffer prematurely, 3671 and we have actually sent fewer bytes than planned. 3672 Fix-up the length field of the packet. Use the same 3673 number of characters as before. */ 3674 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen); 3675 *plen = ':'; /* overwrite \0 from hexnumnstr() */ 3676 } 3677 break; 3678 case PACKET_DISABLE: 3679 /* Normal mode: Send target system values byte by byte, in 3680 increasing byte addresses. Each byte is encoded as a two hex 3681 value. */ 3682 nr_bytes = bin2hex (myaddr, p, todo); 3683 p += 2 * nr_bytes; 3684 break; 3685 case PACKET_SUPPORT_UNKNOWN: 3686 internal_error (__FILE__, __LINE__, 3687 "remote_write_bytes: bad internal state"); 3688 default: 3689 internal_error (__FILE__, __LINE__, "bad switch"); 3690 } 3691 3692 putpkt_binary (buf, (int) (p - buf)); 3693 getpkt (buf, sizeof_buf, 0); 3694 3695 if (buf[0] == 'E') 3696 { 3697 /* There is no correspondance between what the remote protocol 3698 uses for errors and errno codes. We would like a cleaner way 3699 of representing errors (big enough to include errno codes, 3700 bfd_error codes, and others). But for now just return EIO. */ 3701 errno = EIO; 3702 return 0; 3703 } 3704 3705 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer 3706 bytes than we'd planned. */ 3707 return nr_bytes; 3708 } 3709 3710 /* Read memory data directly from the remote machine. 3711 This does not use the data cache; the data cache uses this. 3712 MEMADDR is the address in the remote memory space. 3713 MYADDR is the address of the buffer in our space. 3714 LEN is the number of bytes. 3715 3716 Returns number of bytes transferred, or 0 for error. */ 3717 3718 /* NOTE: cagney/1999-10-18: This function (and its siblings in other 3719 remote targets) shouldn't attempt to read the entire buffer. 3720 Instead it should read a single packet worth of data and then 3721 return the byte size of that packet to the caller. The caller (its 3722 caller and its callers caller ;-) already contains code for 3723 handling partial reads. */ 3724 3725 int 3726 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len) 3727 { 3728 char *buf; 3729 int max_buf_size; /* Max size of packet output buffer */ 3730 long sizeof_buf; 3731 int origlen; 3732 3733 /* Create a buffer big enough for this packet. */ 3734 max_buf_size = get_memory_read_packet_size (); 3735 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */ 3736 buf = alloca (sizeof_buf); 3737 3738 origlen = len; 3739 while (len > 0) 3740 { 3741 char *p; 3742 int todo; 3743 int i; 3744 3745 todo = min (len, max_buf_size / 2); /* num bytes that will fit */ 3746 3747 /* construct "m"<memaddr>","<len>" */ 3748 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */ 3749 memaddr = remote_address_masked (memaddr); 3750 p = buf; 3751 *p++ = 'm'; 3752 p += hexnumstr (p, (ULONGEST) memaddr); 3753 *p++ = ','; 3754 p += hexnumstr (p, (ULONGEST) todo); 3755 *p = '\0'; 3756 3757 putpkt (buf); 3758 getpkt (buf, sizeof_buf, 0); 3759 3760 if (buf[0] == 'E' 3761 && isxdigit (buf[1]) && isxdigit (buf[2]) 3762 && buf[3] == '\0') 3763 { 3764 /* There is no correspondance between what the remote protocol uses 3765 for errors and errno codes. We would like a cleaner way of 3766 representing errors (big enough to include errno codes, bfd_error 3767 codes, and others). But for now just return EIO. */ 3768 errno = EIO; 3769 return 0; 3770 } 3771 3772 /* Reply describes memory byte by byte, 3773 each byte encoded as two hex characters. */ 3774 3775 p = buf; 3776 if ((i = hex2bin (p, myaddr, todo)) < todo) 3777 { 3778 /* Reply is short. This means that we were able to read 3779 only part of what we wanted to. */ 3780 return i + (origlen - len); 3781 } 3782 myaddr += todo; 3783 memaddr += todo; 3784 len -= todo; 3785 } 3786 return origlen; 3787 } 3788 3789 /* Read or write LEN bytes from inferior memory at MEMADDR, 3790 transferring to or from debugger address BUFFER. Write to inferior if 3791 SHOULD_WRITE is nonzero. Returns length of data written or read; 0 3792 for error. TARGET is unused. */ 3793 3794 static int 3795 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len, 3796 int should_write, struct mem_attrib *attrib, 3797 struct target_ops *target) 3798 { 3799 CORE_ADDR targ_addr; 3800 int targ_len; 3801 int res; 3802 3803 /* Should this be the selected frame? */ 3804 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache, 3805 mem_addr, mem_len, 3806 &targ_addr, &targ_len); 3807 if (targ_len <= 0) 3808 return 0; 3809 3810 if (should_write) 3811 res = remote_write_bytes (targ_addr, buffer, targ_len); 3812 else 3813 res = remote_read_bytes (targ_addr, buffer, targ_len); 3814 3815 return res; 3816 } 3817 3818 static void 3819 remote_files_info (struct target_ops *ignore) 3820 { 3821 puts_filtered ("Debugging a target over a serial line.\n"); 3822 } 3823 3824 /* Stuff for dealing with the packets which are part of this protocol. 3825 See comment at top of file for details. */ 3826 3827 /* Read a single character from the remote end, masking it down to 7 bits. */ 3828 3829 static int 3830 readchar (int timeout) 3831 { 3832 int ch; 3833 3834 ch = serial_readchar (remote_desc, timeout); 3835 3836 if (ch >= 0) 3837 return (ch & 0x7f); 3838 3839 switch ((enum serial_rc) ch) 3840 { 3841 case SERIAL_EOF: 3842 target_mourn_inferior (); 3843 error ("Remote connection closed"); 3844 /* no return */ 3845 case SERIAL_ERROR: 3846 perror_with_name ("Remote communication error"); 3847 /* no return */ 3848 case SERIAL_TIMEOUT: 3849 break; 3850 } 3851 return ch; 3852 } 3853 3854 /* Send the command in BUF to the remote machine, and read the reply 3855 into BUF. Report an error if we get an error reply. */ 3856 3857 static void 3858 remote_send (char *buf, 3859 long sizeof_buf) 3860 { 3861 putpkt (buf); 3862 getpkt (buf, sizeof_buf, 0); 3863 3864 if (buf[0] == 'E') 3865 error ("Remote failure reply: %s", buf); 3866 } 3867 3868 /* Display a null-terminated packet on stdout, for debugging, using C 3869 string notation. */ 3870 3871 static void 3872 print_packet (char *buf) 3873 { 3874 puts_filtered ("\""); 3875 fputstr_filtered (buf, '"', gdb_stdout); 3876 puts_filtered ("\""); 3877 } 3878 3879 int 3880 putpkt (char *buf) 3881 { 3882 return putpkt_binary (buf, strlen (buf)); 3883 } 3884 3885 /* Send a packet to the remote machine, with error checking. The data 3886 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5 3887 to account for the $, # and checksum, and for a possible /0 if we are 3888 debugging (remote_debug) and want to print the sent packet as a string */ 3889 3890 static int 3891 putpkt_binary (char *buf, int cnt) 3892 { 3893 struct remote_state *rs = get_remote_state (); 3894 int i; 3895 unsigned char csum = 0; 3896 char *buf2 = alloca (cnt + 6); 3897 long sizeof_junkbuf = (rs->remote_packet_size); 3898 char *junkbuf = alloca (sizeof_junkbuf); 3899 3900 int ch; 3901 int tcount = 0; 3902 char *p; 3903 3904 /* Copy the packet into buffer BUF2, encapsulating it 3905 and giving it a checksum. */ 3906 3907 p = buf2; 3908 *p++ = '$'; 3909 3910 for (i = 0; i < cnt; i++) 3911 { 3912 csum += buf[i]; 3913 *p++ = buf[i]; 3914 } 3915 *p++ = '#'; 3916 *p++ = tohex ((csum >> 4) & 0xf); 3917 *p++ = tohex (csum & 0xf); 3918 3919 /* Send it over and over until we get a positive ack. */ 3920 3921 while (1) 3922 { 3923 int started_error_output = 0; 3924 3925 if (remote_debug) 3926 { 3927 *p = '\0'; 3928 fprintf_unfiltered (gdb_stdlog, "Sending packet: "); 3929 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog); 3930 fprintf_unfiltered (gdb_stdlog, "..."); 3931 gdb_flush (gdb_stdlog); 3932 } 3933 if (serial_write (remote_desc, buf2, p - buf2)) 3934 perror_with_name ("putpkt: write failed"); 3935 3936 /* read until either a timeout occurs (-2) or '+' is read */ 3937 while (1) 3938 { 3939 ch = readchar (remote_timeout); 3940 3941 if (remote_debug) 3942 { 3943 switch (ch) 3944 { 3945 case '+': 3946 case '-': 3947 case SERIAL_TIMEOUT: 3948 case '$': 3949 if (started_error_output) 3950 { 3951 putchar_unfiltered ('\n'); 3952 started_error_output = 0; 3953 } 3954 } 3955 } 3956 3957 switch (ch) 3958 { 3959 case '+': 3960 if (remote_debug) 3961 fprintf_unfiltered (gdb_stdlog, "Ack\n"); 3962 return 1; 3963 case '-': 3964 if (remote_debug) 3965 fprintf_unfiltered (gdb_stdlog, "Nak\n"); 3966 case SERIAL_TIMEOUT: 3967 tcount++; 3968 if (tcount > 3) 3969 return 0; 3970 break; /* Retransmit buffer */ 3971 case '$': 3972 { 3973 if (remote_debug) 3974 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n"); 3975 /* It's probably an old response, and we're out of sync. 3976 Just gobble up the packet and ignore it. */ 3977 read_frame (junkbuf, sizeof_junkbuf); 3978 continue; /* Now, go look for + */ 3979 } 3980 default: 3981 if (remote_debug) 3982 { 3983 if (!started_error_output) 3984 { 3985 started_error_output = 1; 3986 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: "); 3987 } 3988 fputc_unfiltered (ch & 0177, gdb_stdlog); 3989 } 3990 continue; 3991 } 3992 break; /* Here to retransmit */ 3993 } 3994 3995 #if 0 3996 /* This is wrong. If doing a long backtrace, the user should be 3997 able to get out next time we call QUIT, without anything as 3998 violent as interrupt_query. If we want to provide a way out of 3999 here without getting to the next QUIT, it should be based on 4000 hitting ^C twice as in remote_wait. */ 4001 if (quit_flag) 4002 { 4003 quit_flag = 0; 4004 interrupt_query (); 4005 } 4006 #endif 4007 } 4008 } 4009 4010 /* Come here after finding the start of the frame. Collect the rest 4011 into BUF, verifying the checksum, length, and handling run-length 4012 compression. No more than sizeof_buf-1 characters are read so that 4013 the buffer can be NUL terminated. 4014 4015 Returns -1 on error, number of characters in buffer (ignoring the 4016 trailing NULL) on success. (could be extended to return one of the 4017 SERIAL status indications). */ 4018 4019 static long 4020 read_frame (char *buf, 4021 long sizeof_buf) 4022 { 4023 unsigned char csum; 4024 long bc; 4025 int c; 4026 4027 csum = 0; 4028 bc = 0; 4029 4030 while (1) 4031 { 4032 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */ 4033 c = readchar (remote_timeout); 4034 switch (c) 4035 { 4036 case SERIAL_TIMEOUT: 4037 if (remote_debug) 4038 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog); 4039 return -1; 4040 case '$': 4041 if (remote_debug) 4042 fputs_filtered ("Saw new packet start in middle of old one\n", 4043 gdb_stdlog); 4044 return -1; /* Start a new packet, count retries */ 4045 case '#': 4046 { 4047 unsigned char pktcsum; 4048 int check_0 = 0; 4049 int check_1 = 0; 4050 4051 buf[bc] = '\0'; 4052 4053 check_0 = readchar (remote_timeout); 4054 if (check_0 >= 0) 4055 check_1 = readchar (remote_timeout); 4056 4057 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT) 4058 { 4059 if (remote_debug) 4060 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog); 4061 return -1; 4062 } 4063 else if (check_0 < 0 || check_1 < 0) 4064 { 4065 if (remote_debug) 4066 fputs_filtered ("Communication error in checksum\n", gdb_stdlog); 4067 return -1; 4068 } 4069 4070 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1); 4071 if (csum == pktcsum) 4072 return bc; 4073 4074 if (remote_debug) 4075 { 4076 fprintf_filtered (gdb_stdlog, 4077 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=", 4078 pktcsum, csum); 4079 fputs_filtered (buf, gdb_stdlog); 4080 fputs_filtered ("\n", gdb_stdlog); 4081 } 4082 /* Number of characters in buffer ignoring trailing 4083 NUL. */ 4084 return -1; 4085 } 4086 case '*': /* Run length encoding */ 4087 { 4088 int repeat; 4089 csum += c; 4090 4091 c = readchar (remote_timeout); 4092 csum += c; 4093 repeat = c - ' ' + 3; /* Compute repeat count */ 4094 4095 /* The character before ``*'' is repeated. */ 4096 4097 if (repeat > 0 && repeat <= 255 4098 && bc > 0 4099 && bc + repeat - 1 < sizeof_buf - 1) 4100 { 4101 memset (&buf[bc], buf[bc - 1], repeat); 4102 bc += repeat; 4103 continue; 4104 } 4105 4106 buf[bc] = '\0'; 4107 printf_filtered ("Repeat count %d too large for buffer: ", repeat); 4108 puts_filtered (buf); 4109 puts_filtered ("\n"); 4110 return -1; 4111 } 4112 default: 4113 if (bc < sizeof_buf - 1) 4114 { 4115 buf[bc++] = c; 4116 csum += c; 4117 continue; 4118 } 4119 4120 buf[bc] = '\0'; 4121 puts_filtered ("Remote packet too long: "); 4122 puts_filtered (buf); 4123 puts_filtered ("\n"); 4124 4125 return -1; 4126 } 4127 } 4128 } 4129 4130 /* Read a packet from the remote machine, with error checking, and 4131 store it in BUF. If FOREVER, wait forever rather than timing out; 4132 this is used (in synchronous mode) to wait for a target that is is 4133 executing user code to stop. */ 4134 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we 4135 don't have to change all the calls to getpkt to deal with the 4136 return value, because at the moment I don't know what the right 4137 thing to do it for those. */ 4138 void 4139 getpkt (char *buf, 4140 long sizeof_buf, 4141 int forever) 4142 { 4143 int timed_out; 4144 4145 timed_out = getpkt_sane (buf, sizeof_buf, forever); 4146 } 4147 4148 4149 /* Read a packet from the remote machine, with error checking, and 4150 store it in BUF. If FOREVER, wait forever rather than timing out; 4151 this is used (in synchronous mode) to wait for a target that is is 4152 executing user code to stop. If FOREVER == 0, this function is 4153 allowed to time out gracefully and return an indication of this to 4154 the caller. */ 4155 static int 4156 getpkt_sane (char *buf, 4157 long sizeof_buf, 4158 int forever) 4159 { 4160 int c; 4161 int tries; 4162 int timeout; 4163 int val; 4164 4165 strcpy (buf, "timeout"); 4166 4167 if (forever) 4168 { 4169 timeout = watchdog > 0 ? watchdog : -1; 4170 } 4171 4172 else 4173 timeout = remote_timeout; 4174 4175 #define MAX_TRIES 3 4176 4177 for (tries = 1; tries <= MAX_TRIES; tries++) 4178 { 4179 /* This can loop forever if the remote side sends us characters 4180 continuously, but if it pauses, we'll get a zero from readchar 4181 because of timeout. Then we'll count that as a retry. */ 4182 4183 /* Note that we will only wait forever prior to the start of a packet. 4184 After that, we expect characters to arrive at a brisk pace. They 4185 should show up within remote_timeout intervals. */ 4186 4187 do 4188 { 4189 c = readchar (timeout); 4190 4191 if (c == SERIAL_TIMEOUT) 4192 { 4193 if (forever) /* Watchdog went off? Kill the target. */ 4194 { 4195 QUIT; 4196 target_mourn_inferior (); 4197 error ("Watchdog has expired. Target detached.\n"); 4198 } 4199 if (remote_debug) 4200 fputs_filtered ("Timed out.\n", gdb_stdlog); 4201 goto retry; 4202 } 4203 } 4204 while (c != '$'); 4205 4206 /* We've found the start of a packet, now collect the data. */ 4207 4208 val = read_frame (buf, sizeof_buf); 4209 4210 if (val >= 0) 4211 { 4212 if (remote_debug) 4213 { 4214 fprintf_unfiltered (gdb_stdlog, "Packet received: "); 4215 fputstr_unfiltered (buf, 0, gdb_stdlog); 4216 fprintf_unfiltered (gdb_stdlog, "\n"); 4217 } 4218 serial_write (remote_desc, "+", 1); 4219 return 0; 4220 } 4221 4222 /* Try the whole thing again. */ 4223 retry: 4224 serial_write (remote_desc, "-", 1); 4225 } 4226 4227 /* We have tried hard enough, and just can't receive the packet. Give up. */ 4228 4229 printf_unfiltered ("Ignoring packet error, continuing...\n"); 4230 serial_write (remote_desc, "+", 1); 4231 return 1; 4232 } 4233 4234 static void 4235 remote_kill (void) 4236 { 4237 /* For some mysterious reason, wait_for_inferior calls kill instead of 4238 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */ 4239 if (kill_kludge) 4240 { 4241 kill_kludge = 0; 4242 target_mourn_inferior (); 4243 return; 4244 } 4245 4246 /* Use catch_errors so the user can quit from gdb even when we aren't on 4247 speaking terms with the remote system. */ 4248 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR); 4249 4250 /* Don't wait for it to die. I'm not really sure it matters whether 4251 we do or not. For the existing stubs, kill is a noop. */ 4252 target_mourn_inferior (); 4253 } 4254 4255 /* Async version of remote_kill. */ 4256 static void 4257 remote_async_kill (void) 4258 { 4259 /* Unregister the file descriptor from the event loop. */ 4260 if (target_is_async_p ()) 4261 serial_async (remote_desc, NULL, 0); 4262 4263 /* For some mysterious reason, wait_for_inferior calls kill instead of 4264 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */ 4265 if (kill_kludge) 4266 { 4267 kill_kludge = 0; 4268 target_mourn_inferior (); 4269 return; 4270 } 4271 4272 /* Use catch_errors so the user can quit from gdb even when we aren't on 4273 speaking terms with the remote system. */ 4274 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR); 4275 4276 /* Don't wait for it to die. I'm not really sure it matters whether 4277 we do or not. For the existing stubs, kill is a noop. */ 4278 target_mourn_inferior (); 4279 } 4280 4281 static void 4282 remote_mourn (void) 4283 { 4284 remote_mourn_1 (&remote_ops); 4285 } 4286 4287 static void 4288 remote_async_mourn (void) 4289 { 4290 remote_mourn_1 (&remote_async_ops); 4291 } 4292 4293 static void 4294 extended_remote_mourn (void) 4295 { 4296 /* We do _not_ want to mourn the target like this; this will 4297 remove the extended remote target from the target stack, 4298 and the next time the user says "run" it'll fail. 4299 4300 FIXME: What is the right thing to do here? */ 4301 #if 0 4302 remote_mourn_1 (&extended_remote_ops); 4303 #endif 4304 } 4305 4306 /* Worker function for remote_mourn. */ 4307 static void 4308 remote_mourn_1 (struct target_ops *target) 4309 { 4310 unpush_target (target); 4311 generic_mourn_inferior (); 4312 } 4313 4314 /* In the extended protocol we want to be able to do things like 4315 "run" and have them basically work as expected. So we need 4316 a special create_inferior function. 4317 4318 FIXME: One day add support for changing the exec file 4319 we're debugging, arguments and an environment. */ 4320 4321 static void 4322 extended_remote_create_inferior (char *exec_file, char *args, char **env, 4323 int from_tty) 4324 { 4325 /* Rip out the breakpoints; we'll reinsert them after restarting 4326 the remote server. */ 4327 remove_breakpoints (); 4328 4329 /* Now restart the remote server. */ 4330 extended_remote_restart (); 4331 4332 /* Now put the breakpoints back in. This way we're safe if the 4333 restart function works via a unix fork on the remote side. */ 4334 insert_breakpoints (); 4335 4336 /* Clean up from the last time we were running. */ 4337 clear_proceed_status (); 4338 4339 /* Let the remote process run. */ 4340 proceed (-1, TARGET_SIGNAL_0, 0); 4341 } 4342 4343 /* Async version of extended_remote_create_inferior. */ 4344 static void 4345 extended_remote_async_create_inferior (char *exec_file, char *args, char **env, 4346 int from_tty) 4347 { 4348 /* Rip out the breakpoints; we'll reinsert them after restarting 4349 the remote server. */ 4350 remove_breakpoints (); 4351 4352 /* If running asynchronously, register the target file descriptor 4353 with the event loop. */ 4354 if (target_can_async_p ()) 4355 target_async (inferior_event_handler, 0); 4356 4357 /* Now restart the remote server. */ 4358 extended_remote_restart (); 4359 4360 /* Now put the breakpoints back in. This way we're safe if the 4361 restart function works via a unix fork on the remote side. */ 4362 insert_breakpoints (); 4363 4364 /* Clean up from the last time we were running. */ 4365 clear_proceed_status (); 4366 4367 /* Let the remote process run. */ 4368 proceed (-1, TARGET_SIGNAL_0, 0); 4369 } 4370 4371 4372 /* On some machines, e.g. 68k, we may use a different breakpoint 4373 instruction than other targets; in those use 4374 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC. 4375 Also, bi-endian targets may define 4376 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and 4377 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we 4378 just call the standard routines that are in mem-break.c. */ 4379 4380 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator 4381 target should use an identical BREAKPOINT_FROM_PC. As for native, 4382 the ARCH-OS-tdep.c code can override the default. */ 4383 4384 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT) 4385 #define DEPRECATED_REMOTE_BREAKPOINT 4386 #endif 4387 4388 #ifdef DEPRECATED_REMOTE_BREAKPOINT 4389 4390 /* If the target isn't bi-endian, just pretend it is. */ 4391 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) 4392 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT 4393 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT 4394 #endif 4395 4396 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT; 4397 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT; 4398 4399 #endif /* DEPRECATED_REMOTE_BREAKPOINT */ 4400 4401 /* Insert a breakpoint on targets that don't have any better 4402 breakpoint support. We read the contents of the target location 4403 and stash it, then overwrite it with a breakpoint instruction. 4404 ADDR is the target location in the target machine. CONTENTS_CACHE 4405 is a pointer to memory allocated for saving the target contents. 4406 It is guaranteed by the caller to be long enough to save the number 4407 of bytes returned by BREAKPOINT_FROM_PC. */ 4408 4409 static int 4410 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache) 4411 { 4412 struct remote_state *rs = get_remote_state (); 4413 #ifdef DEPRECATED_REMOTE_BREAKPOINT 4414 int val; 4415 #endif 4416 int bp_size; 4417 4418 /* Try the "Z" s/w breakpoint packet if it is not already disabled. 4419 If it succeeds, then set the support to PACKET_ENABLE. If it 4420 fails, and the user has explicitly requested the Z support then 4421 report an error, otherwise, mark it disabled and go on. */ 4422 4423 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE) 4424 { 4425 char *buf = alloca (rs->remote_packet_size); 4426 char *p = buf; 4427 4428 addr = remote_address_masked (addr); 4429 *(p++) = 'Z'; 4430 *(p++) = '0'; 4431 *(p++) = ','; 4432 p += hexnumstr (p, (ULONGEST) addr); 4433 BREAKPOINT_FROM_PC (&addr, &bp_size); 4434 sprintf (p, ",%d", bp_size); 4435 4436 putpkt (buf); 4437 getpkt (buf, (rs->remote_packet_size), 0); 4438 4439 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP])) 4440 { 4441 case PACKET_ERROR: 4442 return -1; 4443 case PACKET_OK: 4444 return 0; 4445 case PACKET_UNKNOWN: 4446 break; 4447 } 4448 } 4449 4450 #ifdef DEPRECATED_REMOTE_BREAKPOINT 4451 val = target_read_memory (addr, contents_cache, sizeof big_break_insn); 4452 4453 if (val == 0) 4454 { 4455 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) 4456 val = target_write_memory (addr, (char *) big_break_insn, 4457 sizeof big_break_insn); 4458 else 4459 val = target_write_memory (addr, (char *) little_break_insn, 4460 sizeof little_break_insn); 4461 } 4462 4463 return val; 4464 #else 4465 return memory_insert_breakpoint (addr, contents_cache); 4466 #endif /* DEPRECATED_REMOTE_BREAKPOINT */ 4467 } 4468 4469 static int 4470 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache) 4471 { 4472 struct remote_state *rs = get_remote_state (); 4473 int bp_size; 4474 4475 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE) 4476 { 4477 char *buf = alloca (rs->remote_packet_size); 4478 char *p = buf; 4479 4480 *(p++) = 'z'; 4481 *(p++) = '0'; 4482 *(p++) = ','; 4483 4484 addr = remote_address_masked (addr); 4485 p += hexnumstr (p, (ULONGEST) addr); 4486 BREAKPOINT_FROM_PC (&addr, &bp_size); 4487 sprintf (p, ",%d", bp_size); 4488 4489 putpkt (buf); 4490 getpkt (buf, (rs->remote_packet_size), 0); 4491 4492 return (buf[0] == 'E'); 4493 } 4494 4495 #ifdef DEPRECATED_REMOTE_BREAKPOINT 4496 return target_write_memory (addr, contents_cache, sizeof big_break_insn); 4497 #else 4498 return memory_remove_breakpoint (addr, contents_cache); 4499 #endif /* DEPRECATED_REMOTE_BREAKPOINT */ 4500 } 4501 4502 static int 4503 watchpoint_to_Z_packet (int type) 4504 { 4505 switch (type) 4506 { 4507 case hw_write: 4508 return 2; 4509 break; 4510 case hw_read: 4511 return 3; 4512 break; 4513 case hw_access: 4514 return 4; 4515 break; 4516 default: 4517 internal_error (__FILE__, __LINE__, 4518 "hw_bp_to_z: bad watchpoint type %d", type); 4519 } 4520 } 4521 4522 static int 4523 remote_insert_watchpoint (CORE_ADDR addr, int len, int type) 4524 { 4525 struct remote_state *rs = get_remote_state (); 4526 char *buf = alloca (rs->remote_packet_size); 4527 char *p; 4528 enum Z_packet_type packet = watchpoint_to_Z_packet (type); 4529 4530 if (remote_protocol_Z[packet].support == PACKET_DISABLE) 4531 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n", 4532 remote_protocol_Z[packet].name, 4533 remote_protocol_Z[packet].title); 4534 4535 sprintf (buf, "Z%x,", packet); 4536 p = strchr (buf, '\0'); 4537 addr = remote_address_masked (addr); 4538 p += hexnumstr (p, (ULONGEST) addr); 4539 sprintf (p, ",%x", len); 4540 4541 putpkt (buf); 4542 getpkt (buf, (rs->remote_packet_size), 0); 4543 4544 switch (packet_ok (buf, &remote_protocol_Z[packet])) 4545 { 4546 case PACKET_ERROR: 4547 case PACKET_UNKNOWN: 4548 return -1; 4549 case PACKET_OK: 4550 return 0; 4551 } 4552 internal_error (__FILE__, __LINE__, 4553 "remote_insert_watchpoint: reached end of function"); 4554 } 4555 4556 4557 static int 4558 remote_remove_watchpoint (CORE_ADDR addr, int len, int type) 4559 { 4560 struct remote_state *rs = get_remote_state (); 4561 char *buf = alloca (rs->remote_packet_size); 4562 char *p; 4563 enum Z_packet_type packet = watchpoint_to_Z_packet (type); 4564 4565 if (remote_protocol_Z[packet].support == PACKET_DISABLE) 4566 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n", 4567 remote_protocol_Z[packet].name, 4568 remote_protocol_Z[packet].title); 4569 4570 sprintf (buf, "z%x,", packet); 4571 p = strchr (buf, '\0'); 4572 addr = remote_address_masked (addr); 4573 p += hexnumstr (p, (ULONGEST) addr); 4574 sprintf (p, ",%x", len); 4575 putpkt (buf); 4576 getpkt (buf, (rs->remote_packet_size), 0); 4577 4578 switch (packet_ok (buf, &remote_protocol_Z[packet])) 4579 { 4580 case PACKET_ERROR: 4581 case PACKET_UNKNOWN: 4582 return -1; 4583 case PACKET_OK: 4584 return 0; 4585 } 4586 internal_error (__FILE__, __LINE__, 4587 "remote_remove_watchpoint: reached end of function"); 4588 } 4589 4590 4591 int remote_hw_watchpoint_limit = -1; 4592 int remote_hw_breakpoint_limit = -1; 4593 4594 static int 4595 remote_check_watch_resources (int type, int cnt, int ot) 4596 { 4597 if (type == bp_hardware_breakpoint) 4598 { 4599 if (remote_hw_breakpoint_limit == 0) 4600 return 0; 4601 else if (remote_hw_breakpoint_limit < 0) 4602 return 1; 4603 else if (cnt <= remote_hw_breakpoint_limit) 4604 return 1; 4605 } 4606 else 4607 { 4608 if (remote_hw_watchpoint_limit == 0) 4609 return 0; 4610 else if (remote_hw_watchpoint_limit < 0) 4611 return 1; 4612 else if (ot) 4613 return -1; 4614 else if (cnt <= remote_hw_watchpoint_limit) 4615 return 1; 4616 } 4617 return -1; 4618 } 4619 4620 static int 4621 remote_stopped_by_watchpoint (void) 4622 { 4623 return remote_stopped_by_watchpoint_p; 4624 } 4625 4626 extern int stepped_after_stopped_by_watchpoint; 4627 4628 static int 4629 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) 4630 { 4631 int rc = 0; 4632 if (remote_stopped_by_watchpoint () 4633 || stepped_after_stopped_by_watchpoint) 4634 { 4635 *addr_p = remote_watch_data_address; 4636 rc = 1; 4637 } 4638 4639 return rc; 4640 } 4641 4642 4643 static int 4644 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow) 4645 { 4646 int len = 0; 4647 struct remote_state *rs = get_remote_state (); 4648 char *buf = alloca (rs->remote_packet_size); 4649 char *p = buf; 4650 4651 /* The length field should be set to the size of a breakpoint 4652 instruction. */ 4653 4654 BREAKPOINT_FROM_PC (&addr, &len); 4655 4656 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE) 4657 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n", 4658 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name, 4659 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title); 4660 4661 *(p++) = 'Z'; 4662 *(p++) = '1'; 4663 *(p++) = ','; 4664 4665 addr = remote_address_masked (addr); 4666 p += hexnumstr (p, (ULONGEST) addr); 4667 sprintf (p, ",%x", len); 4668 4669 putpkt (buf); 4670 getpkt (buf, (rs->remote_packet_size), 0); 4671 4672 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP])) 4673 { 4674 case PACKET_ERROR: 4675 case PACKET_UNKNOWN: 4676 return -1; 4677 case PACKET_OK: 4678 return 0; 4679 } 4680 internal_error (__FILE__, __LINE__, 4681 "remote_insert_hw_breakpoint: reached end of function"); 4682 } 4683 4684 4685 static int 4686 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow) 4687 { 4688 int len; 4689 struct remote_state *rs = get_remote_state (); 4690 char *buf = alloca (rs->remote_packet_size); 4691 char *p = buf; 4692 4693 /* The length field should be set to the size of a breakpoint 4694 instruction. */ 4695 4696 BREAKPOINT_FROM_PC (&addr, &len); 4697 4698 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE) 4699 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n", 4700 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name, 4701 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title); 4702 4703 *(p++) = 'z'; 4704 *(p++) = '1'; 4705 *(p++) = ','; 4706 4707 addr = remote_address_masked (addr); 4708 p += hexnumstr (p, (ULONGEST) addr); 4709 sprintf (p, ",%x", len); 4710 4711 putpkt(buf); 4712 getpkt (buf, (rs->remote_packet_size), 0); 4713 4714 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP])) 4715 { 4716 case PACKET_ERROR: 4717 case PACKET_UNKNOWN: 4718 return -1; 4719 case PACKET_OK: 4720 return 0; 4721 } 4722 internal_error (__FILE__, __LINE__, 4723 "remote_remove_hw_breakpoint: reached end of function"); 4724 } 4725 4726 /* Some targets are only capable of doing downloads, and afterwards 4727 they switch to the remote serial protocol. This function provides 4728 a clean way to get from the download target to the remote target. 4729 It's basically just a wrapper so that we don't have to expose any 4730 of the internal workings of remote.c. 4731 4732 Prior to calling this routine, you should shutdown the current 4733 target code, else you will get the "A program is being debugged 4734 already..." message. Usually a call to pop_target() suffices. */ 4735 4736 void 4737 push_remote_target (char *name, int from_tty) 4738 { 4739 printf_filtered ("Switching to remote protocol\n"); 4740 remote_open (name, from_tty); 4741 } 4742 4743 /* Table used by the crc32 function to calcuate the checksum. */ 4744 4745 static unsigned long crc32_table[256] = 4746 {0, 0}; 4747 4748 static unsigned long 4749 crc32 (unsigned char *buf, int len, unsigned int crc) 4750 { 4751 if (!crc32_table[1]) 4752 { 4753 /* Initialize the CRC table and the decoding table. */ 4754 int i, j; 4755 unsigned int c; 4756 4757 for (i = 0; i < 256; i++) 4758 { 4759 for (c = i << 24, j = 8; j > 0; --j) 4760 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); 4761 crc32_table[i] = c; 4762 } 4763 } 4764 4765 while (len--) 4766 { 4767 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; 4768 buf++; 4769 } 4770 return crc; 4771 } 4772 4773 /* compare-sections command 4774 4775 With no arguments, compares each loadable section in the exec bfd 4776 with the same memory range on the target, and reports mismatches. 4777 Useful for verifying the image on the target against the exec file. 4778 Depends on the target understanding the new "qCRC:" request. */ 4779 4780 /* FIXME: cagney/1999-10-26: This command should be broken down into a 4781 target method (target verify memory) and generic version of the 4782 actual command. This will allow other high-level code (especially 4783 generic_load()) to make use of this target functionality. */ 4784 4785 static void 4786 compare_sections_command (char *args, int from_tty) 4787 { 4788 struct remote_state *rs = get_remote_state (); 4789 asection *s; 4790 unsigned long host_crc, target_crc; 4791 extern bfd *exec_bfd; 4792 struct cleanup *old_chain; 4793 char *tmp; 4794 char *sectdata; 4795 const char *sectname; 4796 char *buf = alloca (rs->remote_packet_size); 4797 bfd_size_type size; 4798 bfd_vma lma; 4799 int matched = 0; 4800 int mismatched = 0; 4801 4802 if (!exec_bfd) 4803 error ("command cannot be used without an exec file"); 4804 if (!current_target.to_shortname || 4805 strcmp (current_target.to_shortname, "remote") != 0) 4806 error ("command can only be used with remote target"); 4807 4808 for (s = exec_bfd->sections; s; s = s->next) 4809 { 4810 if (!(s->flags & SEC_LOAD)) 4811 continue; /* skip non-loadable section */ 4812 4813 size = bfd_get_section_size (s); 4814 if (size == 0) 4815 continue; /* skip zero-length section */ 4816 4817 sectname = bfd_get_section_name (exec_bfd, s); 4818 if (args && strcmp (args, sectname) != 0) 4819 continue; /* not the section selected by user */ 4820 4821 matched = 1; /* do this section */ 4822 lma = s->lma; 4823 /* FIXME: assumes lma can fit into long */ 4824 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size); 4825 putpkt (buf); 4826 4827 /* be clever; compute the host_crc before waiting for target reply */ 4828 sectdata = xmalloc (size); 4829 old_chain = make_cleanup (xfree, sectdata); 4830 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size); 4831 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff); 4832 4833 getpkt (buf, (rs->remote_packet_size), 0); 4834 if (buf[0] == 'E') 4835 error ("target memory fault, section %s, range 0x%s -- 0x%s", 4836 sectname, paddr (lma), paddr (lma + size)); 4837 if (buf[0] != 'C') 4838 error ("remote target does not support this operation"); 4839 4840 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++) 4841 target_crc = target_crc * 16 + fromhex (*tmp); 4842 4843 printf_filtered ("Section %s, range 0x%s -- 0x%s: ", 4844 sectname, paddr (lma), paddr (lma + size)); 4845 if (host_crc == target_crc) 4846 printf_filtered ("matched.\n"); 4847 else 4848 { 4849 printf_filtered ("MIS-MATCHED!\n"); 4850 mismatched++; 4851 } 4852 4853 do_cleanups (old_chain); 4854 } 4855 if (mismatched > 0) 4856 warning ("One or more sections of the remote executable does not match\n\ 4857 the loaded file\n"); 4858 if (args && !matched) 4859 printf_filtered ("No loaded section named '%s'.\n", args); 4860 } 4861 4862 static LONGEST 4863 remote_xfer_partial (struct target_ops *ops, enum target_object object, 4864 const char *annex, void *readbuf, const void *writebuf, 4865 ULONGEST offset, LONGEST len) 4866 { 4867 struct remote_state *rs = get_remote_state (); 4868 int i; 4869 char *buf2 = alloca (rs->remote_packet_size); 4870 char *p2 = &buf2[0]; 4871 char query_type; 4872 4873 /* Handle memory using remote_xfer_memory. */ 4874 if (object == TARGET_OBJECT_MEMORY) 4875 { 4876 int xfered; 4877 errno = 0; 4878 4879 if (writebuf != NULL) 4880 { 4881 void *buffer = xmalloc (len); 4882 struct cleanup *cleanup = make_cleanup (xfree, buffer); 4883 memcpy (buffer, writebuf, len); 4884 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops); 4885 do_cleanups (cleanup); 4886 } 4887 else 4888 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops); 4889 4890 if (xfered > 0) 4891 return xfered; 4892 else if (xfered == 0 && errno == 0) 4893 return 0; 4894 else 4895 return -1; 4896 } 4897 4898 /* Only handle reads. */ 4899 if (writebuf != NULL || readbuf == NULL) 4900 return -1; 4901 4902 /* Map pre-existing objects onto letters. DO NOT do this for new 4903 objects!!! Instead specify new query packets. */ 4904 switch (object) 4905 { 4906 case TARGET_OBJECT_KOD: 4907 query_type = 'K'; 4908 break; 4909 case TARGET_OBJECT_AVR: 4910 query_type = 'R'; 4911 break; 4912 4913 case TARGET_OBJECT_AUXV: 4914 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE) 4915 { 4916 unsigned int total = 0; 4917 while (len > 0) 4918 { 4919 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len); 4920 snprintf (buf2, rs->remote_packet_size, 4921 "qPart:auxv:read::%s,%s", 4922 phex_nz (offset, sizeof offset), 4923 phex_nz (n, sizeof n)); 4924 i = putpkt (buf2); 4925 if (i < 0) 4926 return total > 0 ? total : i; 4927 buf2[0] = '\0'; 4928 getpkt (buf2, rs->remote_packet_size, 0); 4929 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK) 4930 return total > 0 ? total : -1; 4931 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0') 4932 break; /* Got EOF indicator. */ 4933 /* Got some data. */ 4934 i = hex2bin (buf2, readbuf, len); 4935 if (i > 0) 4936 { 4937 readbuf = (void *) ((char *) readbuf + i); 4938 offset += i; 4939 len -= i; 4940 total += i; 4941 } 4942 } 4943 return total; 4944 } 4945 return -1; 4946 4947 default: 4948 return -1; 4949 } 4950 4951 /* Note: a zero OFFSET and LEN can be used to query the minimum 4952 buffer size. */ 4953 if (offset == 0 && len == 0) 4954 return (rs->remote_packet_size); 4955 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is 4956 not large enough let the caller. */ 4957 if (len < (rs->remote_packet_size)) 4958 return -1; 4959 len = rs->remote_packet_size; 4960 4961 /* except for querying the minimum buffer size, target must be open */ 4962 if (!remote_desc) 4963 error ("remote query is only available after target open"); 4964 4965 gdb_assert (annex != NULL); 4966 gdb_assert (readbuf != NULL); 4967 4968 *p2++ = 'q'; 4969 *p2++ = query_type; 4970 4971 /* we used one buffer char for the remote protocol q command and another 4972 for the query type. As the remote protocol encapsulation uses 4 chars 4973 plus one extra in case we are debugging (remote_debug), 4974 we have PBUFZIZ - 7 left to pack the query string */ 4975 i = 0; 4976 while (annex[i] && (i < ((rs->remote_packet_size) - 8))) 4977 { 4978 /* Bad caller may have sent forbidden characters. */ 4979 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#'); 4980 *p2++ = annex[i]; 4981 i++; 4982 } 4983 *p2 = '\0'; 4984 gdb_assert (annex[i] == '\0'); 4985 4986 i = putpkt (buf2); 4987 if (i < 0) 4988 return i; 4989 4990 getpkt (readbuf, len, 0); 4991 4992 return strlen (readbuf); 4993 } 4994 4995 static void 4996 remote_rcmd (char *command, 4997 struct ui_file *outbuf) 4998 { 4999 struct remote_state *rs = get_remote_state (); 5000 int i; 5001 char *buf = alloca (rs->remote_packet_size); 5002 char *p = buf; 5003 5004 if (!remote_desc) 5005 error ("remote rcmd is only available after target open"); 5006 5007 /* Send a NULL command across as an empty command */ 5008 if (command == NULL) 5009 command = ""; 5010 5011 /* The query prefix */ 5012 strcpy (buf, "qRcmd,"); 5013 p = strchr (buf, '\0'); 5014 5015 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size)) 5016 error ("\"monitor\" command ``%s'' is too long\n", command); 5017 5018 /* Encode the actual command */ 5019 bin2hex (command, p, 0); 5020 5021 if (putpkt (buf) < 0) 5022 error ("Communication problem with target\n"); 5023 5024 /* get/display the response */ 5025 while (1) 5026 { 5027 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */ 5028 buf[0] = '\0'; 5029 getpkt (buf, (rs->remote_packet_size), 0); 5030 if (buf[0] == '\0') 5031 error ("Target does not support this command\n"); 5032 if (buf[0] == 'O' && buf[1] != 'K') 5033 { 5034 remote_console_output (buf + 1); /* 'O' message from stub */ 5035 continue; 5036 } 5037 if (strcmp (buf, "OK") == 0) 5038 break; 5039 if (strlen (buf) == 3 && buf[0] == 'E' 5040 && isdigit (buf[1]) && isdigit (buf[2])) 5041 { 5042 error ("Protocol error with Rcmd"); 5043 } 5044 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2) 5045 { 5046 char c = (fromhex (p[0]) << 4) + fromhex (p[1]); 5047 fputc_unfiltered (c, outbuf); 5048 } 5049 break; 5050 } 5051 } 5052 5053 static void 5054 packet_command (char *args, int from_tty) 5055 { 5056 struct remote_state *rs = get_remote_state (); 5057 char *buf = alloca (rs->remote_packet_size); 5058 5059 if (!remote_desc) 5060 error ("command can only be used with remote target"); 5061 5062 if (!args) 5063 error ("remote-packet command requires packet text as argument"); 5064 5065 puts_filtered ("sending: "); 5066 print_packet (args); 5067 puts_filtered ("\n"); 5068 putpkt (args); 5069 5070 getpkt (buf, (rs->remote_packet_size), 0); 5071 puts_filtered ("received: "); 5072 print_packet (buf); 5073 puts_filtered ("\n"); 5074 } 5075 5076 #if 0 5077 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */ 5078 5079 static void display_thread_info (struct gdb_ext_thread_info *info); 5080 5081 static void threadset_test_cmd (char *cmd, int tty); 5082 5083 static void threadalive_test (char *cmd, int tty); 5084 5085 static void threadlist_test_cmd (char *cmd, int tty); 5086 5087 int get_and_display_threadinfo (threadref * ref); 5088 5089 static void threadinfo_test_cmd (char *cmd, int tty); 5090 5091 static int thread_display_step (threadref * ref, void *context); 5092 5093 static void threadlist_update_test_cmd (char *cmd, int tty); 5094 5095 static void init_remote_threadtests (void); 5096 5097 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */ 5098 5099 static void 5100 threadset_test_cmd (char *cmd, int tty) 5101 { 5102 int sample_thread = SAMPLE_THREAD; 5103 5104 printf_filtered ("Remote threadset test\n"); 5105 set_thread (sample_thread, 1); 5106 } 5107 5108 5109 static void 5110 threadalive_test (char *cmd, int tty) 5111 { 5112 int sample_thread = SAMPLE_THREAD; 5113 5114 if (remote_thread_alive (pid_to_ptid (sample_thread))) 5115 printf_filtered ("PASS: Thread alive test\n"); 5116 else 5117 printf_filtered ("FAIL: Thread alive test\n"); 5118 } 5119 5120 void output_threadid (char *title, threadref * ref); 5121 5122 void 5123 output_threadid (char *title, threadref *ref) 5124 { 5125 char hexid[20]; 5126 5127 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */ 5128 hexid[16] = 0; 5129 printf_filtered ("%s %s\n", title, (&hexid[0])); 5130 } 5131 5132 static void 5133 threadlist_test_cmd (char *cmd, int tty) 5134 { 5135 int startflag = 1; 5136 threadref nextthread; 5137 int done, result_count; 5138 threadref threadlist[3]; 5139 5140 printf_filtered ("Remote Threadlist test\n"); 5141 if (!remote_get_threadlist (startflag, &nextthread, 3, &done, 5142 &result_count, &threadlist[0])) 5143 printf_filtered ("FAIL: threadlist test\n"); 5144 else 5145 { 5146 threadref *scan = threadlist; 5147 threadref *limit = scan + result_count; 5148 5149 while (scan < limit) 5150 output_threadid (" thread ", scan++); 5151 } 5152 } 5153 5154 void 5155 display_thread_info (struct gdb_ext_thread_info *info) 5156 { 5157 output_threadid ("Threadid: ", &info->threadid); 5158 printf_filtered ("Name: %s\n ", info->shortname); 5159 printf_filtered ("State: %s\n", info->display); 5160 printf_filtered ("other: %s\n\n", info->more_display); 5161 } 5162 5163 int 5164 get_and_display_threadinfo (threadref *ref) 5165 { 5166 int result; 5167 int set; 5168 struct gdb_ext_thread_info threadinfo; 5169 5170 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME 5171 | TAG_MOREDISPLAY | TAG_DISPLAY; 5172 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo))) 5173 display_thread_info (&threadinfo); 5174 return result; 5175 } 5176 5177 static void 5178 threadinfo_test_cmd (char *cmd, int tty) 5179 { 5180 int athread = SAMPLE_THREAD; 5181 threadref thread; 5182 int set; 5183 5184 int_to_threadref (&thread, athread); 5185 printf_filtered ("Remote Threadinfo test\n"); 5186 if (!get_and_display_threadinfo (&thread)) 5187 printf_filtered ("FAIL cannot get thread info\n"); 5188 } 5189 5190 static int 5191 thread_display_step (threadref *ref, void *context) 5192 { 5193 /* output_threadid(" threadstep ",ref); *//* simple test */ 5194 return get_and_display_threadinfo (ref); 5195 } 5196 5197 static void 5198 threadlist_update_test_cmd (char *cmd, int tty) 5199 { 5200 printf_filtered ("Remote Threadlist update test\n"); 5201 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS); 5202 } 5203 5204 static void 5205 init_remote_threadtests (void) 5206 { 5207 add_com ("tlist", class_obscure, threadlist_test_cmd, 5208 "Fetch and print the remote list of thread identifiers, one pkt only"); 5209 add_com ("tinfo", class_obscure, threadinfo_test_cmd, 5210 "Fetch and display info about one thread"); 5211 add_com ("tset", class_obscure, threadset_test_cmd, 5212 "Test setting to a different thread"); 5213 add_com ("tupd", class_obscure, threadlist_update_test_cmd, 5214 "Iterate through updating all remote thread info"); 5215 add_com ("talive", class_obscure, threadalive_test, 5216 " Remote thread alive test "); 5217 } 5218 5219 #endif /* 0 */ 5220 5221 /* Convert a thread ID to a string. Returns the string in a static 5222 buffer. */ 5223 5224 static char * 5225 remote_pid_to_str (ptid_t ptid) 5226 { 5227 static char buf[30]; 5228 5229 sprintf (buf, "Thread %d", PIDGET (ptid)); 5230 return buf; 5231 } 5232 5233 static void 5234 init_remote_ops (void) 5235 { 5236 remote_ops.to_shortname = "remote"; 5237 remote_ops.to_longname = "Remote serial target in gdb-specific protocol"; 5238 remote_ops.to_doc = 5239 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ 5240 Specify the serial device it is connected to\n\ 5241 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."; 5242 remote_ops.to_open = remote_open; 5243 remote_ops.to_close = remote_close; 5244 remote_ops.to_detach = remote_detach; 5245 remote_ops.to_disconnect = remote_disconnect; 5246 remote_ops.to_resume = remote_resume; 5247 remote_ops.to_wait = remote_wait; 5248 remote_ops.to_fetch_registers = remote_fetch_registers; 5249 remote_ops.to_store_registers = remote_store_registers; 5250 remote_ops.to_prepare_to_store = remote_prepare_to_store; 5251 remote_ops.deprecated_xfer_memory = remote_xfer_memory; 5252 remote_ops.to_files_info = remote_files_info; 5253 remote_ops.to_insert_breakpoint = remote_insert_breakpoint; 5254 remote_ops.to_remove_breakpoint = remote_remove_breakpoint; 5255 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint; 5256 remote_ops.to_stopped_data_address = remote_stopped_data_address; 5257 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources; 5258 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint; 5259 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint; 5260 remote_ops.to_insert_watchpoint = remote_insert_watchpoint; 5261 remote_ops.to_remove_watchpoint = remote_remove_watchpoint; 5262 remote_ops.to_kill = remote_kill; 5263 remote_ops.to_load = generic_load; 5264 remote_ops.to_mourn_inferior = remote_mourn; 5265 remote_ops.to_thread_alive = remote_thread_alive; 5266 remote_ops.to_find_new_threads = remote_threads_info; 5267 remote_ops.to_pid_to_str = remote_pid_to_str; 5268 remote_ops.to_extra_thread_info = remote_threads_extra_info; 5269 remote_ops.to_stop = remote_stop; 5270 remote_ops.to_xfer_partial = remote_xfer_partial; 5271 remote_ops.to_rcmd = remote_rcmd; 5272 remote_ops.to_stratum = process_stratum; 5273 remote_ops.to_has_all_memory = 1; 5274 remote_ops.to_has_memory = 1; 5275 remote_ops.to_has_stack = 1; 5276 remote_ops.to_has_registers = 1; 5277 remote_ops.to_has_execution = 1; 5278 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */ 5279 remote_ops.to_magic = OPS_MAGIC; 5280 } 5281 5282 /* Set up the extended remote vector by making a copy of the standard 5283 remote vector and adding to it. */ 5284 5285 static void 5286 init_extended_remote_ops (void) 5287 { 5288 extended_remote_ops = remote_ops; 5289 5290 extended_remote_ops.to_shortname = "extended-remote"; 5291 extended_remote_ops.to_longname = 5292 "Extended remote serial target in gdb-specific protocol"; 5293 extended_remote_ops.to_doc = 5294 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ 5295 Specify the serial device it is connected to (e.g. /dev/ttya).", 5296 extended_remote_ops.to_open = extended_remote_open; 5297 extended_remote_ops.to_create_inferior = extended_remote_create_inferior; 5298 extended_remote_ops.to_mourn_inferior = extended_remote_mourn; 5299 } 5300 5301 static int 5302 remote_can_async_p (void) 5303 { 5304 /* We're async whenever the serial device is. */ 5305 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc); 5306 } 5307 5308 static int 5309 remote_is_async_p (void) 5310 { 5311 /* We're async whenever the serial device is. */ 5312 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc); 5313 } 5314 5315 /* Pass the SERIAL event on and up to the client. One day this code 5316 will be able to delay notifying the client of an event until the 5317 point where an entire packet has been received. */ 5318 5319 static void (*async_client_callback) (enum inferior_event_type event_type, void *context); 5320 static void *async_client_context; 5321 static serial_event_ftype remote_async_serial_handler; 5322 5323 static void 5324 remote_async_serial_handler (struct serial *scb, void *context) 5325 { 5326 /* Don't propogate error information up to the client. Instead let 5327 the client find out about the error by querying the target. */ 5328 async_client_callback (INF_REG_EVENT, async_client_context); 5329 } 5330 5331 static void 5332 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context) 5333 { 5334 if (current_target.to_async_mask_value == 0) 5335 internal_error (__FILE__, __LINE__, 5336 "Calling remote_async when async is masked"); 5337 5338 if (callback != NULL) 5339 { 5340 serial_async (remote_desc, remote_async_serial_handler, NULL); 5341 async_client_callback = callback; 5342 async_client_context = context; 5343 } 5344 else 5345 serial_async (remote_desc, NULL, NULL); 5346 } 5347 5348 /* Target async and target extended-async. 5349 5350 This are temporary targets, until it is all tested. Eventually 5351 async support will be incorporated int the usual 'remote' 5352 target. */ 5353 5354 static void 5355 init_remote_async_ops (void) 5356 { 5357 remote_async_ops.to_shortname = "async"; 5358 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol"; 5359 remote_async_ops.to_doc = 5360 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\ 5361 Specify the serial device it is connected to (e.g. /dev/ttya)."; 5362 remote_async_ops.to_open = remote_async_open; 5363 remote_async_ops.to_close = remote_close; 5364 remote_async_ops.to_detach = remote_detach; 5365 remote_async_ops.to_disconnect = remote_disconnect; 5366 remote_async_ops.to_resume = remote_async_resume; 5367 remote_async_ops.to_wait = remote_async_wait; 5368 remote_async_ops.to_fetch_registers = remote_fetch_registers; 5369 remote_async_ops.to_store_registers = remote_store_registers; 5370 remote_async_ops.to_prepare_to_store = remote_prepare_to_store; 5371 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory; 5372 remote_async_ops.to_files_info = remote_files_info; 5373 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint; 5374 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint; 5375 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources; 5376 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint; 5377 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint; 5378 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint; 5379 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint; 5380 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint; 5381 remote_async_ops.to_stopped_data_address = remote_stopped_data_address; 5382 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior; 5383 remote_async_ops.to_terminal_ours = remote_async_terminal_ours; 5384 remote_async_ops.to_kill = remote_async_kill; 5385 remote_async_ops.to_load = generic_load; 5386 remote_async_ops.to_mourn_inferior = remote_async_mourn; 5387 remote_async_ops.to_thread_alive = remote_thread_alive; 5388 remote_async_ops.to_find_new_threads = remote_threads_info; 5389 remote_async_ops.to_pid_to_str = remote_pid_to_str; 5390 remote_async_ops.to_extra_thread_info = remote_threads_extra_info; 5391 remote_async_ops.to_stop = remote_stop; 5392 remote_async_ops.to_xfer_partial = remote_xfer_partial; 5393 remote_async_ops.to_rcmd = remote_rcmd; 5394 remote_async_ops.to_stratum = process_stratum; 5395 remote_async_ops.to_has_all_memory = 1; 5396 remote_async_ops.to_has_memory = 1; 5397 remote_async_ops.to_has_stack = 1; 5398 remote_async_ops.to_has_registers = 1; 5399 remote_async_ops.to_has_execution = 1; 5400 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */ 5401 remote_async_ops.to_can_async_p = remote_can_async_p; 5402 remote_async_ops.to_is_async_p = remote_is_async_p; 5403 remote_async_ops.to_async = remote_async; 5404 remote_async_ops.to_async_mask_value = 1; 5405 remote_async_ops.to_magic = OPS_MAGIC; 5406 } 5407 5408 /* Set up the async extended remote vector by making a copy of the standard 5409 remote vector and adding to it. */ 5410 5411 static void 5412 init_extended_async_remote_ops (void) 5413 { 5414 extended_async_remote_ops = remote_async_ops; 5415 5416 extended_async_remote_ops.to_shortname = "extended-async"; 5417 extended_async_remote_ops.to_longname = 5418 "Extended remote serial target in async gdb-specific protocol"; 5419 extended_async_remote_ops.to_doc = 5420 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\ 5421 Specify the serial device it is connected to (e.g. /dev/ttya).", 5422 extended_async_remote_ops.to_open = extended_remote_async_open; 5423 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior; 5424 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn; 5425 } 5426 5427 static void 5428 set_remote_cmd (char *args, int from_tty) 5429 { 5430 } 5431 5432 static void 5433 show_remote_cmd (char *args, int from_tty) 5434 { 5435 /* FIXME: cagney/2002-06-15: This function should iterate over 5436 remote_show_cmdlist for a list of sub commands to show. */ 5437 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL); 5438 show_remote_protocol_P_packet_cmd (args, from_tty, NULL); 5439 show_remote_protocol_p_packet_cmd (args, from_tty, NULL); 5440 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL); 5441 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL); 5442 show_remote_protocol_binary_download_cmd (args, from_tty, NULL); 5443 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL); 5444 } 5445 5446 static void 5447 build_remote_gdbarch_data (void) 5448 { 5449 remote_address_size = TARGET_ADDR_BIT; 5450 } 5451 5452 /* Saved pointer to previous owner of the new_objfile event. */ 5453 static void (*remote_new_objfile_chain) (struct objfile *); 5454 5455 /* Function to be called whenever a new objfile (shlib) is detected. */ 5456 static void 5457 remote_new_objfile (struct objfile *objfile) 5458 { 5459 if (remote_desc != 0) /* Have a remote connection */ 5460 { 5461 remote_check_symbols (objfile); 5462 } 5463 /* Call predecessor on chain, if any. */ 5464 if (remote_new_objfile_chain != 0 && 5465 remote_desc == 0) 5466 remote_new_objfile_chain (objfile); 5467 } 5468 5469 void 5470 _initialize_remote (void) 5471 { 5472 static struct cmd_list_element *remote_set_cmdlist; 5473 static struct cmd_list_element *remote_show_cmdlist; 5474 struct cmd_list_element *tmpcmd; 5475 5476 /* architecture specific data */ 5477 remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state); 5478 5479 /* Old tacky stuff. NOTE: This comes after the remote protocol so 5480 that the remote protocol has been initialized. */ 5481 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size); 5482 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data); 5483 5484 init_remote_ops (); 5485 add_target (&remote_ops); 5486 5487 init_extended_remote_ops (); 5488 add_target (&extended_remote_ops); 5489 5490 init_remote_async_ops (); 5491 add_target (&remote_async_ops); 5492 5493 init_extended_async_remote_ops (); 5494 add_target (&extended_async_remote_ops); 5495 5496 /* Hook into new objfile notification. */ 5497 remote_new_objfile_chain = deprecated_target_new_objfile_hook; 5498 deprecated_target_new_objfile_hook = remote_new_objfile; 5499 5500 #if 0 5501 init_remote_threadtests (); 5502 #endif 5503 5504 /* set/show remote ... */ 5505 5506 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\ 5507 Remote protocol specific variables\n\ 5508 Configure various remote-protocol specific variables such as\n\ 5509 the packets being used", 5510 &remote_set_cmdlist, "set remote ", 5511 0/*allow-unknown*/, &setlist); 5512 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\ 5513 Remote protocol specific variables\n\ 5514 Configure various remote-protocol specific variables such as\n\ 5515 the packets being used", 5516 &remote_show_cmdlist, "show remote ", 5517 0/*allow-unknown*/, &showlist); 5518 5519 add_cmd ("compare-sections", class_obscure, compare_sections_command, 5520 "Compare section data on target to the exec file.\n\ 5521 Argument is a single section name (default: all loaded sections).", 5522 &cmdlist); 5523 5524 add_cmd ("packet", class_maintenance, packet_command, 5525 "Send an arbitrary packet to a remote target.\n\ 5526 maintenance packet TEXT\n\ 5527 If GDB is talking to an inferior via the GDB serial protocol, then\n\ 5528 this command sends the string TEXT to the inferior, and displays the\n\ 5529 response packet. GDB supplies the initial `$' character, and the\n\ 5530 terminating `#' character and checksum.", 5531 &maintenancelist); 5532 5533 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, "\ 5534 Set whether to send break if interrupted.", "\ 5535 Show whether to send break if interrupted.", "\ 5536 If set, a break, instead of a cntrl-c, is sent to the remote target.", "\ 5537 Whether to send break if interrupted is %s.", 5538 NULL, NULL, 5539 &setlist, &showlist); 5540 5541 /* Install commands for configuring memory read/write packets. */ 5542 5543 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, 5544 "Set the maximum number of bytes per memory write packet (deprecated).\n", 5545 &setlist); 5546 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, 5547 "Show the maximum number of bytes per memory write packet (deprecated).\n", 5548 &showlist); 5549 add_cmd ("memory-write-packet-size", no_class, 5550 set_memory_write_packet_size, 5551 "Set the maximum number of bytes per memory-write packet.\n" 5552 "Specify the number of bytes in a packet or 0 (zero) for the\n" 5553 "default packet size. The actual limit is further reduced\n" 5554 "dependent on the target. Specify ``fixed'' to disable the\n" 5555 "further restriction and ``limit'' to enable that restriction\n", 5556 &remote_set_cmdlist); 5557 add_cmd ("memory-read-packet-size", no_class, 5558 set_memory_read_packet_size, 5559 "Set the maximum number of bytes per memory-read packet.\n" 5560 "Specify the number of bytes in a packet or 0 (zero) for the\n" 5561 "default packet size. The actual limit is further reduced\n" 5562 "dependent on the target. Specify ``fixed'' to disable the\n" 5563 "further restriction and ``limit'' to enable that restriction\n", 5564 &remote_set_cmdlist); 5565 add_cmd ("memory-write-packet-size", no_class, 5566 show_memory_write_packet_size, 5567 "Show the maximum number of bytes per memory-write packet.\n", 5568 &remote_show_cmdlist); 5569 add_cmd ("memory-read-packet-size", no_class, 5570 show_memory_read_packet_size, 5571 "Show the maximum number of bytes per memory-read packet.\n", 5572 &remote_show_cmdlist); 5573 5574 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class, 5575 &remote_hw_watchpoint_limit, "\ 5576 Set the maximum number of target hardware watchpoints.", "\ 5577 Show the maximum number of target hardware watchpoints.", "\ 5578 Specify a negative limit for unlimited.", "\ 5579 The maximum number of target hardware watchpoints is %s.", 5580 NULL, NULL, 5581 &remote_set_cmdlist, &remote_show_cmdlist); 5582 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class, 5583 &remote_hw_breakpoint_limit, "\ 5584 Set the maximum number of target hardware breakpoints.", "\ 5585 Show the maximum number of target hardware breakpoints.", "\ 5586 Specify a negative limit for unlimited.", "\ 5587 The maximum number of target hardware breakpoints is %s.", 5588 NULL, NULL, 5589 &remote_set_cmdlist, &remote_show_cmdlist); 5590 5591 deprecated_add_show_from_set 5592 (add_set_cmd ("remoteaddresssize", class_obscure, 5593 var_integer, (char *) &remote_address_size, 5594 "Set the maximum size of the address (in bits) \ 5595 in a memory packet.\n", 5596 &setlist), 5597 &showlist); 5598 5599 add_packet_config_cmd (&remote_protocol_binary_download, 5600 "X", "binary-download", 5601 set_remote_protocol_binary_download_cmd, 5602 show_remote_protocol_binary_download_cmd, 5603 &remote_set_cmdlist, &remote_show_cmdlist, 5604 1); 5605 #if 0 5606 /* XXXX - should ``set remotebinarydownload'' be retained for 5607 compatibility. */ 5608 deprecated_add_show_from_set 5609 (add_set_cmd ("remotebinarydownload", no_class, 5610 var_boolean, (char *) &remote_binary_download, 5611 "Set binary downloads.\n", &setlist), 5612 &showlist); 5613 #endif 5614 5615 add_packet_config_cmd (&remote_protocol_vcont, 5616 "vCont", "verbose-resume", 5617 set_remote_protocol_vcont_packet_cmd, 5618 show_remote_protocol_vcont_packet_cmd, 5619 &remote_set_cmdlist, &remote_show_cmdlist, 5620 0); 5621 5622 add_packet_config_cmd (&remote_protocol_qSymbol, 5623 "qSymbol", "symbol-lookup", 5624 set_remote_protocol_qSymbol_packet_cmd, 5625 show_remote_protocol_qSymbol_packet_cmd, 5626 &remote_set_cmdlist, &remote_show_cmdlist, 5627 0); 5628 5629 add_packet_config_cmd (&remote_protocol_P, 5630 "P", "set-register", 5631 set_remote_protocol_P_packet_cmd, 5632 show_remote_protocol_P_packet_cmd, 5633 &remote_set_cmdlist, &remote_show_cmdlist, 5634 1); 5635 5636 add_packet_config_cmd (&remote_protocol_p, 5637 "p", "fetch-register", 5638 set_remote_protocol_p_packet_cmd, 5639 show_remote_protocol_p_packet_cmd, 5640 &remote_set_cmdlist, &remote_show_cmdlist, 5641 1); 5642 5643 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP], 5644 "Z0", "software-breakpoint", 5645 set_remote_protocol_Z_software_bp_packet_cmd, 5646 show_remote_protocol_Z_software_bp_packet_cmd, 5647 &remote_set_cmdlist, &remote_show_cmdlist, 5648 0); 5649 5650 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP], 5651 "Z1", "hardware-breakpoint", 5652 set_remote_protocol_Z_hardware_bp_packet_cmd, 5653 show_remote_protocol_Z_hardware_bp_packet_cmd, 5654 &remote_set_cmdlist, &remote_show_cmdlist, 5655 0); 5656 5657 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP], 5658 "Z2", "write-watchpoint", 5659 set_remote_protocol_Z_write_wp_packet_cmd, 5660 show_remote_protocol_Z_write_wp_packet_cmd, 5661 &remote_set_cmdlist, &remote_show_cmdlist, 5662 0); 5663 5664 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP], 5665 "Z3", "read-watchpoint", 5666 set_remote_protocol_Z_read_wp_packet_cmd, 5667 show_remote_protocol_Z_read_wp_packet_cmd, 5668 &remote_set_cmdlist, &remote_show_cmdlist, 5669 0); 5670 5671 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP], 5672 "Z4", "access-watchpoint", 5673 set_remote_protocol_Z_access_wp_packet_cmd, 5674 show_remote_protocol_Z_access_wp_packet_cmd, 5675 &remote_set_cmdlist, &remote_show_cmdlist, 5676 0); 5677 5678 add_packet_config_cmd (&remote_protocol_qPart_auxv, 5679 "qPart_auxv", "read-aux-vector", 5680 set_remote_protocol_qPart_auxv_packet_cmd, 5681 show_remote_protocol_qPart_auxv_packet_cmd, 5682 &remote_set_cmdlist, &remote_show_cmdlist, 5683 0); 5684 5685 /* Keep the old ``set remote Z-packet ...'' working. */ 5686 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure, 5687 &remote_Z_packet_detect, "\ 5688 Set use of remote protocol `Z' packets", "\ 5689 Show use of remote protocol `Z' packets ", "\ 5690 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\ 5691 packets.", "\ 5692 Use of remote protocol `Z' packets is %s", 5693 set_remote_protocol_Z_packet_cmd, 5694 show_remote_protocol_Z_packet_cmd, 5695 &remote_set_cmdlist, &remote_show_cmdlist); 5696 5697 /* Eventually initialize fileio. See fileio.c */ 5698 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist); 5699 } 5700