1 /* Handle AIX5 shared libraries for GDB, the GNU Debugger. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 3 2001 4 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 25 #include <sys/types.h> 26 #include <signal.h> 27 #include "gdb_string.h" 28 #include <sys/param.h> 29 #include <fcntl.h> 30 #include <sys/procfs.h> 31 32 #include "elf/external.h" 33 34 #include "symtab.h" 35 #include "bfd.h" 36 #include "symfile.h" 37 #include "objfiles.h" 38 #include "gdbcore.h" 39 #include "command.h" 40 #include "target.h" 41 #include "frame.h" 42 #include "gdb_regex.h" 43 #include "inferior.h" 44 #include "environ.h" 45 #include "language.h" 46 #include "gdbcmd.h" 47 48 #include "solist.h" 49 50 /* Link map info to include in an allocated so_list entry */ 51 52 struct lm_info 53 { 54 int nmappings; /* number of mappings */ 55 struct lm_mapping 56 { 57 CORE_ADDR addr; /* base address */ 58 CORE_ADDR size; /* size of mapped object */ 59 CORE_ADDR offset; /* offset into mapped object */ 60 long flags; /* MA_ protection and attribute flags */ 61 CORE_ADDR gp; /* global pointer value */ 62 } *mapping; 63 char *mapname; /* name in /proc/pid/object */ 64 char *pathname; /* full pathname to object */ 65 char *membername; /* member name in archive file */ 66 }; 67 68 /* List of symbols in the dynamic linker where GDB can try to place 69 a breakpoint to monitor shared library events. */ 70 71 static char *solib_break_names[] = 72 { 73 "_r_debug_state", 74 NULL 75 }; 76 77 static void aix5_relocate_main_executable (void); 78 79 /* 80 81 LOCAL FUNCTION 82 83 bfd_lookup_symbol -- lookup the value for a specific symbol 84 85 SYNOPSIS 86 87 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname) 88 89 DESCRIPTION 90 91 An expensive way to lookup the value of a single symbol for 92 bfd's that are only temporary anyway. This is used by the 93 shared library support to find the address of the debugger 94 interface structures in the shared library. 95 96 Note that 0 is specifically allowed as an error return (no 97 such symbol). 98 */ 99 100 static CORE_ADDR 101 bfd_lookup_symbol (bfd *abfd, char *symname) 102 { 103 long storage_needed; 104 asymbol *sym; 105 asymbol **symbol_table; 106 unsigned int number_of_symbols; 107 unsigned int i; 108 struct cleanup *back_to; 109 CORE_ADDR symaddr = 0; 110 111 storage_needed = bfd_get_symtab_upper_bound (abfd); 112 113 if (storage_needed > 0) 114 { 115 symbol_table = (asymbol **) xmalloc (storage_needed); 116 back_to = make_cleanup (xfree, symbol_table); 117 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); 118 119 for (i = 0; i < number_of_symbols; i++) 120 { 121 sym = *symbol_table++; 122 if (strcmp (sym->name, symname) == 0) 123 { 124 /* Bfd symbols are section relative. */ 125 symaddr = sym->value + sym->section->vma; 126 break; 127 } 128 } 129 do_cleanups (back_to); 130 } 131 132 if (symaddr) 133 return symaddr; 134 135 /* Look for the symbol in the dynamic string table too. */ 136 137 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); 138 139 if (storage_needed > 0) 140 { 141 symbol_table = (asymbol **) xmalloc (storage_needed); 142 back_to = make_cleanup (xfree, symbol_table); 143 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); 144 145 for (i = 0; i < number_of_symbols; i++) 146 { 147 sym = *symbol_table++; 148 if (strcmp (sym->name, symname) == 0) 149 { 150 /* Bfd symbols are section relative. */ 151 symaddr = sym->value + sym->section->vma; 152 break; 153 } 154 } 155 do_cleanups (back_to); 156 } 157 158 return symaddr; 159 } 160 161 162 /* Read /proc/PID/map and build a list of shared objects such that 163 the pr_mflags value AND'd with MATCH_MASK is equal to MATCH_VAL. 164 This gives us a convenient way to find all of the mappings that 165 don't belong to the main executable or vice versa. Here are 166 some of the possibilities: 167 168 - Fetch all mappings: 169 MATCH_MASK: 0 170 MATCH_VAL: 0 171 - Fetch all mappings except for main executable: 172 MATCH_MASK: MA_MAINEXEC 173 MATCH_VAL: 0 174 - Fetch only main executable: 175 MATCH_MASK: MA_MAINEXEC 176 MATCH_VAL: MA_MAINEXEC 177 178 A cleanup chain for the list allocations done by this function should 179 be established prior to calling build_so_list_from_mapfile(). */ 180 181 static struct so_list * 182 build_so_list_from_mapfile (int pid, long match_mask, long match_val) 183 { 184 char *mapbuf = NULL; 185 struct prmap *prmap; 186 int mapbuf_size; 187 struct so_list *sos = NULL; 188 189 { 190 int mapbuf_allocation_size = 8192; 191 char *map_pathname; 192 int map_fd; 193 194 /* Open the map file */ 195 196 map_pathname = xstrprintf ("/proc/%d/map", pid); 197 map_fd = open (map_pathname, O_RDONLY); 198 xfree (map_pathname); 199 if (map_fd < 0) 200 return 0; 201 202 /* Read the entire map file in */ 203 do 204 { 205 if (mapbuf) 206 { 207 xfree (mapbuf); 208 mapbuf_allocation_size *= 2; 209 lseek (map_fd, 0, SEEK_SET); 210 } 211 mapbuf = xmalloc (mapbuf_allocation_size); 212 mapbuf_size = read (map_fd, mapbuf, mapbuf_allocation_size); 213 if (mapbuf_size < 0) 214 { 215 xfree (mapbuf); 216 /* FIXME: This warrants an error or a warning of some sort */ 217 return 0; 218 } 219 } while (mapbuf_size == mapbuf_allocation_size); 220 221 close (map_fd); 222 } 223 224 for (prmap = (struct prmap *) mapbuf; 225 (char *) prmap < mapbuf + mapbuf_size; 226 prmap++) 227 { 228 char *mapname, *pathname, *membername; 229 struct so_list *sop; 230 int mapidx; 231 232 if (prmap->pr_size == 0) 233 break; 234 235 /* Skip to the next entry if there's no path associated with the 236 map, unless we're looking for the kernel text region, in which 237 case it's okay if there's no path. */ 238 if ((prmap->pr_pathoff == 0 || prmap->pr_pathoff >= mapbuf_size) 239 && ((match_mask & MA_KERNTEXT) == 0)) 240 continue; 241 242 /* Skip to the next entry if our match conditions don't hold. */ 243 if ((prmap->pr_mflags & match_mask) != match_val) 244 continue; 245 246 mapname = prmap->pr_mapname; 247 if (prmap->pr_pathoff == 0) 248 { 249 pathname = ""; 250 membername = ""; 251 } 252 else 253 { 254 pathname = mapbuf + prmap->pr_pathoff; 255 membername = pathname + strlen (pathname) + 1; 256 } 257 258 for (sop = sos; sop != NULL; sop = sop->next) 259 if (strcmp (pathname, sop->lm_info->pathname) == 0 260 && strcmp (membername, sop->lm_info->membername) == 0) 261 break; 262 263 if (sop == NULL) 264 { 265 sop = xcalloc (1, sizeof (struct so_list)); 266 make_cleanup (xfree, sop); 267 sop->lm_info = xcalloc (1, sizeof (struct lm_info)); 268 make_cleanup (xfree, sop->lm_info); 269 sop->lm_info->mapname = xstrdup (mapname); 270 make_cleanup (xfree, sop->lm_info->mapname); 271 /* FIXME: Eliminate the pathname field once length restriction 272 is lifted on so_name and so_original_name. */ 273 sop->lm_info->pathname = xstrdup (pathname); 274 make_cleanup (xfree, sop->lm_info->pathname); 275 sop->lm_info->membername = xstrdup (membername); 276 make_cleanup (xfree, sop->lm_info->membername); 277 278 strncpy (sop->so_name, pathname, SO_NAME_MAX_PATH_SIZE - 1); 279 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 280 strcpy (sop->so_original_name, sop->so_name); 281 282 sop->next = sos; 283 sos = sop; 284 } 285 286 mapidx = sop->lm_info->nmappings; 287 sop->lm_info->nmappings += 1; 288 sop->lm_info->mapping 289 = xrealloc (sop->lm_info->mapping, 290 sop->lm_info->nmappings * sizeof (struct lm_mapping)); 291 sop->lm_info->mapping[mapidx].addr = (CORE_ADDR) prmap->pr_vaddr; 292 sop->lm_info->mapping[mapidx].size = prmap->pr_size; 293 sop->lm_info->mapping[mapidx].offset = prmap->pr_off; 294 sop->lm_info->mapping[mapidx].flags = prmap->pr_mflags; 295 sop->lm_info->mapping[mapidx].gp = (CORE_ADDR) prmap->pr_gp; 296 } 297 298 xfree (mapbuf); 299 return sos; 300 } 301 302 /* 303 304 LOCAL FUNCTION 305 306 open_symbol_file_object 307 308 SYNOPSIS 309 310 void open_symbol_file_object (void *from_tty) 311 312 DESCRIPTION 313 314 If no open symbol file, attempt to locate and open the main symbol 315 file. 316 317 If FROM_TTYP dereferences to a non-zero integer, allow messages to 318 be printed. This parameter is a pointer rather than an int because 319 open_symbol_file_object() is called via catch_errors() and 320 catch_errors() requires a pointer argument. */ 321 322 static int 323 open_symbol_file_object (void *from_ttyp) 324 { 325 CORE_ADDR lm, l_name; 326 char *filename; 327 int errcode; 328 int from_tty = *(int *)from_ttyp; 329 struct cleanup *old_chain = make_cleanup (null_cleanup, 0); 330 struct so_list *sos; 331 332 sos = build_so_list_from_mapfile (PIDGET (inferior_ptid), 333 MA_MAINEXEC, MA_MAINEXEC); 334 335 336 if (sos == NULL) 337 { 338 warning ("Could not find name of main executable in map file"); 339 return 0; 340 } 341 342 symbol_file_command (sos->lm_info->pathname, from_tty); 343 344 do_cleanups (old_chain); 345 346 aix5_relocate_main_executable (); 347 348 return 1; 349 } 350 351 /* LOCAL FUNCTION 352 353 aix5_current_sos -- build a list of currently loaded shared objects 354 355 SYNOPSIS 356 357 struct so_list *aix5_current_sos () 358 359 DESCRIPTION 360 361 Build a list of `struct so_list' objects describing the shared 362 objects currently loaded in the inferior. This list does not 363 include an entry for the main executable file. 364 365 Note that we only gather information directly available from the 366 inferior --- we don't examine any of the shared library files 367 themselves. The declaration of `struct so_list' says which fields 368 we provide values for. */ 369 370 static struct so_list * 371 aix5_current_sos (void) 372 { 373 struct cleanup *old_chain = make_cleanup (null_cleanup, 0); 374 struct so_list *sos; 375 376 /* Fetch the list of mappings, excluding the main executable. */ 377 sos = build_so_list_from_mapfile (PIDGET (inferior_ptid), MA_MAINEXEC, 0); 378 379 /* Reverse the list; it looks nicer when we print it if the mappings 380 are in the same order as in the map file. */ 381 if (sos) 382 { 383 struct so_list *next = sos->next; 384 385 sos->next = 0; 386 while (next) 387 { 388 struct so_list *prev = sos; 389 390 sos = next; 391 next = next->next; 392 sos->next = prev; 393 } 394 } 395 discard_cleanups (old_chain); 396 return sos; 397 } 398 399 400 /* Return 1 if PC lies in the dynamic symbol resolution code of the 401 run time loader. */ 402 403 static CORE_ADDR interp_text_sect_low; 404 static CORE_ADDR interp_text_sect_high; 405 static CORE_ADDR interp_plt_sect_low; 406 static CORE_ADDR interp_plt_sect_high; 407 408 static int 409 aix5_in_dynsym_resolve_code (CORE_ADDR pc) 410 { 411 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) 412 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) 413 || in_plt_section (pc, NULL)); 414 } 415 416 /* 417 418 LOCAL FUNCTION 419 420 enable_break -- arrange for dynamic linker to hit breakpoint 421 422 SYNOPSIS 423 424 int enable_break (void) 425 426 DESCRIPTION 427 428 The dynamic linkers has, as part of its debugger interface, support 429 for arranging for the inferior to hit a breakpoint after mapping in 430 the shared libraries. This function enables that breakpoint. 431 432 */ 433 434 static int 435 enable_break (void) 436 { 437 int success = 0; 438 439 struct minimal_symbol *msymbol; 440 char **bkpt_namep; 441 asection *interp_sect; 442 443 /* First, remove all the solib event breakpoints. Their addresses 444 may have changed since the last time we ran the program. */ 445 remove_solib_event_breakpoints (); 446 447 interp_text_sect_low = interp_text_sect_high = 0; 448 interp_plt_sect_low = interp_plt_sect_high = 0; 449 450 /* Find the .interp section; if not found, warn the user and drop 451 into the old breakpoint at symbol code. */ 452 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 453 if (interp_sect) 454 { 455 unsigned int interp_sect_size; 456 char *buf; 457 CORE_ADDR load_addr; 458 bfd *tmp_bfd; 459 CORE_ADDR sym_addr = 0; 460 461 /* Read the contents of the .interp section into a local buffer; 462 the contents specify the dynamic linker this program uses. */ 463 interp_sect_size = bfd_section_size (exec_bfd, interp_sect); 464 buf = alloca (interp_sect_size); 465 bfd_get_section_contents (exec_bfd, interp_sect, 466 buf, 0, interp_sect_size); 467 468 /* Now we need to figure out where the dynamic linker was 469 loaded so that we can load its symbols and place a breakpoint 470 in the dynamic linker itself. 471 472 This address is stored on the stack. However, I've been unable 473 to find any magic formula to find it for Solaris (appears to 474 be trivial on GNU/Linux). Therefore, we have to try an alternate 475 mechanism to find the dynamic linker's base address. */ 476 tmp_bfd = bfd_openr (buf, gnutarget); 477 if (tmp_bfd == NULL) 478 goto bkpt_at_symbol; 479 480 /* Make sure the dynamic linker's really a useful object. */ 481 if (!bfd_check_format (tmp_bfd, bfd_object)) 482 { 483 warning ("Unable to grok dynamic linker %s as an object file", buf); 484 bfd_close (tmp_bfd); 485 goto bkpt_at_symbol; 486 } 487 488 /* We find the dynamic linker's base address by examining the 489 current pc (which point at the entry point for the dynamic 490 linker) and subtracting the offset of the entry point. */ 491 load_addr = read_pc () - tmp_bfd->start_address; 492 493 /* Record the relocated start and end address of the dynamic linker 494 text and plt section for aix5_in_dynsym_resolve_code. */ 495 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); 496 if (interp_sect) 497 { 498 interp_text_sect_low = 499 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 500 interp_text_sect_high = 501 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); 502 } 503 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); 504 if (interp_sect) 505 { 506 interp_plt_sect_low = 507 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 508 interp_plt_sect_high = 509 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); 510 } 511 512 /* Now try to set a breakpoint in the dynamic linker. */ 513 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 514 { 515 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep); 516 if (sym_addr != 0) 517 break; 518 } 519 520 /* We're done with the temporary bfd. */ 521 bfd_close (tmp_bfd); 522 523 if (sym_addr != 0) 524 { 525 create_solib_event_breakpoint (load_addr + sym_addr); 526 return 1; 527 } 528 529 /* For whatever reason we couldn't set a breakpoint in the dynamic 530 linker. Warn and drop into the old code. */ 531 bkpt_at_symbol: 532 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."); 533 } 534 535 /* Nothing good happened. */ 536 success = 0; 537 538 return (success); 539 } 540 541 /* 542 543 LOCAL FUNCTION 544 545 special_symbol_handling -- additional shared library symbol handling 546 547 SYNOPSIS 548 549 void special_symbol_handling () 550 551 DESCRIPTION 552 553 Once the symbols from a shared object have been loaded in the usual 554 way, we are called to do any system specific symbol handling that 555 is needed. 556 557 */ 558 559 static void 560 aix5_special_symbol_handling (void) 561 { 562 /* Nothing needed (yet) for AIX5. */ 563 } 564 565 /* On AIX5, the /proc/PID/map information is used to determine 566 the relocation offsets needed for relocating the main executable. 567 There is no problem determining which map entries correspond 568 to the main executable, because these will have the MA_MAINEXEC 569 flag set. The tricky part is determining which sections correspond 570 to which map entries. To date, the following approaches have 571 been tried: 572 573 - Use the MA_WRITE attribute of pr_mflags to distinguish the read-only 574 mapping from the read/write mapping. (This assumes that there are 575 only two mappings for the main executable.) All writable sections 576 are associated with the read/write mapping and all non-writable 577 sections are associated with the read-only mapping. 578 579 This approach worked quite well until we came across executables 580 which didn't have a read-only mapping. Both mappings had the 581 same attributes represented in pr_mflags and it was impossible 582 to tell them apart. 583 584 - Use the pr_off field (which represents the offset into the 585 executable) to determine the section-to-mapping relationship. 586 Unfortunately, this approach doesn't work either, because the 587 offset value contained in the mapping is rounded down by some 588 moderately large power-of-2 value (4096 is a typical value). 589 A small (e.g. "Hello World") program will appear to have all 590 of its sections belonging to both mappings. 591 592 Also, the following approach has been considered, but dismissed: 593 594 - The section vma values typically look (something) like 595 0x00000001xxxxxxxx or 0x00000002xxxxxxxx. Furthermore, the 596 0x00000001xxxxxxxx values always belong to one mapping and 597 the 0x00000002xxxxxxxx values always belong to the other. 598 Thus it seems conceivable that GDB could use the bit patterns 599 in the upper portion (for some definition of "upper") in a 600 section's vma to help determine the section-to-mapping 601 relationship. 602 603 This approach was dismissed because there is nothing to prevent 604 the linker from lumping the section vmas together in one large 605 contiguous space and still expecting the dynamic linker to 606 separate them and relocate them independently. Also, different 607 linkers have been observed to use different patterns for the 608 upper portions of the vma addresses and it isn't clear what the 609 mask ought to be for distinguishing these patterns. 610 611 The current (admittedly inelegant) approach uses a lookup 612 table which associates section names with the map index that 613 they're permitted to be in. This is inelegant because we are 614 making the following assumptions: 615 616 1) There will only be two mappings. 617 2) The relevant (i.e. main executable) mappings will always appear 618 in the same order in the map file. 619 3) The sections named in the table will always belong to the 620 indicated mapping. 621 4) The table completely enumerates all possible section names. 622 623 IMO, any of these deficiencies alone will normally be sufficient 624 to disqualify this approach, but I haven't been able to think of 625 a better way to do it. 626 627 map_index_vs_section_name_okay() is a predicate which returns 628 true iff the section name NAME is associated with the map index 629 IDX in its builtin table. Of course, there's no guarantee that 630 this association is actually valid... */ 631 632 static int 633 map_index_vs_section_name_okay (int idx, const char *name) 634 { 635 static struct 636 { 637 char *name; 638 int idx; 639 } okay[] = 640 { 641 { ".interp", 0 }, 642 { ".hash", 0 }, 643 { ".dynsym", 0 }, 644 { ".dynstr", 0 }, 645 { ".rela.text", 0 }, 646 { ".rela.rodata", 0 }, 647 { ".rela.data", 0 }, 648 { ".rela.ctors", 0 }, 649 { ".rela.dtors", 0 }, 650 { ".rela.got", 0 }, 651 { ".rela.sdata", 0 }, 652 { ".rela.IA_64.pltoff", 0 }, 653 { ".rel.data", 0 }, 654 { ".rel.sdata", 0 }, 655 { ".rel.got", 0 }, 656 { ".rel.AIX.pfdesc", 0 }, 657 { ".rel.IA_64.pltoff", 0 }, 658 { ".dynamic", 0 }, 659 { ".init", 0 }, 660 { ".plt", 0 }, 661 { ".text", 0 }, 662 { ".fini", 0 }, 663 { ".rodata", 0 }, 664 { ".IA_64.unwind_info", 0 }, 665 { ".IA_64.unwind", 0 }, 666 { ".AIX.mustrel", 0 }, 667 668 { ".data", 1 }, 669 { ".ctors", 1 }, 670 { ".dtors", 1 }, 671 { ".got", 1 }, 672 { ".dynamic", 1}, 673 { ".sdata", 1 }, 674 { ".IA_64.pltoff", 1 }, 675 { ".sbss", 1 }, 676 { ".bss", 1 }, 677 { ".AIX.pfdesc", 1 } 678 }; 679 int i; 680 681 for (i = 0; i < sizeof (okay) / sizeof (okay[0]); i++) 682 { 683 if (strcmp (name, okay[i].name) == 0) 684 return idx == okay[i].idx; 685 } 686 687 warning ("solib-aix5.c: Ignoring section %s when relocating the executable\n", 688 name); 689 return 0; 690 } 691 692 #define SECTMAPMASK (~ (CORE_ADDR) 0x03ffffff) 693 694 static void 695 aix5_relocate_main_executable (void) 696 { 697 struct so_list *so; 698 struct section_offsets *new_offsets; 699 int i; 700 int changed = 0; 701 struct cleanup *old_chain = make_cleanup (null_cleanup, 0); 702 703 /* Fetch the mappings for the main executable from the map file. */ 704 so = build_so_list_from_mapfile (PIDGET (inferior_ptid), 705 MA_MAINEXEC, MA_MAINEXEC); 706 707 /* Make sure we actually have some mappings to work with. */ 708 if (so == NULL) 709 { 710 warning ("Could not find main executable in map file"); 711 do_cleanups (old_chain); 712 return; 713 } 714 715 /* Allocate the data structure which'll contain the new offsets to 716 relocate by. Initialize it so it contains the current offsets. */ 717 new_offsets = xcalloc (symfile_objfile->num_sections, 718 sizeof (struct section_offsets)); 719 make_cleanup (xfree, new_offsets); 720 for (i = 0; i < symfile_objfile->num_sections; i++) 721 new_offsets->offsets[i] = ANOFFSET (symfile_objfile->section_offsets, i); 722 723 /* Iterate over the mappings in the main executable and compute 724 the new offset value as appropriate. */ 725 for (i = 0; i < so->lm_info->nmappings; i++) 726 { 727 CORE_ADDR increment = 0; 728 struct obj_section *sect; 729 bfd *obfd = symfile_objfile->obfd; 730 struct lm_mapping *mapping = &so->lm_info->mapping[i]; 731 732 ALL_OBJFILE_OSECTIONS (symfile_objfile, sect) 733 { 734 int flags = bfd_get_section_flags (obfd, sect->the_bfd_section); 735 if (flags & SEC_ALLOC) 736 { 737 file_ptr filepos = sect->the_bfd_section->filepos; 738 if (map_index_vs_section_name_okay (i, 739 bfd_get_section_name (obfd, sect->the_bfd_section))) 740 { 741 int idx = sect->the_bfd_section->index; 742 743 if (increment == 0) 744 increment = mapping->addr 745 - (bfd_section_vma (obfd, sect->the_bfd_section) 746 & SECTMAPMASK); 747 748 if (increment != ANOFFSET (new_offsets, idx)) 749 { 750 new_offsets->offsets[idx] = increment; 751 changed = 1; 752 } 753 } 754 } 755 } 756 } 757 758 /* If any of the offsets have changed, then relocate the objfile. */ 759 if (changed) 760 objfile_relocate (symfile_objfile, new_offsets); 761 762 /* Free up all the space we've allocated. */ 763 do_cleanups (old_chain); 764 } 765 766 /* 767 768 GLOBAL FUNCTION 769 770 aix5_solib_create_inferior_hook -- shared library startup support 771 772 SYNOPSIS 773 774 void aix5_solib_create_inferior_hook() 775 776 DESCRIPTION 777 778 When gdb starts up the inferior, it nurses it along (through the 779 shell) until it is ready to execute it's first instruction. At this 780 point, this function gets called via expansion of the macro 781 SOLIB_CREATE_INFERIOR_HOOK. 782 783 For AIX5 executables, this first instruction is the first 784 instruction in the dynamic linker (for dynamically linked 785 executables) or the instruction at "start" for statically linked 786 executables. For dynamically linked executables, the system 787 first exec's libc.so.N, which contains the dynamic linker, 788 and starts it running. The dynamic linker maps in any needed 789 shared libraries, maps in the actual user executable, and then 790 jumps to "start" in the user executable. 791 792 */ 793 794 static void 795 aix5_solib_create_inferior_hook (void) 796 { 797 aix5_relocate_main_executable (); 798 799 if (!enable_break ()) 800 { 801 warning ("shared library handler failed to enable breakpoint"); 802 return; 803 } 804 } 805 806 static void 807 aix5_clear_solib (void) 808 { 809 } 810 811 static void 812 aix5_free_so (struct so_list *so) 813 { 814 xfree (so->lm_info->mapname); 815 xfree (so->lm_info->pathname); 816 xfree (so->lm_info->membername); 817 xfree (so->lm_info); 818 } 819 820 static void 821 aix5_relocate_section_addresses (struct so_list *so, 822 struct section_table *sec) 823 { 824 int flags = bfd_get_section_flags (sec->bfd, sec->the_bfd_section); 825 file_ptr filepos = sec->the_bfd_section->filepos; 826 827 if (flags & SEC_ALLOC) 828 { 829 int idx; 830 CORE_ADDR addr; 831 832 for (idx = 0; idx < so->lm_info->nmappings; idx++) 833 { 834 struct lm_mapping *mapping = &so->lm_info->mapping[idx]; 835 if (mapping->offset <= filepos 836 && filepos <= mapping->offset + mapping->size) 837 break; 838 } 839 840 if (idx >= so->lm_info->nmappings) 841 internal_error (__FILE__, __LINE__, 842 "aix_relocate_section_addresses: Can't find mapping for section %s", 843 bfd_get_section_name (sec->bfd, sec->the_bfd_section)); 844 845 addr = so->lm_info->mapping[idx].addr; 846 847 sec->addr += addr; 848 sec->endaddr += addr; 849 } 850 } 851 852 /* Find the global pointer for the given function address ADDR. */ 853 854 static CORE_ADDR 855 aix5_find_global_pointer (CORE_ADDR addr) 856 { 857 struct so_list *sos, *so; 858 CORE_ADDR global_pointer = 0; 859 struct cleanup *old_chain = make_cleanup (null_cleanup, 0); 860 861 sos = build_so_list_from_mapfile (PIDGET (inferior_ptid), 0, 0); 862 863 for (so = sos; so != NULL; so = so->next) 864 { 865 int idx; 866 for (idx = 0; idx < so->lm_info->nmappings; idx++) 867 if (so->lm_info->mapping[idx].addr <= addr 868 && addr <= so->lm_info->mapping[idx].addr 869 + so->lm_info->mapping[idx].size) 870 { 871 break; 872 } 873 874 if (idx < so->lm_info->nmappings) 875 { 876 /* Look for a non-zero global pointer in the current set of 877 mappings. */ 878 for (idx = 0; idx < so->lm_info->nmappings; idx++) 879 if (so->lm_info->mapping[idx].gp != 0) 880 { 881 global_pointer = so->lm_info->mapping[idx].gp; 882 break; 883 } 884 /* Get out regardless of whether we found one or not. Mappings 885 don't overlap, so it would be pointless to continue. */ 886 break; 887 } 888 } 889 890 do_cleanups (old_chain); 891 892 return global_pointer; 893 } 894 895 /* Find the execute-only kernel region known as the gate page. This 896 page is where the signal trampoline lives. It may be found by 897 querying the map file and looking for the MA_KERNTEXT flag. */ 898 static void 899 aix5_find_gate_addresses (CORE_ADDR *start, CORE_ADDR *end) 900 { 901 struct so_list *so; 902 struct cleanup *old_chain = make_cleanup (null_cleanup, 0); 903 904 /* Fetch the mappings for the main executable from the map file. */ 905 so = build_so_list_from_mapfile (PIDGET (inferior_ptid), 906 MA_KERNTEXT, MA_KERNTEXT); 907 908 /* Make sure we actually have some mappings to work with. */ 909 if (so == NULL) 910 { 911 warning ("Could not find gate page in map file"); 912 *start = 0; 913 *end = 0; 914 do_cleanups (old_chain); 915 return; 916 } 917 918 /* There should only be on kernel mapping for the gate page and 919 it'll be in the read-only (even though it's execute-only) 920 mapping in the lm_info struct. */ 921 922 *start = so->lm_info->mapping[0].addr; 923 *end = *start + so->lm_info->mapping[0].size; 924 925 /* Free up all the space we've allocated. */ 926 do_cleanups (old_chain); 927 } 928 929 /* From ia64-tdep.c. FIXME: If we end up using this for rs6000 too, 930 we'll need to make the names match. */ 931 extern CORE_ADDR (*native_find_global_pointer) (CORE_ADDR); 932 933 /* From ia64-aix-tdep.c. Hook for finding the starting and 934 ending gate page addresses. The only reason that this hook 935 is in this file is because this is where the map file reading 936 code is located. */ 937 extern void (*aix5_find_gate_addresses_hook) (CORE_ADDR *, CORE_ADDR *); 938 939 static struct target_so_ops aix5_so_ops; 940 941 void 942 _initialize_aix5_solib (void) 943 { 944 aix5_so_ops.relocate_section_addresses = aix5_relocate_section_addresses; 945 aix5_so_ops.free_so = aix5_free_so; 946 aix5_so_ops.clear_solib = aix5_clear_solib; 947 aix5_so_ops.solib_create_inferior_hook = aix5_solib_create_inferior_hook; 948 aix5_so_ops.special_symbol_handling = aix5_special_symbol_handling; 949 aix5_so_ops.current_sos = aix5_current_sos; 950 aix5_so_ops.open_symbol_file_object = open_symbol_file_object; 951 aix5_so_ops.in_dynsym_resolve_code = aix5_in_dynsym_resolve_code; 952 953 native_find_global_pointer = aix5_find_global_pointer; 954 aix5_find_gate_addresses_hook = aix5_find_gate_addresses; 955 956 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ 957 current_target_so_ops = &aix5_so_ops; 958 } 959