1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger. 2 3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 4 2000, 2001, 2003, 2004 5 Free Software Foundation, Inc. 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 2 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 59 Temple Place - Suite 330, 22 Boston, MA 02111-1307, USA. */ 23 24 #include "defs.h" 25 26 #include "elf/external.h" 27 #include "elf/common.h" 28 #include "elf/mips.h" 29 30 #include "auxv.h" 31 #include "symtab.h" 32 #include "bfd.h" 33 #include "symfile.h" 34 #include "objfiles.h" 35 #include "gdbcore.h" 36 #include "target.h" 37 #include "inferior.h" 38 #include "command.h" 39 40 #include "solist.h" 41 #include "solib-svr4.h" 42 43 #include "bfd-target.h" 44 #include "exec.h" 45 46 #ifndef SVR4_FETCH_LINK_MAP_OFFSETS 47 #define SVR4_FETCH_LINK_MAP_OFFSETS() svr4_fetch_link_map_offsets () 48 #endif 49 50 static struct link_map_offsets *svr4_fetch_link_map_offsets (void); 51 static struct link_map_offsets *legacy_fetch_link_map_offsets (void); 52 static int svr4_have_link_map_offsets (void); 53 54 /* fetch_link_map_offsets_gdbarch_data is a handle used to obtain the 55 architecture specific link map offsets fetching function. */ 56 57 static struct gdbarch_data *fetch_link_map_offsets_gdbarch_data; 58 59 /* legacy_svr4_fetch_link_map_offsets_hook is a pointer to a function 60 which is used to fetch link map offsets. It will only be set 61 by solib-legacy.c, if at all. */ 62 63 struct link_map_offsets *(*legacy_svr4_fetch_link_map_offsets_hook)(void) = 0; 64 65 /* Link map info to include in an allocated so_list entry */ 66 67 struct lm_info 68 { 69 /* Pointer to copy of link map from inferior. The type is char * 70 rather than void *, so that we may use byte offsets to find the 71 various fields without the need for a cast. */ 72 char *lm; 73 }; 74 75 /* On SVR4 systems, a list of symbols in the dynamic linker where 76 GDB can try to place a breakpoint to monitor shared library 77 events. 78 79 If none of these symbols are found, or other errors occur, then 80 SVR4 systems will fall back to using a symbol as the "startup 81 mapping complete" breakpoint address. */ 82 83 static char *solib_break_names[] = 84 { 85 "r_debug_state", 86 "_r_debug_state", 87 "_dl_debug_state", 88 "rtld_db_dlactivity", 89 "_rtld_debug_state", 90 91 /* On the 64-bit PowerPC, the linker symbol with the same name as 92 the C function points to a function descriptor, not to the entry 93 point. The linker symbol whose name is the C function name 94 prefixed with a '.' points to the function's entry point. So 95 when we look through this table, we ignore symbols that point 96 into the data section (thus skipping the descriptor's symbol), 97 and eventually try this one, giving us the real entry point 98 address. */ 99 "._dl_debug_state", 100 101 NULL 102 }; 103 104 #define BKPT_AT_SYMBOL 1 105 106 #if defined (BKPT_AT_SYMBOL) 107 static char *bkpt_names[] = 108 { 109 #ifdef SOLIB_BKPT_NAME 110 SOLIB_BKPT_NAME, /* Prefer configured name if it exists. */ 111 #endif 112 "_start", 113 "__start", 114 "main", 115 NULL 116 }; 117 #endif 118 119 static char *main_name_list[] = 120 { 121 "main_$main", 122 NULL 123 }; 124 125 /* Macro to extract an address from a solib structure. When GDB is 126 configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is 127 configured to handle 64-bit targets, so CORE_ADDR is 64 bits. We 128 have to extract only the significant bits of addresses to get the 129 right address when accessing the core file BFD. 130 131 Assume that the address is unsigned. */ 132 133 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \ 134 extract_unsigned_integer (&(MEMBER), sizeof (MEMBER)) 135 136 /* local data declarations */ 137 138 /* link map access functions */ 139 140 static CORE_ADDR 141 LM_ADDR (struct so_list *so) 142 { 143 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 144 145 return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lmo->l_addr_offset, 146 lmo->l_addr_size); 147 } 148 149 static CORE_ADDR 150 LM_NEXT (struct so_list *so) 151 { 152 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 153 154 /* Assume that the address is unsigned. */ 155 return extract_unsigned_integer (so->lm_info->lm + lmo->l_next_offset, 156 lmo->l_next_size); 157 } 158 159 static CORE_ADDR 160 LM_NAME (struct so_list *so) 161 { 162 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 163 164 /* Assume that the address is unsigned. */ 165 return extract_unsigned_integer (so->lm_info->lm + lmo->l_name_offset, 166 lmo->l_name_size); 167 } 168 169 static int 170 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so) 171 { 172 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 173 174 /* Assume that the address is unsigned. */ 175 return extract_unsigned_integer (so->lm_info->lm + lmo->l_prev_offset, 176 lmo->l_prev_size) == 0; 177 } 178 179 static CORE_ADDR debug_base; /* Base of dynamic linker structures */ 180 static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ 181 182 /* Local function prototypes */ 183 184 #if 0 185 static int match_main (char *); 186 #endif 187 188 static CORE_ADDR bfd_lookup_symbol (bfd *, char *, flagword); 189 190 /* 191 192 LOCAL FUNCTION 193 194 bfd_lookup_symbol -- lookup the value for a specific symbol 195 196 SYNOPSIS 197 198 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) 199 200 DESCRIPTION 201 202 An expensive way to lookup the value of a single symbol for 203 bfd's that are only temporary anyway. This is used by the 204 shared library support to find the address of the debugger 205 interface structures in the shared library. 206 207 If SECT_FLAGS is non-zero, only match symbols in sections whose 208 flags include all those in SECT_FLAGS. 209 210 Note that 0 is specifically allowed as an error return (no 211 such symbol). 212 */ 213 214 static CORE_ADDR 215 bfd_lookup_symbol (bfd *abfd, char *symname, flagword sect_flags) 216 { 217 long storage_needed; 218 asymbol *sym; 219 asymbol **symbol_table; 220 unsigned int number_of_symbols; 221 unsigned int i; 222 struct cleanup *back_to; 223 CORE_ADDR symaddr = 0; 224 225 storage_needed = bfd_get_symtab_upper_bound (abfd); 226 227 if (storage_needed > 0) 228 { 229 symbol_table = (asymbol **) xmalloc (storage_needed); 230 back_to = make_cleanup (xfree, symbol_table); 231 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); 232 233 for (i = 0; i < number_of_symbols; i++) 234 { 235 sym = *symbol_table++; 236 if (strcmp (sym->name, symname) == 0 237 && (sym->section->flags & sect_flags) == sect_flags) 238 { 239 /* Bfd symbols are section relative. */ 240 symaddr = sym->value + sym->section->vma; 241 break; 242 } 243 } 244 do_cleanups (back_to); 245 } 246 247 if (symaddr) 248 return symaddr; 249 250 /* On FreeBSD, the dynamic linker is stripped by default. So we'll 251 have to check the dynamic string table too. */ 252 253 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd); 254 255 if (storage_needed > 0) 256 { 257 symbol_table = (asymbol **) xmalloc (storage_needed); 258 back_to = make_cleanup (xfree, symbol_table); 259 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table); 260 261 for (i = 0; i < number_of_symbols; i++) 262 { 263 sym = *symbol_table++; 264 265 if (strcmp (sym->name, symname) == 0 266 && (sym->section->flags & sect_flags) == sect_flags) 267 { 268 /* Bfd symbols are section relative. */ 269 symaddr = sym->value + sym->section->vma; 270 break; 271 } 272 } 273 do_cleanups (back_to); 274 } 275 276 return symaddr; 277 } 278 279 /* 280 281 LOCAL FUNCTION 282 283 elf_locate_base -- locate the base address of dynamic linker structs 284 for SVR4 elf targets. 285 286 SYNOPSIS 287 288 CORE_ADDR elf_locate_base (void) 289 290 DESCRIPTION 291 292 For SVR4 elf targets the address of the dynamic linker's runtime 293 structure is contained within the dynamic info section in the 294 executable file. The dynamic section is also mapped into the 295 inferior address space. Because the runtime loader fills in the 296 real address before starting the inferior, we have to read in the 297 dynamic info section from the inferior address space. 298 If there are any errors while trying to find the address, we 299 silently return 0, otherwise the found address is returned. 300 301 */ 302 303 static CORE_ADDR 304 elf_locate_base (void) 305 { 306 struct bfd_section *dyninfo_sect; 307 int dyninfo_sect_size; 308 CORE_ADDR dyninfo_addr, relocated_dyninfo_addr, entry_addr; 309 char *buf; 310 char *bufend; 311 int arch_size; 312 313 /* Find the address of the entry point of the program from the 314 auxv vector. */ 315 if (target_auxv_search (¤t_target, AT_ENTRY, &entry_addr) != 1) 316 { 317 /* No auxv info, maybe an older kernel. Fake our way through. */ 318 entry_addr = bfd_get_start_address (exec_bfd); 319 } 320 321 /* Find the start address of the .dynamic section. */ 322 dyninfo_sect = bfd_get_section_by_name (exec_bfd, ".dynamic"); 323 if (dyninfo_sect == NULL) 324 return 0; 325 dyninfo_addr = bfd_section_vma (exec_bfd, dyninfo_sect); 326 327 relocated_dyninfo_addr = dyninfo_addr 328 + entry_addr - bfd_get_start_address(exec_bfd); 329 330 /* Read in .dynamic section, silently ignore errors. */ 331 dyninfo_sect_size = bfd_section_size (exec_bfd, dyninfo_sect); 332 buf = alloca (dyninfo_sect_size); 333 if (target_read_memory (relocated_dyninfo_addr, buf, dyninfo_sect_size)) 334 return 0; 335 336 /* Find the DT_DEBUG entry in the the .dynamic section. 337 For mips elf we look for DT_MIPS_RLD_MAP, mips elf apparently has 338 no DT_DEBUG entries. */ 339 340 arch_size = bfd_get_arch_size (exec_bfd); 341 if (arch_size == -1) /* failure */ 342 return 0; 343 344 if (arch_size == 32) 345 { /* 32-bit elf */ 346 for (bufend = buf + dyninfo_sect_size; 347 buf < bufend; 348 buf += sizeof (Elf32_External_Dyn)) 349 { 350 Elf32_External_Dyn *x_dynp = (Elf32_External_Dyn *) buf; 351 long dyn_tag; 352 CORE_ADDR dyn_ptr; 353 354 dyn_tag = bfd_h_get_32 (exec_bfd, (bfd_byte *) x_dynp->d_tag); 355 if (dyn_tag == DT_NULL) 356 break; 357 else if (dyn_tag == DT_DEBUG) 358 { 359 dyn_ptr = bfd_h_get_32 (exec_bfd, 360 (bfd_byte *) x_dynp->d_un.d_ptr); 361 return dyn_ptr; 362 } 363 else if (dyn_tag == DT_MIPS_RLD_MAP) 364 { 365 char *pbuf; 366 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; 367 368 pbuf = alloca (pbuf_size); 369 /* DT_MIPS_RLD_MAP contains a pointer to the address 370 of the dynamic link structure. */ 371 dyn_ptr = bfd_h_get_32 (exec_bfd, 372 (bfd_byte *) x_dynp->d_un.d_ptr); 373 if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) 374 return 0; 375 return extract_unsigned_integer (pbuf, pbuf_size); 376 } 377 } 378 } 379 else /* 64-bit elf */ 380 { 381 for (bufend = buf + dyninfo_sect_size; 382 buf < bufend; 383 buf += sizeof (Elf64_External_Dyn)) 384 { 385 Elf64_External_Dyn *x_dynp = (Elf64_External_Dyn *) buf; 386 long dyn_tag; 387 CORE_ADDR dyn_ptr; 388 389 dyn_tag = bfd_h_get_64 (exec_bfd, (bfd_byte *) x_dynp->d_tag); 390 if (dyn_tag == DT_NULL) 391 break; 392 else if (dyn_tag == DT_DEBUG) 393 { 394 dyn_ptr = bfd_h_get_64 (exec_bfd, 395 (bfd_byte *) x_dynp->d_un.d_ptr); 396 return dyn_ptr; 397 } 398 else if (dyn_tag == DT_MIPS_RLD_MAP) 399 { 400 char *pbuf; 401 int pbuf_size = TARGET_PTR_BIT / HOST_CHAR_BIT; 402 403 pbuf = alloca (pbuf_size); 404 /* DT_MIPS_RLD_MAP contains a pointer to the address 405 of the dynamic link structure. */ 406 dyn_ptr = bfd_h_get_64 (exec_bfd, 407 (bfd_byte *) x_dynp->d_un.d_ptr); 408 if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) 409 return 0; 410 return extract_unsigned_integer (pbuf, pbuf_size); 411 } 412 } 413 } 414 415 /* DT_DEBUG entry not found. */ 416 return 0; 417 } 418 419 /* 420 421 LOCAL FUNCTION 422 423 locate_base -- locate the base address of dynamic linker structs 424 425 SYNOPSIS 426 427 CORE_ADDR locate_base (void) 428 429 DESCRIPTION 430 431 For both the SunOS and SVR4 shared library implementations, if the 432 inferior executable has been linked dynamically, there is a single 433 address somewhere in the inferior's data space which is the key to 434 locating all of the dynamic linker's runtime structures. This 435 address is the value of the debug base symbol. The job of this 436 function is to find and return that address, or to return 0 if there 437 is no such address (the executable is statically linked for example). 438 439 For SunOS, the job is almost trivial, since the dynamic linker and 440 all of it's structures are statically linked to the executable at 441 link time. Thus the symbol for the address we are looking for has 442 already been added to the minimal symbol table for the executable's 443 objfile at the time the symbol file's symbols were read, and all we 444 have to do is look it up there. Note that we explicitly do NOT want 445 to find the copies in the shared library. 446 447 The SVR4 version is a bit more complicated because the address 448 is contained somewhere in the dynamic info section. We have to go 449 to a lot more work to discover the address of the debug base symbol. 450 Because of this complexity, we cache the value we find and return that 451 value on subsequent invocations. Note there is no copy in the 452 executable symbol tables. 453 454 */ 455 456 static CORE_ADDR 457 locate_base (void) 458 { 459 /* Check to see if we have a currently valid address, and if so, avoid 460 doing all this work again and just return the cached address. If 461 we have no cached address, try to locate it in the dynamic info 462 section for ELF executables. There's no point in doing any of this 463 though if we don't have some link map offsets to work with. */ 464 465 if (debug_base == 0 && svr4_have_link_map_offsets ()) 466 { 467 if (exec_bfd != NULL 468 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 469 debug_base = elf_locate_base (); 470 } 471 return (debug_base); 472 } 473 474 /* 475 476 LOCAL FUNCTION 477 478 first_link_map_member -- locate first member in dynamic linker's map 479 480 SYNOPSIS 481 482 static CORE_ADDR first_link_map_member (void) 483 484 DESCRIPTION 485 486 Find the first element in the inferior's dynamic link map, and 487 return its address in the inferior. This function doesn't copy the 488 link map entry itself into our address space; current_sos actually 489 does the reading. */ 490 491 static CORE_ADDR 492 first_link_map_member (void) 493 { 494 CORE_ADDR lm = 0; 495 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 496 char *r_map_buf = xmalloc (lmo->r_map_size); 497 struct cleanup *cleanups = make_cleanup (xfree, r_map_buf); 498 499 read_memory (debug_base + lmo->r_map_offset, r_map_buf, lmo->r_map_size); 500 501 /* Assume that the address is unsigned. */ 502 lm = extract_unsigned_integer (r_map_buf, lmo->r_map_size); 503 504 /* FIXME: Perhaps we should validate the info somehow, perhaps by 505 checking r_version for a known version number, or r_state for 506 RT_CONSISTENT. */ 507 508 do_cleanups (cleanups); 509 510 return (lm); 511 } 512 513 /* 514 515 LOCAL FUNCTION 516 517 open_symbol_file_object 518 519 SYNOPSIS 520 521 void open_symbol_file_object (void *from_tty) 522 523 DESCRIPTION 524 525 If no open symbol file, attempt to locate and open the main symbol 526 file. On SVR4 systems, this is the first link map entry. If its 527 name is here, we can open it. Useful when attaching to a process 528 without first loading its symbol file. 529 530 If FROM_TTYP dereferences to a non-zero integer, allow messages to 531 be printed. This parameter is a pointer rather than an int because 532 open_symbol_file_object() is called via catch_errors() and 533 catch_errors() requires a pointer argument. */ 534 535 static int 536 open_symbol_file_object (void *from_ttyp) 537 { 538 CORE_ADDR lm, l_name; 539 char *filename; 540 int errcode; 541 int from_tty = *(int *)from_ttyp; 542 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 543 char *l_name_buf = xmalloc (lmo->l_name_size); 544 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); 545 546 if (symfile_objfile) 547 if (!query ("Attempt to reload symbols from process? ")) 548 return 0; 549 550 if ((debug_base = locate_base ()) == 0) 551 return 0; /* failed somehow... */ 552 553 /* First link map member should be the executable. */ 554 if ((lm = first_link_map_member ()) == 0) 555 return 0; /* failed somehow... */ 556 557 /* Read address of name from target memory to GDB. */ 558 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); 559 560 /* Convert the address to host format. Assume that the address is 561 unsigned. */ 562 l_name = extract_unsigned_integer (l_name_buf, lmo->l_name_size); 563 564 /* Free l_name_buf. */ 565 do_cleanups (cleanups); 566 567 if (l_name == 0) 568 return 0; /* No filename. */ 569 570 /* Now fetch the filename from target memory. */ 571 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); 572 573 if (errcode) 574 { 575 warning ("failed to read exec filename from attached file: %s", 576 safe_strerror (errcode)); 577 return 0; 578 } 579 580 make_cleanup (xfree, filename); 581 /* Have a pathname: read the symbol file. */ 582 symbol_file_add_main (filename, from_tty); 583 584 return 1; 585 } 586 587 /* LOCAL FUNCTION 588 589 current_sos -- build a list of currently loaded shared objects 590 591 SYNOPSIS 592 593 struct so_list *current_sos () 594 595 DESCRIPTION 596 597 Build a list of `struct so_list' objects describing the shared 598 objects currently loaded in the inferior. This list does not 599 include an entry for the main executable file. 600 601 Note that we only gather information directly available from the 602 inferior --- we don't examine any of the shared library files 603 themselves. The declaration of `struct so_list' says which fields 604 we provide values for. */ 605 606 static struct so_list * 607 svr4_current_sos (void) 608 { 609 CORE_ADDR lm; 610 struct so_list *head = 0; 611 struct so_list **link_ptr = &head; 612 613 /* Make sure we've looked up the inferior's dynamic linker's base 614 structure. */ 615 if (! debug_base) 616 { 617 debug_base = locate_base (); 618 619 /* If we can't find the dynamic linker's base structure, this 620 must not be a dynamically linked executable. Hmm. */ 621 if (! debug_base) 622 return 0; 623 } 624 625 /* Walk the inferior's link map list, and build our list of 626 `struct so_list' nodes. */ 627 lm = first_link_map_member (); 628 while (lm) 629 { 630 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 631 struct so_list *new 632 = (struct so_list *) xmalloc (sizeof (struct so_list)); 633 struct cleanup *old_chain = make_cleanup (xfree, new); 634 635 memset (new, 0, sizeof (*new)); 636 637 new->lm_info = xmalloc (sizeof (struct lm_info)); 638 make_cleanup (xfree, new->lm_info); 639 640 new->lm_info->lm = xmalloc (lmo->link_map_size); 641 make_cleanup (xfree, new->lm_info->lm); 642 memset (new->lm_info->lm, 0, lmo->link_map_size); 643 644 read_memory (lm, new->lm_info->lm, lmo->link_map_size); 645 646 lm = LM_NEXT (new); 647 648 /* For SVR4 versions, the first entry in the link map is for the 649 inferior executable, so we must ignore it. For some versions of 650 SVR4, it has no name. For others (Solaris 2.3 for example), it 651 does have a name, so we can no longer use a missing name to 652 decide when to ignore it. */ 653 if (IGNORE_FIRST_LINK_MAP_ENTRY (new)) 654 { 655 /* It is the first link map entry, i.e. it is the main executable. */ 656 657 if (bfd_get_start_address (exec_bfd) == entry_point_address ()) 658 { 659 /* Non-pie case, main executable has not been relocated. */ 660 free_so (new); 661 } 662 else 663 { 664 /* Pie case, main executable has been relocated. */ 665 struct so_list *gdb_solib; 666 667 strncpy (new->so_name, exec_bfd->filename, 668 SO_NAME_MAX_PATH_SIZE - 1); 669 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 670 strcpy (new->so_original_name, new->so_name); 671 new->main_relocated = 0; 672 673 for (gdb_solib = master_so_list (); 674 gdb_solib; 675 gdb_solib = gdb_solib->next) 676 { 677 if (strcmp (gdb_solib->so_name, new->so_name) == 0) 678 if (gdb_solib->main_relocated) 679 break; 680 } 681 682 if ((gdb_solib && !gdb_solib->main_relocated) || (!gdb_solib)) 683 { 684 add_to_target_sections (0 /*from_tty*/, ¤t_target, new); 685 new->main = 1; 686 } 687 688 /* We need this in the list of shared libs we return because 689 solib_add_stub will loop through it and add the symbol file. */ 690 new->next = 0; 691 *link_ptr = new; 692 link_ptr = &new->next; 693 } 694 } /* End of IGNORE_FIRST_LINK_MAP_ENTRY */ 695 else 696 { 697 int errcode; 698 char *buffer; 699 700 /* Extract this shared object's name. */ 701 target_read_string (LM_NAME (new), &buffer, 702 SO_NAME_MAX_PATH_SIZE - 1, &errcode); 703 if (errcode != 0) 704 { 705 warning ("current_sos: Can't read pathname for load map: %s\n", 706 safe_strerror (errcode)); 707 } 708 else 709 { 710 strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); 711 new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 712 xfree (buffer); 713 strcpy (new->so_original_name, new->so_name); 714 } 715 716 new->next = 0; 717 *link_ptr = new; 718 link_ptr = &new->next; 719 720 } 721 722 discard_cleanups (old_chain); 723 } 724 725 return head; 726 } 727 728 /* Get the address of the link_map for a given OBJFILE. Loop through 729 the link maps, and return the address of the one corresponding to 730 the given objfile. Note that this function takes into account that 731 objfile can be the main executable, not just a shared library. The 732 main executable has always an empty name field in the linkmap. */ 733 734 CORE_ADDR 735 svr4_fetch_objfile_link_map (struct objfile *objfile) 736 { 737 CORE_ADDR lm; 738 739 if ((debug_base = locate_base ()) == 0) 740 return 0; /* failed somehow... */ 741 742 /* Position ourselves on the first link map. */ 743 lm = first_link_map_member (); 744 while (lm) 745 { 746 /* Get info on the layout of the r_debug and link_map structures. */ 747 struct link_map_offsets *lmo = SVR4_FETCH_LINK_MAP_OFFSETS (); 748 int errcode; 749 char *buffer; 750 struct lm_info objfile_lm_info; 751 struct cleanup *old_chain; 752 CORE_ADDR name_address; 753 char *l_name_buf = xmalloc (lmo->l_name_size); 754 old_chain = make_cleanup (xfree, l_name_buf); 755 756 /* Set up the buffer to contain the portion of the link_map 757 structure that gdb cares about. Note that this is not the 758 whole link_map structure. */ 759 objfile_lm_info.lm = xmalloc (lmo->link_map_size); 760 make_cleanup (xfree, objfile_lm_info.lm); 761 memset (objfile_lm_info.lm, 0, lmo->link_map_size); 762 763 /* Read the link map into our internal structure. */ 764 read_memory (lm, objfile_lm_info.lm, lmo->link_map_size); 765 766 /* Read address of name from target memory to GDB. */ 767 read_memory (lm + lmo->l_name_offset, l_name_buf, lmo->l_name_size); 768 769 /* Extract this object's name. Assume that the address is 770 unsigned. */ 771 name_address = extract_unsigned_integer (l_name_buf, lmo->l_name_size); 772 target_read_string (name_address, &buffer, 773 SO_NAME_MAX_PATH_SIZE - 1, &errcode); 774 make_cleanup (xfree, buffer); 775 if (errcode != 0) 776 { 777 warning ("svr4_fetch_objfile_link_map: Can't read pathname for load map: %s\n", 778 safe_strerror (errcode)); 779 } 780 else 781 { 782 /* Is this the linkmap for the file we want? */ 783 /* If the file is not a shared library and has no name, 784 we are sure it is the main executable, so we return that. */ 785 if ((buffer && strcmp (buffer, objfile->name) == 0) 786 || (!(objfile->flags & OBJF_SHARED) && (strcmp (buffer, "") == 0))) 787 { 788 do_cleanups (old_chain); 789 return lm; 790 } 791 } 792 /* Not the file we wanted, continue checking. Assume that the 793 address is unsigned. */ 794 lm = extract_unsigned_integer (objfile_lm_info.lm + lmo->l_next_offset, 795 lmo->l_next_size); 796 do_cleanups (old_chain); 797 } 798 return 0; 799 } 800 801 /* On some systems, the only way to recognize the link map entry for 802 the main executable file is by looking at its name. Return 803 non-zero iff SONAME matches one of the known main executable names. */ 804 805 #if 0 806 static int 807 match_main (char *soname) 808 { 809 char **mainp; 810 811 for (mainp = main_name_list; *mainp != NULL; mainp++) 812 { 813 if (strcmp (soname, *mainp) == 0) 814 return (1); 815 } 816 817 return (0); 818 } 819 #endif 820 821 /* Return 1 if PC lies in the dynamic symbol resolution code of the 822 SVR4 run time loader. */ 823 static CORE_ADDR interp_text_sect_low; 824 static CORE_ADDR interp_text_sect_high; 825 static CORE_ADDR interp_plt_sect_low; 826 static CORE_ADDR interp_plt_sect_high; 827 828 static int 829 svr4_in_dynsym_resolve_code (CORE_ADDR pc) 830 { 831 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high) 832 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high) 833 || in_plt_section (pc, NULL)); 834 } 835 836 /* Given an executable's ABFD and target, compute the entry-point 837 address. */ 838 839 static CORE_ADDR 840 exec_entry_point (struct bfd *abfd, struct target_ops *targ) 841 { 842 /* KevinB wrote ... for most targets, the address returned by 843 bfd_get_start_address() is the entry point for the start 844 function. But, for some targets, bfd_get_start_address() returns 845 the address of a function descriptor from which the entry point 846 address may be extracted. This address is extracted by 847 gdbarch_convert_from_func_ptr_addr(). The method 848 gdbarch_convert_from_func_ptr_addr() is the merely the identify 849 function for targets which don't use function descriptors. */ 850 return gdbarch_convert_from_func_ptr_addr (current_gdbarch, 851 bfd_get_start_address (abfd), 852 targ); 853 } 854 855 /* 856 857 LOCAL FUNCTION 858 859 enable_break -- arrange for dynamic linker to hit breakpoint 860 861 SYNOPSIS 862 863 int enable_break (void) 864 865 DESCRIPTION 866 867 Both the SunOS and the SVR4 dynamic linkers have, as part of their 868 debugger interface, support for arranging for the inferior to hit 869 a breakpoint after mapping in the shared libraries. This function 870 enables that breakpoint. 871 872 For SunOS, there is a special flag location (in_debugger) which we 873 set to 1. When the dynamic linker sees this flag set, it will set 874 a breakpoint at a location known only to itself, after saving the 875 original contents of that place and the breakpoint address itself, 876 in it's own internal structures. When we resume the inferior, it 877 will eventually take a SIGTRAP when it runs into the breakpoint. 878 We handle this (in a different place) by restoring the contents of 879 the breakpointed location (which is only known after it stops), 880 chasing around to locate the shared libraries that have been 881 loaded, then resuming. 882 883 For SVR4, the debugger interface structure contains a member (r_brk) 884 which is statically initialized at the time the shared library is 885 built, to the offset of a function (_r_debug_state) which is guaran- 886 teed to be called once before mapping in a library, and again when 887 the mapping is complete. At the time we are examining this member, 888 it contains only the unrelocated offset of the function, so we have 889 to do our own relocation. Later, when the dynamic linker actually 890 runs, it relocates r_brk to be the actual address of _r_debug_state(). 891 892 The debugger interface structure also contains an enumeration which 893 is set to either RT_ADD or RT_DELETE prior to changing the mapping, 894 depending upon whether or not the library is being mapped or unmapped, 895 and then set to RT_CONSISTENT after the library is mapped/unmapped. 896 */ 897 898 static int 899 enable_break (void) 900 { 901 int success = 0; 902 903 #ifdef BKPT_AT_SYMBOL 904 905 struct minimal_symbol *msymbol; 906 char **bkpt_namep; 907 asection *interp_sect; 908 909 /* First, remove all the solib event breakpoints. Their addresses 910 may have changed since the last time we ran the program. */ 911 remove_solib_event_breakpoints (); 912 913 interp_text_sect_low = interp_text_sect_high = 0; 914 interp_plt_sect_low = interp_plt_sect_high = 0; 915 916 /* Find the .interp section; if not found, warn the user and drop 917 into the old breakpoint at symbol code. */ 918 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 919 if (interp_sect) 920 { 921 unsigned int interp_sect_size; 922 char *buf; 923 CORE_ADDR load_addr = 0; 924 int load_addr_found = 0; 925 struct so_list *so; 926 bfd *tmp_bfd = NULL; 927 struct target_ops *tmp_bfd_target; 928 int tmp_fd = -1; 929 char *tmp_pathname = NULL; 930 CORE_ADDR sym_addr = 0; 931 932 /* Read the contents of the .interp section into a local buffer; 933 the contents specify the dynamic linker this program uses. */ 934 interp_sect_size = bfd_section_size (exec_bfd, interp_sect); 935 buf = alloca (interp_sect_size); 936 bfd_get_section_contents (exec_bfd, interp_sect, 937 buf, 0, interp_sect_size); 938 939 /* Now we need to figure out where the dynamic linker was 940 loaded so that we can load its symbols and place a breakpoint 941 in the dynamic linker itself. 942 943 This address is stored on the stack. However, I've been unable 944 to find any magic formula to find it for Solaris (appears to 945 be trivial on GNU/Linux). Therefore, we have to try an alternate 946 mechanism to find the dynamic linker's base address. */ 947 948 tmp_fd = solib_open (buf, &tmp_pathname); 949 if (tmp_fd >= 0) 950 tmp_bfd = bfd_fdopenr (tmp_pathname, gnutarget, tmp_fd); 951 952 if (tmp_bfd == NULL) 953 goto bkpt_at_symbol; 954 955 /* Make sure the dynamic linker's really a useful object. */ 956 if (!bfd_check_format (tmp_bfd, bfd_object)) 957 { 958 warning ("Unable to grok dynamic linker %s as an object file", buf); 959 bfd_close (tmp_bfd); 960 goto bkpt_at_symbol; 961 } 962 963 /* Now convert the TMP_BFD into a target. That way target, as 964 well as BFD operations can be used. Note that closing the 965 target will also close the underlying bfd. */ 966 tmp_bfd_target = target_bfd_reopen (tmp_bfd); 967 968 /* On a running target, we can get the dynamic linker's base 969 address from the shared library table. */ 970 solib_add (NULL, 0, NULL, auto_solib_add); 971 so = master_so_list (); 972 while (so) 973 { 974 if (strcmp (buf, so->so_original_name) == 0) 975 { 976 load_addr_found = 1; 977 load_addr = LM_ADDR (so); 978 break; 979 } 980 so = so->next; 981 } 982 983 /* Otherwise we find the dynamic linker's base address by examining 984 the current pc (which should point at the entry point for the 985 dynamic linker) and subtracting the offset of the entry point. */ 986 if (!load_addr_found) 987 load_addr = (read_pc () 988 - exec_entry_point (tmp_bfd, tmp_bfd_target)); 989 990 /* Record the relocated start and end address of the dynamic linker 991 text and plt section for svr4_in_dynsym_resolve_code. */ 992 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); 993 if (interp_sect) 994 { 995 interp_text_sect_low = 996 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 997 interp_text_sect_high = 998 interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect); 999 } 1000 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); 1001 if (interp_sect) 1002 { 1003 interp_plt_sect_low = 1004 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 1005 interp_plt_sect_high = 1006 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect); 1007 } 1008 1009 /* Now try to set a breakpoint in the dynamic linker. */ 1010 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 1011 { 1012 /* On ABI's that use function descriptors, there are usually 1013 two linker symbols associated with each C function: one 1014 pointing at the actual entry point of the machine code, 1015 and one pointing at the function's descriptor. The 1016 latter symbol has the same name as the C function. 1017 1018 What we're looking for here is the machine code entry 1019 point, so we are only interested in symbols in code 1020 sections. */ 1021 sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep, SEC_CODE); 1022 if (sym_addr != 0) 1023 break; 1024 } 1025 1026 /* We're done with both the temporary bfd and target. Remember, 1027 closing the target closes the underlying bfd. */ 1028 target_close (tmp_bfd_target, 0); 1029 1030 if (sym_addr != 0) 1031 { 1032 create_solib_event_breakpoint (load_addr + sym_addr); 1033 return 1; 1034 } 1035 1036 /* For whatever reason we couldn't set a breakpoint in the dynamic 1037 linker. Warn and drop into the old code. */ 1038 bkpt_at_symbol: 1039 warning ("Unable to find dynamic linker breakpoint function.\nGDB will be unable to debug shared library initializers\nand track explicitly loaded dynamic code."); 1040 } 1041 1042 /* Scan through the list of symbols, trying to look up the symbol and 1043 set a breakpoint there. Terminate loop when we/if we succeed. */ 1044 1045 breakpoint_addr = 0; 1046 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) 1047 { 1048 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); 1049 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) 1050 { 1051 create_solib_event_breakpoint (SYMBOL_VALUE_ADDRESS (msymbol)); 1052 return 1; 1053 } 1054 } 1055 1056 /* Nothing good happened. */ 1057 success = 0; 1058 1059 #endif /* BKPT_AT_SYMBOL */ 1060 1061 return (success); 1062 } 1063 1064 /* 1065 1066 LOCAL FUNCTION 1067 1068 special_symbol_handling -- additional shared library symbol handling 1069 1070 SYNOPSIS 1071 1072 void special_symbol_handling () 1073 1074 DESCRIPTION 1075 1076 Once the symbols from a shared object have been loaded in the usual 1077 way, we are called to do any system specific symbol handling that 1078 is needed. 1079 1080 For SunOS4, this consisted of grunging around in the dynamic 1081 linkers structures to find symbol definitions for "common" symbols 1082 and adding them to the minimal symbol table for the runtime common 1083 objfile. 1084 1085 However, for SVR4, there's nothing to do. 1086 1087 */ 1088 1089 static void 1090 svr4_special_symbol_handling (void) 1091 { 1092 } 1093 1094 /* Relocate the main executable. This function should be called upon 1095 stopping the inferior process at the entry point to the program. 1096 The entry point from BFD is compared to the PC and if they are 1097 different, the main executable is relocated by the proper amount. 1098 1099 As written it will only attempt to relocate executables which 1100 lack interpreter sections. It seems likely that only dynamic 1101 linker executables will get relocated, though it should work 1102 properly for a position-independent static executable as well. */ 1103 1104 static void 1105 svr4_relocate_main_executable (void) 1106 { 1107 asection *interp_sect; 1108 CORE_ADDR pc = read_pc (); 1109 1110 /* Decide if the objfile needs to be relocated. As indicated above, 1111 we will only be here when execution is stopped at the beginning 1112 of the program. Relocation is necessary if the address at which 1113 we are presently stopped differs from the start address stored in 1114 the executable AND there's no interpreter section. The condition 1115 regarding the interpreter section is very important because if 1116 there *is* an interpreter section, execution will begin there 1117 instead. When there is an interpreter section, the start address 1118 is (presumably) used by the interpreter at some point to start 1119 execution of the program. 1120 1121 If there is an interpreter, it is normal for it to be set to an 1122 arbitrary address at the outset. The job of finding it is 1123 handled in enable_break(). 1124 1125 So, to summarize, relocations are necessary when there is no 1126 interpreter section and the start address obtained from the 1127 executable is different from the address at which GDB is 1128 currently stopped. 1129 1130 [ The astute reader will note that we also test to make sure that 1131 the executable in question has the DYNAMIC flag set. It is my 1132 opinion that this test is unnecessary (undesirable even). It 1133 was added to avoid inadvertent relocation of an executable 1134 whose e_type member in the ELF header is not ET_DYN. There may 1135 be a time in the future when it is desirable to do relocations 1136 on other types of files as well in which case this condition 1137 should either be removed or modified to accomodate the new file 1138 type. (E.g, an ET_EXEC executable which has been built to be 1139 position-independent could safely be relocated by the OS if 1140 desired. It is true that this violates the ABI, but the ABI 1141 has been known to be bent from time to time.) - Kevin, Nov 2000. ] 1142 */ 1143 1144 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 1145 if (interp_sect == NULL 1146 && (bfd_get_file_flags (exec_bfd) & DYNAMIC) != 0 1147 && (exec_entry_point (exec_bfd, &exec_ops) != pc)) 1148 { 1149 struct cleanup *old_chain; 1150 struct section_offsets *new_offsets; 1151 int i, changed; 1152 CORE_ADDR displacement; 1153 1154 /* It is necessary to relocate the objfile. The amount to 1155 relocate by is simply the address at which we are stopped 1156 minus the starting address from the executable. 1157 1158 We relocate all of the sections by the same amount. This 1159 behavior is mandated by recent editions of the System V ABI. 1160 According to the System V Application Binary Interface, 1161 Edition 4.1, page 5-5: 1162 1163 ... Though the system chooses virtual addresses for 1164 individual processes, it maintains the segments' relative 1165 positions. Because position-independent code uses relative 1166 addressesing between segments, the difference between 1167 virtual addresses in memory must match the difference 1168 between virtual addresses in the file. The difference 1169 between the virtual address of any segment in memory and 1170 the corresponding virtual address in the file is thus a 1171 single constant value for any one executable or shared 1172 object in a given process. This difference is the base 1173 address. One use of the base address is to relocate the 1174 memory image of the program during dynamic linking. 1175 1176 The same language also appears in Edition 4.0 of the System V 1177 ABI and is left unspecified in some of the earlier editions. */ 1178 1179 displacement = pc - exec_entry_point (exec_bfd, &exec_ops); 1180 changed = 0; 1181 1182 new_offsets = xcalloc (symfile_objfile->num_sections, 1183 sizeof (struct section_offsets)); 1184 old_chain = make_cleanup (xfree, new_offsets); 1185 1186 for (i = 0; i < symfile_objfile->num_sections; i++) 1187 { 1188 if (displacement != ANOFFSET (symfile_objfile->section_offsets, i)) 1189 changed = 1; 1190 new_offsets->offsets[i] = displacement; 1191 } 1192 1193 if (changed) 1194 objfile_relocate (symfile_objfile, new_offsets); 1195 1196 do_cleanups (old_chain); 1197 } 1198 } 1199 1200 /* 1201 1202 GLOBAL FUNCTION 1203 1204 svr4_solib_create_inferior_hook -- shared library startup support 1205 1206 SYNOPSIS 1207 1208 void svr4_solib_create_inferior_hook() 1209 1210 DESCRIPTION 1211 1212 When gdb starts up the inferior, it nurses it along (through the 1213 shell) until it is ready to execute it's first instruction. At this 1214 point, this function gets called via expansion of the macro 1215 SOLIB_CREATE_INFERIOR_HOOK. 1216 1217 For SunOS executables, this first instruction is typically the 1218 one at "_start", or a similar text label, regardless of whether 1219 the executable is statically or dynamically linked. The runtime 1220 startup code takes care of dynamically linking in any shared 1221 libraries, once gdb allows the inferior to continue. 1222 1223 For SVR4 executables, this first instruction is either the first 1224 instruction in the dynamic linker (for dynamically linked 1225 executables) or the instruction at "start" for statically linked 1226 executables. For dynamically linked executables, the system 1227 first exec's /lib/libc.so.N, which contains the dynamic linker, 1228 and starts it running. The dynamic linker maps in any needed 1229 shared libraries, maps in the actual user executable, and then 1230 jumps to "start" in the user executable. 1231 1232 For both SunOS shared libraries, and SVR4 shared libraries, we 1233 can arrange to cooperate with the dynamic linker to discover the 1234 names of shared libraries that are dynamically linked, and the 1235 base addresses to which they are linked. 1236 1237 This function is responsible for discovering those names and 1238 addresses, and saving sufficient information about them to allow 1239 their symbols to be read at a later time. 1240 1241 FIXME 1242 1243 Between enable_break() and disable_break(), this code does not 1244 properly handle hitting breakpoints which the user might have 1245 set in the startup code or in the dynamic linker itself. Proper 1246 handling will probably have to wait until the implementation is 1247 changed to use the "breakpoint handler function" method. 1248 1249 Also, what if child has exit()ed? Must exit loop somehow. 1250 */ 1251 1252 static void 1253 svr4_solib_create_inferior_hook (void) 1254 { 1255 /* Relocate the main executable if necessary. */ 1256 svr4_relocate_main_executable (); 1257 1258 if (!svr4_have_link_map_offsets ()) 1259 { 1260 warning ("no shared library support for this OS / ABI"); 1261 return; 1262 1263 } 1264 1265 if (!enable_break ()) 1266 { 1267 warning ("shared library handler failed to enable breakpoint"); 1268 return; 1269 } 1270 1271 #if defined(_SCO_DS) 1272 /* SCO needs the loop below, other systems should be using the 1273 special shared library breakpoints and the shared library breakpoint 1274 service routine. 1275 1276 Now run the target. It will eventually hit the breakpoint, at 1277 which point all of the libraries will have been mapped in and we 1278 can go groveling around in the dynamic linker structures to find 1279 out what we need to know about them. */ 1280 1281 clear_proceed_status (); 1282 stop_soon = STOP_QUIETLY; 1283 stop_signal = TARGET_SIGNAL_0; 1284 do 1285 { 1286 target_resume (pid_to_ptid (-1), 0, stop_signal); 1287 wait_for_inferior (); 1288 } 1289 while (stop_signal != TARGET_SIGNAL_TRAP); 1290 stop_soon = NO_STOP_QUIETLY; 1291 #endif /* defined(_SCO_DS) */ 1292 1293 disable_breakpoints_at_startup (1); 1294 } 1295 1296 static void 1297 svr4_clear_solib (void) 1298 { 1299 debug_base = 0; 1300 } 1301 1302 static void 1303 svr4_free_so (struct so_list *so) 1304 { 1305 xfree (so->lm_info->lm); 1306 xfree (so->lm_info); 1307 } 1308 1309 1310 /* Clear any bits of ADDR that wouldn't fit in a target-format 1311 data pointer. "Data pointer" here refers to whatever sort of 1312 address the dynamic linker uses to manage its sections. At the 1313 moment, we don't support shared libraries on any processors where 1314 code and data pointers are different sizes. 1315 1316 This isn't really the right solution. What we really need here is 1317 a way to do arithmetic on CORE_ADDR values that respects the 1318 natural pointer/address correspondence. (For example, on the MIPS, 1319 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to 1320 sign-extend the value. There, simply truncating the bits above 1321 TARGET_PTR_BIT, as we do below, is no good.) This should probably 1322 be a new gdbarch method or something. */ 1323 static CORE_ADDR 1324 svr4_truncate_ptr (CORE_ADDR addr) 1325 { 1326 if (TARGET_PTR_BIT == sizeof (CORE_ADDR) * 8) 1327 /* We don't need to truncate anything, and the bit twiddling below 1328 will fail due to overflow problems. */ 1329 return addr; 1330 else 1331 return addr & (((CORE_ADDR) 1 << TARGET_PTR_BIT) - 1); 1332 } 1333 1334 1335 static void 1336 svr4_relocate_section_addresses (struct so_list *so, 1337 struct section_table *sec) 1338 { 1339 sec->addr = svr4_truncate_ptr (sec->addr + LM_ADDR (so)); 1340 sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR (so)); 1341 } 1342 1343 1344 /* Fetch a link_map_offsets structure for native targets using struct 1345 definitions from link.h. See solib-legacy.c for the function 1346 which does the actual work. 1347 1348 Note: For non-native targets (i.e. cross-debugging situations), 1349 a target specific fetch_link_map_offsets() function should be 1350 defined and registered via set_solib_svr4_fetch_link_map_offsets(). */ 1351 1352 static struct link_map_offsets * 1353 legacy_fetch_link_map_offsets (void) 1354 { 1355 if (legacy_svr4_fetch_link_map_offsets_hook) 1356 return legacy_svr4_fetch_link_map_offsets_hook (); 1357 else 1358 { 1359 internal_error (__FILE__, __LINE__, 1360 "legacy_fetch_link_map_offsets called without legacy " 1361 "link_map support enabled."); 1362 return 0; 1363 } 1364 } 1365 1366 /* Fetch a link_map_offsets structure using the method registered in the 1367 architecture vector. */ 1368 1369 static struct link_map_offsets * 1370 svr4_fetch_link_map_offsets (void) 1371 { 1372 struct link_map_offsets *(*flmo)(void) = 1373 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data); 1374 1375 if (flmo == NULL) 1376 { 1377 internal_error (__FILE__, __LINE__, 1378 "svr4_fetch_link_map_offsets: fetch_link_map_offsets " 1379 "method not defined for this architecture."); 1380 return 0; 1381 } 1382 else 1383 return (flmo ()); 1384 } 1385 1386 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ 1387 static int 1388 svr4_have_link_map_offsets (void) 1389 { 1390 struct link_map_offsets *(*flmo)(void) = 1391 gdbarch_data (current_gdbarch, fetch_link_map_offsets_gdbarch_data); 1392 if (flmo == NULL 1393 || (flmo == legacy_fetch_link_map_offsets 1394 && legacy_svr4_fetch_link_map_offsets_hook == NULL)) 1395 return 0; 1396 else 1397 return 1; 1398 } 1399 1400 /* set_solib_svr4_fetch_link_map_offsets() is intended to be called by 1401 a <arch>_gdbarch_init() function. It is used to establish an 1402 architecture specific link_map_offsets fetcher for the architecture 1403 being defined. */ 1404 1405 void 1406 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, 1407 struct link_map_offsets *(*flmo) (void)) 1408 { 1409 deprecated_set_gdbarch_data (gdbarch, fetch_link_map_offsets_gdbarch_data, flmo); 1410 } 1411 1412 /* Initialize the architecture-specific link_map_offsets fetcher. 1413 This is called after <arch>_gdbarch_init() has set up its `struct 1414 gdbarch' for the new architecture, and is only called if the 1415 link_map_offsets fetcher isn't already initialized (which is 1416 usually done by calling set_solib_svr4_fetch_link_map_offsets() 1417 above in <arch>_gdbarch_init()). Therefore we attempt to provide a 1418 reasonable alternative (for native targets anyway) if the 1419 <arch>_gdbarch_init() fails to call 1420 set_solib_svr4_fetch_link_map_offsets(). */ 1421 1422 static void * 1423 init_fetch_link_map_offsets (struct gdbarch *gdbarch) 1424 { 1425 return legacy_fetch_link_map_offsets; 1426 } 1427 1428 /* Most OS'es that have SVR4-style ELF dynamic libraries define a 1429 `struct r_debug' and a `struct link_map' that are binary compatible 1430 with the origional SVR4 implementation. */ 1431 1432 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 1433 for an ILP32 SVR4 system. */ 1434 1435 struct link_map_offsets * 1436 svr4_ilp32_fetch_link_map_offsets (void) 1437 { 1438 static struct link_map_offsets lmo; 1439 static struct link_map_offsets *lmp = NULL; 1440 1441 if (lmp == NULL) 1442 { 1443 lmp = &lmo; 1444 1445 /* Everything we need is in the first 8 bytes. */ 1446 lmo.r_debug_size = 8; 1447 lmo.r_map_offset = 4; 1448 lmo.r_map_size = 4; 1449 1450 /* Everything we need is in the first 20 bytes. */ 1451 lmo.link_map_size = 20; 1452 lmo.l_addr_offset = 0; 1453 lmo.l_addr_size = 4; 1454 lmo.l_name_offset = 4; 1455 lmo.l_name_size = 4; 1456 lmo.l_next_offset = 12; 1457 lmo.l_next_size = 4; 1458 lmo.l_prev_offset = 16; 1459 lmo.l_prev_size = 4; 1460 } 1461 1462 return lmp; 1463 } 1464 1465 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 1466 for an LP64 SVR4 system. */ 1467 1468 struct link_map_offsets * 1469 svr4_lp64_fetch_link_map_offsets (void) 1470 { 1471 static struct link_map_offsets lmo; 1472 static struct link_map_offsets *lmp = NULL; 1473 1474 if (lmp == NULL) 1475 { 1476 lmp = &lmo; 1477 1478 /* Everything we need is in the first 16 bytes. */ 1479 lmo.r_debug_size = 16; 1480 lmo.r_map_offset = 8; 1481 lmo.r_map_size = 8; 1482 1483 /* Everything we need is in the first 40 bytes. */ 1484 lmo.link_map_size = 40; 1485 lmo.l_addr_offset = 0; 1486 lmo.l_addr_size = 8; 1487 lmo.l_name_offset = 8; 1488 lmo.l_name_size = 8; 1489 lmo.l_next_offset = 24; 1490 lmo.l_next_size = 8; 1491 lmo.l_prev_offset = 32; 1492 lmo.l_prev_size = 8; 1493 } 1494 1495 return lmp; 1496 } 1497 1498 1499 static struct target_so_ops svr4_so_ops; 1500 1501 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ 1502 1503 void 1504 _initialize_svr4_solib (void) 1505 { 1506 fetch_link_map_offsets_gdbarch_data = 1507 gdbarch_data_register_post_init (init_fetch_link_map_offsets); 1508 1509 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; 1510 svr4_so_ops.free_so = svr4_free_so; 1511 svr4_so_ops.clear_solib = svr4_clear_solib; 1512 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; 1513 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling; 1514 svr4_so_ops.current_sos = svr4_current_sos; 1515 svr4_so_ops.open_symbol_file_object = open_symbol_file_object; 1516 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; 1517 1518 /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ 1519 current_target_so_ops = &svr4_so_ops; 1520 } 1521