1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger. 2 3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free 4 Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 2 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 59 Temple Place - Suite 330, 21 Boston, MA 02111-1307, USA. */ 22 23 #include "defs.h" 24 #include "frame.h" 25 #include "inferior.h" 26 #include "target.h" 27 #include "value.h" 28 #include "bfd.h" 29 #include "gdb_string.h" 30 #include "gdbcore.h" 31 #include "objfiles.h" 32 #include "arch-utils.h" 33 #include "regcache.h" 34 #include "symtab.h" 35 #include "dis-asm.h" 36 37 struct gdbarch_tdep 38 { 39 /* gdbarch target dependent data here. Currently unused for v850. */ 40 }; 41 42 /* Extra info which is saved in each frame_info. */ 43 struct frame_extra_info 44 { 45 }; 46 47 enum { 48 E_R0_REGNUM, 49 E_R1_REGNUM, 50 E_R2_REGNUM, E_SAVE1_START_REGNUM = E_R2_REGNUM, E_SAVE1_END_REGNUM = E_R2_REGNUM, 51 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM, 52 E_R4_REGNUM, 53 E_R5_REGNUM, 54 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM, 55 E_R7_REGNUM, 56 E_R8_REGNUM, 57 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM, 58 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM, 59 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM, 60 E_R12_REGNUM, 61 E_R13_REGNUM, 62 E_R14_REGNUM, 63 E_R15_REGNUM, 64 E_R16_REGNUM, 65 E_R17_REGNUM, 66 E_R18_REGNUM, 67 E_R19_REGNUM, 68 E_R20_REGNUM, E_SAVE2_START_REGNUM = E_R20_REGNUM, 69 E_R21_REGNUM, 70 E_R22_REGNUM, 71 E_R23_REGNUM, 72 E_R24_REGNUM, 73 E_R25_REGNUM, 74 E_R26_REGNUM, 75 E_R27_REGNUM, 76 E_R28_REGNUM, 77 E_R29_REGNUM, E_SAVE2_END_REGNUM = E_R29_REGNUM, E_FP_RAW_REGNUM = E_R29_REGNUM, 78 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM, 79 E_R31_REGNUM, E_SAVE3_START_REGNUM = E_R31_REGNUM, E_SAVE3_END_REGNUM = E_R31_REGNUM, E_RP_REGNUM = E_R31_REGNUM, 80 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM, 81 E_R33_REGNUM, 82 E_R34_REGNUM, 83 E_R35_REGNUM, 84 E_R36_REGNUM, 85 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM, 86 E_R38_REGNUM, 87 E_R39_REGNUM, 88 E_R40_REGNUM, 89 E_R41_REGNUM, 90 E_R42_REGNUM, 91 E_R43_REGNUM, 92 E_R44_REGNUM, 93 E_R45_REGNUM, 94 E_R46_REGNUM, 95 E_R47_REGNUM, 96 E_R48_REGNUM, 97 E_R49_REGNUM, 98 E_R50_REGNUM, 99 E_R51_REGNUM, 100 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM, 101 E_R53_REGNUM, 102 E_R54_REGNUM, 103 E_R55_REGNUM, 104 E_R56_REGNUM, 105 E_R57_REGNUM, 106 E_R58_REGNUM, 107 E_R59_REGNUM, 108 E_R60_REGNUM, 109 E_R61_REGNUM, 110 E_R62_REGNUM, 111 E_R63_REGNUM, 112 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM, 113 E_R65_REGNUM, E_FP_REGNUM = E_R65_REGNUM, 114 E_NUM_REGS 115 }; 116 117 enum 118 { 119 v850_reg_size = 4 120 }; 121 122 /* Size of all registers as a whole. */ 123 enum 124 { 125 E_ALL_REGS_SIZE = (E_NUM_REGS) * v850_reg_size 126 }; 127 128 /* Size of return datatype which fits into all return registers. */ 129 enum 130 { 131 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size 132 }; 133 134 static LONGEST call_dummy_nil[] = {0}; 135 136 static char *v850_generic_reg_names[] = 137 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 139 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 140 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 141 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", 142 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", 143 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23", 144 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", 145 "pc", "fp" 146 }; 147 148 static char *v850e_reg_names[] = 149 { 150 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 151 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 152 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 153 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 154 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7", 155 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15", 156 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23", 157 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31", 158 "pc", "fp" 159 }; 160 161 char **v850_register_names = v850_generic_reg_names; 162 163 struct 164 { 165 char **regnames; 166 int mach; 167 } 168 v850_processor_type_table[] = 169 { 170 { 171 v850_generic_reg_names, bfd_mach_v850 172 } 173 , 174 { 175 v850e_reg_names, bfd_mach_v850e 176 } 177 , 178 { 179 v850e_reg_names, bfd_mach_v850e1 180 } 181 , 182 { 183 NULL, 0 184 } 185 }; 186 187 /* Info gleaned from scanning a function's prologue. */ 188 189 struct pifsr /* Info about one saved reg */ 190 { 191 int framereg; /* Frame reg (SP or FP) */ 192 int offset; /* Offset from framereg */ 193 int cur_frameoffset; /* Current frameoffset */ 194 int reg; /* Saved register number */ 195 }; 196 197 struct prologue_info 198 { 199 int framereg; 200 int frameoffset; 201 int start_function; 202 struct pifsr *pifsrs; 203 }; 204 205 static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs); 206 207 /* Function: v850_register_name 208 Returns the name of the v850/v850e register N. */ 209 210 static const char * 211 v850_register_name (int regnum) 212 { 213 if (regnum < 0 || regnum >= E_NUM_REGS) 214 internal_error (__FILE__, __LINE__, 215 "v850_register_name: illegal register number %d", 216 regnum); 217 else 218 return v850_register_names[regnum]; 219 220 } 221 222 /* Function: v850_register_byte 223 Returns the byte position in the register cache for register N. */ 224 225 static int 226 v850_register_byte (int regnum) 227 { 228 if (regnum < 0 || regnum >= E_NUM_REGS) 229 internal_error (__FILE__, __LINE__, 230 "v850_register_byte: illegal register number %d", 231 regnum); 232 else 233 return regnum * v850_reg_size; 234 } 235 236 /* Function: v850_register_raw_size 237 Returns the number of bytes occupied by the register on the target. */ 238 239 static int 240 v850_register_raw_size (int regnum) 241 { 242 if (regnum < 0 || regnum >= E_NUM_REGS) 243 internal_error (__FILE__, __LINE__, 244 "v850_register_raw_size: illegal register number %d", 245 regnum); 246 /* Only the PC has 4 Byte, all other registers 2 Byte. */ 247 else 248 return v850_reg_size; 249 } 250 251 /* Function: v850_reg_virtual_type 252 Returns the default type for register N. */ 253 254 static struct type * 255 v850_reg_virtual_type (int regnum) 256 { 257 if (regnum < 0 || regnum >= E_NUM_REGS) 258 internal_error (__FILE__, __LINE__, 259 "v850_register_virtual_type: illegal register number %d", 260 regnum); 261 else if (regnum == E_PC_REGNUM) 262 return builtin_type_uint32; 263 else 264 return builtin_type_int32; 265 } 266 267 static int 268 v850_type_is_scalar (struct type *t) 269 { 270 return (TYPE_CODE (t) != TYPE_CODE_STRUCT 271 && TYPE_CODE (t) != TYPE_CODE_UNION 272 && TYPE_CODE (t) != TYPE_CODE_ARRAY); 273 } 274 275 /* Should call_function allocate stack space for a struct return? */ 276 static int 277 v850_use_struct_convention (int gcc_p, struct type *type) 278 { 279 /* According to ABI: 280 * return TYPE_LENGTH (type) > 8); 281 */ 282 283 /* Current implementation in gcc: */ 284 285 int i; 286 struct type *fld_type, *tgt_type; 287 288 /* 1. The value is greater than 8 bytes -> returned by copying */ 289 if (TYPE_LENGTH (type) > 8) 290 return 1; 291 292 /* 2. The value is a single basic type -> returned in register */ 293 if (v850_type_is_scalar (type)) 294 return 0; 295 296 /* The value is a structure or union with a single element 297 * and that element is either a single basic type or an array of 298 * a single basic type whoes size is greater than or equal to 4 299 * -> returned in register */ 300 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT 301 || TYPE_CODE (type) == TYPE_CODE_UNION) 302 && TYPE_NFIELDS (type) == 1) 303 { 304 fld_type = TYPE_FIELD_TYPE (type, 0); 305 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4) 306 return 0; 307 308 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY) 309 { 310 tgt_type = TYPE_TARGET_TYPE (fld_type); 311 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4) 312 return 0; 313 } 314 } 315 316 /* The value is a structure whose first element is an integer or 317 * a float, and which contains no arrays of more than two elements 318 * -> returned in register */ 319 if (TYPE_CODE (type) == TYPE_CODE_STRUCT 320 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0)) 321 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4) 322 { 323 for (i = 1; i < TYPE_NFIELDS (type); ++i) 324 { 325 fld_type = TYPE_FIELD_TYPE (type, 0); 326 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY) 327 { 328 tgt_type = TYPE_TARGET_TYPE (fld_type); 329 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0 330 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2) 331 return 1; 332 } 333 } 334 return 0; 335 } 336 337 /* The value is a union which contains at least one field which 338 * would be returned in registers according to these rules 339 * -> returned in register */ 340 if (TYPE_CODE (type) == TYPE_CODE_UNION) 341 { 342 for (i = 0; i < TYPE_NFIELDS (type); ++i) 343 { 344 fld_type = TYPE_FIELD_TYPE (type, 0); 345 if (!v850_use_struct_convention (0, fld_type)) 346 return 0; 347 } 348 } 349 350 return 1; 351 } 352 353 354 355 /* Structure for mapping bits in register lists to register numbers. */ 356 struct reg_list 357 { 358 long mask; 359 int regno; 360 }; 361 362 /* Helper function for v850_scan_prologue to handle prepare instruction. */ 363 364 static void 365 handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr, 366 struct prologue_info *pi, struct pifsr **pifsr_ptr) 367 { 368 CORE_ADDR current_pc = *current_pc_ptr; 369 struct pifsr *pifsr = *pifsr_ptr; 370 long next = insn2 & 0xffff; 371 long list12 = ((insn & 1) << 16) + (next & 0xffe0); 372 long offset = (insn & 0x3e) << 1; 373 static struct reg_list reg_table[] = 374 { 375 {0x00800, 20}, /* r20 */ 376 {0x00400, 21}, /* r21 */ 377 {0x00200, 22}, /* r22 */ 378 {0x00100, 23}, /* r23 */ 379 {0x08000, 24}, /* r24 */ 380 {0x04000, 25}, /* r25 */ 381 {0x02000, 26}, /* r26 */ 382 {0x01000, 27}, /* r27 */ 383 {0x00080, 28}, /* r28 */ 384 {0x00040, 29}, /* r29 */ 385 {0x10000, 30}, /* ep */ 386 {0x00020, 31}, /* lp */ 387 {0, 0} /* end of table */ 388 }; 389 int i; 390 391 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */ 392 current_pc += 2; 393 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */ 394 current_pc += 2; 395 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */ 396 current_pc += 4; 397 398 /* Calculate the total size of the saved registers, and add it 399 it to the immediate value used to adjust SP. */ 400 for (i = 0; reg_table[i].mask != 0; i++) 401 if (list12 & reg_table[i].mask) 402 offset += v850_register_raw_size (reg_table[i].regno); 403 pi->frameoffset -= offset; 404 405 /* Calculate the offsets of the registers relative to the value 406 the SP will have after the registers have been pushed and the 407 imm5 value has been subtracted from it. */ 408 if (pifsr) 409 { 410 for (i = 0; reg_table[i].mask != 0; i++) 411 { 412 if (list12 & reg_table[i].mask) 413 { 414 int reg = reg_table[i].regno; 415 offset -= v850_register_raw_size (reg); 416 pifsr->reg = reg; 417 pifsr->offset = offset; 418 pifsr->cur_frameoffset = pi->frameoffset; 419 #ifdef DEBUG 420 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); 421 #endif 422 pifsr++; 423 } 424 } 425 } 426 #ifdef DEBUG 427 printf_filtered ("\tfound ctret after regsave func"); 428 #endif 429 430 /* Set result parameters. */ 431 *current_pc_ptr = current_pc; 432 *pifsr_ptr = pifsr; 433 } 434 435 436 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions. 437 FIXME: the SR bit of the register list is not supported; must check 438 that the compiler does not ever generate this bit. */ 439 440 static void 441 handle_pushm (int insn, int insn2, struct prologue_info *pi, 442 struct pifsr **pifsr_ptr) 443 { 444 struct pifsr *pifsr = *pifsr_ptr; 445 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0); 446 long offset = 0; 447 static struct reg_list pushml_reg_table[] = 448 { 449 {0x80000, E_PS_REGNUM}, /* PSW */ 450 {0x40000, 1}, /* r1 */ 451 {0x20000, 2}, /* r2 */ 452 {0x10000, 3}, /* r3 */ 453 {0x00800, 4}, /* r4 */ 454 {0x00400, 5}, /* r5 */ 455 {0x00200, 6}, /* r6 */ 456 {0x00100, 7}, /* r7 */ 457 {0x08000, 8}, /* r8 */ 458 {0x04000, 9}, /* r9 */ 459 {0x02000, 10}, /* r10 */ 460 {0x01000, 11}, /* r11 */ 461 {0x00080, 12}, /* r12 */ 462 {0x00040, 13}, /* r13 */ 463 {0x00020, 14}, /* r14 */ 464 {0x00010, 15}, /* r15 */ 465 {0, 0} /* end of table */ 466 }; 467 static struct reg_list pushmh_reg_table[] = 468 { 469 {0x80000, 16}, /* r16 */ 470 {0x40000, 17}, /* r17 */ 471 {0x20000, 18}, /* r18 */ 472 {0x10000, 19}, /* r19 */ 473 {0x00800, 20}, /* r20 */ 474 {0x00400, 21}, /* r21 */ 475 {0x00200, 22}, /* r22 */ 476 {0x00100, 23}, /* r23 */ 477 {0x08000, 24}, /* r24 */ 478 {0x04000, 25}, /* r25 */ 479 {0x02000, 26}, /* r26 */ 480 {0x01000, 27}, /* r27 */ 481 {0x00080, 28}, /* r28 */ 482 {0x00040, 29}, /* r29 */ 483 {0x00010, 30}, /* r30 */ 484 {0x00020, 31}, /* r31 */ 485 {0, 0} /* end of table */ 486 }; 487 struct reg_list *reg_table; 488 int i; 489 490 /* Is this a pushml or a pushmh? */ 491 if ((insn2 & 7) == 1) 492 reg_table = pushml_reg_table; 493 else 494 reg_table = pushmh_reg_table; 495 496 /* Calculate the total size of the saved registers, and add it 497 it to the immediate value used to adjust SP. */ 498 for (i = 0; reg_table[i].mask != 0; i++) 499 if (list12 & reg_table[i].mask) 500 offset += v850_register_raw_size (reg_table[i].regno); 501 pi->frameoffset -= offset; 502 503 /* Calculate the offsets of the registers relative to the value 504 the SP will have after the registers have been pushed and the 505 imm5 value is subtracted from it. */ 506 if (pifsr) 507 { 508 for (i = 0; reg_table[i].mask != 0; i++) 509 { 510 if (list12 & reg_table[i].mask) 511 { 512 int reg = reg_table[i].regno; 513 offset -= v850_register_raw_size (reg); 514 pifsr->reg = reg; 515 pifsr->offset = offset; 516 pifsr->cur_frameoffset = pi->frameoffset; 517 #ifdef DEBUG 518 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); 519 #endif 520 pifsr++; 521 } 522 } 523 } 524 #ifdef DEBUG 525 printf_filtered ("\tfound ctret after regsave func"); 526 #endif 527 528 /* Set result parameters. */ 529 *pifsr_ptr = pifsr; 530 } 531 532 533 534 535 /* Function: scan_prologue 536 Scan the prologue of the function that contains PC, and record what 537 we find in PI. Returns the pc after the prologue. Note that the 538 addresses saved in frame->saved_regs are just frame relative (negative 539 offsets from the frame pointer). This is because we don't know the 540 actual value of the frame pointer yet. In some circumstances, the 541 frame pointer can't be determined till after we have scanned the 542 prologue. */ 543 544 static CORE_ADDR 545 v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi) 546 { 547 CORE_ADDR func_addr, prologue_end, current_pc; 548 struct pifsr *pifsr, *pifsr_tmp; 549 int fp_used; 550 int ep_used; 551 int reg; 552 CORE_ADDR save_pc, save_end; 553 int regsave_func_p; 554 int r12_tmp; 555 556 /* First, figure out the bounds of the prologue so that we can limit the 557 search to something reasonable. */ 558 559 if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) 560 { 561 struct symtab_and_line sal; 562 563 sal = find_pc_line (func_addr, 0); 564 565 if (func_addr == entry_point_address ()) 566 pi->start_function = 1; 567 else 568 pi->start_function = 0; 569 570 #if 0 571 if (sal.line == 0) 572 prologue_end = pc; 573 else 574 prologue_end = sal.end; 575 #else 576 prologue_end = pc; 577 #endif 578 } 579 else 580 { /* We're in the boondocks */ 581 func_addr = pc - 100; 582 prologue_end = pc; 583 } 584 585 prologue_end = min (prologue_end, pc); 586 587 /* Now, search the prologue looking for instructions that setup fp, save 588 rp, adjust sp and such. We also record the frame offset of any saved 589 registers. */ 590 591 pi->frameoffset = 0; 592 pi->framereg = E_SP_REGNUM; 593 fp_used = 0; 594 ep_used = 0; 595 pifsr = pi->pifsrs; 596 regsave_func_p = 0; 597 save_pc = 0; 598 save_end = 0; 599 r12_tmp = 0; 600 601 #ifdef DEBUG 602 printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n", 603 (long) func_addr, (long) prologue_end); 604 #endif 605 606 for (current_pc = func_addr; current_pc < prologue_end;) 607 { 608 int insn; 609 int insn2 = -1; /* dummy value */ 610 611 #ifdef DEBUG 612 fprintf_filtered (gdb_stdlog, "0x%.8lx ", (long) current_pc); 613 gdb_print_insn (current_pc, gdb_stdlog); 614 #endif 615 616 insn = read_memory_unsigned_integer (current_pc, 2); 617 current_pc += 2; 618 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */ 619 { 620 insn2 = read_memory_unsigned_integer (current_pc, 2); 621 current_pc += 2; 622 } 623 624 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p) 625 { /* jarl <func>,10 */ 626 long low_disp = insn2 & ~(long) 1; 627 long disp = (((((insn & 0x3f) << 16) + low_disp) 628 & ~(long) 1) ^ 0x00200000) - 0x00200000; 629 630 save_pc = current_pc; 631 save_end = prologue_end; 632 regsave_func_p = 1; 633 current_pc += disp - 4; 634 prologue_end = (current_pc 635 + (2 * 3) /* moves to/from ep */ 636 + 4 /* addi <const>,sp,sp */ 637 + 2 /* jmp [r10] */ 638 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */ 639 + 20); /* slop area */ 640 641 #ifdef DEBUG 642 printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n", 643 disp, low_disp, (long) current_pc + 2); 644 #endif 645 continue; 646 } 647 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p) 648 { /* callt <imm6> */ 649 long ctbp = read_register (E_CTBP_REGNUM); 650 long adr = ctbp + ((insn & 0x3f) << 1); 651 652 save_pc = current_pc; 653 save_end = prologue_end; 654 regsave_func_p = 1; 655 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff); 656 prologue_end = (current_pc 657 + (2 * 3) /* prepare list2,imm5,sp/imm */ 658 + 4 /* ctret */ 659 + 20); /* slop area */ 660 661 #ifdef DEBUG 662 printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n", 663 ctbp, adr, (long) current_pc); 664 #endif 665 continue; 666 } 667 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */ 668 { 669 handle_prepare (insn, insn2, ¤t_pc, pi, &pifsr); 670 continue; 671 } 672 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144) 673 { /* ctret after processing register save function */ 674 current_pc = save_pc; 675 prologue_end = save_end; 676 regsave_func_p = 0; 677 #ifdef DEBUG 678 printf_filtered ("\tfound ctret after regsave func"); 679 #endif 680 continue; 681 } 682 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1) 683 { /* pushml, pushmh */ 684 handle_pushm (insn, insn2, pi, &pifsr); 685 continue; 686 } 687 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p) 688 { /* jmp after processing register save function */ 689 current_pc = save_pc; 690 prologue_end = save_end; 691 regsave_func_p = 0; 692 #ifdef DEBUG 693 printf_filtered ("\tfound jmp after regsave func"); 694 #endif 695 continue; 696 } 697 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */ 698 || (insn & 0xffe0) == 0x0060 /* jmp */ 699 || (insn & 0x0780) == 0x0580) /* branch */ 700 { 701 #ifdef DEBUG 702 printf_filtered ("\n"); 703 #endif 704 break; /* Ran into end of prologue */ 705 } 706 707 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */ 708 pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10; 709 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) /* addi <imm>,sp,sp */ 710 pi->frameoffset += insn2; 711 else if (insn == ((E_FP_RAW_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,fp */ 712 { 713 fp_used = 1; 714 pi->framereg = E_FP_RAW_REGNUM; 715 } 716 717 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) /* movhi hi(const),r0,r12 */ 718 r12_tmp = insn2 << 16; 719 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) /* movea lo(const),r12,r12 */ 720 r12_tmp += insn2; 721 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) /* add r12,sp */ 722 pi->frameoffset = r12_tmp; 723 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,ep */ 724 ep_used = 1; 725 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) /* mov r1,ep */ 726 ep_used = 0; 727 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) /* st.w <reg>,<offset>[sp] */ 728 || (fp_used 729 && (insn & 0x07ff) == (0x0760 | E_FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */ 730 && pifsr 731 && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM) 732 || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM) 733 || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM))) 734 { 735 pifsr->reg = reg; 736 pifsr->offset = insn2 & ~1; 737 pifsr->cur_frameoffset = pi->frameoffset; 738 #ifdef DEBUG 739 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); 740 #endif 741 pifsr++; 742 } 743 744 else if (ep_used /* sst.w <reg>,<offset>[ep] */ 745 && ((insn & 0x0781) == 0x0501) 746 && pifsr 747 && (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM) 748 || (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM) 749 || (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM))) 750 { 751 pifsr->reg = reg; 752 pifsr->offset = (insn & 0x007e) << 1; 753 pifsr->cur_frameoffset = pi->frameoffset; 754 #ifdef DEBUG 755 printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset); 756 #endif 757 pifsr++; 758 } 759 760 #ifdef DEBUG 761 printf_filtered ("\n"); 762 #endif 763 } 764 765 if (pifsr) 766 pifsr->framereg = 0; /* Tie off last entry */ 767 768 /* Fix up any offsets to the final offset. If a frame pointer was created, use it 769 instead of the stack pointer. */ 770 for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++) 771 { 772 pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset; 773 pifsr_tmp->framereg = pi->framereg; 774 775 #ifdef DEBUG 776 printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n", 777 pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg); 778 #endif 779 } 780 781 #ifdef DEBUG 782 printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset); 783 #endif 784 785 return current_pc; 786 } 787 788 /* Function: find_callers_reg 789 Find REGNUM on the stack. Otherwise, it's in an active register. 790 One thing we might want to do here is to check REGNUM against the 791 clobber mask, and somehow flag it as invalid if it isn't saved on 792 the stack somewhere. This would provide a graceful failure mode 793 when trying to get the value of caller-saves registers for an inner 794 frame. */ 795 796 static CORE_ADDR 797 v850_find_callers_reg (struct frame_info *fi, int regnum) 798 { 799 for (; fi; fi = get_next_frame (fi)) 800 if (deprecated_pc_in_call_dummy (get_frame_pc (fi))) 801 return deprecated_read_register_dummy (get_frame_pc (fi), 802 get_frame_base (fi), regnum); 803 else if (deprecated_get_frame_saved_regs (fi)[regnum] != 0) 804 return read_memory_unsigned_integer (deprecated_get_frame_saved_regs (fi)[regnum], 805 v850_register_raw_size (regnum)); 806 807 return read_register (regnum); 808 } 809 810 /* Function: frame_chain 811 Figure out the frame prior to FI. Unfortunately, this involves 812 scanning the prologue of the caller, which will also be done 813 shortly by v850_init_extra_frame_info. For the dummy frame, we 814 just return the stack pointer that was in use at the time the 815 function call was made. */ 816 817 static CORE_ADDR 818 v850_frame_chain (struct frame_info *fi) 819 { 820 struct prologue_info pi; 821 CORE_ADDR callers_pc, fp; 822 823 /* First, find out who called us */ 824 callers_pc = DEPRECATED_FRAME_SAVED_PC (fi); 825 /* If caller is a call-dummy, then our FP bears no relation to his FP! */ 826 fp = v850_find_callers_reg (fi, E_FP_RAW_REGNUM); 827 if (deprecated_pc_in_call_dummy (callers_pc)) 828 return fp; /* caller is call-dummy: return oldest value of FP */ 829 830 /* Caller is NOT a call-dummy, so everything else should just work. 831 Even if THIS frame is a call-dummy! */ 832 pi.pifsrs = NULL; 833 834 v850_scan_prologue (callers_pc, &pi); 835 836 if (pi.start_function) 837 return 0; /* Don't chain beyond the start function */ 838 839 if (pi.framereg == E_FP_RAW_REGNUM) 840 return v850_find_callers_reg (fi, pi.framereg); 841 842 return get_frame_base (fi) - pi.frameoffset; 843 } 844 845 /* Function: skip_prologue 846 Return the address of the first code past the prologue of the function. */ 847 848 static CORE_ADDR 849 v850_skip_prologue (CORE_ADDR pc) 850 { 851 CORE_ADDR func_addr, func_end; 852 853 /* See what the symbol table says */ 854 855 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 856 { 857 struct symtab_and_line sal; 858 859 sal = find_pc_line (func_addr, 0); 860 861 if (sal.line != 0 && sal.end < func_end) 862 return sal.end; 863 else 864 /* Either there's no line info, or the line after the prologue is after 865 the end of the function. In this case, there probably isn't a 866 prologue. */ 867 return pc; 868 } 869 870 /* We can't find the start of this function, so there's nothing we can do. */ 871 return pc; 872 } 873 874 /* Function: pop_frame 875 This routine gets called when either the user uses the `return' 876 command, or the call dummy breakpoint gets hit. */ 877 878 static void 879 v850_pop_frame (void) 880 { 881 struct frame_info *frame = get_current_frame (); 882 int regnum; 883 884 if (deprecated_pc_in_call_dummy (get_frame_pc (frame))) 885 deprecated_pop_dummy_frame (); 886 else 887 { 888 write_register (E_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame)); 889 890 for (regnum = 0; regnum < E_NUM_REGS; regnum++) 891 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0) 892 write_register (regnum, 893 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum], 894 v850_register_raw_size (regnum))); 895 896 write_register (E_SP_REGNUM, get_frame_base (frame)); 897 } 898 899 flush_cached_frames (); 900 } 901 902 /* Function: push_arguments 903 Setup arguments and RP for a call to the target. First four args 904 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs 905 are passed by reference. 64 bit quantities (doubles and long 906 longs) may be split between the regs and the stack. When calling a 907 function that returns a struct, a pointer to the struct is passed 908 in as a secret first argument (always in R6). 909 910 Stack space for the args has NOT been allocated: that job is up to us. 911 */ 912 913 static CORE_ADDR 914 v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp, 915 int struct_return, CORE_ADDR struct_addr) 916 { 917 int argreg; 918 int argnum; 919 int len = 0; 920 int stack_offset; 921 922 /* First, just for safety, make sure stack is aligned */ 923 sp &= ~3; 924 925 /* The offset onto the stack at which we will start copying parameters 926 (after the registers are used up) begins at 16 rather than at zero. 927 I don't really know why, that's just the way it seems to work. */ 928 stack_offset = 16; 929 930 /* Now make space on the stack for the args. */ 931 for (argnum = 0; argnum < nargs; argnum++) 932 len += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); 933 sp -= len + stack_offset; /* possibly over-allocating, but it works... */ 934 /* (you might think we could allocate 16 bytes */ 935 /* less, but the ABI seems to use it all! ) */ 936 937 argreg = E_ARG0_REGNUM; 938 /* the struct_return pointer occupies the first parameter-passing reg */ 939 if (struct_return) 940 argreg++; 941 942 /* Now load as many as possible of the first arguments into 943 registers, and push the rest onto the stack. There are 16 bytes 944 in four registers available. Loop thru args from first to last. */ 945 for (argnum = 0; argnum < nargs; argnum++) 946 { 947 int len; 948 char *val; 949 char valbuf[v850_register_raw_size (E_ARG0_REGNUM)]; 950 951 if (!v850_type_is_scalar (VALUE_TYPE (*args)) 952 && TYPE_LENGTH (VALUE_TYPE (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS) 953 { 954 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (*args)); 955 len = 4; 956 val = valbuf; 957 } 958 else 959 { 960 len = TYPE_LENGTH (VALUE_TYPE (*args)); 961 val = (char *) VALUE_CONTENTS (*args); 962 } 963 964 while (len > 0) 965 if (argreg <= E_ARGLAST_REGNUM) 966 { 967 CORE_ADDR regval; 968 969 regval = extract_unsigned_integer (val, v850_register_raw_size (argreg)); 970 write_register (argreg, regval); 971 972 len -= v850_register_raw_size (argreg); 973 val += v850_register_raw_size (argreg); 974 argreg++; 975 } 976 else 977 { 978 write_memory (sp + stack_offset, val, 4); 979 980 len -= 4; 981 val += 4; 982 stack_offset += 4; 983 } 984 args++; 985 } 986 return sp; 987 } 988 989 /* Function: push_return_address (pc) 990 Set up the return address for the inferior function call. 991 Needed for targets where we don't actually execute a JSR/BSR instruction */ 992 993 static CORE_ADDR 994 v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp) 995 { 996 write_register (E_RP_REGNUM, entry_point_address ()); 997 return sp; 998 } 999 1000 /* Function: frame_saved_pc 1001 Find the caller of this frame. We do this by seeing if E_RP_REGNUM 1002 is saved in the stack anywhere, otherwise we get it from the 1003 registers. If the inner frame is a dummy frame, return its PC 1004 instead of RP, because that's where "caller" of the dummy-frame 1005 will be found. */ 1006 1007 static CORE_ADDR 1008 v850_frame_saved_pc (struct frame_info *fi) 1009 { 1010 if (deprecated_pc_in_call_dummy (get_frame_pc (fi))) 1011 return deprecated_read_register_dummy (get_frame_pc (fi), 1012 get_frame_base (fi), E_PC_REGNUM); 1013 else 1014 return v850_find_callers_reg (fi, E_RP_REGNUM); 1015 } 1016 1017 1018 static CORE_ADDR 1019 v850_saved_pc_after_call (struct frame_info *ignore) 1020 { 1021 return read_register (E_RP_REGNUM); 1022 } 1023 1024 static void 1025 v850_extract_return_value (struct type *type, char *regbuf, char *valbuf) 1026 { 1027 CORE_ADDR return_buffer; 1028 1029 if (!v850_use_struct_convention (0, type)) 1030 { 1031 /* Scalar return values of <= 8 bytes are returned in 1032 E_V0_REGNUM to E_V1_REGNUM. */ 1033 memcpy (valbuf, 1034 ®buf[DEPRECATED_REGISTER_BYTE (E_V0_REGNUM)], 1035 TYPE_LENGTH (type)); 1036 } 1037 else 1038 { 1039 /* Aggregates and return values > 8 bytes are returned in memory, 1040 pointed to by R6. */ 1041 return_buffer = 1042 extract_unsigned_integer (regbuf + DEPRECATED_REGISTER_BYTE (E_V0_REGNUM), 1043 register_size (current_gdbarch, E_V0_REGNUM)); 1044 1045 read_memory (return_buffer, valbuf, TYPE_LENGTH (type)); 1046 } 1047 } 1048 1049 const static unsigned char * 1050 v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) 1051 { 1052 static unsigned char breakpoint[] = { 0x85, 0x05 }; 1053 *lenptr = sizeof (breakpoint); 1054 return breakpoint; 1055 } 1056 1057 static void 1058 v850_store_return_value (struct type *type, char *valbuf) 1059 { 1060 CORE_ADDR return_buffer; 1061 1062 if (!v850_use_struct_convention (0, type)) 1063 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (E_V0_REGNUM), valbuf, 1064 TYPE_LENGTH (type)); 1065 else 1066 { 1067 return_buffer = read_register (E_V0_REGNUM); 1068 write_memory (return_buffer, valbuf, TYPE_LENGTH (type)); 1069 } 1070 } 1071 1072 static void 1073 v850_frame_init_saved_regs (struct frame_info *fi) 1074 { 1075 struct prologue_info pi; 1076 struct pifsr pifsrs[E_NUM_REGS + 1], *pifsr; 1077 CORE_ADDR func_addr, func_end; 1078 1079 if (!deprecated_get_frame_saved_regs (fi)) 1080 { 1081 frame_saved_regs_zalloc (fi); 1082 1083 /* The call dummy doesn't save any registers on the stack, so we 1084 can return now. */ 1085 if (deprecated_pc_in_call_dummy (get_frame_pc (fi))) 1086 return; 1087 1088 /* Find the beginning of this function, so we can analyze its 1089 prologue. */ 1090 if (find_pc_partial_function (get_frame_pc (fi), NULL, &func_addr, &func_end)) 1091 { 1092 pi.pifsrs = pifsrs; 1093 1094 v850_scan_prologue (get_frame_pc (fi), &pi); 1095 1096 if (!get_next_frame (fi) && pi.framereg == E_SP_REGNUM) 1097 deprecated_update_frame_base_hack (fi, read_register (pi.framereg) - pi.frameoffset); 1098 1099 for (pifsr = pifsrs; pifsr->framereg; pifsr++) 1100 { 1101 deprecated_get_frame_saved_regs (fi)[pifsr->reg] = pifsr->offset + get_frame_base (fi); 1102 1103 if (pifsr->framereg == E_SP_REGNUM) 1104 deprecated_get_frame_saved_regs (fi)[pifsr->reg] += pi.frameoffset; 1105 } 1106 } 1107 /* Else we're out of luck (can't debug completely stripped code). 1108 FIXME. */ 1109 } 1110 } 1111 1112 /* Function: init_extra_frame_info 1113 Setup the frame's frame pointer, pc, and frame addresses for saved 1114 registers. Most of the work is done in scan_prologue(). 1115 1116 Note that when we are called for the last frame (currently active frame), 1117 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will 1118 be valid only if this routine uses FP. For previous frames, fi-frame will 1119 always be correct (since that is derived from v850_frame_chain ()). 1120 1121 We can be called with the PC in the call dummy under two 1122 circumstances. First, during normal backtracing, second, while 1123 figuring out the frame pointer just prior to calling the target 1124 function (see call_function_by_hand). */ 1125 1126 static void 1127 v850_init_extra_frame_info (int fromleaf, struct frame_info *fi) 1128 { 1129 struct prologue_info pi; 1130 1131 if (get_next_frame (fi)) 1132 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi))); 1133 1134 v850_frame_init_saved_regs (fi); 1135 } 1136 1137 static void 1138 v850_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) 1139 { 1140 write_register (E_ARG0_REGNUM, addr); 1141 } 1142 1143 static CORE_ADDR 1144 v850_target_read_fp (void) 1145 { 1146 return read_register (E_FP_RAW_REGNUM); 1147 } 1148 1149 static struct gdbarch * 1150 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1151 { 1152 struct gdbarch_tdep *tdep = NULL; 1153 struct gdbarch *gdbarch; 1154 int i; 1155 1156 /* find a candidate among the list of pre-declared architectures. */ 1157 arches = gdbarch_list_lookup_by_info (arches, &info); 1158 if (arches != NULL) 1159 return (arches->gdbarch); 1160 1161 #if 0 1162 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); 1163 #endif 1164 1165 /* Change the register names based on the current machine type. */ 1166 if (info.bfd_arch_info->arch != bfd_arch_v850) 1167 return 0; 1168 1169 gdbarch = gdbarch_alloc (&info, 0); 1170 1171 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is 1172 ready to unwind the PC first (see frame.c:get_prev_frame()). */ 1173 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default); 1174 1175 for (i = 0; v850_processor_type_table[i].regnames != NULL; i++) 1176 { 1177 if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach) 1178 { 1179 v850_register_names = v850_processor_type_table[i].regnames; 1180 break; 1181 } 1182 } 1183 1184 /* 1185 * Basic register fields and methods. 1186 */ 1187 set_gdbarch_num_regs (gdbarch, E_NUM_REGS); 1188 set_gdbarch_num_pseudo_regs (gdbarch, 0); 1189 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); 1190 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM); 1191 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); 1192 set_gdbarch_register_name (gdbarch, v850_register_name); 1193 set_gdbarch_deprecated_register_size (gdbarch, v850_reg_size); 1194 set_gdbarch_deprecated_register_byte (gdbarch, v850_register_byte); 1195 set_gdbarch_deprecated_register_raw_size (current_gdbarch, gdbarch, v850_register_raw_size); 1196 set_gdbarch_deprecated_register_virtual_size (gdbarch, v850_register_raw_size); 1197 set_gdbarch_deprecated_register_virtual_type (gdbarch, v850_reg_virtual_type); 1198 1199 set_gdbarch_deprecated_target_read_fp (gdbarch, v850_target_read_fp); 1200 1201 /* 1202 * Frame Info 1203 */ 1204 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, v850_frame_init_saved_regs); 1205 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, v850_init_extra_frame_info); 1206 set_gdbarch_deprecated_frame_chain (gdbarch, v850_frame_chain); 1207 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, v850_saved_pc_after_call); 1208 set_gdbarch_deprecated_frame_saved_pc (gdbarch, v850_frame_saved_pc); 1209 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue); 1210 1211 /* 1212 * Miscelany 1213 */ 1214 /* Stack grows up. */ 1215 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1216 1217 /* 1218 * Call Dummies 1219 * 1220 * These values and methods are used when gdb calls a target function. */ 1221 set_gdbarch_deprecated_push_return_address (gdbarch, v850_push_return_address); 1222 set_gdbarch_deprecated_extract_return_value (gdbarch, v850_extract_return_value); 1223 set_gdbarch_deprecated_push_arguments (gdbarch, v850_push_arguments); 1224 set_gdbarch_deprecated_pop_frame (gdbarch, v850_pop_frame); 1225 set_gdbarch_deprecated_store_struct_return (gdbarch, v850_store_struct_return); 1226 set_gdbarch_deprecated_store_return_value (gdbarch, v850_store_return_value); 1227 set_gdbarch_deprecated_use_struct_convention (gdbarch, v850_use_struct_convention); 1228 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc); 1229 1230 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1231 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1232 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1233 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1234 1235 /* Should be using push_dummy_call. */ 1236 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp); 1237 1238 set_gdbarch_print_insn (gdbarch, print_insn_v850); 1239 1240 return gdbarch; 1241 } 1242 1243 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */ 1244 1245 void 1246 _initialize_v850_tdep (void) 1247 { 1248 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init); 1249 } 1250