xref: /openbsd/gnu/usr.bin/binutils/gdb/values.c (revision 78b63d65)
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2    Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3    Free Software Foundation, Inc.
4 
5 This file is part of GDB.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34 
35 /* Local function prototypes. */
36 
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 				       struct type *));
39 
40 static void show_values PARAMS ((char *, int));
41 
42 static void show_convenience PARAMS ((char *, int));
43 
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45 
46 /* The value-history records all the values printed
47    by print commands during this session.  Each chunk
48    records 60 consecutive values.  The first chunk on
49    the chain records the most recent values.
50    The total number of values is in value_history_count.  */
51 
52 #define VALUE_HISTORY_CHUNK 60
53 
54 struct value_history_chunk
55 {
56   struct value_history_chunk *next;
57   value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59 
60 /* Chain of chunks now in use.  */
61 
62 static struct value_history_chunk *value_history_chain;
63 
64 static int value_history_count;	/* Abs number of last entry stored */
65 
66 /* List of all value objects currently allocated
67    (except for those released by calls to release_value)
68    This is so they can be freed after each command.  */
69 
70 static value_ptr all_values;
71 
72 /* Allocate a  value  that has the correct length for type TYPE.  */
73 
74 value_ptr
75 allocate_value (type)
76      struct type *type;
77 {
78   register value_ptr val;
79   struct type *atype = check_typedef (type);
80 
81   val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82   VALUE_NEXT (val) = all_values;
83   all_values = val;
84   VALUE_TYPE (val) = type;
85   VALUE_LVAL (val) = not_lval;
86   VALUE_ADDRESS (val) = 0;
87   VALUE_FRAME (val) = 0;
88   VALUE_OFFSET (val) = 0;
89   VALUE_BITPOS (val) = 0;
90   VALUE_BITSIZE (val) = 0;
91   VALUE_REGNO (val) = -1;
92   VALUE_LAZY (val) = 0;
93   VALUE_OPTIMIZED_OUT (val) = 0;
94   val->modifiable = 1;
95   return val;
96 }
97 
98 /* Allocate a  value  that has the correct length
99    for COUNT repetitions type TYPE.  */
100 
101 value_ptr
102 allocate_repeat_value (type, count)
103      struct type *type;
104      int count;
105 {
106   int low_bound = current_language->string_lower_bound; /* ??? */
107   /* FIXME-type-allocation: need a way to free this type when we are
108      done with it.  */
109   struct type *range_type
110     = create_range_type ((struct type *) NULL, builtin_type_int,
111 			 low_bound, count + low_bound - 1);
112   /* FIXME-type-allocation: need a way to free this type when we are
113      done with it.  */
114   return allocate_value (create_array_type ((struct type *) NULL,
115 					    type, range_type));
116 }
117 
118 /* Return a mark in the value chain.  All values allocated after the
119    mark is obtained (except for those released) are subject to being freed
120    if a subsequent value_free_to_mark is passed the mark.  */
121 value_ptr
122 value_mark ()
123 {
124   return all_values;
125 }
126 
127 /* Free all values allocated since MARK was obtained by value_mark
128    (except for those released).  */
129 void
130 value_free_to_mark (mark)
131      value_ptr mark;
132 {
133   value_ptr val, next;
134 
135   for (val = all_values; val && val != mark; val = next)
136     {
137       next = VALUE_NEXT (val);
138       value_free (val);
139     }
140   all_values = val;
141 }
142 
143 /* Free all the values that have been allocated (except for those released).
144    Called after each command, successful or not.  */
145 
146 void
147 free_all_values ()
148 {
149   register value_ptr val, next;
150 
151   for (val = all_values; val; val = next)
152     {
153       next = VALUE_NEXT (val);
154       value_free (val);
155     }
156 
157   all_values = 0;
158 }
159 
160 /* Remove VAL from the chain all_values
161    so it will not be freed automatically.  */
162 
163 void
164 release_value (val)
165      register value_ptr val;
166 {
167   register value_ptr v;
168 
169   if (all_values == val)
170     {
171       all_values = val->next;
172       return;
173     }
174 
175   for (v = all_values; v; v = v->next)
176     {
177       if (v->next == val)
178 	{
179 	  v->next = val->next;
180 	  break;
181 	}
182     }
183 }
184 
185 /* Release all values up to mark  */
186 value_ptr
187 value_release_to_mark (mark)
188      value_ptr mark;
189 {
190   value_ptr val, next;
191 
192   for (val = next = all_values; next; next = VALUE_NEXT (next))
193     if (VALUE_NEXT (next) == mark)
194       {
195 	all_values = VALUE_NEXT (next);
196 	VALUE_NEXT (next) = 0;
197 	return val;
198       }
199   all_values = 0;
200   return val;
201 }
202 
203 /* Return a copy of the value ARG.
204    It contains the same contents, for same memory address,
205    but it's a different block of storage.  */
206 
207 value_ptr
208 value_copy (arg)
209      value_ptr arg;
210 {
211   register struct type *type = VALUE_TYPE (arg);
212   register value_ptr val = allocate_value (type);
213   VALUE_LVAL (val) = VALUE_LVAL (arg);
214   VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
215   VALUE_OFFSET (val) = VALUE_OFFSET (arg);
216   VALUE_BITPOS (val) = VALUE_BITPOS (arg);
217   VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
218   VALUE_FRAME (val) = VALUE_FRAME (arg);
219   VALUE_REGNO (val) = VALUE_REGNO (arg);
220   VALUE_LAZY (val) = VALUE_LAZY (arg);
221   VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
222   val->modifiable = arg->modifiable;
223   if (!VALUE_LAZY (val))
224     {
225       memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
226 	      TYPE_LENGTH (VALUE_TYPE (arg)));
227     }
228   return val;
229 }
230 
231 /* Access to the value history.  */
232 
233 /* Record a new value in the value history.
234    Returns the absolute history index of the entry.
235    Result of -1 indicates the value was not saved; otherwise it is the
236    value history index of this new item.  */
237 
238 int
239 record_latest_value (val)
240      value_ptr val;
241 {
242   int i;
243 
244   /* We don't want this value to have anything to do with the inferior anymore.
245      In particular, "set $1 = 50" should not affect the variable from which
246      the value was taken, and fast watchpoints should be able to assume that
247      a value on the value history never changes.  */
248   if (VALUE_LAZY (val))
249     value_fetch_lazy (val);
250   /* We preserve VALUE_LVAL so that the user can find out where it was fetched
251      from.  This is a bit dubious, because then *&$1 does not just return $1
252      but the current contents of that location.  c'est la vie...  */
253   val->modifiable = 0;
254   release_value (val);
255 
256   /* Here we treat value_history_count as origin-zero
257      and applying to the value being stored now.  */
258 
259   i = value_history_count % VALUE_HISTORY_CHUNK;
260   if (i == 0)
261     {
262       register struct value_history_chunk *new
263 	= (struct value_history_chunk *)
264 	  xmalloc (sizeof (struct value_history_chunk));
265       memset (new->values, 0, sizeof new->values);
266       new->next = value_history_chain;
267       value_history_chain = new;
268     }
269 
270   value_history_chain->values[i] = val;
271 
272   /* Now we regard value_history_count as origin-one
273      and applying to the value just stored.  */
274 
275   return ++value_history_count;
276 }
277 
278 /* Return a copy of the value in the history with sequence number NUM.  */
279 
280 value_ptr
281 access_value_history (num)
282      int num;
283 {
284   register struct value_history_chunk *chunk;
285   register int i;
286   register int absnum = num;
287 
288   if (absnum <= 0)
289     absnum += value_history_count;
290 
291   if (absnum <= 0)
292     {
293       if (num == 0)
294 	error ("The history is empty.");
295       else if (num == 1)
296 	error ("There is only one value in the history.");
297       else
298 	error ("History does not go back to $$%d.", -num);
299     }
300   if (absnum > value_history_count)
301     error ("History has not yet reached $%d.", absnum);
302 
303   absnum--;
304 
305   /* Now absnum is always absolute and origin zero.  */
306 
307   chunk = value_history_chain;
308   for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309        i > 0; i--)
310     chunk = chunk->next;
311 
312   return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314 
315 /* Clear the value history entirely.
316    Must be done when new symbol tables are loaded,
317    because the type pointers become invalid.  */
318 
319 void
320 clear_value_history ()
321 {
322   register struct value_history_chunk *next;
323   register int i;
324   register value_ptr val;
325 
326   while (value_history_chain)
327     {
328       for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 	if ((val = value_history_chain->values[i]) != NULL)
330 	  free ((PTR)val);
331       next = value_history_chain->next;
332       free ((PTR)value_history_chain);
333       value_history_chain = next;
334     }
335   value_history_count = 0;
336 }
337 
338 static void
339 show_values (num_exp, from_tty)
340      char *num_exp;
341      int from_tty;
342 {
343   register int i;
344   register value_ptr val;
345   static int num = 1;
346 
347   if (num_exp)
348     {
349 	/* "info history +" should print from the stored position.
350 	   "info history <exp>" should print around value number <exp>.  */
351       if (num_exp[0] != '+' || num_exp[1] != '\0')
352 	num = parse_and_eval_address (num_exp) - 5;
353     }
354   else
355     {
356       /* "info history" means print the last 10 values.  */
357       num = value_history_count - 9;
358     }
359 
360   if (num <= 0)
361     num = 1;
362 
363   for (i = num; i < num + 10 && i <= value_history_count; i++)
364     {
365       val = access_value_history (i);
366       printf_filtered ("$%d = ", i);
367       value_print (val, gdb_stdout, 0, Val_pretty_default);
368       printf_filtered ("\n");
369     }
370 
371   /* The next "info history +" should start after what we just printed.  */
372   num += 10;
373 
374   /* Hitting just return after this command should do the same thing as
375      "info history +".  If num_exp is null, this is unnecessary, since
376      "info history +" is not useful after "info history".  */
377   if (from_tty && num_exp)
378     {
379       num_exp[0] = '+';
380       num_exp[1] = '\0';
381     }
382 }
383 
384 /* Internal variables.  These are variables within the debugger
385    that hold values assigned by debugger commands.
386    The user refers to them with a '$' prefix
387    that does not appear in the variable names stored internally.  */
388 
389 static struct internalvar *internalvars;
390 
391 /* Look up an internal variable with name NAME.  NAME should not
392    normally include a dollar sign.
393 
394    If the specified internal variable does not exist,
395    one is created, with a void value.  */
396 
397 struct internalvar *
398 lookup_internalvar (name)
399      char *name;
400 {
401   register struct internalvar *var;
402 
403   for (var = internalvars; var; var = var->next)
404     if (STREQ (var->name, name))
405       return var;
406 
407   var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408   var->name = concat (name, NULL);
409   var->value = allocate_value (builtin_type_void);
410   release_value (var->value);
411   var->next = internalvars;
412   internalvars = var;
413   return var;
414 }
415 
416 value_ptr
417 value_of_internalvar (var)
418      struct internalvar *var;
419 {
420   register value_ptr val;
421 
422 #ifdef IS_TRAPPED_INTERNALVAR
423   if (IS_TRAPPED_INTERNALVAR (var->name))
424     return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426 
427   val = value_copy (var->value);
428   if (VALUE_LAZY (val))
429     value_fetch_lazy (val);
430   VALUE_LVAL (val) = lval_internalvar;
431   VALUE_INTERNALVAR (val) = var;
432   return val;
433 }
434 
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437      struct internalvar *var;
438      int offset, bitpos, bitsize;
439      value_ptr newval;
440 {
441   register char *addr = VALUE_CONTENTS (var->value) + offset;
442 
443 #ifdef IS_TRAPPED_INTERNALVAR
444   if (IS_TRAPPED_INTERNALVAR (var->name))
445     SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447 
448   if (bitsize)
449     modify_field (addr, value_as_long (newval),
450 		  bitpos, bitsize);
451   else
452     memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454 
455 void
456 set_internalvar (var, val)
457      struct internalvar *var;
458      value_ptr val;
459 {
460   value_ptr newval;
461 
462 #ifdef IS_TRAPPED_INTERNALVAR
463   if (IS_TRAPPED_INTERNALVAR (var->name))
464     SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466 
467   newval = value_copy (val);
468   newval->modifiable = 1;
469 
470   /* Force the value to be fetched from the target now, to avoid problems
471      later when this internalvar is referenced and the target is gone or
472      has changed.  */
473   if (VALUE_LAZY (newval))
474     value_fetch_lazy (newval);
475 
476   /* Begin code which must not call error().  If var->value points to
477      something free'd, an error() obviously leaves a dangling pointer.
478      But we also get a danling pointer if var->value points to
479      something in the value chain (i.e., before release_value is
480      called), because after the error free_all_values will get called before
481      long.  */
482   free ((PTR)var->value);
483   var->value = newval;
484   release_value (newval);
485   /* End code which must not call error().  */
486 }
487 
488 char *
489 internalvar_name (var)
490      struct internalvar *var;
491 {
492   return var->name;
493 }
494 
495 /* Free all internalvars.  Done when new symtabs are loaded,
496    because that makes the values invalid.  */
497 
498 void
499 clear_internalvars ()
500 {
501   register struct internalvar *var;
502 
503   while (internalvars)
504     {
505       var = internalvars;
506       internalvars = var->next;
507       free ((PTR)var->name);
508       free ((PTR)var->value);
509       free ((PTR)var);
510     }
511 }
512 
513 static void
514 show_convenience (ignore, from_tty)
515      char *ignore;
516      int from_tty;
517 {
518   register struct internalvar *var;
519   int varseen = 0;
520 
521   for (var = internalvars; var; var = var->next)
522     {
523 #ifdef IS_TRAPPED_INTERNALVAR
524       if (IS_TRAPPED_INTERNALVAR (var->name))
525 	continue;
526 #endif
527       if (!varseen)
528 	{
529 	  varseen = 1;
530 	}
531       printf_filtered ("$%s = ", var->name);
532       value_print (var->value, gdb_stdout, 0, Val_pretty_default);
533       printf_filtered ("\n");
534     }
535   if (!varseen)
536     printf_unfiltered ("No debugger convenience variables now defined.\n\
537 Convenience variables have names starting with \"$\";\n\
538 use \"set\" as in \"set $foo = 5\" to define them.\n");
539 }
540 
541 /* Extract a value as a C number (either long or double).
542    Knows how to convert fixed values to double, or
543    floating values to long.
544    Does not deallocate the value.  */
545 
546 LONGEST
547 value_as_long (val)
548      register value_ptr val;
549 {
550   /* This coerces arrays and functions, which is necessary (e.g.
551      in disassemble_command).  It also dereferences references, which
552      I suspect is the most logical thing to do.  */
553   COERCE_ARRAY (val);
554   return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556 
557 DOUBLEST
558 value_as_double (val)
559      register value_ptr val;
560 {
561   DOUBLEST foo;
562   int inv;
563 
564   foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565   if (inv)
566     error ("Invalid floating value found in program.");
567   return foo;
568 }
569 /* Extract a value as a C pointer.
570    Does not deallocate the value.  */
571 CORE_ADDR
572 value_as_pointer (val)
573      value_ptr val;
574 {
575   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
576      whether we want this to be true eventually.  */
577 #if 0
578   /* ADDR_BITS_REMOVE is wrong if we are being called for a
579      non-address (e.g. argument to "signal", "info break", etc.), or
580      for pointers to char, in which the low bits *are* significant.  */
581   return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583   return value_as_long (val);
584 #endif
585 }
586 
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588    as a long, or as a double, assuming the raw data is described
589    by type TYPE.  Knows how to convert different sizes of values
590    and can convert between fixed and floating point.  We don't assume
591    any alignment for the raw data.  Return value is in host byte order.
592 
593    If you want functions and arrays to be coerced to pointers, and
594    references to be dereferenced, call value_as_long() instead.
595 
596    C++: It is assumed that the front-end has taken care of
597    all matters concerning pointers to members.  A pointer
598    to member which reaches here is considered to be equivalent
599    to an INT (or some size).  After all, it is only an offset.  */
600 
601 LONGEST
602 unpack_long (type, valaddr)
603      struct type *type;
604      char *valaddr;
605 {
606   register enum type_code code = TYPE_CODE (type);
607   register int len = TYPE_LENGTH (type);
608   register int nosign = TYPE_UNSIGNED (type);
609 
610   if (current_language->la_language == language_scm
611       && is_scmvalue_type (type))
612     return scm_unpack (type, valaddr, TYPE_CODE_INT);
613 
614   switch (code)
615     {
616     case TYPE_CODE_TYPEDEF:
617       return unpack_long (check_typedef (type), valaddr);
618     case TYPE_CODE_ENUM:
619     case TYPE_CODE_BOOL:
620     case TYPE_CODE_INT:
621     case TYPE_CODE_CHAR:
622     case TYPE_CODE_RANGE:
623       if (nosign)
624 	return extract_unsigned_integer (valaddr, len);
625       else
626 	return extract_signed_integer (valaddr, len);
627 
628     case TYPE_CODE_FLT:
629       return extract_floating (valaddr, len);
630 
631     case TYPE_CODE_PTR:
632     case TYPE_CODE_REF:
633       /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
634 	 whether we want this to be true eventually.  */
635       return extract_address (valaddr, len);
636 
637     case TYPE_CODE_MEMBER:
638       error ("not implemented: member types in unpack_long");
639 
640     default:
641       error ("Value can't be converted to integer.");
642     }
643   return 0; /* Placate lint.  */
644 }
645 
646 /* Return a double value from the specified type and address.
647    INVP points to an int which is set to 0 for valid value,
648    1 for invalid value (bad float format).  In either case,
649    the returned double is OK to use.  Argument is in target
650    format, result is in host format.  */
651 
652 DOUBLEST
653 unpack_double (type, valaddr, invp)
654      struct type *type;
655      char *valaddr;
656      int *invp;
657 {
658   register enum type_code code = TYPE_CODE (type);
659   register int len = TYPE_LENGTH (type);
660   register int nosign = TYPE_UNSIGNED (type);
661 
662   *invp = 0;			/* Assume valid.   */
663   CHECK_TYPEDEF (type);
664   if (code == TYPE_CODE_FLT)
665     {
666 #ifdef INVALID_FLOAT
667       if (INVALID_FLOAT (valaddr, len))
668 	{
669 	  *invp = 1;
670 	  return 1.234567891011121314;
671 	}
672 #endif
673       return extract_floating (valaddr, len);
674     }
675   else if (nosign)
676     {
677       /* Unsigned -- be sure we compensate for signed LONGEST.  */
678 #ifndef _MSC_VER
679       return (unsigned LONGEST) unpack_long (type, valaddr);
680 #else
681 #if (_MSC_VER > 800)
682       return (unsigned LONGEST) unpack_long (type, valaddr);
683 #else
684       /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
685       return (LONGEST) unpack_long (type, valaddr);
686 #endif
687 #endif /* _MSC_VER */
688     }
689   else
690     {
691       /* Signed -- we are OK with unpack_long.  */
692       return unpack_long (type, valaddr);
693     }
694 }
695 
696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
697    as a CORE_ADDR, assuming the raw data is described by type TYPE.
698    We don't assume any alignment for the raw data.  Return value is in
699    host byte order.
700 
701    If you want functions and arrays to be coerced to pointers, and
702    references to be dereferenced, call value_as_pointer() instead.
703 
704    C++: It is assumed that the front-end has taken care of
705    all matters concerning pointers to members.  A pointer
706    to member which reaches here is considered to be equivalent
707    to an INT (or some size).  After all, it is only an offset.  */
708 
709 CORE_ADDR
710 unpack_pointer (type, valaddr)
711      struct type *type;
712      char *valaddr;
713 {
714   /* Assume a CORE_ADDR can fit in a LONGEST (for now).  Not sure
715      whether we want this to be true eventually.  */
716   return unpack_long (type, valaddr);
717 }
718 
719 /* Given a value ARG1 (offset by OFFSET bytes)
720    of a struct or union type ARG_TYPE,
721    extract and return the value of one of its fields.
722    FIELDNO says which field.
723 
724    For C++, must also be able to return values from static fields */
725 
726 value_ptr
727 value_primitive_field (arg1, offset, fieldno, arg_type)
728      register value_ptr arg1;
729      int offset;
730      register int fieldno;
731      register struct type *arg_type;
732 {
733   register value_ptr v;
734   register struct type *type;
735 
736   CHECK_TYPEDEF (arg_type);
737   type = TYPE_FIELD_TYPE (arg_type, fieldno);
738 
739   /* Handle packed fields */
740 
741   offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
742   if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
743     {
744       v = value_from_longest (type,
745 			   unpack_field_as_long (arg_type,
746 						 VALUE_CONTENTS (arg1),
747 						 fieldno));
748       VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
749       VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
750     }
751   else
752     {
753       v = allocate_value (type);
754       if (VALUE_LAZY (arg1))
755 	VALUE_LAZY (v) = 1;
756       else
757 	memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
758 		TYPE_LENGTH (type));
759     }
760   VALUE_LVAL (v) = VALUE_LVAL (arg1);
761   if (VALUE_LVAL (arg1) == lval_internalvar)
762     VALUE_LVAL (v) = lval_internalvar_component;
763   VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
764   VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
765   return v;
766 }
767 
768 /* Given a value ARG1 of a struct or union type,
769    extract and return the value of one of its fields.
770    FIELDNO says which field.
771 
772    For C++, must also be able to return values from static fields */
773 
774 value_ptr
775 value_field (arg1, fieldno)
776      register value_ptr arg1;
777      register int fieldno;
778 {
779   return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
780 }
781 
782 /* Return a non-virtual function as a value.
783    F is the list of member functions which contains the desired method.
784    J is an index into F which provides the desired method. */
785 
786 value_ptr
787 value_fn_field (arg1p, f, j, type, offset)
788      value_ptr *arg1p;
789      struct fn_field *f;
790      int j;
791      struct type *type;
792      int offset;
793 {
794   register value_ptr v;
795   register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
796   struct symbol *sym;
797 
798   sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
799 		       0, VAR_NAMESPACE, 0, NULL);
800   if (! sym)
801 	return NULL;
802 /*
803 	error ("Internal error: could not find physical method named %s",
804 		    TYPE_FN_FIELD_PHYSNAME (f, j));
805 */
806 
807   v = allocate_value (ftype);
808   VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
809   VALUE_TYPE (v) = ftype;
810 
811   if (arg1p)
812    {
813     if (type != VALUE_TYPE (*arg1p))
814       *arg1p = value_ind (value_cast (lookup_pointer_type (type),
815 				      value_addr (*arg1p)));
816 
817     /* Move the `this' pointer according to the offset.
818     VALUE_OFFSET (*arg1p) += offset;
819     */
820     }
821 
822   return v;
823 }
824 
825 /* Return a virtual function as a value.
826    ARG1 is the object which provides the virtual function
827    table pointer.  *ARG1P is side-effected in calling this function.
828    F is the list of member functions which contains the desired virtual
829    function.
830    J is an index into F which provides the desired virtual function.
831 
832    TYPE is the type in which F is located.  */
833 value_ptr
834 value_virtual_fn_field (arg1p, f, j, type, offset)
835      value_ptr *arg1p;
836      struct fn_field *f;
837      int j;
838      struct type *type;
839      int offset;
840 {
841   value_ptr arg1 = *arg1p;
842   struct type *type1 = check_typedef (VALUE_TYPE (arg1));
843   struct type *entry_type;
844   /* First, get the virtual function table pointer.  That comes
845      with a strange type, so cast it to type `pointer to long' (which
846      should serve just fine as a function type).  Then, index into
847      the table, and convert final value to appropriate function type.  */
848   value_ptr entry, vfn, vtbl;
849   value_ptr vi = value_from_longest (builtin_type_int,
850 				     (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
851   struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
852   struct type *context;
853   if (fcontext == NULL)
854    /* We don't have an fcontext (e.g. the program was compiled with
855       g++ version 1).  Try to get the vtbl from the TYPE_VPTR_BASETYPE.
856       This won't work right for multiple inheritance, but at least we
857       should do as well as GDB 3.x did.  */
858     fcontext = TYPE_VPTR_BASETYPE (type);
859   context = lookup_pointer_type (fcontext);
860   /* Now context is a pointer to the basetype containing the vtbl.  */
861   if (TYPE_TARGET_TYPE (context) != type1)
862     {
863       arg1 = value_ind (value_cast (context, value_addr (arg1)));
864       type1 = check_typedef (VALUE_TYPE (arg1));
865     }
866 
867   context = type1;
868   /* Now context is the basetype containing the vtbl.  */
869 
870   /* This type may have been defined before its virtual function table
871      was.  If so, fill in the virtual function table entry for the
872      type now.  */
873   if (TYPE_VPTR_FIELDNO (context) < 0)
874     fill_in_vptr_fieldno (context);
875 
876   /* The virtual function table is now an array of structures
877      which have the form { int16 offset, delta; void *pfn; }.  */
878   vtbl = value_ind (value_primitive_field (arg1, 0,
879 					   TYPE_VPTR_FIELDNO (context),
880 					   TYPE_VPTR_BASETYPE (context)));
881 
882   /* Index into the virtual function table.  This is hard-coded because
883      looking up a field is not cheap, and it may be important to save
884      time, e.g. if the user has set a conditional breakpoint calling
885      a virtual function.  */
886   entry = value_subscript (vtbl, vi);
887   entry_type = check_typedef (VALUE_TYPE (entry));
888 
889   if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
890     {
891       /* Move the `this' pointer according to the virtual function table. */
892       VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
893 
894       if (! VALUE_LAZY (arg1))
895 	{
896 	  VALUE_LAZY (arg1) = 1;
897 	  value_fetch_lazy (arg1);
898 	}
899 
900       vfn = value_field (entry, 2);
901     }
902   else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
903     vfn = entry;
904   else
905     error ("I'm confused:  virtual function table has bad type");
906   /* Reinstantiate the function pointer with the correct type.  */
907   VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
908 
909   *arg1p = arg1;
910   return vfn;
911 }
912 
913 /* ARG is a pointer to an object we know to be at least
914    a DTYPE.  BTYPE is the most derived basetype that has
915    already been searched (and need not be searched again).
916    After looking at the vtables between BTYPE and DTYPE,
917    return the most derived type we find.  The caller must
918    be satisfied when the return value == DTYPE.
919 
920    FIXME-tiemann: should work with dossier entries as well.  */
921 
922 static value_ptr
923 value_headof (in_arg, btype, dtype)
924      value_ptr in_arg;
925      struct type *btype, *dtype;
926 {
927   /* First collect the vtables we must look at for this object.  */
928   /* FIXME-tiemann: right now, just look at top-most vtable.  */
929   value_ptr arg, vtbl, entry, best_entry = 0;
930   int i, nelems;
931   int offset, best_offset = 0;
932   struct symbol *sym;
933   CORE_ADDR pc_for_sym;
934   char *demangled_name;
935   struct minimal_symbol *msymbol;
936 
937   btype = TYPE_VPTR_BASETYPE (dtype);
938   CHECK_TYPEDEF (btype);
939   arg = in_arg;
940   if (btype != dtype)
941     arg = value_cast (lookup_pointer_type (btype), arg);
942   vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
943 
944   /* Check that VTBL looks like it points to a virtual function table.  */
945   msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
946   if (msymbol == NULL
947       || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
948       || !VTBL_PREFIX_P (demangled_name))
949     {
950       /* If we expected to find a vtable, but did not, let the user
951 	 know that we aren't happy, but don't throw an error.
952 	 FIXME: there has to be a better way to do this.  */
953       struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
954       memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
955       TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
956       VALUE_TYPE (in_arg) = error_type;
957       return in_arg;
958     }
959 
960   /* Now search through the virtual function table.  */
961   entry = value_ind (vtbl);
962   nelems = longest_to_int (value_as_long (value_field (entry, 2)));
963   for (i = 1; i <= nelems; i++)
964     {
965       entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
966 						      (LONGEST) i));
967       /* This won't work if we're using thunks. */
968       if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
969 	break;
970       offset = longest_to_int (value_as_long (value_field (entry, 0)));
971       /* If we use '<=' we can handle single inheritance
972        * where all offsets are zero - just use the first entry found. */
973       if (offset <= best_offset)
974 	{
975 	  best_offset = offset;
976 	  best_entry = entry;
977 	}
978     }
979   /* Move the pointer according to BEST_ENTRY's offset, and figure
980      out what type we should return as the new pointer.  */
981   if (best_entry == 0)
982     {
983       /* An alternative method (which should no longer be necessary).
984        * But we leave it in for future use, when we will hopefully
985        * have optimizes the vtable to use thunks instead of offsets. */
986       /* Use the name of vtable itself to extract a base type. */
987       demangled_name += 4;  /* Skip _vt$ prefix. */
988     }
989   else
990     {
991       pc_for_sym = value_as_pointer (value_field (best_entry, 2));
992       sym = find_pc_function (pc_for_sym);
993       demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
994       *(strchr (demangled_name, ':')) = '\0';
995     }
996   sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
997   if (sym == NULL)
998     error ("could not find type declaration for `%s'", demangled_name);
999   if (best_entry)
1000     {
1001       free (demangled_name);
1002       arg = value_add (value_cast (builtin_type_int, arg),
1003 		       value_field (best_entry, 0));
1004     }
1005   else arg = in_arg;
1006   VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1007   return arg;
1008 }
1009 
1010 /* ARG is a pointer object of type TYPE.  If TYPE has virtual
1011    function tables, probe ARG's tables (including the vtables
1012    of its baseclasses) to figure out the most derived type that ARG
1013    could actually be a pointer to.  */
1014 
1015 value_ptr
1016 value_from_vtable_info (arg, type)
1017      value_ptr arg;
1018      struct type *type;
1019 {
1020   /* Take care of preliminaries.  */
1021   if (TYPE_VPTR_FIELDNO (type) < 0)
1022     fill_in_vptr_fieldno (type);
1023   if (TYPE_VPTR_FIELDNO (type) < 0)
1024     return 0;
1025 
1026   return value_headof (arg, 0, type);
1027 }
1028 
1029 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1030    pointer which is for the base class whose type is BASECLASS.  */
1031 
1032 static int
1033 vb_match (type, index, basetype)
1034      struct type *type;
1035      int index;
1036      struct type *basetype;
1037 {
1038   struct type *fieldtype;
1039   char *name = TYPE_FIELD_NAME (type, index);
1040   char *field_class_name = NULL;
1041 
1042   if (*name != '_')
1043     return 0;
1044   /* gcc 2.4 uses _vb$.  */
1045   if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1046     field_class_name = name + 4;
1047   /* gcc 2.5 will use __vb_.  */
1048   if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1049     field_class_name = name + 5;
1050 
1051   if (field_class_name == NULL)
1052     /* This field is not a virtual base class pointer.  */
1053     return 0;
1054 
1055   /* It's a virtual baseclass pointer, now we just need to find out whether
1056      it is for this baseclass.  */
1057   fieldtype = TYPE_FIELD_TYPE (type, index);
1058   if (fieldtype == NULL
1059       || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1060     /* "Can't happen".  */
1061     return 0;
1062 
1063   /* What we check for is that either the types are equal (needed for
1064      nameless types) or have the same name.  This is ugly, and a more
1065      elegant solution should be devised (which would probably just push
1066      the ugliness into symbol reading unless we change the stabs format).  */
1067   if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1068     return 1;
1069 
1070   if (TYPE_NAME (basetype) != NULL
1071       && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1072       && STREQ (TYPE_NAME (basetype),
1073 		TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1074     return 1;
1075   return 0;
1076 }
1077 
1078 /* Compute the offset of the baseclass which is
1079    the INDEXth baseclass of class TYPE,
1080    for value at VALADDR (in host) at ADDRESS (in target).
1081    The result is the offset of the baseclass value relative
1082    to (the address of)(ARG) + OFFSET.
1083 
1084    -1 is returned on error. */
1085 
1086 int
1087 baseclass_offset (type, index, valaddr, address)
1088      struct type *type;
1089      int index;
1090      char *valaddr;
1091      CORE_ADDR address;
1092 {
1093   struct type *basetype = TYPE_BASECLASS (type, index);
1094 
1095   if (BASETYPE_VIA_VIRTUAL (type, index))
1096     {
1097       /* Must hunt for the pointer to this virtual baseclass.  */
1098       register int i, len = TYPE_NFIELDS (type);
1099       register int n_baseclasses = TYPE_N_BASECLASSES (type);
1100 
1101       /* First look for the virtual baseclass pointer
1102 	 in the fields.  */
1103       for (i = n_baseclasses; i < len; i++)
1104 	{
1105 	  if (vb_match (type, i, basetype))
1106 	    {
1107 	      CORE_ADDR addr
1108 		= unpack_pointer (TYPE_FIELD_TYPE (type, i),
1109 				  valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1110 
1111 	      return addr - (LONGEST) address;
1112 	    }
1113 	}
1114       /* Not in the fields, so try looking through the baseclasses.  */
1115       for (i = index+1; i < n_baseclasses; i++)
1116 	{
1117 	  int boffset =
1118 	      baseclass_offset (type, i, valaddr, address);
1119 	  if (boffset)
1120 	    return boffset;
1121 	}
1122       /* Not found.  */
1123       return -1;
1124     }
1125 
1126   /* Baseclass is easily computed.  */
1127   return TYPE_BASECLASS_BITPOS (type, index) / 8;
1128 }
1129 
1130 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1131    VALADDR.
1132 
1133    Extracting bits depends on endianness of the machine.  Compute the
1134    number of least significant bits to discard.  For big endian machines,
1135    we compute the total number of bits in the anonymous object, subtract
1136    off the bit count from the MSB of the object to the MSB of the
1137    bitfield, then the size of the bitfield, which leaves the LSB discard
1138    count.  For little endian machines, the discard count is simply the
1139    number of bits from the LSB of the anonymous object to the LSB of the
1140    bitfield.
1141 
1142    If the field is signed, we also do sign extension. */
1143 
1144 LONGEST
1145 unpack_field_as_long (type, valaddr, fieldno)
1146      struct type *type;
1147      char *valaddr;
1148      int fieldno;
1149 {
1150   unsigned LONGEST val;
1151   unsigned LONGEST valmask;
1152   int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1153   int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1154   int lsbcount;
1155 
1156   val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1157 
1158   /* Extract bits.  See comment above. */
1159 
1160   if (BITS_BIG_ENDIAN)
1161     lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1162   else
1163     lsbcount = (bitpos % 8);
1164   val >>= lsbcount;
1165 
1166   /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1167      If the field is signed, and is negative, then sign extend. */
1168 
1169   if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1170     {
1171       valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1172       val &= valmask;
1173       if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1174 	{
1175 	  if (val & (valmask ^ (valmask >> 1)))
1176 	    {
1177 	      val |= ~valmask;
1178 	    }
1179 	}
1180     }
1181   return (val);
1182 }
1183 
1184 /* Modify the value of a bitfield.  ADDR points to a block of memory in
1185    target byte order; the bitfield starts in the byte pointed to.  FIELDVAL
1186    is the desired value of the field, in host byte order.  BITPOS and BITSIZE
1187    indicate which bits (in target bit order) comprise the bitfield.  */
1188 
1189 void
1190 modify_field (addr, fieldval, bitpos, bitsize)
1191      char *addr;
1192      LONGEST fieldval;
1193      int bitpos, bitsize;
1194 {
1195   LONGEST oword;
1196 
1197   /* If a negative fieldval fits in the field in question, chop
1198      off the sign extension bits.  */
1199   if (bitsize < (8 * (int) sizeof (fieldval))
1200       && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1201     fieldval = fieldval & ((1 << bitsize) - 1);
1202 
1203   /* Warn if value is too big to fit in the field in question.  */
1204   if (bitsize < (8 * (int) sizeof (fieldval))
1205       && 0 != (fieldval & ~((1<<bitsize)-1)))
1206     {
1207       /* FIXME: would like to include fieldval in the message, but
1208 	 we don't have a sprintf_longest.  */
1209       warning ("Value does not fit in %d bits.", bitsize);
1210 
1211       /* Truncate it, otherwise adjoining fields may be corrupted.  */
1212       fieldval = fieldval & ((1 << bitsize) - 1);
1213     }
1214 
1215   oword = extract_signed_integer (addr, sizeof oword);
1216 
1217   /* Shifting for bit field depends on endianness of the target machine.  */
1218   if (BITS_BIG_ENDIAN)
1219     bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1220 
1221   /* Mask out old value, while avoiding shifts >= size of oword */
1222   if (bitsize < 8 * (int) sizeof (oword))
1223     oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1224   else
1225     oword &= ~((~(unsigned LONGEST)0) << bitpos);
1226   oword |= fieldval << bitpos;
1227 
1228   store_signed_integer (addr, sizeof oword, oword);
1229 }
1230 
1231 /* Convert C numbers into newly allocated values */
1232 
1233 value_ptr
1234 value_from_longest (type, num)
1235      struct type *type;
1236      register LONGEST num;
1237 {
1238   register value_ptr val = allocate_value (type);
1239   register enum type_code code;
1240   register int len;
1241  retry:
1242   code = TYPE_CODE (type);
1243   len = TYPE_LENGTH (type);
1244 
1245   switch (code)
1246     {
1247     case TYPE_CODE_TYPEDEF:
1248       type = check_typedef (type);
1249       goto retry;
1250     case TYPE_CODE_INT:
1251     case TYPE_CODE_CHAR:
1252     case TYPE_CODE_ENUM:
1253     case TYPE_CODE_BOOL:
1254     case TYPE_CODE_RANGE:
1255       store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1256       break;
1257 
1258     case TYPE_CODE_REF:
1259     case TYPE_CODE_PTR:
1260       /* This assumes that all pointers of a given length
1261 	 have the same form.  */
1262       store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1263       break;
1264 
1265     default:
1266       error ("Unexpected type encountered for integer constant.");
1267     }
1268   return val;
1269 }
1270 
1271 value_ptr
1272 value_from_double (type, num)
1273      struct type *type;
1274      DOUBLEST num;
1275 {
1276   register value_ptr val = allocate_value (type);
1277   struct type *base_type = check_typedef (type);
1278   register enum type_code code = TYPE_CODE (base_type);
1279   register int len = TYPE_LENGTH (base_type);
1280 
1281   if (code == TYPE_CODE_FLT)
1282     {
1283       store_floating (VALUE_CONTENTS_RAW (val), len, num);
1284     }
1285   else
1286     error ("Unexpected type encountered for floating constant.");
1287 
1288   return val;
1289 }
1290 
1291 /* Deal with the value that is "about to be returned".  */
1292 
1293 /* Return the value that a function returning now
1294    would be returning to its caller, assuming its type is VALTYPE.
1295    RETBUF is where we look for what ought to be the contents
1296    of the registers (in raw form).  This is because it is often
1297    desirable to restore old values to those registers
1298    after saving the contents of interest, and then call
1299    this function using the saved values.
1300    struct_return is non-zero when the function in question is
1301    using the structure return conventions on the machine in question;
1302    0 when it is using the value returning conventions (this often
1303    means returning pointer to where structure is vs. returning value). */
1304 
1305 value_ptr
1306 value_being_returned (valtype, retbuf, struct_return)
1307      register struct type *valtype;
1308      char retbuf[REGISTER_BYTES];
1309      int struct_return;
1310      /*ARGSUSED*/
1311 {
1312   register value_ptr val;
1313   CORE_ADDR addr;
1314 
1315 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1316   /* If this is not defined, just use EXTRACT_RETURN_VALUE instead.  */
1317   if (struct_return) {
1318     addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1319     if (!addr)
1320       error ("Function return value unknown");
1321     return value_at (valtype, addr);
1322   }
1323 #endif
1324 
1325   val = allocate_value (valtype);
1326   CHECK_TYPEDEF (valtype);
1327   EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1328 
1329   return val;
1330 }
1331 
1332 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1333    EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
1334    and TYPE is the type (which is known to be struct, union or array).
1335 
1336    On most machines, the struct convention is used unless we are
1337    using gcc and the type is of a special size.  */
1338 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1339    native compiler.  GCC 2.3.3 was the last release that did it the
1340    old way.  Since gcc2_compiled was not changed, we have no
1341    way to correctly win in all cases, so we just do the right thing
1342    for gcc1 and for gcc2 after this change.  Thus it loses for gcc
1343    2.0-2.3.3.  This is somewhat unfortunate, but changing gcc2_compiled
1344    would cause more chaos than dealing with some struct returns being
1345    handled wrong.  */
1346 #if !defined (USE_STRUCT_CONVENTION)
1347 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1348   (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1                \
1349 		      || TYPE_LENGTH (value_type) == 2             \
1350 		      || TYPE_LENGTH (value_type) == 4             \
1351 		      || TYPE_LENGTH (value_type) == 8             \
1352 		      )                                            \
1353      ))
1354 #endif
1355 
1356 /* Some fundamental types (such as long double) are returned on the stack for
1357    certain architectures.  This macro should return true for any type besides
1358    struct, union or array that gets returned on the stack.  */
1359 
1360 #ifndef RETURN_VALUE_ON_STACK
1361 #define RETURN_VALUE_ON_STACK(TYPE) 0
1362 #endif
1363 
1364 /* Return true if the function specified is using the structure returning
1365    convention on this machine to return arguments, or 0 if it is using
1366    the value returning convention.  FUNCTION is the value representing
1367    the function, FUNCADDR is the address of the function, and VALUE_TYPE
1368    is the type returned by the function.  GCC_P is nonzero if compiled
1369    with GCC.  */
1370 
1371 int
1372 using_struct_return (function, funcaddr, value_type, gcc_p)
1373      value_ptr function;
1374      CORE_ADDR funcaddr;
1375      struct type *value_type;
1376      int gcc_p;
1377      /*ARGSUSED*/
1378 {
1379   register enum type_code code = TYPE_CODE (value_type);
1380 
1381   if (code == TYPE_CODE_ERROR)
1382     error ("Function return type unknown.");
1383 
1384   if (code == TYPE_CODE_STRUCT
1385       || code == TYPE_CODE_UNION
1386       || code == TYPE_CODE_ARRAY
1387       || RETURN_VALUE_ON_STACK (value_type))
1388     return USE_STRUCT_CONVENTION (gcc_p, value_type);
1389 
1390   return 0;
1391 }
1392 
1393 /* Store VAL so it will be returned if a function returns now.
1394    Does not verify that VAL's type matches what the current
1395    function wants to return.  */
1396 
1397 void
1398 set_return_value (val)
1399      value_ptr val;
1400 {
1401   struct type *type = check_typedef (VALUE_TYPE (val));
1402   register enum type_code code = TYPE_CODE (type);
1403 
1404   if (code == TYPE_CODE_ERROR)
1405     error ("Function return type unknown.");
1406 
1407   if (   code == TYPE_CODE_STRUCT
1408       || code == TYPE_CODE_UNION)	/* FIXME, implement struct return.  */
1409     error ("GDB does not support specifying a struct or union return value.");
1410 
1411   STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1412 }
1413 
1414 void
1415 _initialize_values ()
1416 {
1417   add_cmd ("convenience", no_class, show_convenience,
1418 	    "Debugger convenience (\"$foo\") variables.\n\
1419 These variables are created when you assign them values;\n\
1420 thus, \"print $foo=1\" gives \"$foo\" the value 1.  Values may be any type.\n\n\
1421 A few convenience variables are given values automatically:\n\
1422 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1423 \"$__\" holds the contents of the last address examined with \"x\".",
1424 	   &showlist);
1425 
1426   add_cmd ("values", no_class, show_values,
1427 	   "Elements of value history around item number IDX (or last ten).",
1428 	   &showlist);
1429 }
1430