1 /* Low level packing and unpacking of values for GDB, the GNU Debugger. 2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996 3 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 20 21 #include "defs.h" 22 #include "gdb_string.h" 23 #include "symtab.h" 24 #include "gdbtypes.h" 25 #include "value.h" 26 #include "gdbcore.h" 27 #include "frame.h" 28 #include "command.h" 29 #include "gdbcmd.h" 30 #include "target.h" 31 #include "language.h" 32 #include "scm-lang.h" 33 #include "demangle.h" 34 35 /* Local function prototypes. */ 36 37 static value_ptr value_headof PARAMS ((value_ptr, struct type *, 38 struct type *)); 39 40 static void show_values PARAMS ((char *, int)); 41 42 static void show_convenience PARAMS ((char *, int)); 43 44 static int vb_match PARAMS ((struct type *, int, struct type *)); 45 46 /* The value-history records all the values printed 47 by print commands during this session. Each chunk 48 records 60 consecutive values. The first chunk on 49 the chain records the most recent values. 50 The total number of values is in value_history_count. */ 51 52 #define VALUE_HISTORY_CHUNK 60 53 54 struct value_history_chunk 55 { 56 struct value_history_chunk *next; 57 value_ptr values[VALUE_HISTORY_CHUNK]; 58 }; 59 60 /* Chain of chunks now in use. */ 61 62 static struct value_history_chunk *value_history_chain; 63 64 static int value_history_count; /* Abs number of last entry stored */ 65 66 /* List of all value objects currently allocated 67 (except for those released by calls to release_value) 68 This is so they can be freed after each command. */ 69 70 static value_ptr all_values; 71 72 /* Allocate a value that has the correct length for type TYPE. */ 73 74 value_ptr 75 allocate_value (type) 76 struct type *type; 77 { 78 register value_ptr val; 79 struct type *atype = check_typedef (type); 80 81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype)); 82 VALUE_NEXT (val) = all_values; 83 all_values = val; 84 VALUE_TYPE (val) = type; 85 VALUE_LVAL (val) = not_lval; 86 VALUE_ADDRESS (val) = 0; 87 VALUE_FRAME (val) = 0; 88 VALUE_OFFSET (val) = 0; 89 VALUE_BITPOS (val) = 0; 90 VALUE_BITSIZE (val) = 0; 91 VALUE_REGNO (val) = -1; 92 VALUE_LAZY (val) = 0; 93 VALUE_OPTIMIZED_OUT (val) = 0; 94 val->modifiable = 1; 95 return val; 96 } 97 98 /* Allocate a value that has the correct length 99 for COUNT repetitions type TYPE. */ 100 101 value_ptr 102 allocate_repeat_value (type, count) 103 struct type *type; 104 int count; 105 { 106 int low_bound = current_language->string_lower_bound; /* ??? */ 107 /* FIXME-type-allocation: need a way to free this type when we are 108 done with it. */ 109 struct type *range_type 110 = create_range_type ((struct type *) NULL, builtin_type_int, 111 low_bound, count + low_bound - 1); 112 /* FIXME-type-allocation: need a way to free this type when we are 113 done with it. */ 114 return allocate_value (create_array_type ((struct type *) NULL, 115 type, range_type)); 116 } 117 118 /* Return a mark in the value chain. All values allocated after the 119 mark is obtained (except for those released) are subject to being freed 120 if a subsequent value_free_to_mark is passed the mark. */ 121 value_ptr 122 value_mark () 123 { 124 return all_values; 125 } 126 127 /* Free all values allocated since MARK was obtained by value_mark 128 (except for those released). */ 129 void 130 value_free_to_mark (mark) 131 value_ptr mark; 132 { 133 value_ptr val, next; 134 135 for (val = all_values; val && val != mark; val = next) 136 { 137 next = VALUE_NEXT (val); 138 value_free (val); 139 } 140 all_values = val; 141 } 142 143 /* Free all the values that have been allocated (except for those released). 144 Called after each command, successful or not. */ 145 146 void 147 free_all_values () 148 { 149 register value_ptr val, next; 150 151 for (val = all_values; val; val = next) 152 { 153 next = VALUE_NEXT (val); 154 value_free (val); 155 } 156 157 all_values = 0; 158 } 159 160 /* Remove VAL from the chain all_values 161 so it will not be freed automatically. */ 162 163 void 164 release_value (val) 165 register value_ptr val; 166 { 167 register value_ptr v; 168 169 if (all_values == val) 170 { 171 all_values = val->next; 172 return; 173 } 174 175 for (v = all_values; v; v = v->next) 176 { 177 if (v->next == val) 178 { 179 v->next = val->next; 180 break; 181 } 182 } 183 } 184 185 /* Release all values up to mark */ 186 value_ptr 187 value_release_to_mark (mark) 188 value_ptr mark; 189 { 190 value_ptr val, next; 191 192 for (val = next = all_values; next; next = VALUE_NEXT (next)) 193 if (VALUE_NEXT (next) == mark) 194 { 195 all_values = VALUE_NEXT (next); 196 VALUE_NEXT (next) = 0; 197 return val; 198 } 199 all_values = 0; 200 return val; 201 } 202 203 /* Return a copy of the value ARG. 204 It contains the same contents, for same memory address, 205 but it's a different block of storage. */ 206 207 value_ptr 208 value_copy (arg) 209 value_ptr arg; 210 { 211 register struct type *type = VALUE_TYPE (arg); 212 register value_ptr val = allocate_value (type); 213 VALUE_LVAL (val) = VALUE_LVAL (arg); 214 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg); 215 VALUE_OFFSET (val) = VALUE_OFFSET (arg); 216 VALUE_BITPOS (val) = VALUE_BITPOS (arg); 217 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg); 218 VALUE_FRAME (val) = VALUE_FRAME (arg); 219 VALUE_REGNO (val) = VALUE_REGNO (arg); 220 VALUE_LAZY (val) = VALUE_LAZY (arg); 221 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg); 222 val->modifiable = arg->modifiable; 223 if (!VALUE_LAZY (val)) 224 { 225 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg), 226 TYPE_LENGTH (VALUE_TYPE (arg))); 227 } 228 return val; 229 } 230 231 /* Access to the value history. */ 232 233 /* Record a new value in the value history. 234 Returns the absolute history index of the entry. 235 Result of -1 indicates the value was not saved; otherwise it is the 236 value history index of this new item. */ 237 238 int 239 record_latest_value (val) 240 value_ptr val; 241 { 242 int i; 243 244 /* We don't want this value to have anything to do with the inferior anymore. 245 In particular, "set $1 = 50" should not affect the variable from which 246 the value was taken, and fast watchpoints should be able to assume that 247 a value on the value history never changes. */ 248 if (VALUE_LAZY (val)) 249 value_fetch_lazy (val); 250 /* We preserve VALUE_LVAL so that the user can find out where it was fetched 251 from. This is a bit dubious, because then *&$1 does not just return $1 252 but the current contents of that location. c'est la vie... */ 253 val->modifiable = 0; 254 release_value (val); 255 256 /* Here we treat value_history_count as origin-zero 257 and applying to the value being stored now. */ 258 259 i = value_history_count % VALUE_HISTORY_CHUNK; 260 if (i == 0) 261 { 262 register struct value_history_chunk *new 263 = (struct value_history_chunk *) 264 xmalloc (sizeof (struct value_history_chunk)); 265 memset (new->values, 0, sizeof new->values); 266 new->next = value_history_chain; 267 value_history_chain = new; 268 } 269 270 value_history_chain->values[i] = val; 271 272 /* Now we regard value_history_count as origin-one 273 and applying to the value just stored. */ 274 275 return ++value_history_count; 276 } 277 278 /* Return a copy of the value in the history with sequence number NUM. */ 279 280 value_ptr 281 access_value_history (num) 282 int num; 283 { 284 register struct value_history_chunk *chunk; 285 register int i; 286 register int absnum = num; 287 288 if (absnum <= 0) 289 absnum += value_history_count; 290 291 if (absnum <= 0) 292 { 293 if (num == 0) 294 error ("The history is empty."); 295 else if (num == 1) 296 error ("There is only one value in the history."); 297 else 298 error ("History does not go back to $$%d.", -num); 299 } 300 if (absnum > value_history_count) 301 error ("History has not yet reached $%d.", absnum); 302 303 absnum--; 304 305 /* Now absnum is always absolute and origin zero. */ 306 307 chunk = value_history_chain; 308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; 309 i > 0; i--) 310 chunk = chunk->next; 311 312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); 313 } 314 315 /* Clear the value history entirely. 316 Must be done when new symbol tables are loaded, 317 because the type pointers become invalid. */ 318 319 void 320 clear_value_history () 321 { 322 register struct value_history_chunk *next; 323 register int i; 324 register value_ptr val; 325 326 while (value_history_chain) 327 { 328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++) 329 if ((val = value_history_chain->values[i]) != NULL) 330 free ((PTR)val); 331 next = value_history_chain->next; 332 free ((PTR)value_history_chain); 333 value_history_chain = next; 334 } 335 value_history_count = 0; 336 } 337 338 static void 339 show_values (num_exp, from_tty) 340 char *num_exp; 341 int from_tty; 342 { 343 register int i; 344 register value_ptr val; 345 static int num = 1; 346 347 if (num_exp) 348 { 349 /* "info history +" should print from the stored position. 350 "info history <exp>" should print around value number <exp>. */ 351 if (num_exp[0] != '+' || num_exp[1] != '\0') 352 num = parse_and_eval_address (num_exp) - 5; 353 } 354 else 355 { 356 /* "info history" means print the last 10 values. */ 357 num = value_history_count - 9; 358 } 359 360 if (num <= 0) 361 num = 1; 362 363 for (i = num; i < num + 10 && i <= value_history_count; i++) 364 { 365 val = access_value_history (i); 366 printf_filtered ("$%d = ", i); 367 value_print (val, gdb_stdout, 0, Val_pretty_default); 368 printf_filtered ("\n"); 369 } 370 371 /* The next "info history +" should start after what we just printed. */ 372 num += 10; 373 374 /* Hitting just return after this command should do the same thing as 375 "info history +". If num_exp is null, this is unnecessary, since 376 "info history +" is not useful after "info history". */ 377 if (from_tty && num_exp) 378 { 379 num_exp[0] = '+'; 380 num_exp[1] = '\0'; 381 } 382 } 383 384 /* Internal variables. These are variables within the debugger 385 that hold values assigned by debugger commands. 386 The user refers to them with a '$' prefix 387 that does not appear in the variable names stored internally. */ 388 389 static struct internalvar *internalvars; 390 391 /* Look up an internal variable with name NAME. NAME should not 392 normally include a dollar sign. 393 394 If the specified internal variable does not exist, 395 one is created, with a void value. */ 396 397 struct internalvar * 398 lookup_internalvar (name) 399 char *name; 400 { 401 register struct internalvar *var; 402 403 for (var = internalvars; var; var = var->next) 404 if (STREQ (var->name, name)) 405 return var; 406 407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); 408 var->name = concat (name, NULL); 409 var->value = allocate_value (builtin_type_void); 410 release_value (var->value); 411 var->next = internalvars; 412 internalvars = var; 413 return var; 414 } 415 416 value_ptr 417 value_of_internalvar (var) 418 struct internalvar *var; 419 { 420 register value_ptr val; 421 422 #ifdef IS_TRAPPED_INTERNALVAR 423 if (IS_TRAPPED_INTERNALVAR (var->name)) 424 return VALUE_OF_TRAPPED_INTERNALVAR (var); 425 #endif 426 427 val = value_copy (var->value); 428 if (VALUE_LAZY (val)) 429 value_fetch_lazy (val); 430 VALUE_LVAL (val) = lval_internalvar; 431 VALUE_INTERNALVAR (val) = var; 432 return val; 433 } 434 435 void 436 set_internalvar_component (var, offset, bitpos, bitsize, newval) 437 struct internalvar *var; 438 int offset, bitpos, bitsize; 439 value_ptr newval; 440 { 441 register char *addr = VALUE_CONTENTS (var->value) + offset; 442 443 #ifdef IS_TRAPPED_INTERNALVAR 444 if (IS_TRAPPED_INTERNALVAR (var->name)) 445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset); 446 #endif 447 448 if (bitsize) 449 modify_field (addr, value_as_long (newval), 450 bitpos, bitsize); 451 else 452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval))); 453 } 454 455 void 456 set_internalvar (var, val) 457 struct internalvar *var; 458 value_ptr val; 459 { 460 value_ptr newval; 461 462 #ifdef IS_TRAPPED_INTERNALVAR 463 if (IS_TRAPPED_INTERNALVAR (var->name)) 464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0); 465 #endif 466 467 newval = value_copy (val); 468 newval->modifiable = 1; 469 470 /* Force the value to be fetched from the target now, to avoid problems 471 later when this internalvar is referenced and the target is gone or 472 has changed. */ 473 if (VALUE_LAZY (newval)) 474 value_fetch_lazy (newval); 475 476 /* Begin code which must not call error(). If var->value points to 477 something free'd, an error() obviously leaves a dangling pointer. 478 But we also get a danling pointer if var->value points to 479 something in the value chain (i.e., before release_value is 480 called), because after the error free_all_values will get called before 481 long. */ 482 free ((PTR)var->value); 483 var->value = newval; 484 release_value (newval); 485 /* End code which must not call error(). */ 486 } 487 488 char * 489 internalvar_name (var) 490 struct internalvar *var; 491 { 492 return var->name; 493 } 494 495 /* Free all internalvars. Done when new symtabs are loaded, 496 because that makes the values invalid. */ 497 498 void 499 clear_internalvars () 500 { 501 register struct internalvar *var; 502 503 while (internalvars) 504 { 505 var = internalvars; 506 internalvars = var->next; 507 free ((PTR)var->name); 508 free ((PTR)var->value); 509 free ((PTR)var); 510 } 511 } 512 513 static void 514 show_convenience (ignore, from_tty) 515 char *ignore; 516 int from_tty; 517 { 518 register struct internalvar *var; 519 int varseen = 0; 520 521 for (var = internalvars; var; var = var->next) 522 { 523 #ifdef IS_TRAPPED_INTERNALVAR 524 if (IS_TRAPPED_INTERNALVAR (var->name)) 525 continue; 526 #endif 527 if (!varseen) 528 { 529 varseen = 1; 530 } 531 printf_filtered ("$%s = ", var->name); 532 value_print (var->value, gdb_stdout, 0, Val_pretty_default); 533 printf_filtered ("\n"); 534 } 535 if (!varseen) 536 printf_unfiltered ("No debugger convenience variables now defined.\n\ 537 Convenience variables have names starting with \"$\";\n\ 538 use \"set\" as in \"set $foo = 5\" to define them.\n"); 539 } 540 541 /* Extract a value as a C number (either long or double). 542 Knows how to convert fixed values to double, or 543 floating values to long. 544 Does not deallocate the value. */ 545 546 LONGEST 547 value_as_long (val) 548 register value_ptr val; 549 { 550 /* This coerces arrays and functions, which is necessary (e.g. 551 in disassemble_command). It also dereferences references, which 552 I suspect is the most logical thing to do. */ 553 COERCE_ARRAY (val); 554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val)); 555 } 556 557 DOUBLEST 558 value_as_double (val) 559 register value_ptr val; 560 { 561 DOUBLEST foo; 562 int inv; 563 564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv); 565 if (inv) 566 error ("Invalid floating value found in program."); 567 return foo; 568 } 569 /* Extract a value as a C pointer. 570 Does not deallocate the value. */ 571 CORE_ADDR 572 value_as_pointer (val) 573 value_ptr val; 574 { 575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 576 whether we want this to be true eventually. */ 577 #if 0 578 /* ADDR_BITS_REMOVE is wrong if we are being called for a 579 non-address (e.g. argument to "signal", "info break", etc.), or 580 for pointers to char, in which the low bits *are* significant. */ 581 return ADDR_BITS_REMOVE(value_as_long (val)); 582 #else 583 return value_as_long (val); 584 #endif 585 } 586 587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 588 as a long, or as a double, assuming the raw data is described 589 by type TYPE. Knows how to convert different sizes of values 590 and can convert between fixed and floating point. We don't assume 591 any alignment for the raw data. Return value is in host byte order. 592 593 If you want functions and arrays to be coerced to pointers, and 594 references to be dereferenced, call value_as_long() instead. 595 596 C++: It is assumed that the front-end has taken care of 597 all matters concerning pointers to members. A pointer 598 to member which reaches here is considered to be equivalent 599 to an INT (or some size). After all, it is only an offset. */ 600 601 LONGEST 602 unpack_long (type, valaddr) 603 struct type *type; 604 char *valaddr; 605 { 606 register enum type_code code = TYPE_CODE (type); 607 register int len = TYPE_LENGTH (type); 608 register int nosign = TYPE_UNSIGNED (type); 609 610 if (current_language->la_language == language_scm 611 && is_scmvalue_type (type)) 612 return scm_unpack (type, valaddr, TYPE_CODE_INT); 613 614 switch (code) 615 { 616 case TYPE_CODE_TYPEDEF: 617 return unpack_long (check_typedef (type), valaddr); 618 case TYPE_CODE_ENUM: 619 case TYPE_CODE_BOOL: 620 case TYPE_CODE_INT: 621 case TYPE_CODE_CHAR: 622 case TYPE_CODE_RANGE: 623 if (nosign) 624 return extract_unsigned_integer (valaddr, len); 625 else 626 return extract_signed_integer (valaddr, len); 627 628 case TYPE_CODE_FLT: 629 return extract_floating (valaddr, len); 630 631 case TYPE_CODE_PTR: 632 case TYPE_CODE_REF: 633 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 634 whether we want this to be true eventually. */ 635 return extract_address (valaddr, len); 636 637 case TYPE_CODE_MEMBER: 638 error ("not implemented: member types in unpack_long"); 639 640 default: 641 error ("Value can't be converted to integer."); 642 } 643 return 0; /* Placate lint. */ 644 } 645 646 /* Return a double value from the specified type and address. 647 INVP points to an int which is set to 0 for valid value, 648 1 for invalid value (bad float format). In either case, 649 the returned double is OK to use. Argument is in target 650 format, result is in host format. */ 651 652 DOUBLEST 653 unpack_double (type, valaddr, invp) 654 struct type *type; 655 char *valaddr; 656 int *invp; 657 { 658 register enum type_code code = TYPE_CODE (type); 659 register int len = TYPE_LENGTH (type); 660 register int nosign = TYPE_UNSIGNED (type); 661 662 *invp = 0; /* Assume valid. */ 663 CHECK_TYPEDEF (type); 664 if (code == TYPE_CODE_FLT) 665 { 666 #ifdef INVALID_FLOAT 667 if (INVALID_FLOAT (valaddr, len)) 668 { 669 *invp = 1; 670 return 1.234567891011121314; 671 } 672 #endif 673 return extract_floating (valaddr, len); 674 } 675 else if (nosign) 676 { 677 /* Unsigned -- be sure we compensate for signed LONGEST. */ 678 #ifndef _MSC_VER 679 return (unsigned LONGEST) unpack_long (type, valaddr); 680 #else 681 #if (_MSC_VER > 800) 682 return (unsigned LONGEST) unpack_long (type, valaddr); 683 #else 684 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */ 685 return (LONGEST) unpack_long (type, valaddr); 686 #endif 687 #endif /* _MSC_VER */ 688 } 689 else 690 { 691 /* Signed -- we are OK with unpack_long. */ 692 return unpack_long (type, valaddr); 693 } 694 } 695 696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 697 as a CORE_ADDR, assuming the raw data is described by type TYPE. 698 We don't assume any alignment for the raw data. Return value is in 699 host byte order. 700 701 If you want functions and arrays to be coerced to pointers, and 702 references to be dereferenced, call value_as_pointer() instead. 703 704 C++: It is assumed that the front-end has taken care of 705 all matters concerning pointers to members. A pointer 706 to member which reaches here is considered to be equivalent 707 to an INT (or some size). After all, it is only an offset. */ 708 709 CORE_ADDR 710 unpack_pointer (type, valaddr) 711 struct type *type; 712 char *valaddr; 713 { 714 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 715 whether we want this to be true eventually. */ 716 return unpack_long (type, valaddr); 717 } 718 719 /* Given a value ARG1 (offset by OFFSET bytes) 720 of a struct or union type ARG_TYPE, 721 extract and return the value of one of its fields. 722 FIELDNO says which field. 723 724 For C++, must also be able to return values from static fields */ 725 726 value_ptr 727 value_primitive_field (arg1, offset, fieldno, arg_type) 728 register value_ptr arg1; 729 int offset; 730 register int fieldno; 731 register struct type *arg_type; 732 { 733 register value_ptr v; 734 register struct type *type; 735 736 CHECK_TYPEDEF (arg_type); 737 type = TYPE_FIELD_TYPE (arg_type, fieldno); 738 739 /* Handle packed fields */ 740 741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 742 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) 743 { 744 v = value_from_longest (type, 745 unpack_field_as_long (arg_type, 746 VALUE_CONTENTS (arg1), 747 fieldno)); 748 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; 749 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno); 750 } 751 else 752 { 753 v = allocate_value (type); 754 if (VALUE_LAZY (arg1)) 755 VALUE_LAZY (v) = 1; 756 else 757 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset, 758 TYPE_LENGTH (type)); 759 } 760 VALUE_LVAL (v) = VALUE_LVAL (arg1); 761 if (VALUE_LVAL (arg1) == lval_internalvar) 762 VALUE_LVAL (v) = lval_internalvar_component; 763 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1); 764 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1); 765 return v; 766 } 767 768 /* Given a value ARG1 of a struct or union type, 769 extract and return the value of one of its fields. 770 FIELDNO says which field. 771 772 For C++, must also be able to return values from static fields */ 773 774 value_ptr 775 value_field (arg1, fieldno) 776 register value_ptr arg1; 777 register int fieldno; 778 { 779 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1)); 780 } 781 782 /* Return a non-virtual function as a value. 783 F is the list of member functions which contains the desired method. 784 J is an index into F which provides the desired method. */ 785 786 value_ptr 787 value_fn_field (arg1p, f, j, type, offset) 788 value_ptr *arg1p; 789 struct fn_field *f; 790 int j; 791 struct type *type; 792 int offset; 793 { 794 register value_ptr v; 795 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); 796 struct symbol *sym; 797 798 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), 799 0, VAR_NAMESPACE, 0, NULL); 800 if (! sym) 801 return NULL; 802 /* 803 error ("Internal error: could not find physical method named %s", 804 TYPE_FN_FIELD_PHYSNAME (f, j)); 805 */ 806 807 v = allocate_value (ftype); 808 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); 809 VALUE_TYPE (v) = ftype; 810 811 if (arg1p) 812 { 813 if (type != VALUE_TYPE (*arg1p)) 814 *arg1p = value_ind (value_cast (lookup_pointer_type (type), 815 value_addr (*arg1p))); 816 817 /* Move the `this' pointer according to the offset. 818 VALUE_OFFSET (*arg1p) += offset; 819 */ 820 } 821 822 return v; 823 } 824 825 /* Return a virtual function as a value. 826 ARG1 is the object which provides the virtual function 827 table pointer. *ARG1P is side-effected in calling this function. 828 F is the list of member functions which contains the desired virtual 829 function. 830 J is an index into F which provides the desired virtual function. 831 832 TYPE is the type in which F is located. */ 833 value_ptr 834 value_virtual_fn_field (arg1p, f, j, type, offset) 835 value_ptr *arg1p; 836 struct fn_field *f; 837 int j; 838 struct type *type; 839 int offset; 840 { 841 value_ptr arg1 = *arg1p; 842 struct type *type1 = check_typedef (VALUE_TYPE (arg1)); 843 struct type *entry_type; 844 /* First, get the virtual function table pointer. That comes 845 with a strange type, so cast it to type `pointer to long' (which 846 should serve just fine as a function type). Then, index into 847 the table, and convert final value to appropriate function type. */ 848 value_ptr entry, vfn, vtbl; 849 value_ptr vi = value_from_longest (builtin_type_int, 850 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j)); 851 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j); 852 struct type *context; 853 if (fcontext == NULL) 854 /* We don't have an fcontext (e.g. the program was compiled with 855 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE. 856 This won't work right for multiple inheritance, but at least we 857 should do as well as GDB 3.x did. */ 858 fcontext = TYPE_VPTR_BASETYPE (type); 859 context = lookup_pointer_type (fcontext); 860 /* Now context is a pointer to the basetype containing the vtbl. */ 861 if (TYPE_TARGET_TYPE (context) != type1) 862 { 863 arg1 = value_ind (value_cast (context, value_addr (arg1))); 864 type1 = check_typedef (VALUE_TYPE (arg1)); 865 } 866 867 context = type1; 868 /* Now context is the basetype containing the vtbl. */ 869 870 /* This type may have been defined before its virtual function table 871 was. If so, fill in the virtual function table entry for the 872 type now. */ 873 if (TYPE_VPTR_FIELDNO (context) < 0) 874 fill_in_vptr_fieldno (context); 875 876 /* The virtual function table is now an array of structures 877 which have the form { int16 offset, delta; void *pfn; }. */ 878 vtbl = value_ind (value_primitive_field (arg1, 0, 879 TYPE_VPTR_FIELDNO (context), 880 TYPE_VPTR_BASETYPE (context))); 881 882 /* Index into the virtual function table. This is hard-coded because 883 looking up a field is not cheap, and it may be important to save 884 time, e.g. if the user has set a conditional breakpoint calling 885 a virtual function. */ 886 entry = value_subscript (vtbl, vi); 887 entry_type = check_typedef (VALUE_TYPE (entry)); 888 889 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT) 890 { 891 /* Move the `this' pointer according to the virtual function table. */ 892 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)); 893 894 if (! VALUE_LAZY (arg1)) 895 { 896 VALUE_LAZY (arg1) = 1; 897 value_fetch_lazy (arg1); 898 } 899 900 vfn = value_field (entry, 2); 901 } 902 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR) 903 vfn = entry; 904 else 905 error ("I'm confused: virtual function table has bad type"); 906 /* Reinstantiate the function pointer with the correct type. */ 907 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j)); 908 909 *arg1p = arg1; 910 return vfn; 911 } 912 913 /* ARG is a pointer to an object we know to be at least 914 a DTYPE. BTYPE is the most derived basetype that has 915 already been searched (and need not be searched again). 916 After looking at the vtables between BTYPE and DTYPE, 917 return the most derived type we find. The caller must 918 be satisfied when the return value == DTYPE. 919 920 FIXME-tiemann: should work with dossier entries as well. */ 921 922 static value_ptr 923 value_headof (in_arg, btype, dtype) 924 value_ptr in_arg; 925 struct type *btype, *dtype; 926 { 927 /* First collect the vtables we must look at for this object. */ 928 /* FIXME-tiemann: right now, just look at top-most vtable. */ 929 value_ptr arg, vtbl, entry, best_entry = 0; 930 int i, nelems; 931 int offset, best_offset = 0; 932 struct symbol *sym; 933 CORE_ADDR pc_for_sym; 934 char *demangled_name; 935 struct minimal_symbol *msymbol; 936 937 btype = TYPE_VPTR_BASETYPE (dtype); 938 CHECK_TYPEDEF (btype); 939 arg = in_arg; 940 if (btype != dtype) 941 arg = value_cast (lookup_pointer_type (btype), arg); 942 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype))); 943 944 /* Check that VTBL looks like it points to a virtual function table. */ 945 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl)); 946 if (msymbol == NULL 947 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL 948 || !VTBL_PREFIX_P (demangled_name)) 949 { 950 /* If we expected to find a vtable, but did not, let the user 951 know that we aren't happy, but don't throw an error. 952 FIXME: there has to be a better way to do this. */ 953 struct type *error_type = (struct type *)xmalloc (sizeof (struct type)); 954 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type)); 955 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *")); 956 VALUE_TYPE (in_arg) = error_type; 957 return in_arg; 958 } 959 960 /* Now search through the virtual function table. */ 961 entry = value_ind (vtbl); 962 nelems = longest_to_int (value_as_long (value_field (entry, 2))); 963 for (i = 1; i <= nelems; i++) 964 { 965 entry = value_subscript (vtbl, value_from_longest (builtin_type_int, 966 (LONGEST) i)); 967 /* This won't work if we're using thunks. */ 968 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT) 969 break; 970 offset = longest_to_int (value_as_long (value_field (entry, 0))); 971 /* If we use '<=' we can handle single inheritance 972 * where all offsets are zero - just use the first entry found. */ 973 if (offset <= best_offset) 974 { 975 best_offset = offset; 976 best_entry = entry; 977 } 978 } 979 /* Move the pointer according to BEST_ENTRY's offset, and figure 980 out what type we should return as the new pointer. */ 981 if (best_entry == 0) 982 { 983 /* An alternative method (which should no longer be necessary). 984 * But we leave it in for future use, when we will hopefully 985 * have optimizes the vtable to use thunks instead of offsets. */ 986 /* Use the name of vtable itself to extract a base type. */ 987 demangled_name += 4; /* Skip _vt$ prefix. */ 988 } 989 else 990 { 991 pc_for_sym = value_as_pointer (value_field (best_entry, 2)); 992 sym = find_pc_function (pc_for_sym); 993 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI); 994 *(strchr (demangled_name, ':')) = '\0'; 995 } 996 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0); 997 if (sym == NULL) 998 error ("could not find type declaration for `%s'", demangled_name); 999 if (best_entry) 1000 { 1001 free (demangled_name); 1002 arg = value_add (value_cast (builtin_type_int, arg), 1003 value_field (best_entry, 0)); 1004 } 1005 else arg = in_arg; 1006 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym)); 1007 return arg; 1008 } 1009 1010 /* ARG is a pointer object of type TYPE. If TYPE has virtual 1011 function tables, probe ARG's tables (including the vtables 1012 of its baseclasses) to figure out the most derived type that ARG 1013 could actually be a pointer to. */ 1014 1015 value_ptr 1016 value_from_vtable_info (arg, type) 1017 value_ptr arg; 1018 struct type *type; 1019 { 1020 /* Take care of preliminaries. */ 1021 if (TYPE_VPTR_FIELDNO (type) < 0) 1022 fill_in_vptr_fieldno (type); 1023 if (TYPE_VPTR_FIELDNO (type) < 0) 1024 return 0; 1025 1026 return value_headof (arg, 0, type); 1027 } 1028 1029 /* Return true if the INDEXth field of TYPE is a virtual baseclass 1030 pointer which is for the base class whose type is BASECLASS. */ 1031 1032 static int 1033 vb_match (type, index, basetype) 1034 struct type *type; 1035 int index; 1036 struct type *basetype; 1037 { 1038 struct type *fieldtype; 1039 char *name = TYPE_FIELD_NAME (type, index); 1040 char *field_class_name = NULL; 1041 1042 if (*name != '_') 1043 return 0; 1044 /* gcc 2.4 uses _vb$. */ 1045 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3])) 1046 field_class_name = name + 4; 1047 /* gcc 2.5 will use __vb_. */ 1048 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_') 1049 field_class_name = name + 5; 1050 1051 if (field_class_name == NULL) 1052 /* This field is not a virtual base class pointer. */ 1053 return 0; 1054 1055 /* It's a virtual baseclass pointer, now we just need to find out whether 1056 it is for this baseclass. */ 1057 fieldtype = TYPE_FIELD_TYPE (type, index); 1058 if (fieldtype == NULL 1059 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR) 1060 /* "Can't happen". */ 1061 return 0; 1062 1063 /* What we check for is that either the types are equal (needed for 1064 nameless types) or have the same name. This is ugly, and a more 1065 elegant solution should be devised (which would probably just push 1066 the ugliness into symbol reading unless we change the stabs format). */ 1067 if (TYPE_TARGET_TYPE (fieldtype) == basetype) 1068 return 1; 1069 1070 if (TYPE_NAME (basetype) != NULL 1071 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL 1072 && STREQ (TYPE_NAME (basetype), 1073 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)))) 1074 return 1; 1075 return 0; 1076 } 1077 1078 /* Compute the offset of the baseclass which is 1079 the INDEXth baseclass of class TYPE, 1080 for value at VALADDR (in host) at ADDRESS (in target). 1081 The result is the offset of the baseclass value relative 1082 to (the address of)(ARG) + OFFSET. 1083 1084 -1 is returned on error. */ 1085 1086 int 1087 baseclass_offset (type, index, valaddr, address) 1088 struct type *type; 1089 int index; 1090 char *valaddr; 1091 CORE_ADDR address; 1092 { 1093 struct type *basetype = TYPE_BASECLASS (type, index); 1094 1095 if (BASETYPE_VIA_VIRTUAL (type, index)) 1096 { 1097 /* Must hunt for the pointer to this virtual baseclass. */ 1098 register int i, len = TYPE_NFIELDS (type); 1099 register int n_baseclasses = TYPE_N_BASECLASSES (type); 1100 1101 /* First look for the virtual baseclass pointer 1102 in the fields. */ 1103 for (i = n_baseclasses; i < len; i++) 1104 { 1105 if (vb_match (type, i, basetype)) 1106 { 1107 CORE_ADDR addr 1108 = unpack_pointer (TYPE_FIELD_TYPE (type, i), 1109 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8)); 1110 1111 return addr - (LONGEST) address; 1112 } 1113 } 1114 /* Not in the fields, so try looking through the baseclasses. */ 1115 for (i = index+1; i < n_baseclasses; i++) 1116 { 1117 int boffset = 1118 baseclass_offset (type, i, valaddr, address); 1119 if (boffset) 1120 return boffset; 1121 } 1122 /* Not found. */ 1123 return -1; 1124 } 1125 1126 /* Baseclass is easily computed. */ 1127 return TYPE_BASECLASS_BITPOS (type, index) / 8; 1128 } 1129 1130 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at 1131 VALADDR. 1132 1133 Extracting bits depends on endianness of the machine. Compute the 1134 number of least significant bits to discard. For big endian machines, 1135 we compute the total number of bits in the anonymous object, subtract 1136 off the bit count from the MSB of the object to the MSB of the 1137 bitfield, then the size of the bitfield, which leaves the LSB discard 1138 count. For little endian machines, the discard count is simply the 1139 number of bits from the LSB of the anonymous object to the LSB of the 1140 bitfield. 1141 1142 If the field is signed, we also do sign extension. */ 1143 1144 LONGEST 1145 unpack_field_as_long (type, valaddr, fieldno) 1146 struct type *type; 1147 char *valaddr; 1148 int fieldno; 1149 { 1150 unsigned LONGEST val; 1151 unsigned LONGEST valmask; 1152 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 1153 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 1154 int lsbcount; 1155 1156 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); 1157 1158 /* Extract bits. See comment above. */ 1159 1160 if (BITS_BIG_ENDIAN) 1161 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); 1162 else 1163 lsbcount = (bitpos % 8); 1164 val >>= lsbcount; 1165 1166 /* If the field does not entirely fill a LONGEST, then zero the sign bits. 1167 If the field is signed, and is negative, then sign extend. */ 1168 1169 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) 1170 { 1171 valmask = (((unsigned LONGEST) 1) << bitsize) - 1; 1172 val &= valmask; 1173 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno))) 1174 { 1175 if (val & (valmask ^ (valmask >> 1))) 1176 { 1177 val |= ~valmask; 1178 } 1179 } 1180 } 1181 return (val); 1182 } 1183 1184 /* Modify the value of a bitfield. ADDR points to a block of memory in 1185 target byte order; the bitfield starts in the byte pointed to. FIELDVAL 1186 is the desired value of the field, in host byte order. BITPOS and BITSIZE 1187 indicate which bits (in target bit order) comprise the bitfield. */ 1188 1189 void 1190 modify_field (addr, fieldval, bitpos, bitsize) 1191 char *addr; 1192 LONGEST fieldval; 1193 int bitpos, bitsize; 1194 { 1195 LONGEST oword; 1196 1197 /* If a negative fieldval fits in the field in question, chop 1198 off the sign extension bits. */ 1199 if (bitsize < (8 * (int) sizeof (fieldval)) 1200 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0) 1201 fieldval = fieldval & ((1 << bitsize) - 1); 1202 1203 /* Warn if value is too big to fit in the field in question. */ 1204 if (bitsize < (8 * (int) sizeof (fieldval)) 1205 && 0 != (fieldval & ~((1<<bitsize)-1))) 1206 { 1207 /* FIXME: would like to include fieldval in the message, but 1208 we don't have a sprintf_longest. */ 1209 warning ("Value does not fit in %d bits.", bitsize); 1210 1211 /* Truncate it, otherwise adjoining fields may be corrupted. */ 1212 fieldval = fieldval & ((1 << bitsize) - 1); 1213 } 1214 1215 oword = extract_signed_integer (addr, sizeof oword); 1216 1217 /* Shifting for bit field depends on endianness of the target machine. */ 1218 if (BITS_BIG_ENDIAN) 1219 bitpos = sizeof (oword) * 8 - bitpos - bitsize; 1220 1221 /* Mask out old value, while avoiding shifts >= size of oword */ 1222 if (bitsize < 8 * (int) sizeof (oword)) 1223 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos); 1224 else 1225 oword &= ~((~(unsigned LONGEST)0) << bitpos); 1226 oword |= fieldval << bitpos; 1227 1228 store_signed_integer (addr, sizeof oword, oword); 1229 } 1230 1231 /* Convert C numbers into newly allocated values */ 1232 1233 value_ptr 1234 value_from_longest (type, num) 1235 struct type *type; 1236 register LONGEST num; 1237 { 1238 register value_ptr val = allocate_value (type); 1239 register enum type_code code; 1240 register int len; 1241 retry: 1242 code = TYPE_CODE (type); 1243 len = TYPE_LENGTH (type); 1244 1245 switch (code) 1246 { 1247 case TYPE_CODE_TYPEDEF: 1248 type = check_typedef (type); 1249 goto retry; 1250 case TYPE_CODE_INT: 1251 case TYPE_CODE_CHAR: 1252 case TYPE_CODE_ENUM: 1253 case TYPE_CODE_BOOL: 1254 case TYPE_CODE_RANGE: 1255 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num); 1256 break; 1257 1258 case TYPE_CODE_REF: 1259 case TYPE_CODE_PTR: 1260 /* This assumes that all pointers of a given length 1261 have the same form. */ 1262 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num); 1263 break; 1264 1265 default: 1266 error ("Unexpected type encountered for integer constant."); 1267 } 1268 return val; 1269 } 1270 1271 value_ptr 1272 value_from_double (type, num) 1273 struct type *type; 1274 DOUBLEST num; 1275 { 1276 register value_ptr val = allocate_value (type); 1277 struct type *base_type = check_typedef (type); 1278 register enum type_code code = TYPE_CODE (base_type); 1279 register int len = TYPE_LENGTH (base_type); 1280 1281 if (code == TYPE_CODE_FLT) 1282 { 1283 store_floating (VALUE_CONTENTS_RAW (val), len, num); 1284 } 1285 else 1286 error ("Unexpected type encountered for floating constant."); 1287 1288 return val; 1289 } 1290 1291 /* Deal with the value that is "about to be returned". */ 1292 1293 /* Return the value that a function returning now 1294 would be returning to its caller, assuming its type is VALTYPE. 1295 RETBUF is where we look for what ought to be the contents 1296 of the registers (in raw form). This is because it is often 1297 desirable to restore old values to those registers 1298 after saving the contents of interest, and then call 1299 this function using the saved values. 1300 struct_return is non-zero when the function in question is 1301 using the structure return conventions on the machine in question; 1302 0 when it is using the value returning conventions (this often 1303 means returning pointer to where structure is vs. returning value). */ 1304 1305 value_ptr 1306 value_being_returned (valtype, retbuf, struct_return) 1307 register struct type *valtype; 1308 char retbuf[REGISTER_BYTES]; 1309 int struct_return; 1310 /*ARGSUSED*/ 1311 { 1312 register value_ptr val; 1313 CORE_ADDR addr; 1314 1315 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS) 1316 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */ 1317 if (struct_return) { 1318 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf); 1319 if (!addr) 1320 error ("Function return value unknown"); 1321 return value_at (valtype, addr); 1322 } 1323 #endif 1324 1325 val = allocate_value (valtype); 1326 CHECK_TYPEDEF (valtype); 1327 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val)); 1328 1329 return val; 1330 } 1331 1332 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of 1333 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc 1334 and TYPE is the type (which is known to be struct, union or array). 1335 1336 On most machines, the struct convention is used unless we are 1337 using gcc and the type is of a special size. */ 1338 /* As of about 31 Mar 93, GCC was changed to be compatible with the 1339 native compiler. GCC 2.3.3 was the last release that did it the 1340 old way. Since gcc2_compiled was not changed, we have no 1341 way to correctly win in all cases, so we just do the right thing 1342 for gcc1 and for gcc2 after this change. Thus it loses for gcc 1343 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled 1344 would cause more chaos than dealing with some struct returns being 1345 handled wrong. */ 1346 #if !defined (USE_STRUCT_CONVENTION) 1347 #define USE_STRUCT_CONVENTION(gcc_p, type)\ 1348 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \ 1349 || TYPE_LENGTH (value_type) == 2 \ 1350 || TYPE_LENGTH (value_type) == 4 \ 1351 || TYPE_LENGTH (value_type) == 8 \ 1352 ) \ 1353 )) 1354 #endif 1355 1356 /* Some fundamental types (such as long double) are returned on the stack for 1357 certain architectures. This macro should return true for any type besides 1358 struct, union or array that gets returned on the stack. */ 1359 1360 #ifndef RETURN_VALUE_ON_STACK 1361 #define RETURN_VALUE_ON_STACK(TYPE) 0 1362 #endif 1363 1364 /* Return true if the function specified is using the structure returning 1365 convention on this machine to return arguments, or 0 if it is using 1366 the value returning convention. FUNCTION is the value representing 1367 the function, FUNCADDR is the address of the function, and VALUE_TYPE 1368 is the type returned by the function. GCC_P is nonzero if compiled 1369 with GCC. */ 1370 1371 int 1372 using_struct_return (function, funcaddr, value_type, gcc_p) 1373 value_ptr function; 1374 CORE_ADDR funcaddr; 1375 struct type *value_type; 1376 int gcc_p; 1377 /*ARGSUSED*/ 1378 { 1379 register enum type_code code = TYPE_CODE (value_type); 1380 1381 if (code == TYPE_CODE_ERROR) 1382 error ("Function return type unknown."); 1383 1384 if (code == TYPE_CODE_STRUCT 1385 || code == TYPE_CODE_UNION 1386 || code == TYPE_CODE_ARRAY 1387 || RETURN_VALUE_ON_STACK (value_type)) 1388 return USE_STRUCT_CONVENTION (gcc_p, value_type); 1389 1390 return 0; 1391 } 1392 1393 /* Store VAL so it will be returned if a function returns now. 1394 Does not verify that VAL's type matches what the current 1395 function wants to return. */ 1396 1397 void 1398 set_return_value (val) 1399 value_ptr val; 1400 { 1401 struct type *type = check_typedef (VALUE_TYPE (val)); 1402 register enum type_code code = TYPE_CODE (type); 1403 1404 if (code == TYPE_CODE_ERROR) 1405 error ("Function return type unknown."); 1406 1407 if ( code == TYPE_CODE_STRUCT 1408 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */ 1409 error ("GDB does not support specifying a struct or union return value."); 1410 1411 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val)); 1412 } 1413 1414 void 1415 _initialize_values () 1416 { 1417 add_cmd ("convenience", no_class, show_convenience, 1418 "Debugger convenience (\"$foo\") variables.\n\ 1419 These variables are created when you assign them values;\n\ 1420 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\ 1421 A few convenience variables are given values automatically:\n\ 1422 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ 1423 \"$__\" holds the contents of the last address examined with \"x\".", 1424 &showlist); 1425 1426 add_cmd ("values", no_class, show_values, 1427 "Elements of value history around item number IDX (or last ten).", 1428 &showlist); 1429 } 1430