1 /* Convert function calls to rtl insns, for GNU C compiler. 2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998 3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 2, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING. If not, write to the Free 19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA 20 02111-1307, USA. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "flags.h" 27 #include "expr.h" 28 #include "libfuncs.h" 29 #include "function.h" 30 #include "regs.h" 31 #include "toplev.h" 32 #include "output.h" 33 #include "tm_p.h" 34 #include "timevar.h" 35 #include "sbitmap.h" 36 #include "langhooks.h" 37 #include "target.h" 38 #include "except.h" 39 40 #if !defined FUNCTION_OK_FOR_SIBCALL 41 #define FUNCTION_OK_FOR_SIBCALL(DECL) 1 42 #endif 43 44 /* Decide whether a function's arguments should be processed 45 from first to last or from last to first. 46 47 They should if the stack and args grow in opposite directions, but 48 only if we have push insns. */ 49 50 #ifdef PUSH_ROUNDING 51 52 #ifndef PUSH_ARGS_REVERSED 53 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD) 54 #define PUSH_ARGS_REVERSED PUSH_ARGS 55 #endif 56 #endif 57 58 #endif 59 60 #ifndef PUSH_ARGS_REVERSED 61 #define PUSH_ARGS_REVERSED 0 62 #endif 63 64 #ifndef STACK_POINTER_OFFSET 65 #define STACK_POINTER_OFFSET 0 66 #endif 67 68 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */ 69 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT) 70 71 /* Data structure and subroutines used within expand_call. */ 72 73 struct arg_data 74 { 75 /* Tree node for this argument. */ 76 tree tree_value; 77 /* Mode for value; TYPE_MODE unless promoted. */ 78 enum machine_mode mode; 79 /* Current RTL value for argument, or 0 if it isn't precomputed. */ 80 rtx value; 81 /* Initially-compute RTL value for argument; only for const functions. */ 82 rtx initial_value; 83 /* Register to pass this argument in, 0 if passed on stack, or an 84 PARALLEL if the arg is to be copied into multiple non-contiguous 85 registers. */ 86 rtx reg; 87 /* Register to pass this argument in when generating tail call sequence. 88 This is not the same register as for normal calls on machines with 89 register windows. */ 90 rtx tail_call_reg; 91 /* If REG was promoted from the actual mode of the argument expression, 92 indicates whether the promotion is sign- or zero-extended. */ 93 int unsignedp; 94 /* Number of registers to use. 0 means put the whole arg in registers. 95 Also 0 if not passed in registers. */ 96 int partial; 97 /* Nonzero if argument must be passed on stack. 98 Note that some arguments may be passed on the stack 99 even though pass_on_stack is zero, just because FUNCTION_ARG says so. 100 pass_on_stack identifies arguments that *cannot* go in registers. */ 101 int pass_on_stack; 102 /* Offset of this argument from beginning of stack-args. */ 103 struct args_size offset; 104 /* Similar, but offset to the start of the stack slot. Different from 105 OFFSET if this arg pads downward. */ 106 struct args_size slot_offset; 107 /* Size of this argument on the stack, rounded up for any padding it gets, 108 parts of the argument passed in registers do not count. 109 If REG_PARM_STACK_SPACE is defined, then register parms 110 are counted here as well. */ 111 struct args_size size; 112 /* Location on the stack at which parameter should be stored. The store 113 has already been done if STACK == VALUE. */ 114 rtx stack; 115 /* Location on the stack of the start of this argument slot. This can 116 differ from STACK if this arg pads downward. This location is known 117 to be aligned to FUNCTION_ARG_BOUNDARY. */ 118 rtx stack_slot; 119 /* Place that this stack area has been saved, if needed. */ 120 rtx save_area; 121 /* If an argument's alignment does not permit direct copying into registers, 122 copy in smaller-sized pieces into pseudos. These are stored in a 123 block pointed to by this field. The next field says how many 124 word-sized pseudos we made. */ 125 rtx *aligned_regs; 126 int n_aligned_regs; 127 /* The amount that the stack pointer needs to be adjusted to 128 force alignment for the next argument. */ 129 struct args_size alignment_pad; 130 }; 131 132 /* A vector of one char per byte of stack space. A byte if nonzero if 133 the corresponding stack location has been used. 134 This vector is used to prevent a function call within an argument from 135 clobbering any stack already set up. */ 136 static char *stack_usage_map; 137 138 /* Size of STACK_USAGE_MAP. */ 139 static int highest_outgoing_arg_in_use; 140 141 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding 142 stack location's tail call argument has been already stored into the stack. 143 This bitmap is used to prevent sibling call optimization if function tries 144 to use parent's incoming argument slots when they have been already 145 overwritten with tail call arguments. */ 146 static sbitmap stored_args_map; 147 148 /* stack_arg_under_construction is nonzero when an argument may be 149 initialized with a constructor call (including a C function that 150 returns a BLKmode struct) and expand_call must take special action 151 to make sure the object being constructed does not overlap the 152 argument list for the constructor call. */ 153 int stack_arg_under_construction; 154 155 static int calls_function PARAMS ((tree, int)); 156 static int calls_function_1 PARAMS ((tree, int)); 157 158 /* Nonzero if this is a call to a `const' function. */ 159 #define ECF_CONST 1 160 /* Nonzero if this is a call to a `volatile' function. */ 161 #define ECF_NORETURN 2 162 /* Nonzero if this is a call to malloc or a related function. */ 163 #define ECF_MALLOC 4 164 /* Nonzero if it is plausible that this is a call to alloca. */ 165 #define ECF_MAY_BE_ALLOCA 8 166 /* Nonzero if this is a call to a function that won't throw an exception. */ 167 #define ECF_NOTHROW 16 168 /* Nonzero if this is a call to setjmp or a related function. */ 169 #define ECF_RETURNS_TWICE 32 170 /* Nonzero if this is a call to `longjmp'. */ 171 #define ECF_LONGJMP 64 172 /* Nonzero if this is a syscall that makes a new process in the image of 173 the current one. */ 174 #define ECF_FORK_OR_EXEC 128 175 #define ECF_SIBCALL 256 176 /* Nonzero if this is a call to "pure" function (like const function, 177 but may read memory. */ 178 #define ECF_PURE 512 179 /* Nonzero if this is a call to a function that returns with the stack 180 pointer depressed. */ 181 #define ECF_SP_DEPRESSED 1024 182 /* Nonzero if this call is known to always return. */ 183 #define ECF_ALWAYS_RETURN 2048 184 /* Create libcall block around the call. */ 185 #define ECF_LIBCALL_BLOCK 4096 186 187 static void emit_call_1 PARAMS ((rtx, tree, tree, HOST_WIDE_INT, 188 HOST_WIDE_INT, HOST_WIDE_INT, rtx, 189 rtx, int, rtx, int, 190 CUMULATIVE_ARGS *)); 191 static void precompute_register_parameters PARAMS ((int, 192 struct arg_data *, 193 int *)); 194 static int store_one_arg PARAMS ((struct arg_data *, rtx, int, int, 195 int)); 196 static void store_unaligned_arguments_into_pseudos PARAMS ((struct arg_data *, 197 int)); 198 static int finalize_must_preallocate PARAMS ((int, int, 199 struct arg_data *, 200 struct args_size *)); 201 static void precompute_arguments PARAMS ((int, int, 202 struct arg_data *)); 203 static int compute_argument_block_size PARAMS ((int, 204 struct args_size *, 205 int)); 206 static void initialize_argument_information PARAMS ((int, 207 struct arg_data *, 208 struct args_size *, 209 int, tree, tree, 210 CUMULATIVE_ARGS *, 211 int, rtx *, int *, 212 int *, int *)); 213 static void compute_argument_addresses PARAMS ((struct arg_data *, 214 rtx, int)); 215 static rtx rtx_for_function_call PARAMS ((tree, tree)); 216 static void load_register_parameters PARAMS ((struct arg_data *, 217 int, rtx *, int)); 218 static rtx emit_library_call_value_1 PARAMS ((int, rtx, rtx, 219 enum libcall_type, 220 enum machine_mode, 221 int, va_list)); 222 static int special_function_p PARAMS ((tree, int)); 223 static int flags_from_decl_or_type PARAMS ((tree)); 224 static rtx try_to_integrate PARAMS ((tree, tree, rtx, 225 int, tree, rtx)); 226 static int check_sibcall_argument_overlap_1 PARAMS ((rtx)); 227 static int check_sibcall_argument_overlap PARAMS ((rtx, struct arg_data *)); 228 229 static int combine_pending_stack_adjustment_and_call 230 PARAMS ((int, struct args_size *, int)); 231 static tree fix_unsafe_tree PARAMS ((tree)); 232 233 #ifdef REG_PARM_STACK_SPACE 234 static rtx save_fixed_argument_area PARAMS ((int, rtx, int *, int *)); 235 static void restore_fixed_argument_area PARAMS ((rtx, rtx, int, int)); 236 #endif 237 238 /* If WHICH is 1, return 1 if EXP contains a call to the built-in function 239 `alloca'. 240 241 If WHICH is 0, return 1 if EXP contains a call to any function. 242 Actually, we only need return 1 if evaluating EXP would require pushing 243 arguments on the stack, but that is too difficult to compute, so we just 244 assume any function call might require the stack. */ 245 246 static tree calls_function_save_exprs; 247 248 static int 249 calls_function (exp, which) 250 tree exp; 251 int which; 252 { 253 int val; 254 255 calls_function_save_exprs = 0; 256 val = calls_function_1 (exp, which); 257 calls_function_save_exprs = 0; 258 return val; 259 } 260 261 /* Recursive function to do the work of above function. */ 262 263 static int 264 calls_function_1 (exp, which) 265 tree exp; 266 int which; 267 { 268 int i; 269 enum tree_code code = TREE_CODE (exp); 270 int class = TREE_CODE_CLASS (code); 271 int length = first_rtl_op (code); 272 273 /* If this code is language-specific, we don't know what it will do. */ 274 if ((int) code >= NUM_TREE_CODES) 275 return 1; 276 277 switch (code) 278 { 279 case CALL_EXPR: 280 if (which == 0) 281 return 1; 282 else if ((TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))) 283 == FUNCTION_TYPE) 284 && (TYPE_RETURNS_STACK_DEPRESSED 285 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))))) 286 return 1; 287 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR 288 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) 289 == FUNCTION_DECL) 290 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), 291 0) 292 & ECF_MAY_BE_ALLOCA)) 293 return 1; 294 295 break; 296 297 case CONSTRUCTOR: 298 { 299 tree tem; 300 301 for (tem = CONSTRUCTOR_ELTS (exp); tem != 0; tem = TREE_CHAIN (tem)) 302 if (calls_function_1 (TREE_VALUE (tem), which)) 303 return 1; 304 } 305 306 return 0; 307 308 case SAVE_EXPR: 309 if (SAVE_EXPR_RTL (exp) != 0) 310 return 0; 311 if (value_member (exp, calls_function_save_exprs)) 312 return 0; 313 calls_function_save_exprs = tree_cons (NULL_TREE, exp, 314 calls_function_save_exprs); 315 return (TREE_OPERAND (exp, 0) != 0 316 && calls_function_1 (TREE_OPERAND (exp, 0), which)); 317 318 case BLOCK: 319 { 320 tree local; 321 tree subblock; 322 323 for (local = BLOCK_VARS (exp); local; local = TREE_CHAIN (local)) 324 if (DECL_INITIAL (local) != 0 325 && calls_function_1 (DECL_INITIAL (local), which)) 326 return 1; 327 328 for (subblock = BLOCK_SUBBLOCKS (exp); 329 subblock; 330 subblock = TREE_CHAIN (subblock)) 331 if (calls_function_1 (subblock, which)) 332 return 1; 333 } 334 return 0; 335 336 case TREE_LIST: 337 for (; exp != 0; exp = TREE_CHAIN (exp)) 338 if (calls_function_1 (TREE_VALUE (exp), which)) 339 return 1; 340 return 0; 341 342 default: 343 break; 344 } 345 346 /* Only expressions, references, and blocks can contain calls. */ 347 if (! IS_EXPR_CODE_CLASS (class) && class != 'r' && class != 'b') 348 return 0; 349 350 for (i = 0; i < length; i++) 351 if (TREE_OPERAND (exp, i) != 0 352 && calls_function_1 (TREE_OPERAND (exp, i), which)) 353 return 1; 354 355 return 0; 356 } 357 358 /* Force FUNEXP into a form suitable for the address of a CALL, 359 and return that as an rtx. Also load the static chain register 360 if FNDECL is a nested function. 361 362 CALL_FUSAGE points to a variable holding the prospective 363 CALL_INSN_FUNCTION_USAGE information. */ 364 365 rtx 366 prepare_call_address (funexp, fndecl, call_fusage, reg_parm_seen, sibcallp) 367 rtx funexp; 368 tree fndecl; 369 rtx *call_fusage; 370 int reg_parm_seen; 371 int sibcallp; 372 { 373 rtx static_chain_value = 0; 374 375 funexp = protect_from_queue (funexp, 0); 376 377 if (fndecl != 0) 378 /* Get possible static chain value for nested function in C. */ 379 static_chain_value = lookup_static_chain (fndecl); 380 381 /* Make a valid memory address and copy constants thru pseudo-regs, 382 but not for a constant address if -fno-function-cse. */ 383 if (GET_CODE (funexp) != SYMBOL_REF) 384 /* If we are using registers for parameters, force the 385 function address into a register now. */ 386 funexp = ((SMALL_REGISTER_CLASSES && reg_parm_seen) 387 ? force_not_mem (memory_address (FUNCTION_MODE, funexp)) 388 : memory_address (FUNCTION_MODE, funexp)); 389 else if (! sibcallp) 390 { 391 #ifndef NO_FUNCTION_CSE 392 if (optimize && ! flag_no_function_cse) 393 #ifdef NO_RECURSIVE_FUNCTION_CSE 394 if (fndecl != current_function_decl) 395 #endif 396 funexp = force_reg (Pmode, funexp); 397 #endif 398 } 399 400 if (static_chain_value != 0) 401 { 402 emit_move_insn (static_chain_rtx, static_chain_value); 403 404 if (GET_CODE (static_chain_rtx) == REG) 405 use_reg (call_fusage, static_chain_rtx); 406 } 407 408 return funexp; 409 } 410 411 /* Generate instructions to call function FUNEXP, 412 and optionally pop the results. 413 The CALL_INSN is the first insn generated. 414 415 FNDECL is the declaration node of the function. This is given to the 416 macro RETURN_POPS_ARGS to determine whether this function pops its own args. 417 418 FUNTYPE is the data type of the function. This is given to the macro 419 RETURN_POPS_ARGS to determine whether this function pops its own args. 420 We used to allow an identifier for library functions, but that doesn't 421 work when the return type is an aggregate type and the calling convention 422 says that the pointer to this aggregate is to be popped by the callee. 423 424 STACK_SIZE is the number of bytes of arguments on the stack, 425 ROUNDED_STACK_SIZE is that number rounded up to 426 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is 427 both to put into the call insn and to generate explicit popping 428 code if necessary. 429 430 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value. 431 It is zero if this call doesn't want a structure value. 432 433 NEXT_ARG_REG is the rtx that results from executing 434 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1) 435 just after all the args have had their registers assigned. 436 This could be whatever you like, but normally it is the first 437 arg-register beyond those used for args in this call, 438 or 0 if all the arg-registers are used in this call. 439 It is passed on to `gen_call' so you can put this info in the call insn. 440 441 VALREG is a hard register in which a value is returned, 442 or 0 if the call does not return a value. 443 444 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before 445 the args to this call were processed. 446 We restore `inhibit_defer_pop' to that value. 447 448 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that 449 denote registers used by the called function. */ 450 451 static void 452 emit_call_1 (funexp, fndecl, funtype, stack_size, rounded_stack_size, 453 struct_value_size, next_arg_reg, valreg, old_inhibit_defer_pop, 454 call_fusage, ecf_flags, args_so_far) 455 rtx funexp; 456 tree fndecl ATTRIBUTE_UNUSED; 457 tree funtype ATTRIBUTE_UNUSED; 458 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED; 459 HOST_WIDE_INT rounded_stack_size; 460 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED; 461 rtx next_arg_reg ATTRIBUTE_UNUSED; 462 rtx valreg; 463 int old_inhibit_defer_pop; 464 rtx call_fusage; 465 int ecf_flags; 466 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED; 467 { 468 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size); 469 rtx call_insn; 470 int already_popped = 0; 471 HOST_WIDE_INT n_popped = RETURN_POPS_ARGS (fndecl, funtype, stack_size); 472 #if defined (HAVE_call) && defined (HAVE_call_value) 473 rtx struct_value_size_rtx; 474 struct_value_size_rtx = GEN_INT (struct_value_size); 475 #endif 476 477 #ifdef CALL_POPS_ARGS 478 n_popped += CALL_POPS_ARGS (* args_so_far); 479 #endif 480 481 /* Ensure address is valid. SYMBOL_REF is already valid, so no need, 482 and we don't want to load it into a register as an optimization, 483 because prepare_call_address already did it if it should be done. */ 484 if (GET_CODE (funexp) != SYMBOL_REF) 485 funexp = memory_address (FUNCTION_MODE, funexp); 486 487 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop) 488 if ((ecf_flags & ECF_SIBCALL) 489 && HAVE_sibcall_pop && HAVE_sibcall_value_pop 490 && (n_popped > 0 || stack_size == 0)) 491 { 492 rtx n_pop = GEN_INT (n_popped); 493 rtx pat; 494 495 /* If this subroutine pops its own args, record that in the call insn 496 if possible, for the sake of frame pointer elimination. */ 497 498 if (valreg) 499 pat = GEN_SIBCALL_VALUE_POP (valreg, 500 gen_rtx_MEM (FUNCTION_MODE, funexp), 501 rounded_stack_size_rtx, next_arg_reg, 502 n_pop); 503 else 504 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp), 505 rounded_stack_size_rtx, next_arg_reg, n_pop); 506 507 emit_call_insn (pat); 508 already_popped = 1; 509 } 510 else 511 #endif 512 513 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop) 514 /* If the target has "call" or "call_value" insns, then prefer them 515 if no arguments are actually popped. If the target does not have 516 "call" or "call_value" insns, then we must use the popping versions 517 even if the call has no arguments to pop. */ 518 #if defined (HAVE_call) && defined (HAVE_call_value) 519 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop 520 && n_popped > 0 && ! (ecf_flags & ECF_SP_DEPRESSED)) 521 #else 522 if (HAVE_call_pop && HAVE_call_value_pop) 523 #endif 524 { 525 rtx n_pop = GEN_INT (n_popped); 526 rtx pat; 527 528 /* If this subroutine pops its own args, record that in the call insn 529 if possible, for the sake of frame pointer elimination. */ 530 531 if (valreg) 532 pat = GEN_CALL_VALUE_POP (valreg, 533 gen_rtx_MEM (FUNCTION_MODE, funexp), 534 rounded_stack_size_rtx, next_arg_reg, n_pop); 535 else 536 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp), 537 rounded_stack_size_rtx, next_arg_reg, n_pop); 538 539 emit_call_insn (pat); 540 already_popped = 1; 541 } 542 else 543 #endif 544 545 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value) 546 if ((ecf_flags & ECF_SIBCALL) 547 && HAVE_sibcall && HAVE_sibcall_value) 548 { 549 if (valreg) 550 emit_call_insn (GEN_SIBCALL_VALUE (valreg, 551 gen_rtx_MEM (FUNCTION_MODE, funexp), 552 rounded_stack_size_rtx, 553 next_arg_reg, NULL_RTX)); 554 else 555 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp), 556 rounded_stack_size_rtx, next_arg_reg, 557 struct_value_size_rtx)); 558 } 559 else 560 #endif 561 562 #if defined (HAVE_call) && defined (HAVE_call_value) 563 if (HAVE_call && HAVE_call_value) 564 { 565 if (valreg) 566 emit_call_insn (GEN_CALL_VALUE (valreg, 567 gen_rtx_MEM (FUNCTION_MODE, funexp), 568 rounded_stack_size_rtx, next_arg_reg, 569 NULL_RTX)); 570 else 571 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp), 572 rounded_stack_size_rtx, next_arg_reg, 573 struct_value_size_rtx)); 574 } 575 else 576 #endif 577 abort (); 578 579 /* Find the CALL insn we just emitted. */ 580 for (call_insn = get_last_insn (); 581 call_insn && GET_CODE (call_insn) != CALL_INSN; 582 call_insn = PREV_INSN (call_insn)) 583 ; 584 585 if (! call_insn) 586 abort (); 587 588 /* Mark memory as used for "pure" function call. */ 589 if (ecf_flags & ECF_PURE) 590 call_fusage 591 = gen_rtx_EXPR_LIST 592 (VOIDmode, 593 gen_rtx_USE (VOIDmode, 594 gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))), 595 call_fusage); 596 597 /* Put the register usage information on the CALL. If there is already 598 some usage information, put ours at the end. */ 599 if (CALL_INSN_FUNCTION_USAGE (call_insn)) 600 { 601 rtx link; 602 603 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; 604 link = XEXP (link, 1)) 605 ; 606 607 XEXP (link, 1) = call_fusage; 608 } 609 else 610 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; 611 612 /* If this is a const call, then set the insn's unchanging bit. */ 613 if (ecf_flags & (ECF_CONST | ECF_PURE)) 614 CONST_OR_PURE_CALL_P (call_insn) = 1; 615 616 /* If this call can't throw, attach a REG_EH_REGION reg note to that 617 effect. */ 618 if (ecf_flags & ECF_NOTHROW) 619 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, const0_rtx, 620 REG_NOTES (call_insn)); 621 else 622 note_eh_region_may_contain_throw (); 623 624 if (ecf_flags & ECF_NORETURN) 625 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_NORETURN, const0_rtx, 626 REG_NOTES (call_insn)); 627 if (ecf_flags & ECF_ALWAYS_RETURN) 628 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_ALWAYS_RETURN, const0_rtx, 629 REG_NOTES (call_insn)); 630 631 if (ecf_flags & ECF_RETURNS_TWICE) 632 { 633 REG_NOTES (call_insn) = gen_rtx_EXPR_LIST (REG_SETJMP, const0_rtx, 634 REG_NOTES (call_insn)); 635 current_function_calls_setjmp = 1; 636 } 637 638 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0); 639 640 /* Restore this now, so that we do defer pops for this call's args 641 if the context of the call as a whole permits. */ 642 inhibit_defer_pop = old_inhibit_defer_pop; 643 644 /* Don't bother cleaning up after a noreturn function. */ 645 if (ecf_flags & (ECF_NORETURN | ECF_LONGJMP)) 646 return; 647 648 if (n_popped > 0) 649 { 650 if (!already_popped) 651 CALL_INSN_FUNCTION_USAGE (call_insn) 652 = gen_rtx_EXPR_LIST (VOIDmode, 653 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx), 654 CALL_INSN_FUNCTION_USAGE (call_insn)); 655 rounded_stack_size -= n_popped; 656 rounded_stack_size_rtx = GEN_INT (rounded_stack_size); 657 stack_pointer_delta -= n_popped; 658 } 659 660 if (!ACCUMULATE_OUTGOING_ARGS) 661 { 662 /* If returning from the subroutine does not automatically pop the args, 663 we need an instruction to pop them sooner or later. 664 Perhaps do it now; perhaps just record how much space to pop later. 665 666 If returning from the subroutine does pop the args, indicate that the 667 stack pointer will be changed. */ 668 669 if (rounded_stack_size != 0) 670 { 671 if (ecf_flags & ECF_SP_DEPRESSED) 672 /* Just pretend we did the pop. */ 673 stack_pointer_delta -= rounded_stack_size; 674 else if (flag_defer_pop && inhibit_defer_pop == 0 675 && ! (ecf_flags & (ECF_CONST | ECF_PURE))) 676 pending_stack_adjust += rounded_stack_size; 677 else 678 adjust_stack (rounded_stack_size_rtx); 679 } 680 } 681 /* When we accumulate outgoing args, we must avoid any stack manipulations. 682 Restore the stack pointer to its original value now. Usually 683 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions. 684 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and 685 popping variants of functions exist as well. 686 687 ??? We may optimize similar to defer_pop above, but it is 688 probably not worthwhile. 689 690 ??? It will be worthwhile to enable combine_stack_adjustments even for 691 such machines. */ 692 else if (n_popped) 693 anti_adjust_stack (GEN_INT (n_popped)); 694 } 695 696 /* Determine if the function identified by NAME and FNDECL is one with 697 special properties we wish to know about. 698 699 For example, if the function might return more than one time (setjmp), then 700 set RETURNS_TWICE to a nonzero value. 701 702 Similarly set LONGJMP for if the function is in the longjmp family. 703 704 Set MALLOC for any of the standard memory allocation functions which 705 allocate from the heap. 706 707 Set MAY_BE_ALLOCA for any memory allocation function that might allocate 708 space from the stack such as alloca. */ 709 710 static int 711 special_function_p (fndecl, flags) 712 tree fndecl; 713 int flags; 714 { 715 if (! (flags & ECF_MALLOC) 716 && fndecl && DECL_NAME (fndecl) 717 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17 718 /* Exclude functions not at the file scope, or not `extern', 719 since they are not the magic functions we would otherwise 720 think they are. */ 721 && DECL_CONTEXT (fndecl) == NULL_TREE && TREE_PUBLIC (fndecl)) 722 { 723 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl)); 724 const char *tname = name; 725 726 /* We assume that alloca will always be called by name. It 727 makes no sense to pass it as a pointer-to-function to 728 anything that does not understand its behavior. */ 729 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 730 && name[0] == 'a' 731 && ! strcmp (name, "alloca")) 732 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16 733 && name[0] == '_' 734 && ! strcmp (name, "__builtin_alloca")))) 735 flags |= ECF_MAY_BE_ALLOCA; 736 737 /* Disregard prefix _, __ or __x. */ 738 if (name[0] == '_') 739 { 740 if (name[1] == '_' && name[2] == 'x') 741 tname += 3; 742 else if (name[1] == '_') 743 tname += 2; 744 else 745 tname += 1; 746 } 747 748 if (tname[0] == 's') 749 { 750 if ((tname[1] == 'e' 751 && (! strcmp (tname, "setjmp") 752 || ! strcmp (tname, "setjmp_syscall"))) 753 || (tname[1] == 'i' 754 && ! strcmp (tname, "sigsetjmp")) 755 || (tname[1] == 'a' 756 && ! strcmp (tname, "savectx"))) 757 flags |= ECF_RETURNS_TWICE; 758 759 if (tname[1] == 'i' 760 && ! strcmp (tname, "siglongjmp")) 761 flags |= ECF_LONGJMP; 762 } 763 else if ((tname[0] == 'q' && tname[1] == 's' 764 && ! strcmp (tname, "qsetjmp")) 765 || (tname[0] == 'v' && tname[1] == 'f' 766 && ! strcmp (tname, "vfork"))) 767 flags |= ECF_RETURNS_TWICE; 768 769 else if (tname[0] == 'l' && tname[1] == 'o' 770 && ! strcmp (tname, "longjmp")) 771 flags |= ECF_LONGJMP; 772 773 else if ((tname[0] == 'f' && tname[1] == 'o' 774 && ! strcmp (tname, "fork")) 775 /* Linux specific: __clone. check NAME to insist on the 776 leading underscores, to avoid polluting the ISO / POSIX 777 namespace. */ 778 || (name[0] == '_' && name[1] == '_' 779 && ! strcmp (tname, "clone")) 780 || (tname[0] == 'e' && tname[1] == 'x' && tname[2] == 'e' 781 && tname[3] == 'c' && (tname[4] == 'l' || tname[4] == 'v') 782 && (tname[5] == '\0' 783 || ((tname[5] == 'p' || tname[5] == 'e') 784 && tname[6] == '\0')))) 785 flags |= ECF_FORK_OR_EXEC; 786 787 /* Do not add any more malloc-like functions to this list, 788 instead mark them as malloc functions using the malloc attribute. 789 Note, realloc is not suitable for attribute malloc since 790 it may return the same address across multiple calls. 791 C++ operator new is not suitable because it is not required 792 to return a unique pointer; indeed, the standard placement new 793 just returns its argument. */ 794 else if (TYPE_MODE (TREE_TYPE (TREE_TYPE (fndecl))) == Pmode 795 && (! strcmp (tname, "malloc") 796 || ! strcmp (tname, "calloc") 797 || ! strcmp (tname, "strdup"))) 798 flags |= ECF_MALLOC; 799 } 800 return flags; 801 } 802 803 /* Return nonzero when tree represent call to longjmp. */ 804 805 int 806 setjmp_call_p (fndecl) 807 tree fndecl; 808 { 809 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE; 810 } 811 812 /* Return true when exp contains alloca call. */ 813 bool 814 alloca_call_p (exp) 815 tree exp; 816 { 817 if (TREE_CODE (exp) == CALL_EXPR 818 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR 819 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) 820 == FUNCTION_DECL) 821 && (special_function_p (TREE_OPERAND (TREE_OPERAND (exp, 0), 0), 822 0) & ECF_MAY_BE_ALLOCA)) 823 return true; 824 return false; 825 } 826 827 /* Detect flags (function attributes) from the function decl or type node. */ 828 829 static int 830 flags_from_decl_or_type (exp) 831 tree exp; 832 { 833 int flags = 0; 834 tree type = exp; 835 /* ??? We can't set IS_MALLOC for function types? */ 836 if (DECL_P (exp)) 837 { 838 type = TREE_TYPE (exp); 839 840 /* The function exp may have the `malloc' attribute. */ 841 if (DECL_P (exp) && DECL_IS_MALLOC (exp)) 842 flags |= ECF_MALLOC; 843 844 /* The function exp may have the `pure' attribute. */ 845 if (DECL_P (exp) && DECL_IS_PURE (exp)) 846 flags |= ECF_PURE | ECF_LIBCALL_BLOCK; 847 848 if (TREE_NOTHROW (exp)) 849 flags |= ECF_NOTHROW; 850 851 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp)) 852 flags |= ECF_LIBCALL_BLOCK; 853 } 854 855 if (TREE_READONLY (exp) && ! TREE_THIS_VOLATILE (exp)) 856 flags |= ECF_CONST; 857 858 if (TREE_THIS_VOLATILE (exp)) 859 flags |= ECF_NORETURN; 860 861 /* Mark if the function returns with the stack pointer depressed. We 862 cannot consider it pure or constant in that case. */ 863 if (TREE_CODE (type) == FUNCTION_TYPE && TYPE_RETURNS_STACK_DEPRESSED (type)) 864 { 865 flags |= ECF_SP_DEPRESSED; 866 flags &= ~(ECF_PURE | ECF_CONST | ECF_LIBCALL_BLOCK); 867 } 868 869 return flags; 870 } 871 872 /* Precompute all register parameters as described by ARGS, storing values 873 into fields within the ARGS array. 874 875 NUM_ACTUALS indicates the total number elements in the ARGS array. 876 877 Set REG_PARM_SEEN if we encounter a register parameter. */ 878 879 static void 880 precompute_register_parameters (num_actuals, args, reg_parm_seen) 881 int num_actuals; 882 struct arg_data *args; 883 int *reg_parm_seen; 884 { 885 int i; 886 887 *reg_parm_seen = 0; 888 889 for (i = 0; i < num_actuals; i++) 890 if (args[i].reg != 0 && ! args[i].pass_on_stack) 891 { 892 *reg_parm_seen = 1; 893 894 if (args[i].value == 0) 895 { 896 push_temp_slots (); 897 args[i].value = expand_expr (args[i].tree_value, NULL_RTX, 898 VOIDmode, 0); 899 preserve_temp_slots (args[i].value); 900 pop_temp_slots (); 901 902 /* ANSI doesn't require a sequence point here, 903 but PCC has one, so this will avoid some problems. */ 904 emit_queue (); 905 } 906 907 /* If the value is a non-legitimate constant, force it into a 908 pseudo now. TLS symbols sometimes need a call to resolve. */ 909 if (CONSTANT_P (args[i].value) 910 && !LEGITIMATE_CONSTANT_P (args[i].value)) 911 args[i].value = force_reg (args[i].mode, args[i].value); 912 913 /* If we are to promote the function arg to a wider mode, 914 do it now. */ 915 916 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value))) 917 args[i].value 918 = convert_modes (args[i].mode, 919 TYPE_MODE (TREE_TYPE (args[i].tree_value)), 920 args[i].value, args[i].unsignedp); 921 922 /* If the value is expensive, and we are inside an appropriately 923 short loop, put the value into a pseudo and then put the pseudo 924 into the hard reg. 925 926 For small register classes, also do this if this call uses 927 register parameters. This is to avoid reload conflicts while 928 loading the parameters registers. */ 929 930 if ((! (GET_CODE (args[i].value) == REG 931 || (GET_CODE (args[i].value) == SUBREG 932 && GET_CODE (SUBREG_REG (args[i].value)) == REG))) 933 && args[i].mode != BLKmode 934 && rtx_cost (args[i].value, SET) > COSTS_N_INSNS (1) 935 && ((SMALL_REGISTER_CLASSES && *reg_parm_seen) 936 || preserve_subexpressions_p ())) 937 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value); 938 } 939 } 940 941 #ifdef REG_PARM_STACK_SPACE 942 943 /* The argument list is the property of the called routine and it 944 may clobber it. If the fixed area has been used for previous 945 parameters, we must save and restore it. */ 946 947 static rtx 948 save_fixed_argument_area (reg_parm_stack_space, argblock, 949 low_to_save, high_to_save) 950 int reg_parm_stack_space; 951 rtx argblock; 952 int *low_to_save; 953 int *high_to_save; 954 { 955 int i; 956 rtx save_area = NULL_RTX; 957 958 /* Compute the boundary of the that needs to be saved, if any. */ 959 #ifdef ARGS_GROW_DOWNWARD 960 for (i = 0; i < reg_parm_stack_space + 1; i++) 961 #else 962 for (i = 0; i < reg_parm_stack_space; i++) 963 #endif 964 { 965 if (i >= highest_outgoing_arg_in_use 966 || stack_usage_map[i] == 0) 967 continue; 968 969 if (*low_to_save == -1) 970 *low_to_save = i; 971 972 *high_to_save = i; 973 } 974 975 if (*low_to_save >= 0) 976 { 977 int num_to_save = *high_to_save - *low_to_save + 1; 978 enum machine_mode save_mode 979 = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); 980 rtx stack_area; 981 982 /* If we don't have the required alignment, must do this in BLKmode. */ 983 if ((*low_to_save & (MIN (GET_MODE_SIZE (save_mode), 984 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) 985 save_mode = BLKmode; 986 987 #ifdef ARGS_GROW_DOWNWARD 988 stack_area 989 = gen_rtx_MEM (save_mode, 990 memory_address (save_mode, 991 plus_constant (argblock, 992 - *high_to_save))); 993 #else 994 stack_area = gen_rtx_MEM (save_mode, 995 memory_address (save_mode, 996 plus_constant (argblock, 997 *low_to_save))); 998 #endif 999 1000 set_mem_align (stack_area, PARM_BOUNDARY); 1001 if (save_mode == BLKmode) 1002 { 1003 save_area = assign_stack_temp (BLKmode, num_to_save, 0); 1004 emit_block_move (validize_mem (save_area), stack_area, 1005 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM); 1006 } 1007 else 1008 { 1009 save_area = gen_reg_rtx (save_mode); 1010 emit_move_insn (save_area, stack_area); 1011 } 1012 } 1013 1014 return save_area; 1015 } 1016 1017 static void 1018 restore_fixed_argument_area (save_area, argblock, high_to_save, low_to_save) 1019 rtx save_area; 1020 rtx argblock; 1021 int high_to_save; 1022 int low_to_save; 1023 { 1024 enum machine_mode save_mode = GET_MODE (save_area); 1025 #ifdef ARGS_GROW_DOWNWARD 1026 rtx stack_area 1027 = gen_rtx_MEM (save_mode, 1028 memory_address (save_mode, 1029 plus_constant (argblock, 1030 - high_to_save))); 1031 #else 1032 rtx stack_area 1033 = gen_rtx_MEM (save_mode, 1034 memory_address (save_mode, 1035 plus_constant (argblock, 1036 low_to_save))); 1037 #endif 1038 1039 if (save_mode != BLKmode) 1040 emit_move_insn (stack_area, save_area); 1041 else 1042 emit_block_move (stack_area, validize_mem (save_area), 1043 GEN_INT (high_to_save - low_to_save + 1), 1044 BLOCK_OP_CALL_PARM); 1045 } 1046 #endif /* REG_PARM_STACK_SPACE */ 1047 1048 /* If any elements in ARGS refer to parameters that are to be passed in 1049 registers, but not in memory, and whose alignment does not permit a 1050 direct copy into registers. Copy the values into a group of pseudos 1051 which we will later copy into the appropriate hard registers. 1052 1053 Pseudos for each unaligned argument will be stored into the array 1054 args[argnum].aligned_regs. The caller is responsible for deallocating 1055 the aligned_regs array if it is nonzero. */ 1056 1057 static void 1058 store_unaligned_arguments_into_pseudos (args, num_actuals) 1059 struct arg_data *args; 1060 int num_actuals; 1061 { 1062 int i, j; 1063 1064 for (i = 0; i < num_actuals; i++) 1065 if (args[i].reg != 0 && ! args[i].pass_on_stack 1066 && args[i].mode == BLKmode 1067 && (TYPE_ALIGN (TREE_TYPE (args[i].tree_value)) 1068 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD))) 1069 { 1070 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value)); 1071 int big_endian_correction = 0; 1072 1073 args[i].n_aligned_regs 1074 = args[i].partial ? args[i].partial 1075 : (bytes + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD; 1076 1077 args[i].aligned_regs = (rtx *) xmalloc (sizeof (rtx) 1078 * args[i].n_aligned_regs); 1079 1080 /* Structures smaller than a word are aligned to the least 1081 significant byte (to the right). On a BYTES_BIG_ENDIAN machine, 1082 this means we must skip the empty high order bytes when 1083 calculating the bit offset. */ 1084 if (BYTES_BIG_ENDIAN 1085 && bytes < UNITS_PER_WORD) 1086 big_endian_correction = (BITS_PER_WORD - (bytes * BITS_PER_UNIT)); 1087 1088 for (j = 0; j < args[i].n_aligned_regs; j++) 1089 { 1090 rtx reg = gen_reg_rtx (word_mode); 1091 rtx word = operand_subword_force (args[i].value, j, BLKmode); 1092 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD); 1093 1094 args[i].aligned_regs[j] = reg; 1095 1096 /* There is no need to restrict this code to loading items 1097 in TYPE_ALIGN sized hunks. The bitfield instructions can 1098 load up entire word sized registers efficiently. 1099 1100 ??? This may not be needed anymore. 1101 We use to emit a clobber here but that doesn't let later 1102 passes optimize the instructions we emit. By storing 0 into 1103 the register later passes know the first AND to zero out the 1104 bitfield being set in the register is unnecessary. The store 1105 of 0 will be deleted as will at least the first AND. */ 1106 1107 emit_move_insn (reg, const0_rtx); 1108 1109 bytes -= bitsize / BITS_PER_UNIT; 1110 store_bit_field (reg, bitsize, big_endian_correction, word_mode, 1111 extract_bit_field (word, bitsize, 0, 1, NULL_RTX, 1112 word_mode, word_mode, 1113 BITS_PER_WORD), 1114 BITS_PER_WORD); 1115 } 1116 } 1117 } 1118 1119 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in 1120 ACTPARMS. 1121 1122 NUM_ACTUALS is the total number of parameters. 1123 1124 N_NAMED_ARGS is the total number of named arguments. 1125 1126 FNDECL is the tree code for the target of this call (if known) 1127 1128 ARGS_SO_FAR holds state needed by the target to know where to place 1129 the next argument. 1130 1131 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved 1132 for arguments which are passed in registers. 1133 1134 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level 1135 and may be modified by this routine. 1136 1137 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer 1138 flags which may may be modified by this routine. */ 1139 1140 static void 1141 initialize_argument_information (num_actuals, args, args_size, n_named_args, 1142 actparms, fndecl, args_so_far, 1143 reg_parm_stack_space, old_stack_level, 1144 old_pending_adj, must_preallocate, 1145 ecf_flags) 1146 int num_actuals ATTRIBUTE_UNUSED; 1147 struct arg_data *args; 1148 struct args_size *args_size; 1149 int n_named_args ATTRIBUTE_UNUSED; 1150 tree actparms; 1151 tree fndecl; 1152 CUMULATIVE_ARGS *args_so_far; 1153 int reg_parm_stack_space; 1154 rtx *old_stack_level; 1155 int *old_pending_adj; 1156 int *must_preallocate; 1157 int *ecf_flags; 1158 { 1159 /* 1 if scanning parms front to back, -1 if scanning back to front. */ 1160 int inc; 1161 1162 /* Count arg position in order args appear. */ 1163 int argpos; 1164 1165 struct args_size alignment_pad; 1166 int i; 1167 tree p; 1168 1169 args_size->constant = 0; 1170 args_size->var = 0; 1171 1172 /* In this loop, we consider args in the order they are written. 1173 We fill up ARGS from the front or from the back if necessary 1174 so that in any case the first arg to be pushed ends up at the front. */ 1175 1176 if (PUSH_ARGS_REVERSED) 1177 { 1178 i = num_actuals - 1, inc = -1; 1179 /* In this case, must reverse order of args 1180 so that we compute and push the last arg first. */ 1181 } 1182 else 1183 { 1184 i = 0, inc = 1; 1185 } 1186 1187 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */ 1188 for (p = actparms, argpos = 0; p; p = TREE_CHAIN (p), i += inc, argpos++) 1189 { 1190 tree type = TREE_TYPE (TREE_VALUE (p)); 1191 int unsignedp; 1192 enum machine_mode mode; 1193 1194 args[i].tree_value = TREE_VALUE (p); 1195 1196 /* Replace erroneous argument with constant zero. */ 1197 if (type == error_mark_node || !COMPLETE_TYPE_P (type)) 1198 args[i].tree_value = integer_zero_node, type = integer_type_node; 1199 1200 /* If TYPE is a transparent union, pass things the way we would 1201 pass the first field of the union. We have already verified that 1202 the modes are the same. */ 1203 if (TREE_CODE (type) == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)) 1204 type = TREE_TYPE (TYPE_FIELDS (type)); 1205 1206 /* Decide where to pass this arg. 1207 1208 args[i].reg is nonzero if all or part is passed in registers. 1209 1210 args[i].partial is nonzero if part but not all is passed in registers, 1211 and the exact value says how many words are passed in registers. 1212 1213 args[i].pass_on_stack is nonzero if the argument must at least be 1214 computed on the stack. It may then be loaded back into registers 1215 if args[i].reg is nonzero. 1216 1217 These decisions are driven by the FUNCTION_... macros and must agree 1218 with those made by function.c. */ 1219 1220 /* See if this argument should be passed by invisible reference. */ 1221 if ((TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST 1222 && contains_placeholder_p (TYPE_SIZE (type))) 1223 || TREE_ADDRESSABLE (type) 1224 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE 1225 || FUNCTION_ARG_PASS_BY_REFERENCE (*args_so_far, TYPE_MODE (type), 1226 type, argpos < n_named_args) 1227 #endif 1228 ) 1229 { 1230 /* If we're compiling a thunk, pass through invisible 1231 references instead of making a copy. */ 1232 if (current_function_is_thunk 1233 #ifdef FUNCTION_ARG_CALLEE_COPIES 1234 || (FUNCTION_ARG_CALLEE_COPIES (*args_so_far, TYPE_MODE (type), 1235 type, argpos < n_named_args) 1236 /* If it's in a register, we must make a copy of it too. */ 1237 /* ??? Is this a sufficient test? Is there a better one? */ 1238 && !(TREE_CODE (args[i].tree_value) == VAR_DECL 1239 && REG_P (DECL_RTL (args[i].tree_value))) 1240 && ! TREE_ADDRESSABLE (type)) 1241 #endif 1242 ) 1243 { 1244 /* C++ uses a TARGET_EXPR to indicate that we want to make a 1245 new object from the argument. If we are passing by 1246 invisible reference, the callee will do that for us, so we 1247 can strip off the TARGET_EXPR. This is not always safe, 1248 but it is safe in the only case where this is a useful 1249 optimization; namely, when the argument is a plain object. 1250 In that case, the frontend is just asking the backend to 1251 make a bitwise copy of the argument. */ 1252 1253 if (TREE_CODE (args[i].tree_value) == TARGET_EXPR 1254 && (DECL_P (TREE_OPERAND (args[i].tree_value, 1))) 1255 && ! REG_P (DECL_RTL (TREE_OPERAND (args[i].tree_value, 1)))) 1256 args[i].tree_value = TREE_OPERAND (args[i].tree_value, 1); 1257 1258 args[i].tree_value = build1 (ADDR_EXPR, 1259 build_pointer_type (type), 1260 args[i].tree_value); 1261 type = build_pointer_type (type); 1262 } 1263 else if (TREE_CODE (args[i].tree_value) == TARGET_EXPR) 1264 { 1265 /* In the V3 C++ ABI, parameters are destroyed in the caller. 1266 We implement this by passing the address of the temporary 1267 rather than expanding it into another allocated slot. */ 1268 args[i].tree_value = build1 (ADDR_EXPR, 1269 build_pointer_type (type), 1270 args[i].tree_value); 1271 type = build_pointer_type (type); 1272 } 1273 else 1274 { 1275 /* We make a copy of the object and pass the address to the 1276 function being called. */ 1277 rtx copy; 1278 1279 if (!COMPLETE_TYPE_P (type) 1280 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST 1281 || (flag_stack_check && ! STACK_CHECK_BUILTIN 1282 && (0 < compare_tree_int (TYPE_SIZE_UNIT (type), 1283 STACK_CHECK_MAX_VAR_SIZE)))) 1284 { 1285 /* This is a variable-sized object. Make space on the stack 1286 for it. */ 1287 rtx size_rtx = expr_size (TREE_VALUE (p)); 1288 1289 if (*old_stack_level == 0) 1290 { 1291 emit_stack_save (SAVE_BLOCK, old_stack_level, NULL_RTX); 1292 *old_pending_adj = pending_stack_adjust; 1293 pending_stack_adjust = 0; 1294 } 1295 1296 copy = gen_rtx_MEM (BLKmode, 1297 allocate_dynamic_stack_space 1298 (size_rtx, NULL_RTX, TYPE_ALIGN (type))); 1299 set_mem_attributes (copy, type, 1); 1300 } 1301 else 1302 copy = assign_temp (type, 0, 1, 0); 1303 1304 store_expr (args[i].tree_value, copy, 0); 1305 *ecf_flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK); 1306 1307 args[i].tree_value = build1 (ADDR_EXPR, 1308 build_pointer_type (type), 1309 make_tree (type, copy)); 1310 type = build_pointer_type (type); 1311 } 1312 } 1313 1314 mode = TYPE_MODE (type); 1315 unsignedp = TREE_UNSIGNED (type); 1316 1317 #ifdef PROMOTE_FUNCTION_ARGS 1318 mode = promote_mode (type, mode, &unsignedp, 1); 1319 #endif 1320 1321 args[i].unsignedp = unsignedp; 1322 args[i].mode = mode; 1323 1324 args[i].reg = FUNCTION_ARG (*args_so_far, mode, type, 1325 argpos < n_named_args); 1326 #ifdef FUNCTION_INCOMING_ARG 1327 /* If this is a sibling call and the machine has register windows, the 1328 register window has to be unwinded before calling the routine, so 1329 arguments have to go into the incoming registers. */ 1330 args[i].tail_call_reg = FUNCTION_INCOMING_ARG (*args_so_far, mode, type, 1331 argpos < n_named_args); 1332 #else 1333 args[i].tail_call_reg = args[i].reg; 1334 #endif 1335 1336 #ifdef FUNCTION_ARG_PARTIAL_NREGS 1337 if (args[i].reg) 1338 args[i].partial 1339 = FUNCTION_ARG_PARTIAL_NREGS (*args_so_far, mode, type, 1340 argpos < n_named_args); 1341 #endif 1342 1343 args[i].pass_on_stack = MUST_PASS_IN_STACK (mode, type); 1344 1345 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]), 1346 it means that we are to pass this arg in the register(s) designated 1347 by the PARALLEL, but also to pass it in the stack. */ 1348 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL 1349 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0) 1350 args[i].pass_on_stack = 1; 1351 1352 /* If this is an addressable type, we must preallocate the stack 1353 since we must evaluate the object into its final location. 1354 1355 If this is to be passed in both registers and the stack, it is simpler 1356 to preallocate. */ 1357 if (TREE_ADDRESSABLE (type) 1358 || (args[i].pass_on_stack && args[i].reg != 0)) 1359 *must_preallocate = 1; 1360 1361 /* If this is an addressable type, we cannot pre-evaluate it. Thus, 1362 we cannot consider this function call constant. */ 1363 if (TREE_ADDRESSABLE (type)) 1364 *ecf_flags &= ~ECF_LIBCALL_BLOCK; 1365 1366 /* Compute the stack-size of this argument. */ 1367 if (args[i].reg == 0 || args[i].partial != 0 1368 || reg_parm_stack_space > 0 1369 || args[i].pass_on_stack) 1370 locate_and_pad_parm (mode, type, 1371 #ifdef STACK_PARMS_IN_REG_PARM_AREA 1372 1, 1373 #else 1374 args[i].reg != 0, 1375 #endif 1376 fndecl, args_size, &args[i].offset, 1377 &args[i].size, &alignment_pad); 1378 1379 #ifndef ARGS_GROW_DOWNWARD 1380 args[i].slot_offset = *args_size; 1381 #endif 1382 1383 args[i].alignment_pad = alignment_pad; 1384 1385 /* If a part of the arg was put into registers, 1386 don't include that part in the amount pushed. */ 1387 if (reg_parm_stack_space == 0 && ! args[i].pass_on_stack) 1388 args[i].size.constant -= ((args[i].partial * UNITS_PER_WORD) 1389 / (PARM_BOUNDARY / BITS_PER_UNIT) 1390 * (PARM_BOUNDARY / BITS_PER_UNIT)); 1391 1392 /* Update ARGS_SIZE, the total stack space for args so far. */ 1393 1394 args_size->constant += args[i].size.constant; 1395 if (args[i].size.var) 1396 { 1397 ADD_PARM_SIZE (*args_size, args[i].size.var); 1398 } 1399 1400 /* Since the slot offset points to the bottom of the slot, 1401 we must record it after incrementing if the args grow down. */ 1402 #ifdef ARGS_GROW_DOWNWARD 1403 args[i].slot_offset = *args_size; 1404 1405 args[i].slot_offset.constant = -args_size->constant; 1406 if (args_size->var) 1407 SUB_PARM_SIZE (args[i].slot_offset, args_size->var); 1408 #endif 1409 1410 /* Increment ARGS_SO_FAR, which has info about which arg-registers 1411 have been used, etc. */ 1412 1413 FUNCTION_ARG_ADVANCE (*args_so_far, TYPE_MODE (type), type, 1414 argpos < n_named_args); 1415 } 1416 } 1417 1418 /* Update ARGS_SIZE to contain the total size for the argument block. 1419 Return the original constant component of the argument block's size. 1420 1421 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved 1422 for arguments passed in registers. */ 1423 1424 static int 1425 compute_argument_block_size (reg_parm_stack_space, args_size, 1426 preferred_stack_boundary) 1427 int reg_parm_stack_space; 1428 struct args_size *args_size; 1429 int preferred_stack_boundary ATTRIBUTE_UNUSED; 1430 { 1431 int unadjusted_args_size = args_size->constant; 1432 1433 /* For accumulate outgoing args mode we don't need to align, since the frame 1434 will be already aligned. Align to STACK_BOUNDARY in order to prevent 1435 backends from generating misaligned frame sizes. */ 1436 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY) 1437 preferred_stack_boundary = STACK_BOUNDARY; 1438 1439 /* Compute the actual size of the argument block required. The variable 1440 and constant sizes must be combined, the size may have to be rounded, 1441 and there may be a minimum required size. */ 1442 1443 if (args_size->var) 1444 { 1445 args_size->var = ARGS_SIZE_TREE (*args_size); 1446 args_size->constant = 0; 1447 1448 preferred_stack_boundary /= BITS_PER_UNIT; 1449 if (preferred_stack_boundary > 1) 1450 { 1451 /* We don't handle this case yet. To handle it correctly we have 1452 to add the delta, round and subtract the delta. 1453 Currently no machine description requires this support. */ 1454 if (stack_pointer_delta & (preferred_stack_boundary - 1)) 1455 abort (); 1456 args_size->var = round_up (args_size->var, preferred_stack_boundary); 1457 } 1458 1459 if (reg_parm_stack_space > 0) 1460 { 1461 args_size->var 1462 = size_binop (MAX_EXPR, args_size->var, 1463 ssize_int (reg_parm_stack_space)); 1464 1465 #ifndef OUTGOING_REG_PARM_STACK_SPACE 1466 /* The area corresponding to register parameters is not to count in 1467 the size of the block we need. So make the adjustment. */ 1468 args_size->var 1469 = size_binop (MINUS_EXPR, args_size->var, 1470 ssize_int (reg_parm_stack_space)); 1471 #endif 1472 } 1473 } 1474 else 1475 { 1476 preferred_stack_boundary /= BITS_PER_UNIT; 1477 if (preferred_stack_boundary < 1) 1478 preferred_stack_boundary = 1; 1479 args_size->constant = (((args_size->constant 1480 + stack_pointer_delta 1481 + preferred_stack_boundary - 1) 1482 / preferred_stack_boundary 1483 * preferred_stack_boundary) 1484 - stack_pointer_delta); 1485 1486 args_size->constant = MAX (args_size->constant, 1487 reg_parm_stack_space); 1488 1489 #ifdef MAYBE_REG_PARM_STACK_SPACE 1490 if (reg_parm_stack_space == 0) 1491 args_size->constant = 0; 1492 #endif 1493 1494 #ifndef OUTGOING_REG_PARM_STACK_SPACE 1495 args_size->constant -= reg_parm_stack_space; 1496 #endif 1497 } 1498 return unadjusted_args_size; 1499 } 1500 1501 /* Precompute parameters as needed for a function call. 1502 1503 FLAGS is mask of ECF_* constants. 1504 1505 NUM_ACTUALS is the number of arguments. 1506 1507 ARGS is an array containing information for each argument; this 1508 routine fills in the INITIAL_VALUE and VALUE fields for each 1509 precomputed argument. */ 1510 1511 static void 1512 precompute_arguments (flags, num_actuals, args) 1513 int flags; 1514 int num_actuals; 1515 struct arg_data *args; 1516 { 1517 int i; 1518 1519 /* If this function call is cse'able, precompute all the parameters. 1520 Note that if the parameter is constructed into a temporary, this will 1521 cause an additional copy because the parameter will be constructed 1522 into a temporary location and then copied into the outgoing arguments. 1523 If a parameter contains a call to alloca and this function uses the 1524 stack, precompute the parameter. */ 1525 1526 /* If we preallocated the stack space, and some arguments must be passed 1527 on the stack, then we must precompute any parameter which contains a 1528 function call which will store arguments on the stack. 1529 Otherwise, evaluating the parameter may clobber previous parameters 1530 which have already been stored into the stack. (we have code to avoid 1531 such case by saving the outgoing stack arguments, but it results in 1532 worse code) */ 1533 1534 for (i = 0; i < num_actuals; i++) 1535 if ((flags & ECF_LIBCALL_BLOCK) 1536 || calls_function (args[i].tree_value, !ACCUMULATE_OUTGOING_ARGS)) 1537 { 1538 enum machine_mode mode; 1539 1540 /* If this is an addressable type, we cannot pre-evaluate it. */ 1541 if (TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))) 1542 abort (); 1543 1544 args[i].value 1545 = expand_expr (args[i].tree_value, NULL_RTX, VOIDmode, 0); 1546 1547 /* ANSI doesn't require a sequence point here, 1548 but PCC has one, so this will avoid some problems. */ 1549 emit_queue (); 1550 1551 args[i].initial_value = args[i].value 1552 = protect_from_queue (args[i].value, 0); 1553 1554 mode = TYPE_MODE (TREE_TYPE (args[i].tree_value)); 1555 if (mode != args[i].mode) 1556 { 1557 args[i].value 1558 = convert_modes (args[i].mode, mode, 1559 args[i].value, args[i].unsignedp); 1560 #ifdef PROMOTE_FOR_CALL_ONLY 1561 /* CSE will replace this only if it contains args[i].value 1562 pseudo, so convert it down to the declared mode using 1563 a SUBREG. */ 1564 if (GET_CODE (args[i].value) == REG 1565 && GET_MODE_CLASS (args[i].mode) == MODE_INT) 1566 { 1567 args[i].initial_value 1568 = gen_lowpart_SUBREG (mode, args[i].value); 1569 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1; 1570 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value, 1571 args[i].unsignedp); 1572 } 1573 #endif 1574 } 1575 } 1576 } 1577 1578 /* Given the current state of MUST_PREALLOCATE and information about 1579 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE, 1580 compute and return the final value for MUST_PREALLOCATE. */ 1581 1582 static int 1583 finalize_must_preallocate (must_preallocate, num_actuals, args, args_size) 1584 int must_preallocate; 1585 int num_actuals; 1586 struct arg_data *args; 1587 struct args_size *args_size; 1588 { 1589 /* See if we have or want to preallocate stack space. 1590 1591 If we would have to push a partially-in-regs parm 1592 before other stack parms, preallocate stack space instead. 1593 1594 If the size of some parm is not a multiple of the required stack 1595 alignment, we must preallocate. 1596 1597 If the total size of arguments that would otherwise create a copy in 1598 a temporary (such as a CALL) is more than half the total argument list 1599 size, preallocation is faster. 1600 1601 Another reason to preallocate is if we have a machine (like the m88k) 1602 where stack alignment is required to be maintained between every 1603 pair of insns, not just when the call is made. However, we assume here 1604 that such machines either do not have push insns (and hence preallocation 1605 would occur anyway) or the problem is taken care of with 1606 PUSH_ROUNDING. */ 1607 1608 if (! must_preallocate) 1609 { 1610 int partial_seen = 0; 1611 int copy_to_evaluate_size = 0; 1612 int i; 1613 1614 for (i = 0; i < num_actuals && ! must_preallocate; i++) 1615 { 1616 if (args[i].partial > 0 && ! args[i].pass_on_stack) 1617 partial_seen = 1; 1618 else if (partial_seen && args[i].reg == 0) 1619 must_preallocate = 1; 1620 1621 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode 1622 && (TREE_CODE (args[i].tree_value) == CALL_EXPR 1623 || TREE_CODE (args[i].tree_value) == TARGET_EXPR 1624 || TREE_CODE (args[i].tree_value) == COND_EXPR 1625 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value)))) 1626 copy_to_evaluate_size 1627 += int_size_in_bytes (TREE_TYPE (args[i].tree_value)); 1628 } 1629 1630 if (copy_to_evaluate_size * 2 >= args_size->constant 1631 && args_size->constant > 0) 1632 must_preallocate = 1; 1633 } 1634 return must_preallocate; 1635 } 1636 1637 /* If we preallocated stack space, compute the address of each argument 1638 and store it into the ARGS array. 1639 1640 We need not ensure it is a valid memory address here; it will be 1641 validized when it is used. 1642 1643 ARGBLOCK is an rtx for the address of the outgoing arguments. */ 1644 1645 static void 1646 compute_argument_addresses (args, argblock, num_actuals) 1647 struct arg_data *args; 1648 rtx argblock; 1649 int num_actuals; 1650 { 1651 if (argblock) 1652 { 1653 rtx arg_reg = argblock; 1654 int i, arg_offset = 0; 1655 1656 if (GET_CODE (argblock) == PLUS) 1657 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1)); 1658 1659 for (i = 0; i < num_actuals; i++) 1660 { 1661 rtx offset = ARGS_SIZE_RTX (args[i].offset); 1662 rtx slot_offset = ARGS_SIZE_RTX (args[i].slot_offset); 1663 rtx addr; 1664 1665 /* Skip this parm if it will not be passed on the stack. */ 1666 if (! args[i].pass_on_stack && args[i].reg != 0) 1667 continue; 1668 1669 if (GET_CODE (offset) == CONST_INT) 1670 addr = plus_constant (arg_reg, INTVAL (offset)); 1671 else 1672 addr = gen_rtx_PLUS (Pmode, arg_reg, offset); 1673 1674 addr = plus_constant (addr, arg_offset); 1675 args[i].stack = gen_rtx_MEM (args[i].mode, addr); 1676 set_mem_align (args[i].stack, PARM_BOUNDARY); 1677 set_mem_attributes (args[i].stack, 1678 TREE_TYPE (args[i].tree_value), 1); 1679 1680 if (GET_CODE (slot_offset) == CONST_INT) 1681 addr = plus_constant (arg_reg, INTVAL (slot_offset)); 1682 else 1683 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset); 1684 1685 addr = plus_constant (addr, arg_offset); 1686 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr); 1687 set_mem_align (args[i].stack_slot, PARM_BOUNDARY); 1688 set_mem_attributes (args[i].stack_slot, 1689 TREE_TYPE (args[i].tree_value), 1); 1690 1691 /* Function incoming arguments may overlap with sibling call 1692 outgoing arguments and we cannot allow reordering of reads 1693 from function arguments with stores to outgoing arguments 1694 of sibling calls. */ 1695 set_mem_alias_set (args[i].stack, 0); 1696 set_mem_alias_set (args[i].stack_slot, 0); 1697 } 1698 } 1699 } 1700 1701 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address 1702 in a call instruction. 1703 1704 FNDECL is the tree node for the target function. For an indirect call 1705 FNDECL will be NULL_TREE. 1706 1707 ADDR is the operand 0 of CALL_EXPR for this call. */ 1708 1709 static rtx 1710 rtx_for_function_call (fndecl, addr) 1711 tree fndecl; 1712 tree addr; 1713 { 1714 rtx funexp; 1715 1716 /* Get the function to call, in the form of RTL. */ 1717 if (fndecl) 1718 { 1719 /* If this is the first use of the function, see if we need to 1720 make an external definition for it. */ 1721 if (! TREE_USED (fndecl)) 1722 { 1723 assemble_external (fndecl); 1724 TREE_USED (fndecl) = 1; 1725 } 1726 1727 /* Get a SYMBOL_REF rtx for the function address. */ 1728 funexp = XEXP (DECL_RTL (fndecl), 0); 1729 } 1730 else 1731 /* Generate an rtx (probably a pseudo-register) for the address. */ 1732 { 1733 rtx funaddr; 1734 push_temp_slots (); 1735 funaddr = funexp 1736 = expand_expr (addr, NULL_RTX, VOIDmode, 0); 1737 pop_temp_slots (); /* FUNEXP can't be BLKmode. */ 1738 emit_queue (); 1739 } 1740 return funexp; 1741 } 1742 1743 /* Do the register loads required for any wholly-register parms or any 1744 parms which are passed both on the stack and in a register. Their 1745 expressions were already evaluated. 1746 1747 Mark all register-parms as living through the call, putting these USE 1748 insns in the CALL_INSN_FUNCTION_USAGE field. */ 1749 1750 static void 1751 load_register_parameters (args, num_actuals, call_fusage, flags) 1752 struct arg_data *args; 1753 int num_actuals; 1754 rtx *call_fusage; 1755 int flags; 1756 { 1757 int i, j; 1758 1759 #ifdef LOAD_ARGS_REVERSED 1760 for (i = num_actuals - 1; i >= 0; i--) 1761 #else 1762 for (i = 0; i < num_actuals; i++) 1763 #endif 1764 { 1765 rtx reg = ((flags & ECF_SIBCALL) 1766 ? args[i].tail_call_reg : args[i].reg); 1767 int partial = args[i].partial; 1768 int nregs; 1769 1770 if (reg) 1771 { 1772 /* Set to non-negative if must move a word at a time, even if just 1773 one word (e.g, partial == 1 && mode == DFmode). Set to -1 if 1774 we just use a normal move insn. This value can be zero if the 1775 argument is a zero size structure with no fields. */ 1776 nregs = (partial ? partial 1777 : (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode 1778 ? ((int_size_in_bytes (TREE_TYPE (args[i].tree_value)) 1779 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD) 1780 : -1)); 1781 1782 /* Handle calls that pass values in multiple non-contiguous 1783 locations. The Irix 6 ABI has examples of this. */ 1784 1785 if (GET_CODE (reg) == PARALLEL) 1786 emit_group_load (reg, args[i].value, 1787 int_size_in_bytes (TREE_TYPE (args[i].tree_value))); 1788 1789 /* If simple case, just do move. If normal partial, store_one_arg 1790 has already loaded the register for us. In all other cases, 1791 load the register(s) from memory. */ 1792 1793 else if (nregs == -1) 1794 emit_move_insn (reg, args[i].value); 1795 1796 /* If we have pre-computed the values to put in the registers in 1797 the case of non-aligned structures, copy them in now. */ 1798 1799 else if (args[i].n_aligned_regs != 0) 1800 for (j = 0; j < args[i].n_aligned_regs; j++) 1801 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j), 1802 args[i].aligned_regs[j]); 1803 1804 else if (partial == 0 || args[i].pass_on_stack) 1805 move_block_to_reg (REGNO (reg), 1806 validize_mem (args[i].value), nregs, 1807 args[i].mode); 1808 1809 /* Handle calls that pass values in multiple non-contiguous 1810 locations. The Irix 6 ABI has examples of this. */ 1811 if (GET_CODE (reg) == PARALLEL) 1812 use_group_regs (call_fusage, reg); 1813 else if (nregs == -1) 1814 use_reg (call_fusage, reg); 1815 else 1816 use_regs (call_fusage, REGNO (reg), nregs == 0 ? 1 : nregs); 1817 } 1818 } 1819 } 1820 1821 /* Try to integrate function. See expand_inline_function for documentation 1822 about the parameters. */ 1823 1824 static rtx 1825 try_to_integrate (fndecl, actparms, target, ignore, type, structure_value_addr) 1826 tree fndecl; 1827 tree actparms; 1828 rtx target; 1829 int ignore; 1830 tree type; 1831 rtx structure_value_addr; 1832 { 1833 rtx temp; 1834 rtx before_call; 1835 int i; 1836 rtx old_stack_level = 0; 1837 int reg_parm_stack_space = 0; 1838 1839 #ifdef REG_PARM_STACK_SPACE 1840 #ifdef MAYBE_REG_PARM_STACK_SPACE 1841 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; 1842 #else 1843 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); 1844 #endif 1845 #endif 1846 1847 before_call = get_last_insn (); 1848 1849 timevar_push (TV_INTEGRATION); 1850 1851 temp = expand_inline_function (fndecl, actparms, target, 1852 ignore, type, 1853 structure_value_addr); 1854 1855 timevar_pop (TV_INTEGRATION); 1856 1857 /* If inlining succeeded, return. */ 1858 if (temp != (rtx) (size_t) - 1) 1859 { 1860 if (ACCUMULATE_OUTGOING_ARGS) 1861 { 1862 /* If the outgoing argument list must be preserved, push 1863 the stack before executing the inlined function if it 1864 makes any calls. */ 1865 1866 for (i = reg_parm_stack_space - 1; i >= 0; i--) 1867 if (i < highest_outgoing_arg_in_use && stack_usage_map[i] != 0) 1868 break; 1869 1870 if (stack_arg_under_construction || i >= 0) 1871 { 1872 rtx first_insn 1873 = before_call ? NEXT_INSN (before_call) : get_insns (); 1874 rtx insn = NULL_RTX, seq; 1875 1876 /* Look for a call in the inline function code. 1877 If DECL_SAVED_INSNS (fndecl)->outgoing_args_size is 1878 nonzero then there is a call and it is not necessary 1879 to scan the insns. */ 1880 1881 if (DECL_SAVED_INSNS (fndecl)->outgoing_args_size == 0) 1882 for (insn = first_insn; insn; insn = NEXT_INSN (insn)) 1883 if (GET_CODE (insn) == CALL_INSN) 1884 break; 1885 1886 if (insn) 1887 { 1888 /* Reserve enough stack space so that the largest 1889 argument list of any function call in the inline 1890 function does not overlap the argument list being 1891 evaluated. This is usually an overestimate because 1892 allocate_dynamic_stack_space reserves space for an 1893 outgoing argument list in addition to the requested 1894 space, but there is no way to ask for stack space such 1895 that an argument list of a certain length can be 1896 safely constructed. 1897 1898 Add the stack space reserved for register arguments, if 1899 any, in the inline function. What is really needed is the 1900 largest value of reg_parm_stack_space in the inline 1901 function, but that is not available. Using the current 1902 value of reg_parm_stack_space is wrong, but gives 1903 correct results on all supported machines. */ 1904 1905 int adjust = (DECL_SAVED_INSNS (fndecl)->outgoing_args_size 1906 + reg_parm_stack_space); 1907 1908 start_sequence (); 1909 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); 1910 allocate_dynamic_stack_space (GEN_INT (adjust), 1911 NULL_RTX, BITS_PER_UNIT); 1912 seq = get_insns (); 1913 end_sequence (); 1914 emit_insn_before (seq, first_insn); 1915 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); 1916 } 1917 } 1918 } 1919 1920 /* If the result is equivalent to TARGET, return TARGET to simplify 1921 checks in store_expr. They can be equivalent but not equal in the 1922 case of a function that returns BLKmode. */ 1923 if (temp != target && rtx_equal_p (temp, target)) 1924 return target; 1925 return temp; 1926 } 1927 1928 /* If inlining failed, mark FNDECL as needing to be compiled 1929 separately after all. If function was declared inline, 1930 give a warning. */ 1931 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline 1932 && optimize > 0 && !TREE_ADDRESSABLE (fndecl)) 1933 { 1934 warning_with_decl (fndecl, "inlining failed in call to `%s'"); 1935 warning ("called from here"); 1936 } 1937 (*lang_hooks.mark_addressable) (fndecl); 1938 return (rtx) (size_t) - 1; 1939 } 1940 1941 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments 1942 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY 1943 bytes, then we would need to push some additional bytes to pad the 1944 arguments. So, we compute an adjust to the stack pointer for an 1945 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE 1946 bytes. Then, when the arguments are pushed the stack will be perfectly 1947 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should 1948 be popped after the call. Returns the adjustment. */ 1949 1950 static int 1951 combine_pending_stack_adjustment_and_call (unadjusted_args_size, 1952 args_size, 1953 preferred_unit_stack_boundary) 1954 int unadjusted_args_size; 1955 struct args_size *args_size; 1956 int preferred_unit_stack_boundary; 1957 { 1958 /* The number of bytes to pop so that the stack will be 1959 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */ 1960 HOST_WIDE_INT adjustment; 1961 /* The alignment of the stack after the arguments are pushed, if we 1962 just pushed the arguments without adjust the stack here. */ 1963 HOST_WIDE_INT unadjusted_alignment; 1964 1965 unadjusted_alignment 1966 = ((stack_pointer_delta + unadjusted_args_size) 1967 % preferred_unit_stack_boundary); 1968 1969 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes 1970 as possible -- leaving just enough left to cancel out the 1971 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the 1972 PENDING_STACK_ADJUST is non-negative, and congruent to 1973 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */ 1974 1975 /* Begin by trying to pop all the bytes. */ 1976 unadjusted_alignment 1977 = (unadjusted_alignment 1978 - (pending_stack_adjust % preferred_unit_stack_boundary)); 1979 adjustment = pending_stack_adjust; 1980 /* Push enough additional bytes that the stack will be aligned 1981 after the arguments are pushed. */ 1982 if (preferred_unit_stack_boundary > 1) 1983 { 1984 if (unadjusted_alignment > 0) 1985 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment; 1986 else 1987 adjustment += unadjusted_alignment; 1988 } 1989 1990 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of 1991 bytes after the call. The right number is the entire 1992 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required 1993 by the arguments in the first place. */ 1994 args_size->constant 1995 = pending_stack_adjust - adjustment + unadjusted_args_size; 1996 1997 return adjustment; 1998 } 1999 2000 /* Scan X expression if it does not dereference any argument slots 2001 we already clobbered by tail call arguments (as noted in stored_args_map 2002 bitmap). 2003 Return nonzero if X expression dereferences such argument slots, 2004 zero otherwise. */ 2005 2006 static int 2007 check_sibcall_argument_overlap_1 (x) 2008 rtx x; 2009 { 2010 RTX_CODE code; 2011 int i, j; 2012 unsigned int k; 2013 const char *fmt; 2014 2015 if (x == NULL_RTX) 2016 return 0; 2017 2018 code = GET_CODE (x); 2019 2020 if (code == MEM) 2021 { 2022 if (XEXP (x, 0) == current_function_internal_arg_pointer) 2023 i = 0; 2024 else if (GET_CODE (XEXP (x, 0)) == PLUS 2025 && XEXP (XEXP (x, 0), 0) == 2026 current_function_internal_arg_pointer 2027 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT) 2028 i = INTVAL (XEXP (XEXP (x, 0), 1)); 2029 else 2030 return 0; 2031 2032 #ifdef ARGS_GROW_DOWNWARD 2033 i = -i - GET_MODE_SIZE (GET_MODE (x)); 2034 #endif 2035 2036 for (k = 0; k < GET_MODE_SIZE (GET_MODE (x)); k++) 2037 if (i + k < stored_args_map->n_bits 2038 && TEST_BIT (stored_args_map, i + k)) 2039 return 1; 2040 2041 return 0; 2042 } 2043 2044 /* Scan all subexpressions. */ 2045 fmt = GET_RTX_FORMAT (code); 2046 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) 2047 { 2048 if (*fmt == 'e') 2049 { 2050 if (check_sibcall_argument_overlap_1 (XEXP (x, i))) 2051 return 1; 2052 } 2053 else if (*fmt == 'E') 2054 { 2055 for (j = 0; j < XVECLEN (x, i); j++) 2056 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j))) 2057 return 1; 2058 } 2059 } 2060 return 0; 2061 } 2062 2063 /* Scan sequence after INSN if it does not dereference any argument slots 2064 we already clobbered by tail call arguments (as noted in stored_args_map 2065 bitmap). Add stack slots for ARG to stored_args_map bitmap afterwards. 2066 Return nonzero if sequence after INSN dereferences such argument slots, 2067 zero otherwise. */ 2068 2069 static int 2070 check_sibcall_argument_overlap (insn, arg) 2071 rtx insn; 2072 struct arg_data *arg; 2073 { 2074 int low, high; 2075 2076 if (insn == NULL_RTX) 2077 insn = get_insns (); 2078 else 2079 insn = NEXT_INSN (insn); 2080 2081 for (; insn; insn = NEXT_INSN (insn)) 2082 if (INSN_P (insn) 2083 && check_sibcall_argument_overlap_1 (PATTERN (insn))) 2084 break; 2085 2086 #ifdef ARGS_GROW_DOWNWARD 2087 low = -arg->slot_offset.constant - arg->size.constant; 2088 #else 2089 low = arg->slot_offset.constant; 2090 #endif 2091 2092 for (high = low + arg->size.constant; low < high; low++) 2093 SET_BIT (stored_args_map, low); 2094 return insn != NULL_RTX; 2095 } 2096 2097 static tree 2098 fix_unsafe_tree (t) 2099 tree t; 2100 { 2101 switch (unsafe_for_reeval (t)) 2102 { 2103 case 0: /* Safe. */ 2104 break; 2105 2106 case 1: /* Mildly unsafe. */ 2107 t = unsave_expr (t); 2108 break; 2109 2110 case 2: /* Wildly unsafe. */ 2111 { 2112 tree var = build_decl (VAR_DECL, NULL_TREE, 2113 TREE_TYPE (t)); 2114 SET_DECL_RTL (var, 2115 expand_expr (t, NULL_RTX, VOIDmode, EXPAND_NORMAL)); 2116 t = var; 2117 } 2118 break; 2119 2120 default: 2121 abort (); 2122 } 2123 return t; 2124 } 2125 2126 /* Generate all the code for a function call 2127 and return an rtx for its value. 2128 Store the value in TARGET (specified as an rtx) if convenient. 2129 If the value is stored in TARGET then TARGET is returned. 2130 If IGNORE is nonzero, then we ignore the value of the function call. */ 2131 2132 rtx 2133 expand_call (exp, target, ignore) 2134 tree exp; 2135 rtx target; 2136 int ignore; 2137 { 2138 /* Nonzero if we are currently expanding a call. */ 2139 static int currently_expanding_call = 0; 2140 2141 /* List of actual parameters. */ 2142 tree actparms = TREE_OPERAND (exp, 1); 2143 /* RTX for the function to be called. */ 2144 rtx funexp; 2145 /* Sequence of insns to perform a tail recursive "call". */ 2146 rtx tail_recursion_insns = NULL_RTX; 2147 /* Sequence of insns to perform a normal "call". */ 2148 rtx normal_call_insns = NULL_RTX; 2149 /* Sequence of insns to perform a tail recursive "call". */ 2150 rtx tail_call_insns = NULL_RTX; 2151 /* Data type of the function. */ 2152 tree funtype; 2153 /* Declaration of the function being called, 2154 or 0 if the function is computed (not known by name). */ 2155 tree fndecl = 0; 2156 rtx insn; 2157 int try_tail_call = 1; 2158 int try_tail_recursion = 1; 2159 int pass; 2160 2161 /* Register in which non-BLKmode value will be returned, 2162 or 0 if no value or if value is BLKmode. */ 2163 rtx valreg; 2164 /* Address where we should return a BLKmode value; 2165 0 if value not BLKmode. */ 2166 rtx structure_value_addr = 0; 2167 /* Nonzero if that address is being passed by treating it as 2168 an extra, implicit first parameter. Otherwise, 2169 it is passed by being copied directly into struct_value_rtx. */ 2170 int structure_value_addr_parm = 0; 2171 /* Size of aggregate value wanted, or zero if none wanted 2172 or if we are using the non-reentrant PCC calling convention 2173 or expecting the value in registers. */ 2174 HOST_WIDE_INT struct_value_size = 0; 2175 /* Nonzero if called function returns an aggregate in memory PCC style, 2176 by returning the address of where to find it. */ 2177 int pcc_struct_value = 0; 2178 2179 /* Number of actual parameters in this call, including struct value addr. */ 2180 int num_actuals; 2181 /* Number of named args. Args after this are anonymous ones 2182 and they must all go on the stack. */ 2183 int n_named_args; 2184 2185 /* Vector of information about each argument. 2186 Arguments are numbered in the order they will be pushed, 2187 not the order they are written. */ 2188 struct arg_data *args; 2189 2190 /* Total size in bytes of all the stack-parms scanned so far. */ 2191 struct args_size args_size; 2192 struct args_size adjusted_args_size; 2193 /* Size of arguments before any adjustments (such as rounding). */ 2194 int unadjusted_args_size; 2195 /* Data on reg parms scanned so far. */ 2196 CUMULATIVE_ARGS args_so_far; 2197 /* Nonzero if a reg parm has been scanned. */ 2198 int reg_parm_seen; 2199 /* Nonzero if this is an indirect function call. */ 2200 2201 /* Nonzero if we must avoid push-insns in the args for this call. 2202 If stack space is allocated for register parameters, but not by the 2203 caller, then it is preallocated in the fixed part of the stack frame. 2204 So the entire argument block must then be preallocated (i.e., we 2205 ignore PUSH_ROUNDING in that case). */ 2206 2207 int must_preallocate = !PUSH_ARGS; 2208 2209 /* Size of the stack reserved for parameter registers. */ 2210 int reg_parm_stack_space = 0; 2211 2212 /* Address of space preallocated for stack parms 2213 (on machines that lack push insns), or 0 if space not preallocated. */ 2214 rtx argblock = 0; 2215 2216 /* Mask of ECF_ flags. */ 2217 int flags = 0; 2218 /* Nonzero if this is a call to an inline function. */ 2219 int is_integrable = 0; 2220 #ifdef REG_PARM_STACK_SPACE 2221 /* Define the boundary of the register parm stack space that needs to be 2222 save, if any. */ 2223 int low_to_save = -1, high_to_save; 2224 rtx save_area = 0; /* Place that it is saved */ 2225 #endif 2226 2227 int initial_highest_arg_in_use = highest_outgoing_arg_in_use; 2228 char *initial_stack_usage_map = stack_usage_map; 2229 int old_stack_arg_under_construction = 0; 2230 2231 rtx old_stack_level = 0; 2232 int old_pending_adj = 0; 2233 int old_inhibit_defer_pop = inhibit_defer_pop; 2234 int old_stack_allocated; 2235 rtx call_fusage; 2236 tree p = TREE_OPERAND (exp, 0); 2237 tree addr = TREE_OPERAND (exp, 0); 2238 int i; 2239 /* The alignment of the stack, in bits. */ 2240 HOST_WIDE_INT preferred_stack_boundary; 2241 /* The alignment of the stack, in bytes. */ 2242 HOST_WIDE_INT preferred_unit_stack_boundary; 2243 2244 /* See if this is "nothrow" function call. */ 2245 if (TREE_NOTHROW (exp)) 2246 flags |= ECF_NOTHROW; 2247 2248 /* See if we can find a DECL-node for the actual function. 2249 As a result, decide whether this is a call to an integrable function. */ 2250 2251 fndecl = get_callee_fndecl (exp); 2252 if (fndecl) 2253 { 2254 if (!flag_no_inline 2255 && fndecl != current_function_decl 2256 && DECL_INLINE (fndecl) 2257 && DECL_SAVED_INSNS (fndecl) 2258 && DECL_SAVED_INSNS (fndecl)->inlinable) 2259 is_integrable = 1; 2260 else if (! TREE_ADDRESSABLE (fndecl)) 2261 { 2262 /* In case this function later becomes inlinable, 2263 record that there was already a non-inline call to it. 2264 2265 Use abstraction instead of setting TREE_ADDRESSABLE 2266 directly. */ 2267 if (DECL_INLINE (fndecl) && warn_inline && !flag_no_inline 2268 && optimize > 0) 2269 { 2270 warning_with_decl (fndecl, "can't inline call to `%s'"); 2271 warning ("called from here"); 2272 } 2273 (*lang_hooks.mark_addressable) (fndecl); 2274 } 2275 2276 flags |= flags_from_decl_or_type (fndecl); 2277 } 2278 2279 /* If we don't have specific function to call, see if we have a 2280 attributes set in the type. */ 2281 else 2282 flags |= flags_from_decl_or_type (TREE_TYPE (TREE_TYPE (p))); 2283 2284 #ifdef REG_PARM_STACK_SPACE 2285 #ifdef MAYBE_REG_PARM_STACK_SPACE 2286 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; 2287 #else 2288 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl); 2289 #endif 2290 #endif 2291 2292 #ifndef OUTGOING_REG_PARM_STACK_SPACE 2293 if (reg_parm_stack_space > 0 && PUSH_ARGS) 2294 must_preallocate = 1; 2295 #endif 2296 2297 /* Warn if this value is an aggregate type, 2298 regardless of which calling convention we are using for it. */ 2299 if (warn_aggregate_return && AGGREGATE_TYPE_P (TREE_TYPE (exp))) 2300 warning ("function call has aggregate value"); 2301 2302 /* Set up a place to return a structure. */ 2303 2304 /* Cater to broken compilers. */ 2305 if (aggregate_value_p (exp)) 2306 { 2307 /* This call returns a big structure. */ 2308 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK); 2309 2310 #ifdef PCC_STATIC_STRUCT_RETURN 2311 { 2312 pcc_struct_value = 1; 2313 /* Easier than making that case work right. */ 2314 if (is_integrable) 2315 { 2316 /* In case this is a static function, note that it has been 2317 used. */ 2318 if (! TREE_ADDRESSABLE (fndecl)) 2319 (*lang_hooks.mark_addressable) (fndecl); 2320 is_integrable = 0; 2321 } 2322 } 2323 #else /* not PCC_STATIC_STRUCT_RETURN */ 2324 { 2325 struct_value_size = int_size_in_bytes (TREE_TYPE (exp)); 2326 2327 if (target && GET_CODE (target) == MEM) 2328 structure_value_addr = XEXP (target, 0); 2329 else 2330 { 2331 /* For variable-sized objects, we must be called with a target 2332 specified. If we were to allocate space on the stack here, 2333 we would have no way of knowing when to free it. */ 2334 rtx d = assign_temp (TREE_TYPE (exp), 5, 1, 1); 2335 2336 mark_temp_addr_taken (d); 2337 structure_value_addr = XEXP (d, 0); 2338 target = 0; 2339 } 2340 } 2341 #endif /* not PCC_STATIC_STRUCT_RETURN */ 2342 } 2343 2344 /* If called function is inline, try to integrate it. */ 2345 2346 if (is_integrable) 2347 { 2348 rtx temp = try_to_integrate (fndecl, actparms, target, 2349 ignore, TREE_TYPE (exp), 2350 structure_value_addr); 2351 if (temp != (rtx) (size_t) - 1) 2352 return temp; 2353 } 2354 2355 /* Figure out the amount to which the stack should be aligned. */ 2356 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 2357 2358 /* Operand 0 is a pointer-to-function; get the type of the function. */ 2359 funtype = TREE_TYPE (addr); 2360 if (! POINTER_TYPE_P (funtype)) 2361 abort (); 2362 funtype = TREE_TYPE (funtype); 2363 2364 /* See if this is a call to a function that can return more than once 2365 or a call to longjmp or malloc. */ 2366 flags |= special_function_p (fndecl, flags); 2367 2368 if (flags & ECF_MAY_BE_ALLOCA) 2369 current_function_calls_alloca = 1; 2370 2371 /* If struct_value_rtx is 0, it means pass the address 2372 as if it were an extra parameter. */ 2373 if (structure_value_addr && struct_value_rtx == 0) 2374 { 2375 /* If structure_value_addr is a REG other than 2376 virtual_outgoing_args_rtx, we can use always use it. If it 2377 is not a REG, we must always copy it into a register. 2378 If it is virtual_outgoing_args_rtx, we must copy it to another 2379 register in some cases. */ 2380 rtx temp = (GET_CODE (structure_value_addr) != REG 2381 || (ACCUMULATE_OUTGOING_ARGS 2382 && stack_arg_under_construction 2383 && structure_value_addr == virtual_outgoing_args_rtx) 2384 ? copy_addr_to_reg (structure_value_addr) 2385 : structure_value_addr); 2386 2387 actparms 2388 = tree_cons (error_mark_node, 2389 make_tree (build_pointer_type (TREE_TYPE (funtype)), 2390 temp), 2391 actparms); 2392 structure_value_addr_parm = 1; 2393 } 2394 2395 /* Count the arguments and set NUM_ACTUALS. */ 2396 for (p = actparms, num_actuals = 0; p; p = TREE_CHAIN (p)) 2397 num_actuals++; 2398 2399 /* Compute number of named args. 2400 Normally, don't include the last named arg if anonymous args follow. 2401 We do include the last named arg if STRICT_ARGUMENT_NAMING is nonzero. 2402 (If no anonymous args follow, the result of list_length is actually 2403 one too large. This is harmless.) 2404 2405 If PRETEND_OUTGOING_VARARGS_NAMED is set and STRICT_ARGUMENT_NAMING is 2406 zero, this machine will be able to place unnamed args that were 2407 passed in registers into the stack. So treat all args as named. 2408 This allows the insns emitting for a specific argument list to be 2409 independent of the function declaration. 2410 2411 If PRETEND_OUTGOING_VARARGS_NAMED is not set, we do not have any 2412 reliable way to pass unnamed args in registers, so we must force 2413 them into memory. */ 2414 2415 if ((STRICT_ARGUMENT_NAMING 2416 || ! PRETEND_OUTGOING_VARARGS_NAMED) 2417 && TYPE_ARG_TYPES (funtype) != 0) 2418 n_named_args 2419 = (list_length (TYPE_ARG_TYPES (funtype)) 2420 /* Don't include the last named arg. */ 2421 - (STRICT_ARGUMENT_NAMING ? 0 : 1) 2422 /* Count the struct value address, if it is passed as a parm. */ 2423 + structure_value_addr_parm); 2424 else 2425 /* If we know nothing, treat all args as named. */ 2426 n_named_args = num_actuals; 2427 2428 /* Start updating where the next arg would go. 2429 2430 On some machines (such as the PA) indirect calls have a different 2431 calling convention than normal calls. The last argument in 2432 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call 2433 or not. */ 2434 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, (fndecl == 0)); 2435 2436 /* Make a vector to hold all the information about each arg. */ 2437 args = (struct arg_data *) alloca (num_actuals * sizeof (struct arg_data)); 2438 memset ((char *) args, 0, num_actuals * sizeof (struct arg_data)); 2439 2440 /* Build up entries in the ARGS array, compute the size of the 2441 arguments into ARGS_SIZE, etc. */ 2442 initialize_argument_information (num_actuals, args, &args_size, 2443 n_named_args, actparms, fndecl, 2444 &args_so_far, reg_parm_stack_space, 2445 &old_stack_level, &old_pending_adj, 2446 &must_preallocate, &flags); 2447 2448 if (args_size.var) 2449 { 2450 /* If this function requires a variable-sized argument list, don't 2451 try to make a cse'able block for this call. We may be able to 2452 do this eventually, but it is too complicated to keep track of 2453 what insns go in the cse'able block and which don't. */ 2454 2455 flags &= ~ECF_LIBCALL_BLOCK; 2456 must_preallocate = 1; 2457 } 2458 2459 /* Now make final decision about preallocating stack space. */ 2460 must_preallocate = finalize_must_preallocate (must_preallocate, 2461 num_actuals, args, 2462 &args_size); 2463 2464 /* If the structure value address will reference the stack pointer, we 2465 must stabilize it. We don't need to do this if we know that we are 2466 not going to adjust the stack pointer in processing this call. */ 2467 2468 if (structure_value_addr 2469 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr) 2470 || reg_mentioned_p (virtual_outgoing_args_rtx, 2471 structure_value_addr)) 2472 && (args_size.var 2473 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant))) 2474 structure_value_addr = copy_to_reg (structure_value_addr); 2475 2476 /* Tail calls can make things harder to debug, and we're traditionally 2477 pushed these optimizations into -O2. Don't try if we're already 2478 expanding a call, as that means we're an argument. Don't try if 2479 there's cleanups, as we know there's code to follow the call. 2480 2481 If rtx_equal_function_value_matters is false, that means we've 2482 finished with regular parsing. Which means that some of the 2483 machinery we use to generate tail-calls is no longer in place. 2484 This is most often true of sjlj-exceptions, which we couldn't 2485 tail-call to anyway. */ 2486 2487 if (currently_expanding_call++ != 0 2488 || !flag_optimize_sibling_calls 2489 || !rtx_equal_function_value_matters 2490 || any_pending_cleanups (1) 2491 || args_size.var) 2492 try_tail_call = try_tail_recursion = 0; 2493 2494 /* Tail recursion fails, when we are not dealing with recursive calls. */ 2495 if (!try_tail_recursion 2496 || TREE_CODE (addr) != ADDR_EXPR 2497 || TREE_OPERAND (addr, 0) != current_function_decl) 2498 try_tail_recursion = 0; 2499 2500 /* Rest of purposes for tail call optimizations to fail. */ 2501 if ( 2502 #ifdef HAVE_sibcall_epilogue 2503 !HAVE_sibcall_epilogue 2504 #else 2505 1 2506 #endif 2507 || !try_tail_call 2508 /* Doing sibling call optimization needs some work, since 2509 structure_value_addr can be allocated on the stack. 2510 It does not seem worth the effort since few optimizable 2511 sibling calls will return a structure. */ 2512 || structure_value_addr != NULL_RTX 2513 /* If the register holding the address is a callee saved 2514 register, then we lose. We have no way to prevent that, 2515 so we only allow calls to named functions. */ 2516 /* ??? This could be done by having the insn constraints 2517 use a register class that is all call-clobbered. Any 2518 reload insns generated to fix things up would appear 2519 before the sibcall_epilogue. */ 2520 || fndecl == NULL_TREE 2521 || (flags & (ECF_RETURNS_TWICE | ECF_LONGJMP | ECF_NORETURN)) 2522 || !FUNCTION_OK_FOR_SIBCALL (fndecl) 2523 /* If this function requires more stack slots than the current 2524 function, we cannot change it into a sibling call. */ 2525 || args_size.constant > current_function_args_size 2526 /* If the callee pops its own arguments, then it must pop exactly 2527 the same number of arguments as the current function. */ 2528 || (RETURN_POPS_ARGS (fndecl, funtype, args_size.constant) 2529 != RETURN_POPS_ARGS (current_function_decl, 2530 TREE_TYPE (current_function_decl), 2531 current_function_args_size)) 2532 || !(*lang_hooks.decls.ok_for_sibcall) (fndecl)) 2533 try_tail_call = 0; 2534 2535 if (try_tail_call || try_tail_recursion) 2536 { 2537 int end, inc; 2538 actparms = NULL_TREE; 2539 /* Ok, we're going to give the tail call the old college try. 2540 This means we're going to evaluate the function arguments 2541 up to three times. There are two degrees of badness we can 2542 encounter, those that can be unsaved and those that can't. 2543 (See unsafe_for_reeval commentary for details.) 2544 2545 Generate a new argument list. Pass safe arguments through 2546 unchanged. For the easy badness wrap them in UNSAVE_EXPRs. 2547 For hard badness, evaluate them now and put their resulting 2548 rtx in a temporary VAR_DECL. 2549 2550 initialize_argument_information has ordered the array for the 2551 order to be pushed, and we must remember this when reconstructing 2552 the original argument order. */ 2553 2554 if (PUSH_ARGS_REVERSED) 2555 { 2556 inc = 1; 2557 i = 0; 2558 end = num_actuals; 2559 } 2560 else 2561 { 2562 inc = -1; 2563 i = num_actuals - 1; 2564 end = -1; 2565 } 2566 2567 for (; i != end; i += inc) 2568 { 2569 args[i].tree_value = fix_unsafe_tree (args[i].tree_value); 2570 /* We need to build actparms for optimize_tail_recursion. We can 2571 safely trash away TREE_PURPOSE, since it is unused by this 2572 function. */ 2573 if (try_tail_recursion) 2574 actparms = tree_cons (NULL_TREE, args[i].tree_value, actparms); 2575 } 2576 /* Do the same for the function address if it is an expression. */ 2577 if (!fndecl) 2578 addr = fix_unsafe_tree (addr); 2579 /* Expanding one of those dangerous arguments could have added 2580 cleanups, but otherwise give it a whirl. */ 2581 if (any_pending_cleanups (1)) 2582 try_tail_call = try_tail_recursion = 0; 2583 } 2584 2585 /* Generate a tail recursion sequence when calling ourselves. */ 2586 2587 if (try_tail_recursion) 2588 { 2589 /* We want to emit any pending stack adjustments before the tail 2590 recursion "call". That way we know any adjustment after the tail 2591 recursion call can be ignored if we indeed use the tail recursion 2592 call expansion. */ 2593 int save_pending_stack_adjust = pending_stack_adjust; 2594 int save_stack_pointer_delta = stack_pointer_delta; 2595 2596 /* Emit any queued insns now; otherwise they would end up in 2597 only one of the alternates. */ 2598 emit_queue (); 2599 2600 /* Use a new sequence to hold any RTL we generate. We do not even 2601 know if we will use this RTL yet. The final decision can not be 2602 made until after RTL generation for the entire function is 2603 complete. */ 2604 start_sequence (); 2605 /* If expanding any of the arguments creates cleanups, we can't 2606 do a tailcall. So, we'll need to pop the pending cleanups 2607 list. If, however, all goes well, and there are no cleanups 2608 then the call to expand_start_target_temps will have no 2609 effect. */ 2610 expand_start_target_temps (); 2611 if (optimize_tail_recursion (actparms, get_last_insn ())) 2612 { 2613 if (any_pending_cleanups (1)) 2614 try_tail_call = try_tail_recursion = 0; 2615 else 2616 tail_recursion_insns = get_insns (); 2617 } 2618 expand_end_target_temps (); 2619 end_sequence (); 2620 2621 /* Restore the original pending stack adjustment for the sibling and 2622 normal call cases below. */ 2623 pending_stack_adjust = save_pending_stack_adjust; 2624 stack_pointer_delta = save_stack_pointer_delta; 2625 } 2626 2627 if (profile_arc_flag && (flags & ECF_FORK_OR_EXEC)) 2628 { 2629 /* A fork duplicates the profile information, and an exec discards 2630 it. We can't rely on fork/exec to be paired. So write out the 2631 profile information we have gathered so far, and clear it. */ 2632 /* ??? When Linux's __clone is called with CLONE_VM set, profiling 2633 is subject to race conditions, just as with multithreaded 2634 programs. */ 2635 2636 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__bb_fork_func"), 2637 LCT_ALWAYS_RETURN, 2638 VOIDmode, 0); 2639 } 2640 2641 /* Ensure current function's preferred stack boundary is at least 2642 what we need. We don't have to increase alignment for recursive 2643 functions. */ 2644 if (cfun->preferred_stack_boundary < preferred_stack_boundary 2645 && fndecl != current_function_decl) 2646 cfun->preferred_stack_boundary = preferred_stack_boundary; 2647 2648 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT; 2649 2650 function_call_count++; 2651 2652 /* We want to make two insn chains; one for a sibling call, the other 2653 for a normal call. We will select one of the two chains after 2654 initial RTL generation is complete. */ 2655 for (pass = 0; pass < 2; pass++) 2656 { 2657 int sibcall_failure = 0; 2658 /* We want to emit any pending stack adjustments before the tail 2659 recursion "call". That way we know any adjustment after the tail 2660 recursion call can be ignored if we indeed use the tail recursion 2661 call expansion. */ 2662 int save_pending_stack_adjust = 0; 2663 int save_stack_pointer_delta = 0; 2664 rtx insns; 2665 rtx before_call, next_arg_reg; 2666 2667 if (pass == 0) 2668 { 2669 if (! try_tail_call) 2670 continue; 2671 2672 /* Emit any queued insns now; otherwise they would end up in 2673 only one of the alternates. */ 2674 emit_queue (); 2675 2676 /* State variables we need to save and restore between 2677 iterations. */ 2678 save_pending_stack_adjust = pending_stack_adjust; 2679 save_stack_pointer_delta = stack_pointer_delta; 2680 } 2681 if (pass) 2682 flags &= ~ECF_SIBCALL; 2683 else 2684 flags |= ECF_SIBCALL; 2685 2686 /* Other state variables that we must reinitialize each time 2687 through the loop (that are not initialized by the loop itself). */ 2688 argblock = 0; 2689 call_fusage = 0; 2690 2691 /* Start a new sequence for the normal call case. 2692 2693 From this point on, if the sibling call fails, we want to set 2694 sibcall_failure instead of continuing the loop. */ 2695 start_sequence (); 2696 2697 if (pass == 0) 2698 { 2699 /* We know at this point that there are not currently any 2700 pending cleanups. If, however, in the process of evaluating 2701 the arguments we were to create some, we'll need to be 2702 able to get rid of them. */ 2703 expand_start_target_temps (); 2704 } 2705 2706 /* Don't let pending stack adjusts add up to too much. 2707 Also, do all pending adjustments now if there is any chance 2708 this might be a call to alloca or if we are expanding a sibling 2709 call sequence or if we are calling a function that is to return 2710 with stack pointer depressed. */ 2711 if (pending_stack_adjust >= 32 2712 || (pending_stack_adjust > 0 2713 && (flags & (ECF_MAY_BE_ALLOCA | ECF_SP_DEPRESSED))) 2714 || pass == 0) 2715 do_pending_stack_adjust (); 2716 2717 /* When calling a const function, we must pop the stack args right away, 2718 so that the pop is deleted or moved with the call. */ 2719 if (pass && (flags & ECF_LIBCALL_BLOCK)) 2720 NO_DEFER_POP; 2721 2722 #ifdef FINAL_REG_PARM_STACK_SPACE 2723 reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, 2724 args_size.var); 2725 #endif 2726 /* Precompute any arguments as needed. */ 2727 if (pass) 2728 precompute_arguments (flags, num_actuals, args); 2729 2730 /* Now we are about to start emitting insns that can be deleted 2731 if a libcall is deleted. */ 2732 if (pass && (flags & (ECF_LIBCALL_BLOCK | ECF_MALLOC))) 2733 start_sequence (); 2734 2735 adjusted_args_size = args_size; 2736 /* Compute the actual size of the argument block required. The variable 2737 and constant sizes must be combined, the size may have to be rounded, 2738 and there may be a minimum required size. When generating a sibcall 2739 pattern, do not round up, since we'll be re-using whatever space our 2740 caller provided. */ 2741 unadjusted_args_size 2742 = compute_argument_block_size (reg_parm_stack_space, 2743 &adjusted_args_size, 2744 (pass == 0 ? 0 2745 : preferred_stack_boundary)); 2746 2747 old_stack_allocated = stack_pointer_delta - pending_stack_adjust; 2748 2749 /* The argument block when performing a sibling call is the 2750 incoming argument block. */ 2751 if (pass == 0) 2752 { 2753 argblock = virtual_incoming_args_rtx; 2754 argblock 2755 #ifdef STACK_GROWS_DOWNWARD 2756 = plus_constant (argblock, current_function_pretend_args_size); 2757 #else 2758 = plus_constant (argblock, -current_function_pretend_args_size); 2759 #endif 2760 stored_args_map = sbitmap_alloc (args_size.constant); 2761 sbitmap_zero (stored_args_map); 2762 } 2763 2764 /* If we have no actual push instructions, or shouldn't use them, 2765 make space for all args right now. */ 2766 else if (adjusted_args_size.var != 0) 2767 { 2768 if (old_stack_level == 0) 2769 { 2770 emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); 2771 old_pending_adj = pending_stack_adjust; 2772 pending_stack_adjust = 0; 2773 /* stack_arg_under_construction says whether a stack arg is 2774 being constructed at the old stack level. Pushing the stack 2775 gets a clean outgoing argument block. */ 2776 old_stack_arg_under_construction = stack_arg_under_construction; 2777 stack_arg_under_construction = 0; 2778 } 2779 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0); 2780 } 2781 else 2782 { 2783 /* Note that we must go through the motions of allocating an argument 2784 block even if the size is zero because we may be storing args 2785 in the area reserved for register arguments, which may be part of 2786 the stack frame. */ 2787 2788 int needed = adjusted_args_size.constant; 2789 2790 /* Store the maximum argument space used. It will be pushed by 2791 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow 2792 checking). */ 2793 2794 if (needed > current_function_outgoing_args_size) 2795 current_function_outgoing_args_size = needed; 2796 2797 if (must_preallocate) 2798 { 2799 if (ACCUMULATE_OUTGOING_ARGS) 2800 { 2801 /* Since the stack pointer will never be pushed, it is 2802 possible for the evaluation of a parm to clobber 2803 something we have already written to the stack. 2804 Since most function calls on RISC machines do not use 2805 the stack, this is uncommon, but must work correctly. 2806 2807 Therefore, we save any area of the stack that was already 2808 written and that we are using. Here we set up to do this 2809 by making a new stack usage map from the old one. The 2810 actual save will be done by store_one_arg. 2811 2812 Another approach might be to try to reorder the argument 2813 evaluations to avoid this conflicting stack usage. */ 2814 2815 #ifndef OUTGOING_REG_PARM_STACK_SPACE 2816 /* Since we will be writing into the entire argument area, 2817 the map must be allocated for its entire size, not just 2818 the part that is the responsibility of the caller. */ 2819 needed += reg_parm_stack_space; 2820 #endif 2821 2822 #ifdef ARGS_GROW_DOWNWARD 2823 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, 2824 needed + 1); 2825 #else 2826 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, 2827 needed); 2828 #endif 2829 stack_usage_map 2830 = (char *) alloca (highest_outgoing_arg_in_use); 2831 2832 if (initial_highest_arg_in_use) 2833 memcpy (stack_usage_map, initial_stack_usage_map, 2834 initial_highest_arg_in_use); 2835 2836 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) 2837 memset (&stack_usage_map[initial_highest_arg_in_use], 0, 2838 (highest_outgoing_arg_in_use 2839 - initial_highest_arg_in_use)); 2840 needed = 0; 2841 2842 /* The address of the outgoing argument list must not be 2843 copied to a register here, because argblock would be left 2844 pointing to the wrong place after the call to 2845 allocate_dynamic_stack_space below. */ 2846 2847 argblock = virtual_outgoing_args_rtx; 2848 } 2849 else 2850 { 2851 if (inhibit_defer_pop == 0) 2852 { 2853 /* Try to reuse some or all of the pending_stack_adjust 2854 to get this space. */ 2855 needed 2856 = (combine_pending_stack_adjustment_and_call 2857 (unadjusted_args_size, 2858 &adjusted_args_size, 2859 preferred_unit_stack_boundary)); 2860 2861 /* combine_pending_stack_adjustment_and_call computes 2862 an adjustment before the arguments are allocated. 2863 Account for them and see whether or not the stack 2864 needs to go up or down. */ 2865 needed = unadjusted_args_size - needed; 2866 2867 if (needed < 0) 2868 { 2869 /* We're releasing stack space. */ 2870 /* ??? We can avoid any adjustment at all if we're 2871 already aligned. FIXME. */ 2872 pending_stack_adjust = -needed; 2873 do_pending_stack_adjust (); 2874 needed = 0; 2875 } 2876 else 2877 /* We need to allocate space. We'll do that in 2878 push_block below. */ 2879 pending_stack_adjust = 0; 2880 } 2881 2882 /* Special case this because overhead of `push_block' in 2883 this case is non-trivial. */ 2884 if (needed == 0) 2885 argblock = virtual_outgoing_args_rtx; 2886 else 2887 argblock = push_block (GEN_INT (needed), 0, 0); 2888 2889 /* We only really need to call `copy_to_reg' in the case 2890 where push insns are going to be used to pass ARGBLOCK 2891 to a function call in ARGS. In that case, the stack 2892 pointer changes value from the allocation point to the 2893 call point, and hence the value of 2894 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might 2895 as well always do it. */ 2896 argblock = copy_to_reg (argblock); 2897 2898 /* The save/restore code in store_one_arg handles all 2899 cases except one: a constructor call (including a C 2900 function returning a BLKmode struct) to initialize 2901 an argument. */ 2902 if (stack_arg_under_construction) 2903 { 2904 #ifndef OUTGOING_REG_PARM_STACK_SPACE 2905 rtx push_size = GEN_INT (reg_parm_stack_space 2906 + adjusted_args_size.constant); 2907 #else 2908 rtx push_size = GEN_INT (adjusted_args_size.constant); 2909 #endif 2910 if (old_stack_level == 0) 2911 { 2912 emit_stack_save (SAVE_BLOCK, &old_stack_level, 2913 NULL_RTX); 2914 old_pending_adj = pending_stack_adjust; 2915 pending_stack_adjust = 0; 2916 /* stack_arg_under_construction says whether a stack 2917 arg is being constructed at the old stack level. 2918 Pushing the stack gets a clean outgoing argument 2919 block. */ 2920 old_stack_arg_under_construction 2921 = stack_arg_under_construction; 2922 stack_arg_under_construction = 0; 2923 /* Make a new map for the new argument list. */ 2924 stack_usage_map = (char *) 2925 alloca (highest_outgoing_arg_in_use); 2926 memset (stack_usage_map, 0, highest_outgoing_arg_in_use); 2927 highest_outgoing_arg_in_use = 0; 2928 } 2929 allocate_dynamic_stack_space (push_size, NULL_RTX, 2930 BITS_PER_UNIT); 2931 } 2932 /* If argument evaluation might modify the stack pointer, 2933 copy the address of the argument list to a register. */ 2934 for (i = 0; i < num_actuals; i++) 2935 if (args[i].pass_on_stack) 2936 { 2937 argblock = copy_addr_to_reg (argblock); 2938 break; 2939 } 2940 } 2941 } 2942 } 2943 2944 compute_argument_addresses (args, argblock, num_actuals); 2945 2946 /* If we push args individually in reverse order, perform stack alignment 2947 before the first push (the last arg). */ 2948 if (PUSH_ARGS_REVERSED && argblock == 0 2949 && adjusted_args_size.constant != unadjusted_args_size) 2950 { 2951 /* When the stack adjustment is pending, we get better code 2952 by combining the adjustments. */ 2953 if (pending_stack_adjust 2954 && ! (flags & ECF_LIBCALL_BLOCK) 2955 && ! inhibit_defer_pop) 2956 { 2957 pending_stack_adjust 2958 = (combine_pending_stack_adjustment_and_call 2959 (unadjusted_args_size, 2960 &adjusted_args_size, 2961 preferred_unit_stack_boundary)); 2962 do_pending_stack_adjust (); 2963 } 2964 else if (argblock == 0) 2965 anti_adjust_stack (GEN_INT (adjusted_args_size.constant 2966 - unadjusted_args_size)); 2967 } 2968 /* Now that the stack is properly aligned, pops can't safely 2969 be deferred during the evaluation of the arguments. */ 2970 NO_DEFER_POP; 2971 2972 funexp = rtx_for_function_call (fndecl, addr); 2973 2974 /* Figure out the register where the value, if any, will come back. */ 2975 valreg = 0; 2976 if (TYPE_MODE (TREE_TYPE (exp)) != VOIDmode 2977 && ! structure_value_addr) 2978 { 2979 if (pcc_struct_value) 2980 valreg = hard_function_value (build_pointer_type (TREE_TYPE (exp)), 2981 fndecl, (pass == 0)); 2982 else 2983 valreg = hard_function_value (TREE_TYPE (exp), fndecl, (pass == 0)); 2984 } 2985 2986 /* Precompute all register parameters. It isn't safe to compute anything 2987 once we have started filling any specific hard regs. */ 2988 precompute_register_parameters (num_actuals, args, ®_parm_seen); 2989 2990 #ifdef REG_PARM_STACK_SPACE 2991 /* Save the fixed argument area if it's part of the caller's frame and 2992 is clobbered by argument setup for this call. */ 2993 if (ACCUMULATE_OUTGOING_ARGS && pass) 2994 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock, 2995 &low_to_save, &high_to_save); 2996 #endif 2997 2998 /* Now store (and compute if necessary) all non-register parms. 2999 These come before register parms, since they can require block-moves, 3000 which could clobber the registers used for register parms. 3001 Parms which have partial registers are not stored here, 3002 but we do preallocate space here if they want that. */ 3003 3004 for (i = 0; i < num_actuals; i++) 3005 if (args[i].reg == 0 || args[i].pass_on_stack) 3006 { 3007 rtx before_arg = get_last_insn (); 3008 3009 if (store_one_arg (&args[i], argblock, flags, 3010 adjusted_args_size.var != 0, 3011 reg_parm_stack_space) 3012 || (pass == 0 3013 && check_sibcall_argument_overlap (before_arg, 3014 &args[i]))) 3015 sibcall_failure = 1; 3016 } 3017 3018 /* If we have a parm that is passed in registers but not in memory 3019 and whose alignment does not permit a direct copy into registers, 3020 make a group of pseudos that correspond to each register that we 3021 will later fill. */ 3022 if (STRICT_ALIGNMENT) 3023 store_unaligned_arguments_into_pseudos (args, num_actuals); 3024 3025 /* Now store any partially-in-registers parm. 3026 This is the last place a block-move can happen. */ 3027 if (reg_parm_seen) 3028 for (i = 0; i < num_actuals; i++) 3029 if (args[i].partial != 0 && ! args[i].pass_on_stack) 3030 { 3031 rtx before_arg = get_last_insn (); 3032 3033 if (store_one_arg (&args[i], argblock, flags, 3034 adjusted_args_size.var != 0, 3035 reg_parm_stack_space) 3036 || (pass == 0 3037 && check_sibcall_argument_overlap (before_arg, 3038 &args[i]))) 3039 sibcall_failure = 1; 3040 } 3041 3042 /* If we pushed args in forward order, perform stack alignment 3043 after pushing the last arg. */ 3044 if (!PUSH_ARGS_REVERSED && argblock == 0) 3045 anti_adjust_stack (GEN_INT (adjusted_args_size.constant 3046 - unadjusted_args_size)); 3047 3048 /* If register arguments require space on the stack and stack space 3049 was not preallocated, allocate stack space here for arguments 3050 passed in registers. */ 3051 #ifdef OUTGOING_REG_PARM_STACK_SPACE 3052 if (!ACCUMULATE_OUTGOING_ARGS 3053 && must_preallocate == 0 && reg_parm_stack_space > 0) 3054 anti_adjust_stack (GEN_INT (reg_parm_stack_space)); 3055 #endif 3056 3057 /* Pass the function the address in which to return a 3058 structure value. */ 3059 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm) 3060 { 3061 emit_move_insn (struct_value_rtx, 3062 force_reg (Pmode, 3063 force_operand (structure_value_addr, 3064 NULL_RTX))); 3065 3066 if (GET_CODE (struct_value_rtx) == REG) 3067 use_reg (&call_fusage, struct_value_rtx); 3068 } 3069 3070 funexp = prepare_call_address (funexp, fndecl, &call_fusage, 3071 reg_parm_seen, pass == 0); 3072 3073 load_register_parameters (args, num_actuals, &call_fusage, flags); 3074 3075 /* Perform postincrements before actually calling the function. */ 3076 emit_queue (); 3077 3078 /* Save a pointer to the last insn before the call, so that we can 3079 later safely search backwards to find the CALL_INSN. */ 3080 before_call = get_last_insn (); 3081 3082 /* Set up next argument register. For sibling calls on machines 3083 with register windows this should be the incoming register. */ 3084 #ifdef FUNCTION_INCOMING_ARG 3085 if (pass == 0) 3086 next_arg_reg = FUNCTION_INCOMING_ARG (args_so_far, VOIDmode, 3087 void_type_node, 1); 3088 else 3089 #endif 3090 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, 3091 void_type_node, 1); 3092 3093 /* All arguments and registers used for the call must be set up by 3094 now! */ 3095 3096 /* Stack must be properly aligned now. */ 3097 if (pass && stack_pointer_delta % preferred_unit_stack_boundary) 3098 abort (); 3099 3100 /* Generate the actual call instruction. */ 3101 emit_call_1 (funexp, fndecl, funtype, unadjusted_args_size, 3102 adjusted_args_size.constant, struct_value_size, 3103 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage, 3104 flags, & args_so_far); 3105 3106 /* Verify that we've deallocated all the stack we used. */ 3107 if (pass 3108 && ! (flags & (ECF_NORETURN | ECF_LONGJMP)) 3109 && old_stack_allocated != stack_pointer_delta - pending_stack_adjust) 3110 abort (); 3111 3112 /* If call is cse'able, make appropriate pair of reg-notes around it. 3113 Test valreg so we don't crash; may safely ignore `const' 3114 if return type is void. Disable for PARALLEL return values, because 3115 we have no way to move such values into a pseudo register. */ 3116 if (pass && (flags & ECF_LIBCALL_BLOCK)) 3117 { 3118 rtx insns; 3119 3120 if (valreg == 0 || GET_CODE (valreg) == PARALLEL) 3121 { 3122 insns = get_insns (); 3123 end_sequence (); 3124 emit_insn (insns); 3125 } 3126 else 3127 { 3128 rtx note = 0; 3129 rtx temp = gen_reg_rtx (GET_MODE (valreg)); 3130 3131 /* Mark the return value as a pointer if needed. */ 3132 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE) 3133 mark_reg_pointer (temp, 3134 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)))); 3135 3136 /* Construct an "equal form" for the value which mentions all the 3137 arguments in order as well as the function name. */ 3138 for (i = 0; i < num_actuals; i++) 3139 note = gen_rtx_EXPR_LIST (VOIDmode, 3140 args[i].initial_value, note); 3141 note = gen_rtx_EXPR_LIST (VOIDmode, funexp, note); 3142 3143 insns = get_insns (); 3144 end_sequence (); 3145 3146 if (flags & ECF_PURE) 3147 note = gen_rtx_EXPR_LIST (VOIDmode, 3148 gen_rtx_USE (VOIDmode, 3149 gen_rtx_MEM (BLKmode, 3150 gen_rtx_SCRATCH (VOIDmode))), 3151 note); 3152 3153 emit_libcall_block (insns, temp, valreg, note); 3154 3155 valreg = temp; 3156 } 3157 } 3158 else if (pass && (flags & ECF_MALLOC)) 3159 { 3160 rtx temp = gen_reg_rtx (GET_MODE (valreg)); 3161 rtx last, insns; 3162 3163 /* The return value from a malloc-like function is a pointer. */ 3164 if (TREE_CODE (TREE_TYPE (exp)) == POINTER_TYPE) 3165 mark_reg_pointer (temp, BIGGEST_ALIGNMENT); 3166 3167 emit_move_insn (temp, valreg); 3168 3169 /* The return value from a malloc-like function can not alias 3170 anything else. */ 3171 last = get_last_insn (); 3172 REG_NOTES (last) = 3173 gen_rtx_EXPR_LIST (REG_NOALIAS, temp, REG_NOTES (last)); 3174 3175 /* Write out the sequence. */ 3176 insns = get_insns (); 3177 end_sequence (); 3178 emit_insn (insns); 3179 valreg = temp; 3180 } 3181 3182 /* For calls to `setjmp', etc., inform flow.c it should complain 3183 if nonvolatile values are live. For functions that cannot return, 3184 inform flow that control does not fall through. */ 3185 3186 if ((flags & (ECF_NORETURN | ECF_LONGJMP)) || pass == 0) 3187 { 3188 /* The barrier must be emitted 3189 immediately after the CALL_INSN. Some ports emit more 3190 than just a CALL_INSN above, so we must search for it here. */ 3191 3192 rtx last = get_last_insn (); 3193 while (GET_CODE (last) != CALL_INSN) 3194 { 3195 last = PREV_INSN (last); 3196 /* There was no CALL_INSN? */ 3197 if (last == before_call) 3198 abort (); 3199 } 3200 3201 emit_barrier_after (last); 3202 3203 /* Stack adjustments after a noreturn call are dead code. */ 3204 stack_pointer_delta = old_stack_allocated; 3205 pending_stack_adjust = 0; 3206 } 3207 3208 if (flags & ECF_LONGJMP) 3209 current_function_calls_longjmp = 1; 3210 3211 /* If this function is returning into a memory location marked as 3212 readonly, it means it is initializing that location. But we normally 3213 treat functions as not clobbering such locations, so we need to 3214 specify that this one does. */ 3215 if (target != 0 && GET_CODE (target) == MEM 3216 && structure_value_addr != 0 && RTX_UNCHANGING_P (target)) 3217 emit_insn (gen_rtx_CLOBBER (VOIDmode, target)); 3218 3219 /* If value type not void, return an rtx for the value. */ 3220 3221 /* If there are cleanups to be called, don't use a hard reg as target. 3222 We need to double check this and see if it matters anymore. */ 3223 if (any_pending_cleanups (1)) 3224 { 3225 if (target && REG_P (target) 3226 && REGNO (target) < FIRST_PSEUDO_REGISTER) 3227 target = 0; 3228 sibcall_failure = 1; 3229 } 3230 3231 if (TYPE_MODE (TREE_TYPE (exp)) == VOIDmode 3232 || ignore) 3233 target = const0_rtx; 3234 else if (structure_value_addr) 3235 { 3236 if (target == 0 || GET_CODE (target) != MEM) 3237 { 3238 target 3239 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)), 3240 memory_address (TYPE_MODE (TREE_TYPE (exp)), 3241 structure_value_addr)); 3242 set_mem_attributes (target, exp, 1); 3243 } 3244 } 3245 else if (pcc_struct_value) 3246 { 3247 /* This is the special C++ case where we need to 3248 know what the true target was. We take care to 3249 never use this value more than once in one expression. */ 3250 target = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (exp)), 3251 copy_to_reg (valreg)); 3252 set_mem_attributes (target, exp, 1); 3253 } 3254 /* Handle calls that return values in multiple non-contiguous locations. 3255 The Irix 6 ABI has examples of this. */ 3256 else if (GET_CODE (valreg) == PARALLEL) 3257 { 3258 if (target == 0) 3259 { 3260 /* This will only be assigned once, so it can be readonly. */ 3261 tree nt = build_qualified_type (TREE_TYPE (exp), 3262 (TYPE_QUALS (TREE_TYPE (exp)) 3263 | TYPE_QUAL_CONST)); 3264 3265 target = assign_temp (nt, 0, 1, 1); 3266 preserve_temp_slots (target); 3267 } 3268 3269 if (! rtx_equal_p (target, valreg)) 3270 emit_group_store (target, valreg, 3271 int_size_in_bytes (TREE_TYPE (exp))); 3272 3273 /* We can not support sibling calls for this case. */ 3274 sibcall_failure = 1; 3275 } 3276 else if (target 3277 && GET_MODE (target) == TYPE_MODE (TREE_TYPE (exp)) 3278 && GET_MODE (target) == GET_MODE (valreg)) 3279 { 3280 /* TARGET and VALREG cannot be equal at this point because the 3281 latter would not have REG_FUNCTION_VALUE_P true, while the 3282 former would if it were referring to the same register. 3283 3284 If they refer to the same register, this move will be a no-op, 3285 except when function inlining is being done. */ 3286 emit_move_insn (target, valreg); 3287 } 3288 else if (TYPE_MODE (TREE_TYPE (exp)) == BLKmode) 3289 { 3290 target = copy_blkmode_from_reg (target, valreg, TREE_TYPE (exp)); 3291 3292 /* We can not support sibling calls for this case. */ 3293 sibcall_failure = 1; 3294 } 3295 else 3296 target = copy_to_reg (valreg); 3297 3298 #ifdef PROMOTE_FUNCTION_RETURN 3299 /* If we promoted this return value, make the proper SUBREG. TARGET 3300 might be const0_rtx here, so be careful. */ 3301 if (GET_CODE (target) == REG 3302 && TYPE_MODE (TREE_TYPE (exp)) != BLKmode 3303 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp))) 3304 { 3305 tree type = TREE_TYPE (exp); 3306 int unsignedp = TREE_UNSIGNED (type); 3307 int offset = 0; 3308 3309 /* If we don't promote as expected, something is wrong. */ 3310 if (GET_MODE (target) 3311 != promote_mode (type, TYPE_MODE (type), &unsignedp, 1)) 3312 abort (); 3313 3314 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN) 3315 && GET_MODE_SIZE (GET_MODE (target)) 3316 > GET_MODE_SIZE (TYPE_MODE (type))) 3317 { 3318 offset = GET_MODE_SIZE (GET_MODE (target)) 3319 - GET_MODE_SIZE (TYPE_MODE (type)); 3320 if (! BYTES_BIG_ENDIAN) 3321 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD; 3322 else if (! WORDS_BIG_ENDIAN) 3323 offset %= UNITS_PER_WORD; 3324 } 3325 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset); 3326 SUBREG_PROMOTED_VAR_P (target) = 1; 3327 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp); 3328 } 3329 #endif 3330 3331 /* If size of args is variable or this was a constructor call for a stack 3332 argument, restore saved stack-pointer value. */ 3333 3334 if (old_stack_level && ! (flags & ECF_SP_DEPRESSED)) 3335 { 3336 emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); 3337 pending_stack_adjust = old_pending_adj; 3338 stack_arg_under_construction = old_stack_arg_under_construction; 3339 highest_outgoing_arg_in_use = initial_highest_arg_in_use; 3340 stack_usage_map = initial_stack_usage_map; 3341 sibcall_failure = 1; 3342 } 3343 else if (ACCUMULATE_OUTGOING_ARGS && pass) 3344 { 3345 #ifdef REG_PARM_STACK_SPACE 3346 if (save_area) 3347 { 3348 restore_fixed_argument_area (save_area, argblock, 3349 high_to_save, low_to_save); 3350 } 3351 #endif 3352 3353 /* If we saved any argument areas, restore them. */ 3354 for (i = 0; i < num_actuals; i++) 3355 if (args[i].save_area) 3356 { 3357 enum machine_mode save_mode = GET_MODE (args[i].save_area); 3358 rtx stack_area 3359 = gen_rtx_MEM (save_mode, 3360 memory_address (save_mode, 3361 XEXP (args[i].stack_slot, 0))); 3362 3363 if (save_mode != BLKmode) 3364 emit_move_insn (stack_area, args[i].save_area); 3365 else 3366 emit_block_move (stack_area, args[i].save_area, 3367 GEN_INT (args[i].size.constant), 3368 BLOCK_OP_CALL_PARM); 3369 } 3370 3371 highest_outgoing_arg_in_use = initial_highest_arg_in_use; 3372 stack_usage_map = initial_stack_usage_map; 3373 } 3374 3375 /* If this was alloca, record the new stack level for nonlocal gotos. 3376 Check for the handler slots since we might not have a save area 3377 for non-local gotos. */ 3378 3379 if ((flags & ECF_MAY_BE_ALLOCA) && nonlocal_goto_handler_slots != 0) 3380 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX); 3381 3382 /* Free up storage we no longer need. */ 3383 for (i = 0; i < num_actuals; ++i) 3384 if (args[i].aligned_regs) 3385 free (args[i].aligned_regs); 3386 3387 if (pass == 0) 3388 { 3389 /* Undo the fake expand_start_target_temps we did earlier. If 3390 there had been any cleanups created, we've already set 3391 sibcall_failure. */ 3392 expand_end_target_temps (); 3393 } 3394 3395 insns = get_insns (); 3396 end_sequence (); 3397 3398 if (pass == 0) 3399 { 3400 tail_call_insns = insns; 3401 3402 /* Restore the pending stack adjustment now that we have 3403 finished generating the sibling call sequence. */ 3404 3405 pending_stack_adjust = save_pending_stack_adjust; 3406 stack_pointer_delta = save_stack_pointer_delta; 3407 3408 /* Prepare arg structure for next iteration. */ 3409 for (i = 0; i < num_actuals; i++) 3410 { 3411 args[i].value = 0; 3412 args[i].aligned_regs = 0; 3413 args[i].stack = 0; 3414 } 3415 3416 sbitmap_free (stored_args_map); 3417 } 3418 else 3419 normal_call_insns = insns; 3420 3421 /* If something prevents making this a sibling call, 3422 zero out the sequence. */ 3423 if (sibcall_failure) 3424 tail_call_insns = NULL_RTX; 3425 } 3426 3427 /* The function optimize_sibling_and_tail_recursive_calls doesn't 3428 handle CALL_PLACEHOLDERs inside other CALL_PLACEHOLDERs. This 3429 can happen if the arguments to this function call an inline 3430 function who's expansion contains another CALL_PLACEHOLDER. 3431 3432 If there are any C_Ps in any of these sequences, replace them 3433 with their normal call. */ 3434 3435 for (insn = normal_call_insns; insn; insn = NEXT_INSN (insn)) 3436 if (GET_CODE (insn) == CALL_INSN 3437 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) 3438 replace_call_placeholder (insn, sibcall_use_normal); 3439 3440 for (insn = tail_call_insns; insn; insn = NEXT_INSN (insn)) 3441 if (GET_CODE (insn) == CALL_INSN 3442 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) 3443 replace_call_placeholder (insn, sibcall_use_normal); 3444 3445 for (insn = tail_recursion_insns; insn; insn = NEXT_INSN (insn)) 3446 if (GET_CODE (insn) == CALL_INSN 3447 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER) 3448 replace_call_placeholder (insn, sibcall_use_normal); 3449 3450 /* If this was a potential tail recursion site, then emit a 3451 CALL_PLACEHOLDER with the normal and the tail recursion streams. 3452 One of them will be selected later. */ 3453 if (tail_recursion_insns || tail_call_insns) 3454 { 3455 /* The tail recursion label must be kept around. We could expose 3456 its use in the CALL_PLACEHOLDER, but that creates unwanted edges 3457 and makes determining true tail recursion sites difficult. 3458 3459 So we set LABEL_PRESERVE_P here, then clear it when we select 3460 one of the call sequences after rtl generation is complete. */ 3461 if (tail_recursion_insns) 3462 LABEL_PRESERVE_P (tail_recursion_label) = 1; 3463 emit_call_insn (gen_rtx_CALL_PLACEHOLDER (VOIDmode, normal_call_insns, 3464 tail_call_insns, 3465 tail_recursion_insns, 3466 tail_recursion_label)); 3467 } 3468 else 3469 emit_insn (normal_call_insns); 3470 3471 currently_expanding_call--; 3472 3473 /* If this function returns with the stack pointer depressed, ensure 3474 this block saves and restores the stack pointer, show it was 3475 changed, and adjust for any outgoing arg space. */ 3476 if (flags & ECF_SP_DEPRESSED) 3477 { 3478 clear_pending_stack_adjust (); 3479 emit_insn (gen_rtx (CLOBBER, VOIDmode, stack_pointer_rtx)); 3480 emit_move_insn (virtual_stack_dynamic_rtx, stack_pointer_rtx); 3481 save_stack_pointer (); 3482 } 3483 3484 return target; 3485 } 3486 3487 /* Output a library call to function FUN (a SYMBOL_REF rtx). 3488 The RETVAL parameter specifies whether return value needs to be saved, other 3489 parameters are documented in the emit_library_call function below. */ 3490 3491 static rtx 3492 emit_library_call_value_1 (retval, orgfun, value, fn_type, outmode, nargs, p) 3493 int retval; 3494 rtx orgfun; 3495 rtx value; 3496 enum libcall_type fn_type; 3497 enum machine_mode outmode; 3498 int nargs; 3499 va_list p; 3500 { 3501 /* Total size in bytes of all the stack-parms scanned so far. */ 3502 struct args_size args_size; 3503 /* Size of arguments before any adjustments (such as rounding). */ 3504 struct args_size original_args_size; 3505 int argnum; 3506 rtx fun; 3507 int inc; 3508 int count; 3509 struct args_size alignment_pad; 3510 rtx argblock = 0; 3511 CUMULATIVE_ARGS args_so_far; 3512 struct arg 3513 { 3514 rtx value; 3515 enum machine_mode mode; 3516 rtx reg; 3517 int partial; 3518 struct args_size offset; 3519 struct args_size size; 3520 rtx save_area; 3521 }; 3522 struct arg *argvec; 3523 int old_inhibit_defer_pop = inhibit_defer_pop; 3524 rtx call_fusage = 0; 3525 rtx mem_value = 0; 3526 rtx valreg; 3527 int pcc_struct_value = 0; 3528 int struct_value_size = 0; 3529 int flags; 3530 int reg_parm_stack_space = 0; 3531 int needed; 3532 rtx before_call; 3533 tree tfom; /* type_for_mode (outmode, 0) */ 3534 3535 #ifdef REG_PARM_STACK_SPACE 3536 /* Define the boundary of the register parm stack space that needs to be 3537 save, if any. */ 3538 int low_to_save = -1, high_to_save = 0; 3539 rtx save_area = 0; /* Place that it is saved. */ 3540 #endif 3541 3542 /* Size of the stack reserved for parameter registers. */ 3543 int initial_highest_arg_in_use = highest_outgoing_arg_in_use; 3544 char *initial_stack_usage_map = stack_usage_map; 3545 3546 #ifdef REG_PARM_STACK_SPACE 3547 #ifdef MAYBE_REG_PARM_STACK_SPACE 3548 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE; 3549 #else 3550 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0); 3551 #endif 3552 #endif 3553 3554 /* By default, library functions can not throw. */ 3555 flags = ECF_NOTHROW; 3556 3557 switch (fn_type) 3558 { 3559 case LCT_NORMAL: 3560 break; 3561 case LCT_CONST: 3562 flags |= ECF_CONST; 3563 break; 3564 case LCT_PURE: 3565 flags |= ECF_PURE; 3566 break; 3567 case LCT_CONST_MAKE_BLOCK: 3568 flags |= ECF_CONST | ECF_LIBCALL_BLOCK; 3569 break; 3570 case LCT_PURE_MAKE_BLOCK: 3571 flags |= ECF_PURE | ECF_LIBCALL_BLOCK; 3572 break; 3573 case LCT_NORETURN: 3574 flags |= ECF_NORETURN; 3575 break; 3576 case LCT_THROW: 3577 flags = ECF_NORETURN; 3578 break; 3579 case LCT_ALWAYS_RETURN: 3580 flags = ECF_ALWAYS_RETURN; 3581 break; 3582 case LCT_RETURNS_TWICE: 3583 flags = ECF_RETURNS_TWICE; 3584 break; 3585 } 3586 fun = orgfun; 3587 3588 /* Ensure current function's preferred stack boundary is at least 3589 what we need. */ 3590 if (cfun->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 3591 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 3592 3593 /* If this kind of value comes back in memory, 3594 decide where in memory it should come back. */ 3595 if (outmode != VOIDmode) 3596 { 3597 tfom = (*lang_hooks.types.type_for_mode) (outmode, 0); 3598 if (aggregate_value_p (tfom)) 3599 { 3600 #ifdef PCC_STATIC_STRUCT_RETURN 3601 rtx pointer_reg 3602 = hard_function_value (build_pointer_type (tfom), 0, 0); 3603 mem_value = gen_rtx_MEM (outmode, pointer_reg); 3604 pcc_struct_value = 1; 3605 if (value == 0) 3606 value = gen_reg_rtx (outmode); 3607 #else /* not PCC_STATIC_STRUCT_RETURN */ 3608 struct_value_size = GET_MODE_SIZE (outmode); 3609 if (value != 0 && GET_CODE (value) == MEM) 3610 mem_value = value; 3611 else 3612 mem_value = assign_temp (tfom, 0, 1, 1); 3613 #endif 3614 /* This call returns a big structure. */ 3615 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK); 3616 } 3617 } 3618 else 3619 tfom = void_type_node; 3620 3621 /* ??? Unfinished: must pass the memory address as an argument. */ 3622 3623 /* Copy all the libcall-arguments out of the varargs data 3624 and into a vector ARGVEC. 3625 3626 Compute how to pass each argument. We only support a very small subset 3627 of the full argument passing conventions to limit complexity here since 3628 library functions shouldn't have many args. */ 3629 3630 argvec = (struct arg *) alloca ((nargs + 1) * sizeof (struct arg)); 3631 memset ((char *) argvec, 0, (nargs + 1) * sizeof (struct arg)); 3632 3633 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS 3634 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun); 3635 #else 3636 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0); 3637 #endif 3638 3639 args_size.constant = 0; 3640 args_size.var = 0; 3641 3642 count = 0; 3643 3644 /* Now we are about to start emitting insns that can be deleted 3645 if a libcall is deleted. */ 3646 if (flags & ECF_LIBCALL_BLOCK) 3647 start_sequence (); 3648 3649 push_temp_slots (); 3650 3651 /* If there's a structure value address to be passed, 3652 either pass it in the special place, or pass it as an extra argument. */ 3653 if (mem_value && struct_value_rtx == 0 && ! pcc_struct_value) 3654 { 3655 rtx addr = XEXP (mem_value, 0); 3656 nargs++; 3657 3658 /* Make sure it is a reasonable operand for a move or push insn. */ 3659 if (GET_CODE (addr) != REG && GET_CODE (addr) != MEM 3660 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr))) 3661 addr = force_operand (addr, NULL_RTX); 3662 3663 argvec[count].value = addr; 3664 argvec[count].mode = Pmode; 3665 argvec[count].partial = 0; 3666 3667 argvec[count].reg = FUNCTION_ARG (args_so_far, Pmode, NULL_TREE, 1); 3668 #ifdef FUNCTION_ARG_PARTIAL_NREGS 3669 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, Pmode, NULL_TREE, 1)) 3670 abort (); 3671 #endif 3672 3673 locate_and_pad_parm (Pmode, NULL_TREE, 3674 #ifdef STACK_PARMS_IN_REG_PARM_AREA 3675 1, 3676 #else 3677 argvec[count].reg != 0, 3678 #endif 3679 NULL_TREE, &args_size, &argvec[count].offset, 3680 &argvec[count].size, &alignment_pad); 3681 3682 if (argvec[count].reg == 0 || argvec[count].partial != 0 3683 || reg_parm_stack_space > 0) 3684 args_size.constant += argvec[count].size.constant; 3685 3686 FUNCTION_ARG_ADVANCE (args_so_far, Pmode, (tree) 0, 1); 3687 3688 count++; 3689 } 3690 3691 for (; count < nargs; count++) 3692 { 3693 rtx val = va_arg (p, rtx); 3694 enum machine_mode mode = va_arg (p, enum machine_mode); 3695 3696 /* We cannot convert the arg value to the mode the library wants here; 3697 must do it earlier where we know the signedness of the arg. */ 3698 if (mode == BLKmode 3699 || (GET_MODE (val) != mode && GET_MODE (val) != VOIDmode)) 3700 abort (); 3701 3702 /* On some machines, there's no way to pass a float to a library fcn. 3703 Pass it as a double instead. */ 3704 #ifdef LIBGCC_NEEDS_DOUBLE 3705 if (LIBGCC_NEEDS_DOUBLE && mode == SFmode) 3706 val = convert_modes (DFmode, SFmode, val, 0), mode = DFmode; 3707 #endif 3708 3709 /* There's no need to call protect_from_queue, because 3710 either emit_move_insn or emit_push_insn will do that. */ 3711 3712 /* Make sure it is a reasonable operand for a move or push insn. */ 3713 if (GET_CODE (val) != REG && GET_CODE (val) != MEM 3714 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val))) 3715 val = force_operand (val, NULL_RTX); 3716 3717 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE 3718 if (FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, mode, NULL_TREE, 1)) 3719 { 3720 rtx slot; 3721 int must_copy = 1 3722 #ifdef FUNCTION_ARG_CALLEE_COPIES 3723 && ! FUNCTION_ARG_CALLEE_COPIES (args_so_far, mode, 3724 NULL_TREE, 1) 3725 #endif 3726 ; 3727 3728 /* loop.c won't look at CALL_INSN_FUNCTION_USAGE of const/pure 3729 functions, so we have to pretend this isn't such a function. */ 3730 if (flags & ECF_LIBCALL_BLOCK) 3731 { 3732 rtx insns = get_insns (); 3733 end_sequence (); 3734 emit_insn (insns); 3735 } 3736 flags &= ~(ECF_CONST | ECF_PURE | ECF_LIBCALL_BLOCK); 3737 3738 /* If this was a CONST function, it is now PURE since 3739 it now reads memory. */ 3740 if (flags & ECF_CONST) 3741 { 3742 flags &= ~ECF_CONST; 3743 flags |= ECF_PURE; 3744 } 3745 3746 if (GET_MODE (val) == MEM && ! must_copy) 3747 slot = val; 3748 else if (must_copy) 3749 { 3750 slot = assign_temp ((*lang_hooks.types.type_for_mode) (mode, 0), 3751 0, 1, 1); 3752 emit_move_insn (slot, val); 3753 } 3754 else 3755 { 3756 tree type = (*lang_hooks.types.type_for_mode) (mode, 0); 3757 3758 slot = gen_rtx_MEM (mode, 3759 expand_expr (build1 (ADDR_EXPR, 3760 build_pointer_type 3761 (type), 3762 make_tree (type, val)), 3763 NULL_RTX, VOIDmode, 0)); 3764 } 3765 3766 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, 3767 gen_rtx_USE (VOIDmode, slot), 3768 call_fusage); 3769 if (must_copy) 3770 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, 3771 gen_rtx_CLOBBER (VOIDmode, 3772 slot), 3773 call_fusage); 3774 3775 mode = Pmode; 3776 val = force_operand (XEXP (slot, 0), NULL_RTX); 3777 } 3778 #endif 3779 3780 argvec[count].value = val; 3781 argvec[count].mode = mode; 3782 3783 argvec[count].reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1); 3784 3785 #ifdef FUNCTION_ARG_PARTIAL_NREGS 3786 argvec[count].partial 3787 = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode, NULL_TREE, 1); 3788 #else 3789 argvec[count].partial = 0; 3790 #endif 3791 3792 locate_and_pad_parm (mode, NULL_TREE, 3793 #ifdef STACK_PARMS_IN_REG_PARM_AREA 3794 1, 3795 #else 3796 argvec[count].reg != 0, 3797 #endif 3798 NULL_TREE, &args_size, &argvec[count].offset, 3799 &argvec[count].size, &alignment_pad); 3800 3801 if (argvec[count].size.var) 3802 abort (); 3803 3804 if (reg_parm_stack_space == 0 && argvec[count].partial) 3805 argvec[count].size.constant -= argvec[count].partial * UNITS_PER_WORD; 3806 3807 if (argvec[count].reg == 0 || argvec[count].partial != 0 3808 || reg_parm_stack_space > 0) 3809 args_size.constant += argvec[count].size.constant; 3810 3811 FUNCTION_ARG_ADVANCE (args_so_far, mode, (tree) 0, 1); 3812 } 3813 3814 #ifdef FINAL_REG_PARM_STACK_SPACE 3815 reg_parm_stack_space = FINAL_REG_PARM_STACK_SPACE (args_size.constant, 3816 args_size.var); 3817 #endif 3818 /* If this machine requires an external definition for library 3819 functions, write one out. */ 3820 assemble_external_libcall (fun); 3821 3822 original_args_size = args_size; 3823 args_size.constant = (((args_size.constant 3824 + stack_pointer_delta 3825 + STACK_BYTES - 1) 3826 / STACK_BYTES 3827 * STACK_BYTES) 3828 - stack_pointer_delta); 3829 3830 args_size.constant = MAX (args_size.constant, 3831 reg_parm_stack_space); 3832 3833 #ifndef OUTGOING_REG_PARM_STACK_SPACE 3834 args_size.constant -= reg_parm_stack_space; 3835 #endif 3836 3837 if (args_size.constant > current_function_outgoing_args_size) 3838 current_function_outgoing_args_size = args_size.constant; 3839 3840 if (ACCUMULATE_OUTGOING_ARGS) 3841 { 3842 /* Since the stack pointer will never be pushed, it is possible for 3843 the evaluation of a parm to clobber something we have already 3844 written to the stack. Since most function calls on RISC machines 3845 do not use the stack, this is uncommon, but must work correctly. 3846 3847 Therefore, we save any area of the stack that was already written 3848 and that we are using. Here we set up to do this by making a new 3849 stack usage map from the old one. 3850 3851 Another approach might be to try to reorder the argument 3852 evaluations to avoid this conflicting stack usage. */ 3853 3854 needed = args_size.constant; 3855 3856 #ifndef OUTGOING_REG_PARM_STACK_SPACE 3857 /* Since we will be writing into the entire argument area, the 3858 map must be allocated for its entire size, not just the part that 3859 is the responsibility of the caller. */ 3860 needed += reg_parm_stack_space; 3861 #endif 3862 3863 #ifdef ARGS_GROW_DOWNWARD 3864 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, 3865 needed + 1); 3866 #else 3867 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use, 3868 needed); 3869 #endif 3870 stack_usage_map = (char *) alloca (highest_outgoing_arg_in_use); 3871 3872 if (initial_highest_arg_in_use) 3873 memcpy (stack_usage_map, initial_stack_usage_map, 3874 initial_highest_arg_in_use); 3875 3876 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use) 3877 memset (&stack_usage_map[initial_highest_arg_in_use], 0, 3878 highest_outgoing_arg_in_use - initial_highest_arg_in_use); 3879 needed = 0; 3880 3881 /* We must be careful to use virtual regs before they're instantiated, 3882 and real regs afterwards. Loop optimization, for example, can create 3883 new libcalls after we've instantiated the virtual regs, and if we 3884 use virtuals anyway, they won't match the rtl patterns. */ 3885 3886 if (virtuals_instantiated) 3887 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET); 3888 else 3889 argblock = virtual_outgoing_args_rtx; 3890 } 3891 else 3892 { 3893 if (!PUSH_ARGS) 3894 argblock = push_block (GEN_INT (args_size.constant), 0, 0); 3895 } 3896 3897 /* If we push args individually in reverse order, perform stack alignment 3898 before the first push (the last arg). */ 3899 if (argblock == 0 && PUSH_ARGS_REVERSED) 3900 anti_adjust_stack (GEN_INT (args_size.constant 3901 - original_args_size.constant)); 3902 3903 if (PUSH_ARGS_REVERSED) 3904 { 3905 inc = -1; 3906 argnum = nargs - 1; 3907 } 3908 else 3909 { 3910 inc = 1; 3911 argnum = 0; 3912 } 3913 3914 #ifdef REG_PARM_STACK_SPACE 3915 if (ACCUMULATE_OUTGOING_ARGS) 3916 { 3917 /* The argument list is the property of the called routine and it 3918 may clobber it. If the fixed area has been used for previous 3919 parameters, we must save and restore it. 3920 3921 Here we compute the boundary of the that needs to be saved, if any. */ 3922 3923 #ifdef ARGS_GROW_DOWNWARD 3924 for (count = 0; count < reg_parm_stack_space + 1; count++) 3925 #else 3926 for (count = 0; count < reg_parm_stack_space; count++) 3927 #endif 3928 { 3929 if (count >= highest_outgoing_arg_in_use 3930 || stack_usage_map[count] == 0) 3931 continue; 3932 3933 if (low_to_save == -1) 3934 low_to_save = count; 3935 3936 high_to_save = count; 3937 } 3938 3939 if (low_to_save >= 0) 3940 { 3941 int num_to_save = high_to_save - low_to_save + 1; 3942 enum machine_mode save_mode 3943 = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1); 3944 rtx stack_area; 3945 3946 /* If we don't have the required alignment, must do this in BLKmode. */ 3947 if ((low_to_save & (MIN (GET_MODE_SIZE (save_mode), 3948 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1))) 3949 save_mode = BLKmode; 3950 3951 #ifdef ARGS_GROW_DOWNWARD 3952 stack_area = gen_rtx_MEM (save_mode, 3953 memory_address (save_mode, 3954 plus_constant (argblock, 3955 -high_to_save))); 3956 #else 3957 stack_area = gen_rtx_MEM (save_mode, 3958 memory_address (save_mode, 3959 plus_constant (argblock, 3960 low_to_save))); 3961 #endif 3962 if (save_mode == BLKmode) 3963 { 3964 save_area = assign_stack_temp (BLKmode, num_to_save, 0); 3965 set_mem_align (save_area, PARM_BOUNDARY); 3966 emit_block_move (save_area, stack_area, GEN_INT (num_to_save), 3967 BLOCK_OP_CALL_PARM); 3968 } 3969 else 3970 { 3971 save_area = gen_reg_rtx (save_mode); 3972 emit_move_insn (save_area, stack_area); 3973 } 3974 } 3975 } 3976 #endif 3977 3978 /* Push the args that need to be pushed. */ 3979 3980 /* ARGNUM indexes the ARGVEC array in the order in which the arguments 3981 are to be pushed. */ 3982 for (count = 0; count < nargs; count++, argnum += inc) 3983 { 3984 enum machine_mode mode = argvec[argnum].mode; 3985 rtx val = argvec[argnum].value; 3986 rtx reg = argvec[argnum].reg; 3987 int partial = argvec[argnum].partial; 3988 int lower_bound = 0, upper_bound = 0, i; 3989 3990 if (! (reg != 0 && partial == 0)) 3991 { 3992 if (ACCUMULATE_OUTGOING_ARGS) 3993 { 3994 /* If this is being stored into a pre-allocated, fixed-size, 3995 stack area, save any previous data at that location. */ 3996 3997 #ifdef ARGS_GROW_DOWNWARD 3998 /* stack_slot is negative, but we want to index stack_usage_map 3999 with positive values. */ 4000 upper_bound = -argvec[argnum].offset.constant + 1; 4001 lower_bound = upper_bound - argvec[argnum].size.constant; 4002 #else 4003 lower_bound = argvec[argnum].offset.constant; 4004 upper_bound = lower_bound + argvec[argnum].size.constant; 4005 #endif 4006 4007 for (i = lower_bound; i < upper_bound; i++) 4008 if (stack_usage_map[i] 4009 /* Don't store things in the fixed argument area at this 4010 point; it has already been saved. */ 4011 && i > reg_parm_stack_space) 4012 break; 4013 4014 if (i != upper_bound) 4015 { 4016 /* We need to make a save area. See what mode we can make 4017 it. */ 4018 enum machine_mode save_mode 4019 = mode_for_size (argvec[argnum].size.constant 4020 * BITS_PER_UNIT, 4021 MODE_INT, 1); 4022 rtx stack_area 4023 = gen_rtx_MEM 4024 (save_mode, 4025 memory_address 4026 (save_mode, 4027 plus_constant (argblock, 4028 argvec[argnum].offset.constant))); 4029 if (save_mode == BLKmode) 4030 { 4031 argvec[argnum].save_area 4032 = assign_stack_temp (BLKmode, 4033 argvec[argnum].size.constant, 0); 4034 4035 emit_block_move (validize_mem (argvec[argnum].save_area), 4036 stack_area, 4037 GEN_INT (argvec[argnum].size.constant), 4038 BLOCK_OP_CALL_PARM); 4039 } 4040 else 4041 { 4042 argvec[argnum].save_area = gen_reg_rtx (save_mode); 4043 4044 emit_move_insn (argvec[argnum].save_area, stack_area); 4045 } 4046 } 4047 } 4048 4049 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, PARM_BOUNDARY, 4050 partial, reg, 0, argblock, 4051 GEN_INT (argvec[argnum].offset.constant), 4052 reg_parm_stack_space, ARGS_SIZE_RTX (alignment_pad)); 4053 4054 /* Now mark the segment we just used. */ 4055 if (ACCUMULATE_OUTGOING_ARGS) 4056 for (i = lower_bound; i < upper_bound; i++) 4057 stack_usage_map[i] = 1; 4058 4059 NO_DEFER_POP; 4060 } 4061 } 4062 4063 /* If we pushed args in forward order, perform stack alignment 4064 after pushing the last arg. */ 4065 if (argblock == 0 && !PUSH_ARGS_REVERSED) 4066 anti_adjust_stack (GEN_INT (args_size.constant 4067 - original_args_size.constant)); 4068 4069 if (PUSH_ARGS_REVERSED) 4070 argnum = nargs - 1; 4071 else 4072 argnum = 0; 4073 4074 fun = prepare_call_address (fun, NULL_TREE, &call_fusage, 0, 0); 4075 4076 /* Now load any reg parms into their regs. */ 4077 4078 /* ARGNUM indexes the ARGVEC array in the order in which the arguments 4079 are to be pushed. */ 4080 for (count = 0; count < nargs; count++, argnum += inc) 4081 { 4082 rtx val = argvec[argnum].value; 4083 rtx reg = argvec[argnum].reg; 4084 int partial = argvec[argnum].partial; 4085 4086 /* Handle calls that pass values in multiple non-contiguous 4087 locations. The PA64 has examples of this for library calls. */ 4088 if (reg != 0 && GET_CODE (reg) == PARALLEL) 4089 emit_group_load (reg, val, GET_MODE_SIZE (GET_MODE (val))); 4090 else if (reg != 0 && partial == 0) 4091 emit_move_insn (reg, val); 4092 4093 NO_DEFER_POP; 4094 } 4095 4096 /* Any regs containing parms remain in use through the call. */ 4097 for (count = 0; count < nargs; count++) 4098 { 4099 rtx reg = argvec[count].reg; 4100 if (reg != 0 && GET_CODE (reg) == PARALLEL) 4101 use_group_regs (&call_fusage, reg); 4102 else if (reg != 0) 4103 use_reg (&call_fusage, reg); 4104 } 4105 4106 /* Pass the function the address in which to return a structure value. */ 4107 if (mem_value != 0 && struct_value_rtx != 0 && ! pcc_struct_value) 4108 { 4109 emit_move_insn (struct_value_rtx, 4110 force_reg (Pmode, 4111 force_operand (XEXP (mem_value, 0), 4112 NULL_RTX))); 4113 if (GET_CODE (struct_value_rtx) == REG) 4114 use_reg (&call_fusage, struct_value_rtx); 4115 } 4116 4117 /* Don't allow popping to be deferred, since then 4118 cse'ing of library calls could delete a call and leave the pop. */ 4119 NO_DEFER_POP; 4120 valreg = (mem_value == 0 && outmode != VOIDmode 4121 ? hard_libcall_value (outmode) : NULL_RTX); 4122 4123 /* Stack must be properly aligned now. */ 4124 if (stack_pointer_delta & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)) 4125 abort (); 4126 4127 before_call = get_last_insn (); 4128 4129 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which 4130 will set inhibit_defer_pop to that value. */ 4131 /* The return type is needed to decide how many bytes the function pops. 4132 Signedness plays no role in that, so for simplicity, we pretend it's 4133 always signed. We also assume that the list of arguments passed has 4134 no impact, so we pretend it is unknown. */ 4135 4136 emit_call_1 (fun, 4137 get_identifier (XSTR (orgfun, 0)), 4138 build_function_type (tfom, NULL_TREE), 4139 original_args_size.constant, args_size.constant, 4140 struct_value_size, 4141 FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1), 4142 valreg, 4143 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far); 4144 4145 /* For calls to `setjmp', etc., inform flow.c it should complain 4146 if nonvolatile values are live. For functions that cannot return, 4147 inform flow that control does not fall through. */ 4148 4149 if (flags & (ECF_NORETURN | ECF_LONGJMP)) 4150 { 4151 /* The barrier note must be emitted 4152 immediately after the CALL_INSN. Some ports emit more than 4153 just a CALL_INSN above, so we must search for it here. */ 4154 4155 rtx last = get_last_insn (); 4156 while (GET_CODE (last) != CALL_INSN) 4157 { 4158 last = PREV_INSN (last); 4159 /* There was no CALL_INSN? */ 4160 if (last == before_call) 4161 abort (); 4162 } 4163 4164 emit_barrier_after (last); 4165 } 4166 4167 /* Now restore inhibit_defer_pop to its actual original value. */ 4168 OK_DEFER_POP; 4169 4170 /* If call is cse'able, make appropriate pair of reg-notes around it. 4171 Test valreg so we don't crash; may safely ignore `const' 4172 if return type is void. Disable for PARALLEL return values, because 4173 we have no way to move such values into a pseudo register. */ 4174 if (flags & ECF_LIBCALL_BLOCK) 4175 { 4176 rtx insns; 4177 4178 if (valreg == 0) 4179 { 4180 insns = get_insns (); 4181 end_sequence (); 4182 emit_insn (insns); 4183 } 4184 else 4185 { 4186 rtx note = 0; 4187 rtx temp; 4188 int i; 4189 4190 if (GET_CODE (valreg) == PARALLEL) 4191 { 4192 temp = gen_reg_rtx (outmode); 4193 emit_group_store (temp, valreg, outmode); 4194 valreg = temp; 4195 } 4196 4197 temp = gen_reg_rtx (GET_MODE (valreg)); 4198 4199 /* Construct an "equal form" for the value which mentions all the 4200 arguments in order as well as the function name. */ 4201 for (i = 0; i < nargs; i++) 4202 note = gen_rtx_EXPR_LIST (VOIDmode, argvec[i].value, note); 4203 note = gen_rtx_EXPR_LIST (VOIDmode, fun, note); 4204 4205 insns = get_insns (); 4206 end_sequence (); 4207 4208 if (flags & ECF_PURE) 4209 note = gen_rtx_EXPR_LIST (VOIDmode, 4210 gen_rtx_USE (VOIDmode, 4211 gen_rtx_MEM (BLKmode, 4212 gen_rtx_SCRATCH (VOIDmode))), 4213 note); 4214 4215 emit_libcall_block (insns, temp, valreg, note); 4216 4217 valreg = temp; 4218 } 4219 } 4220 pop_temp_slots (); 4221 4222 /* Copy the value to the right place. */ 4223 if (outmode != VOIDmode && retval) 4224 { 4225 if (mem_value) 4226 { 4227 if (value == 0) 4228 value = mem_value; 4229 if (value != mem_value) 4230 emit_move_insn (value, mem_value); 4231 } 4232 else if (GET_CODE (valreg) == PARALLEL) 4233 { 4234 if (value == 0) 4235 value = gen_reg_rtx (outmode); 4236 emit_group_store (value, valreg, outmode); 4237 } 4238 else if (value != 0) 4239 emit_move_insn (value, valreg); 4240 else 4241 value = valreg; 4242 } 4243 4244 if (ACCUMULATE_OUTGOING_ARGS) 4245 { 4246 #ifdef REG_PARM_STACK_SPACE 4247 if (save_area) 4248 { 4249 enum machine_mode save_mode = GET_MODE (save_area); 4250 #ifdef ARGS_GROW_DOWNWARD 4251 rtx stack_area 4252 = gen_rtx_MEM (save_mode, 4253 memory_address (save_mode, 4254 plus_constant (argblock, 4255 - high_to_save))); 4256 #else 4257 rtx stack_area 4258 = gen_rtx_MEM (save_mode, 4259 memory_address (save_mode, 4260 plus_constant (argblock, low_to_save))); 4261 #endif 4262 4263 set_mem_align (stack_area, PARM_BOUNDARY); 4264 if (save_mode != BLKmode) 4265 emit_move_insn (stack_area, save_area); 4266 else 4267 emit_block_move (stack_area, save_area, 4268 GEN_INT (high_to_save - low_to_save + 1), 4269 BLOCK_OP_CALL_PARM); 4270 } 4271 #endif 4272 4273 /* If we saved any argument areas, restore them. */ 4274 for (count = 0; count < nargs; count++) 4275 if (argvec[count].save_area) 4276 { 4277 enum machine_mode save_mode = GET_MODE (argvec[count].save_area); 4278 rtx stack_area 4279 = gen_rtx_MEM (save_mode, 4280 memory_address 4281 (save_mode, 4282 plus_constant (argblock, 4283 argvec[count].offset.constant))); 4284 4285 if (save_mode == BLKmode) 4286 emit_block_move (stack_area, 4287 validize_mem (argvec[count].save_area), 4288 GEN_INT (argvec[count].size.constant), 4289 BLOCK_OP_CALL_PARM); 4290 else 4291 emit_move_insn (stack_area, argvec[count].save_area); 4292 } 4293 4294 highest_outgoing_arg_in_use = initial_highest_arg_in_use; 4295 stack_usage_map = initial_stack_usage_map; 4296 } 4297 4298 return value; 4299 4300 } 4301 4302 /* Output a library call to function FUN (a SYMBOL_REF rtx) 4303 (emitting the queue unless NO_QUEUE is nonzero), 4304 for a value of mode OUTMODE, 4305 with NARGS different arguments, passed as alternating rtx values 4306 and machine_modes to convert them to. 4307 The rtx values should have been passed through protect_from_queue already. 4308 4309 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for `const' 4310 calls, LCT_PURE for `pure' calls, LCT_CONST_MAKE_BLOCK for `const' calls 4311 which should be enclosed in REG_LIBCALL/REG_RETVAL notes, 4312 LCT_PURE_MAKE_BLOCK for `purep' calls which should be enclosed in 4313 REG_LIBCALL/REG_RETVAL notes with extra (use (memory (scratch)), 4314 or other LCT_ value for other types of library calls. */ 4315 4316 void 4317 emit_library_call VPARAMS((rtx orgfun, enum libcall_type fn_type, 4318 enum machine_mode outmode, int nargs, ...)) 4319 { 4320 VA_OPEN (p, nargs); 4321 VA_FIXEDARG (p, rtx, orgfun); 4322 VA_FIXEDARG (p, int, fn_type); 4323 VA_FIXEDARG (p, enum machine_mode, outmode); 4324 VA_FIXEDARG (p, int, nargs); 4325 4326 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p); 4327 4328 VA_CLOSE (p); 4329 } 4330 4331 /* Like emit_library_call except that an extra argument, VALUE, 4332 comes second and says where to store the result. 4333 (If VALUE is zero, this function chooses a convenient way 4334 to return the value. 4335 4336 This function returns an rtx for where the value is to be found. 4337 If VALUE is nonzero, VALUE is returned. */ 4338 4339 rtx 4340 emit_library_call_value VPARAMS((rtx orgfun, rtx value, 4341 enum libcall_type fn_type, 4342 enum machine_mode outmode, int nargs, ...)) 4343 { 4344 rtx result; 4345 4346 VA_OPEN (p, nargs); 4347 VA_FIXEDARG (p, rtx, orgfun); 4348 VA_FIXEDARG (p, rtx, value); 4349 VA_FIXEDARG (p, int, fn_type); 4350 VA_FIXEDARG (p, enum machine_mode, outmode); 4351 VA_FIXEDARG (p, int, nargs); 4352 4353 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode, 4354 nargs, p); 4355 4356 VA_CLOSE (p); 4357 4358 return result; 4359 } 4360 4361 /* Store a single argument for a function call 4362 into the register or memory area where it must be passed. 4363 *ARG describes the argument value and where to pass it. 4364 4365 ARGBLOCK is the address of the stack-block for all the arguments, 4366 or 0 on a machine where arguments are pushed individually. 4367 4368 MAY_BE_ALLOCA nonzero says this could be a call to `alloca' 4369 so must be careful about how the stack is used. 4370 4371 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing 4372 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate 4373 that we need not worry about saving and restoring the stack. 4374 4375 FNDECL is the declaration of the function we are calling. 4376 4377 Return nonzero if this arg should cause sibcall failure, 4378 zero otherwise. */ 4379 4380 static int 4381 store_one_arg (arg, argblock, flags, variable_size, reg_parm_stack_space) 4382 struct arg_data *arg; 4383 rtx argblock; 4384 int flags; 4385 int variable_size ATTRIBUTE_UNUSED; 4386 int reg_parm_stack_space; 4387 { 4388 tree pval = arg->tree_value; 4389 rtx reg = 0; 4390 int partial = 0; 4391 int used = 0; 4392 int i, lower_bound = 0, upper_bound = 0; 4393 int sibcall_failure = 0; 4394 4395 if (TREE_CODE (pval) == ERROR_MARK) 4396 return 1; 4397 4398 /* Push a new temporary level for any temporaries we make for 4399 this argument. */ 4400 push_temp_slots (); 4401 4402 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)) 4403 { 4404 /* If this is being stored into a pre-allocated, fixed-size, stack area, 4405 save any previous data at that location. */ 4406 if (argblock && ! variable_size && arg->stack) 4407 { 4408 #ifdef ARGS_GROW_DOWNWARD 4409 /* stack_slot is negative, but we want to index stack_usage_map 4410 with positive values. */ 4411 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) 4412 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1; 4413 else 4414 upper_bound = 0; 4415 4416 lower_bound = upper_bound - arg->size.constant; 4417 #else 4418 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS) 4419 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)); 4420 else 4421 lower_bound = 0; 4422 4423 upper_bound = lower_bound + arg->size.constant; 4424 #endif 4425 4426 for (i = lower_bound; i < upper_bound; i++) 4427 if (stack_usage_map[i] 4428 /* Don't store things in the fixed argument area at this point; 4429 it has already been saved. */ 4430 && i > reg_parm_stack_space) 4431 break; 4432 4433 if (i != upper_bound) 4434 { 4435 /* We need to make a save area. See what mode we can make it. */ 4436 enum machine_mode save_mode 4437 = mode_for_size (arg->size.constant * BITS_PER_UNIT, MODE_INT, 1); 4438 rtx stack_area 4439 = gen_rtx_MEM (save_mode, 4440 memory_address (save_mode, 4441 XEXP (arg->stack_slot, 0))); 4442 4443 if (save_mode == BLKmode) 4444 { 4445 tree ot = TREE_TYPE (arg->tree_value); 4446 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot) 4447 | TYPE_QUAL_CONST)); 4448 4449 arg->save_area = assign_temp (nt, 0, 1, 1); 4450 preserve_temp_slots (arg->save_area); 4451 emit_block_move (validize_mem (arg->save_area), stack_area, 4452 expr_size (arg->tree_value), 4453 BLOCK_OP_CALL_PARM); 4454 } 4455 else 4456 { 4457 arg->save_area = gen_reg_rtx (save_mode); 4458 emit_move_insn (arg->save_area, stack_area); 4459 } 4460 } 4461 } 4462 } 4463 4464 /* If this isn't going to be placed on both the stack and in registers, 4465 set up the register and number of words. */ 4466 if (! arg->pass_on_stack) 4467 { 4468 if (flags & ECF_SIBCALL) 4469 reg = arg->tail_call_reg; 4470 else 4471 reg = arg->reg; 4472 partial = arg->partial; 4473 } 4474 4475 if (reg != 0 && partial == 0) 4476 /* Being passed entirely in a register. We shouldn't be called in 4477 this case. */ 4478 abort (); 4479 4480 /* If this arg needs special alignment, don't load the registers 4481 here. */ 4482 if (arg->n_aligned_regs != 0) 4483 reg = 0; 4484 4485 /* If this is being passed partially in a register, we can't evaluate 4486 it directly into its stack slot. Otherwise, we can. */ 4487 if (arg->value == 0) 4488 { 4489 /* stack_arg_under_construction is nonzero if a function argument is 4490 being evaluated directly into the outgoing argument list and 4491 expand_call must take special action to preserve the argument list 4492 if it is called recursively. 4493 4494 For scalar function arguments stack_usage_map is sufficient to 4495 determine which stack slots must be saved and restored. Scalar 4496 arguments in general have pass_on_stack == 0. 4497 4498 If this argument is initialized by a function which takes the 4499 address of the argument (a C++ constructor or a C function 4500 returning a BLKmode structure), then stack_usage_map is 4501 insufficient and expand_call must push the stack around the 4502 function call. Such arguments have pass_on_stack == 1. 4503 4504 Note that it is always safe to set stack_arg_under_construction, 4505 but this generates suboptimal code if set when not needed. */ 4506 4507 if (arg->pass_on_stack) 4508 stack_arg_under_construction++; 4509 4510 arg->value = expand_expr (pval, 4511 (partial 4512 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode) 4513 ? NULL_RTX : arg->stack, 4514 VOIDmode, EXPAND_STACK_PARM); 4515 4516 /* If we are promoting object (or for any other reason) the mode 4517 doesn't agree, convert the mode. */ 4518 4519 if (arg->mode != TYPE_MODE (TREE_TYPE (pval))) 4520 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)), 4521 arg->value, arg->unsignedp); 4522 4523 if (arg->pass_on_stack) 4524 stack_arg_under_construction--; 4525 } 4526 4527 /* Don't allow anything left on stack from computation 4528 of argument to alloca. */ 4529 if (flags & ECF_MAY_BE_ALLOCA) 4530 do_pending_stack_adjust (); 4531 4532 if (arg->value == arg->stack) 4533 /* If the value is already in the stack slot, we are done. */ 4534 ; 4535 else if (arg->mode != BLKmode) 4536 { 4537 int size; 4538 4539 /* Argument is a scalar, not entirely passed in registers. 4540 (If part is passed in registers, arg->partial says how much 4541 and emit_push_insn will take care of putting it there.) 4542 4543 Push it, and if its size is less than the 4544 amount of space allocated to it, 4545 also bump stack pointer by the additional space. 4546 Note that in C the default argument promotions 4547 will prevent such mismatches. */ 4548 4549 size = GET_MODE_SIZE (arg->mode); 4550 /* Compute how much space the push instruction will push. 4551 On many machines, pushing a byte will advance the stack 4552 pointer by a halfword. */ 4553 #ifdef PUSH_ROUNDING 4554 size = PUSH_ROUNDING (size); 4555 #endif 4556 used = size; 4557 4558 /* Compute how much space the argument should get: 4559 round up to a multiple of the alignment for arguments. */ 4560 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval))) 4561 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1) 4562 / (PARM_BOUNDARY / BITS_PER_UNIT)) 4563 * (PARM_BOUNDARY / BITS_PER_UNIT)); 4564 4565 /* This isn't already where we want it on the stack, so put it there. 4566 This can either be done with push or copy insns. */ 4567 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX, 4568 PARM_BOUNDARY, partial, reg, used - size, argblock, 4569 ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space, 4570 ARGS_SIZE_RTX (arg->alignment_pad)); 4571 4572 /* Unless this is a partially-in-register argument, the argument is now 4573 in the stack. */ 4574 if (partial == 0) 4575 arg->value = arg->stack; 4576 } 4577 else 4578 { 4579 /* BLKmode, at least partly to be pushed. */ 4580 4581 unsigned int parm_align; 4582 int excess; 4583 rtx size_rtx; 4584 4585 /* Pushing a nonscalar. 4586 If part is passed in registers, PARTIAL says how much 4587 and emit_push_insn will take care of putting it there. */ 4588 4589 /* Round its size up to a multiple 4590 of the allocation unit for arguments. */ 4591 4592 if (arg->size.var != 0) 4593 { 4594 excess = 0; 4595 size_rtx = ARGS_SIZE_RTX (arg->size); 4596 } 4597 else 4598 { 4599 /* PUSH_ROUNDING has no effect on us, because 4600 emit_push_insn for BLKmode is careful to avoid it. */ 4601 excess = (arg->size.constant - int_size_in_bytes (TREE_TYPE (pval)) 4602 + partial * UNITS_PER_WORD); 4603 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)), 4604 NULL_RTX, TYPE_MODE (sizetype), 0); 4605 } 4606 4607 /* Some types will require stricter alignment, which will be 4608 provided for elsewhere in argument layout. */ 4609 parm_align = MAX (PARM_BOUNDARY, TYPE_ALIGN (TREE_TYPE (pval))); 4610 4611 /* When an argument is padded down, the block is aligned to 4612 PARM_BOUNDARY, but the actual argument isn't. */ 4613 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward) 4614 { 4615 if (arg->size.var) 4616 parm_align = BITS_PER_UNIT; 4617 else if (excess) 4618 { 4619 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT; 4620 parm_align = MIN (parm_align, excess_align); 4621 } 4622 } 4623 4624 if ((flags & ECF_SIBCALL) && GET_CODE (arg->value) == MEM) 4625 { 4626 /* emit_push_insn might not work properly if arg->value and 4627 argblock + arg->offset areas overlap. */ 4628 rtx x = arg->value; 4629 int i = 0; 4630 4631 if (XEXP (x, 0) == current_function_internal_arg_pointer 4632 || (GET_CODE (XEXP (x, 0)) == PLUS 4633 && XEXP (XEXP (x, 0), 0) == 4634 current_function_internal_arg_pointer 4635 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)) 4636 { 4637 if (XEXP (x, 0) != current_function_internal_arg_pointer) 4638 i = INTVAL (XEXP (XEXP (x, 0), 1)); 4639 4640 /* expand_call should ensure this */ 4641 if (arg->offset.var || GET_CODE (size_rtx) != CONST_INT) 4642 abort (); 4643 4644 if (arg->offset.constant > i) 4645 { 4646 if (arg->offset.constant < i + INTVAL (size_rtx)) 4647 sibcall_failure = 1; 4648 } 4649 else if (arg->offset.constant < i) 4650 { 4651 if (i < arg->offset.constant + INTVAL (size_rtx)) 4652 sibcall_failure = 1; 4653 } 4654 } 4655 } 4656 4657 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx, 4658 parm_align, partial, reg, excess, argblock, 4659 ARGS_SIZE_RTX (arg->offset), reg_parm_stack_space, 4660 ARGS_SIZE_RTX (arg->alignment_pad)); 4661 4662 /* Unless this is a partially-in-register argument, the argument is now 4663 in the stack. 4664 4665 ??? Unlike the case above, in which we want the actual 4666 address of the data, so that we can load it directly into a 4667 register, here we want the address of the stack slot, so that 4668 it's properly aligned for word-by-word copying or something 4669 like that. It's not clear that this is always correct. */ 4670 if (partial == 0) 4671 arg->value = arg->stack_slot; 4672 } 4673 4674 /* Mark all slots this store used. */ 4675 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL) 4676 && argblock && ! variable_size && arg->stack) 4677 for (i = lower_bound; i < upper_bound; i++) 4678 stack_usage_map[i] = 1; 4679 4680 /* Once we have pushed something, pops can't safely 4681 be deferred during the rest of the arguments. */ 4682 NO_DEFER_POP; 4683 4684 /* ANSI doesn't require a sequence point here, 4685 but PCC has one, so this will avoid some problems. */ 4686 emit_queue (); 4687 4688 /* Free any temporary slots made in processing this argument. Show 4689 that we might have taken the address of something and pushed that 4690 as an operand. */ 4691 preserve_temp_slots (NULL_RTX); 4692 free_temp_slots (); 4693 pop_temp_slots (); 4694 4695 return sibcall_failure; 4696 } 4697 4698 /* Nonzero if we do not know how to pass TYPE solely in registers. 4699 We cannot do so in the following cases: 4700 4701 - if the type has variable size 4702 - if the type is marked as addressable (it is required to be constructed 4703 into the stack) 4704 - if the padding and mode of the type is such that a copy into a register 4705 would put it into the wrong part of the register. 4706 4707 Which padding can't be supported depends on the byte endianness. 4708 4709 A value in a register is implicitly padded at the most significant end. 4710 On a big-endian machine, that is the lower end in memory. 4711 So a value padded in memory at the upper end can't go in a register. 4712 For a little-endian machine, the reverse is true. */ 4713 4714 bool 4715 default_must_pass_in_stack (enum machine_mode mode, tree type) 4716 { 4717 if (!type) 4718 return false; 4719 4720 /* If the type has variable size... */ 4721 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST) 4722 return true; 4723 4724 /* If the type is marked as addressable (it is required 4725 to be constructed into the stack)... */ 4726 if (TREE_ADDRESSABLE (type)) 4727 return true; 4728 4729 /* If the padding and mode of the type is such that a copy into 4730 a register would put it into the wrong part of the register. */ 4731 if (mode == BLKmode 4732 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT) 4733 && (FUNCTION_ARG_PADDING (mode, type) 4734 == (BYTES_BIG_ENDIAN ? upward : downward))) 4735 return true; 4736 4737 return false; 4738 } 4739