1 /* Definitions of target machine for GNU compiler for 2 Motorola m88100 in an 88open OCS/BCS environment. 3 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 4 2001, 2002 Free Software Foundation, Inc. 5 Contributed by Michael Tiemann (tiemann@cygnus.com). 6 Currently maintained by (gcc@dg-rtp.dg.com) 7 8 This file is part of GNU CC. 9 10 GNU CC is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 2, or (at your option) 13 any later version. 14 15 GNU CC is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with GNU CC; see the file COPYING. If not, write to 22 the Free Software Foundation, 59 Temple Place - Suite 330, 23 Boston, MA 02111-1307, USA. */ 24 25 /* The m88100 port of GNU CC adheres to the various standards from 88open. 26 These documents are available by writing: 27 28 88open Consortium Ltd. 29 100 Homeland Court, Suite 800 30 San Jose, CA 95112 31 (408) 436-6600 32 33 In brief, the current standards are: 34 35 Binary Compatibility Standard, Release 1.1A, May 1991 36 This provides for portability of application-level software at the 37 executable level for AT&T System V Release 3.2. 38 39 Object Compatibility Standard, Release 1.1A, May 1991 40 This provides for portability of application-level software at the 41 object file and library level for C, Fortran, and Cobol, and again, 42 largely for SVR3. 43 44 Under development are standards for AT&T System V Release 4, based on the 45 [generic] System V Application Binary Interface from AT&T. These include: 46 47 System V Application Binary Interface, Motorola 88000 Processor Supplement 48 Another document from AT&T for SVR4 specific to the m88100. 49 Available from Prentice Hall. 50 51 System V Application Binary Interface, Motorola 88000 Processor Supplement, 52 Release 1.1, Draft H, May 6, 1991 53 A proposed update to the AT&T document from 88open. 54 55 System V ABI Implementation Guide for the M88000 Processor, 56 Release 1.0, January 1991 57 A companion ABI document from 88open. */ 58 59 /* External types used. */ 60 61 /* What instructions are needed to manufacture an integer constant. */ 62 enum m88k_instruction { 63 m88k_zero, 64 m88k_or, 65 m88k_subu, 66 m88k_or_lo16, 67 m88k_or_lo8, 68 m88k_set, 69 m88k_oru_hi16, 70 m88k_oru_or 71 }; 72 73 /* Which processor to schedule for. The elements of the enumeration 74 must match exactly the cpu attribute in the m88k.md machine description. */ 75 76 enum processor_type { 77 PROCESSOR_M88100, 78 PROCESSOR_M88110, 79 PROCESSOR_M88000 80 }; 81 82 /* Recast the cpu class to be the cpu attribute. */ 83 #define m88k_cpu_attr ((enum attr_cpu)m88k_cpu) 84 85 /* External variables/functions defined in m88k.c. */ 86 87 extern char m88k_volatile_code; 88 89 extern int m88k_fp_offset; 90 extern int m88k_stack_size; 91 extern int m88k_case_index; 92 93 extern struct rtx_def *m88k_compare_reg; 94 extern struct rtx_def *m88k_compare_op0; 95 extern struct rtx_def *m88k_compare_op1; 96 97 extern enum processor_type m88k_cpu; 98 99 /* external variables defined elsewhere in the compiler */ 100 101 extern int target_flags; /* -m compiler switches */ 102 103 /*** Controlling the Compilation Driver, `gcc' ***/ 104 /* Show we can debug even without a frame pointer. */ 105 #define CAN_DEBUG_WITHOUT_FP 106 107 /* If -m88100 is in effect, add -D__m88100__; similarly for -m88110. 108 Here, the CPU_DEFAULT is assumed to be -m88100. */ 109 #undef CPP_SPEC 110 #define CPP_SPEC "%{!m88000:%{!m88100:%{m88110:-D__m88110__}}} \ 111 %{!m88000:%{!m88110:-D__m88100__}}" 112 113 /*** Run-time Target Specification ***/ 114 115 /* Names to predefine in the preprocessor for this target machine. */ 116 #define CPP_PREDEFINES "-Dm88000 -Dm88k -Dunix -D__CLASSIFY_TYPE__=2" 117 118 #define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO) 119 120 #define VERSION_INFO "m88k" 121 122 /* Run-time compilation parameters selecting different hardware subsets. */ 123 124 /* Macro to define tables used to set the flags. 125 This is a list in braces of pairs in braces, 126 each pair being { "NAME", VALUE } 127 where VALUE is the bits to set or minus the bits to clear. 128 An empty string NAME is used to identify the default VALUE. */ 129 130 #define MASK_88100 0x00000001 /* Target m88100 */ 131 #define MASK_88110 0x00000002 /* Target m88110 */ 132 #define MASK_88000 (MASK_88100 | MASK_88110) 133 134 #define MASK_TRAP_LARGE_SHIFT 0x00000100 /* Trap if shift not <= 31 */ 135 #define MASK_HANDLE_LARGE_SHIFT 0x00000200 /* Handle shift count >= 32 */ 136 #define MASK_CHECK_ZERO_DIV 0x00000400 /* Check for int div. by 0 */ 137 #define MASK_USE_DIV 0x00000800 /* No signed div. checks */ 138 #define MASK_NO_SERIALIZE_VOLATILE 0x00001000 /* Serialize volatile refs */ 139 #define MASK_MEMCPY 0x00002000 /* Always use memcpy for movstr */ 140 #define MASK_EITHER_LARGE_SHIFT (MASK_TRAP_LARGE_SHIFT | \ 141 MASK_HANDLE_LARGE_SHIFT) 142 #define MASK_OMIT_LEAF_FRAME_POINTER 0x00004000 /* omit leaf frame pointers */ 143 144 145 #define TARGET_88100 ((target_flags & MASK_88000) == MASK_88100) 146 #define TARGET_88110 ((target_flags & MASK_88000) == MASK_88110) 147 #define TARGET_88000 ((target_flags & MASK_88000) == MASK_88000) 148 149 #define TARGET_TRAP_LARGE_SHIFT (target_flags & MASK_TRAP_LARGE_SHIFT) 150 #define TARGET_HANDLE_LARGE_SHIFT (target_flags & MASK_HANDLE_LARGE_SHIFT) 151 #define TARGET_CHECK_ZERO_DIV (target_flags & MASK_CHECK_ZERO_DIV) 152 #define TARGET_USE_DIV (target_flags & MASK_USE_DIV) 153 #define TARGET_SERIALIZE_VOLATILE (!(target_flags & MASK_NO_SERIALIZE_VOLATILE)) 154 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY) 155 156 #define TARGET_EITHER_LARGE_SHIFT (target_flags & MASK_EITHER_LARGE_SHIFT) 157 #define TARGET_OMIT_LEAF_FRAME_POINTER (target_flags & MASK_OMIT_LEAF_FRAME_POINTER) 158 159 #define TARGET_DEFAULT (MASK_CHECK_ZERO_DIV) 160 #define CPU_DEFAULT MASK_88100 161 162 #define TARGET_SWITCHES \ 163 { \ 164 { "88110", MASK_88110, \ 165 N_("Generate code for a 88110 processor") }, \ 166 { "88100", MASK_88100, \ 167 N_("Generate code for a 88100 processor") }, \ 168 { "88000", MASK_88000, \ 169 N_("Generate code compatible with both 88100 and 88110 processors") }, \ 170 { "trap-large-shift", MASK_TRAP_LARGE_SHIFT, \ 171 N_("Add code to trap on logical shift counts larger than 31") }, \ 172 { "handle-large-shift", MASK_HANDLE_LARGE_SHIFT, \ 173 N_("Add code to handle logical shift counts larger than 31") }, \ 174 { "check-zero-division", MASK_CHECK_ZERO_DIV, \ 175 N_("Add code to trap on integer divide by zero") }, \ 176 { "no-check-zero-division", -MASK_CHECK_ZERO_DIV, \ 177 N_("Do not add code to trap on integer divide by zero") }, \ 178 { "use-div-instruction", MASK_USE_DIV, \ 179 N_("Use the \"div\" instruction for signed integer divide") }, \ 180 { "no-serialize-volatile", MASK_NO_SERIALIZE_VOLATILE, \ 181 N_("Do not force serialization on volatile memory access") }, \ 182 { "serialize-volatile", -MASK_NO_SERIALIZE_VOLATILE, \ 183 N_("Force serialization on volatile memory access") }, \ 184 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \ 185 N_("Do not save the frame pointer in leaf functions") }, \ 186 { "no-omit-leaf-frame-pointer", -MASK_OMIT_LEAF_FRAME_POINTER, \ 187 N_("Save the frame pointer in leaf functions") }, \ 188 { "memcpy", MASK_MEMCPY, \ 189 N_("Force all memory copies to use memcpy()") }, \ 190 { "no-memcpy", -MASK_MEMCPY, \ 191 N_("Allow the use of specific memory copy code") }, \ 192 SUBTARGET_SWITCHES \ 193 /* Default switches */ \ 194 { "", TARGET_DEFAULT, \ 195 NULL }, \ 196 } 197 198 #define SUBTARGET_SWITCHES 199 200 /* Do any checking or such that is needed after processing the -m switches. */ 201 #define OVERRIDE_OPTIONS m88k_override_options () 202 203 /*** Storage Layout ***/ 204 205 /* Sizes in bits of the various types. */ 206 #define SHORT_TYPE_SIZE 16 207 #define INT_TYPE_SIZE 32 208 #define LONG_TYPE_SIZE 32 209 #define LONG_LONG_TYPE_SIZE 64 210 #define FLOAT_TYPE_SIZE 32 211 #define DOUBLE_TYPE_SIZE 64 212 #define LONG_DOUBLE_TYPE_SIZE 64 213 214 /* Define this if most significant bit is lowest numbered 215 in instructions that operate on numbered bit-fields. 216 Somewhat arbitrary. It matches the bit field patterns. */ 217 #define BITS_BIG_ENDIAN 1 218 219 /* Define this if most significant byte of a word is the lowest numbered. 220 That is true on the m88000. */ 221 #define BYTES_BIG_ENDIAN 1 222 223 /* Define this if most significant word of a multiword number is the lowest 224 numbered. 225 For the m88000 we can decide arbitrarily since there are no machine 226 instructions for them. */ 227 #define WORDS_BIG_ENDIAN 1 228 229 /* Width of a word, in units (bytes). */ 230 #define UNITS_PER_WORD 4 231 232 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ 233 #define PARM_BOUNDARY 32 234 235 /* Largest alignment for stack parameters (if greater than PARM_BOUNDARY). */ 236 #define MAX_PARM_BOUNDARY 64 237 238 /* Boundary (in *bits*) on which stack pointer should be aligned. */ 239 #define STACK_BOUNDARY 128 240 241 /* Allocation boundary (in *bits*) for the code of a function. */ 242 #define FUNCTION_BOUNDARY 32 243 244 /* No data type wants to be aligned rounder than this. */ 245 #define BIGGEST_ALIGNMENT 64 246 247 /* The best alignment to use in cases where we have a choice. */ 248 #define FASTEST_ALIGNMENT (TARGET_88100 ? 32 : 64) 249 250 /* Make strings 4/8 byte aligned so strcpy from constants will be faster. */ 251 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ 252 ((TREE_CODE (EXP) == STRING_CST \ 253 && (ALIGN) < FASTEST_ALIGNMENT) \ 254 ? FASTEST_ALIGNMENT : (ALIGN)) 255 256 /* Make arrays of chars 4/8 byte aligned for the same reasons. */ 257 #define DATA_ALIGNMENT(TYPE, ALIGN) \ 258 (TREE_CODE (TYPE) == ARRAY_TYPE \ 259 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ 260 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) 261 262 /* Alignment of field after `int : 0' in a structure. 263 Ignored with PCC_BITFIELD_TYPE_MATTERS. */ 264 /* #define EMPTY_FIELD_BOUNDARY 8 */ 265 266 /* Every structure's size must be a multiple of this. */ 267 #define STRUCTURE_SIZE_BOUNDARY 8 268 269 /* Set this nonzero if move instructions will actually fail to work 270 when given unaligned data. */ 271 #define STRICT_ALIGNMENT 1 272 273 /* A bit-field declared as `int' forces `int' alignment for the struct. */ 274 #define PCC_BITFIELD_TYPE_MATTERS 1 275 276 /* Maximum size (in bits) to use for the largest integral type that 277 replaces a BLKmode type. */ 278 /* #define MAX_FIXED_MODE_SIZE 0 */ 279 280 /*** Register Usage ***/ 281 282 /* No register prefixes by default. Will be overriden if necessary. */ 283 #undef REGISTER_PREFIX 284 285 /* Number of actual hardware registers. 286 The hardware registers are assigned numbers for the compiler 287 from 0 to just below FIRST_PSEUDO_REGISTER. 288 All registers that the compiler knows about must be given numbers, 289 even those that are not normally considered general registers. 290 291 The m88100 has a General Register File (GRF) of 32 32-bit registers. 292 The m88110 adds an Extended Register File (XRF) of 32 80-bit registers. */ 293 #define FIRST_PSEUDO_REGISTER 64 294 #define FIRST_EXTENDED_REGISTER 32 295 296 /* General notes on extended registers, their use and misuse. 297 298 Possible good uses: 299 300 spill area instead of memory. 301 -waste if only used once 302 303 floating point calculations 304 -probably a waste unless we have run out of general purpose registers 305 306 freeing up general purpose registers 307 -e.g. may be able to have more loop invariants if floating 308 point is moved into extended registers. 309 310 311 I've noticed wasteful moves into and out of extended registers; e.g. a load 312 into x21, then inside a loop a move into r24, then r24 used as input to 313 an fadd. Why not just load into r24 to begin with? Maybe the new cse.c 314 will address this. This wastes a move, but the load,store and move could 315 have been saved had extended registers been used throughout. 316 E.g. in the code following code, if z and xz are placed in extended 317 registers, there is no need to save preserve registers. 318 319 long c=1,d=1,e=1,f=1,g=1,h=1,i=1,j=1,k; 320 321 double z=0,xz=4.5; 322 323 foo(a,b) 324 long a,b; 325 { 326 while (a < b) 327 { 328 k = b + c + d + e + f + g + h + a + i + j++; 329 z += xz; 330 a++; 331 } 332 printf("k= %d; z=%f;\n", k, z); 333 } 334 335 I've found that it is possible to change the constraints (putting * before 336 the 'r' constraints int the fadd.ddd instruction) and get the entire 337 addition and store to go into extended registers. However, this also 338 forces simple addition and return of floating point arguments to a 339 function into extended registers. Not the correct solution. 340 341 Found the following note in local-alloc.c which may explain why I can't 342 get both registers to be in extended registers since two are allocated in 343 local-alloc and one in global-alloc. Doesn't explain (I don't believe) 344 why an extended register is used instead of just using the preserve 345 register. 346 347 from local-alloc.c: 348 We have provision to exempt registers, even when they are contained 349 within the block, that can be tied to others that are not contained in it. 350 This is so that global_alloc could process them both and tie them then. 351 But this is currently disabled since tying in global_alloc is not 352 yet implemented. 353 354 The explanation of why the preserved register is not used is as follows, 355 I believe. The registers are being allocated in order. Tying is not 356 done so efficiently, so when it comes time to do the first allocation, 357 there are no registers left to use without spilling except extended 358 registers. Then when the next pseudo register needs a hard reg, there 359 are still no registers to be had for free, but this one must be a GRF 360 reg instead of an extended reg, so a preserve register is spilled. Thus 361 the move from extended to GRF is necessitated. I do not believe this can 362 be 'fixed' through the files in config/m88k. 363 364 gcc seems to sometimes make worse use of register allocation -- not counting 365 moves -- whenever extended registers are present. For example in the 366 whetstone, the simple for loop (slightly modified) 367 for(i = 1; i <= n1; i++) 368 { 369 x1 = (x1 + x2 + x3 - x4) * t; 370 x2 = (x1 + x2 - x3 + x4) * t; 371 x3 = (x1 - x2 + x3 + x4) * t; 372 x4 = (x1 + x2 + x3 + x4) * t; 373 } 374 in general loads the high bits of the addresses of x2-x4 and i into registers 375 outside the loop. Whenever extended registers are used, it loads all of 376 these inside the loop. My conjecture is that since the 88110 has so many 377 registers, and gcc makes no distinction at this point -- just that they are 378 not fixed, that in loop.c it believes it can expect a number of registers 379 to be available. Then it allocates 'too many' in local-alloc which causes 380 problems later. 'Too many' are allocated because a large portion of the 381 registers are extended registers and cannot be used for certain purposes 382 ( e.g. hold the address of a variable). When this loop is compiled on its 383 own, the problem does not occur. I don't know the solution yet, though it 384 is probably in the base sources. Possibly a different way to calculate 385 "threshold". */ 386 387 /* 1 for registers that have pervasive standard uses and are not available 388 for the register allocator. Registers r14-r25 and x22-x29 are expected 389 to be preserved across function calls. 390 391 On the 88000, the standard uses of the General Register File (GRF) are: 392 Reg 0 = Pseudo argument pointer (hardware fixed to 0). 393 Reg 1 = Subroutine return pointer (hardware). 394 Reg 2-9 = Parameter registers (OCS). 395 Reg 10 = OCS reserved temporary. 396 Reg 11 = Static link if needed [OCS reserved temporary]. 397 Reg 12 = Address of structure return (OCS). 398 Reg 13 = OCS reserved temporary. 399 Reg 14-25 = Preserved register set. 400 Reg 26-29 = Reserved by OCS and ABI. 401 Reg 30 = Frame pointer (Common use). 402 Reg 31 = Stack pointer. 403 404 The following follows the current 88open UCS specification for the 405 Extended Register File (XRF): 406 Reg 32 = x0 Always equal to zero 407 Reg 33-53 = x1-x21 Temporary registers (Caller Save) 408 Reg 54-61 = x22-x29 Preserver registers (Callee Save) 409 Reg 62-63 = x30-x31 Reserved for future ABI use. 410 411 Note: The current 88110 extended register mapping is subject to change. 412 The bias towards caller-save registers is based on the 413 presumption that memory traffic can potentially be reduced by 414 allowing the "caller" to save only that part of the register 415 which is actually being used. (i.e. don't do a st.x if a st.d 416 is sufficient). Also, in scientific code (a.k.a. Fortran), the 417 large number of variables defined in common blocks may require 418 that almost all registers be saved across calls anyway. */ 419 420 #define FIXED_REGISTERS \ 421 {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 422 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \ 423 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ 424 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1} 425 426 /* 1 for registers not available across function calls. 427 These must include the FIXED_REGISTERS and also any 428 registers that can be used without being saved. 429 The latter must include the registers where values are returned 430 and the register where structure-value addresses are passed. 431 Aside from that, you can include as many other registers as you like. */ 432 433 #define CALL_USED_REGISTERS \ 434 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \ 435 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, \ 436 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 437 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1} 438 439 /* Macro to conditionally modify fixed_regs/call_used_regs. */ 440 #define CONDITIONAL_REGISTER_USAGE \ 441 { \ 442 if (! TARGET_88110) \ 443 { \ 444 register int i; \ 445 for (i = FIRST_EXTENDED_REGISTER; i < FIRST_PSEUDO_REGISTER; i++) \ 446 { \ 447 fixed_regs[i] = 1; \ 448 call_used_regs[i] = 1; \ 449 } \ 450 } \ 451 if (flag_pic) \ 452 { \ 453 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 454 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ 455 } \ 456 } 457 458 /* True if register is an extended register. */ 459 #define XRF_REGNO_P(N) ((N) < FIRST_PSEUDO_REGISTER && (N) >= FIRST_EXTENDED_REGISTER) 460 461 /* Return number of consecutive hard regs needed starting at reg REGNO 462 to hold something of mode MODE. 463 This is ordinarily the length in words of a value of mode MODE 464 but can be less for certain modes in special long registers. 465 466 On the m88000, GRF registers hold 32-bits and XRF registers hold 80-bits. 467 An XRF register can hold any mode, but two GRF registers are required 468 for larger modes. */ 469 #define HARD_REGNO_NREGS(REGNO, MODE) \ 470 (XRF_REGNO_P (REGNO) \ 471 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) 472 473 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. 474 475 For double integers, we never put the value into an odd register so that 476 the operators don't run into the situation where the high part of one of 477 the inputs is the low part of the result register. (It's ok if the output 478 registers are the same as the input registers.) The XRF registers can 479 hold all modes, but only DF and SF modes can be manipulated in these 480 registers. The compiler should be allowed to use these as a fast spill 481 area. */ 482 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ 483 (XRF_REGNO_P (REGNO) \ 484 ? (TARGET_88110 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \ 485 : (((MODE) != DImode && (MODE) != DFmode && (MODE) != DCmode) \ 486 || ((REGNO) & 1) == 0)) 487 488 /* Value is 1 if it is a good idea to tie two pseudo registers 489 when one has mode MODE1 and one has mode MODE2. 490 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, 491 for any hard reg, then this must be 0 for correct output. */ 492 #define MODES_TIEABLE_P(MODE1, MODE2) \ 493 (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode \ 494 || (TARGET_88110 && GET_MODE_CLASS (MODE1) == MODE_FLOAT)) \ 495 == ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode \ 496 || (TARGET_88110 && GET_MODE_CLASS (MODE2) == MODE_FLOAT))) 497 498 /* Specify the registers used for certain standard purposes. 499 The values of these macros are register numbers. */ 500 501 /* the m88000 pc isn't overloaded on a register that the compiler knows about. */ 502 /* #define PC_REGNUM */ 503 504 /* Register to use for pushing function arguments. */ 505 #define STACK_POINTER_REGNUM 31 506 507 /* Base register for access to local variables of the function. */ 508 #define FRAME_POINTER_REGNUM 30 509 510 /* Base register for access to arguments of the function. */ 511 #define ARG_POINTER_REGNUM 0 512 513 /* Register used in cases where a temporary is known to be safe to use. */ 514 #define TEMP_REGNUM 10 515 516 /* Register in which static-chain is passed to a function. */ 517 #define STATIC_CHAIN_REGNUM 11 518 519 /* Register in which address to store a structure value 520 is passed to a function. */ 521 #define STRUCT_VALUE_REGNUM 12 522 523 /* Register to hold the addressing base for position independent 524 code access to data items. */ 525 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 25 : INVALID_REGNUM) 526 527 /* Order in which registers are preferred (most to least). Use temp 528 registers, then param registers top down. Preserve registers are 529 top down to maximize use of double memory ops for register save. 530 The 88open reserved registers (r26-r29 and x30-x31) may commonly be used 531 in most environments with the -fcall-used- or -fcall-saved- options. */ 532 #define REG_ALLOC_ORDER \ 533 { \ 534 13, 12, 11, 10, 29, 28, 27, 26, \ 535 62, 63, 9, 8, 7, 6, 5, 4, \ 536 3, 2, 1, 53, 52, 51, 50, 49, \ 537 48, 47, 46, 45, 44, 43, 42, 41, \ 538 40, 39, 38, 37, 36, 35, 34, 33, \ 539 25, 24, 23, 22, 21, 20, 19, 18, \ 540 17, 16, 15, 14, 61, 60, 59, 58, \ 541 57, 56, 55, 54, 30, 31, 0, 32} 542 543 /* Order for leaf functions. */ 544 #define REG_LEAF_ALLOC_ORDER \ 545 { \ 546 9, 8, 7, 6, 13, 12, 11, 10, \ 547 29, 28, 27, 26, 62, 63, 5, 4, \ 548 3, 2, 0, 53, 52, 51, 50, 49, \ 549 48, 47, 46, 45, 44, 43, 42, 41, \ 550 40, 39, 38, 37, 36, 35, 34, 33, \ 551 25, 24, 23, 22, 21, 20, 19, 18, \ 552 17, 16, 15, 14, 61, 60, 59, 58, \ 553 57, 56, 55, 54, 30, 31, 1, 32} 554 555 /* Switch between the leaf and non-leaf orderings. The purpose is to avoid 556 write-over scoreboard delays between caller and callee. */ 557 #define ORDER_REGS_FOR_LOCAL_ALLOC \ 558 { \ 559 static const int leaf[] = REG_LEAF_ALLOC_ORDER; \ 560 static const int nonleaf[] = REG_ALLOC_ORDER; \ 561 \ 562 memcpy (reg_alloc_order, regs_ever_live[1] ? nonleaf : leaf, \ 563 FIRST_PSEUDO_REGISTER * sizeof (int)); \ 564 } 565 566 /*** Register Classes ***/ 567 568 /* Define the classes of registers for register constraints in the 569 machine description. Also define ranges of constants. 570 571 One of the classes must always be named ALL_REGS and include all hard regs. 572 If there is more than one class, another class must be named NO_REGS 573 and contain no registers. 574 575 The name GENERAL_REGS must be the name of a class (or an alias for 576 another name such as ALL_REGS). This is the class of registers 577 that is allowed by "g" or "r" in a register constraint. 578 Also, registers outside this class are allocated only when 579 instructions express preferences for them. 580 581 The classes must be numbered in nondecreasing order; that is, 582 a larger-numbered class must never be contained completely 583 in a smaller-numbered class. 584 585 For any two classes, it is very desirable that there be another 586 class that represents their union. */ 587 588 /* The m88000 hardware has two kinds of registers. In addition, we denote 589 the arg pointer as a separate class. */ 590 591 enum reg_class { NO_REGS, AP_REG, XRF_REGS, GENERAL_REGS, AGRF_REGS, 592 XGRF_REGS, ALL_REGS, LIM_REG_CLASSES }; 593 594 #define N_REG_CLASSES (int) LIM_REG_CLASSES 595 596 /* Give names of register classes as strings for dump file. */ 597 #define REG_CLASS_NAMES {"NO_REGS", "AP_REG", "XRF_REGS", "GENERAL_REGS", \ 598 "AGRF_REGS", "XGRF_REGS", "ALL_REGS" } 599 600 /* Define which registers fit in which classes. 601 This is an initializer for a vector of HARD_REG_SET 602 of length N_REG_CLASSES. */ 603 #define REG_CLASS_CONTENTS {{0x00000000, 0x00000000}, \ 604 {0x00000001, 0x00000000}, \ 605 {0x00000000, 0xffffffff}, \ 606 {0xfffffffe, 0x00000000}, \ 607 {0xffffffff, 0x00000000}, \ 608 {0xfffffffe, 0xffffffff}, \ 609 {0xffffffff, 0xffffffff}} 610 611 /* The same information, inverted: 612 Return the class number of the smallest class containing 613 reg number REGNO. This could be a conditional expression 614 or could index an array. */ 615 #define REGNO_REG_CLASS(REGNO) \ 616 ((REGNO) ? ((REGNO) < 32 ? GENERAL_REGS : XRF_REGS) : AP_REG) 617 618 /* The class value for index registers, and the one for base regs. */ 619 #define BASE_REG_CLASS AGRF_REGS 620 #define INDEX_REG_CLASS GENERAL_REGS 621 622 /* Get reg_class from a letter such as appears in the machine description. 623 For the 88000, the following class/letter is defined for the XRF: 624 x - Extended register file */ 625 #define REG_CLASS_FROM_LETTER(C) \ 626 (((C) == 'x') ? XRF_REGS : NO_REGS) 627 628 /* Macros to check register numbers against specific register classes. 629 These assume that REGNO is a hard or pseudo reg number. 630 They give nonzero only if REGNO is a hard reg of the suitable class 631 or a pseudo reg currently allocated to a suitable hard reg. 632 Since they use reg_renumber, they are safe only once reg_renumber 633 has been allocated, which happens in local-alloc.c. */ 634 #define REGNO_OK_FOR_BASE_P(REGNO) \ 635 ((REGNO) < FIRST_EXTENDED_REGISTER \ 636 || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER) 637 #define REGNO_OK_FOR_INDEX_P(REGNO) \ 638 (((REGNO) && (REGNO) < FIRST_EXTENDED_REGISTER) \ 639 || (unsigned) reg_renumber[REGNO] < FIRST_EXTENDED_REGISTER) 640 641 /* Given an rtx X being reloaded into a reg required to be 642 in class CLASS, return the class of reg to actually use. 643 In general this is just CLASS; but on some machines 644 in some cases it is preferable to use a more restrictive class. 645 Double constants should be in a register iff they can be made cheaply. */ 646 #define PREFERRED_RELOAD_CLASS(X,CLASS) \ 647 (CONSTANT_P (X) && ((CLASS) == XRF_REGS) ? NO_REGS : (CLASS)) 648 649 /* Return the register class of a scratch register needed to load IN 650 into a register of class CLASS in MODE. On the m88k, when PIC, we 651 need a temporary when loading some addresses into a register. */ 652 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \ 653 ((flag_pic \ 654 && GET_CODE (IN) == CONST \ 655 && GET_CODE (XEXP (IN, 0)) == PLUS \ 656 && GET_CODE (XEXP (XEXP (IN, 0), 0)) == CONST_INT \ 657 && ! SMALL_INT (XEXP (XEXP (IN, 0), 1))) ? GENERAL_REGS : NO_REGS) 658 659 /* Return the maximum number of consecutive registers 660 needed to represent mode MODE in a register of class CLASS. */ 661 #define CLASS_MAX_NREGS(CLASS, MODE) \ 662 ((((CLASS) == XRF_REGS) ? 1 \ 663 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))) 664 665 /* Letters in the range `I' through `P' in a register constraint string can 666 be used to stand for particular ranges of immediate operands. The C 667 expression is true iff C is a known letter and VALUE is appropriate for 668 that letter. 669 670 For the m88000, the following constants are used: 671 `I' requires a non-negative 16-bit value. 672 `J' requires a non-positive 16-bit value. 673 `K' requires a non-negative value < 32. 674 `L' requires a constant with only the upper 16-bits set. 675 `M' requires constant values that can be formed with `set'. 676 `N' requires a negative value. 677 `O' requires zero. 678 `P' requires a non-negative value. */ 679 680 /* Quick tests for certain values. */ 681 #define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X))) 682 #define SMALL_INTVAL(I) ((unsigned HOST_WIDE_INT) (I) < 0x10000) 683 #define ADD_INT(X) (ADD_INTVAL (INTVAL (X))) 684 #define ADD_INTVAL(I) ((unsigned HOST_WIDE_INT) (I) + 0xffff < 0x1ffff) 685 #define POWER_OF_2(I) ((I) && POWER_OF_2_or_0(I)) 686 #define POWER_OF_2_or_0(I) (((I) & ((unsigned HOST_WIDE_INT)(I) - 1)) == 0) 687 688 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ 689 ((C) == 'I' ? SMALL_INTVAL (VALUE) \ 690 : (C) == 'J' ? SMALL_INTVAL (-(VALUE)) \ 691 : (C) == 'K' ? (unsigned HOST_WIDE_INT)(VALUE) < 32 \ 692 : (C) == 'L' ? ((VALUE) & 0xffff) == 0 \ 693 : (C) == 'M' ? integer_ok_for_set (VALUE) \ 694 : (C) == 'N' ? (VALUE) < 0 \ 695 : (C) == 'O' ? (VALUE) == 0 \ 696 : (C) == 'P' ? (VALUE) >= 0 \ 697 : 0) 698 699 /* Similar, but for floating constants, and defining letters G and H. 700 Here VALUE is the CONST_DOUBLE rtx itself. For the m88000, the 701 constraints are: `G' requires zero, and `H' requires one or two. */ 702 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ 703 ((C) == 'G' ? (CONST_DOUBLE_HIGH (VALUE) == 0 \ 704 && CONST_DOUBLE_LOW (VALUE) == 0) \ 705 : 0) 706 707 /* Letters in the range `Q' through `U' in a register constraint string 708 may be defined in a machine-dependent fashion to stand for arbitrary 709 operand types. 710 711 For the m88k, `Q' handles addresses in a call context. */ 712 713 #define EXTRA_CONSTRAINT(OP, C) \ 714 ((C) == 'Q' ? symbolic_address_p (OP) : 0) 715 716 /*** Describing Stack Layout ***/ 717 718 /* Define this if pushing a word on the stack moves the stack pointer 719 to a smaller address. */ 720 #define STACK_GROWS_DOWNWARD 721 722 /* Define this if the addresses of local variable slots are at negative 723 offsets from the frame pointer. */ 724 /* #define FRAME_GROWS_DOWNWARD */ 725 726 /* Offset from the frame pointer to the first local variable slot to be 727 allocated. For the m88k, the debugger wants the return address (r1) 728 stored at location r30+4, and the previous frame pointer stored at 729 location r30. */ 730 #define STARTING_FRAME_OFFSET 8 731 732 /* If we generate an insn to push BYTES bytes, this says how many the 733 stack pointer really advances by. The m88k has no push instruction. */ 734 /* #define PUSH_ROUNDING(BYTES) */ 735 736 /* If defined, the maximum amount of space required for outgoing arguments 737 will be computed and placed into the variable 738 `current_function_outgoing_args_size'. No space will be pushed 739 onto the stack for each call; instead, the function prologue should 740 increase the stack frame size by this amount. */ 741 #define ACCUMULATE_OUTGOING_ARGS 1 742 743 /* Offset from the stack pointer register to the first location at which 744 outgoing arguments are placed. Use the default value zero. */ 745 /* #define STACK_POINTER_OFFSET 0 */ 746 747 /* Offset of first parameter from the argument pointer register value. 748 Using an argument pointer, this is 0 for the m88k. GCC knows 749 how to eliminate the argument pointer references if necessary. */ 750 #define FIRST_PARM_OFFSET(FNDECL) 0 751 752 /* Define this if functions should assume that stack space has been 753 allocated for arguments even when their values are passed in 754 registers. 755 756 The value of this macro is the size, in bytes, of the area reserved for 757 arguments passed in registers. 758 759 This space can either be allocated by the caller or be a part of the 760 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' 761 says which. */ 762 /* #undef REG_PARM_STACK_SPACE(FNDECL) */ 763 764 /* Define this macro if REG_PARM_STACK_SPACE is defined but stack 765 parameters don't skip the area specified by REG_PARM_STACK_SPACE. 766 Normally, when a parameter is not passed in registers, it is placed on 767 the stack beyond the REG_PARM_STACK_SPACE area. Defining this macro 768 suppresses this behavior and causes the parameter to be passed on the 769 stack in its natural location. */ 770 /* #undef STACK_PARMS_IN_REG_PARM_AREA */ 771 772 /* Define this if it is the responsibility of the caller to allocate the 773 area reserved for arguments passed in registers. If 774 `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect of this 775 macro is to determine whether the space is included in 776 `current_function_outgoing_args_size'. */ 777 /* #define OUTGOING_REG_PARM_STACK_SPACE */ 778 779 /* Offset from the stack pointer register to an item dynamically allocated 780 on the stack, e.g., by `alloca'. 781 782 The default value for this macro is `STACK_POINTER_OFFSET' plus the 783 length of the outgoing arguments. The default is correct for most 784 machines. See `function.c' for details. */ 785 /* #define STACK_DYNAMIC_OFFSET(FUNDECL) ... */ 786 787 /* Value is the number of bytes of arguments automatically 788 popped when returning from a subroutine call. 789 FUNDECL is the declaration node of the function (as a tree), 790 FUNTYPE is the data type of the function (as a tree), 791 or for a library call it is an identifier node for the subroutine name. 792 SIZE is the number of bytes of arguments passed on the stack. */ 793 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 794 795 /* Define how to find the value returned by a function. 796 VALTYPE is the data type of the value (as a tree). 797 If the precise function being called is known, FUNC is its FUNCTION_DECL; 798 otherwise, FUNC is 0. */ 799 #define FUNCTION_VALUE(VALTYPE, FUNC) \ 800 gen_rtx_REG (TYPE_MODE (VALTYPE) == BLKmode ? SImode : TYPE_MODE (VALTYPE), \ 801 2) 802 803 /* Define this if it differs from FUNCTION_VALUE. */ 804 /* #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) ... */ 805 806 /* Disable the promotion of some structures and unions to registers. 807 Note that this matches FUNCTION_ARG behaviour. */ 808 #define RETURN_IN_MEMORY(TYPE) \ 809 (TYPE_MODE (TYPE) == BLKmode \ 810 || ((TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE) \ 811 && (TYPE_ALIGN (TYPE) != BITS_PER_WORD || \ 812 GET_MODE_SIZE (TYPE_MODE (TYPE)) != UNITS_PER_WORD))) 813 814 /* Don't default to pcc-struct-return, because we have already specified 815 exactly how to return structures in the RETURN_IN_MEMORY macro. */ 816 #define DEFAULT_PCC_STRUCT_RETURN 0 817 818 /* Define how to find the value returned by a library function 819 assuming the value has mode MODE. */ 820 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 2) 821 822 /* True if N is a possible register number for a function value 823 as seen by the caller. */ 824 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2) 825 826 /* Determine whether a function argument is passed in a register, and 827 which register. See m88k.c. */ 828 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ 829 m88k_function_arg (CUM, MODE, TYPE, NAMED) 830 831 /* Define this if it differs from FUNCTION_ARG. */ 832 /* #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) ... */ 833 834 /* A C expression for the number of words, at the beginning of an 835 argument, must be put in registers. The value must be zero for 836 arguments that are passed entirely in registers or that are entirely 837 pushed on the stack. */ 838 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0) 839 840 /* A C expression that indicates when an argument must be passed by 841 reference. If nonzero for an argument, a copy of that argument is 842 made in memory and a pointer to the argument is passed instead of the 843 argument itself. The pointer is passed in whatever way is appropriate 844 for passing a pointer to that type. */ 845 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ 846 m88k_function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED) 847 848 /* A C type for declaring a variable that is used as the first argument 849 of `FUNCTION_ARG' and other related values. It suffices to count 850 the number of words of argument so far. */ 851 #define CUMULATIVE_ARGS int 852 853 /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a 854 function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ 855 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0) 856 857 /* Update the summarizer variable to advance past an argument in an 858 argument list. See m88k.c. */ 859 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ 860 m88k_function_arg_advance (& (CUM), MODE, TYPE, NAMED) 861 862 /* True if N is a possible register number for function argument passing. 863 On the m88000, these are registers 2 through 9. */ 864 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 9 && (N) >= 2) 865 866 /* A C expression which determines whether, and in which direction, 867 to pad out an argument with extra space. The value should be of 868 type `enum direction': either `upward' to pad above the argument, 869 `downward' to pad below, or `none' to inhibit padding. 870 871 This macro does not control the *amount* of padding; that is always 872 just enough to reach the next multiple of `FUNCTION_ARG_BOUNDARY'. */ 873 #define FUNCTION_ARG_PADDING(MODE, TYPE) \ 874 ((MODE) == BLKmode \ 875 || ((TYPE) && (TREE_CODE (TYPE) == RECORD_TYPE \ 876 || TREE_CODE (TYPE) == UNION_TYPE)) \ 877 ? upward : GET_MODE_BITSIZE (MODE) < PARM_BOUNDARY ? downward : none) 878 879 /* If defined, a C expression that gives the alignment boundary, in bits, 880 of an argument with the specified mode and type. If it is not defined, 881 `PARM_BOUNDARY' is used for all arguments. */ 882 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \ 883 (((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \ 884 ? PARM_BOUNDARY : 2 * PARM_BOUNDARY) 885 886 /* Perform any actions needed for a function that is receiving a 887 variable number of arguments. */ 888 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \ 889 m88k_setup_incoming_varargs (& (CUM), MODE, TYPE, & (PRETEND_SIZE), NO_RTL) 890 891 /* Define the `__builtin_va_list' type for the ABI. */ 892 #define BUILD_VA_LIST_TYPE(VALIST) \ 893 (VALIST) = m88k_build_va_list () 894 895 /* Implement `va_start' for varargs and stdarg. */ 896 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \ 897 m88k_va_start (valist, nextarg) 898 899 /* Implement `va_arg'. */ 900 #define EXPAND_BUILTIN_VA_ARG(valist, type) \ 901 m88k_va_arg (valist, type) 902 903 /* Output assembler code to FILE to increment profiler label # LABELNO 904 for profiling a function entry. */ 905 #define FUNCTION_PROFILER(FILE, LABELNO) \ 906 output_function_profiler (FILE, LABELNO, "mcount") 907 908 /* Maximum length in instructions of the code output by FUNCTION_PROFILER. */ 909 #define FUNCTION_PROFILER_LENGTH (5+3+1+5) 910 911 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, 912 the stack pointer does not matter. The value is tested only in 913 functions that have frame pointers. 914 No definition is equivalent to always zero. */ 915 #define EXIT_IGNORE_STACK (1) 916 917 /* Value should be nonzero if functions must have frame pointers. 918 Zero means the frame pointer need not be set up (and parms 919 may be accessed via the stack pointer) in functions that seem suitable. 920 This is computed in `reload', in reload1.c. */ 921 #define FRAME_POINTER_REQUIRED \ 922 ((current_function_profile || !leaf_function_p () \ 923 || !TARGET_OMIT_LEAF_FRAME_POINTER) \ 924 || (write_symbols != NO_DEBUG)) 925 926 /* Define registers used by the epilogue and return instruction. */ 927 #define EPILOGUE_USES(REGNO) \ 928 (reload_completed && ((REGNO) == 1 \ 929 || (current_function_profile \ 930 && (REGNO) == FRAME_POINTER_REGNUM))) 931 932 /* Before the prologue, RA is in r1. */ 933 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 1) 934 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (1) 935 936 /* Definitions for register eliminations. 937 938 We have two registers that can be eliminated on the m88k. First, the 939 frame pointer register can often be eliminated in favor of the stack 940 pointer register. Secondly, the argument pointer register can always be 941 eliminated; it is replaced with either the stack or frame pointer. */ 942 943 /* This is an array of structures. Each structure initializes one pair 944 of eliminable registers. The "from" register number is given first, 945 followed by "to". Eliminations of the same "from" register are listed 946 in order of preference. */ 947 #define ELIMINABLE_REGS \ 948 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ 949 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ 950 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} 951 952 /* Given FROM and TO register numbers, say whether this elimination 953 is allowed. */ 954 #define CAN_ELIMINATE(FROM, TO) \ 955 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)) 956 957 /* Define the offset between two registers, one to be eliminated, and the other 958 its replacement, at the start of a routine. */ 959 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ 960 { m88k_layout_frame (); \ 961 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ 962 (OFFSET) = m88k_fp_offset; \ 963 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \ 964 (OFFSET) = m88k_stack_size - m88k_fp_offset; \ 965 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \ 966 (OFFSET) = m88k_stack_size; \ 967 else \ 968 abort (); \ 969 } 970 971 /*** Trampolines for Nested Functions ***/ 972 973 #ifndef FINALIZE_TRAMPOLINE 974 #define FINALIZE_TRAMPOLINE(TRAMP) 975 #endif 976 977 /* Output assembler code for a block containing the constant parts 978 of a trampoline, leaving space for the variable parts. 979 980 This block is placed on the stack and filled in. It is aligned 981 0 mod 128 and those portions that are executed are constant. 982 This should work for instruction caches that have cache lines up 983 to the aligned amount (128 is arbitrary), provided no other code 984 producer is attempting to play the same game. This of course is 985 in violation of any number of 88open standards. */ 986 987 #define TRAMPOLINE_TEMPLATE(FILE) \ 988 { \ 989 char buf[256]; \ 990 static int labelno = 0; \ 991 labelno++; \ 992 ASM_GENERATE_INTERNAL_LABEL (buf, "LTRMP", labelno); \ 993 /* Save the return address (r1) in the static chain reg (r11). */ \ 994 asm_fprintf (FILE, "\tor\t %R%s,%R%s,0\n", \ 995 reg_names[11], reg_names[1]); \ 996 /* Locate this block; transfer to the next instruction. */ \ 997 fprintf (FILE, "\tbsr\t %s\n", &buf[1]); \ 998 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LTRMP", labelno); \ 999 /* Save r10; use it as the relative pointer; restore r1. */ \ 1000 asm_fprintf (FILE, "\tst\t %R%s,%R%s,24\n", \ 1001 reg_names[10], reg_names[1]); \ 1002 asm_fprintf (FILE, "\tor\t %R%s,%R%s,0\n", \ 1003 reg_names[10], reg_names[1]); \ 1004 asm_fprintf (FILE, "\tor\t %R%s,%R%s,0\n", \ 1005 reg_names[1], reg_names[11]); \ 1006 /* Load the function's address and go there. */ \ 1007 asm_fprintf (FILE, "\tld\t %R%s,%R%s,32\n", \ 1008 reg_names[11], reg_names[10]); \ 1009 asm_fprintf (FILE, "\tjmp.n\t %R%s\n", reg_names[11]); \ 1010 /* Restore r10 and load the static chain register. */ \ 1011 asm_fprintf (FILE, "\tld.d\t %R%s,%R%s,24\n", \ 1012 reg_names[10], reg_names[10]); \ 1013 /* Storage: r10 save area, static chain, function address. */ \ 1014 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \ 1015 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \ 1016 assemble_aligned_integer (UNITS_PER_WORD, const0_rtx); \ 1017 } 1018 1019 /* Length in units of the trampoline for entering a nested function. 1020 This is really two components. The first 32 bytes are fixed and 1021 must be copied; the last 12 bytes are just storage that's filled 1022 in later. So for allocation purposes, it's 32+12 bytes, but for 1023 initialization purposes, it's 32 bytes. */ 1024 1025 #define TRAMPOLINE_SIZE (32+12) 1026 1027 /* Alignment required for a trampoline. 128 is used to find the 1028 beginning of a line in the instruction cache and to allow for 1029 instruction cache lines of up to 128 bytes. */ 1030 1031 #define TRAMPOLINE_ALIGNMENT 128 1032 1033 /* Emit RTL insns to initialize the variable parts of a trampoline. 1034 FNADDR is an RTX for the address of the function's pure code. 1035 CXT is an RTX for the static chain value for the function. */ 1036 1037 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ 1038 { \ 1039 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 40)), FNADDR); \ 1040 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 36)), CXT); \ 1041 FINALIZE_TRAMPOLINE (TRAMP); \ 1042 } 1043 1044 /*** Library Subroutine Names ***/ 1045 1046 /* Define this macro if GNU CC should generate calls to the System V 1047 (and ANSI C) library functions `memcpy' and `memset' rather than 1048 the BSD functions `bcopy' and `bzero'. */ 1049 #define TARGET_MEM_FUNCTIONS 1050 1051 /*** Addressing Modes ***/ 1052 1053 #define SELECT_CC_MODE(OP,X,Y) CCmode 1054 1055 /* #define HAVE_POST_INCREMENT 0 */ 1056 /* #define HAVE_POST_DECREMENT 0 */ 1057 1058 /* #define HAVE_PRE_DECREMENT 0 */ 1059 /* #define HAVE_PRE_INCREMENT 0 */ 1060 1061 /* Recognize any constant value that is a valid address. 1062 When PIC, we do not accept an address that would require a scratch reg 1063 to load into a register. */ 1064 1065 #define CONSTANT_ADDRESS_P(X) \ 1066 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ 1067 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \ 1068 || (GET_CODE (X) == CONST \ 1069 && ! (flag_pic && pic_address_needs_scratch (X)))) 1070 1071 1072 /* Maximum number of registers that can appear in a valid memory address. */ 1073 #define MAX_REGS_PER_ADDRESS 2 1074 1075 /* The condition for memory shift insns. */ 1076 #define SCALED_ADDRESS_P(ADDR) \ 1077 (GET_CODE (ADDR) == PLUS \ 1078 && (GET_CODE (XEXP (ADDR, 0)) == MULT \ 1079 || GET_CODE (XEXP (ADDR, 1)) == MULT)) 1080 1081 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression 1082 that is a valid memory address for an instruction. 1083 The MODE argument is the machine mode for the MEM expression 1084 that wants to use this address. 1085 1086 On the m88000, a legitimate address has the form REG, REG+REG, 1087 REG+SMALLINT, REG+(REG*modesize) (REG[REG]), or SMALLINT. 1088 1089 The register elimination process should deal with the argument 1090 pointer and frame pointer changing to REG+SMALLINT. */ 1091 1092 #define LEGITIMATE_INDEX_P(X, MODE) \ 1093 ((GET_CODE (X) == CONST_INT \ 1094 && SMALL_INT (X)) \ 1095 || (REG_P (X) \ 1096 && REG_OK_FOR_INDEX_P (X)) \ 1097 || (GET_CODE (X) == MULT \ 1098 && REG_P (XEXP (X, 0)) \ 1099 && REG_OK_FOR_INDEX_P (XEXP (X, 0)) \ 1100 && GET_CODE (XEXP (X, 1)) == CONST_INT \ 1101 && INTVAL (XEXP (X, 1)) == GET_MODE_SIZE (MODE))) 1102 1103 #define RTX_OK_FOR_BASE_P(X) \ 1104 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \ 1105 || (GET_CODE (X) == SUBREG \ 1106 && GET_CODE (SUBREG_REG (X)) == REG \ 1107 && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) 1108 1109 #define RTX_OK_FOR_INDEX_P(X) \ 1110 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \ 1111 || (GET_CODE (X) == SUBREG \ 1112 && GET_CODE (SUBREG_REG (X)) == REG \ 1113 && REG_OK_FOR_INDEX_P (SUBREG_REG (X)))) 1114 1115 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ 1116 { \ 1117 if (REG_P (X)) \ 1118 { \ 1119 if (REG_OK_FOR_BASE_P (X)) \ 1120 goto ADDR; \ 1121 } \ 1122 else if (GET_CODE (X) == PLUS) \ 1123 { \ 1124 register rtx _x0 = XEXP (X, 0); \ 1125 register rtx _x1 = XEXP (X, 1); \ 1126 if ((flag_pic \ 1127 && _x0 == pic_offset_table_rtx \ 1128 && (flag_pic == 2 \ 1129 ? RTX_OK_FOR_BASE_P (_x1) \ 1130 : (GET_CODE (_x1) == SYMBOL_REF \ 1131 || GET_CODE (_x1) == LABEL_REF))) \ 1132 || (RTX_OK_FOR_BASE_P (_x0) \ 1133 && LEGITIMATE_INDEX_P (_x1, MODE)) \ 1134 || (RTX_OK_FOR_BASE_P (_x1) \ 1135 && LEGITIMATE_INDEX_P (_x0, MODE))) \ 1136 goto ADDR; \ 1137 } \ 1138 else if (GET_CODE (X) == LO_SUM) \ 1139 { \ 1140 register rtx _x0 = XEXP (X, 0); \ 1141 register rtx _x1 = XEXP (X, 1); \ 1142 if (RTX_OK_FOR_BASE_P (_x0) \ 1143 && CONSTANT_P (_x1)) \ 1144 goto ADDR; \ 1145 } \ 1146 else if (GET_CODE (X) == CONST_INT \ 1147 && SMALL_INT (X)) \ 1148 goto ADDR; \ 1149 } 1150 1151 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx 1152 and check its validity for a certain class. 1153 We have two alternate definitions for each of them. 1154 The usual definition accepts all pseudo regs; the other rejects 1155 them unless they have been allocated suitable hard regs. 1156 The symbol REG_OK_STRICT causes the latter definition to be used. 1157 1158 Most source files want to accept pseudo regs in the hope that 1159 they will get allocated to the class that the insn wants them to be in. 1160 Source files for reload pass need to be strict. 1161 After reload, it makes no difference, since pseudo regs have 1162 been eliminated by then. */ 1163 1164 #ifndef REG_OK_STRICT 1165 1166 /* Nonzero if X is a hard reg that can be used as an index 1167 or if it is a pseudo reg. Not the argument pointer. */ 1168 #define REG_OK_FOR_INDEX_P(X) \ 1169 (!XRF_REGNO_P(REGNO (X))) 1170 /* Nonzero if X is a hard reg that can be used as a base reg 1171 or if it is a pseudo reg. */ 1172 #define REG_OK_FOR_BASE_P(X) (REG_OK_FOR_INDEX_P (X)) 1173 1174 #else 1175 1176 /* Nonzero if X is a hard reg that can be used as an index. */ 1177 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X)) 1178 /* Nonzero if X is a hard reg that can be used as a base reg. */ 1179 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) 1180 1181 #endif 1182 1183 /* Try machine-dependent ways of modifying an illegitimate address 1184 to be legitimate. If we find one, return the new, valid address. 1185 This macro is used in only one place: `memory_address' in explow.c. 1186 1187 OLDX is the address as it was before break_out_memory_refs was called. 1188 In some cases it is useful to look at this to decide what needs to be done. 1189 1190 MODE and WIN are passed so that this macro can use 1191 GO_IF_LEGITIMATE_ADDRESS. 1192 1193 It is always safe for this macro to do nothing. It exists to recognize 1194 opportunities to optimize the output. */ 1195 1196 /* On the m88000, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */ 1197 1198 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \ 1199 { \ 1200 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \ 1201 (X) = gen_rtx_PLUS (SImode, XEXP (X, 0), \ 1202 copy_to_mode_reg (SImode, XEXP (X, 1))); \ 1203 if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \ 1204 (X) = gen_rtx_PLUS (SImode, XEXP (X, 1), \ 1205 copy_to_mode_reg (SImode, XEXP (X, 0))); \ 1206 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \ 1207 (X) = gen_rtx_PLUS (SImode, XEXP (X, 1), \ 1208 force_operand (XEXP (X, 0), 0)); \ 1209 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \ 1210 (X) = gen_rtx_PLUS (SImode, XEXP (X, 0), \ 1211 force_operand (XEXP (X, 1), 0)); \ 1212 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \ 1213 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\ 1214 XEXP (X, 1)); \ 1215 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \ 1216 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \ 1217 force_operand (XEXP (X, 1), NULL_RTX)); \ 1218 if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \ 1219 || GET_CODE (X) == LABEL_REF) \ 1220 (X) = legitimize_address (flag_pic, X, 0, 0); \ 1221 if (memory_address_p (MODE, X)) \ 1222 goto WIN; } 1223 1224 /* Go to LABEL if ADDR (a legitimate address expression) 1225 has an effect that depends on the machine mode it is used for. 1226 On the m88000 this is never true. */ 1227 1228 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) 1229 1230 /* Nonzero if the constant value X is a legitimate general operand. 1231 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ 1232 #define LEGITIMATE_CONSTANT_P(X) (1) 1233 1234 /* Define this, so that when PIC, reload won't try to reload invalid 1235 addresses which require two reload registers. */ 1236 1237 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X)) 1238 1239 1240 /*** Condition Code Information ***/ 1241 1242 /* C code for a data type which is used for declaring the `mdep' 1243 component of `cc_status'. It defaults to `int'. */ 1244 /* #define CC_STATUS_MDEP int */ 1245 1246 /* A C expression to initialize the `mdep' field to "empty". */ 1247 /* #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0) */ 1248 1249 /* Macro to zap the normal portions of CC_STATUS, but leave the 1250 machine dependent parts (ie, literal synthesis) alone. */ 1251 /* #define CC_STATUS_INIT_NO_MDEP \ 1252 (cc_status.flags = 0, cc_status.value1 = 0, cc_status.value2 = 0) */ 1253 1254 /* When using a register to hold the condition codes, the cc_status 1255 mechanism cannot be used. */ 1256 #define NOTICE_UPDATE_CC(EXP, INSN) (0) 1257 1258 /*** Miscellaneous Parameters ***/ 1259 1260 /* Define the codes that are matched by predicates in m88k.c. */ 1261 #define PREDICATE_CODES \ 1262 {"move_operand", {SUBREG, REG, CONST_INT, LO_SUM, MEM}}, \ 1263 {"call_address_operand", {SUBREG, REG, SYMBOL_REF, LABEL_REF, CONST}}, \ 1264 {"arith_operand", {SUBREG, REG, CONST_INT}}, \ 1265 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \ 1266 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \ 1267 {"arith64_operand", {SUBREG, REG, CONST_INT}}, \ 1268 {"int5_operand", {CONST_INT}}, \ 1269 {"int32_operand", {CONST_INT}}, \ 1270 {"add_operand", {SUBREG, REG, CONST_INT}}, \ 1271 {"reg_or_bbx_mask_operand", {SUBREG, REG, CONST_INT}}, \ 1272 {"real_or_0_operand", {SUBREG, REG, CONST_DOUBLE}}, \ 1273 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \ 1274 {"relop", {EQ, NE, LT, LE, GE, GT, LTU, LEU, GEU, GTU}}, \ 1275 {"even_relop", {EQ, LT, GT, LTU, GTU}}, \ 1276 {"odd_relop", { NE, LE, GE, LEU, GEU}}, \ 1277 {"partial_ccmode_register_operand", { SUBREG, REG}}, \ 1278 {"relop_no_unsigned", {EQ, NE, LT, LE, GE, GT}}, \ 1279 {"equality_op", {EQ, NE}}, \ 1280 {"pc_or_label_ref", {PC, LABEL_REF}}, \ 1281 {"label_ref", {LABEL_REF}}, 1282 1283 1284 /* A list of predicates that do special things with modes, and so 1285 should not elicit warnings for VOIDmode match_operand. */ 1286 1287 #define SPECIAL_MODE_PREDICATES \ 1288 "partial_ccmode_register_operand", \ 1289 "pc_or_label_ref", 1290 1291 /* The case table contains either words or branch instructions. This says 1292 which. We always claim that the vector is PC-relative. It is position 1293 independent when -fpic is used. */ 1294 #define CASE_VECTOR_INSNS (TARGET_88100 || flag_pic) 1295 1296 /* An alias for a machine mode name. This is the machine mode that 1297 elements of a jump-table should have. */ 1298 #define CASE_VECTOR_MODE SImode 1299 1300 /* Define as C expression which evaluates to nonzero if the tablejump 1301 instruction expects the table to contain offsets from the address of the 1302 table. 1303 Do not define this if the table should contain absolute addresses. */ 1304 #define CASE_VECTOR_PC_RELATIVE 1 1305 1306 /* Define this if control falls through a `case' insn when the index 1307 value is out of range. This means the specified default-label is 1308 actually ignored by the `case' insn proper. */ 1309 /* #define CASE_DROPS_THROUGH */ 1310 1311 /* Define this to be the smallest number of different values for which it 1312 is best to use a jump-table instead of a tree of conditional branches. 1313 The default is 4 for machines with a casesi instruction and 5 otherwise. 1314 The best 88110 number is around 7, though the exact number isn't yet 1315 known. A third alternative for the 88110 is to use a binary tree of 1316 bb1 instructions on bits 2/1/0 if the range is dense. This may not 1317 win very much though. */ 1318 #define CASE_VALUES_THRESHOLD (TARGET_88100 ? 4 : 7) 1319 1320 /* Define this as 1 if `char' should by default be signed; else as 0. */ 1321 #define DEFAULT_SIGNED_CHAR 1 1322 1323 /* The 88open ABI says size_t is unsigned int. */ 1324 #define SIZE_TYPE "unsigned int" 1325 1326 /* Handle #pragma pack and sometimes #pragma weak. */ 1327 #define HANDLE_SYSV_PRAGMA 1 1328 1329 /* Max number of bytes we can move from memory to memory 1330 in one reasonably fast instruction. */ 1331 #define MOVE_MAX 8 1332 1333 /* Define if normal loads of shorter-than-word items from memory clears 1334 the rest of the bigs in the register. */ 1335 #define BYTE_LOADS_ZERO_EXTEND 1336 1337 /* Zero if access to memory by bytes is faster. */ 1338 #define SLOW_BYTE_ACCESS 1 1339 1340 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits 1341 is done just by pretending it is already truncated. */ 1342 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 1343 1344 /* Define this if addresses of constant functions 1345 shouldn't be put through pseudo regs where they can be cse'd. 1346 Desirable on machines where ordinary constants are expensive 1347 but a CALL with constant address is cheap. */ 1348 #define NO_FUNCTION_CSE 1349 1350 /* Define this macro if an argument declared as `char' or 1351 `short' in a prototype should actually be passed as an 1352 `int'. In addition to avoiding errors in certain cases of 1353 mismatch, it also makes for better code on certain machines. */ 1354 #define PROMOTE_PROTOTYPES 1 1355 1356 /* We assume that the store-condition-codes instructions store 0 for false 1357 and some other value for true. This is the value stored for true. */ 1358 #define STORE_FLAG_VALUE (-1) 1359 1360 /* Specify the machine mode that pointers have. 1361 After generation of rtl, the compiler makes no further distinction 1362 between pointers and any other objects of this machine mode. */ 1363 #define Pmode SImode 1364 1365 /* A function address in a call instruction 1366 is a word address (for indexing purposes) 1367 so give the MEM rtx word mode. */ 1368 #define FUNCTION_MODE SImode 1369 1370 /* A barrier will be aligned so account for the possible expansion. 1371 A volatile load may be preceded by a serializing instruction. 1372 Account for profiling code output at NOTE_INSN_PROLOGUE_END. 1373 Account for block profiling code at basic block boundaries. */ 1374 #define ADJUST_INSN_LENGTH(RTX, LENGTH) \ 1375 if (GET_CODE (RTX) == BARRIER \ 1376 || (TARGET_SERIALIZE_VOLATILE \ 1377 && GET_CODE (RTX) == INSN \ 1378 && GET_CODE (PATTERN (RTX)) == SET \ 1379 && ((GET_CODE (SET_SRC (PATTERN (RTX))) == MEM \ 1380 && MEM_VOLATILE_P (SET_SRC (PATTERN (RTX))))))) \ 1381 (LENGTH) += 1; \ 1382 else if (GET_CODE (RTX) == NOTE \ 1383 && NOTE_LINE_NUMBER (RTX) == NOTE_INSN_PROLOGUE_END) \ 1384 { \ 1385 if (current_function_profile) \ 1386 (LENGTH) += (FUNCTION_PROFILER_LENGTH + REG_PUSH_LENGTH \ 1387 + REG_POP_LENGTH); \ 1388 } \ 1389 1390 /* Track the state of the last volatile memory reference. Clear the 1391 state with CC_STATUS_INIT for now. */ 1392 #define CC_STATUS_INIT m88k_volatile_code = '\0' 1393 1394 /* Compute the cost of computing a constant rtl expression RTX 1395 whose rtx-code is CODE. The body of this macro is a portion 1396 of a switch statement. If the code is computed here, 1397 return it with a return statement. Otherwise, break from the switch. 1398 1399 We assume that any 16 bit integer can easily be recreated, so we 1400 indicate 0 cost, in an attempt to get GCC not to optimize things 1401 like comparison against a constant. 1402 1403 The cost of CONST_DOUBLE is zero (if it can be placed in an insn, it 1404 is as good as a register; since it can't be placed in any insn, it 1405 won't do anything in cse, but it will cause expand_binop to pass the 1406 constant to the define_expands). */ 1407 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \ 1408 case CONST_INT: \ 1409 if (SMALL_INT (RTX)) \ 1410 return 0; \ 1411 else if (SMALL_INTVAL (- INTVAL (RTX))) \ 1412 return 2; \ 1413 else if (classify_integer (SImode, INTVAL (RTX)) != m88k_oru_or) \ 1414 return 4; \ 1415 return 7; \ 1416 case HIGH: \ 1417 return 2; \ 1418 case CONST: \ 1419 case LABEL_REF: \ 1420 case SYMBOL_REF: \ 1421 if (flag_pic) \ 1422 return (flag_pic == 2) ? 11 : 8; \ 1423 return 5; \ 1424 case CONST_DOUBLE: \ 1425 return 0; 1426 1427 /* Provide the costs of an addressing mode that contains ADDR. 1428 If ADDR is not a valid address, its cost is irrelevant. 1429 REG+REG is made slightly more expensive because it might keep 1430 a register live for longer than we might like. */ 1431 #define ADDRESS_COST(ADDR) \ 1432 (GET_CODE (ADDR) == REG ? 1 : \ 1433 GET_CODE (ADDR) == LO_SUM ? 1 : \ 1434 GET_CODE (ADDR) == HIGH ? 2 : \ 1435 GET_CODE (ADDR) == MULT ? 1 : \ 1436 GET_CODE (ADDR) != PLUS ? 4 : \ 1437 (REG_P (XEXP (ADDR, 0)) && REG_P (XEXP (ADDR, 1))) ? 2 : 1) 1438 1439 /* Provide the costs of a rtl expression. This is in the body of a 1440 switch on CODE. */ 1441 #define RTX_COSTS(X,CODE,OUTER_CODE) \ 1442 case MEM: \ 1443 return COSTS_N_INSNS (2); \ 1444 case MULT: \ 1445 return COSTS_N_INSNS (3); \ 1446 case DIV: \ 1447 case UDIV: \ 1448 case MOD: \ 1449 case UMOD: \ 1450 return COSTS_N_INSNS (38); 1451 1452 /* A C expressions returning the cost of moving data of MODE from a register 1453 to or from memory. This is more costly than between registers. */ 1454 #define MEMORY_MOVE_COST(MODE,CLASS,IN) 4 1455 1456 /* Provide the cost of a branch. Exact meaning under development. */ 1457 #define BRANCH_COST (TARGET_88100 ? 1 : 2) 1458 1459 /* Do not break .stabs pseudos into continuations. */ 1460 #define DBX_CONTIN_LENGTH 0 1461 1462 /*** Output of Assembler Code ***/ 1463 1464 /* Control the assembler format that we output. */ 1465 1466 /* A C string constant describing how to begin a comment in the target 1467 assembler language. The compiler assumes that the comment will end at 1468 the end of the line. */ 1469 #define ASM_COMMENT_START ";" 1470 1471 /* Assembler specific opcodes. 1472 Not overriding <elfos.h> if already included. */ 1473 #ifndef OBJECT_FORMAT_ELF 1474 1475 /* These are used in varasm.c as well. */ 1476 #define TEXT_SECTION_ASM_OP "\ttext" 1477 #define DATA_SECTION_ASM_OP "\tdata" 1478 1479 /* These are pretty much common to all assemblers. */ 1480 #undef IDENT_ASM_OP 1481 #define IDENT_ASM_OP "\tident\t" 1482 #define FILE_ASM_OP "\tfile\t" 1483 #undef SET_ASM_OP 1484 #define SET_ASM_OP "\tdef\t" 1485 #define GLOBAL_ASM_OP "\tglobal\t" 1486 #undef ALIGN_ASM_OP 1487 #define ALIGN_ASM_OP "\talign\t" 1488 #undef SKIP_ASM_OP 1489 #define SKIP_ASM_OP "\tzero\t" 1490 #undef COMMON_ASM_OP 1491 #define COMMON_ASM_OP "\tcomm\t" 1492 #define BSS_ASM_OP "\tbss\t" 1493 #define FLOAT_ASM_OP "\tfloat\t" 1494 #define DOUBLE_ASM_OP "\tdouble\t" 1495 #undef ASCII_DATA_ASM_OP 1496 #define ASCII_DATA_ASM_OP "\tstring\t" 1497 1498 /* These are specific to PIC. */ 1499 #undef TYPE_ASM_OP 1500 #define TYPE_ASM_OP "\ttype\t" 1501 #undef SIZE_ASM_OP 1502 #define SIZE_ASM_OP "\tsize\t" 1503 #ifndef AS_BUG_POUND_TYPE /* Faulty assemblers require @ rather than #. */ 1504 #undef TYPE_OPERAND_FMT 1505 #define TYPE_OPERAND_FMT "#%s" 1506 #endif 1507 1508 /* These are specific to version 03.00 assembler syntax. */ 1509 #define INTERNAL_ASM_OP "\tlocal\t" 1510 #define PUSHSECTION_ASM_OP "\tsection\t" 1511 #define POPSECTION_ASM_OP "\tprevious" 1512 1513 /* These are specific to the version 04.00 assembler syntax. */ 1514 #define REQUIRES_88110_ASM_OP "\trequires_88110" 1515 1516 /* This is how we tell the assembler that a symbol is weak. */ 1517 #undef ASM_WEAKEN_LABEL 1518 #define ASM_WEAKEN_LABEL(FILE,NAME) \ 1519 do { fputs ("\tweak\t", FILE); assemble_name (FILE, NAME); \ 1520 fputc ('\n', FILE); } while (0) 1521 1522 /* Write the extra assembler code needed to declare a function properly. */ 1523 #undef ASM_DECLARE_FUNCTION_NAME 1524 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ 1525 do { \ 1526 ASM_OUTPUT_LABEL(FILE, NAME); \ 1527 } while (0) 1528 1529 /* Write the extra assembler code needed to declare an object properly. */ 1530 #undef ASM_DECLARE_OBJECT_NAME 1531 #define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \ 1532 do { \ 1533 ASM_OUTPUT_LABEL(FILE, NAME); \ 1534 } while (0); 1535 1536 /* Output the size directive for a decl in rest_of_decl_compilation 1537 in the case where we did not do so before the initializer. 1538 Once we find the error_mark_node, we know that the value of 1539 size_directive_output was set 1540 by ASM_DECLARE_OBJECT_NAME when it was run for the same decl. */ 1541 1542 #undef ASM_FINISH_DECLARE_OBJECT 1543 #define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END) \ 1544 do { \ 1545 } while (0) 1546 1547 /* This is how to declare the size of a function. */ 1548 #undef ASM_DECLARE_FUNCTION_SIZE 1549 #define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \ 1550 do { \ 1551 } while (0) 1552 1553 /* The single-byte pseudo-op is the default. */ 1554 #undef ASM_OUTPUT_ASCII 1555 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \ 1556 output_ascii (FILE, ASCII_DATA_ASM_OP, 48, P, SIZE) 1557 1558 /* Code to handle #ident directives. */ 1559 #undef ASM_OUTPUT_IDENT 1560 #ifdef DBX_DEBUGGING_INFO 1561 #define ASM_OUTPUT_IDENT(FILE, NAME) 1562 #else 1563 #define ASM_OUTPUT_IDENT(FILE, NAME) \ 1564 output_ascii (FILE, IDENT_ASM_OP, 4000, NAME, strlen (NAME)); 1565 #endif 1566 1567 /* This is how to store into the string LABEL 1568 the symbol_ref name of an internal numbered label where 1569 PREFIX is the class of label and NUM is the number within the class. 1570 This is suitable for output with `assemble_name'. This must agree 1571 with ASM_OUTPUT_INTERNAL_LABEL above, except for being prefixed 1572 with an `*'. */ 1573 1574 #undef ASM_GENERATE_INTERNAL_LABEL 1575 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ 1576 sprintf (LABEL, "*@%s%u", PREFIX, (unsigned) (NUM)) 1577 1578 /* This is how to output an internal numbered label where 1579 PREFIX is the class of label and NUM is the number within the class. 1580 For ELF, labels use `.' rather than `@'. */ 1581 1582 #undef ASM_OUTPUT_INTERNAL_LABEL 1583 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \ 1584 fprintf (FILE, "@%s%u:\n", PREFIX, (unsigned) (NUM)) 1585 1586 /* The prefix to add to user-visible assembler symbols. */ 1587 #undef USER_LABEL_PREFIX 1588 #define USER_LABEL_PREFIX "_" 1589 1590 #undef ASM_OUTPUT_COMMON 1591 #undef ASM_OUTPUT_ALIGNED_COMMON 1592 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ 1593 ( fprintf ((FILE), "%s", COMMON_ASM_OP), \ 1594 assemble_name ((FILE), (NAME)), \ 1595 fprintf ((FILE), ",%u\n", (SIZE) ? (SIZE) : 1)) 1596 1597 /* This says how to output an assembler line to define a local common 1598 symbol. */ 1599 #undef ASM_OUTPUT_LOCAL 1600 #undef ASM_OUTPUT_ALIGNED_LOCAL 1601 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ 1602 ( fprintf ((FILE), "%s", BSS_ASM_OP), \ 1603 assemble_name ((FILE), (NAME)), \ 1604 fprintf ((FILE), ",%u,%d\n", (SIZE) ? (SIZE) : 1, (SIZE) <= 4 ? 4 : 8)) 1605 1606 #undef ASM_OUTPUT_SKIP 1607 #define ASM_OUTPUT_SKIP(FILE,SIZE) \ 1608 fprintf (FILE, "%s%u\n", SKIP_ASM_OP, (SIZE)) 1609 1610 #endif /* OBJECT_FORMAT_ELF */ 1611 1612 /* Output any initial stuff to the assembly file. Always put out 1613 a file directive, even if not debugging. 1614 1615 Immediately after putting out the file, put out a "sem.<value>" 1616 declaration. This should be harmless on other systems, and 1617 is used in DG/UX by the debuggers to supplement COFF. The 1618 fields in the integer value are as follows: 1619 1620 Bits Value Meaning 1621 ---- ----- ------- 1622 0-1 0 No information about stack locations 1623 1 Auto/param locations are based on r30 1624 2 Auto/param locations are based on CFA 1625 1626 3-2 0 No information on dimension order 1627 1 Array dims in sym table matches source language 1628 2 Array dims in sym table is in reverse order 1629 1630 5-4 0 No information about the case of global names 1631 1 Global names appear in the symbol table as in the source 1632 2 Global names have been converted to lower case 1633 3 Global names have been converted to upper case. */ 1634 1635 #undef ASM_FILE_START 1636 #define ASM_FILE_START(FILE) \ 1637 output_file_start (FILE) 1638 1639 #undef ASM_FILE_END 1640 1641 #define ASM_OUTPUT_SOURCE_FILENAME(FILE, NAME) \ 1642 do { \ 1643 fputs (FILE_ASM_OP, FILE); \ 1644 output_quoted_string (FILE, NAME); \ 1645 putc ('\n', FILE); \ 1646 } while (0) 1647 1648 /* Output to assembler file text saying following lines 1649 may contain character constants, extra white space, comments, etc. */ 1650 #define ASM_APP_ON "" 1651 1652 /* Output to assembler file text saying following lines 1653 no longer contain unusual constructs. */ 1654 #define ASM_APP_OFF "" 1655 1656 /* Format the assembly opcode so that the arguments are all aligned. 1657 The maximum instruction size is 8 characters (fxxx.xxx), so a tab and a 1658 space will do to align the output. Abandon the output if a `%' is 1659 encountered. */ 1660 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \ 1661 { \ 1662 int ch; \ 1663 const char *orig_ptr; \ 1664 \ 1665 for (orig_ptr = (PTR); \ 1666 (ch = *(PTR)) && ch != ' ' && ch != '\t' && ch != '\n' && ch != '%'; \ 1667 (PTR)++) \ 1668 putc (ch, STREAM); \ 1669 \ 1670 if (ch == ' ' && orig_ptr != (PTR) && (PTR) - orig_ptr < 8) \ 1671 putc ('\t', STREAM); \ 1672 } 1673 1674 /* How to refer to registers in assembler output. 1675 This sequence is indexed by compiler's hard-register-number. */ 1676 1677 #define REGISTER_NAMES \ 1678 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ 1679 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ 1680 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ 1681 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \ 1682 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", \ 1683 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", \ 1684 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", \ 1685 "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31" } 1686 1687 /* Define additional names for use in asm clobbers and asm declarations. 1688 1689 We define the fake Condition Code register as an alias for reg 0 (which 1690 is our `condition code' register), so that condition codes can easily 1691 be clobbered by an asm. The carry bit in the PSR is now used. */ 1692 1693 #define ADDITIONAL_REGISTER_NAMES {{"psr", 0}, {"cc", 0}} 1694 1695 /* This is how to output a reference to a user-level label named NAME. */ 1696 #undef ASM_OUTPUT_LABELREF 1697 #define ASM_OUTPUT_LABELREF(FILE,NAME) \ 1698 asm_fprintf ((FILE), "%U%s", (NAME)) 1699 1700 /* Store in OUTPUT a string (made with alloca) containing 1701 an assembler-name for a local static variable named NAME. 1702 LABELNO is an integer which is different for each call. */ 1703 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ 1704 do { \ 1705 (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10); \ 1706 sprintf ((OUTPUT), "%s.%u", (NAME), (unsigned) (LABELNO)); \ 1707 } while (0) 1708 1709 /* Change to the readonly data section for a table of addresses. 1710 final_scan_insn changes back to the text section. */ 1711 #undef ASM_OUTPUT_CASE_LABEL 1712 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, TABLE) \ 1713 do { \ 1714 if (! CASE_VECTOR_INSNS) \ 1715 { \ 1716 readonly_data_section (); \ 1717 ASM_OUTPUT_ALIGN (FILE, 2); \ 1718 } \ 1719 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \ 1720 } while (0) 1721 1722 /* Epilogue for case labels. This jump instruction is called by casesi 1723 to transfer to the appropriate branch instruction within the table. 1724 The label `@L<n>e' is coined to mark the end of the table. */ 1725 #define ASM_OUTPUT_CASE_END(FILE, NUM, TABLE) \ 1726 do { \ 1727 if (CASE_VECTOR_INSNS) \ 1728 { \ 1729 char label[256]; \ 1730 ASM_GENERATE_INTERNAL_LABEL (label, "L", NUM); \ 1731 fprintf (FILE, "%se:\n", &label[1]); \ 1732 if (! flag_delayed_branch) \ 1733 asm_fprintf (FILE, "\tlda\t %R%s,%R%s[%R%s]\n", reg_names[1], \ 1734 reg_names[1], reg_names[m88k_case_index]); \ 1735 asm_fprintf (FILE, "\tjmp\t %R%s\n", reg_names[1]); \ 1736 } \ 1737 } while (0) 1738 1739 /* This is how to output an element of a case-vector that is absolute. */ 1740 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ 1741 do { \ 1742 char buffer[256]; \ 1743 ASM_GENERATE_INTERNAL_LABEL (buffer, "L", VALUE); \ 1744 fprintf (FILE, CASE_VECTOR_INSNS ? "\tbr\t %s\n" : "\tword\t %s\n", \ 1745 &buffer[1]); \ 1746 } while (0) 1747 1748 /* This is how to output an element of a case-vector that is relative. */ 1749 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ 1750 ASM_OUTPUT_ADDR_VEC_ELT (FILE, VALUE) 1751 1752 /* This is how to output an assembler line 1753 that says to advance the location counter 1754 to a multiple of 2**LOG bytes. */ 1755 #define ASM_OUTPUT_ALIGN(FILE,LOG) \ 1756 if ((LOG) != 0) \ 1757 fprintf (FILE, "%s%d\n", ALIGN_ASM_OP, 1<<(LOG)) 1758 1759 /* Override elfos.h. */ 1760 #undef ASM_OUTPUT_EXTERNAL_LIBCALL 1761 1762 /* This is how to output an insn to push a register on the stack. 1763 It need not be very fast code. */ 1764 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \ 1765 asm_fprintf (FILE, "\tsubu\t %R%s,%R%s,%d\n\tst\t %R%s,%R%s,0\n", \ 1766 reg_names[STACK_POINTER_REGNUM], \ 1767 reg_names[STACK_POINTER_REGNUM], \ 1768 (STACK_BOUNDARY / BITS_PER_UNIT), \ 1769 reg_names[REGNO], \ 1770 reg_names[STACK_POINTER_REGNUM]) 1771 1772 /* Length in instructions of the code output by ASM_OUTPUT_REG_PUSH. */ 1773 #define REG_PUSH_LENGTH 2 1774 1775 /* This is how to output an insn to pop a register from the stack. */ 1776 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \ 1777 asm_fprintf (FILE, "\tld\t %R%s,%R%s,0\n\taddu\t %R%s,%R%s,%d\n", \ 1778 reg_names[REGNO], \ 1779 reg_names[STACK_POINTER_REGNUM], \ 1780 reg_names[STACK_POINTER_REGNUM], \ 1781 reg_names[STACK_POINTER_REGNUM], \ 1782 (STACK_BOUNDARY / BITS_PER_UNIT)) 1783 1784 /* Length in instructions of the code output by ASM_OUTPUT_REG_POP. */ 1785 #define REG_POP_LENGTH 2 1786 1787 /* Macros for debug information */ 1788 #define DEBUGGER_AUTO_OFFSET(X) \ 1789 (m88k_debugger_offset (X, 0) + (m88k_stack_size - m88k_fp_offset)) 1790 1791 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \ 1792 (m88k_debugger_offset (X, OFFSET) + (m88k_stack_size - m88k_fp_offset)) 1793 1794 /* Jump tables consist of branch instructions and should be output in 1795 the text section. When we use a table of addresses, we explicitly 1796 change to the readonly data section. */ 1797 #define JUMP_TABLES_IN_TEXT_SECTION 1 1798 1799 /* Print operand X (an rtx) in assembler syntax to file FILE. 1800 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. 1801 For `%' followed by punctuation, CODE is the punctuation and X is null. */ 1802 #define PRINT_OPERAND_PUNCT_VALID_P(c) \ 1803 ((c) == '#' || (c) == '.' || (c) == '!' || (c) == '*' || (c) == ';') 1804 1805 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) 1806 1807 /* Print a memory address as an operand to reference that memory location. */ 1808 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) 1809 1810 /* This says not to strength reduce the addr calculations within loops 1811 (otherwise it does not take advantage of m88k scaled loads and stores */ 1812 #define DONT_REDUCE_ADDR 1813