1 /* 2 * sha.c: routines to compute SHA-1/224/256/384/512 digests 3 * 4 * Ref: NIST FIPS PUB 180-2 Secure Hash Standard 5 * 6 * Copyright (C) 2003-2008 Mark Shelor, All Rights Reserved 7 * 8 * Version: 5.47 9 * Wed Apr 30 04:00:54 MST 2008 10 * 11 */ 12 13 #include <stdio.h> 14 #include <stdlib.h> 15 #include <stddef.h> 16 #include <string.h> 17 #include <ctype.h> 18 #include "sha.h" 19 #include "sha64bit.h" 20 21 #define W32 SHA32 /* useful abbreviations */ 22 #define C32 SHA32_CONST 23 #define SR32 SHA32_SHR 24 #define SL32 SHA32_SHL 25 #define LO32 SHA_LO32 26 #define UCHR unsigned char 27 #define UINT unsigned int 28 #define ULNG unsigned long 29 #define VP void * 30 31 #define ROTR(x, n) (SR32(x, n) | SL32(x, 32-(n))) 32 #define ROTL(x, n) (SL32(x, n) | SR32(x, 32-(n))) 33 34 #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 35 #define Pa(x, y, z) ((x) ^ (y) ^ (z)) 36 #define Ma(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) 37 38 #define SIGMA0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) 39 #define SIGMA1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) 40 #define sigma0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SR32(x, 3)) 41 #define sigma1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SR32(x, 10)) 42 43 #define K1 C32(0x5a827999) /* SHA-1 constants */ 44 #define K2 C32(0x6ed9eba1) 45 #define K3 C32(0x8f1bbcdc) 46 #define K4 C32(0xca62c1d6) 47 48 static W32 K256[64] = /* SHA-224/256 constants */ 49 { 50 C32(0x428a2f98), C32(0x71374491), C32(0xb5c0fbcf), C32(0xe9b5dba5), 51 C32(0x3956c25b), C32(0x59f111f1), C32(0x923f82a4), C32(0xab1c5ed5), 52 C32(0xd807aa98), C32(0x12835b01), C32(0x243185be), C32(0x550c7dc3), 53 C32(0x72be5d74), C32(0x80deb1fe), C32(0x9bdc06a7), C32(0xc19bf174), 54 C32(0xe49b69c1), C32(0xefbe4786), C32(0x0fc19dc6), C32(0x240ca1cc), 55 C32(0x2de92c6f), C32(0x4a7484aa), C32(0x5cb0a9dc), C32(0x76f988da), 56 C32(0x983e5152), C32(0xa831c66d), C32(0xb00327c8), C32(0xbf597fc7), 57 C32(0xc6e00bf3), C32(0xd5a79147), C32(0x06ca6351), C32(0x14292967), 58 C32(0x27b70a85), C32(0x2e1b2138), C32(0x4d2c6dfc), C32(0x53380d13), 59 C32(0x650a7354), C32(0x766a0abb), C32(0x81c2c92e), C32(0x92722c85), 60 C32(0xa2bfe8a1), C32(0xa81a664b), C32(0xc24b8b70), C32(0xc76c51a3), 61 C32(0xd192e819), C32(0xd6990624), C32(0xf40e3585), C32(0x106aa070), 62 C32(0x19a4c116), C32(0x1e376c08), C32(0x2748774c), C32(0x34b0bcb5), 63 C32(0x391c0cb3), C32(0x4ed8aa4a), C32(0x5b9cca4f), C32(0x682e6ff3), 64 C32(0x748f82ee), C32(0x78a5636f), C32(0x84c87814), C32(0x8cc70208), 65 C32(0x90befffa), C32(0xa4506ceb), C32(0xbef9a3f7), C32(0xc67178f2) 66 }; 67 68 static W32 H01[5] = /* SHA-1 initial hash value */ 69 { 70 C32(0x67452301), C32(0xefcdab89), C32(0x98badcfe), 71 C32(0x10325476), C32(0xc3d2e1f0) 72 }; 73 74 static W32 H0224[8] = /* SHA-224 initial hash value */ 75 { 76 C32(0xc1059ed8), C32(0x367cd507), C32(0x3070dd17), C32(0xf70e5939), 77 C32(0xffc00b31), C32(0x68581511), C32(0x64f98fa7), C32(0xbefa4fa4) 78 }; 79 80 static W32 H0256[8] = /* SHA-256 initial hash value */ 81 { 82 C32(0x6a09e667), C32(0xbb67ae85), C32(0x3c6ef372), C32(0xa54ff53a), 83 C32(0x510e527f), C32(0x9b05688c), C32(0x1f83d9ab), C32(0x5be0cd19) 84 }; 85 86 static void sha1(SHA *s, UCHR *block) /* SHA-1 transform */ 87 { 88 W32 a, b, c, d, e; 89 SHA_STO_CLASS W32 W[16]; 90 W32 *wp = W; 91 W32 *H = (W32 *) s->H; 92 93 SHA32_SCHED(W, block); 94 95 /* 96 * Use SHA-1 alternate method from FIPS PUB 180-2 (ref. 6.1.3) 97 * 98 * To improve performance, unroll the loop and consolidate assignments 99 * by changing the roles of variables "a" through "e" at each step. 100 * Note that the variable "T" is no longer needed. 101 */ 102 103 #define M1(a, b, c, d, e, f, k, w) \ 104 e += ROTL(a, 5) + f(b, c, d) + k + w; \ 105 b = ROTL(b, 30) 106 107 #define M11(f, k, w) M1(a, b, c, d, e, f, k, w); 108 #define M12(f, k, w) M1(e, a, b, c, d, f, k, w); 109 #define M13(f, k, w) M1(d, e, a, b, c, f, k, w); 110 #define M14(f, k, w) M1(c, d, e, a, b, f, k, w); 111 #define M15(f, k, w) M1(b, c, d, e, a, f, k, w); 112 113 #define W11(s) W[(s+ 0) & 0xf] 114 #define W12(s) W[(s+13) & 0xf] 115 #define W13(s) W[(s+ 8) & 0xf] 116 #define W14(s) W[(s+ 2) & 0xf] 117 118 #define A1(s) (W11(s) = ROTL(W11(s) ^ W12(s) ^ W13(s) ^ W14(s), 1)) 119 120 a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; 121 122 M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); 123 M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); 124 M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); 125 M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); 126 M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); 127 M11(Ch, K1, *wp ); M12(Ch, K1, A1( 0)); M13(Ch, K1, A1( 1)); 128 M14(Ch, K1, A1( 2)); M15(Ch, K1, A1( 3)); M11(Pa, K2, A1( 4)); 129 M12(Pa, K2, A1( 5)); M13(Pa, K2, A1( 6)); M14(Pa, K2, A1( 7)); 130 M15(Pa, K2, A1( 8)); M11(Pa, K2, A1( 9)); M12(Pa, K2, A1(10)); 131 M13(Pa, K2, A1(11)); M14(Pa, K2, A1(12)); M15(Pa, K2, A1(13)); 132 M11(Pa, K2, A1(14)); M12(Pa, K2, A1(15)); M13(Pa, K2, A1( 0)); 133 M14(Pa, K2, A1( 1)); M15(Pa, K2, A1( 2)); M11(Pa, K2, A1( 3)); 134 M12(Pa, K2, A1( 4)); M13(Pa, K2, A1( 5)); M14(Pa, K2, A1( 6)); 135 M15(Pa, K2, A1( 7)); M11(Ma, K3, A1( 8)); M12(Ma, K3, A1( 9)); 136 M13(Ma, K3, A1(10)); M14(Ma, K3, A1(11)); M15(Ma, K3, A1(12)); 137 M11(Ma, K3, A1(13)); M12(Ma, K3, A1(14)); M13(Ma, K3, A1(15)); 138 M14(Ma, K3, A1( 0)); M15(Ma, K3, A1( 1)); M11(Ma, K3, A1( 2)); 139 M12(Ma, K3, A1( 3)); M13(Ma, K3, A1( 4)); M14(Ma, K3, A1( 5)); 140 M15(Ma, K3, A1( 6)); M11(Ma, K3, A1( 7)); M12(Ma, K3, A1( 8)); 141 M13(Ma, K3, A1( 9)); M14(Ma, K3, A1(10)); M15(Ma, K3, A1(11)); 142 M11(Pa, K4, A1(12)); M12(Pa, K4, A1(13)); M13(Pa, K4, A1(14)); 143 M14(Pa, K4, A1(15)); M15(Pa, K4, A1( 0)); M11(Pa, K4, A1( 1)); 144 M12(Pa, K4, A1( 2)); M13(Pa, K4, A1( 3)); M14(Pa, K4, A1( 4)); 145 M15(Pa, K4, A1( 5)); M11(Pa, K4, A1( 6)); M12(Pa, K4, A1( 7)); 146 M13(Pa, K4, A1( 8)); M14(Pa, K4, A1( 9)); M15(Pa, K4, A1(10)); 147 M11(Pa, K4, A1(11)); M12(Pa, K4, A1(12)); M13(Pa, K4, A1(13)); 148 M14(Pa, K4, A1(14)); M15(Pa, K4, A1(15)); 149 150 H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; 151 } 152 153 static void sha256(SHA *s, UCHR *block) /* SHA-224/256 transform */ 154 { 155 W32 a, b, c, d, e, f, g, h, T1; 156 SHA_STO_CLASS W32 W[16]; 157 W32 *kp = K256; 158 W32 *wp = W; 159 W32 *H = (W32 *) s->H; 160 161 SHA32_SCHED(W, block); 162 163 /* 164 * Use same technique as in sha1() 165 * 166 * To improve performance, unroll the loop and consolidate assignments 167 * by changing the roles of variables "a" through "h" at each step. 168 * Note that the variable "T2" is no longer needed. 169 */ 170 171 #define M2(a, b, c, d, e, f, g, h, w) \ 172 T1 = h + SIGMA1(e) + Ch(e, f, g) + (*kp++) + w; \ 173 h = T1 + SIGMA0(a) + Ma(a, b, c); d += T1; 174 175 #define W21(s) W[(s+ 0) & 0xf] 176 #define W22(s) W[(s+14) & 0xf] 177 #define W23(s) W[(s+ 9) & 0xf] 178 #define W24(s) W[(s+ 1) & 0xf] 179 180 #define A2(s) (W21(s) += sigma1(W22(s)) + W23(s) + sigma0(W24(s))) 181 182 #define M21(w) M2(a, b, c, d, e, f, g, h, w) 183 #define M22(w) M2(h, a, b, c, d, e, f, g, w) 184 #define M23(w) M2(g, h, a, b, c, d, e, f, w) 185 #define M24(w) M2(f, g, h, a, b, c, d, e, w) 186 #define M25(w) M2(e, f, g, h, a, b, c, d, w) 187 #define M26(w) M2(d, e, f, g, h, a, b, c, w) 188 #define M27(w) M2(c, d, e, f, g, h, a, b, w) 189 #define M28(w) M2(b, c, d, e, f, g, h, a, w) 190 191 a = H[0]; b = H[1]; c = H[2]; d = H[3]; 192 e = H[4]; f = H[5]; g = H[6]; h = H[7]; 193 194 M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); 195 M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp++); 196 M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); 197 M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp ); 198 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 199 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 200 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 201 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 202 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 203 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 204 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 205 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 206 M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); 207 M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); 208 M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); 209 M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); 210 211 H[0] += a; H[1] += b; H[2] += c; H[3] += d; 212 H[4] += e; H[5] += f; H[6] += g; H[7] += h; 213 } 214 215 #include "sha64bit.c" 216 217 #define SETBIT(s, pos) s[(pos) >> 3] |= (0x01 << (7 - (pos) % 8)) 218 #define CLRBIT(s, pos) s[(pos) >> 3] &= ~(0x01 << (7 - (pos) % 8)) 219 #define NBYTES(nbits) ((nbits) > 0 ? 1 + (((nbits) - 1) >> 3) : 0) 220 #define HEXLEN(nbytes) ((nbytes) << 1) 221 #define B64LEN(nbytes) (((nbytes) % 3 == 0) ? ((nbytes) / 3) * 4 \ 222 : ((nbytes) / 3) * 4 + ((nbytes) % 3) + 1) 223 224 /* w32mem: writes 32-bit word to memory in big-endian order */ 225 static void w32mem(UCHR *mem, W32 w32) 226 { 227 int i; 228 229 for (i = 0; i < 4; i++) 230 *mem++ = (UCHR) (SR32(w32, 24-i*8) & 0xff); 231 } 232 233 /* digcpy: writes current state to digest buffer */ 234 static void digcpy(SHA *s) 235 { 236 UINT i; 237 UCHR *d = s->digest; 238 W32 *p32 = (W32 *) s->H; 239 W64 *p64 = (W64 *) s->H; 240 241 if (s->alg <= SHA256) 242 for (i = 0; i < 8; i++, d += 4) 243 w32mem(d, *p32++); 244 else 245 for (i = 0; i < 8; i++, d += 8) { 246 w32mem(d, (W32) ((*p64 >> 16) >> 16)); 247 w32mem(d+4, (W32) (*p64++ & SHA32_MAX)); 248 } 249 } 250 251 #define SHA_INIT(algo, transform) \ 252 do { \ 253 memset(s, 0, sizeof(SHA)); \ 254 s->alg = algo; s->sha = sha ## transform; \ 255 memcpy(s->H, H0 ## algo, sizeof(H0 ## algo)); \ 256 s->blocksize = SHA ## algo ## _BLOCK_BITS; \ 257 s->digestlen = SHA ## algo ## _DIGEST_BITS >> 3; \ 258 } while (0) 259 260 /* sharewind: re-initializes the digest object */ 261 void sharewind(SHA *s) 262 { 263 if (s->alg == SHA1) SHA_INIT(1, 1); 264 else if (s->alg == SHA224) SHA_INIT(224, 256); 265 else if (s->alg == SHA256) SHA_INIT(256, 256); 266 else if (s->alg == SHA384) SHA_INIT(384, 512); 267 else if (s->alg == SHA512) SHA_INIT(512, 512); 268 } 269 270 /* shaopen: creates a new digest object */ 271 SHA *shaopen(int alg) 272 { 273 SHA *s; 274 275 if (alg != SHA1 && alg != SHA224 && alg != SHA256 && 276 alg != SHA384 && alg != SHA512) 277 return(NULL); 278 if (alg >= SHA384 && !sha_384_512) 279 return(NULL); 280 SHA_newz(0, s, 1, SHA); 281 if (s == NULL) 282 return(NULL); 283 s->alg = alg; 284 sharewind(s); 285 return(s); 286 } 287 288 /* shadirect: updates state directly (w/o going through s->block) */ 289 static ULNG shadirect(UCHR *bitstr, ULNG bitcnt, SHA *s) 290 { 291 ULNG savecnt = bitcnt; 292 293 while (bitcnt >= s->blocksize) { 294 s->sha(s, bitstr); 295 bitstr += (s->blocksize >> 3); 296 bitcnt -= s->blocksize; 297 } 298 if (bitcnt > 0) { 299 memcpy(s->block, bitstr, NBYTES(bitcnt)); 300 s->blockcnt = bitcnt; 301 } 302 return(savecnt); 303 } 304 305 /* shabytes: updates state for byte-aligned input data */ 306 static ULNG shabytes(UCHR *bitstr, ULNG bitcnt, SHA *s) 307 { 308 UINT offset; 309 UINT nbits; 310 ULNG savecnt = bitcnt; 311 312 offset = s->blockcnt >> 3; 313 if (s->blockcnt + bitcnt >= s->blocksize) { 314 nbits = s->blocksize - s->blockcnt; 315 memcpy(s->block+offset, bitstr, nbits>>3); 316 bitcnt -= nbits; 317 bitstr += (nbits >> 3); 318 s->sha(s, s->block), s->blockcnt = 0; 319 shadirect(bitstr, bitcnt, s); 320 } 321 else { 322 memcpy(s->block+offset, bitstr, NBYTES(bitcnt)); 323 s->blockcnt += bitcnt; 324 } 325 return(savecnt); 326 } 327 328 /* shabits: updates state for bit-aligned input data */ 329 static ULNG shabits(UCHR *bitstr, ULNG bitcnt, SHA *s) 330 { 331 UINT i; 332 UINT gap; 333 ULNG nbits; 334 UCHR buf[1<<9]; 335 UINT bufsize = sizeof(buf); 336 ULNG bufbits = (ULNG) bufsize << 3; 337 UINT nbytes = NBYTES(bitcnt); 338 ULNG savecnt = bitcnt; 339 340 gap = 8 - s->blockcnt % 8; 341 s->block[s->blockcnt>>3] &= ~0 << gap; 342 s->block[s->blockcnt>>3] |= *bitstr >> (8 - gap); 343 s->blockcnt += bitcnt < gap ? bitcnt : gap; 344 if (bitcnt < gap) 345 return(savecnt); 346 if (s->blockcnt == s->blocksize) 347 s->sha(s, s->block), s->blockcnt = 0; 348 if ((bitcnt -= gap) == 0) 349 return(savecnt); 350 while (nbytes > bufsize) { 351 for (i = 0; i < bufsize; i++) 352 buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); 353 nbits = bitcnt < bufbits ? bitcnt : bufbits; 354 shabytes(buf, nbits, s); 355 bitcnt -= nbits, bitstr += bufsize, nbytes -= bufsize; 356 } 357 for (i = 0; i < nbytes - 1; i++) 358 buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); 359 buf[nbytes-1] = bitstr[nbytes-1] << gap; 360 shabytes(buf, bitcnt, s); 361 return(savecnt); 362 } 363 364 /* shawrite: triggers a state update using data in bitstr/bitcnt */ 365 ULNG shawrite(UCHR *bitstr, ULNG bitcnt, SHA *s) 366 { 367 if (bitcnt < 1) 368 return(0); 369 if (SHA_LO32(s->lenll += bitcnt) < bitcnt) 370 if (SHA_LO32(++s->lenlh) == 0) 371 if (SHA_LO32(++s->lenhl) == 0) 372 s->lenhh++; 373 if (s->blockcnt == 0) 374 return(shadirect(bitstr, bitcnt, s)); 375 else if (s->blockcnt % 8 == 0) 376 return(shabytes(bitstr, bitcnt, s)); 377 else 378 return(shabits(bitstr, bitcnt, s)); 379 } 380 381 /* shafinish: pads remaining block(s) and computes final digest state */ 382 void shafinish(SHA *s) 383 { 384 UINT lenpos, lhpos, llpos; 385 386 lenpos = s->blocksize == SHA1_BLOCK_BITS ? 448 : 896; 387 lhpos = s->blocksize == SHA1_BLOCK_BITS ? 56 : 120; 388 llpos = s->blocksize == SHA1_BLOCK_BITS ? 60 : 124; 389 SETBIT(s->block, s->blockcnt), s->blockcnt++; 390 while (s->blockcnt > lenpos) 391 if (s->blockcnt < s->blocksize) 392 CLRBIT(s->block, s->blockcnt), s->blockcnt++; 393 else 394 s->sha(s, s->block), s->blockcnt = 0; 395 while (s->blockcnt < lenpos) 396 CLRBIT(s->block, s->blockcnt), s->blockcnt++; 397 if (s->blocksize > SHA1_BLOCK_BITS) { 398 w32mem(s->block + 112, s->lenhh); 399 w32mem(s->block + 116, s->lenhl); 400 } 401 w32mem(s->block + lhpos, s->lenlh); 402 w32mem(s->block + llpos, s->lenll); 403 s->sha(s, s->block); 404 } 405 406 /* shadigest: returns pointer to current digest (binary) */ 407 UCHR *shadigest(SHA *s) 408 { 409 digcpy(s); 410 return(s->digest); 411 } 412 413 /* shahex: returns pointer to current digest (hexadecimal) */ 414 char *shahex(SHA *s) 415 { 416 int i; 417 418 digcpy(s); 419 s->hex[0] = '\0'; 420 if (HEXLEN((size_t) s->digestlen) >= sizeof(s->hex)) 421 return(s->hex); 422 for (i = 0; i < s->digestlen; i++) 423 sprintf(s->hex+i*2, "%02x", s->digest[i]); 424 return(s->hex); 425 } 426 427 /* map: translation map for Base 64 encoding */ 428 static char map[] = 429 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; 430 431 /* encbase64: encodes input (0 to 3 bytes) into Base 64 */ 432 static void encbase64(UCHR *in, int n, char *out) 433 { 434 UCHR byte[3] = {0, 0, 0}; 435 436 out[0] = '\0'; 437 if (n < 1 || n > 3) 438 return; 439 memcpy(byte, in, n); 440 out[0] = map[byte[0] >> 2]; 441 out[1] = map[((byte[0] & 0x03) << 4) | (byte[1] >> 4)]; 442 out[2] = map[((byte[1] & 0x0f) << 2) | (byte[2] >> 6)]; 443 out[3] = map[byte[2] & 0x3f]; 444 out[n+1] = '\0'; 445 } 446 447 /* shabase64: returns pointer to current digest (Base 64) */ 448 char *shabase64(SHA *s) 449 { 450 int n; 451 UCHR *q; 452 char out[5]; 453 454 digcpy(s); 455 s->base64[0] = '\0'; 456 if (B64LEN(s->digestlen) >= sizeof(s->base64)) 457 return(s->base64); 458 for (n = s->digestlen, q = s->digest; n > 3; n -= 3, q += 3) { 459 encbase64(q, 3, out); 460 strcat(s->base64, out); 461 } 462 encbase64(q, n, out); 463 strcat(s->base64, out); 464 return(s->base64); 465 } 466 467 /* shadsize: returns length of digest in bytes */ 468 int shadsize(SHA *s) 469 { 470 return(s->digestlen); 471 } 472 473 /* shadup: duplicates current digest object */ 474 SHA *shadup(SHA *s) 475 { 476 SHA *p; 477 478 SHA_new(0, p, 1, SHA); 479 if (p == NULL) 480 return(NULL); 481 memcpy(p, s, sizeof(SHA)); 482 return(p); 483 } 484 485 /* shadump: dumps digest object to a human-readable ASCII file */ 486 int shadump(char *file, SHA *s) 487 { 488 int i, j; 489 SHA_FILE *f; 490 UCHR *p = shadigest(s); 491 492 if (file == NULL || strlen(file) == 0) 493 f = SHA_stdout(); 494 else if ((f = SHA_open(file, "w")) == NULL) 495 return(0); 496 SHA_fprintf(f, "alg:%d\nH", s->alg); 497 for (i = 0; i < 8; i++) 498 for (j = 0; j < (s->alg <= 256 ? 4 : 8); j++) 499 SHA_fprintf(f, "%s%02x", j==0 ? ":" : "", *p++); 500 SHA_fprintf(f, "\nblock"); 501 for (i = 0; i < (int) (s->blocksize >> 3); i++) 502 SHA_fprintf(f, ":%02x", s->block[i]); 503 SHA_fprintf(f, "\nblockcnt:%u\n", s->blockcnt); 504 SHA_fprintf(f, "lenhh:%lu\nlenhl:%lu\nlenlh:%lu\nlenll:%lu\n", 505 (ULNG) LO32(s->lenhh), (ULNG) LO32(s->lenhl), 506 (ULNG) LO32(s->lenlh), (ULNG) LO32(s->lenll)); 507 if (f != SHA_stdout()) 508 SHA_close(f); 509 return(1); 510 } 511 512 /* fgetstr: reads (and returns pointer to) next line of file */ 513 static char *fgetstr(char *line, UINT maxsize, SHA_FILE *f) 514 { 515 char *p; 516 517 if (SHA_feof(f) || maxsize == 0) 518 return(NULL); 519 for (p = line; !SHA_feof(f) && maxsize > 1; maxsize--) 520 if ((*p++ = SHA_getc(f)) == '\n') 521 break; 522 *p = '\0'; 523 return(line); 524 } 525 526 /* empty: returns true if line contains only whitespace characters */ 527 static int empty(char *line) 528 { 529 char *p; 530 531 for (p = line; *p; p++) 532 if (!isspace(*p)) 533 return(0); 534 return(1); 535 } 536 537 /* getval: null-terminates field value, and sets pointer to rest of line */ 538 static char *getval(char *line, char **pprest) 539 { 540 char *p, *v; 541 542 for (v = line; *v == ':' || isspace(*v); v++) 543 ; 544 for (p = v; *p; p++) { 545 if (*p == ':' || isspace(*p)) { 546 *p++ = '\0'; 547 break; 548 } 549 } 550 *pprest = p; 551 return(p == v ? NULL : v); 552 } 553 554 /* types of values present in dump file */ 555 #define T_C 1 /* character */ 556 #define T_I 2 /* normal integer */ 557 #define T_L 3 /* 32-bit value */ 558 #define T_Q 4 /* 64-bit value */ 559 560 /* ldvals: checks next line in dump file against tag, and loads values */ 561 static int ldvals( 562 SHA_FILE *f, 563 const char *tag, 564 int type, 565 void *pval, 566 int reps, 567 int base) 568 { 569 char *p, *pr, line[512]; 570 UCHR *pc = (UCHR *) pval; UINT *pi = (UINT *) pval; 571 W32 *pl = (W32 *) pval; W64 *pq = (W64 *) pval; 572 573 while ((p = fgetstr(line, sizeof(line), f)) != NULL) 574 if (line[0] != '#' && !empty(line)) 575 break; 576 if (p == NULL || strcmp(getval(line, &pr), tag) != 0) 577 return(0); 578 while (reps-- > 0) { 579 if ((p = getval(pr, &pr)) == NULL) 580 return(1); 581 switch (type) { 582 case T_C: *pc++ = (UCHR) strtoul(p, NULL, base); break; 583 case T_I: *pi++ = (UINT) strtoul(p, NULL, base); break; 584 case T_L: *pl++ = (W32 ) strtoul(p, NULL, base); break; 585 case T_Q: *pq++ = (W64 ) strto64(p ); break; 586 } 587 } 588 return(1); 589 } 590 591 /* closeall: closes dump file and de-allocates digest object */ 592 static SHA *closeall(SHA_FILE *f, SHA *s) 593 { 594 if (f != NULL && f != SHA_stdin()) 595 SHA_close(f); 596 if (s != NULL) 597 shaclose(s); 598 return(NULL); 599 } 600 601 /* shaload: creates digest object corresponding to contents of dump file */ 602 SHA *shaload(char *file) 603 { 604 int alg; 605 SHA *s = NULL; 606 SHA_FILE *f; 607 608 if (file == NULL || strlen(file) == 0) 609 f = SHA_stdin(); 610 else if ((f = SHA_open(file, "r")) == NULL) 611 return(NULL); 612 if ( 613 /* avoid parens by exploiting precedence of (type)&-> */ 614 !ldvals(f,"alg",T_I,(VP)&alg,1,10) || 615 ((s = shaopen(alg)) == NULL) || 616 !ldvals(f,"H",alg<=SHA256?T_L:T_Q,(VP)s->H,8,16) || 617 !ldvals(f,"block",T_C,(VP)s->block,s->blocksize/8,16) || 618 !ldvals(f,"blockcnt",T_I,(VP)&s->blockcnt,1,10) || 619 (alg <= SHA256 && s->blockcnt >= SHA1_BLOCK_BITS) || 620 (alg >= SHA384 && s->blockcnt >= SHA384_BLOCK_BITS) || 621 !ldvals(f,"lenhh",T_L,(VP)&s->lenhh,1,10) || 622 !ldvals(f,"lenhl",T_L,(VP)&s->lenhl,1,10) || 623 !ldvals(f,"lenlh",T_L,(VP)&s->lenlh,1,10) || 624 !ldvals(f,"lenll",T_L,(VP)&s->lenll,1,10) 625 ) 626 return(closeall(f, s)); 627 if (f != SHA_stdin()) 628 SHA_close(f); 629 return(s); 630 } 631 632 /* shaclose: de-allocates digest object */ 633 int shaclose(SHA *s) 634 { 635 if (s != NULL) { 636 memset(s, 0, sizeof(SHA)); 637 SHA_free(s); 638 } 639 return(0); 640 } 641