1# -*- coding: utf-8-unix -*- 2 3package Math::BigInt; 4 5# 6# "Mike had an infinite amount to do and a negative amount of time in which 7# to do it." - Before and After 8# 9 10# The following hash values are used: 11# value: unsigned int with actual value (as a Math::BigInt::Calc or similar) 12# sign : +, -, NaN, +inf, -inf 13# _a : accuracy 14# _p : precision 15 16# Remember not to take shortcuts ala $xs = $x->{value}; $LIB->foo($xs); since 17# underlying lib might change the reference! 18 19use 5.006001; 20use strict; 21use warnings; 22 23use Carp qw< carp croak >; 24 25our $VERSION = '1.999818'; 26 27require Exporter; 28our @ISA = qw(Exporter); 29our @EXPORT_OK = qw(objectify bgcd blcm); 30 31# Inside overload, the first arg is always an object. If the original code had 32# it reversed (like $x = 2 * $y), then the third parameter is true. 33# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes 34# no difference, but in some cases it does. 35 36# For overloaded ops with only one argument we simple use $_[0]->copy() to 37# preserve the argument. 38 39# Thus inheritance of overload operators becomes possible and transparent for 40# our subclasses without the need to repeat the entire overload section there. 41 42use overload 43 44 # overload key: with_assign 45 46 '+' => sub { $_[0] -> copy() -> badd($_[1]); }, 47 48 '-' => sub { my $c = $_[0] -> copy; 49 $_[2] ? $c -> bneg() -> badd($_[1]) 50 : $c -> bsub($_[1]); }, 51 52 '*' => sub { $_[0] -> copy() -> bmul($_[1]); }, 53 54 '/' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bdiv($_[0]) 55 : $_[0] -> copy -> bdiv($_[1]); }, 56 57 '%' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bmod($_[0]) 58 : $_[0] -> copy -> bmod($_[1]); }, 59 60 '**' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bpow($_[0]) 61 : $_[0] -> copy -> bpow($_[1]); }, 62 63 '<<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blsft($_[0]) 64 : $_[0] -> copy -> blsft($_[1]); }, 65 66 '>>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> brsft($_[0]) 67 : $_[0] -> copy -> brsft($_[1]); }, 68 69 # overload key: assign 70 71 '+=' => sub { $_[0]->badd($_[1]); }, 72 73 '-=' => sub { $_[0]->bsub($_[1]); }, 74 75 '*=' => sub { $_[0]->bmul($_[1]); }, 76 77 '/=' => sub { scalar $_[0]->bdiv($_[1]); }, 78 79 '%=' => sub { $_[0]->bmod($_[1]); }, 80 81 '**=' => sub { $_[0]->bpow($_[1]); }, 82 83 '<<=' => sub { $_[0]->blsft($_[1]); }, 84 85 '>>=' => sub { $_[0]->brsft($_[1]); }, 86 87# 'x=' => sub { }, 88 89# '.=' => sub { }, 90 91 # overload key: num_comparison 92 93 '<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blt($_[0]) 94 : $_[0] -> blt($_[1]); }, 95 96 '<=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> ble($_[0]) 97 : $_[0] -> ble($_[1]); }, 98 99 '>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bgt($_[0]) 100 : $_[0] -> bgt($_[1]); }, 101 102 '>=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bge($_[0]) 103 : $_[0] -> bge($_[1]); }, 104 105 '==' => sub { $_[0] -> beq($_[1]); }, 106 107 '!=' => sub { $_[0] -> bne($_[1]); }, 108 109 # overload key: 3way_comparison 110 111 '<=>' => sub { my $cmp = $_[0] -> bcmp($_[1]); 112 defined($cmp) && $_[2] ? -$cmp : $cmp; }, 113 114 'cmp' => sub { $_[2] ? "$_[1]" cmp $_[0] -> bstr() 115 : $_[0] -> bstr() cmp "$_[1]"; }, 116 117 # overload key: str_comparison 118 119# 'lt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrlt($_[0]) 120# : $_[0] -> bstrlt($_[1]); }, 121# 122# 'le' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrle($_[0]) 123# : $_[0] -> bstrle($_[1]); }, 124# 125# 'gt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrgt($_[0]) 126# : $_[0] -> bstrgt($_[1]); }, 127# 128# 'ge' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrge($_[0]) 129# : $_[0] -> bstrge($_[1]); }, 130# 131# 'eq' => sub { $_[0] -> bstreq($_[1]); }, 132# 133# 'ne' => sub { $_[0] -> bstrne($_[1]); }, 134 135 # overload key: binary 136 137 '&' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> band($_[0]) 138 : $_[0] -> copy -> band($_[1]); }, 139 140 '&=' => sub { $_[0] -> band($_[1]); }, 141 142 '|' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bior($_[0]) 143 : $_[0] -> copy -> bior($_[1]); }, 144 145 '|=' => sub { $_[0] -> bior($_[1]); }, 146 147 '^' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bxor($_[0]) 148 : $_[0] -> copy -> bxor($_[1]); }, 149 150 '^=' => sub { $_[0] -> bxor($_[1]); }, 151 152# '&.' => sub { }, 153 154# '&.=' => sub { }, 155 156# '|.' => sub { }, 157 158# '|.=' => sub { }, 159 160# '^.' => sub { }, 161 162# '^.=' => sub { }, 163 164 # overload key: unary 165 166 'neg' => sub { $_[0] -> copy() -> bneg(); }, 167 168# '!' => sub { }, 169 170 '~' => sub { $_[0] -> copy() -> bnot(); }, 171 172# '~.' => sub { }, 173 174 # overload key: mutators 175 176 '++' => sub { $_[0] -> binc() }, 177 178 '--' => sub { $_[0] -> bdec() }, 179 180 # overload key: func 181 182 'atan2' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> batan2($_[0]) 183 : $_[0] -> copy() -> batan2($_[1]); }, 184 185 'cos' => sub { $_[0] -> copy -> bcos(); }, 186 187 'sin' => sub { $_[0] -> copy -> bsin(); }, 188 189 'exp' => sub { $_[0] -> copy() -> bexp($_[1]); }, 190 191 'abs' => sub { $_[0] -> copy() -> babs(); }, 192 193 'log' => sub { $_[0] -> copy() -> blog(); }, 194 195 'sqrt' => sub { $_[0] -> copy() -> bsqrt(); }, 196 197 'int' => sub { $_[0] -> copy() -> bint(); }, 198 199 # overload key: conversion 200 201 'bool' => sub { $_[0] -> is_zero() ? '' : 1; }, 202 203 '""' => sub { $_[0] -> bstr(); }, 204 205 '0+' => sub { $_[0] -> numify(); }, 206 207 '=' => sub { $_[0]->copy(); }, 208 209 ; 210 211############################################################################## 212# global constants, flags and accessory 213 214# These vars are public, but their direct usage is not recommended, use the 215# accessor methods instead 216 217our $round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common' 218our $accuracy = undef; 219our $precision = undef; 220our $div_scale = 40; 221our $upgrade = undef; # default is no upgrade 222our $downgrade = undef; # default is no downgrade 223 224# These are internally, and not to be used from the outside at all 225 226our $_trap_nan = 0; # are NaNs ok? set w/ config() 227our $_trap_inf = 0; # are infs ok? set w/ config() 228 229my $nan = 'NaN'; # constants for easier life 230 231my $LIB = 'Math::BigInt::Calc'; # module to do the low level math 232 # default is Calc.pm 233my $IMPORT = 0; # was import() called yet? 234 # used to make require work 235my %CALLBACKS; # callbacks to notify on lib loads 236 237############################################################################## 238# the old code had $rnd_mode, so we need to support it, too 239 240our $rnd_mode = 'even'; 241 242sub TIESCALAR { 243 my ($class) = @_; 244 bless \$round_mode, $class; 245} 246 247sub FETCH { 248 return $round_mode; 249} 250 251sub STORE { 252 $rnd_mode = $_[0]->round_mode($_[1]); 253} 254 255BEGIN { 256 # tie to enable $rnd_mode to work transparently 257 tie $rnd_mode, 'Math::BigInt'; 258 259 # set up some handy alias names 260 *as_int = \&as_number; 261 *is_pos = \&is_positive; 262 *is_neg = \&is_negative; 263} 264 265############################################################################### 266# Configuration methods 267############################################################################### 268 269sub round_mode { 270 no strict 'refs'; 271 # make Class->round_mode() work 272 my $self = shift; 273 my $class = ref($self) || $self || __PACKAGE__; 274 if (defined $_[0]) { 275 my $m = shift; 276 if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) { 277 croak("Unknown round mode '$m'"); 278 } 279 return ${"${class}::round_mode"} = $m; 280 } 281 ${"${class}::round_mode"}; 282} 283 284sub upgrade { 285 no strict 'refs'; 286 # make Class->upgrade() work 287 my $self = shift; 288 my $class = ref($self) || $self || __PACKAGE__; 289 # need to set new value? 290 if (@_ > 0) { 291 return ${"${class}::upgrade"} = $_[0]; 292 } 293 ${"${class}::upgrade"}; 294} 295 296sub downgrade { 297 no strict 'refs'; 298 # make Class->downgrade() work 299 my $self = shift; 300 my $class = ref($self) || $self || __PACKAGE__; 301 # need to set new value? 302 if (@_ > 0) { 303 return ${"${class}::downgrade"} = $_[0]; 304 } 305 ${"${class}::downgrade"}; 306} 307 308sub div_scale { 309 no strict 'refs'; 310 # make Class->div_scale() work 311 my $self = shift; 312 my $class = ref($self) || $self || __PACKAGE__; 313 if (defined $_[0]) { 314 if ($_[0] < 0) { 315 croak('div_scale must be greater than zero'); 316 } 317 ${"${class}::div_scale"} = $_[0]; 318 } 319 ${"${class}::div_scale"}; 320} 321 322sub accuracy { 323 # $x->accuracy($a); ref($x) $a 324 # $x->accuracy(); ref($x) 325 # Class->accuracy(); class 326 # Class->accuracy($a); class $a 327 328 my $x = shift; 329 my $class = ref($x) || $x || __PACKAGE__; 330 331 no strict 'refs'; 332 if (@_ > 0) { 333 my $a = shift; 334 if (defined $a) { 335 $a = $a->numify() if ref($a) && $a->can('numify'); 336 # also croak on non-numerical 337 if (!$a || $a <= 0) { 338 croak('Argument to accuracy must be greater than zero'); 339 } 340 if (int($a) != $a) { 341 croak('Argument to accuracy must be an integer'); 342 } 343 } 344 345 if (ref($x)) { 346 # Set instance variable. 347 $x->bround($a) if $a; # not for undef, 0 348 $x->{_a} = $a; # set/overwrite, even if not rounded 349 delete $x->{_p}; # clear P 350 # Why return class variable here? Fixme! 351 $a = ${"${class}::accuracy"} unless defined $a; # proper return value 352 } else { 353 # Set class variable. 354 ${"${class}::accuracy"} = $a; # set global A 355 ${"${class}::precision"} = undef; # clear global P 356 } 357 358 return $a; # shortcut 359 } 360 361 # Return instance variable. 362 return $x->{_a} if ref($x) && (defined $x->{_a} || defined $x->{_p}); 363 364 # Return class variable. 365 return ${"${class}::accuracy"}; 366} 367 368sub precision { 369 # $x->precision($p); ref($x) $p 370 # $x->precision(); ref($x) 371 # Class->precision(); class 372 # Class->precision($p); class $p 373 374 my $x = shift; 375 my $class = ref($x) || $x || __PACKAGE__; 376 377 no strict 'refs'; 378 if (@_ > 0) { 379 my $p = shift; 380 if (defined $p) { 381 $p = $p->numify() if ref($p) && $p->can('numify'); 382 if ($p != int $p) { 383 croak('Argument to precision must be an integer'); 384 } 385 } 386 387 if (ref($x)) { 388 # Set instance variable. 389 $x->bfround($p) if $p; # not for undef, 0 390 $x->{_p} = $p; # set/overwrite, even if not rounded 391 delete $x->{_a}; # clear A 392 # Why return class variable here? Fixme! 393 $p = ${"${class}::precision"} unless defined $p; # proper return value 394 } else { 395 # Set class variable. 396 ${"${class}::precision"} = $p; # set global P 397 ${"${class}::accuracy"} = undef; # clear global A 398 } 399 400 return $p; # shortcut 401 } 402 403 # Return instance variable. 404 return $x->{_p} if ref($x) && (defined $x->{_a} || defined $x->{_p}); 405 406 # Return class variable. 407 return ${"${class}::precision"}; 408} 409 410sub config { 411 # return (or set) configuration data. 412 my $class = shift || __PACKAGE__; 413 414 no strict 'refs'; 415 if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH'))) { 416 # try to set given options as arguments from hash 417 418 my $args = $_[0]; 419 if (ref($args) ne 'HASH') { 420 $args = { @_ }; 421 } 422 # these values can be "set" 423 my $set_args = {}; 424 foreach my $key (qw/ 425 accuracy precision 426 round_mode div_scale 427 upgrade downgrade 428 trap_inf trap_nan 429 /) 430 { 431 $set_args->{$key} = $args->{$key} if exists $args->{$key}; 432 delete $args->{$key}; 433 } 434 if (keys %$args > 0) { 435 croak("Illegal key(s) '", join("', '", keys %$args), 436 "' passed to $class\->config()"); 437 } 438 foreach my $key (keys %$set_args) { 439 if ($key =~ /^trap_(inf|nan)\z/) { 440 ${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0); 441 next; 442 } 443 # use a call instead of just setting the $variable to check argument 444 $class->$key($set_args->{$key}); 445 } 446 } 447 448 # now return actual configuration 449 450 my $cfg = { 451 lib => $LIB, 452 lib_version => ${"${LIB}::VERSION"}, 453 class => $class, 454 trap_nan => ${"${class}::_trap_nan"}, 455 trap_inf => ${"${class}::_trap_inf"}, 456 version => ${"${class}::VERSION"}, 457 }; 458 foreach my $key (qw/ 459 accuracy precision 460 round_mode div_scale 461 upgrade downgrade 462 /) 463 { 464 $cfg->{$key} = ${"${class}::$key"}; 465 } 466 if (@_ == 1 && (ref($_[0]) ne 'HASH')) { 467 # calls of the style config('lib') return just this value 468 return $cfg->{$_[0]}; 469 } 470 $cfg; 471} 472 473sub _scale_a { 474 # select accuracy parameter based on precedence, 475 # used by bround() and bfround(), may return undef for scale (means no op) 476 my ($x, $scale, $mode) = @_; 477 478 $scale = $x->{_a} unless defined $scale; 479 480 no strict 'refs'; 481 my $class = ref($x); 482 483 $scale = ${ $class . '::accuracy' } unless defined $scale; 484 $mode = ${ $class . '::round_mode' } unless defined $mode; 485 486 if (defined $scale) { 487 $scale = $scale->can('numify') ? $scale->numify() 488 : "$scale" if ref($scale); 489 $scale = int($scale); 490 } 491 492 ($scale, $mode); 493} 494 495sub _scale_p { 496 # select precision parameter based on precedence, 497 # used by bround() and bfround(), may return undef for scale (means no op) 498 my ($x, $scale, $mode) = @_; 499 500 $scale = $x->{_p} unless defined $scale; 501 502 no strict 'refs'; 503 my $class = ref($x); 504 505 $scale = ${ $class . '::precision' } unless defined $scale; 506 $mode = ${ $class . '::round_mode' } unless defined $mode; 507 508 if (defined $scale) { 509 $scale = $scale->can('numify') ? $scale->numify() 510 : "$scale" if ref($scale); 511 $scale = int($scale); 512 } 513 514 ($scale, $mode); 515} 516 517############################################################################### 518# Constructor methods 519############################################################################### 520 521sub new { 522 # Create a new Math::BigInt object from a string or another Math::BigInt 523 # object. See hash keys documented at top. 524 525 # The argument could be an object, so avoid ||, && etc. on it. This would 526 # cause costly overloaded code to be called. The only allowed ops are ref() 527 # and defined. 528 529 my $self = shift; 530 my $selfref = ref $self; 531 my $class = $selfref || $self; 532 533 # The POD says: 534 # 535 # "Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('') 536 # results in 'NaN'. This might change in the future, so use always the 537 # following explicit forms to get a zero or NaN: 538 # $zero = Math::BigInt->bzero(); 539 # $nan = Math::BigInt->bnan(); 540 # 541 # But although this use has been discouraged for more than 10 years, people 542 # apparently still use it, so we still support it. 543 544 return $self->bzero() unless @_; 545 546 my ($wanted, $a, $p, $r) = @_; 547 548 # Always return a new object, so if called as an instance method, copy the 549 # invocand, and if called as a class method, initialize a new object. 550 551 $self = $selfref ? $self -> copy() 552 : bless {}, $class; 553 554 unless (defined $wanted) { 555 #carp("Use of uninitialized value in new()"); 556 return $self->bzero($a, $p, $r); 557 } 558 559 if (ref($wanted) && $wanted->isa($class)) { # MBI or subclass 560 # Using "$copy = $wanted -> copy()" here fails some tests. Fixme! 561 my $copy = $class -> copy($wanted); 562 if ($selfref) { 563 %$self = %$copy; 564 } else { 565 $self = $copy; 566 } 567 return $self; 568 } 569 570 $class->import() if $IMPORT == 0; # make require work 571 572 # Shortcut for non-zero scalar integers with no non-zero exponent. 573 574 if (!ref($wanted) && 575 $wanted =~ / ^ 576 ([+-]?) # optional sign 577 ([1-9][0-9]*) # non-zero significand 578 (\.0*)? # ... with optional zero fraction 579 ([Ee][+-]?0+)? # optional zero exponent 580 \z 581 /x) 582 { 583 my $sgn = $1; 584 my $abs = $2; 585 $self->{sign} = $sgn || '+'; 586 $self->{value} = $LIB->_new($abs); 587 588 no strict 'refs'; 589 if (defined($a) || defined($p) 590 || defined(${"${class}::precision"}) 591 || defined(${"${class}::accuracy"})) 592 { 593 $self->round($a, $p, $r) 594 unless @_ >= 3 && !defined $a && !defined $p; 595 } 596 597 return $self; 598 } 599 600 # Handle Infs. 601 602 if ($wanted =~ /^\s*([+-]?)inf(inity)?\s*\z/i) { 603 my $sgn = $1 || '+'; 604 $self->{sign} = $sgn . 'inf'; # set a default sign for bstr() 605 return $class->binf($sgn); 606 } 607 608 # Handle explicit NaNs (not the ones returned due to invalid input). 609 610 if ($wanted =~ /^\s*([+-]?)nan\s*\z/i) { 611 $self = $class -> bnan(); 612 $self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p; 613 return $self; 614 } 615 616 # Handle hexadecimal numbers. 617 618 if ($wanted =~ /^\s*[+-]?0[Xx]/) { 619 $self = $class -> from_hex($wanted); 620 $self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p; 621 return $self; 622 } 623 624 # Handle binary numbers. 625 626 if ($wanted =~ /^\s*[+-]?0[Bb]/) { 627 $self = $class -> from_bin($wanted); 628 $self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p; 629 return $self; 630 } 631 632 # Split string into mantissa, exponent, integer, fraction, value, and sign. 633 my ($mis, $miv, $mfv, $es, $ev) = _split($wanted); 634 if (!ref $mis) { 635 if ($_trap_nan) { 636 croak("$wanted is not a number in $class"); 637 } 638 $self->{value} = $LIB->_zero(); 639 $self->{sign} = $nan; 640 return $self; 641 } 642 643 if (!ref $miv) { 644 # _from_hex or _from_bin 645 $self->{value} = $mis->{value}; 646 $self->{sign} = $mis->{sign}; 647 return $self; # throw away $mis 648 } 649 650 # Make integer from mantissa by adjusting exponent, then convert to a 651 # Math::BigInt. 652 $self->{sign} = $$mis; # store sign 653 $self->{value} = $LIB->_zero(); # for all the NaN cases 654 my $e = int("$$es$$ev"); # exponent (avoid recursion) 655 if ($e > 0) { 656 my $diff = $e - CORE::length($$mfv); 657 if ($diff < 0) { # Not integer 658 if ($_trap_nan) { 659 croak("$wanted not an integer in $class"); 660 } 661 #print "NOI 1\n"; 662 return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; 663 $self->{sign} = $nan; 664 } else { # diff >= 0 665 # adjust fraction and add it to value 666 #print "diff > 0 $$miv\n"; 667 $$miv = $$miv . ($$mfv . '0' x $diff); 668 } 669 } 670 671 else { 672 if ($$mfv ne '') { # e <= 0 673 # fraction and negative/zero E => NOI 674 if ($_trap_nan) { 675 croak("$wanted not an integer in $class"); 676 } 677 #print "NOI 2 \$\$mfv '$$mfv'\n"; 678 return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; 679 $self->{sign} = $nan; 680 } elsif ($e < 0) { 681 # xE-y, and empty mfv 682 # Split the mantissa at the decimal point. E.g., if 683 # $$miv = 12345 and $e = -2, then $frac = 45 and $$miv = 123. 684 685 my $frac = substr($$miv, $e); # $frac is fraction part 686 substr($$miv, $e) = ""; # $$miv is now integer part 687 688 if ($frac =~ /[^0]/) { 689 if ($_trap_nan) { 690 croak("$wanted not an integer in $class"); 691 } 692 #print "NOI 3\n"; 693 return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade; 694 $self->{sign} = $nan; 695 } 696 } 697 } 698 699 unless ($self->{sign} eq $nan) { 700 $self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0 701 $self->{value} = $LIB->_new($$miv) if $self->{sign} =~ /^[+-]$/; 702 } 703 704 # If any of the globals are set, use them to round, and store them inside 705 # $self. Do not round for new($x, undef, undef) since that is used by MBF 706 # to signal no rounding. 707 708 $self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p; 709 $self; 710} 711 712# Create a Math::BigInt from a hexadecimal string. 713 714sub from_hex { 715 my $self = shift; 716 my $selfref = ref $self; 717 my $class = $selfref || $self; 718 719 # Don't modify constant (read-only) objects. 720 721 return if $selfref && $self->modify('from_hex'); 722 723 my $str = shift; 724 725 # If called as a class method, initialize a new object. 726 727 $self = $class -> bzero() unless $selfref; 728 729 if ($str =~ s/ 730 ^ 731 \s* 732 ( [+-]? ) 733 (0?x)? 734 ( 735 [0-9a-fA-F]* 736 ( _ [0-9a-fA-F]+ )* 737 ) 738 \s* 739 $ 740 //x) 741 { 742 # Get a "clean" version of the string, i.e., non-emtpy and with no 743 # underscores or invalid characters. 744 745 my $sign = $1; 746 my $chrs = $3; 747 $chrs =~ tr/_//d; 748 $chrs = '0' unless CORE::length $chrs; 749 750 # The library method requires a prefix. 751 752 $self->{value} = $LIB->_from_hex('0x' . $chrs); 753 754 # Place the sign. 755 756 $self->{sign} = $sign eq '-' && ! $LIB->_is_zero($self->{value}) 757 ? '-' : '+'; 758 759 return $self; 760 } 761 762 # CORE::hex() parses as much as it can, and ignores any trailing garbage. 763 # For backwards compatibility, we return NaN. 764 765 return $self->bnan(); 766} 767 768# Create a Math::BigInt from an octal string. 769 770sub from_oct { 771 my $self = shift; 772 my $selfref = ref $self; 773 my $class = $selfref || $self; 774 775 # Don't modify constant (read-only) objects. 776 777 return if $selfref && $self->modify('from_oct'); 778 779 my $str = shift; 780 781 # If called as a class method, initialize a new object. 782 783 $self = $class -> bzero() unless $selfref; 784 785 if ($str =~ s/ 786 ^ 787 \s* 788 ( [+-]? ) 789 ( 790 [0-7]* 791 ( _ [0-7]+ )* 792 ) 793 \s* 794 $ 795 //x) 796 { 797 # Get a "clean" version of the string, i.e., non-emtpy and with no 798 # underscores or invalid characters. 799 800 my $sign = $1; 801 my $chrs = $2; 802 $chrs =~ tr/_//d; 803 $chrs = '0' unless CORE::length $chrs; 804 805 # The library method requires a prefix. 806 807 $self->{value} = $LIB->_from_oct('0' . $chrs); 808 809 # Place the sign. 810 811 $self->{sign} = $sign eq '-' && ! $LIB->_is_zero($self->{value}) 812 ? '-' : '+'; 813 814 return $self; 815 } 816 817 # CORE::oct() parses as much as it can, and ignores any trailing garbage. 818 # For backwards compatibility, we return NaN. 819 820 return $self->bnan(); 821} 822 823# Create a Math::BigInt from a binary string. 824 825sub from_bin { 826 my $self = shift; 827 my $selfref = ref $self; 828 my $class = $selfref || $self; 829 830 # Don't modify constant (read-only) objects. 831 832 return if $selfref && $self->modify('from_bin'); 833 834 my $str = shift; 835 836 # If called as a class method, initialize a new object. 837 838 $self = $class -> bzero() unless $selfref; 839 840 if ($str =~ s/ 841 ^ 842 \s* 843 ( [+-]? ) 844 (0?b)? 845 ( 846 [01]* 847 ( _ [01]+ )* 848 ) 849 \s* 850 $ 851 //x) 852 { 853 # Get a "clean" version of the string, i.e., non-emtpy and with no 854 # underscores or invalid characters. 855 856 my $sign = $1; 857 my $chrs = $3; 858 $chrs =~ tr/_//d; 859 $chrs = '0' unless CORE::length $chrs; 860 861 # The library method requires a prefix. 862 863 $self->{value} = $LIB->_from_bin('0b' . $chrs); 864 865 # Place the sign. 866 867 $self->{sign} = $sign eq '-' && ! $LIB->_is_zero($self->{value}) 868 ? '-' : '+'; 869 870 return $self; 871 } 872 873 # For consistency with from_hex() and from_oct(), we return NaN when the 874 # input is invalid. 875 876 return $self->bnan(); 877 878} 879 880# Create a Math::BigInt from a byte string. 881 882sub from_bytes { 883 my $self = shift; 884 my $selfref = ref $self; 885 my $class = $selfref || $self; 886 887 # Don't modify constant (read-only) objects. 888 889 return if $selfref && $self->modify('from_bytes'); 890 891 croak("from_bytes() requires a newer version of the $LIB library.") 892 unless $LIB->can('_from_bytes'); 893 894 my $str = shift; 895 896 # If called as a class method, initialize a new object. 897 898 $self = $class -> bzero() unless $selfref; 899 $self -> {sign} = '+'; 900 $self -> {value} = $LIB -> _from_bytes($str); 901 return $self; 902} 903 904sub from_base { 905 my $self = shift; 906 my $selfref = ref $self; 907 my $class = $selfref || $self; 908 909 # Don't modify constant (read-only) objects. 910 911 return if $selfref && $self->modify('from_base'); 912 913 my $str = shift; 914 915 my $base = shift; 916 $base = $class->new($base) unless ref($base); 917 918 croak("the base must be a finite integer >= 2") 919 if $base < 2 || ! $base -> is_int(); 920 921 # If called as a class method, initialize a new object. 922 923 $self = $class -> bzero() unless $selfref; 924 925 # If no collating sequence is given, pass some of the conversions to 926 # methods optimized for those cases. 927 928 if (! @_) { 929 return $self -> from_bin($str) if $base == 2; 930 return $self -> from_oct($str) if $base == 8; 931 return $self -> from_hex($str) if $base == 16; 932 if ($base == 10) { 933 my $tmp = $class -> new($str); 934 $self -> {value} = $tmp -> {value}; 935 $self -> {sign} = '+'; 936 } 937 } 938 939 croak("from_base() requires a newer version of the $LIB library.") 940 unless $LIB->can('_from_base'); 941 942 $self -> {sign} = '+'; 943 $self -> {value} 944 = $LIB->_from_base($str, $base -> {value}, @_ ? shift() : ()); 945 return $self 946} 947 948sub bzero { 949 # create/assign '+0' 950 951 if (@_ == 0) { 952 #carp("Using bzero() as a function is deprecated;", 953 # " use bzero() as a method instead"); 954 unshift @_, __PACKAGE__; 955 } 956 957 my $self = shift; 958 my $selfref = ref $self; 959 my $class = $selfref || $self; 960 961 $self->import() if $IMPORT == 0; # make require work 962 963 # Don't modify constant (read-only) objects. 964 965 return if $selfref && $self->modify('bzero'); 966 967 $self = bless {}, $class unless $selfref; 968 969 $self->{sign} = '+'; 970 $self->{value} = $LIB->_zero(); 971 972 # If rounding parameters are given as arguments, use them. If no rounding 973 # parameters are given, and if called as a class method initialize the new 974 # instance with the class variables. 975 976 if (@_) { 977 croak "can't specify both accuracy and precision" 978 if @_ >= 2 && defined $_[0] && defined $_[1]; 979 $self->{_a} = $_[0]; 980 $self->{_p} = $_[1]; 981 } else { 982 unless($selfref) { 983 $self->{_a} = $class -> accuracy(); 984 $self->{_p} = $class -> precision(); 985 } 986 } 987 988 return $self; 989} 990 991sub bone { 992 # Create or assign '+1' (or -1 if given sign '-'). 993 994 if (@_ == 0 || (defined($_[0]) && ($_[0] eq '+' || $_[0] eq '-'))) { 995 #carp("Using bone() as a function is deprecated;", 996 # " use bone() as a method instead"); 997 unshift @_, __PACKAGE__; 998 } 999 1000 my $self = shift; 1001 my $selfref = ref $self; 1002 my $class = $selfref || $self; 1003 1004 $self->import() if $IMPORT == 0; # make require work 1005 1006 # Don't modify constant (read-only) objects. 1007 1008 return if $selfref && $self->modify('bone'); 1009 1010 my $sign = '+'; # default 1011 if (@_) { 1012 $sign = shift; 1013 $sign = $sign =~ /^\s*-/ ? "-" : "+"; 1014 } 1015 1016 $self = bless {}, $class unless $selfref; 1017 1018 $self->{sign} = $sign; 1019 $self->{value} = $LIB->_one(); 1020 1021 # If rounding parameters are given as arguments, use them. If no rounding 1022 # parameters are given, and if called as a class method initialize the new 1023 # instance with the class variables. 1024 1025 if (@_) { 1026 croak "can't specify both accuracy and precision" 1027 if @_ >= 2 && defined $_[0] && defined $_[1]; 1028 $self->{_a} = $_[0]; 1029 $self->{_p} = $_[1]; 1030 } else { 1031 unless($selfref) { 1032 $self->{_a} = $class -> accuracy(); 1033 $self->{_p} = $class -> precision(); 1034 } 1035 } 1036 1037 return $self; 1038} 1039 1040sub binf { 1041 # create/assign a '+inf' or '-inf' 1042 1043 if (@_ == 0 || (defined($_[0]) && !ref($_[0]) && 1044 $_[0] =~ /^\s*[+-](inf(inity)?)?\s*$/)) 1045 { 1046 #carp("Using binf() as a function is deprecated;", 1047 # " use binf() as a method instead"); 1048 unshift @_, __PACKAGE__; 1049 } 1050 1051 my $self = shift; 1052 my $selfref = ref $self; 1053 my $class = $selfref || $self; 1054 1055 { 1056 no strict 'refs'; 1057 if (${"${class}::_trap_inf"}) { 1058 croak("Tried to create +-inf in $class->binf()"); 1059 } 1060 } 1061 1062 $self->import() if $IMPORT == 0; # make require work 1063 1064 # Don't modify constant (read-only) objects. 1065 1066 return if $selfref && $self->modify('binf'); 1067 1068 my $sign = shift; 1069 $sign = defined $sign && $sign =~ /^\s*-/ ? "-" : "+"; 1070 1071 $self = bless {}, $class unless $selfref; 1072 1073 $self -> {sign} = $sign . 'inf'; 1074 $self -> {value} = $LIB -> _zero(); 1075 1076 # If rounding parameters are given as arguments, use them. If no rounding 1077 # parameters are given, and if called as a class method initialize the new 1078 # instance with the class variables. 1079 1080 if (@_) { 1081 croak "can't specify both accuracy and precision" 1082 if @_ >= 2 && defined $_[0] && defined $_[1]; 1083 $self->{_a} = $_[0]; 1084 $self->{_p} = $_[1]; 1085 } else { 1086 unless($selfref) { 1087 $self->{_a} = $class -> accuracy(); 1088 $self->{_p} = $class -> precision(); 1089 } 1090 } 1091 1092 return $self; 1093} 1094 1095sub bnan { 1096 # create/assign a 'NaN' 1097 1098 if (@_ == 0) { 1099 #carp("Using bnan() as a function is deprecated;", 1100 # " use bnan() as a method instead"); 1101 unshift @_, __PACKAGE__; 1102 } 1103 1104 my $self = shift; 1105 my $selfref = ref($self); 1106 my $class = $selfref || $self; 1107 1108 { 1109 no strict 'refs'; 1110 if (${"${class}::_trap_nan"}) { 1111 croak("Tried to create NaN in $class->bnan()"); 1112 } 1113 } 1114 1115 $self->import() if $IMPORT == 0; # make require work 1116 1117 # Don't modify constant (read-only) objects. 1118 1119 return if $selfref && $self->modify('bnan'); 1120 1121 $self = bless {}, $class unless $selfref; 1122 1123 $self -> {sign} = $nan; 1124 $self -> {value} = $LIB -> _zero(); 1125 1126 return $self; 1127} 1128 1129sub bpi { 1130 # Calculate PI to N digits. Unless upgrading is in effect, returns the 1131 # result truncated to an integer, that is, always returns '3'. 1132 my ($self, $n) = @_; 1133 if (@_ == 1) { 1134 # called like Math::BigInt::bpi(10); 1135 $n = $self; 1136 $self = __PACKAGE__; 1137 } 1138 $self = ref($self) if ref($self); 1139 1140 return $upgrade->new($n) if defined $upgrade; 1141 1142 # hard-wired to "3" 1143 $self->new(3); 1144} 1145 1146sub copy { 1147 my $self = shift; 1148 my $selfref = ref $self; 1149 my $class = $selfref || $self; 1150 1151 # If called as a class method, the object to copy is the next argument. 1152 1153 $self = shift() unless $selfref; 1154 1155 my $copy = bless {}, $class; 1156 1157 $copy->{sign} = $self->{sign}; 1158 $copy->{value} = $LIB->_copy($self->{value}); 1159 $copy->{_a} = $self->{_a} if exists $self->{_a}; 1160 $copy->{_p} = $self->{_p} if exists $self->{_p}; 1161 1162 return $copy; 1163} 1164 1165sub as_number { 1166 # An object might be asked to return itself as bigint on certain overloaded 1167 # operations. This does exactly this, so that sub classes can simple inherit 1168 # it or override with their own integer conversion routine. 1169 $_[0]->copy(); 1170} 1171 1172############################################################################### 1173# Boolean methods 1174############################################################################### 1175 1176sub is_zero { 1177 # return true if arg (BINT or num_str) is zero (array '+', '0') 1178 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1179 1180 return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't 1181 $LIB->_is_zero($x->{value}); 1182} 1183 1184sub is_one { 1185 # return true if arg (BINT or num_str) is +1, or -1 if sign is given 1186 my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 1187 1188 $sign = '+' if !defined $sign || $sign ne '-'; 1189 1190 return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either 1191 $LIB->_is_one($x->{value}); 1192} 1193 1194sub is_finite { 1195 my $x = shift; 1196 return $x->{sign} eq '+' || $x->{sign} eq '-'; 1197} 1198 1199sub is_inf { 1200 # return true if arg (BINT or num_str) is +-inf 1201 my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 1202 1203 if (defined $sign) { 1204 $sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf 1205 $sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-' 1206 return $x->{sign} =~ /^$sign$/ ? 1 : 0; 1207 } 1208 $x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity 1209} 1210 1211sub is_nan { 1212 # return true if arg (BINT or num_str) is NaN 1213 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1214 1215 $x->{sign} eq $nan ? 1 : 0; 1216} 1217 1218sub is_positive { 1219 # return true when arg (BINT or num_str) is positive (> 0) 1220 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1221 1222 return 1 if $x->{sign} eq '+inf'; # +inf is positive 1223 1224 # 0+ is neither positive nor negative 1225 ($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0; 1226} 1227 1228sub is_negative { 1229 # return true when arg (BINT or num_str) is negative (< 0) 1230 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1231 1232 $x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not 1233} 1234 1235sub is_non_negative { 1236 # Return true if argument is non-negative (>= 0). 1237 my ($class, $x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1238 1239 return 1 if $x->{sign} =~ /^\+/; 1240 return 1 if $x -> is_zero(); 1241 return 0; 1242} 1243 1244sub is_non_positive { 1245 # Return true if argument is non-positive (<= 0). 1246 my ($class, $x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_); 1247 1248 return 1 if $x->{sign} =~ /^\-/; 1249 return 1 if $x -> is_zero(); 1250 return 0; 1251} 1252 1253sub is_odd { 1254 # return true when arg (BINT or num_str) is odd, false for even 1255 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1256 1257 return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't 1258 $LIB->_is_odd($x->{value}); 1259} 1260 1261sub is_even { 1262 # return true when arg (BINT or num_str) is even, false for odd 1263 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1264 1265 return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't 1266 $LIB->_is_even($x->{value}); 1267} 1268 1269sub is_int { 1270 # return true when arg (BINT or num_str) is an integer 1271 # always true for Math::BigInt, but different for Math::BigFloat objects 1272 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1273 1274 $x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't 1275} 1276 1277############################################################################### 1278# Comparison methods 1279############################################################################### 1280 1281sub bcmp { 1282 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort) 1283 # (BINT or num_str, BINT or num_str) return cond_code 1284 1285 # set up parameters 1286 my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1]) 1287 ? (ref($_[0]), @_) 1288 : objectify(2, @_); 1289 1290 return $upgrade->bcmp($x, $y) if defined $upgrade && 1291 ((!$x->isa($class)) || (!$y->isa($class))); 1292 1293 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) { 1294 # handle +-inf and NaN 1295 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1296 return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/; 1297 return +1 if $x->{sign} eq '+inf'; 1298 return -1 if $x->{sign} eq '-inf'; 1299 return -1 if $y->{sign} eq '+inf'; 1300 return +1; 1301 } 1302 # check sign for speed first 1303 return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y 1304 return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0 1305 1306 # have same sign, so compare absolute values. Don't make tests for zero 1307 # here because it's actually slower than testing in Calc (especially w/ Pari 1308 # et al) 1309 1310 # post-normalized compare for internal use (honors signs) 1311 if ($x->{sign} eq '+') { 1312 # $x and $y both > 0 1313 return $LIB->_acmp($x->{value}, $y->{value}); 1314 } 1315 1316 # $x && $y both < 0 1317 $LIB->_acmp($y->{value}, $x->{value}); # swapped acmp (lib returns 0, 1, -1) 1318} 1319 1320sub bacmp { 1321 # Compares 2 values, ignoring their signs. 1322 # Returns one of undef, <0, =0, >0. (suitable for sort) 1323 # (BINT, BINT) return cond_code 1324 1325 # set up parameters 1326 my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1]) 1327 ? (ref($_[0]), @_) 1328 : objectify(2, @_); 1329 1330 return $upgrade->bacmp($x, $y) if defined $upgrade && 1331 ((!$x->isa($class)) || (!$y->isa($class))); 1332 1333 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) { 1334 # handle +-inf and NaN 1335 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1336 return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/; 1337 return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/; 1338 return -1; 1339 } 1340 $LIB->_acmp($x->{value}, $y->{value}); # lib does only 0, 1, -1 1341} 1342 1343sub beq { 1344 my $self = shift; 1345 my $selfref = ref $self; 1346 1347 croak 'beq() is an instance method, not a class method' unless $selfref; 1348 croak 'Wrong number of arguments for beq()' unless @_ == 1; 1349 1350 my $cmp = $self -> bcmp(shift); 1351 return defined($cmp) && ! $cmp; 1352} 1353 1354sub bne { 1355 my $self = shift; 1356 my $selfref = ref $self; 1357 1358 croak 'bne() is an instance method, not a class method' unless $selfref; 1359 croak 'Wrong number of arguments for bne()' unless @_ == 1; 1360 1361 my $cmp = $self -> bcmp(shift); 1362 return defined($cmp) && ! $cmp ? '' : 1; 1363} 1364 1365sub blt { 1366 my $self = shift; 1367 my $selfref = ref $self; 1368 1369 croak 'blt() is an instance method, not a class method' unless $selfref; 1370 croak 'Wrong number of arguments for blt()' unless @_ == 1; 1371 1372 my $cmp = $self -> bcmp(shift); 1373 return defined($cmp) && $cmp < 0; 1374} 1375 1376sub ble { 1377 my $self = shift; 1378 my $selfref = ref $self; 1379 1380 croak 'ble() is an instance method, not a class method' unless $selfref; 1381 croak 'Wrong number of arguments for ble()' unless @_ == 1; 1382 1383 my $cmp = $self -> bcmp(shift); 1384 return defined($cmp) && $cmp <= 0; 1385} 1386 1387sub bgt { 1388 my $self = shift; 1389 my $selfref = ref $self; 1390 1391 croak 'bgt() is an instance method, not a class method' unless $selfref; 1392 croak 'Wrong number of arguments for bgt()' unless @_ == 1; 1393 1394 my $cmp = $self -> bcmp(shift); 1395 return defined($cmp) && $cmp > 0; 1396} 1397 1398sub bge { 1399 my $self = shift; 1400 my $selfref = ref $self; 1401 1402 croak 'bge() is an instance method, not a class method' 1403 unless $selfref; 1404 croak 'Wrong number of arguments for bge()' unless @_ == 1; 1405 1406 my $cmp = $self -> bcmp(shift); 1407 return defined($cmp) && $cmp >= 0; 1408} 1409 1410############################################################################### 1411# Arithmetic methods 1412############################################################################### 1413 1414sub bneg { 1415 # (BINT or num_str) return BINT 1416 # negate number or make a negated number from string 1417 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1418 1419 return $x if $x->modify('bneg'); 1420 1421 # for +0 do not negate (to have always normalized +0). Does nothing for 'NaN' 1422 $x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $LIB->_is_zero($x->{value})); 1423 $x; 1424} 1425 1426sub babs { 1427 # (BINT or num_str) return BINT 1428 # make number absolute, or return absolute BINT from string 1429 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1430 1431 return $x if $x->modify('babs'); 1432 # post-normalized abs for internal use (does nothing for NaN) 1433 $x->{sign} =~ s/^-/+/; 1434 $x; 1435} 1436 1437sub bsgn { 1438 # Signum function. 1439 1440 my $self = shift; 1441 1442 return $self if $self->modify('bsgn'); 1443 1444 return $self -> bone("+") if $self -> is_pos(); 1445 return $self -> bone("-") if $self -> is_neg(); 1446 return $self; # zero or NaN 1447} 1448 1449sub bnorm { 1450 # (numstr or BINT) return BINT 1451 # Normalize number -- no-op here 1452 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 1453 $x; 1454} 1455 1456sub binc { 1457 # increment arg by one 1458 my ($class, $x, $a, $p, $r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_); 1459 return $x if $x->modify('binc'); 1460 1461 if ($x->{sign} eq '+') { 1462 $x->{value} = $LIB->_inc($x->{value}); 1463 return $x->round($a, $p, $r); 1464 } elsif ($x->{sign} eq '-') { 1465 $x->{value} = $LIB->_dec($x->{value}); 1466 $x->{sign} = '+' if $LIB->_is_zero($x->{value}); # -1 +1 => -0 => +0 1467 return $x->round($a, $p, $r); 1468 } 1469 # inf, nan handling etc 1470 $x->badd($class->bone(), $a, $p, $r); # badd does round 1471} 1472 1473sub bdec { 1474 # decrement arg by one 1475 my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_); 1476 return $x if $x->modify('bdec'); 1477 1478 if ($x->{sign} eq '-') { 1479 # x already < 0 1480 $x->{value} = $LIB->_inc($x->{value}); 1481 } else { 1482 return $x->badd($class->bone('-'), @r) 1483 unless $x->{sign} eq '+'; # inf or NaN 1484 # >= 0 1485 if ($LIB->_is_zero($x->{value})) { 1486 # == 0 1487 $x->{value} = $LIB->_one(); 1488 $x->{sign} = '-'; # 0 => -1 1489 } else { 1490 # > 0 1491 $x->{value} = $LIB->_dec($x->{value}); 1492 } 1493 } 1494 $x->round(@r); 1495} 1496 1497#sub bstrcmp { 1498# my $self = shift; 1499# my $selfref = ref $self; 1500# my $class = $selfref || $self; 1501# 1502# croak 'bstrcmp() is an instance method, not a class method' 1503# unless $selfref; 1504# croak 'Wrong number of arguments for bstrcmp()' unless @_ == 1; 1505# 1506# return $self -> bstr() CORE::cmp shift; 1507#} 1508# 1509#sub bstreq { 1510# my $self = shift; 1511# my $selfref = ref $self; 1512# my $class = $selfref || $self; 1513# 1514# croak 'bstreq() is an instance method, not a class method' 1515# unless $selfref; 1516# croak 'Wrong number of arguments for bstreq()' unless @_ == 1; 1517# 1518# my $cmp = $self -> bstrcmp(shift); 1519# return defined($cmp) && ! $cmp; 1520#} 1521# 1522#sub bstrne { 1523# my $self = shift; 1524# my $selfref = ref $self; 1525# my $class = $selfref || $self; 1526# 1527# croak 'bstrne() is an instance method, not a class method' 1528# unless $selfref; 1529# croak 'Wrong number of arguments for bstrne()' unless @_ == 1; 1530# 1531# my $cmp = $self -> bstrcmp(shift); 1532# return defined($cmp) && ! $cmp ? '' : 1; 1533#} 1534# 1535#sub bstrlt { 1536# my $self = shift; 1537# my $selfref = ref $self; 1538# my $class = $selfref || $self; 1539# 1540# croak 'bstrlt() is an instance method, not a class method' 1541# unless $selfref; 1542# croak 'Wrong number of arguments for bstrlt()' unless @_ == 1; 1543# 1544# my $cmp = $self -> bstrcmp(shift); 1545# return defined($cmp) && $cmp < 0; 1546#} 1547# 1548#sub bstrle { 1549# my $self = shift; 1550# my $selfref = ref $self; 1551# my $class = $selfref || $self; 1552# 1553# croak 'bstrle() is an instance method, not a class method' 1554# unless $selfref; 1555# croak 'Wrong number of arguments for bstrle()' unless @_ == 1; 1556# 1557# my $cmp = $self -> bstrcmp(shift); 1558# return defined($cmp) && $cmp <= 0; 1559#} 1560# 1561#sub bstrgt { 1562# my $self = shift; 1563# my $selfref = ref $self; 1564# my $class = $selfref || $self; 1565# 1566# croak 'bstrgt() is an instance method, not a class method' 1567# unless $selfref; 1568# croak 'Wrong number of arguments for bstrgt()' unless @_ == 1; 1569# 1570# my $cmp = $self -> bstrcmp(shift); 1571# return defined($cmp) && $cmp > 0; 1572#} 1573# 1574#sub bstrge { 1575# my $self = shift; 1576# my $selfref = ref $self; 1577# my $class = $selfref || $self; 1578# 1579# croak 'bstrge() is an instance method, not a class method' 1580# unless $selfref; 1581# croak 'Wrong number of arguments for bstrge()' unless @_ == 1; 1582# 1583# my $cmp = $self -> bstrcmp(shift); 1584# return defined($cmp) && $cmp >= 0; 1585#} 1586 1587sub badd { 1588 # add second arg (BINT or string) to first (BINT) (modifies first) 1589 # return result as BINT 1590 1591 # set up parameters 1592 my ($class, $x, $y, @r) = (ref($_[0]), @_); 1593 # objectify is costly, so avoid it 1594 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 1595 ($class, $x, $y, @r) = objectify(2, @_); 1596 } 1597 1598 return $x if $x->modify('badd'); 1599 return $upgrade->badd($upgrade->new($x), $upgrade->new($y), @r) if defined $upgrade && 1600 ((!$x->isa($class)) || (!$y->isa($class))); 1601 1602 $r[3] = $y; # no push! 1603 # inf and NaN handling 1604 if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/) { 1605 # NaN first 1606 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1607 # inf handling 1608 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) { 1609 # +inf++inf or -inf+-inf => same, rest is NaN 1610 return $x if $x->{sign} eq $y->{sign}; 1611 return $x->bnan(); 1612 } 1613 # +-inf + something => +inf 1614 # something +-inf => +-inf 1615 $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/; 1616 return $x; 1617 } 1618 1619 my ($sx, $sy) = ($x->{sign}, $y->{sign}); # get signs 1620 1621 if ($sx eq $sy) { 1622 $x->{value} = $LIB->_add($x->{value}, $y->{value}); # same sign, abs add 1623 } else { 1624 my $a = $LIB->_acmp ($y->{value}, $x->{value}); # absolute compare 1625 if ($a > 0) { 1626 $x->{value} = $LIB->_sub($y->{value}, $x->{value}, 1); # abs sub w/ swap 1627 $x->{sign} = $sy; 1628 } elsif ($a == 0) { 1629 # speedup, if equal, set result to 0 1630 $x->{value} = $LIB->_zero(); 1631 $x->{sign} = '+'; 1632 } else # a < 0 1633 { 1634 $x->{value} = $LIB->_sub($x->{value}, $y->{value}); # abs sub 1635 } 1636 } 1637 $x->round(@r); 1638} 1639 1640sub bsub { 1641 # (BINT or num_str, BINT or num_str) return BINT 1642 # subtract second arg from first, modify first 1643 1644 # set up parameters 1645 my ($class, $x, $y, @r) = (ref($_[0]), @_); 1646 1647 # objectify is costly, so avoid it 1648 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 1649 ($class, $x, $y, @r) = objectify(2, @_); 1650 } 1651 1652 return $x if $x -> modify('bsub'); 1653 1654 return $upgrade -> new($x) -> bsub($upgrade -> new($y), @r) 1655 if defined $upgrade && (!$x -> isa($class) || !$y -> isa($class)); 1656 1657 return $x -> round(@r) if $y -> is_zero(); 1658 1659 # To correctly handle the lone special case $x -> bsub($x), we note the 1660 # sign of $x, then flip the sign from $y, and if the sign of $x did change, 1661 # too, then we caught the special case: 1662 1663 my $xsign = $x -> {sign}; 1664 $y -> {sign} =~ tr/+-/-+/; # does nothing for NaN 1665 if ($xsign ne $x -> {sign}) { 1666 # special case of $x -> bsub($x) results in 0 1667 return $x -> bzero(@r) if $xsign =~ /^[+-]$/; 1668 return $x -> bnan(); # NaN, -inf, +inf 1669 } 1670 $x -> badd($y, @r); # badd does not leave internal zeros 1671 $y -> {sign} =~ tr/+-/-+/; # refix $y (does nothing for NaN) 1672 $x; # already rounded by badd() or no rounding 1673} 1674 1675sub bmul { 1676 # multiply the first number by the second number 1677 # (BINT or num_str, BINT or num_str) return BINT 1678 1679 # set up parameters 1680 my ($class, $x, $y, @r) = (ref($_[0]), @_); 1681 # objectify is costly, so avoid it 1682 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 1683 ($class, $x, $y, @r) = objectify(2, @_); 1684 } 1685 1686 return $x if $x->modify('bmul'); 1687 1688 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan)); 1689 1690 # inf handling 1691 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) { 1692 return $x->bnan() if $x->is_zero() || $y->is_zero(); 1693 # result will always be +-inf: 1694 # +inf * +/+inf => +inf, -inf * -/-inf => +inf 1695 # +inf * -/-inf => -inf, -inf * +/+inf => -inf 1696 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 1697 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 1698 return $x->binf('-'); 1699 } 1700 1701 return $upgrade->bmul($x, $upgrade->new($y), @r) 1702 if defined $upgrade && !$y->isa($class); 1703 1704 $r[3] = $y; # no push here 1705 1706 $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + 1707 1708 $x->{value} = $LIB->_mul($x->{value}, $y->{value}); # do actual math 1709 $x->{sign} = '+' if $LIB->_is_zero($x->{value}); # no -0 1710 1711 $x->round(@r); 1712} 1713 1714sub bmuladd { 1715 # multiply two numbers and then add the third to the result 1716 # (BINT or num_str, BINT or num_str, BINT or num_str) return BINT 1717 1718 # set up parameters 1719 my ($class, $x, $y, $z, @r) = objectify(3, @_); 1720 1721 return $x if $x->modify('bmuladd'); 1722 1723 return $x->bnan() if (($x->{sign} eq $nan) || 1724 ($y->{sign} eq $nan) || 1725 ($z->{sign} eq $nan)); 1726 1727 # inf handling of x and y 1728 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) { 1729 return $x->bnan() if $x->is_zero() || $y->is_zero(); 1730 # result will always be +-inf: 1731 # +inf * +/+inf => +inf, -inf * -/-inf => +inf 1732 # +inf * -/-inf => -inf, -inf * +/+inf => -inf 1733 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/); 1734 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/); 1735 return $x->binf('-'); 1736 } 1737 # inf handling x*y and z 1738 if (($z->{sign} =~ /^[+-]inf$/)) { 1739 # something +-inf => +-inf 1740 $x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/; 1741 } 1742 1743 return $upgrade->bmuladd($x, $upgrade->new($y), $upgrade->new($z), @r) 1744 if defined $upgrade && (!$y->isa($class) || !$z->isa($class) || !$x->isa($class)); 1745 1746 # TODO: what if $y and $z have A or P set? 1747 $r[3] = $z; # no push here 1748 1749 $x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => + 1750 1751 $x->{value} = $LIB->_mul($x->{value}, $y->{value}); # do actual math 1752 $x->{sign} = '+' if $LIB->_is_zero($x->{value}); # no -0 1753 1754 my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs 1755 1756 if ($sx eq $sz) { 1757 $x->{value} = $LIB->_add($x->{value}, $z->{value}); # same sign, abs add 1758 } else { 1759 my $a = $LIB->_acmp ($z->{value}, $x->{value}); # absolute compare 1760 if ($a > 0) { 1761 $x->{value} = $LIB->_sub($z->{value}, $x->{value}, 1); # abs sub w/ swap 1762 $x->{sign} = $sz; 1763 } elsif ($a == 0) { 1764 # speedup, if equal, set result to 0 1765 $x->{value} = $LIB->_zero(); 1766 $x->{sign} = '+'; 1767 } else # a < 0 1768 { 1769 $x->{value} = $LIB->_sub($x->{value}, $z->{value}); # abs sub 1770 } 1771 } 1772 $x->round(@r); 1773} 1774 1775sub bdiv { 1776 # This does floored division, where the quotient is floored, i.e., rounded 1777 # towards negative infinity. As a consequence, the remainder has the same 1778 # sign as the divisor. 1779 1780 # Set up parameters. 1781 my ($class, $x, $y, @r) = (ref($_[0]), @_); 1782 1783 # objectify() is costly, so avoid it if we can. 1784 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 1785 ($class, $x, $y, @r) = objectify(2, @_); 1786 } 1787 1788 return $x if $x -> modify('bdiv'); 1789 1790 my $wantarray = wantarray; # call only once 1791 1792 # At least one argument is NaN. Return NaN for both quotient and the 1793 # modulo/remainder. 1794 1795 if ($x -> is_nan() || $y -> is_nan()) { 1796 return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan(); 1797 } 1798 1799 # Divide by zero and modulo zero. 1800 # 1801 # Division: Use the common convention that x / 0 is inf with the same sign 1802 # as x, except when x = 0, where we return NaN. This is also what earlier 1803 # versions did. 1804 # 1805 # Modulo: In modular arithmetic, the congruence relation z = x (mod y) 1806 # means that there is some integer k such that z - x = k y. If y = 0, we 1807 # get z - x = 0 or z = x. This is also what earlier versions did, except 1808 # that 0 % 0 returned NaN. 1809 # 1810 # inf / 0 = inf inf % 0 = inf 1811 # 5 / 0 = inf 5 % 0 = 5 1812 # 0 / 0 = NaN 0 % 0 = 0 1813 # -5 / 0 = -inf -5 % 0 = -5 1814 # -inf / 0 = -inf -inf % 0 = -inf 1815 1816 if ($y -> is_zero()) { 1817 my $rem; 1818 if ($wantarray) { 1819 $rem = $x -> copy(); 1820 } 1821 if ($x -> is_zero()) { 1822 $x -> bnan(); 1823 } else { 1824 $x -> binf($x -> {sign}); 1825 } 1826 return $wantarray ? ($x, $rem) : $x; 1827 } 1828 1829 # Numerator (dividend) is +/-inf, and denominator is finite and non-zero. 1830 # The divide by zero cases are covered above. In all of the cases listed 1831 # below we return the same as core Perl. 1832 # 1833 # inf / -inf = NaN inf % -inf = NaN 1834 # inf / -5 = -inf inf % -5 = NaN 1835 # inf / 5 = inf inf % 5 = NaN 1836 # inf / inf = NaN inf % inf = NaN 1837 # 1838 # -inf / -inf = NaN -inf % -inf = NaN 1839 # -inf / -5 = inf -inf % -5 = NaN 1840 # -inf / 5 = -inf -inf % 5 = NaN 1841 # -inf / inf = NaN -inf % inf = NaN 1842 1843 if ($x -> is_inf()) { 1844 my $rem; 1845 $rem = $class -> bnan() if $wantarray; 1846 if ($y -> is_inf()) { 1847 $x -> bnan(); 1848 } else { 1849 my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-'; 1850 $x -> binf($sign); 1851 } 1852 return $wantarray ? ($x, $rem) : $x; 1853 } 1854 1855 # Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf 1856 # are covered above. In the modulo cases (in the right column) we return 1857 # the same as core Perl, which does floored division, so for consistency we 1858 # also do floored division in the division cases (in the left column). 1859 # 1860 # -5 / inf = -1 -5 % inf = inf 1861 # 0 / inf = 0 0 % inf = 0 1862 # 5 / inf = 0 5 % inf = 5 1863 # 1864 # -5 / -inf = 0 -5 % -inf = -5 1865 # 0 / -inf = 0 0 % -inf = 0 1866 # 5 / -inf = -1 5 % -inf = -inf 1867 1868 if ($y -> is_inf()) { 1869 my $rem; 1870 if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) { 1871 $rem = $x -> copy() if $wantarray; 1872 $x -> bzero(); 1873 } else { 1874 $rem = $class -> binf($y -> {sign}) if $wantarray; 1875 $x -> bone('-'); 1876 } 1877 return $wantarray ? ($x, $rem) : $x; 1878 } 1879 1880 # At this point, both the numerator and denominator are finite numbers, and 1881 # the denominator (divisor) is non-zero. 1882 1883 return $upgrade -> bdiv($upgrade -> new($x), $upgrade -> new($y), @r) 1884 if defined $upgrade; 1885 1886 $r[3] = $y; # no push! 1887 1888 # Inialize remainder. 1889 1890 my $rem = $class -> bzero(); 1891 1892 # Are both operands the same object, i.e., like $x -> bdiv($x)? If so, 1893 # flipping the sign of $y also flips the sign of $x. 1894 1895 my $xsign = $x -> {sign}; 1896 my $ysign = $y -> {sign}; 1897 1898 $y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ... 1899 my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x. 1900 $y -> {sign} = $ysign; # Re-insert the original sign. 1901 1902 if ($same) { 1903 $x -> bone(); 1904 } else { 1905 ($x -> {value}, $rem -> {value}) = 1906 $LIB -> _div($x -> {value}, $y -> {value}); 1907 1908 if ($LIB -> _is_zero($rem -> {value})) { 1909 if ($xsign eq $ysign || $LIB -> _is_zero($x -> {value})) { 1910 $x -> {sign} = '+'; 1911 } else { 1912 $x -> {sign} = '-'; 1913 } 1914 } else { 1915 if ($xsign eq $ysign) { 1916 $x -> {sign} = '+'; 1917 } else { 1918 if ($xsign eq '+') { 1919 $x -> badd(1); 1920 } else { 1921 $x -> bsub(1); 1922 } 1923 $x -> {sign} = '-'; 1924 } 1925 } 1926 } 1927 1928 $x -> round(@r); 1929 1930 if ($wantarray) { 1931 unless ($LIB -> _is_zero($rem -> {value})) { 1932 if ($xsign ne $ysign) { 1933 $rem = $y -> copy() -> babs() -> bsub($rem); 1934 } 1935 $rem -> {sign} = $ysign; 1936 } 1937 $rem -> {_a} = $x -> {_a}; 1938 $rem -> {_p} = $x -> {_p}; 1939 $rem -> round(@r); 1940 return ($x, $rem); 1941 } 1942 1943 return $x; 1944} 1945 1946sub btdiv { 1947 # This does truncated division, where the quotient is truncted, i.e., 1948 # rounded towards zero. 1949 # 1950 # ($q, $r) = $x -> btdiv($y) returns $q and $r so that $q is int($x / $y) 1951 # and $q * $y + $r = $x. 1952 1953 # Set up parameters 1954 my ($class, $x, $y, @r) = (ref($_[0]), @_); 1955 1956 # objectify is costly, so avoid it if we can. 1957 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 1958 ($class, $x, $y, @r) = objectify(2, @_); 1959 } 1960 1961 return $x if $x -> modify('btdiv'); 1962 1963 my $wantarray = wantarray; # call only once 1964 1965 # At least one argument is NaN. Return NaN for both quotient and the 1966 # modulo/remainder. 1967 1968 if ($x -> is_nan() || $y -> is_nan()) { 1969 return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan(); 1970 } 1971 1972 # Divide by zero and modulo zero. 1973 # 1974 # Division: Use the common convention that x / 0 is inf with the same sign 1975 # as x, except when x = 0, where we return NaN. This is also what earlier 1976 # versions did. 1977 # 1978 # Modulo: In modular arithmetic, the congruence relation z = x (mod y) 1979 # means that there is some integer k such that z - x = k y. If y = 0, we 1980 # get z - x = 0 or z = x. This is also what earlier versions did, except 1981 # that 0 % 0 returned NaN. 1982 # 1983 # inf / 0 = inf inf % 0 = inf 1984 # 5 / 0 = inf 5 % 0 = 5 1985 # 0 / 0 = NaN 0 % 0 = 0 1986 # -5 / 0 = -inf -5 % 0 = -5 1987 # -inf / 0 = -inf -inf % 0 = -inf 1988 1989 if ($y -> is_zero()) { 1990 my $rem; 1991 if ($wantarray) { 1992 $rem = $x -> copy(); 1993 } 1994 if ($x -> is_zero()) { 1995 $x -> bnan(); 1996 } else { 1997 $x -> binf($x -> {sign}); 1998 } 1999 return $wantarray ? ($x, $rem) : $x; 2000 } 2001 2002 # Numerator (dividend) is +/-inf, and denominator is finite and non-zero. 2003 # The divide by zero cases are covered above. In all of the cases listed 2004 # below we return the same as core Perl. 2005 # 2006 # inf / -inf = NaN inf % -inf = NaN 2007 # inf / -5 = -inf inf % -5 = NaN 2008 # inf / 5 = inf inf % 5 = NaN 2009 # inf / inf = NaN inf % inf = NaN 2010 # 2011 # -inf / -inf = NaN -inf % -inf = NaN 2012 # -inf / -5 = inf -inf % -5 = NaN 2013 # -inf / 5 = -inf -inf % 5 = NaN 2014 # -inf / inf = NaN -inf % inf = NaN 2015 2016 if ($x -> is_inf()) { 2017 my $rem; 2018 $rem = $class -> bnan() if $wantarray; 2019 if ($y -> is_inf()) { 2020 $x -> bnan(); 2021 } else { 2022 my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-'; 2023 $x -> binf($sign); 2024 } 2025 return $wantarray ? ($x, $rem) : $x; 2026 } 2027 2028 # Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf 2029 # are covered above. In the modulo cases (in the right column) we return 2030 # the same as core Perl, which does floored division, so for consistency we 2031 # also do floored division in the division cases (in the left column). 2032 # 2033 # -5 / inf = 0 -5 % inf = -5 2034 # 0 / inf = 0 0 % inf = 0 2035 # 5 / inf = 0 5 % inf = 5 2036 # 2037 # -5 / -inf = 0 -5 % -inf = -5 2038 # 0 / -inf = 0 0 % -inf = 0 2039 # 5 / -inf = 0 5 % -inf = 5 2040 2041 if ($y -> is_inf()) { 2042 my $rem; 2043 $rem = $x -> copy() if $wantarray; 2044 $x -> bzero(); 2045 return $wantarray ? ($x, $rem) : $x; 2046 } 2047 2048 return $upgrade -> btdiv($upgrade -> new($x), $upgrade -> new($y), @r) 2049 if defined $upgrade; 2050 2051 $r[3] = $y; # no push! 2052 2053 # Inialize remainder. 2054 2055 my $rem = $class -> bzero(); 2056 2057 # Are both operands the same object, i.e., like $x -> bdiv($x)? If so, 2058 # flipping the sign of $y also flips the sign of $x. 2059 2060 my $xsign = $x -> {sign}; 2061 my $ysign = $y -> {sign}; 2062 2063 $y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ... 2064 my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x. 2065 $y -> {sign} = $ysign; # Re-insert the original sign. 2066 2067 if ($same) { 2068 $x -> bone(); 2069 } else { 2070 ($x -> {value}, $rem -> {value}) = 2071 $LIB -> _div($x -> {value}, $y -> {value}); 2072 2073 $x -> {sign} = $xsign eq $ysign ? '+' : '-'; 2074 $x -> {sign} = '+' if $LIB -> _is_zero($x -> {value}); 2075 $x -> round(@r); 2076 } 2077 2078 if (wantarray) { 2079 $rem -> {sign} = $xsign; 2080 $rem -> {sign} = '+' if $LIB -> _is_zero($rem -> {value}); 2081 $rem -> {_a} = $x -> {_a}; 2082 $rem -> {_p} = $x -> {_p}; 2083 $rem -> round(@r); 2084 return ($x, $rem); 2085 } 2086 2087 return $x; 2088} 2089 2090sub bmod { 2091 # This is the remainder after floored division. 2092 2093 # Set up parameters. 2094 my ($class, $x, $y, @r) = (ref($_[0]), @_); 2095 2096 # objectify is costly, so avoid it 2097 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2098 ($class, $x, $y, @r) = objectify(2, @_); 2099 } 2100 2101 return $x if $x -> modify('bmod'); 2102 $r[3] = $y; # no push! 2103 2104 # At least one argument is NaN. 2105 2106 if ($x -> is_nan() || $y -> is_nan()) { 2107 return $x -> bnan(); 2108 } 2109 2110 # Modulo zero. See documentation for bdiv(). 2111 2112 if ($y -> is_zero()) { 2113 return $x; 2114 } 2115 2116 # Numerator (dividend) is +/-inf. 2117 2118 if ($x -> is_inf()) { 2119 return $x -> bnan(); 2120 } 2121 2122 # Denominator (divisor) is +/-inf. 2123 2124 if ($y -> is_inf()) { 2125 if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) { 2126 return $x; 2127 } else { 2128 return $x -> binf($y -> sign()); 2129 } 2130 } 2131 2132 # Calc new sign and in case $y == +/- 1, return $x. 2133 2134 $x -> {value} = $LIB -> _mod($x -> {value}, $y -> {value}); 2135 if ($LIB -> _is_zero($x -> {value})) { 2136 $x -> {sign} = '+'; # do not leave -0 2137 } else { 2138 $x -> {value} = $LIB -> _sub($y -> {value}, $x -> {value}, 1) # $y-$x 2139 if ($x -> {sign} ne $y -> {sign}); 2140 $x -> {sign} = $y -> {sign}; 2141 } 2142 2143 $x -> round(@r); 2144} 2145 2146sub btmod { 2147 # Remainder after truncated division. 2148 2149 # set up parameters 2150 my ($class, $x, $y, @r) = (ref($_[0]), @_); 2151 2152 # objectify is costly, so avoid it 2153 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2154 ($class, $x, $y, @r) = objectify(2, @_); 2155 } 2156 2157 return $x if $x -> modify('btmod'); 2158 2159 # At least one argument is NaN. 2160 2161 if ($x -> is_nan() || $y -> is_nan()) { 2162 return $x -> bnan(); 2163 } 2164 2165 # Modulo zero. See documentation for btdiv(). 2166 2167 if ($y -> is_zero()) { 2168 return $x; 2169 } 2170 2171 # Numerator (dividend) is +/-inf. 2172 2173 if ($x -> is_inf()) { 2174 return $x -> bnan(); 2175 } 2176 2177 # Denominator (divisor) is +/-inf. 2178 2179 if ($y -> is_inf()) { 2180 return $x; 2181 } 2182 2183 return $upgrade -> btmod($upgrade -> new($x), $upgrade -> new($y), @r) 2184 if defined $upgrade; 2185 2186 $r[3] = $y; # no push! 2187 2188 my $xsign = $x -> {sign}; 2189 2190 $x -> {value} = $LIB -> _mod($x -> {value}, $y -> {value}); 2191 2192 $x -> {sign} = $xsign; 2193 $x -> {sign} = '+' if $LIB -> _is_zero($x -> {value}); 2194 $x -> round(@r); 2195 return $x; 2196} 2197 2198sub bmodinv { 2199 # Return modular multiplicative inverse: 2200 # 2201 # z is the modular inverse of x (mod y) if and only if 2202 # 2203 # x*z ≡ 1 (mod y) 2204 # 2205 # If the modulus y is larger than one, x and z are relative primes (i.e., 2206 # their greatest common divisor is one). 2207 # 2208 # If no modular multiplicative inverse exists, NaN is returned. 2209 2210 # set up parameters 2211 my ($class, $x, $y, @r) = (undef, @_); 2212 # objectify is costly, so avoid it 2213 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2214 ($class, $x, $y, @r) = objectify(2, @_); 2215 } 2216 2217 return $x if $x->modify('bmodinv'); 2218 2219 # Return NaN if one or both arguments is +inf, -inf, or nan. 2220 2221 return $x->bnan() if ($y->{sign} !~ /^[+-]$/ || 2222 $x->{sign} !~ /^[+-]$/); 2223 2224 # Return NaN if $y is zero; 1 % 0 makes no sense. 2225 2226 return $x->bnan() if $y->is_zero(); 2227 2228 # Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite 2229 # integers $x. 2230 2231 return $x->bzero() if ($y->is_one() || 2232 $y->is_one('-')); 2233 2234 # Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when 2235 # $x = 0 is when $y = 1 or $y = -1, but that was covered above. 2236 # 2237 # Note that computing $x modulo $y here affects the value we'll feed to 2238 # $LIB->_modinv() below when $x and $y have opposite signs. E.g., if $x = 2239 # 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and 2240 # $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7. 2241 # The value if $x is affected only when $x and $y have opposite signs. 2242 2243 $x->bmod($y); 2244 return $x->bnan() if $x->is_zero(); 2245 2246 # Compute the modular multiplicative inverse of the absolute values. We'll 2247 # correct for the signs of $x and $y later. Return NaN if no GCD is found. 2248 2249 ($x->{value}, $x->{sign}) = $LIB->_modinv($x->{value}, $y->{value}); 2250 return $x->bnan() if !defined $x->{value}; 2251 2252 # Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions 2253 # <= 1.32 return undef rather than a "+" for the sign. 2254 2255 $x->{sign} = '+' unless defined $x->{sign}; 2256 2257 # When one or both arguments are negative, we have the following 2258 # relations. If x and y are positive: 2259 # 2260 # modinv(-x, -y) = -modinv(x, y) 2261 # modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y) 2262 # modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y) 2263 2264 # We must swap the sign of the result if the original $x is negative. 2265 # However, we must compensate for ignoring the signs when computing the 2266 # inverse modulo. The net effect is that we must swap the sign of the 2267 # result if $y is negative. 2268 2269 $x -> bneg() if $y->{sign} eq '-'; 2270 2271 # Compute $x modulo $y again after correcting the sign. 2272 2273 $x -> bmod($y) if $x->{sign} ne $y->{sign}; 2274 2275 return $x; 2276} 2277 2278sub bmodpow { 2279 # Modular exponentiation. Raises a very large number to a very large exponent 2280 # in a given very large modulus quickly, thanks to binary exponentiation. 2281 # Supports negative exponents. 2282 my ($class, $num, $exp, $mod, @r) = objectify(3, @_); 2283 2284 return $num if $num->modify('bmodpow'); 2285 2286 # When the exponent 'e' is negative, use the following relation, which is 2287 # based on finding the multiplicative inverse 'd' of 'b' modulo 'm': 2288 # 2289 # b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m) 2290 2291 $num->bmodinv($mod) if ($exp->{sign} eq '-'); 2292 2293 # Check for valid input. All operands must be finite, and the modulus must be 2294 # non-zero. 2295 2296 return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf 2297 $exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf 2298 $mod->{sign} =~ /NaN|inf/); # NaN, -inf, +inf 2299 2300 # Modulo zero. See documentation for Math::BigInt's bmod() method. 2301 2302 if ($mod -> is_zero()) { 2303 if ($num -> is_zero()) { 2304 return $class -> bnan(); 2305 } else { 2306 return $num -> copy(); 2307 } 2308 } 2309 2310 # Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting 2311 # value is zero, the output is also zero, regardless of the signs on 'a' and 2312 # 'm'. 2313 2314 my $value = $LIB->_modpow($num->{value}, $exp->{value}, $mod->{value}); 2315 my $sign = '+'; 2316 2317 # If the resulting value is non-zero, we have four special cases, depending 2318 # on the signs on 'a' and 'm'. 2319 2320 unless ($LIB->_is_zero($value)) { 2321 2322 # There is a negative sign on 'a' (= $num**$exp) only if the number we 2323 # are exponentiating ($num) is negative and the exponent ($exp) is odd. 2324 2325 if ($num->{sign} eq '-' && $exp->is_odd()) { 2326 2327 # When both the number 'a' and the modulus 'm' have a negative sign, 2328 # use this relation: 2329 # 2330 # -a (mod -m) = -(a (mod m)) 2331 2332 if ($mod->{sign} eq '-') { 2333 $sign = '-'; 2334 } 2335 2336 # When only the number 'a' has a negative sign, use this relation: 2337 # 2338 # -a (mod m) = m - (a (mod m)) 2339 2340 else { 2341 # Use copy of $mod since _sub() modifies the first argument. 2342 my $mod = $LIB->_copy($mod->{value}); 2343 $value = $LIB->_sub($mod, $value); 2344 $sign = '+'; 2345 } 2346 2347 } else { 2348 2349 # When only the modulus 'm' has a negative sign, use this relation: 2350 # 2351 # a (mod -m) = (a (mod m)) - m 2352 # = -(m - (a (mod m))) 2353 2354 if ($mod->{sign} eq '-') { 2355 # Use copy of $mod since _sub() modifies the first argument. 2356 my $mod = $LIB->_copy($mod->{value}); 2357 $value = $LIB->_sub($mod, $value); 2358 $sign = '-'; 2359 } 2360 2361 # When neither the number 'a' nor the modulus 'm' have a negative 2362 # sign, directly return the already computed value. 2363 # 2364 # (a (mod m)) 2365 2366 } 2367 2368 } 2369 2370 $num->{value} = $value; 2371 $num->{sign} = $sign; 2372 2373 return $num -> round(@r); 2374} 2375 2376sub bpow { 2377 # (BINT or num_str, BINT or num_str) return BINT 2378 # compute power of two numbers -- stolen from Knuth Vol 2 pg 233 2379 # modifies first argument 2380 2381 # set up parameters 2382 my ($class, $x, $y, @r) = (ref($_[0]), @_); 2383 # objectify is costly, so avoid it 2384 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2385 ($class, $x, $y, @r) = objectify(2, @_); 2386 } 2387 2388 return $x if $x->modify('bpow'); 2389 2390 # $x and/or $y is a NaN 2391 return $x->bnan() if $x->is_nan() || $y->is_nan(); 2392 2393 # $x and/or $y is a +/-Inf 2394 if ($x->is_inf("-")) { 2395 return $x->bzero() if $y->is_negative(); 2396 return $x->bnan() if $y->is_zero(); 2397 return $x if $y->is_odd(); 2398 return $x->bneg(); 2399 } elsif ($x->is_inf("+")) { 2400 return $x->bzero() if $y->is_negative(); 2401 return $x->bnan() if $y->is_zero(); 2402 return $x; 2403 } elsif ($y->is_inf("-")) { 2404 return $x->bnan() if $x -> is_one("-"); 2405 return $x->binf("+") if $x -> is_zero(); 2406 return $x->bone() if $x -> is_one("+"); 2407 return $x->bzero(); 2408 } elsif ($y->is_inf("+")) { 2409 return $x->bnan() if $x -> is_one("-"); 2410 return $x->bzero() if $x -> is_zero(); 2411 return $x->bone() if $x -> is_one("+"); 2412 return $x->binf("+"); 2413 } 2414 2415 return $upgrade->bpow($upgrade->new($x), $y, @r) 2416 if defined $upgrade && (!$y->isa($class) || $y->{sign} eq '-'); 2417 2418 $r[3] = $y; # no push! 2419 2420 # 0 ** -y => ( 1 / (0 ** y)) => 1 / 0 => +inf 2421 return $x->binf() if $y->is_negative() && $x->is_zero(); 2422 2423 # 1 ** -y => 1 / (1 ** |y|) 2424 return $x->bzero() if $y->is_negative() && !$LIB->_is_one($x->{value}); 2425 2426 $x->{value} = $LIB->_pow($x->{value}, $y->{value}); 2427 $x->{sign} = $x->is_negative() && $y->is_odd() ? '-' : '+'; 2428 $x->round(@r); 2429} 2430 2431sub blog { 2432 # Return the logarithm of the operand. If a second operand is defined, that 2433 # value is used as the base, otherwise the base is assumed to be Euler's 2434 # constant. 2435 2436 my ($class, $x, $base, @r); 2437 2438 # Don't objectify the base, since an undefined base, as in $x->blog() or 2439 # $x->blog(undef) signals that the base is Euler's number. 2440 2441 if (!ref($_[0]) && $_[0] =~ /^[A-Za-z]|::/) { 2442 # E.g., Math::BigInt->blog(256, 2) 2443 ($class, $x, $base, @r) = 2444 defined $_[2] ? objectify(2, @_) : objectify(1, @_); 2445 } else { 2446 # E.g., Math::BigInt::blog(256, 2) or $x->blog(2) 2447 ($class, $x, $base, @r) = 2448 defined $_[1] ? objectify(2, @_) : objectify(1, @_); 2449 } 2450 2451 return $x if $x->modify('blog'); 2452 2453 # Handle all exception cases and all trivial cases. I have used Wolfram 2454 # Alpha (http://www.wolframalpha.com) as the reference for these cases. 2455 2456 return $x -> bnan() if $x -> is_nan(); 2457 2458 if (defined $base) { 2459 $base = $class -> new($base) unless ref $base; 2460 if ($base -> is_nan() || $base -> is_one()) { 2461 return $x -> bnan(); 2462 } elsif ($base -> is_inf() || $base -> is_zero()) { 2463 return $x -> bnan() if $x -> is_inf() || $x -> is_zero(); 2464 return $x -> bzero(); 2465 } elsif ($base -> is_negative()) { # -inf < base < 0 2466 return $x -> bzero() if $x -> is_one(); # x = 1 2467 return $x -> bone() if $x == $base; # x = base 2468 return $x -> bnan(); # otherwise 2469 } 2470 return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf 2471 } 2472 2473 # We now know that the base is either undefined or >= 2 and finite. 2474 2475 return $x -> binf('+') if $x -> is_inf(); # x = +/-inf 2476 return $x -> bnan() if $x -> is_neg(); # -inf < x < 0 2477 return $x -> bzero() if $x -> is_one(); # x = 1 2478 return $x -> binf('-') if $x -> is_zero(); # x = 0 2479 2480 # At this point we are done handling all exception cases and trivial cases. 2481 2482 return $upgrade -> blog($upgrade -> new($x), $base, @r) if defined $upgrade; 2483 2484 # fix for bug #24969: 2485 # the default base is e (Euler's number) which is not an integer 2486 if (!defined $base) { 2487 require Math::BigFloat; 2488 my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int(); 2489 # modify $x in place 2490 $x->{value} = $u->{value}; 2491 $x->{sign} = $u->{sign}; 2492 return $x; 2493 } 2494 2495 my ($rc) = $LIB->_log_int($x->{value}, $base->{value}); 2496 return $x->bnan() unless defined $rc; # not possible to take log? 2497 $x->{value} = $rc; 2498 $x->round(@r); 2499} 2500 2501sub bexp { 2502 # Calculate e ** $x (Euler's number to the power of X), truncated to 2503 # an integer value. 2504 my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_); 2505 return $x if $x->modify('bexp'); 2506 2507 # inf, -inf, NaN, <0 => NaN 2508 return $x->bnan() if $x->{sign} eq 'NaN'; 2509 return $x->bone() if $x->is_zero(); 2510 return $x if $x->{sign} eq '+inf'; 2511 return $x->bzero() if $x->{sign} eq '-inf'; 2512 2513 my $u; 2514 { 2515 # run through Math::BigFloat unless told otherwise 2516 require Math::BigFloat unless defined $upgrade; 2517 local $upgrade = 'Math::BigFloat' unless defined $upgrade; 2518 # calculate result, truncate it to integer 2519 $u = $upgrade->bexp($upgrade->new($x), @r); 2520 } 2521 2522 if (defined $upgrade) { 2523 $x = $u; 2524 } else { 2525 $u = $u->as_int(); 2526 # modify $x in place 2527 $x->{value} = $u->{value}; 2528 $x->round(@r); 2529 } 2530} 2531 2532sub bnok { 2533 # Calculate n over k (binomial coefficient or "choose" function) as 2534 # integer. 2535 2536 # Set up parameters. 2537 my ($self, $n, $k, @r) = (ref($_[0]), @_); 2538 2539 # Objectify is costly, so avoid it. 2540 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2541 ($self, $n, $k, @r) = objectify(2, @_); 2542 } 2543 2544 return $n if $n->modify('bnok'); 2545 2546 # All cases where at least one argument is NaN. 2547 2548 return $n->bnan() if $n->{sign} eq 'NaN' || $k->{sign} eq 'NaN'; 2549 2550 # All cases where at least one argument is +/-inf. 2551 2552 if ($n -> is_inf()) { 2553 if ($k -> is_inf()) { # bnok(+/-inf,+/-inf) 2554 return $n -> bnan(); 2555 } elsif ($k -> is_neg()) { # bnok(+/-inf,k), k < 0 2556 return $n -> bzero(); 2557 } elsif ($k -> is_zero()) { # bnok(+/-inf,k), k = 0 2558 return $n -> bone(); 2559 } else { 2560 if ($n -> is_inf("+")) { # bnok(+inf,k), 0 < k < +inf 2561 return $n -> binf("+"); 2562 } else { # bnok(-inf,k), k > 0 2563 my $sign = $k -> is_even() ? "+" : "-"; 2564 return $n -> binf($sign); 2565 } 2566 } 2567 } 2568 2569 elsif ($k -> is_inf()) { # bnok(n,+/-inf), -inf <= n <= inf 2570 return $n -> bnan(); 2571 } 2572 2573 # At this point, both n and k are real numbers. 2574 2575 my $sign = 1; 2576 2577 if ($n >= 0) { 2578 if ($k < 0 || $k > $n) { 2579 return $n -> bzero(); 2580 } 2581 } else { 2582 2583 if ($k >= 0) { 2584 2585 # n < 0 and k >= 0: bnok(n,k) = (-1)^k * bnok(-n+k-1,k) 2586 2587 $sign = (-1) ** $k; 2588 $n -> bneg() -> badd($k) -> bdec(); 2589 2590 } elsif ($k <= $n) { 2591 2592 # n < 0 and k <= n: bnok(n,k) = (-1)^(n-k) * bnok(-k-1,n-k) 2593 2594 $sign = (-1) ** ($n - $k); 2595 my $x0 = $n -> copy(); 2596 $n -> bone() -> badd($k) -> bneg(); 2597 $k = $k -> copy(); 2598 $k -> bneg() -> badd($x0); 2599 2600 } else { 2601 2602 # n < 0 and n < k < 0: 2603 2604 return $n -> bzero(); 2605 } 2606 } 2607 2608 $n->{value} = $LIB->_nok($n->{value}, $k->{value}); 2609 $n -> bneg() if $sign == -1; 2610 2611 $n->round(@r); 2612} 2613 2614sub buparrow { 2615 my $a = shift; 2616 my $y = $a -> uparrow(@_); 2617 $a -> {value} = $y -> {value}; 2618 return $a; 2619} 2620 2621sub uparrow { 2622 # Knuth's up-arrow notation buparrow(a, n, b) 2623 # 2624 # The following is a simple, recursive implementation of the up-arrow 2625 # notation, just to show the idea. Such implementations cause "Deep 2626 # recursion on subroutine ..." warnings, so we use a faster, non-recursive 2627 # algorithm below with @_ as a stack. 2628 # 2629 # sub buparrow { 2630 # my ($a, $n, $b) = @_; 2631 # return $a ** $b if $n == 1; 2632 # return $a * $b if $n == 0; 2633 # return 1 if $b == 0; 2634 # return buparrow($a, $n - 1, buparrow($a, $n, $b - 1)); 2635 # } 2636 2637 my ($a, $b, $n) = @_; 2638 my $class = ref $a; 2639 croak("a must be non-negative") if $a < 0; 2640 croak("n must be non-negative") if $n < 0; 2641 croak("b must be non-negative") if $b < 0; 2642 2643 while (@_ >= 3) { 2644 2645 # return $a ** $b if $n == 1; 2646 2647 if ($_[-2] == 1) { 2648 my ($a, $n, $b) = splice @_, -3; 2649 push @_, $a ** $b; 2650 next; 2651 } 2652 2653 # return $a * $b if $n == 0; 2654 2655 if ($_[-2] == 0) { 2656 my ($a, $n, $b) = splice @_, -3; 2657 push @_, $a * $b; 2658 next; 2659 } 2660 2661 # return 1 if $b == 0; 2662 2663 if ($_[-1] == 0) { 2664 splice @_, -3; 2665 push @_, $class -> bone(); 2666 next; 2667 } 2668 2669 # return buparrow($a, $n - 1, buparrow($a, $n, $b - 1)); 2670 2671 my ($a, $n, $b) = splice @_, -3; 2672 push @_, ($a, $n - 1, 2673 $a, $n, $b - 1); 2674 2675 } 2676 2677 pop @_; 2678} 2679 2680sub backermann { 2681 my $m = shift; 2682 my $y = $m -> ackermann(@_); 2683 $m -> {value} = $y -> {value}; 2684 return $m; 2685} 2686 2687sub ackermann { 2688 # Ackermann's function ackermann(m, n) 2689 # 2690 # The following is a simple, recursive implementation of the ackermann 2691 # function, just to show the idea. Such implementations cause "Deep 2692 # recursion on subroutine ..." warnings, so we use a faster, non-recursive 2693 # algorithm below with @_ as a stack. 2694 # 2695 # sub ackermann { 2696 # my ($m, $n) = @_; 2697 # return $n + 1 if $m == 0; 2698 # return ackermann($m - 1, 1) if $m > 0 && $n == 0; 2699 # return ackermann($m - 1, ackermann($m, $n - 1) if $m > 0 && $n > 0; 2700 # } 2701 2702 my ($m, $n) = @_; 2703 my $class = ref $m; 2704 croak("m must be non-negative") if $m < 0; 2705 croak("n must be non-negative") if $n < 0; 2706 2707 my $two = $class -> new("2"); 2708 my $three = $class -> new("3"); 2709 my $thirteen = $class -> new("13"); 2710 2711 $n = pop; 2712 $n = $class -> new($n) unless ref($n); 2713 while (@_) { 2714 my $m = pop; 2715 if ($m > $three) { 2716 push @_, (--$m) x $n; 2717 while (--$m >= $three) { 2718 push @_, $m; 2719 } 2720 $n = $thirteen; 2721 } elsif ($m == $three) { 2722 $n = $class -> bone() -> blsft($n + $three) -> bsub($three); 2723 } elsif ($m == $two) { 2724 $n -> bmul($two) -> badd($three); 2725 } elsif ($m >= 0) { 2726 $n -> badd($m) -> binc(); 2727 } else { 2728 die "negative m!"; 2729 } 2730 } 2731 $n; 2732} 2733 2734sub bsin { 2735 # Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the 2736 # result truncated to an integer. 2737 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2738 2739 return $x if $x->modify('bsin'); 2740 2741 return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN 2742 2743 return $upgrade->new($x)->bsin(@r) if defined $upgrade; 2744 2745 require Math::BigFloat; 2746 # calculate the result and truncate it to integer 2747 my $t = Math::BigFloat->new($x)->bsin(@r)->as_int(); 2748 2749 $x->bone() if $t->is_one(); 2750 $x->bzero() if $t->is_zero(); 2751 $x->round(@r); 2752} 2753 2754sub bcos { 2755 # Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the 2756 # result truncated to an integer. 2757 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2758 2759 return $x if $x->modify('bcos'); 2760 2761 return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN 2762 2763 return $upgrade->new($x)->bcos(@r) if defined $upgrade; 2764 2765 require Math::BigFloat; 2766 # calculate the result and truncate it to integer 2767 my $t = Math::BigFloat->new($x)->bcos(@r)->as_int(); 2768 2769 $x->bone() if $t->is_one(); 2770 $x->bzero() if $t->is_zero(); 2771 $x->round(@r); 2772} 2773 2774sub batan { 2775 # Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the 2776 # result truncated to an integer. 2777 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2778 2779 return $x if $x->modify('batan'); 2780 2781 return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN 2782 2783 return $upgrade->new($x)->batan(@r) if defined $upgrade; 2784 2785 # calculate the result and truncate it to integer 2786 my $tmp = Math::BigFloat->new($x)->batan(@r); 2787 2788 $x->{value} = $LIB->_new($tmp->as_int()->bstr()); 2789 $x->round(@r); 2790} 2791 2792sub batan2 { 2793 # calculate arcus tangens of ($y/$x) 2794 2795 # set up parameters 2796 my ($class, $y, $x, @r) = (ref($_[0]), @_); 2797 # objectify is costly, so avoid it 2798 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 2799 ($class, $y, $x, @r) = objectify(2, @_); 2800 } 2801 2802 return $y if $y->modify('batan2'); 2803 2804 return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan); 2805 2806 # Y X 2807 # != 0 -inf result is +- pi 2808 if ($x->is_inf() || $y->is_inf()) { 2809 # upgrade to Math::BigFloat etc. 2810 return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade; 2811 if ($y->is_inf()) { 2812 if ($x->{sign} eq '-inf') { 2813 # calculate 3 pi/4 => 2.3.. => 2 2814 $y->bone(substr($y->{sign}, 0, 1)); 2815 $y->bmul($class->new(2)); 2816 } elsif ($x->{sign} eq '+inf') { 2817 # calculate pi/4 => 0.7 => 0 2818 $y->bzero(); 2819 } else { 2820 # calculate pi/2 => 1.5 => 1 2821 $y->bone(substr($y->{sign}, 0, 1)); 2822 } 2823 } else { 2824 if ($x->{sign} eq '+inf') { 2825 # calculate pi/4 => 0.7 => 0 2826 $y->bzero(); 2827 } else { 2828 # PI => 3.1415.. => 3 2829 $y->bone(substr($y->{sign}, 0, 1)); 2830 $y->bmul($class->new(3)); 2831 } 2832 } 2833 return $y; 2834 } 2835 2836 return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade; 2837 2838 require Math::BigFloat; 2839 my $r = Math::BigFloat->new($y) 2840 ->batan2(Math::BigFloat->new($x), @r) 2841 ->as_int(); 2842 2843 $x->{value} = $r->{value}; 2844 $x->{sign} = $r->{sign}; 2845 2846 $x; 2847} 2848 2849sub bsqrt { 2850 # calculate square root of $x 2851 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2852 2853 return $x if $x->modify('bsqrt'); 2854 2855 return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN 2856 return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf 2857 2858 return $upgrade->bsqrt($x, @r) if defined $upgrade; 2859 2860 $x->{value} = $LIB->_sqrt($x->{value}); 2861 $x->round(@r); 2862} 2863 2864sub broot { 2865 # calculate $y'th root of $x 2866 2867 # set up parameters 2868 my ($class, $x, $y, @r) = (ref($_[0]), @_); 2869 2870 $y = $class->new(2) unless defined $y; 2871 2872 # objectify is costly, so avoid it 2873 if ((!ref($x)) || (ref($x) ne ref($y))) { 2874 ($class, $x, $y, @r) = objectify(2, $class || $class, @_); 2875 } 2876 2877 return $x if $x->modify('broot'); 2878 2879 # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0 2880 return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() || 2881 $y->{sign} !~ /^\+$/; 2882 2883 return $x->round(@r) 2884 if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one(); 2885 2886 return $upgrade->new($x)->broot($upgrade->new($y), @r) if defined $upgrade; 2887 2888 $x->{value} = $LIB->_root($x->{value}, $y->{value}); 2889 $x->round(@r); 2890} 2891 2892sub bfac { 2893 # (BINT or num_str, BINT or num_str) return BINT 2894 # compute factorial number from $x, modify $x in place 2895 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2896 2897 return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf 2898 return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN 2899 2900 $x->{value} = $LIB->_fac($x->{value}); 2901 $x->round(@r); 2902} 2903 2904sub bdfac { 2905 # compute double factorial, modify $x in place 2906 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 2907 2908 return $x if $x->modify('bdfac') || $x->{sign} eq '+inf'; # inf => inf 2909 return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN 2910 2911 croak("bdfac() requires a newer version of the $LIB library.") 2912 unless $LIB->can('_dfac'); 2913 2914 $x->{value} = $LIB->_dfac($x->{value}); 2915 $x->round(@r); 2916} 2917 2918sub bfib { 2919 # compute Fibonacci number(s) 2920 my ($class, $x, @r) = objectify(1, @_); 2921 2922 croak("bfib() requires a newer version of the $LIB library.") 2923 unless $LIB->can('_fib'); 2924 2925 return $x if $x->modify('bfib'); 2926 2927 # List context. 2928 2929 if (wantarray) { 2930 return () if $x -> is_nan(); 2931 croak("bfib() can't return an infinitely long list of numbers") 2932 if $x -> is_inf(); 2933 2934 # Use the backend library to compute the first $x Fibonacci numbers. 2935 2936 my @values = $LIB->_fib($x->{value}); 2937 2938 # Make objects out of them. The last element in the array is the 2939 # invocand. 2940 2941 for (my $i = 0 ; $i < $#values ; ++ $i) { 2942 my $fib = $class -> bzero(); 2943 $fib -> {value} = $values[$i]; 2944 $values[$i] = $fib; 2945 } 2946 2947 $x -> {value} = $values[-1]; 2948 $values[-1] = $x; 2949 2950 # If negative, insert sign as appropriate. 2951 2952 if ($x -> is_neg()) { 2953 for (my $i = 2 ; $i <= $#values ; $i += 2) { 2954 $values[$i]{sign} = '-'; 2955 } 2956 } 2957 2958 @values = map { $_ -> round(@r) } @values; 2959 return @values; 2960 } 2961 2962 # Scalar context. 2963 2964 else { 2965 return $x if $x->modify('bdfac') || $x -> is_inf('+'); 2966 return $x->bnan() if $x -> is_nan() || $x -> is_inf('-'); 2967 2968 $x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+'; 2969 $x->{value} = $LIB->_fib($x->{value}); 2970 return $x->round(@r); 2971 } 2972} 2973 2974sub blucas { 2975 # compute Lucas number(s) 2976 my ($class, $x, @r) = objectify(1, @_); 2977 2978 croak("blucas() requires a newer version of the $LIB library.") 2979 unless $LIB->can('_lucas'); 2980 2981 return $x if $x->modify('blucas'); 2982 2983 # List context. 2984 2985 if (wantarray) { 2986 return () if $x -> is_nan(); 2987 croak("blucas() can't return an infinitely long list of numbers") 2988 if $x -> is_inf(); 2989 2990 # Use the backend library to compute the first $x Lucas numbers. 2991 2992 my @values = $LIB->_lucas($x->{value}); 2993 2994 # Make objects out of them. The last element in the array is the 2995 # invocand. 2996 2997 for (my $i = 0 ; $i < $#values ; ++ $i) { 2998 my $lucas = $class -> bzero(); 2999 $lucas -> {value} = $values[$i]; 3000 $values[$i] = $lucas; 3001 } 3002 3003 $x -> {value} = $values[-1]; 3004 $values[-1] = $x; 3005 3006 # If negative, insert sign as appropriate. 3007 3008 if ($x -> is_neg()) { 3009 for (my $i = 2 ; $i <= $#values ; $i += 2) { 3010 $values[$i]{sign} = '-'; 3011 } 3012 } 3013 3014 @values = map { $_ -> round(@r) } @values; 3015 return @values; 3016 } 3017 3018 # Scalar context. 3019 3020 else { 3021 return $x if $x -> is_inf('+'); 3022 return $x->bnan() if $x -> is_nan() || $x -> is_inf('-'); 3023 3024 $x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+'; 3025 $x->{value} = $LIB->_lucas($x->{value}); 3026 return $x->round(@r); 3027 } 3028} 3029 3030sub blsft { 3031 # (BINT or num_str, BINT or num_str) return BINT 3032 # compute x << y, base n, y >= 0 3033 3034 my ($class, $x, $y, $b, @r); 3035 3036 # Objectify the base only when it is defined, since an undefined base, as 3037 # in $x->blsft(3) or $x->blog(3, undef) means use the default base 2. 3038 3039 if (!ref($_[0]) && $_[0] =~ /^[A-Za-z]|::/) { 3040 # E.g., Math::BigInt->blog(256, 5, 2) 3041 ($class, $x, $y, $b, @r) = 3042 defined $_[3] ? objectify(3, @_) : objectify(2, @_); 3043 } else { 3044 # E.g., Math::BigInt::blog(256, 5, 2) or $x->blog(5, 2) 3045 ($class, $x, $y, $b, @r) = 3046 defined $_[2] ? objectify(3, @_) : objectify(2, @_); 3047 } 3048 3049 return $x if $x -> modify('blsft'); 3050 return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ || 3051 $y -> {sign} !~ /^[+-]$/); 3052 return $x -> round(@r) if $y -> is_zero(); 3053 3054 $b = defined($b) ? $b -> numify() : 2; 3055 3056 # While some of the libraries support an arbitrarily large base, not all of 3057 # them do, so rather than returning an incorrect result in those cases, 3058 # disallow bases that don't work with all libraries. 3059 3060 my $uintmax = ~0; 3061 croak("Base is too large.") if $b > $uintmax; 3062 3063 return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-'; 3064 3065 $x -> {value} = $LIB -> _lsft($x -> {value}, $y -> {value}, $b); 3066 $x -> round(@r); 3067} 3068 3069sub brsft { 3070 # (BINT or num_str, BINT or num_str) return BINT 3071 # compute x >> y, base n, y >= 0 3072 3073 # set up parameters 3074 my ($class, $x, $y, $b, @r) = (ref($_[0]), @_); 3075 3076 # objectify is costly, so avoid it 3077 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 3078 ($class, $x, $y, $b, @r) = objectify(2, @_); 3079 } 3080 3081 return $x if $x -> modify('brsft'); 3082 return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ || $y -> {sign} !~ /^[+-]$/); 3083 return $x -> round(@r) if $y -> is_zero(); 3084 return $x -> bzero(@r) if $x -> is_zero(); # 0 => 0 3085 3086 $b = 2 if !defined $b; 3087 return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-'; 3088 3089 # this only works for negative numbers when shifting in base 2 3090 if (($x -> {sign} eq '-') && ($b == 2)) { 3091 return $x -> round(@r) if $x -> is_one('-'); # -1 => -1 3092 if (!$y -> is_one()) { 3093 # although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et 3094 # al but perhaps there is a better emulation for two's complement 3095 # shift... 3096 # if $y != 1, we must simulate it by doing: 3097 # convert to bin, flip all bits, shift, and be done 3098 $x -> binc(); # -3 => -2 3099 my $bin = $x -> as_bin(); 3100 $bin =~ s/^-0b//; # strip '-0b' prefix 3101 $bin =~ tr/10/01/; # flip bits 3102 # now shift 3103 if ($y >= CORE::length($bin)) { 3104 $bin = '0'; # shifting to far right creates -1 3105 # 0, because later increment makes 3106 # that 1, attached '-' makes it '-1' 3107 # because -1 >> x == -1 ! 3108 } else { 3109 $bin =~ s/.{$y}$//; # cut off at the right side 3110 $bin = '1' . $bin; # extend left side by one dummy '1' 3111 $bin =~ tr/10/01/; # flip bits back 3112 } 3113 my $res = $class -> new('0b' . $bin); # add prefix and convert back 3114 $res -> binc(); # remember to increment 3115 $x -> {value} = $res -> {value}; # take over value 3116 return $x -> round(@r); # we are done now, magic, isn't? 3117 } 3118 3119 # x < 0, n == 2, y == 1 3120 $x -> bdec(); # n == 2, but $y == 1: this fixes it 3121 } 3122 3123 $x -> {value} = $LIB -> _rsft($x -> {value}, $y -> {value}, $b); 3124 $x -> round(@r); 3125} 3126 3127############################################################################### 3128# Bitwise methods 3129############################################################################### 3130 3131sub band { 3132 #(BINT or num_str, BINT or num_str) return BINT 3133 # compute x & y 3134 3135 # set up parameters 3136 my ($class, $x, $y, @r) = (ref($_[0]), @_); 3137 # objectify is costly, so avoid it 3138 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 3139 ($class, $x, $y, @r) = objectify(2, @_); 3140 } 3141 3142 return $x if $x->modify('band'); 3143 3144 $r[3] = $y; # no push! 3145 3146 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 3147 3148 if ($x->{sign} eq '+' && $y->{sign} eq '+') { 3149 $x->{value} = $LIB->_and($x->{value}, $y->{value}); 3150 } else { 3151 ($x->{value}, $x->{sign}) = $LIB->_sand($x->{value}, $x->{sign}, 3152 $y->{value}, $y->{sign}); 3153 } 3154 return $x->round(@r); 3155} 3156 3157sub bior { 3158 #(BINT or num_str, BINT or num_str) return BINT 3159 # compute x | y 3160 3161 # set up parameters 3162 my ($class, $x, $y, @r) = (ref($_[0]), @_); 3163 # objectify is costly, so avoid it 3164 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 3165 ($class, $x, $y, @r) = objectify(2, @_); 3166 } 3167 3168 return $x if $x->modify('bior'); 3169 3170 $r[3] = $y; # no push! 3171 3172 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 3173 3174 if ($x->{sign} eq '+' && $y->{sign} eq '+') { 3175 $x->{value} = $LIB->_or($x->{value}, $y->{value}); 3176 } else { 3177 ($x->{value}, $x->{sign}) = $LIB->_sor($x->{value}, $x->{sign}, 3178 $y->{value}, $y->{sign}); 3179 } 3180 return $x->round(@r); 3181} 3182 3183sub bxor { 3184 #(BINT or num_str, BINT or num_str) return BINT 3185 # compute x ^ y 3186 3187 # set up parameters 3188 my ($class, $x, $y, @r) = (ref($_[0]), @_); 3189 # objectify is costly, so avoid it 3190 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) { 3191 ($class, $x, $y, @r) = objectify(2, @_); 3192 } 3193 3194 return $x if $x->modify('bxor'); 3195 3196 $r[3] = $y; # no push! 3197 3198 return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/); 3199 3200 if ($x->{sign} eq '+' && $y->{sign} eq '+') { 3201 $x->{value} = $LIB->_xor($x->{value}, $y->{value}); 3202 } else { 3203 ($x->{value}, $x->{sign}) = $LIB->_sxor($x->{value}, $x->{sign}, 3204 $y->{value}, $y->{sign}); 3205 } 3206 return $x->round(@r); 3207} 3208 3209sub bnot { 3210 # (num_str or BINT) return BINT 3211 # represent ~x as twos-complement number 3212 # we don't need $class, so undef instead of ref($_[0]) make it slightly faster 3213 my ($class, $x) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 3214 3215 return $x if $x->modify('bnot'); 3216 $x->binc()->bneg(); # binc already does round 3217} 3218 3219############################################################################### 3220# Rounding methods 3221############################################################################### 3222 3223sub round { 3224 # Round $self according to given parameters, or given second argument's 3225 # parameters or global defaults 3226 3227 # for speed reasons, _find_round_parameters is embedded here: 3228 3229 my ($self, $a, $p, $r, @args) = @_; 3230 # $a accuracy, if given by caller 3231 # $p precision, if given by caller 3232 # $r round_mode, if given by caller 3233 # @args all 'other' arguments (0 for unary, 1 for binary ops) 3234 3235 my $class = ref($self); # find out class of argument(s) 3236 no strict 'refs'; 3237 3238 # now pick $a or $p, but only if we have got "arguments" 3239 if (!defined $a) { 3240 foreach ($self, @args) { 3241 # take the defined one, or if both defined, the one that is smaller 3242 $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); 3243 } 3244 } 3245 if (!defined $p) { 3246 # even if $a is defined, take $p, to signal error for both defined 3247 foreach ($self, @args) { 3248 # take the defined one, or if both defined, the one that is bigger 3249 # -2 > -3, and 3 > 2 3250 $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); 3251 } 3252 } 3253 3254 # if still none defined, use globals 3255 unless (defined $a || defined $p) { 3256 $a = ${"$class\::accuracy"}; 3257 $p = ${"$class\::precision"}; 3258 } 3259 3260 # A == 0 is useless, so undef it to signal no rounding 3261 $a = undef if defined $a && $a == 0; 3262 3263 # no rounding today? 3264 return $self unless defined $a || defined $p; # early out 3265 3266 # set A and set P is an fatal error 3267 return $self->bnan() if defined $a && defined $p; 3268 3269 $r = ${"$class\::round_mode"} unless defined $r; 3270 if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) { 3271 croak("Unknown round mode '$r'"); 3272 } 3273 3274 # now round, by calling either bround or bfround: 3275 if (defined $a) { 3276 $self->bround(int($a), $r) if !defined $self->{_a} || $self->{_a} >= $a; 3277 } else { # both can't be undefined due to early out 3278 $self->bfround(int($p), $r) if !defined $self->{_p} || $self->{_p} <= $p; 3279 } 3280 3281 # bround() or bfround() already called bnorm() if nec. 3282 $self; 3283} 3284 3285sub bround { 3286 # accuracy: +$n preserve $n digits from left, 3287 # -$n preserve $n digits from right (f.i. for 0.1234 style in MBF) 3288 # no-op for $n == 0 3289 # and overwrite the rest with 0's, return normalized number 3290 # do not return $x->bnorm(), but $x 3291 3292 my $x = shift; 3293 $x = __PACKAGE__->new($x) unless ref $x; 3294 my ($scale, $mode) = $x->_scale_a(@_); 3295 return $x if !defined $scale || $x->modify('bround'); # no-op 3296 3297 if ($x->is_zero() || $scale == 0) { 3298 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 3299 return $x; 3300 } 3301 return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN 3302 3303 # we have fewer digits than we want to scale to 3304 my $len = $x->length(); 3305 # convert $scale to a scalar in case it is an object (put's a limit on the 3306 # number length, but this would already limited by memory constraints), makes 3307 # it faster 3308 $scale = $scale->numify() if ref ($scale); 3309 3310 # scale < 0, but > -len (not >=!) 3311 if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) { 3312 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2 3313 return $x; 3314 } 3315 3316 # count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6 3317 my ($pad, $digit_round, $digit_after); 3318 $pad = $len - $scale; 3319 $pad = abs($scale-1) if $scale < 0; 3320 3321 # do not use digit(), it is very costly for binary => decimal 3322 # getting the entire string is also costly, but we need to do it only once 3323 my $xs = $LIB->_str($x->{value}); 3324 my $pl = -$pad-1; 3325 3326 # pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4 3327 # pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3 3328 $digit_round = '0'; 3329 $digit_round = substr($xs, $pl, 1) if $pad <= $len; 3330 $pl++; 3331 $pl ++ if $pad >= $len; 3332 $digit_after = '0'; 3333 $digit_after = substr($xs, $pl, 1) if $pad > 0; 3334 3335 # in case of 01234 we round down, for 6789 up, and only in case 5 we look 3336 # closer at the remaining digits of the original $x, remember decision 3337 my $round_up = 1; # default round up 3338 $round_up -- if 3339 ($mode eq 'trunc') || # trunc by round down 3340 ($digit_after =~ /[01234]/) || # round down anyway, 3341 # 6789 => round up 3342 ($digit_after eq '5') && # not 5000...0000 3343 ($x->_scan_for_nonzero($pad, $xs, $len) == 0) && 3344 ( 3345 ($mode eq 'even') && ($digit_round =~ /[24680]/) || 3346 ($mode eq 'odd') && ($digit_round =~ /[13579]/) || 3347 ($mode eq '+inf') && ($x->{sign} eq '-') || 3348 ($mode eq '-inf') && ($x->{sign} eq '+') || 3349 ($mode eq 'zero') # round down if zero, sign adjusted below 3350 ); 3351 my $put_back = 0; # not yet modified 3352 3353 if (($pad > 0) && ($pad <= $len)) { 3354 substr($xs, -$pad, $pad) = '0' x $pad; # replace with '00...' 3355 $put_back = 1; # need to put back 3356 } elsif ($pad > $len) { 3357 $x->bzero(); # round to '0' 3358 } 3359 3360 if ($round_up) { # what gave test above? 3361 $put_back = 1; # need to put back 3362 $pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0 3363 3364 # we modify directly the string variant instead of creating a number and 3365 # adding it, since that is faster (we already have the string) 3366 my $c = 0; 3367 $pad ++; # for $pad == $len case 3368 while ($pad <= $len) { 3369 $c = substr($xs, -$pad, 1) + 1; 3370 $c = '0' if $c eq '10'; 3371 substr($xs, -$pad, 1) = $c; 3372 $pad++; 3373 last if $c != 0; # no overflow => early out 3374 } 3375 $xs = '1'.$xs if $c == 0; 3376 3377 } 3378 $x->{value} = $LIB->_new($xs) if $put_back == 1; # put back, if needed 3379 3380 $x->{_a} = $scale if $scale >= 0; 3381 if ($scale < 0) { 3382 $x->{_a} = $len+$scale; 3383 $x->{_a} = 0 if $scale < -$len; 3384 } 3385 $x; 3386} 3387 3388sub bfround { 3389 # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.' 3390 # $n == 0 || $n == 1 => round to integer 3391 my $x = shift; 3392 my $class = ref($x) || $x; 3393 $x = $class->new($x) unless ref $x; 3394 3395 my ($scale, $mode) = $x->_scale_p(@_); 3396 3397 return $x if !defined $scale || $x->modify('bfround'); # no-op 3398 3399 # no-op for Math::BigInt objects if $n <= 0 3400 $x->bround($x->length()-$scale, $mode) if $scale > 0; 3401 3402 delete $x->{_a}; # delete to save memory 3403 $x->{_p} = $scale; # store new _p 3404 $x; 3405} 3406 3407sub fround { 3408 # Exists to make life easier for switch between MBF and MBI (should we 3409 # autoload fxxx() like MBF does for bxxx()?) 3410 my $x = shift; 3411 $x = __PACKAGE__->new($x) unless ref $x; 3412 $x->bround(@_); 3413} 3414 3415sub bfloor { 3416 # round towards minus infinity; no-op since it's already integer 3417 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 3418 3419 $x->round(@r); 3420} 3421 3422sub bceil { 3423 # round towards plus infinity; no-op since it's already int 3424 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 3425 3426 $x->round(@r); 3427} 3428 3429sub bint { 3430 # round towards zero; no-op since it's already integer 3431 my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 3432 3433 $x->round(@r); 3434} 3435 3436############################################################################### 3437# Other mathematical methods 3438############################################################################### 3439 3440sub bgcd { 3441 # (BINT or num_str, BINT or num_str) return BINT 3442 # does not modify arguments, but returns new object 3443 # GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff) 3444 3445 my ($class, @args) = objectify(0, @_); 3446 3447 my $x = shift @args; 3448 $x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x); 3449 3450 return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN? 3451 3452 while (@args) { 3453 my $y = shift @args; 3454 $y = $class->new($y) unless ref($y) && $y -> isa($class); 3455 return $class->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN? 3456 $x->{value} = $LIB->_gcd($x->{value}, $y->{value}); 3457 last if $LIB->_is_one($x->{value}); 3458 } 3459 3460 return $x -> babs(); 3461} 3462 3463sub blcm { 3464 # (BINT or num_str, BINT or num_str) return BINT 3465 # does not modify arguments, but returns new object 3466 # Least Common Multiple 3467 3468 my ($class, @args) = objectify(0, @_); 3469 3470 my $x = shift @args; 3471 $x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x); 3472 return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN? 3473 3474 while (@args) { 3475 my $y = shift @args; 3476 $y = $class -> new($y) unless ref($y) && $y -> isa($class); 3477 return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y not integer 3478 $x -> {value} = $LIB->_lcm($x -> {value}, $y -> {value}); 3479 } 3480 3481 return $x -> babs(); 3482} 3483 3484############################################################################### 3485# Object property methods 3486############################################################################### 3487 3488sub sign { 3489 # return the sign of the number: +/-/-inf/+inf/NaN 3490 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 3491 3492 $x->{sign}; 3493} 3494 3495sub digit { 3496 # return the nth decimal digit, negative values count backward, 0 is right 3497 my ($class, $x, $n) = ref($_[0]) ? (undef, @_) : objectify(1, @_); 3498 3499 $n = $n->numify() if ref($n); 3500 $LIB->_digit($x->{value}, $n || 0); 3501} 3502 3503sub bdigitsum { 3504 # like digitsum(), but assigns the result to the invocand 3505 my $x = shift; 3506 3507 return $x if $x -> is_nan(); 3508 return $x -> bnan() if $x -> is_inf(); 3509 3510 $x -> {value} = $LIB -> _digitsum($x -> {value}); 3511 $x -> {sign} = '+'; 3512 return $x; 3513} 3514 3515sub digitsum { 3516 # compute sum of decimal digits and return it 3517 my $x = shift; 3518 my $class = ref $x; 3519 3520 return $class -> bnan() if $x -> is_nan(); 3521 return $class -> bnan() if $x -> is_inf(); 3522 3523 my $y = $class -> bzero(); 3524 $y -> {value} = $LIB -> _digitsum($x -> {value}); 3525 return $y; 3526} 3527 3528sub length { 3529 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 3530 3531 my $e = $LIB->_len($x->{value}); 3532 wantarray ? ($e, 0) : $e; 3533} 3534 3535sub exponent { 3536 # return a copy of the exponent (here always 0, NaN or 1 for $m == 0) 3537 my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_); 3538 3539 if ($x->{sign} !~ /^[+-]$/) { 3540 my $s = $x->{sign}; 3541 $s =~ s/^[+-]//; # NaN, -inf, +inf => NaN or inf 3542 return $class->new($s); 3543 } 3544 return $class->bzero() if $x->is_zero(); 3545 3546 # 12300 => 2 trailing zeros => exponent is 2 3547 $class->new($LIB->_zeros($x->{value})); 3548} 3549 3550sub mantissa { 3551 # return the mantissa (compatible to Math::BigFloat, e.g. reduced) 3552 my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_); 3553 3554 if ($x->{sign} !~ /^[+-]$/) { 3555 # for NaN, +inf, -inf: keep the sign 3556 return $class->new($x->{sign}); 3557 } 3558 my $m = $x->copy(); 3559 delete $m->{_p}; 3560 delete $m->{_a}; 3561 3562 # that's a bit inefficient: 3563 my $zeros = $LIB->_zeros($m->{value}); 3564 $m->brsft($zeros, 10) if $zeros != 0; 3565 $m; 3566} 3567 3568sub parts { 3569 # return a copy of both the exponent and the mantissa 3570 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 3571 3572 ($x->mantissa(), $x->exponent()); 3573} 3574 3575sub sparts { 3576 my $self = shift; 3577 my $class = ref $self; 3578 3579 croak("sparts() is an instance method, not a class method") 3580 unless $class; 3581 3582 # Not-a-number. 3583 3584 if ($self -> is_nan()) { 3585 my $mant = $self -> copy(); # mantissa 3586 return $mant unless wantarray; # scalar context 3587 my $expo = $class -> bnan(); # exponent 3588 return ($mant, $expo); # list context 3589 } 3590 3591 # Infinity. 3592 3593 if ($self -> is_inf()) { 3594 my $mant = $self -> copy(); # mantissa 3595 return $mant unless wantarray; # scalar context 3596 my $expo = $class -> binf('+'); # exponent 3597 return ($mant, $expo); # list context 3598 } 3599 3600 # Finite number. 3601 3602 my $mant = $self -> copy(); 3603 my $nzeros = $LIB -> _zeros($mant -> {value}); 3604 3605 $mant -> brsft($nzeros, 10) if $nzeros != 0; 3606 return $mant unless wantarray; 3607 3608 my $expo = $class -> new($nzeros); 3609 return ($mant, $expo); 3610} 3611 3612sub nparts { 3613 my $self = shift; 3614 my $class = ref $self; 3615 3616 croak("nparts() is an instance method, not a class method") 3617 unless $class; 3618 3619 # Not-a-number. 3620 3621 if ($self -> is_nan()) { 3622 my $mant = $self -> copy(); # mantissa 3623 return $mant unless wantarray; # scalar context 3624 my $expo = $class -> bnan(); # exponent 3625 return ($mant, $expo); # list context 3626 } 3627 3628 # Infinity. 3629 3630 if ($self -> is_inf()) { 3631 my $mant = $self -> copy(); # mantissa 3632 return $mant unless wantarray; # scalar context 3633 my $expo = $class -> binf('+'); # exponent 3634 return ($mant, $expo); # list context 3635 } 3636 3637 # Finite number. 3638 3639 my ($mant, $expo) = $self -> sparts(); 3640 3641 if ($mant -> bcmp(0)) { 3642 my ($ndigtot, $ndigfrac) = $mant -> length(); 3643 my $expo10adj = $ndigtot - $ndigfrac - 1; 3644 3645 if ($expo10adj != 0) { 3646 return $upgrade -> new($self) -> nparts() if $upgrade; 3647 $mant -> bnan(); 3648 return $mant unless wantarray; 3649 $expo -> badd($expo10adj); 3650 return ($mant, $expo); 3651 } 3652 } 3653 3654 return $mant unless wantarray; 3655 return ($mant, $expo); 3656} 3657 3658sub eparts { 3659 my $self = shift; 3660 my $class = ref $self; 3661 3662 croak("eparts() is an instance method, not a class method") 3663 unless $class; 3664 3665 # Not-a-number and Infinity. 3666 3667 return $self -> sparts() if $self -> is_nan() || $self -> is_inf(); 3668 3669 # Finite number. 3670 3671 my ($mant, $expo) = $self -> sparts(); 3672 3673 if ($mant -> bcmp(0)) { 3674 my $ndigmant = $mant -> length(); 3675 $expo -> badd($ndigmant); 3676 3677 # $c is the number of digits that will be in the integer part of the 3678 # final mantissa. 3679 3680 my $c = $expo -> copy() -> bdec() -> bmod(3) -> binc(); 3681 $expo -> bsub($c); 3682 3683 if ($ndigmant > $c) { 3684 return $upgrade -> new($self) -> eparts() if $upgrade; 3685 $mant -> bnan(); 3686 return $mant unless wantarray; 3687 return ($mant, $expo); 3688 } 3689 3690 $mant -> blsft($c - $ndigmant, 10); 3691 } 3692 3693 return $mant unless wantarray; 3694 return ($mant, $expo); 3695} 3696 3697sub dparts { 3698 my $self = shift; 3699 my $class = ref $self; 3700 3701 croak("dparts() is an instance method, not a class method") 3702 unless $class; 3703 3704 my $int = $self -> copy(); 3705 return $int unless wantarray; 3706 3707 my $frc = $class -> bzero(); 3708 return ($int, $frc); 3709} 3710 3711############################################################################### 3712# String conversion methods 3713############################################################################### 3714 3715sub bstr { 3716 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 3717 3718 if ($x->{sign} ne '+' && $x->{sign} ne '-') { 3719 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 3720 return 'inf'; # +inf 3721 } 3722 my $str = $LIB->_str($x->{value}); 3723 return $x->{sign} eq '-' ? "-$str" : $str; 3724} 3725 3726# Scientific notation with significand/mantissa as an integer, e.g., "12345" is 3727# written as "1.2345e+4". 3728 3729sub bsstr { 3730 my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_); 3731 3732 if ($x->{sign} ne '+' && $x->{sign} ne '-') { 3733 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 3734 return 'inf'; # +inf 3735 } 3736 my ($m, $e) = $x -> parts(); 3737 my $str = $LIB->_str($m->{value}) . 'e+' . $LIB->_str($e->{value}); 3738 return $x->{sign} eq '-' ? "-$str" : $str; 3739} 3740 3741# Normalized notation, e.g., "12345" is written as "12345e+0". 3742 3743sub bnstr { 3744 my $x = shift; 3745 3746 if ($x->{sign} ne '+' && $x->{sign} ne '-') { 3747 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 3748 return 'inf'; # +inf 3749 } 3750 3751 return $x -> bstr() if $x -> is_nan() || $x -> is_inf(); 3752 3753 my ($mant, $expo) = $x -> parts(); 3754 3755 # The "fraction posision" is the position (offset) for the decimal point 3756 # relative to the end of the digit string. 3757 3758 my $fracpos = $mant -> length() - 1; 3759 if ($fracpos == 0) { 3760 my $str = $LIB->_str($mant->{value}) . "e+" . $LIB->_str($expo->{value}); 3761 return $x->{sign} eq '-' ? "-$str" : $str; 3762 } 3763 3764 $expo += $fracpos; 3765 my $mantstr = $LIB->_str($mant -> {value}); 3766 substr($mantstr, -$fracpos, 0) = '.'; 3767 3768 my $str = $mantstr . 'e+' . $LIB->_str($expo -> {value}); 3769 return $x->{sign} eq '-' ? "-$str" : $str; 3770} 3771 3772# Engineering notation, e.g., "12345" is written as "12.345e+3". 3773 3774sub bestr { 3775 my $x = shift; 3776 3777 if ($x->{sign} ne '+' && $x->{sign} ne '-') { 3778 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 3779 return 'inf'; # +inf 3780 } 3781 3782 my ($mant, $expo) = $x -> parts(); 3783 3784 my $sign = $mant -> sign(); 3785 $mant -> babs(); 3786 3787 my $mantstr = $LIB->_str($mant -> {value}); 3788 my $mantlen = CORE::length($mantstr); 3789 3790 my $dotidx = 1; 3791 $expo += $mantlen - 1; 3792 3793 my $c = $expo -> copy() -> bmod(3); 3794 $expo -= $c; 3795 $dotidx += $c; 3796 3797 if ($mantlen < $dotidx) { 3798 $mantstr .= "0" x ($dotidx - $mantlen); 3799 } elsif ($mantlen > $dotidx) { 3800 substr($mantstr, $dotidx, 0) = "."; 3801 } 3802 3803 my $str = $mantstr . 'e+' . $LIB->_str($expo -> {value}); 3804 return $sign eq "-" ? "-$str" : $str; 3805} 3806 3807# Decimal notation, e.g., "12345". 3808 3809sub bdstr { 3810 my $x = shift; 3811 3812 if ($x->{sign} ne '+' && $x->{sign} ne '-') { 3813 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN 3814 return 'inf'; # +inf 3815 } 3816 3817 my $str = $LIB->_str($x->{value}); 3818 return $x->{sign} eq '-' ? "-$str" : $str; 3819} 3820 3821sub to_hex { 3822 # return as hex string, with prefixed 0x 3823 my $x = shift; 3824 $x = __PACKAGE__->new($x) if !ref($x); 3825 3826 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3827 3828 my $hex = $LIB->_to_hex($x->{value}); 3829 return $x->{sign} eq '-' ? "-$hex" : $hex; 3830} 3831 3832sub to_oct { 3833 # return as octal string, with prefixed 0 3834 my $x = shift; 3835 $x = __PACKAGE__->new($x) if !ref($x); 3836 3837 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3838 3839 my $oct = $LIB->_to_oct($x->{value}); 3840 return $x->{sign} eq '-' ? "-$oct" : $oct; 3841} 3842 3843sub to_bin { 3844 # return as binary string, with prefixed 0b 3845 my $x = shift; 3846 $x = __PACKAGE__->new($x) if !ref($x); 3847 3848 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3849 3850 my $bin = $LIB->_to_bin($x->{value}); 3851 return $x->{sign} eq '-' ? "-$bin" : $bin; 3852} 3853 3854sub to_bytes { 3855 # return a byte string 3856 my $x = shift; 3857 $x = __PACKAGE__->new($x) if !ref($x); 3858 3859 croak("to_bytes() requires a finite, non-negative integer") 3860 if $x -> is_neg() || ! $x -> is_int(); 3861 3862 croak("to_bytes() requires a newer version of the $LIB library.") 3863 unless $LIB->can('_to_bytes'); 3864 3865 return $LIB->_to_bytes($x->{value}); 3866} 3867 3868sub to_base { 3869 # return a base anything string 3870 my $x = shift; 3871 $x = __PACKAGE__->new($x) if !ref($x); 3872 3873 croak("the value to convert must be a finite, non-negative integer") 3874 if $x -> is_neg() || !$x -> is_int(); 3875 3876 my $base = shift; 3877 $base = __PACKAGE__->new($base) unless ref($base); 3878 3879 croak("the base must be a finite integer >= 2") 3880 if $base < 2 || ! $base -> is_int(); 3881 3882 # If no collating sequence is given, pass some of the conversions to 3883 # methods optimized for those cases. 3884 3885 if (! @_) { 3886 return $x -> to_bin() if $base == 2; 3887 return $x -> to_oct() if $base == 8; 3888 return uc $x -> to_hex() if $base == 16; 3889 return $x -> bstr() if $base == 10; 3890 } 3891 3892 croak("to_base() requires a newer version of the $LIB library.") 3893 unless $LIB->can('_to_base'); 3894 3895 return $LIB->_to_base($x->{value}, $base -> {value}, @_ ? shift() : ()); 3896} 3897 3898sub as_hex { 3899 # return as hex string, with prefixed 0x 3900 my $x = shift; 3901 $x = __PACKAGE__->new($x) if !ref($x); 3902 3903 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3904 3905 my $hex = $LIB->_as_hex($x->{value}); 3906 return $x->{sign} eq '-' ? "-$hex" : $hex; 3907} 3908 3909sub as_oct { 3910 # return as octal string, with prefixed 0 3911 my $x = shift; 3912 $x = __PACKAGE__->new($x) if !ref($x); 3913 3914 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3915 3916 my $oct = $LIB->_as_oct($x->{value}); 3917 return $x->{sign} eq '-' ? "-$oct" : $oct; 3918} 3919 3920sub as_bin { 3921 # return as binary string, with prefixed 0b 3922 my $x = shift; 3923 $x = __PACKAGE__->new($x) if !ref($x); 3924 3925 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc 3926 3927 my $bin = $LIB->_as_bin($x->{value}); 3928 return $x->{sign} eq '-' ? "-$bin" : $bin; 3929} 3930 3931*as_bytes = \&to_bytes; 3932 3933############################################################################### 3934# Other conversion methods 3935############################################################################### 3936 3937sub numify { 3938 # Make a Perl scalar number from a Math::BigInt object. 3939 my $x = shift; 3940 $x = __PACKAGE__->new($x) unless ref $x; 3941 3942 if ($x -> is_nan()) { 3943 require Math::Complex; 3944 my $inf = Math::Complex::Inf(); 3945 return $inf - $inf; 3946 } 3947 3948 if ($x -> is_inf()) { 3949 require Math::Complex; 3950 my $inf = Math::Complex::Inf(); 3951 return $x -> is_negative() ? -$inf : $inf; 3952 } 3953 3954 my $num = 0 + $LIB->_num($x->{value}); 3955 return $x->{sign} eq '-' ? -$num : $num; 3956} 3957 3958############################################################################### 3959# Private methods and functions. 3960############################################################################### 3961 3962sub objectify { 3963 # Convert strings and "foreign objects" to the objects we want. 3964 3965 # The first argument, $count, is the number of following arguments that 3966 # objectify() looks at and converts to objects. The first is a classname. 3967 # If the given count is 0, all arguments will be used. 3968 3969 # After the count is read, objectify obtains the name of the class to which 3970 # the following arguments are converted. If the second argument is a 3971 # reference, use the reference type as the class name. Otherwise, if it is 3972 # a string that looks like a class name, use that. Otherwise, use $class. 3973 3974 # Caller: Gives us: 3975 # 3976 # $x->badd(1); => ref x, scalar y 3977 # Class->badd(1, 2); => classname x (scalar), scalar x, scalar y 3978 # Class->badd(Class->(1), 2); => classname x (scalar), ref x, scalar y 3979 # Math::BigInt::badd(1, 2); => scalar x, scalar y 3980 3981 # A shortcut for the common case $x->unary_op(), in which case the argument 3982 # list is (0, $x) or (1, $x). 3983 3984 return (ref($_[1]), $_[1]) if @_ == 2 && ($_[0] || 0) == 1 && ref($_[1]); 3985 3986 # Check the context. 3987 3988 unless (wantarray) { 3989 croak(__PACKAGE__ . "::objectify() needs list context"); 3990 } 3991 3992 # Get the number of arguments to objectify. 3993 3994 my $count = shift; 3995 3996 # Initialize the output array. 3997 3998 my @a = @_; 3999 4000 # If the first argument is a reference, use that reference type as our 4001 # class name. Otherwise, if the first argument looks like a class name, 4002 # then use that as our class name. Otherwise, use the default class name. 4003 4004 my $class; 4005 if (ref($a[0])) { # reference? 4006 $class = ref($a[0]); 4007 } elsif ($a[0] =~ /^[A-Z].*::/) { # string with class name? 4008 $class = shift @a; 4009 } else { 4010 $class = __PACKAGE__; # default class name 4011 } 4012 4013 $count ||= @a; 4014 unshift @a, $class; 4015 4016 no strict 'refs'; 4017 4018 # What we upgrade to, if anything. 4019 4020 my $up = ${"$a[0]::upgrade"}; 4021 4022 # Disable downgrading, because Math::BigFloat -> foo('1.0', '2.0') needs 4023 # floats. 4024 4025 my $down; 4026 if (defined ${"$a[0]::downgrade"}) { 4027 $down = ${"$a[0]::downgrade"}; 4028 ${"$a[0]::downgrade"} = undef; 4029 } 4030 4031 for my $i (1 .. $count) { 4032 4033 my $ref = ref $a[$i]; 4034 4035 # Perl scalars are fed to the appropriate constructor. 4036 4037 unless ($ref) { 4038 $a[$i] = $a[0] -> new($a[$i]); 4039 next; 4040 } 4041 4042 # If it is an object of the right class, all is fine. 4043 4044 next if $ref -> isa($a[0]); 4045 4046 # Upgrading is OK, so skip further tests if the argument is upgraded. 4047 4048 if (defined $up && $ref -> isa($up)) { 4049 next; 4050 } 4051 4052 # See if we can call one of the as_xxx() methods. We don't know whether 4053 # the as_xxx() method returns an object or a scalar, so re-check 4054 # afterwards. 4055 4056 my $recheck = 0; 4057 4058 if ($a[0] -> isa('Math::BigInt')) { 4059 if ($a[$i] -> can('as_int')) { 4060 $a[$i] = $a[$i] -> as_int(); 4061 $recheck = 1; 4062 } elsif ($a[$i] -> can('as_number')) { 4063 $a[$i] = $a[$i] -> as_number(); 4064 $recheck = 1; 4065 } 4066 } 4067 4068 elsif ($a[0] -> isa('Math::BigFloat')) { 4069 if ($a[$i] -> can('as_float')) { 4070 $a[$i] = $a[$i] -> as_float(); 4071 $recheck = $1; 4072 } 4073 } 4074 4075 # If we called one of the as_xxx() methods, recheck. 4076 4077 if ($recheck) { 4078 $ref = ref($a[$i]); 4079 4080 # Perl scalars are fed to the appropriate constructor. 4081 4082 unless ($ref) { 4083 $a[$i] = $a[0] -> new($a[$i]); 4084 next; 4085 } 4086 4087 # If it is an object of the right class, all is fine. 4088 4089 next if $ref -> isa($a[0]); 4090 } 4091 4092 # Last resort. 4093 4094 $a[$i] = $a[0] -> new($a[$i]); 4095 } 4096 4097 # Reset the downgrading. 4098 4099 ${"$a[0]::downgrade"} = $down; 4100 4101 return @a; 4102} 4103 4104sub import { 4105 my $class = shift; 4106 $IMPORT++; # remember we did import() 4107 my @a; # unrecognized arguments 4108 my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die 4109 for (my $i = 0; $i <= $#_ ; $i++) { 4110 if ($_[$i] eq ':constant') { 4111 # this causes overlord er load to step in 4112 overload::constant 4113 integer => sub { $class->new(shift) }, 4114 binary => sub { $class->new(shift) }; 4115 } elsif ($_[$i] eq 'upgrade') { 4116 # this causes upgrading 4117 $upgrade = $_[$i+1]; # or undef to disable 4118 $i++; 4119 } elsif ($_[$i] =~ /^(lib|try|only)\z/) { 4120 # this causes a different low lib to take care... 4121 $LIB = $_[$i+1] || ''; 4122 # try => 0 (no warn) 4123 # lib => 1 (warn on fallback) 4124 # only => 2 (die on fallback) 4125 $warn_or_die = 1 if $_[$i] eq 'lib'; 4126 $warn_or_die = 2 if $_[$i] eq 'only'; 4127 $i++; 4128 } else { 4129 push @a, $_[$i]; 4130 } 4131 } 4132 # any non :constant stuff is handled by our parent, Exporter 4133 if (@a > 0) { 4134 $class->SUPER::import(@a); # need it for subclasses 4135 $class->export_to_level(1, $class, @a); # need it for MBF 4136 } 4137 4138 # try to load core math lib 4139 my @c = split /\s*,\s*/, $LIB; 4140 foreach (@c) { 4141 tr/a-zA-Z0-9://cd; # limit to sane characters 4142 } 4143 push @c, \'Calc' # if all fail, try these 4144 if $warn_or_die < 2; # but not for "only" 4145 $LIB = ''; # signal error 4146 foreach my $l (@c) { 4147 # fallback libraries are "marked" as \'string', extract string if nec. 4148 my $lib = $l; 4149 $lib = $$l if ref($l); 4150 4151 next unless defined($lib) && CORE::length($lib); 4152 $lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i; 4153 $lib =~ s/\.pm$//; 4154 my @parts = split /::/, $lib; # Math::BigInt => Math BigInt 4155 $parts[-1] .= '.pm'; # BigInt => BigInt.pm 4156 require File::Spec; 4157 my $file = File::Spec->catfile(@parts); 4158 eval { require $file; }; 4159 if ($@ eq '') { 4160 $lib->import(); 4161 $LIB = $lib; 4162 if ($warn_or_die > 0 && ref($l)) { 4163 my $msg = "Math::BigInt: couldn't load specified" 4164 . " math lib(s), fallback to $lib"; 4165 carp($msg) if $warn_or_die == 1; 4166 croak($msg) if $warn_or_die == 2; 4167 } 4168 last; # found a usable one, break 4169 } 4170 } 4171 if ($LIB eq '') { 4172 if ($warn_or_die == 2) { 4173 croak("Couldn't load specified math lib(s)" . 4174 " and fallback disallowed"); 4175 } else { 4176 croak("Couldn't load any math lib(s), not even fallback to Calc.pm"); 4177 } 4178 } 4179 4180 # notify callbacks 4181 foreach my $class (keys %CALLBACKS) { 4182 &{$CALLBACKS{$class}}($LIB); 4183 } 4184 4185 # import done 4186} 4187 4188sub _register_callback { 4189 my ($class, $callback) = @_; 4190 4191 if (ref($callback) ne 'CODE') { 4192 croak("$callback is not a coderef"); 4193 } 4194 $CALLBACKS{$class} = $callback; 4195} 4196 4197sub _split_dec_string { 4198 my $str = shift; 4199 4200 if ($str =~ s/ 4201 ^ 4202 4203 # leading whitespace 4204 ( \s* ) 4205 4206 # optional sign 4207 ( [+-]? ) 4208 4209 # significand 4210 ( 4211 \d+ (?: _ \d+ )* 4212 (?: 4213 \. 4214 (?: \d+ (?: _ \d+ )* )? 4215 )? 4216 | 4217 \. 4218 \d+ (?: _ \d+ )* 4219 ) 4220 4221 # optional exponent 4222 (?: 4223 [Ee] 4224 ( [+-]? ) 4225 ( \d+ (?: _ \d+ )* ) 4226 )? 4227 4228 # trailing stuff 4229 ( \D .*? )? 4230 4231 \z 4232 //x) { 4233 my $leading = $1; 4234 my $significand_sgn = $2 || '+'; 4235 my $significand_abs = $3; 4236 my $exponent_sgn = $4 || '+'; 4237 my $exponent_abs = $5 || '0'; 4238 my $trailing = $6; 4239 4240 # Remove underscores and leading zeros. 4241 4242 $significand_abs =~ tr/_//d; 4243 $exponent_abs =~ tr/_//d; 4244 4245 $significand_abs =~ s/^0+(.)/$1/; 4246 $exponent_abs =~ s/^0+(.)/$1/; 4247 4248 # If the significand contains a dot, remove it and adjust the exponent 4249 # accordingly. E.g., "1234.56789e+3" -> "123456789e-2" 4250 4251 my $idx = index $significand_abs, '.'; 4252 if ($idx > -1) { 4253 $significand_abs =~ s/0+\z//; 4254 substr($significand_abs, $idx, 1) = ''; 4255 my $exponent = $exponent_sgn . $exponent_abs; 4256 $exponent .= $idx - CORE::length($significand_abs); 4257 $exponent_abs = abs $exponent; 4258 $exponent_sgn = $exponent < 0 ? '-' : '+'; 4259 } 4260 4261 return($leading, 4262 $significand_sgn, $significand_abs, 4263 $exponent_sgn, $exponent_abs, 4264 $trailing); 4265 } 4266 4267 return undef; 4268} 4269 4270sub _split { 4271 # input: num_str; output: undef for invalid or 4272 # (\$mantissa_sign, \$mantissa_value, \$mantissa_fraction, 4273 # \$exp_sign, \$exp_value) 4274 # Internal, take apart a string and return the pieces. 4275 # Strip leading/trailing whitespace, leading zeros, underscore and reject 4276 # invalid input. 4277 my $x = shift; 4278 4279 # strip white space at front, also extraneous leading zeros 4280 $x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2' 4281 $x =~ s/^\s+//; # but this will 4282 $x =~ s/\s+$//g; # strip white space at end 4283 4284 # shortcut, if nothing to split, return early 4285 if ($x =~ /^[+-]?[0-9]+\z/) { 4286 $x =~ s/^([+-])0*([0-9])/$2/; 4287 my $sign = $1 || '+'; 4288 return (\$sign, \$x, \'', \'', \0); 4289 } 4290 4291 # invalid starting char? 4292 return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/; 4293 4294 return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string 4295 return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string 4296 4297 # strip underscores between digits 4298 $x =~ s/([0-9])_([0-9])/$1$2/g; 4299 $x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3 4300 4301 # some possible inputs: 4302 # 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2 4303 # .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999 4304 4305 my ($m, $e, $last) = split /[Ee]/, $x; 4306 return if defined $last; # last defined => 1e2E3 or others 4307 $e = '0' if !defined $e || $e eq ""; 4308 4309 # sign, value for exponent, mantint, mantfrac 4310 my ($es, $ev, $mis, $miv, $mfv); 4311 # valid exponent? 4312 if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros 4313 { 4314 $es = $1; 4315 $ev = $2; 4316 # valid mantissa? 4317 return if $m eq '.' || $m eq ''; 4318 my ($mi, $mf, $lastf) = split /\./, $m; 4319 return if defined $lastf; # lastf defined => 1.2.3 or others 4320 $mi = '0' if !defined $mi; 4321 $mi .= '0' if $mi =~ /^[\-\+]?$/; 4322 $mf = '0' if !defined $mf || $mf eq ''; 4323 if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros 4324 { 4325 $mis = $1 || '+'; 4326 $miv = $2; 4327 return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros 4328 $mfv = $1; 4329 # handle the 0e999 case here 4330 $ev = 0 if $miv eq '0' && $mfv eq ''; 4331 return (\$mis, \$miv, \$mfv, \$es, \$ev); 4332 } 4333 } 4334 return; # NaN, not a number 4335} 4336 4337sub _trailing_zeros { 4338 # return the amount of trailing zeros in $x (as scalar) 4339 my $x = shift; 4340 $x = __PACKAGE__->new($x) unless ref $x; 4341 4342 return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc 4343 4344 $LIB->_zeros($x->{value}); # must handle odd values, 0 etc 4345} 4346 4347sub _scan_for_nonzero { 4348 # internal, used by bround() to scan for non-zeros after a '5' 4349 my ($x, $pad, $xs, $len) = @_; 4350 4351 return 0 if $len == 1; # "5" is trailed by invisible zeros 4352 my $follow = $pad - 1; 4353 return 0 if $follow > $len || $follow < 1; 4354 4355 # use the string form to check whether only '0's follow or not 4356 substr ($xs, -$follow) =~ /[^0]/ ? 1 : 0; 4357} 4358 4359sub _find_round_parameters { 4360 # After any operation or when calling round(), the result is rounded by 4361 # regarding the A & P from arguments, local parameters, or globals. 4362 4363 # !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!! 4364 4365 # This procedure finds the round parameters, but it is for speed reasons 4366 # duplicated in round. Otherwise, it is tested by the testsuite and used 4367 # by bdiv(). 4368 4369 # returns ($self) or ($self, $a, $p, $r) - sets $self to NaN of both A and P 4370 # were requested/defined (locally or globally or both) 4371 4372 my ($self, $a, $p, $r, @args) = @_; 4373 # $a accuracy, if given by caller 4374 # $p precision, if given by caller 4375 # $r round_mode, if given by caller 4376 # @args all 'other' arguments (0 for unary, 1 for binary ops) 4377 4378 my $class = ref($self); # find out class of argument(s) 4379 no strict 'refs'; 4380 4381 # convert to normal scalar for speed and correctness in inner parts 4382 $a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a); 4383 $p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p); 4384 4385 # now pick $a or $p, but only if we have got "arguments" 4386 if (!defined $a) { 4387 foreach ($self, @args) { 4388 # take the defined one, or if both defined, the one that is smaller 4389 $a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a); 4390 } 4391 } 4392 if (!defined $p) { 4393 # even if $a is defined, take $p, to signal error for both defined 4394 foreach ($self, @args) { 4395 # take the defined one, or if both defined, the one that is bigger 4396 # -2 > -3, and 3 > 2 4397 $p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p); 4398 } 4399 } 4400 4401 # if still none defined, use globals (#2) 4402 $a = ${"$class\::accuracy"} unless defined $a; 4403 $p = ${"$class\::precision"} unless defined $p; 4404 4405 # A == 0 is useless, so undef it to signal no rounding 4406 $a = undef if defined $a && $a == 0; 4407 4408 # no rounding today? 4409 return ($self) unless defined $a || defined $p; # early out 4410 4411 # set A and set P is an fatal error 4412 return ($self->bnan()) if defined $a && defined $p; # error 4413 4414 $r = ${"$class\::round_mode"} unless defined $r; 4415 if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) { 4416 croak("Unknown round mode '$r'"); 4417 } 4418 4419 $a = int($a) if defined $a; 4420 $p = int($p) if defined $p; 4421 4422 ($self, $a, $p, $r); 4423} 4424 4425############################################################################### 4426# this method returns 0 if the object can be modified, or 1 if not. 4427# We use a fast constant sub() here, to avoid costly calls. Subclasses 4428# may override it with special code (f.i. Math::BigInt::Constant does so) 4429 4430sub modify () { 0; } 4431 44321; 4433 4434__END__ 4435 4436=pod 4437 4438=head1 NAME 4439 4440Math::BigInt - Arbitrary size integer/float math package 4441 4442=head1 SYNOPSIS 4443 4444 use Math::BigInt; 4445 4446 # or make it faster with huge numbers: install (optional) 4447 # Math::BigInt::GMP and always use (it falls back to 4448 # pure Perl if the GMP library is not installed): 4449 # (See also the L<MATH LIBRARY> section!) 4450 4451 # warns if Math::BigInt::GMP cannot be found 4452 use Math::BigInt lib => 'GMP'; 4453 4454 # to suppress the warning use this: 4455 # use Math::BigInt try => 'GMP'; 4456 4457 # dies if GMP cannot be loaded: 4458 # use Math::BigInt only => 'GMP'; 4459 4460 my $str = '1234567890'; 4461 my @values = (64, 74, 18); 4462 my $n = 1; my $sign = '-'; 4463 4464 # Configuration methods (may be used as class methods and instance methods) 4465 4466 Math::BigInt->accuracy(); # get class accuracy 4467 Math::BigInt->accuracy($n); # set class accuracy 4468 Math::BigInt->precision(); # get class precision 4469 Math::BigInt->precision($n); # set class precision 4470 Math::BigInt->round_mode(); # get class rounding mode 4471 Math::BigInt->round_mode($m); # set global round mode, must be one of 4472 # 'even', 'odd', '+inf', '-inf', 'zero', 4473 # 'trunc', or 'common' 4474 Math::BigInt->config(); # return hash with configuration 4475 4476 # Constructor methods (when the class methods below are used as instance 4477 # methods, the value is assigned the invocand) 4478 4479 $x = Math::BigInt->new($str); # defaults to 0 4480 $x = Math::BigInt->new('0x123'); # from hexadecimal 4481 $x = Math::BigInt->new('0b101'); # from binary 4482 $x = Math::BigInt->from_hex('cafe'); # from hexadecimal 4483 $x = Math::BigInt->from_oct('377'); # from octal 4484 $x = Math::BigInt->from_bin('1101'); # from binary 4485 $x = Math::BigInt->from_base('why', 36); # from any base 4486 $x = Math::BigInt->bzero(); # create a +0 4487 $x = Math::BigInt->bone(); # create a +1 4488 $x = Math::BigInt->bone('-'); # create a -1 4489 $x = Math::BigInt->binf(); # create a +inf 4490 $x = Math::BigInt->binf('-'); # create a -inf 4491 $x = Math::BigInt->bnan(); # create a Not-A-Number 4492 $x = Math::BigInt->bpi(); # returns pi 4493 4494 $y = $x->copy(); # make a copy (unlike $y = $x) 4495 $y = $x->as_int(); # return as a Math::BigInt 4496 4497 # Boolean methods (these don't modify the invocand) 4498 4499 $x->is_zero(); # if $x is 0 4500 $x->is_one(); # if $x is +1 4501 $x->is_one("+"); # ditto 4502 $x->is_one("-"); # if $x is -1 4503 $x->is_inf(); # if $x is +inf or -inf 4504 $x->is_inf("+"); # if $x is +inf 4505 $x->is_inf("-"); # if $x is -inf 4506 $x->is_nan(); # if $x is NaN 4507 4508 $x->is_positive(); # if $x > 0 4509 $x->is_pos(); # ditto 4510 $x->is_negative(); # if $x < 0 4511 $x->is_neg(); # ditto 4512 4513 $x->is_odd(); # if $x is odd 4514 $x->is_even(); # if $x is even 4515 $x->is_int(); # if $x is an integer 4516 4517 # Comparison methods 4518 4519 $x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0) 4520 $x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0) 4521 $x->beq($y); # true if and only if $x == $y 4522 $x->bne($y); # true if and only if $x != $y 4523 $x->blt($y); # true if and only if $x < $y 4524 $x->ble($y); # true if and only if $x <= $y 4525 $x->bgt($y); # true if and only if $x > $y 4526 $x->bge($y); # true if and only if $x >= $y 4527 4528 # Arithmetic methods 4529 4530 $x->bneg(); # negation 4531 $x->babs(); # absolute value 4532 $x->bsgn(); # sign function (-1, 0, 1, or NaN) 4533 $x->bnorm(); # normalize (no-op) 4534 $x->binc(); # increment $x by 1 4535 $x->bdec(); # decrement $x by 1 4536 $x->badd($y); # addition (add $y to $x) 4537 $x->bsub($y); # subtraction (subtract $y from $x) 4538 $x->bmul($y); # multiplication (multiply $x by $y) 4539 $x->bmuladd($y,$z); # $x = $x * $y + $z 4540 $x->bdiv($y); # division (floored), set $x to quotient 4541 # return (quo,rem) or quo if scalar 4542 $x->btdiv($y); # division (truncated), set $x to quotient 4543 # return (quo,rem) or quo if scalar 4544 $x->bmod($y); # modulus (x % y) 4545 $x->btmod($y); # modulus (truncated) 4546 $x->bmodinv($mod); # modular multiplicative inverse 4547 $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod) 4548 $x->bpow($y); # power of arguments (x ** y) 4549 $x->blog(); # logarithm of $x to base e (Euler's number) 4550 $x->blog($base); # logarithm of $x to base $base (e.g., base 2) 4551 $x->bexp(); # calculate e ** $x where e is Euler's number 4552 $x->bnok($y); # x over y (binomial coefficient n over k) 4553 $x->buparrow($n, $y); # Knuth's up-arrow notation 4554 $x->backermann($y); # the Ackermann function 4555 $x->bsin(); # sine 4556 $x->bcos(); # cosine 4557 $x->batan(); # inverse tangent 4558 $x->batan2($y); # two-argument inverse tangent 4559 $x->bsqrt(); # calculate square root 4560 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root) 4561 $x->bfac(); # factorial of $x (1*2*3*4*..$x) 4562 4563 $x->blsft($n); # left shift $n places in base 2 4564 $x->blsft($n,$b); # left shift $n places in base $b 4565 # returns (quo,rem) or quo (scalar context) 4566 $x->brsft($n); # right shift $n places in base 2 4567 $x->brsft($n,$b); # right shift $n places in base $b 4568 # returns (quo,rem) or quo (scalar context) 4569 4570 # Bitwise methods 4571 4572 $x->band($y); # bitwise and 4573 $x->bior($y); # bitwise inclusive or 4574 $x->bxor($y); # bitwise exclusive or 4575 $x->bnot(); # bitwise not (two's complement) 4576 4577 # Rounding methods 4578 $x->round($A,$P,$mode); # round to accuracy or precision using 4579 # rounding mode $mode 4580 $x->bround($n); # accuracy: preserve $n digits 4581 $x->bfround($n); # $n > 0: round to $nth digit left of dec. point 4582 # $n < 0: round to $nth digit right of dec. point 4583 $x->bfloor(); # round towards minus infinity 4584 $x->bceil(); # round towards plus infinity 4585 $x->bint(); # round towards zero 4586 4587 # Other mathematical methods 4588 4589 $x->bgcd($y); # greatest common divisor 4590 $x->blcm($y); # least common multiple 4591 4592 # Object property methods (do not modify the invocand) 4593 4594 $x->sign(); # the sign, either +, - or NaN 4595 $x->digit($n); # the nth digit, counting from the right 4596 $x->digit(-$n); # the nth digit, counting from the left 4597 $x->length(); # return number of digits in number 4598 ($xl,$f) = $x->length(); # length of number and length of fraction 4599 # part, latter is always 0 digits long 4600 # for Math::BigInt objects 4601 $x->mantissa(); # return (signed) mantissa as a Math::BigInt 4602 $x->exponent(); # return exponent as a Math::BigInt 4603 $x->parts(); # return (mantissa,exponent) as a Math::BigInt 4604 $x->sparts(); # mantissa and exponent (as integers) 4605 $x->nparts(); # mantissa and exponent (normalised) 4606 $x->eparts(); # mantissa and exponent (engineering notation) 4607 $x->dparts(); # integer and fraction part 4608 4609 # Conversion methods (do not modify the invocand) 4610 4611 $x->bstr(); # decimal notation, possibly zero padded 4612 $x->bsstr(); # string in scientific notation with integers 4613 $x->bnstr(); # string in normalized notation 4614 $x->bestr(); # string in engineering notation 4615 $x->bdstr(); # string in decimal notation 4616 4617 $x->to_hex(); # as signed hexadecimal string 4618 $x->to_bin(); # as signed binary string 4619 $x->to_oct(); # as signed octal string 4620 $x->to_bytes(); # as byte string 4621 $x->to_base($b); # as string in any base 4622 4623 $x->as_hex(); # as signed hexadecimal string with prefixed 0x 4624 $x->as_bin(); # as signed binary string with prefixed 0b 4625 $x->as_oct(); # as signed octal string with prefixed 0 4626 4627 # Other conversion methods 4628 4629 $x->numify(); # return as scalar (might overflow or underflow) 4630 4631=head1 DESCRIPTION 4632 4633Math::BigInt provides support for arbitrary precision integers. Overloading is 4634also provided for Perl operators. 4635 4636=head2 Input 4637 4638Input values to these routines may be any scalar number or string that looks 4639like a number and represents an integer. 4640 4641=over 4642 4643=item * 4644 4645Leading and trailing whitespace is ignored. 4646 4647=item * 4648 4649Leading and trailing zeros are ignored. 4650 4651=item * 4652 4653If the string has a "0x" prefix, it is interpreted as a hexadecimal number. 4654 4655=item * 4656 4657If the string has a "0b" prefix, it is interpreted as a binary number. 4658 4659=item * 4660 4661One underline is allowed between any two digits. 4662 4663=item * 4664 4665If the string can not be interpreted, NaN is returned. 4666 4667=back 4668 4669Octal numbers are typically prefixed by "0", but since leading zeros are 4670stripped, these methods can not automatically recognize octal numbers, so use 4671the constructor from_oct() to interpret octal strings. 4672 4673Some examples of valid string input 4674 4675 Input string Resulting value 4676 123 123 4677 1.23e2 123 4678 12300e-2 123 4679 0xcafe 51966 4680 0b1101 13 4681 67_538_754 67538754 4682 -4_5_6.7_8_9e+0_1_0 -4567890000000 4683 4684Input given as scalar numbers might lose precision. Quote your input to ensure 4685that no digits are lost: 4686 4687 $x = Math::BigInt->new( 56789012345678901234 ); # bad 4688 $x = Math::BigInt->new('56789012345678901234'); # good 4689 4690Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('') 4691results in 'NaN'. This might change in the future, so use always the following 4692explicit forms to get a zero or NaN: 4693 4694 $zero = Math::BigInt->bzero(); 4695 $nan = Math::BigInt->bnan(); 4696 4697=head2 Output 4698 4699Output values are usually Math::BigInt objects. 4700 4701Boolean operators C<is_zero()>, C<is_one()>, C<is_inf()>, etc. return true or 4702false. 4703 4704Comparison operators C<bcmp()> and C<bacmp()>) return -1, 0, 1, or 4705undef. 4706 4707=head1 METHODS 4708 4709=head2 Configuration methods 4710 4711Each of the methods below (except config(), accuracy() and precision()) accepts 4712three additional parameters. These arguments C<$A>, C<$P> and C<$R> are 4713C<accuracy>, C<precision> and C<round_mode>. Please see the section about 4714L</ACCURACY and PRECISION> for more information. 4715 4716Setting a class variable effects all object instance that are created 4717afterwards. 4718 4719=over 4720 4721=item accuracy() 4722 4723 Math::BigInt->accuracy(5); # set class accuracy 4724 $x->accuracy(5); # set instance accuracy 4725 4726 $A = Math::BigInt->accuracy(); # get class accuracy 4727 $A = $x->accuracy(); # get instance accuracy 4728 4729Set or get the accuracy, i.e., the number of significant digits. The accuracy 4730must be an integer. If the accuracy is set to C<undef>, no rounding is done. 4731 4732Alternatively, one can round the results explicitly using one of L</round()>, 4733L</bround()> or L</bfround()> or by passing the desired accuracy to the method 4734as an additional parameter: 4735 4736 my $x = Math::BigInt->new(30000); 4737 my $y = Math::BigInt->new(7); 4738 print scalar $x->copy()->bdiv($y, 2); # prints 4300 4739 print scalar $x->copy()->bdiv($y)->bround(2); # prints 4300 4740 4741Please see the section about L</ACCURACY and PRECISION> for further details. 4742 4743 $y = Math::BigInt->new(1234567); # $y is not rounded 4744 Math::BigInt->accuracy(4); # set class accuracy to 4 4745 $x = Math::BigInt->new(1234567); # $x is rounded automatically 4746 print "$x $y"; # prints "1235000 1234567" 4747 4748 print $x->accuracy(); # prints "4" 4749 print $y->accuracy(); # also prints "4", since 4750 # class accuracy is 4 4751 4752 Math::BigInt->accuracy(5); # set class accuracy to 5 4753 print $x->accuracy(); # prints "4", since instance 4754 # accuracy is 4 4755 print $y->accuracy(); # prints "5", since no instance 4756 # accuracy, and class accuracy is 5 4757 4758Note: Each class has it's own globals separated from Math::BigInt, but it is 4759possible to subclass Math::BigInt and make the globals of the subclass aliases 4760to the ones from Math::BigInt. 4761 4762=item precision() 4763 4764 Math::BigInt->precision(-2); # set class precision 4765 $x->precision(-2); # set instance precision 4766 4767 $P = Math::BigInt->precision(); # get class precision 4768 $P = $x->precision(); # get instance precision 4769 4770Set or get the precision, i.e., the place to round relative to the decimal 4771point. The precision must be a integer. Setting the precision to $P means that 4772each number is rounded up or down, depending on the rounding mode, to the 4773nearest multiple of 10**$P. If the precision is set to C<undef>, no rounding is 4774done. 4775 4776You might want to use L</accuracy()> instead. With L</accuracy()> you set the 4777number of digits each result should have, with L</precision()> you set the 4778place where to round. 4779 4780Please see the section about L</ACCURACY and PRECISION> for further details. 4781 4782 $y = Math::BigInt->new(1234567); # $y is not rounded 4783 Math::BigInt->precision(4); # set class precision to 4 4784 $x = Math::BigInt->new(1234567); # $x is rounded automatically 4785 print $x; # prints "1230000" 4786 4787Note: Each class has its own globals separated from Math::BigInt, but it is 4788possible to subclass Math::BigInt and make the globals of the subclass aliases 4789to the ones from Math::BigInt. 4790 4791=item div_scale() 4792 4793Set/get the fallback accuracy. This is the accuracy used when neither accuracy 4794nor precision is set explicitly. It is used when a computation might otherwise 4795attempt to return an infinite number of digits. 4796 4797=item round_mode() 4798 4799Set/get the rounding mode. 4800 4801=item upgrade() 4802 4803Set/get the class for upgrading. When a computation might result in a 4804non-integer, the operands are upgraded to this class. This is used for instance 4805by L<bignum>. The default is C<undef>, thus the following operation creates 4806a Math::BigInt, not a Math::BigFloat: 4807 4808 my $i = Math::BigInt->new(123); 4809 my $f = Math::BigFloat->new('123.1'); 4810 4811 print $i + $f, "\n"; # prints 246 4812 4813=item downgrade() 4814 4815Set/get the class for downgrading. The default is C<undef>. Downgrading is not 4816done by Math::BigInt. 4817 4818=item modify() 4819 4820 $x->modify('bpowd'); 4821 4822This method returns 0 if the object can be modified with the given operation, 4823or 1 if not. 4824 4825This is used for instance by L<Math::BigInt::Constant>. 4826 4827=item config() 4828 4829 Math::BigInt->config("trap_nan" => 1); # set 4830 $accu = Math::BigInt->config("accuracy"); # get 4831 4832Set or get class variables. Read-only parameters are marked as RO. Read-write 4833parameters are marked as RW. The following parameters are supported. 4834 4835 Parameter RO/RW Description 4836 Example 4837 ============================================================ 4838 lib RO Name of the math backend library 4839 Math::BigInt::Calc 4840 lib_version RO Version of the math backend library 4841 0.30 4842 class RO The class of config you just called 4843 Math::BigRat 4844 version RO version number of the class you used 4845 0.10 4846 upgrade RW To which class numbers are upgraded 4847 undef 4848 downgrade RW To which class numbers are downgraded 4849 undef 4850 precision RW Global precision 4851 undef 4852 accuracy RW Global accuracy 4853 undef 4854 round_mode RW Global round mode 4855 even 4856 div_scale RW Fallback accuracy for division etc. 4857 40 4858 trap_nan RW Trap NaNs 4859 undef 4860 trap_inf RW Trap +inf/-inf 4861 undef 4862 4863=back 4864 4865=head2 Constructor methods 4866 4867=over 4868 4869=item new() 4870 4871 $x = Math::BigInt->new($str,$A,$P,$R); 4872 4873Creates a new Math::BigInt object from a scalar or another Math::BigInt object. 4874The input is accepted as decimal, hexadecimal (with leading '0x') or binary 4875(with leading '0b'). 4876 4877See L</Input> for more info on accepted input formats. 4878 4879=item from_hex() 4880 4881 $x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal 4882 4883Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A 4884single underscore character may be placed right after the prefix, if present, 4885or between any two digits. If the input is invalid, a NaN is returned. 4886 4887=item from_oct() 4888 4889 $x = Math::BigInt->from_oct("0775"); # input is octal 4890 4891Interpret the input as an octal string and return the corresponding value. A 4892"0" (zero) prefix is optional. A single underscore character may be placed 4893right after the prefix, if present, or between any two digits. If the input is 4894invalid, a NaN is returned. 4895 4896=item from_bin() 4897 4898 $x = Math::BigInt->from_bin("0b10011"); # input is binary 4899 4900Interpret the input as a binary string. A "0b" or "b" prefix is optional. A 4901single underscore character may be placed right after the prefix, if present, 4902or between any two digits. If the input is invalid, a NaN is returned. 4903 4904=item from_bytes() 4905 4906 $x = Math::BigInt->from_bytes("\xf3\x6b"); # $x = 62315 4907 4908Interpret the input as a byte string, assuming big endian byte order. The 4909output is always a non-negative, finite integer. 4910 4911In some special cases, from_bytes() matches the conversion done by unpack(): 4912 4913 $b = "\x4e"; # one char byte string 4914 $x = Math::BigInt->from_bytes($b); # = 78 4915 $y = unpack "C", $b; # ditto, but scalar 4916 4917 $b = "\xf3\x6b"; # two char byte string 4918 $x = Math::BigInt->from_bytes($b); # = 62315 4919 $y = unpack "S>", $b; # ditto, but scalar 4920 4921 $b = "\x2d\xe0\x49\xad"; # four char byte string 4922 $x = Math::BigInt->from_bytes($b); # = 769673645 4923 $y = unpack "L>", $b; # ditto, but scalar 4924 4925 $b = "\x2d\xe0\x49\xad\x2d\xe0\x49\xad"; # eight char byte string 4926 $x = Math::BigInt->from_bytes($b); # = 3305723134637787565 4927 $y = unpack "Q>", $b; # ditto, but scalar 4928 4929=item from_base() 4930 4931Given a string, a base, and an optional collation sequence, interpret the 4932string as a number in the given base. The collation sequence describes the 4933value of each character in the string. 4934 4935If a collation sequence is not given, a default collation sequence is used. If 4936the base is less than or equal to 36, the collation sequence is the string 4937consisting of the 36 characters "0" to "9" and "A" to "Z". In this case, the 4938letter case in the input is ignored. If the base is greater than 36, and 4939smaller than or equal to 62, the collation sequence is the string consisting of 4940the 62 characters "0" to "9", "A" to "Z", and "a" to "z". A base larger than 62 4941requires the collation sequence to be specified explicitly. 4942 4943These examples show standard binary, octal, and hexadecimal conversion. All 4944cases return 250. 4945 4946 $x = Math::BigInt->from_base("11111010", 2); 4947 $x = Math::BigInt->from_base("372", 8); 4948 $x = Math::BigInt->from_base("fa", 16); 4949 4950When the base is less than or equal to 36, and no collation sequence is given, 4951the letter case is ignored, so both of these also return 250: 4952 4953 $x = Math::BigInt->from_base("6Y", 16); 4954 $x = Math::BigInt->from_base("6y", 16); 4955 4956When the base greater than 36, and no collation sequence is given, the default 4957collation sequence contains both uppercase and lowercase letters, so 4958the letter case in the input is not ignored: 4959 4960 $x = Math::BigInt->from_base("6S", 37); # $x is 250 4961 $x = Math::BigInt->from_base("6s", 37); # $x is 276 4962 $x = Math::BigInt->from_base("121", 3); # $x is 16 4963 $x = Math::BigInt->from_base("XYZ", 36); # $x is 44027 4964 $x = Math::BigInt->from_base("Why", 42); # $x is 58314 4965 4966The collation sequence can be any set of unique characters. These two cases 4967are equivalent 4968 4969 $x = Math::BigInt->from_base("100", 2, "01"); # $x is 4 4970 $x = Math::BigInt->from_base("|--", 2, "-|"); # $x is 4 4971 4972=item bzero() 4973 4974 $x = Math::BigInt->bzero(); 4975 $x->bzero(); 4976 4977Returns a new Math::BigInt object representing zero. If used as an instance 4978method, assigns the value to the invocand. 4979 4980=item bone() 4981 4982 $x = Math::BigInt->bone(); # +1 4983 $x = Math::BigInt->bone("+"); # +1 4984 $x = Math::BigInt->bone("-"); # -1 4985 $x->bone(); # +1 4986 $x->bone("+"); # +1 4987 $x->bone('-'); # -1 4988 4989Creates a new Math::BigInt object representing one. The optional argument is 4990either '-' or '+', indicating whether you want plus one or minus one. If used 4991as an instance method, assigns the value to the invocand. 4992 4993=item binf() 4994 4995 $x = Math::BigInt->binf($sign); 4996 4997Creates a new Math::BigInt object representing infinity. The optional argument 4998is either '-' or '+', indicating whether you want infinity or minus infinity. 4999If used as an instance method, assigns the value to the invocand. 5000 5001 $x->binf(); 5002 $x->binf('-'); 5003 5004=item bnan() 5005 5006 $x = Math::BigInt->bnan(); 5007 5008Creates a new Math::BigInt object representing NaN (Not A Number). If used as 5009an instance method, assigns the value to the invocand. 5010 5011 $x->bnan(); 5012 5013=item bpi() 5014 5015 $x = Math::BigInt->bpi(100); # 3 5016 $x->bpi(100); # 3 5017 5018Creates a new Math::BigInt object representing PI. If used as an instance 5019method, assigns the value to the invocand. With Math::BigInt this always 5020returns 3. 5021 5022If upgrading is in effect, returns PI, rounded to N digits with the current 5023rounding mode: 5024 5025 use Math::BigFloat; 5026 use Math::BigInt upgrade => "Math::BigFloat"; 5027 print Math::BigInt->bpi(3), "\n"; # 3.14 5028 print Math::BigInt->bpi(100), "\n"; # 3.1415.... 5029 5030=item copy() 5031 5032 $x->copy(); # make a true copy of $x (unlike $y = $x) 5033 5034=item as_int() 5035 5036=item as_number() 5037 5038These methods are called when Math::BigInt encounters an object it doesn't know 5039how to handle. For instance, assume $x is a Math::BigInt, or subclass thereof, 5040and $y is defined, but not a Math::BigInt, or subclass thereof. If you do 5041 5042 $x -> badd($y); 5043 5044$y needs to be converted into an object that $x can deal with. This is done by 5045first checking if $y is something that $x might be upgraded to. If that is the 5046case, no further attempts are made. The next is to see if $y supports the 5047method C<as_int()>. If it does, C<as_int()> is called, but if it doesn't, the 5048next thing is to see if $y supports the method C<as_number()>. If it does, 5049C<as_number()> is called. The method C<as_int()> (and C<as_number()>) is 5050expected to return either an object that has the same class as $x, a subclass 5051thereof, or a string that C<ref($x)-E<gt>new()> can parse to create an object. 5052 5053C<as_number()> is an alias to C<as_int()>. C<as_number> was introduced in 5054v1.22, while C<as_int()> was introduced in v1.68. 5055 5056In Math::BigInt, C<as_int()> has the same effect as C<copy()>. 5057 5058=back 5059 5060=head2 Boolean methods 5061 5062None of these methods modify the invocand object. 5063 5064=over 5065 5066=item is_zero() 5067 5068 $x->is_zero(); # true if $x is 0 5069 5070Returns true if the invocand is zero and false otherwise. 5071 5072=item is_one( [ SIGN ]) 5073 5074 $x->is_one(); # true if $x is +1 5075 $x->is_one("+"); # ditto 5076 $x->is_one("-"); # true if $x is -1 5077 5078Returns true if the invocand is one and false otherwise. 5079 5080=item is_finite() 5081 5082 $x->is_finite(); # true if $x is not +inf, -inf or NaN 5083 5084Returns true if the invocand is a finite number, i.e., it is neither +inf, 5085-inf, nor NaN. 5086 5087=item is_inf( [ SIGN ] ) 5088 5089 $x->is_inf(); # true if $x is +inf 5090 $x->is_inf("+"); # ditto 5091 $x->is_inf("-"); # true if $x is -inf 5092 5093Returns true if the invocand is infinite and false otherwise. 5094 5095=item is_nan() 5096 5097 $x->is_nan(); # true if $x is NaN 5098 5099=item is_positive() 5100 5101=item is_pos() 5102 5103 $x->is_positive(); # true if > 0 5104 $x->is_pos(); # ditto 5105 5106Returns true if the invocand is positive and false otherwise. A C<NaN> is 5107neither positive nor negative. 5108 5109=item is_negative() 5110 5111=item is_neg() 5112 5113 $x->is_negative(); # true if < 0 5114 $x->is_neg(); # ditto 5115 5116Returns true if the invocand is negative and false otherwise. A C<NaN> is 5117neither positive nor negative. 5118 5119=item is_non_positive() 5120 5121 $x->is_non_positive(); # true if <= 0 5122 5123Returns true if the invocand is negative or zero. 5124 5125=item is_non_negative() 5126 5127 $x->is_non_negative(); # true if >= 0 5128 5129Returns true if the invocand is positive or zero. 5130 5131=item is_odd() 5132 5133 $x->is_odd(); # true if odd, false for even 5134 5135Returns true if the invocand is odd and false otherwise. C<NaN>, C<+inf>, and 5136C<-inf> are neither odd nor even. 5137 5138=item is_even() 5139 5140 $x->is_even(); # true if $x is even 5141 5142Returns true if the invocand is even and false otherwise. C<NaN>, C<+inf>, 5143C<-inf> are not integers and are neither odd nor even. 5144 5145=item is_int() 5146 5147 $x->is_int(); # true if $x is an integer 5148 5149Returns true if the invocand is an integer and false otherwise. C<NaN>, 5150C<+inf>, C<-inf> are not integers. 5151 5152=back 5153 5154=head2 Comparison methods 5155 5156None of these methods modify the invocand object. Note that a C<NaN> is neither 5157less than, greater than, or equal to anything else, even a C<NaN>. 5158 5159=over 5160 5161=item bcmp() 5162 5163 $x->bcmp($y); 5164 5165Returns -1, 0, 1 depending on whether $x is less than, equal to, or grater than 5166$y. Returns undef if any operand is a NaN. 5167 5168=item bacmp() 5169 5170 $x->bacmp($y); 5171 5172Returns -1, 0, 1 depending on whether the absolute value of $x is less than, 5173equal to, or grater than the absolute value of $y. Returns undef if any operand 5174is a NaN. 5175 5176=item beq() 5177 5178 $x -> beq($y); 5179 5180Returns true if and only if $x is equal to $y, and false otherwise. 5181 5182=item bne() 5183 5184 $x -> bne($y); 5185 5186Returns true if and only if $x is not equal to $y, and false otherwise. 5187 5188=item blt() 5189 5190 $x -> blt($y); 5191 5192Returns true if and only if $x is equal to $y, and false otherwise. 5193 5194=item ble() 5195 5196 $x -> ble($y); 5197 5198Returns true if and only if $x is less than or equal to $y, and false 5199otherwise. 5200 5201=item bgt() 5202 5203 $x -> bgt($y); 5204 5205Returns true if and only if $x is greater than $y, and false otherwise. 5206 5207=item bge() 5208 5209 $x -> bge($y); 5210 5211Returns true if and only if $x is greater than or equal to $y, and false 5212otherwise. 5213 5214=back 5215 5216=head2 Arithmetic methods 5217 5218These methods modify the invocand object and returns it. 5219 5220=over 5221 5222=item bneg() 5223 5224 $x->bneg(); 5225 5226Negate the number, e.g. change the sign between '+' and '-', or between '+inf' 5227and '-inf', respectively. Does nothing for NaN or zero. 5228 5229=item babs() 5230 5231 $x->babs(); 5232 5233Set the number to its absolute value, e.g. change the sign from '-' to '+' 5234and from '-inf' to '+inf', respectively. Does nothing for NaN or positive 5235numbers. 5236 5237=item bsgn() 5238 5239 $x->bsgn(); 5240 5241Signum function. Set the number to -1, 0, or 1, depending on whether the 5242number is negative, zero, or positive, respectively. Does not modify NaNs. 5243 5244=item bnorm() 5245 5246 $x->bnorm(); # normalize (no-op) 5247 5248Normalize the number. This is a no-op and is provided only for backwards 5249compatibility. 5250 5251=item binc() 5252 5253 $x->binc(); # increment x by 1 5254 5255=item bdec() 5256 5257 $x->bdec(); # decrement x by 1 5258 5259=item badd() 5260 5261 $x->badd($y); # addition (add $y to $x) 5262 5263=item bsub() 5264 5265 $x->bsub($y); # subtraction (subtract $y from $x) 5266 5267=item bmul() 5268 5269 $x->bmul($y); # multiplication (multiply $x by $y) 5270 5271=item bmuladd() 5272 5273 $x->bmuladd($y,$z); 5274 5275Multiply $x by $y, and then add $z to the result, 5276 5277This method was added in v1.87 of Math::BigInt (June 2007). 5278 5279=item bdiv() 5280 5281 $x->bdiv($y); # divide, set $x to quotient 5282 5283Divides $x by $y by doing floored division (F-division), where the quotient is 5284the floored (rounded towards negative infinity) quotient of the two operands. 5285In list context, returns the quotient and the remainder. The remainder is 5286either zero or has the same sign as the second operand. In scalar context, only 5287the quotient is returned. 5288 5289The quotient is always the greatest integer less than or equal to the 5290real-valued quotient of the two operands, and the remainder (when it is 5291non-zero) always has the same sign as the second operand; so, for example, 5292 5293 1 / 4 => ( 0, 1) 5294 1 / -4 => (-1, -3) 5295 -3 / 4 => (-1, 1) 5296 -3 / -4 => ( 0, -3) 5297 -11 / 2 => (-5, 1) 5298 11 / -2 => (-5, -1) 5299 5300The behavior of the overloaded operator % agrees with the behavior of Perl's 5301built-in % operator (as documented in the perlop manpage), and the equation 5302 5303 $x == ($x / $y) * $y + ($x % $y) 5304 5305holds true for any finite $x and finite, non-zero $y. 5306 5307Perl's "use integer" might change the behaviour of % and / for scalars. This is 5308because under 'use integer' Perl does what the underlying C library thinks is 5309right, and this varies. However, "use integer" does not change the way things 5310are done with Math::BigInt objects. 5311 5312=item btdiv() 5313 5314 $x->btdiv($y); # divide, set $x to quotient 5315 5316Divides $x by $y by doing truncated division (T-division), where quotient is 5317the truncated (rouneded towards zero) quotient of the two operands. In list 5318context, returns the quotient and the remainder. The remainder is either zero 5319or has the same sign as the first operand. In scalar context, only the quotient 5320is returned. 5321 5322=item bmod() 5323 5324 $x->bmod($y); # modulus (x % y) 5325 5326Returns $x modulo $y, i.e., the remainder after floored division (F-division). 5327This method is like Perl's % operator. See L</bdiv()>. 5328 5329=item btmod() 5330 5331 $x->btmod($y); # modulus 5332 5333Returns the remainer after truncated division (T-division). See L</btdiv()>. 5334 5335=item bmodinv() 5336 5337 $x->bmodinv($mod); # modular multiplicative inverse 5338 5339Returns the multiplicative inverse of C<$x> modulo C<$mod>. If 5340 5341 $y = $x -> copy() -> bmodinv($mod) 5342 5343then C<$y> is the number closest to zero, and with the same sign as C<$mod>, 5344satisfying 5345 5346 ($x * $y) % $mod = 1 % $mod 5347 5348If C<$x> and C<$y> are non-zero, they must be relative primes, i.e., 5349C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative 5350inverse exists. 5351 5352=item bmodpow() 5353 5354 $num->bmodpow($exp,$mod); # modular exponentiation 5355 # ($num**$exp % $mod) 5356 5357Returns the value of C<$num> taken to the power C<$exp> in the modulus 5358C<$mod> using binary exponentiation. C<bmodpow> is far superior to 5359writing 5360 5361 $num ** $exp % $mod 5362 5363because it is much faster - it reduces internal variables into 5364the modulus whenever possible, so it operates on smaller numbers. 5365 5366C<bmodpow> also supports negative exponents. 5367 5368 bmodpow($num, -1, $mod) 5369 5370is exactly equivalent to 5371 5372 bmodinv($num, $mod) 5373 5374=item bpow() 5375 5376 $x->bpow($y); # power of arguments (x ** y) 5377 5378C<bpow()> (and the rounding functions) now modifies the first argument and 5379returns it, unlike the old code which left it alone and only returned the 5380result. This is to be consistent with C<badd()> etc. The first three modifies 5381$x, the last one won't: 5382 5383 print bpow($x,$i),"\n"; # modify $x 5384 print $x->bpow($i),"\n"; # ditto 5385 print $x **= $i,"\n"; # the same 5386 print $x ** $i,"\n"; # leave $x alone 5387 5388The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though. 5389 5390=item blog() 5391 5392 $x->blog($base, $accuracy); # logarithm of x to the base $base 5393 5394If C<$base> is not defined, Euler's number (e) is used: 5395 5396 print $x->blog(undef, 100); # log(x) to 100 digits 5397 5398=item bexp() 5399 5400 $x->bexp($accuracy); # calculate e ** X 5401 5402Calculates the expression C<e ** $x> where C<e> is Euler's number. 5403 5404This method was added in v1.82 of Math::BigInt (April 2007). 5405 5406See also L</blog()>. 5407 5408=item bnok() 5409 5410 $x->bnok($y); # x over y (binomial coefficient n over k) 5411 5412Calculates the binomial coefficient n over k, also called the "choose" 5413function, which is 5414 5415 ( n ) n! 5416 | | = -------- 5417 ( k ) k!(n-k)! 5418 5419when n and k are non-negative. This method implements the full Kronenburg 5420extension (Kronenburg, M.J. "The Binomial Coefficient for Negative Arguments." 542118 May 2011. http://arxiv.org/abs/1105.3689/) illustrated by the following 5422pseudo-code: 5423 5424 if n >= 0 and k >= 0: 5425 return binomial(n, k) 5426 if k >= 0: 5427 return (-1)^k*binomial(-n+k-1, k) 5428 if k <= n: 5429 return (-1)^(n-k)*binomial(-k-1, n-k) 5430 else 5431 return 0 5432 5433The behaviour is identical to the behaviour of the Maple and Mathematica 5434function for negative integers n, k. 5435 5436=item buparrow() 5437 5438=item uparrow() 5439 5440 $a -> buparrow($n, $b); # modifies $a 5441 $x = $a -> uparrow($n, $b); # does not modify $a 5442 5443This method implements Knuth's up-arrow notation, where $n is a non-negative 5444integer representing the number of up-arrows. $n = 0 gives multiplication, $n = 54451 gives exponentiation, $n = 2 gives tetration, $n = 3 gives hexation etc. The 5446following illustrates the relation between the first values of $n. 5447 5448See L<https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation>. 5449 5450=item backermann() 5451 5452=item ackermann() 5453 5454 $m -> backermann($n); # modifies $a 5455 $x = $m -> ackermann($n); # does not modify $a 5456 5457This method implements the Ackermann function: 5458 5459 / n + 1 if m = 0 5460 A(m, n) = | A(m-1, 1) if m > 0 and n = 0 5461 \ A(m-1, A(m, n-1)) if m > 0 and n > 0 5462 5463Its value grows rapidly, even for small inputs. For example, A(4, 2) is an 5464integer of 19729 decimal digits. 5465 5466See https://en.wikipedia.org/wiki/Ackermann_function 5467 5468=item bsin() 5469 5470 my $x = Math::BigInt->new(1); 5471 print $x->bsin(100), "\n"; 5472 5473Calculate the sine of $x, modifying $x in place. 5474 5475In Math::BigInt, unless upgrading is in effect, the result is truncated to an 5476integer. 5477 5478This method was added in v1.87 of Math::BigInt (June 2007). 5479 5480=item bcos() 5481 5482 my $x = Math::BigInt->new(1); 5483 print $x->bcos(100), "\n"; 5484 5485Calculate the cosine of $x, modifying $x in place. 5486 5487In Math::BigInt, unless upgrading is in effect, the result is truncated to an 5488integer. 5489 5490This method was added in v1.87 of Math::BigInt (June 2007). 5491 5492=item batan() 5493 5494 my $x = Math::BigFloat->new(0.5); 5495 print $x->batan(100), "\n"; 5496 5497Calculate the arcus tangens of $x, modifying $x in place. 5498 5499In Math::BigInt, unless upgrading is in effect, the result is truncated to an 5500integer. 5501 5502This method was added in v1.87 of Math::BigInt (June 2007). 5503 5504=item batan2() 5505 5506 my $x = Math::BigInt->new(1); 5507 my $y = Math::BigInt->new(1); 5508 print $y->batan2($x), "\n"; 5509 5510Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place. 5511 5512In Math::BigInt, unless upgrading is in effect, the result is truncated to an 5513integer. 5514 5515This method was added in v1.87 of Math::BigInt (June 2007). 5516 5517=item bsqrt() 5518 5519 $x->bsqrt(); # calculate square root 5520 5521C<bsqrt()> returns the square root truncated to an integer. 5522 5523If you want a better approximation of the square root, then use: 5524 5525 $x = Math::BigFloat->new(12); 5526 Math::BigFloat->precision(0); 5527 Math::BigFloat->round_mode('even'); 5528 print $x->copy->bsqrt(),"\n"; # 4 5529 5530 Math::BigFloat->precision(2); 5531 print $x->bsqrt(),"\n"; # 3.46 5532 print $x->bsqrt(3),"\n"; # 3.464 5533 5534=item broot() 5535 5536 $x->broot($N); 5537 5538Calculates the N'th root of C<$x>. 5539 5540=item bfac() 5541 5542 $x->bfac(); # factorial of $x (1*2*3*4*..*$x) 5543 5544Returns the factorial of C<$x>, i.e., the product of all positive integers up 5545to and including C<$x>. 5546 5547=item bdfac() 5548 5549 $x->bdfac(); # double factorial of $x (1*2*3*4*..*$x) 5550 5551Returns the double factorial of C<$x>. If C<$x> is an even integer, returns the 5552product of all positive, even integers up to and including C<$x>, i.e., 55532*4*6*...*$x. If C<$x> is an odd integer, returns the product of all positive, 5554odd integers, i.e., 1*3*5*...*$x. 5555 5556=item bfib() 5557 5558 $F = $n->bfib(); # a single Fibonacci number 5559 @F = $n->bfib(); # a list of Fibonacci numbers 5560 5561In scalar context, returns a single Fibonacci number. In list context, returns 5562a list of Fibonacci numbers. The invocand is the last element in the output. 5563 5564The Fibonacci sequence is defined by 5565 5566 F(0) = 0 5567 F(1) = 1 5568 F(n) = F(n-1) + F(n-2) 5569 5570In list context, F(0) and F(n) is the first and last number in the output, 5571respectively. For example, if $n is 12, then C<< @F = $n->bfib() >> returns the 5572following values, F(0) to F(12): 5573 5574 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 5575 5576The sequence can also be extended to negative index n using the re-arranged 5577recurrence relation 5578 5579 F(n-2) = F(n) - F(n-1) 5580 5581giving the bidirectional sequence 5582 5583 n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 5584 F(n) 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13 5585 5586If $n is -12, the following values, F(0) to F(12), are returned: 5587 5588 0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144 5589 5590=item blucas() 5591 5592 $F = $n->blucas(); # a single Lucas number 5593 @F = $n->blucas(); # a list of Lucas numbers 5594 5595In scalar context, returns a single Lucas number. In list context, returns a 5596list of Lucas numbers. The invocand is the last element in the output. 5597 5598The Lucas sequence is defined by 5599 5600 L(0) = 2 5601 L(1) = 1 5602 L(n) = L(n-1) + L(n-2) 5603 5604In list context, L(0) and L(n) is the first and last number in the output, 5605respectively. For example, if $n is 12, then C<< @L = $n->blucas() >> returns 5606the following values, L(0) to L(12): 5607 5608 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322 5609 5610The sequence can also be extended to negative index n using the re-arranged 5611recurrence relation 5612 5613 L(n-2) = L(n) - L(n-1) 5614 5615giving the bidirectional sequence 5616 5617 n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 5618 L(n) 29 -18 11 -7 4 -3 1 2 1 3 4 7 11 18 29 5619 5620If $n is -12, the following values, L(0) to L(-12), are returned: 5621 5622 2, 1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322 5623 5624=item brsft() 5625 5626 $x->brsft($n); # right shift $n places in base 2 5627 $x->brsft($n, $b); # right shift $n places in base $b 5628 5629The latter is equivalent to 5630 5631 $x -> bdiv($b -> copy() -> bpow($n)) 5632 5633=item blsft() 5634 5635 $x->blsft($n); # left shift $n places in base 2 5636 $x->blsft($n, $b); # left shift $n places in base $b 5637 5638The latter is equivalent to 5639 5640 $x -> bmul($b -> copy() -> bpow($n)) 5641 5642=back 5643 5644=head2 Bitwise methods 5645 5646=over 5647 5648=item band() 5649 5650 $x->band($y); # bitwise and 5651 5652=item bior() 5653 5654 $x->bior($y); # bitwise inclusive or 5655 5656=item bxor() 5657 5658 $x->bxor($y); # bitwise exclusive or 5659 5660=item bnot() 5661 5662 $x->bnot(); # bitwise not (two's complement) 5663 5664Two's complement (bitwise not). This is equivalent to, but faster than, 5665 5666 $x->binc()->bneg(); 5667 5668=back 5669 5670=head2 Rounding methods 5671 5672=over 5673 5674=item round() 5675 5676 $x->round($A,$P,$round_mode); 5677 5678Round $x to accuracy C<$A> or precision C<$P> using the round mode 5679C<$round_mode>. 5680 5681=item bround() 5682 5683 $x->bround($N); # accuracy: preserve $N digits 5684 5685Rounds $x to an accuracy of $N digits. 5686 5687=item bfround() 5688 5689 $x->bfround($N); 5690 5691Rounds to a multiple of 10**$N. Examples: 5692 5693 Input N Result 5694 5695 123456.123456 3 123500 5696 123456.123456 2 123450 5697 123456.123456 -2 123456.12 5698 123456.123456 -3 123456.123 5699 5700=item bfloor() 5701 5702 $x->bfloor(); 5703 5704Round $x towards minus infinity, i.e., set $x to the largest integer less than 5705or equal to $x. 5706 5707=item bceil() 5708 5709 $x->bceil(); 5710 5711Round $x towards plus infinity, i.e., set $x to the smallest integer greater 5712than or equal to $x). 5713 5714=item bint() 5715 5716 $x->bint(); 5717 5718Round $x towards zero. 5719 5720=back 5721 5722=head2 Other mathematical methods 5723 5724=over 5725 5726=item bgcd() 5727 5728 $x -> bgcd($y); # GCD of $x and $y 5729 $x -> bgcd($y, $z, ...); # GCD of $x, $y, $z, ... 5730 5731Returns the greatest common divisor (GCD). 5732 5733=item blcm() 5734 5735 $x -> blcm($y); # LCM of $x and $y 5736 $x -> blcm($y, $z, ...); # LCM of $x, $y, $z, ... 5737 5738Returns the least common multiple (LCM). 5739 5740=back 5741 5742=head2 Object property methods 5743 5744=over 5745 5746=item sign() 5747 5748 $x->sign(); 5749 5750Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN. 5751 5752If you want $x to have a certain sign, use one of the following methods: 5753 5754 $x->babs(); # '+' 5755 $x->babs()->bneg(); # '-' 5756 $x->bnan(); # 'NaN' 5757 $x->binf(); # '+inf' 5758 $x->binf('-'); # '-inf' 5759 5760=item digit() 5761 5762 $x->digit($n); # return the nth digit, counting from right 5763 5764If C<$n> is negative, returns the digit counting from left. 5765 5766=item digitsum() 5767 5768 $x->digitsum(); 5769 5770Computes the sum of the base 10 digits and returns it. 5771 5772=item bdigitsum() 5773 5774 $x->bdigitsum(); 5775 5776Computes the sum of the base 10 digits and assigns the result to the invocand. 5777 5778=item length() 5779 5780 $x->length(); 5781 ($xl, $fl) = $x->length(); 5782 5783Returns the number of digits in the decimal representation of the number. In 5784list context, returns the length of the integer and fraction part. For 5785Math::BigInt objects, the length of the fraction part is always 0. 5786 5787The following probably doesn't do what you expect: 5788 5789 $c = Math::BigInt->new(123); 5790 print $c->length(),"\n"; # prints 30 5791 5792It prints both the number of digits in the number and in the fraction part 5793since print calls C<length()> in list context. Use something like: 5794 5795 print scalar $c->length(),"\n"; # prints 3 5796 5797=item mantissa() 5798 5799 $x->mantissa(); 5800 5801Return the signed mantissa of $x as a Math::BigInt. 5802 5803=item exponent() 5804 5805 $x->exponent(); 5806 5807Return the exponent of $x as a Math::BigInt. 5808 5809=item parts() 5810 5811 $x->parts(); 5812 5813Returns the significand (mantissa) and the exponent as integers. In 5814Math::BigFloat, both are returned as Math::BigInt objects. 5815 5816=item sparts() 5817 5818Returns the significand (mantissa) and the exponent as integers. In scalar 5819context, only the significand is returned. The significand is the integer with 5820the smallest absolute value. The output of C<sparts()> corresponds to the 5821output from C<bsstr()>. 5822 5823In Math::BigInt, this method is identical to C<parts()>. 5824 5825=item nparts() 5826 5827Returns the significand (mantissa) and exponent corresponding to normalized 5828notation. In scalar context, only the significand is returned. For finite 5829non-zero numbers, the significand's absolute value is greater than or equal to 58301 and less than 10. The output of C<nparts()> corresponds to the output from 5831C<bnstr()>. In Math::BigInt, if the significand can not be represented as an 5832integer, upgrading is performed or NaN is returned. 5833 5834=item eparts() 5835 5836Returns the significand (mantissa) and exponent corresponding to engineering 5837notation. In scalar context, only the significand is returned. For finite 5838non-zero numbers, the significand's absolute value is greater than or equal to 58391 and less than 1000, and the exponent is a multiple of 3. The output of 5840C<eparts()> corresponds to the output from C<bestr()>. In Math::BigInt, if the 5841significand can not be represented as an integer, upgrading is performed or NaN 5842is returned. 5843 5844=item dparts() 5845 5846Returns the integer part and the fraction part. If the fraction part can not be 5847represented as an integer, upgrading is performed or NaN is returned. The 5848output of C<dparts()> corresponds to the output from C<bdstr()>. 5849 5850=back 5851 5852=head2 String conversion methods 5853 5854=over 5855 5856=item bstr() 5857 5858Returns a string representing the number using decimal notation. In 5859Math::BigFloat, the output is zero padded according to the current accuracy or 5860precision, if any of those are defined. 5861 5862=item bsstr() 5863 5864Returns a string representing the number using scientific notation where both 5865the significand (mantissa) and the exponent are integers. The output 5866corresponds to the output from C<sparts()>. 5867 5868 123 is returned as "123e+0" 5869 1230 is returned as "123e+1" 5870 12300 is returned as "123e+2" 5871 12000 is returned as "12e+3" 5872 10000 is returned as "1e+4" 5873 5874=item bnstr() 5875 5876Returns a string representing the number using normalized notation, the most 5877common variant of scientific notation. For finite non-zero numbers, the 5878absolute value of the significand is greater than or equal to 1 and less than 587910. The output corresponds to the output from C<nparts()>. 5880 5881 123 is returned as "1.23e+2" 5882 1230 is returned as "1.23e+3" 5883 12300 is returned as "1.23e+4" 5884 12000 is returned as "1.2e+4" 5885 10000 is returned as "1e+4" 5886 5887=item bestr() 5888 5889Returns a string representing the number using engineering notation. For finite 5890non-zero numbers, the absolute value of the significand is greater than or 5891equal to 1 and less than 1000, and the exponent is a multiple of 3. The output 5892corresponds to the output from C<eparts()>. 5893 5894 123 is returned as "123e+0" 5895 1230 is returned as "1.23e+3" 5896 12300 is returned as "12.3e+3" 5897 12000 is returned as "12e+3" 5898 10000 is returned as "10e+3" 5899 5900=item bdstr() 5901 5902Returns a string representing the number using decimal notation. The output 5903corresponds to the output from C<dparts()>. 5904 5905 123 is returned as "123" 5906 1230 is returned as "1230" 5907 12300 is returned as "12300" 5908 12000 is returned as "12000" 5909 10000 is returned as "10000" 5910 5911=item to_hex() 5912 5913 $x->to_hex(); 5914 5915Returns a hexadecimal string representation of the number. See also from_hex(). 5916 5917=item to_bin() 5918 5919 $x->to_bin(); 5920 5921Returns a binary string representation of the number. See also from_bin(). 5922 5923=item to_oct() 5924 5925 $x->to_oct(); 5926 5927Returns an octal string representation of the number. See also from_oct(). 5928 5929=item to_bytes() 5930 5931 $x = Math::BigInt->new("1667327589"); 5932 $s = $x->to_bytes(); # $s = "cafe" 5933 5934Returns a byte string representation of the number using big endian byte 5935order. The invocand must be a non-negative, finite integer. See also from_bytes(). 5936 5937=item to_base() 5938 5939 $x = Math::BigInt->new("250"); 5940 $x->to_base(2); # returns "11111010" 5941 $x->to_base(8); # returns "372" 5942 $x->to_base(16); # returns "fa" 5943 5944Returns a string representation of the number in the given base. If a collation 5945sequence is given, the collation sequence determines which characters are used 5946in the output. 5947 5948Here are some more examples 5949 5950 $x = Math::BigInt->new("16")->to_base(3); # returns "121" 5951 $x = Math::BigInt->new("44027")->to_base(36); # returns "XYZ" 5952 $x = Math::BigInt->new("58314")->to_base(42); # returns "Why" 5953 $x = Math::BigInt->new("4")->to_base(2, "-|"); # returns "|--" 5954 5955See from_base() for information and examples. 5956 5957=item as_hex() 5958 5959 $x->as_hex(); 5960 5961As, C<to_hex()>, but with a "0x" prefix. 5962 5963=item as_bin() 5964 5965 $x->as_bin(); 5966 5967As, C<to_bin()>, but with a "0b" prefix. 5968 5969=item as_oct() 5970 5971 $x->as_oct(); 5972 5973As, C<to_oct()>, but with a "0" prefix. 5974 5975=item as_bytes() 5976 5977This is just an alias for C<to_bytes()>. 5978 5979=back 5980 5981=head2 Other conversion methods 5982 5983=over 5984 5985=item numify() 5986 5987 print $x->numify(); 5988 5989Returns a Perl scalar from $x. It is used automatically whenever a scalar is 5990needed, for instance in array index operations. 5991 5992=back 5993 5994=head1 ACCURACY and PRECISION 5995 5996Math::BigInt and Math::BigFloat have full support for accuracy and precision 5997based rounding, both automatically after every operation, as well as manually. 5998 5999This section describes the accuracy/precision handling in Math::BigInt and 6000Math::BigFloat as it used to be and as it is now, complete with an explanation 6001of all terms and abbreviations. 6002 6003Not yet implemented things (but with correct description) are marked with '!', 6004things that need to be answered are marked with '?'. 6005 6006In the next paragraph follows a short description of terms used here (because 6007these may differ from terms used by others people or documentation). 6008 6009During the rest of this document, the shortcuts A (for accuracy), P (for 6010precision), F (fallback) and R (rounding mode) are be used. 6011 6012=head2 Precision P 6013 6014Precision is a fixed number of digits before (positive) or after (negative) the 6015decimal point. For example, 123.45 has a precision of -2. 0 means an integer 6016like 123 (or 120). A precision of 2 means at least two digits to the left of 6017the decimal point are zero, so 123 with P = 1 becomes 120. Note that numbers 6018with zeros before the decimal point may have different precisions, because 1200 6019can have P = 0, 1 or 2 (depending on what the initial value was). It could also 6020have p < 0, when the digits after the decimal point are zero. 6021 6022The string output (of floating point numbers) is padded with zeros: 6023 6024 Initial value P A Result String 6025 ------------------------------------------------------------ 6026 1234.01 -3 1000 1000 6027 1234 -2 1200 1200 6028 1234.5 -1 1230 1230 6029 1234.001 1 1234 1234.0 6030 1234.01 0 1234 1234 6031 1234.01 2 1234.01 1234.01 6032 1234.01 5 1234.01 1234.01000 6033 6034For Math::BigInt objects, no padding occurs. 6035 6036=head2 Accuracy A 6037 6038Number of significant digits. Leading zeros are not counted. A number may have 6039an accuracy greater than the non-zero digits when there are zeros in it or 6040trailing zeros. For example, 123.456 has A of 6, 10203 has 5, 123.0506 has 7, 6041123.45000 has 8 and 0.000123 has 3. 6042 6043The string output (of floating point numbers) is padded with zeros: 6044 6045 Initial value P A Result String 6046 ------------------------------------------------------------ 6047 1234.01 3 1230 1230 6048 1234.01 6 1234.01 1234.01 6049 1234.1 8 1234.1 1234.1000 6050 6051For Math::BigInt objects, no padding occurs. 6052 6053=head2 Fallback F 6054 6055When both A and P are undefined, this is used as a fallback accuracy when 6056dividing numbers. 6057 6058=head2 Rounding mode R 6059 6060When rounding a number, different 'styles' or 'kinds' of rounding are possible. 6061(Note that random rounding, as in Math::Round, is not implemented.) 6062 6063=head3 Directed rounding 6064 6065These round modes always round in the same direction. 6066 6067=over 6068 6069=item 'trunc' 6070 6071Round towards zero. Remove all digits following the rounding place, i.e., 6072replace them with zeros. Thus, 987.65 rounded to tens (P=1) becomes 980, and 6073rounded to the fourth significant digit becomes 987.6 (A=4). 123.456 rounded to 6074the second place after the decimal point (P=-2) becomes 123.46. This 6075corresponds to the IEEE 754 rounding mode 'roundTowardZero'. 6076 6077=back 6078 6079=head3 Rounding to nearest 6080 6081These rounding modes round to the nearest digit. They differ in how they 6082determine which way to round in the ambiguous case when there is a tie. 6083 6084=over 6085 6086=item 'even' 6087 6088Round towards the nearest even digit, e.g., when rounding to nearest integer, 6089-5.5 becomes -6, 4.5 becomes 4, but 4.501 becomes 5. This corresponds to the 6090IEEE 754 rounding mode 'roundTiesToEven'. 6091 6092=item 'odd' 6093 6094Round towards the nearest odd digit, e.g., when rounding to nearest integer, 60954.5 becomes 5, -5.5 becomes -5, but 5.501 becomes 6. This corresponds to the 6096IEEE 754 rounding mode 'roundTiesToOdd'. 6097 6098=item '+inf' 6099 6100Round towards plus infinity, i.e., always round up. E.g., when rounding to the 6101nearest integer, 4.5 becomes 5, -5.5 becomes -5, and 4.501 also becomes 5. This 6102corresponds to the IEEE 754 rounding mode 'roundTiesToPositive'. 6103 6104=item '-inf' 6105 6106Round towards minus infinity, i.e., always round down. E.g., when rounding to 6107the nearest integer, 4.5 becomes 4, -5.5 becomes -6, but 4.501 becomes 5. This 6108corresponds to the IEEE 754 rounding mode 'roundTiesToNegative'. 6109 6110=item 'zero' 6111 6112Round towards zero, i.e., round positive numbers down and negative numbers up. 6113E.g., when rounding to the nearest integer, 4.5 becomes 4, -5.5 becomes -5, but 61144.501 becomes 5. This corresponds to the IEEE 754 rounding mode 6115'roundTiesToZero'. 6116 6117=item 'common' 6118 6119Round away from zero, i.e., round to the number with the largest absolute 6120value. E.g., when rounding to the nearest integer, -1.5 becomes -2, 1.5 becomes 61212 and 1.49 becomes 1. This corresponds to the IEEE 754 rounding mode 6122'roundTiesToAway'. 6123 6124=back 6125 6126The handling of A & P in MBI/MBF (the old core code shipped with Perl versions 6127<= 5.7.2) is like this: 6128 6129=over 6130 6131=item Precision 6132 6133 * bfround($p) is able to round to $p number of digits after the decimal 6134 point 6135 * otherwise P is unused 6136 6137=item Accuracy (significant digits) 6138 6139 * bround($a) rounds to $a significant digits 6140 * only bdiv() and bsqrt() take A as (optional) parameter 6141 + other operations simply create the same number (bneg etc), or 6142 more (bmul) of digits 6143 + rounding/truncating is only done when explicitly calling one 6144 of bround or bfround, and never for Math::BigInt (not implemented) 6145 * bsqrt() simply hands its accuracy argument over to bdiv. 6146 * the documentation and the comment in the code indicate two 6147 different ways on how bdiv() determines the maximum number 6148 of digits it should calculate, and the actual code does yet 6149 another thing 6150 POD: 6151 max($Math::BigFloat::div_scale,length(dividend)+length(divisor)) 6152 Comment: 6153 result has at most max(scale, length(dividend), length(divisor)) digits 6154 Actual code: 6155 scale = max(scale, length(dividend)-1,length(divisor)-1); 6156 scale += length(divisor) - length(dividend); 6157 So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10 6158 So for lx = 3, ly = 9, scale = 10, scale will actually be 16 6159 (10+9-3). Actually, the 'difference' added to the scale is cal- 6160 culated from the number of "significant digits" in dividend and 6161 divisor, which is derived by looking at the length of the man- 6162 tissa. Which is wrong, since it includes the + sign (oops) and 6163 actually gets 2 for '+100' and 4 for '+101'. Oops again. Thus 6164 124/3 with div_scale=1 will get you '41.3' based on the strange 6165 assumption that 124 has 3 significant digits, while 120/7 will 6166 get you '17', not '17.1' since 120 is thought to have 2 signif- 6167 icant digits. The rounding after the division then uses the 6168 remainder and $y to determine whether it must round up or down. 6169 ? I have no idea which is the right way. That's why I used a slightly more 6170 ? simple scheme and tweaked the few failing testcases to match it. 6171 6172=back 6173 6174This is how it works now: 6175 6176=over 6177 6178=item Setting/Accessing 6179 6180 * You can set the A global via Math::BigInt->accuracy() or 6181 Math::BigFloat->accuracy() or whatever class you are using. 6182 * You can also set P globally by using Math::SomeClass->precision() 6183 likewise. 6184 * Globals are classwide, and not inherited by subclasses. 6185 * to undefine A, use Math::SomeCLass->accuracy(undef); 6186 * to undefine P, use Math::SomeClass->precision(undef); 6187 * Setting Math::SomeClass->accuracy() clears automatically 6188 Math::SomeClass->precision(), and vice versa. 6189 * To be valid, A must be > 0, P can have any value. 6190 * If P is negative, this means round to the P'th place to the right of the 6191 decimal point; positive values mean to the left of the decimal point. 6192 P of 0 means round to integer. 6193 * to find out the current global A, use Math::SomeClass->accuracy() 6194 * to find out the current global P, use Math::SomeClass->precision() 6195 * use $x->accuracy() respective $x->precision() for the local 6196 setting of $x. 6197 * Please note that $x->accuracy() respective $x->precision() 6198 return eventually defined global A or P, when $x's A or P is not 6199 set. 6200 6201=item Creating numbers 6202 6203 * When you create a number, you can give the desired A or P via: 6204 $x = Math::BigInt->new($number,$A,$P); 6205 * Only one of A or P can be defined, otherwise the result is NaN 6206 * If no A or P is give ($x = Math::BigInt->new($number) form), then the 6207 globals (if set) will be used. Thus changing the global defaults later on 6208 will not change the A or P of previously created numbers (i.e., A and P of 6209 $x will be what was in effect when $x was created) 6210 * If given undef for A and P, NO rounding will occur, and the globals will 6211 NOT be used. This is used by subclasses to create numbers without 6212 suffering rounding in the parent. Thus a subclass is able to have its own 6213 globals enforced upon creation of a number by using 6214 $x = Math::BigInt->new($number,undef,undef): 6215 6216 use Math::BigInt::SomeSubclass; 6217 use Math::BigInt; 6218 6219 Math::BigInt->accuracy(2); 6220 Math::BigInt::SomeSubClass->accuracy(3); 6221 $x = Math::BigInt::SomeSubClass->new(1234); 6222 6223 $x is now 1230, and not 1200. A subclass might choose to implement 6224 this otherwise, e.g. falling back to the parent's A and P. 6225 6226=item Usage 6227 6228 * If A or P are enabled/defined, they are used to round the result of each 6229 operation according to the rules below 6230 * Negative P is ignored in Math::BigInt, since Math::BigInt objects never 6231 have digits after the decimal point 6232 * Math::BigFloat uses Math::BigInt internally, but setting A or P inside 6233 Math::BigInt as globals does not tamper with the parts of a Math::BigFloat. 6234 A flag is used to mark all Math::BigFloat numbers as 'never round'. 6235 6236=item Precedence 6237 6238 * It only makes sense that a number has only one of A or P at a time. 6239 If you set either A or P on one object, or globally, the other one will 6240 be automatically cleared. 6241 * If two objects are involved in an operation, and one of them has A in 6242 effect, and the other P, this results in an error (NaN). 6243 * A takes precedence over P (Hint: A comes before P). 6244 If neither of them is defined, nothing is used, i.e. the result will have 6245 as many digits as it can (with an exception for bdiv/bsqrt) and will not 6246 be rounded. 6247 * There is another setting for bdiv() (and thus for bsqrt()). If neither of 6248 A or P is defined, bdiv() will use a fallback (F) of $div_scale digits. 6249 If either the dividend's or the divisor's mantissa has more digits than 6250 the value of F, the higher value will be used instead of F. 6251 This is to limit the digits (A) of the result (just consider what would 6252 happen with unlimited A and P in the case of 1/3 :-) 6253 * bdiv will calculate (at least) 4 more digits than required (determined by 6254 A, P or F), and, if F is not used, round the result 6255 (this will still fail in the case of a result like 0.12345000000001 with A 6256 or P of 5, but this can not be helped - or can it?) 6257 * Thus you can have the math done by on Math::Big* class in two modi: 6258 + never round (this is the default): 6259 This is done by setting A and P to undef. No math operation 6260 will round the result, with bdiv() and bsqrt() as exceptions to guard 6261 against overflows. You must explicitly call bround(), bfround() or 6262 round() (the latter with parameters). 6263 Note: Once you have rounded a number, the settings will 'stick' on it 6264 and 'infect' all other numbers engaged in math operations with it, since 6265 local settings have the highest precedence. So, to get SaferRound[tm], 6266 use a copy() before rounding like this: 6267 6268 $x = Math::BigFloat->new(12.34); 6269 $y = Math::BigFloat->new(98.76); 6270 $z = $x * $y; # 1218.6984 6271 print $x->copy()->bround(3); # 12.3 (but A is now 3!) 6272 $z = $x * $y; # still 1218.6984, without 6273 # copy would have been 1210! 6274 6275 + round after each op: 6276 After each single operation (except for testing like is_zero()), the 6277 method round() is called and the result is rounded appropriately. By 6278 setting proper values for A and P, you can have all-the-same-A or 6279 all-the-same-P modes. For example, Math::Currency might set A to undef, 6280 and P to -2, globally. 6281 6282 ?Maybe an extra option that forbids local A & P settings would be in order, 6283 ?so that intermediate rounding does not 'poison' further math? 6284 6285=item Overriding globals 6286 6287 * you will be able to give A, P and R as an argument to all the calculation 6288 routines; the second parameter is A, the third one is P, and the fourth is 6289 R (shift right by one for binary operations like badd). P is used only if 6290 the first parameter (A) is undefined. These three parameters override the 6291 globals in the order detailed as follows, i.e. the first defined value 6292 wins: 6293 (local: per object, global: global default, parameter: argument to sub) 6294 + parameter A 6295 + parameter P 6296 + local A (if defined on both of the operands: smaller one is taken) 6297 + local P (if defined on both of the operands: bigger one is taken) 6298 + global A 6299 + global P 6300 + global F 6301 * bsqrt() will hand its arguments to bdiv(), as it used to, only now for two 6302 arguments (A and P) instead of one 6303 6304=item Local settings 6305 6306 * You can set A or P locally by using $x->accuracy() or 6307 $x->precision() 6308 and thus force different A and P for different objects/numbers. 6309 * Setting A or P this way immediately rounds $x to the new value. 6310 * $x->accuracy() clears $x->precision(), and vice versa. 6311 6312=item Rounding 6313 6314 * the rounding routines will use the respective global or local settings. 6315 bround() is for accuracy rounding, while bfround() is for precision 6316 * the two rounding functions take as the second parameter one of the 6317 following rounding modes (R): 6318 'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common' 6319 * you can set/get the global R by using Math::SomeClass->round_mode() 6320 or by setting $Math::SomeClass::round_mode 6321 * after each operation, $result->round() is called, and the result may 6322 eventually be rounded (that is, if A or P were set either locally, 6323 globally or as parameter to the operation) 6324 * to manually round a number, call $x->round($A,$P,$round_mode); 6325 this will round the number by using the appropriate rounding function 6326 and then normalize it. 6327 * rounding modifies the local settings of the number: 6328 6329 $x = Math::BigFloat->new(123.456); 6330 $x->accuracy(5); 6331 $x->bround(4); 6332 6333 Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy() 6334 will be 4 from now on. 6335 6336=item Default values 6337 6338 * R: 'even' 6339 * F: 40 6340 * A: undef 6341 * P: undef 6342 6343=item Remarks 6344 6345 * The defaults are set up so that the new code gives the same results as 6346 the old code (except in a few cases on bdiv): 6347 + Both A and P are undefined and thus will not be used for rounding 6348 after each operation. 6349 + round() is thus a no-op, unless given extra parameters A and P 6350 6351=back 6352 6353=head1 Infinity and Not a Number 6354 6355While Math::BigInt has extensive handling of inf and NaN, certain quirks 6356remain. 6357 6358=over 6359 6360=item oct()/hex() 6361 6362These perl routines currently (as of Perl v.5.8.6) cannot handle passed inf. 6363 6364 te@linux:~> perl -wle 'print 2 ** 3333' 6365 Inf 6366 te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333' 6367 1 6368 te@linux:~> perl -wle 'print oct(2 ** 3333)' 6369 0 6370 te@linux:~> perl -wle 'print hex(2 ** 3333)' 6371 Illegal hexadecimal digit 'I' ignored at -e line 1. 6372 0 6373 6374The same problems occur if you pass them Math::BigInt->binf() objects. Since 6375overloading these routines is not possible, this cannot be fixed from 6376Math::BigInt. 6377 6378=back 6379 6380=head1 INTERNALS 6381 6382You should neither care about nor depend on the internal representation; it 6383might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >> 6384instead relying on the internal representation. 6385 6386=head2 MATH LIBRARY 6387 6388Math with the numbers is done (by default) by a module called 6389C<Math::BigInt::Calc>. This is equivalent to saying: 6390 6391 use Math::BigInt try => 'Calc'; 6392 6393You can change this backend library by using: 6394 6395 use Math::BigInt try => 'GMP'; 6396 6397B<Note>: General purpose packages should not be explicit about the library to 6398use; let the script author decide which is best. 6399 6400If your script works with huge numbers and Calc is too slow for them, you can 6401also for the loading of one of these libraries and if none of them can be used, 6402the code dies: 6403 6404 use Math::BigInt only => 'GMP,Pari'; 6405 6406The following would first try to find Math::BigInt::Foo, then 6407Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc: 6408 6409 use Math::BigInt try => 'Foo,Math::BigInt::Bar'; 6410 6411The library that is loaded last is used. Note that this can be overwritten at 6412any time by loading a different library, and numbers constructed with different 6413libraries cannot be used in math operations together. 6414 6415=head3 What library to use? 6416 6417B<Note>: General purpose packages should not be explicit about the library to 6418use; let the script author decide which is best. 6419 6420L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big 6421numbers much faster than Calc, however it is slower when dealing with very 6422small numbers (less than about 20 digits) and when converting very large 6423numbers to decimal (for instance for printing, rounding, calculating their 6424length in decimal etc). 6425 6426So please select carefully what library you want to use. 6427 6428Different low-level libraries use different formats to store the numbers. 6429However, you should B<NOT> depend on the number having a specific format 6430internally. 6431 6432See the respective math library module documentation for further details. 6433 6434=head2 SIGN 6435 6436The sign is either '+', '-', 'NaN', '+inf' or '-inf'. 6437 6438A sign of 'NaN' is used to represent the result when input arguments are not 6439numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively 6440minus infinity. You get '+inf' when dividing a positive number by 0, and '-inf' 6441when dividing any negative number by 0. 6442 6443=head1 EXAMPLES 6444 6445 use Math::BigInt; 6446 6447 sub bigint { Math::BigInt->new(shift); } 6448 6449 $x = Math::BigInt->bstr("1234") # string "1234" 6450 $x = "$x"; # same as bstr() 6451 $x = Math::BigInt->bneg("1234"); # Math::BigInt "-1234" 6452 $x = Math::BigInt->babs("-12345"); # Math::BigInt "12345" 6453 $x = Math::BigInt->bnorm("-0.00"); # Math::BigInt "0" 6454 $x = bigint(1) + bigint(2); # Math::BigInt "3" 6455 $x = bigint(1) + "2"; # ditto (auto-Math::BigIntify of "2") 6456 $x = bigint(1); # Math::BigInt "1" 6457 $x = $x + 5 / 2; # Math::BigInt "3" 6458 $x = $x ** 3; # Math::BigInt "27" 6459 $x *= 2; # Math::BigInt "54" 6460 $x = Math::BigInt->new(0); # Math::BigInt "0" 6461 $x--; # Math::BigInt "-1" 6462 $x = Math::BigInt->badd(4,5) # Math::BigInt "9" 6463 print $x->bsstr(); # 9e+0 6464 6465Examples for rounding: 6466 6467 use Math::BigFloat; 6468 use Test::More; 6469 6470 $x = Math::BigFloat->new(123.4567); 6471 $y = Math::BigFloat->new(123.456789); 6472 Math::BigFloat->accuracy(4); # no more A than 4 6473 6474 is ($x->copy()->bround(),123.4); # even rounding 6475 print $x->copy()->bround(),"\n"; # 123.4 6476 Math::BigFloat->round_mode('odd'); # round to odd 6477 print $x->copy()->bround(),"\n"; # 123.5 6478 Math::BigFloat->accuracy(5); # no more A than 5 6479 Math::BigFloat->round_mode('odd'); # round to odd 6480 print $x->copy()->bround(),"\n"; # 123.46 6481 $y = $x->copy()->bround(4),"\n"; # A = 4: 123.4 6482 print "$y, ",$y->accuracy(),"\n"; # 123.4, 4 6483 6484 Math::BigFloat->accuracy(undef); # A not important now 6485 Math::BigFloat->precision(2); # P important 6486 print $x->copy()->bnorm(),"\n"; # 123.46 6487 print $x->copy()->bround(),"\n"; # 123.46 6488 6489Examples for converting: 6490 6491 my $x = Math::BigInt->new('0b1'.'01' x 123); 6492 print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n"; 6493 6494=head1 Autocreating constants 6495 6496After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal 6497and binary constants in the given scope are converted to C<Math::BigInt>. This 6498conversion happens at compile time. 6499 6500In particular, 6501 6502 perl -MMath::BigInt=:constant -e 'print 2**100,"\n"' 6503 6504prints the integer value of C<2**100>. Note that without conversion of 6505constants the expression 2**100 is calculated using Perl scalars. 6506 6507Please note that strings and floating point constants are not affected, so that 6508 6509 use Math::BigInt qw/:constant/; 6510 6511 $x = 1234567890123456789012345678901234567890 6512 + 123456789123456789; 6513 $y = '1234567890123456789012345678901234567890' 6514 + '123456789123456789'; 6515 6516does not give you what you expect. You need an explicit Math::BigInt->new() 6517around one of the operands. You should also quote large constants to protect 6518loss of precision: 6519 6520 use Math::BigInt; 6521 6522 $x = Math::BigInt->new('1234567889123456789123456789123456789'); 6523 6524Without the quotes Perl would convert the large number to a floating point 6525constant at compile time and then hand the result to Math::BigInt, which 6526results in an truncated result or a NaN. 6527 6528This also applies to integers that look like floating point constants: 6529 6530 use Math::BigInt ':constant'; 6531 6532 print ref(123e2),"\n"; 6533 print ref(123.2e2),"\n"; 6534 6535prints nothing but newlines. Use either L<bignum> or L<Math::BigFloat> to get 6536this to work. 6537 6538=head1 PERFORMANCE 6539 6540Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x 6541must be made in the second case. For long numbers, the copy can eat up to 20% 6542of the work (in the case of addition/subtraction, less for 6543multiplication/division). If $y is very small compared to $x, the form $x += $y 6544is MUCH faster than $x = $x + $y since making the copy of $x takes more time 6545then the actual addition. 6546 6547With a technique called copy-on-write, the cost of copying with overload could 6548be minimized or even completely avoided. A test implementation of COW did show 6549performance gains for overloaded math, but introduced a performance loss due to 6550a constant overhead for all other operations. So Math::BigInt does currently 6551not COW. 6552 6553The rewritten version of this module (vs. v0.01) is slower on certain 6554operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it 6555does now more work and handles much more cases. The time spent in these 6556operations is usually gained in the other math operations so that code on the 6557average should get (much) faster. If they don't, please contact the author. 6558 6559Some operations may be slower for small numbers, but are significantly faster 6560for big numbers. Other operations are now constant (O(1), like C<bneg()>, 6561C<babs()> etc), instead of O(N) and thus nearly always take much less time. 6562These optimizations were done on purpose. 6563 6564If you find the Calc module to slow, try to install any of the replacement 6565modules and see if they help you. 6566 6567=head2 Alternative math libraries 6568 6569You can use an alternative library to drive Math::BigInt. See the section 6570L</MATH LIBRARY> for more information. 6571 6572For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>. 6573 6574=head1 SUBCLASSING 6575 6576=head2 Subclassing Math::BigInt 6577 6578The basic design of Math::BigInt allows simple subclasses with very little 6579work, as long as a few simple rules are followed: 6580 6581=over 6582 6583=item * 6584 6585The public API must remain consistent, i.e. if a sub-class is overloading 6586addition, the sub-class must use the same name, in this case badd(). The reason 6587for this is that Math::BigInt is optimized to call the object methods directly. 6588 6589=item * 6590 6591The private object hash keys like C<< $x->{sign} >> may not be changed, but 6592additional keys can be added, like C<< $x->{_custom} >>. 6593 6594=item * 6595 6596Accessor functions are available for all existing object hash keys and should 6597be used instead of directly accessing the internal hash keys. The reason for 6598this is that Math::BigInt itself has a pluggable interface which permits it to 6599support different storage methods. 6600 6601=back 6602 6603More complex sub-classes may have to replicate more of the logic internal of 6604Math::BigInt if they need to change more basic behaviors. A subclass that needs 6605to merely change the output only needs to overload C<bstr()>. 6606 6607All other object methods and overloaded functions can be directly inherited 6608from the parent class. 6609 6610At the very minimum, any subclass needs to provide its own C<new()> and can 6611store additional hash keys in the object. There are also some package globals 6612that must be defined, e.g.: 6613 6614 # Globals 6615 $accuracy = undef; 6616 $precision = -2; # round to 2 decimal places 6617 $round_mode = 'even'; 6618 $div_scale = 40; 6619 6620Additionally, you might want to provide the following two globals to allow 6621auto-upgrading and auto-downgrading to work correctly: 6622 6623 $upgrade = undef; 6624 $downgrade = undef; 6625 6626This allows Math::BigInt to correctly retrieve package globals from the 6627subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or 6628t/Math/BigFloat/SubClass.pm completely functional subclass examples. 6629 6630Don't forget to 6631 6632 use overload; 6633 6634in your subclass to automatically inherit the overloading from the parent. If 6635you like, you can change part of the overloading, look at Math::String for an 6636example. 6637 6638=head1 UPGRADING 6639 6640When used like this: 6641 6642 use Math::BigInt upgrade => 'Foo::Bar'; 6643 6644certain operations 'upgrade' their calculation and thus the result to the class 6645Foo::Bar. Usually this is used in conjunction with Math::BigFloat: 6646 6647 use Math::BigInt upgrade => 'Math::BigFloat'; 6648 6649As a shortcut, you can use the module L<bignum>: 6650 6651 use bignum; 6652 6653Also good for one-liners: 6654 6655 perl -Mbignum -le 'print 2 ** 255' 6656 6657This makes it possible to mix arguments of different classes (as in 2.5 + 2) as 6658well es preserve accuracy (as in sqrt(3)). 6659 6660Beware: This feature is not fully implemented yet. 6661 6662=head2 Auto-upgrade 6663 6664The following methods upgrade themselves unconditionally; that is if upgrade is 6665in effect, they always hands up their work: 6666 6667 div bsqrt blog bexp bpi bsin bcos batan batan2 6668 6669All other methods upgrade themselves only when one (or all) of their arguments 6670are of the class mentioned in $upgrade. 6671 6672=head1 EXPORTS 6673 6674C<Math::BigInt> exports nothing by default, but can export the following 6675methods: 6676 6677 bgcd 6678 blcm 6679 6680=head1 CAVEATS 6681 6682Some things might not work as you expect them. Below is documented what is 6683known to be troublesome: 6684 6685=over 6686 6687=item Comparing numbers as strings 6688 6689Both C<bstr()> and C<bsstr()> as well as stringify via overload drop the 6690leading '+'. This is to be consistent with Perl and to make C<cmp> (especially 6691with overloading) to work as you expect. It also solves problems with 6692C<Test.pm> and L<Test::More>, which stringify arguments before comparing them. 6693 6694Mark Biggar said, when asked about to drop the '+' altogether, or make only 6695C<cmp> work: 6696 6697 I agree (with the first alternative), don't add the '+' on positive 6698 numbers. It's not as important anymore with the new internal form 6699 for numbers. It made doing things like abs and neg easier, but 6700 those have to be done differently now anyway. 6701 6702So, the following examples now works as expected: 6703 6704 use Test::More tests => 1; 6705 use Math::BigInt; 6706 6707 my $x = Math::BigInt -> new(3*3); 6708 my $y = Math::BigInt -> new(3*3); 6709 6710 is($x,3*3, 'multiplication'); 6711 print "$x eq 9" if $x eq $y; 6712 print "$x eq 9" if $x eq '9'; 6713 print "$x eq 9" if $x eq 3*3; 6714 6715Additionally, the following still works: 6716 6717 print "$x == 9" if $x == $y; 6718 print "$x == 9" if $x == 9; 6719 print "$x == 9" if $x == 3*3; 6720 6721There is now a C<bsstr()> method to get the string in scientific notation aka 6722C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr() 6723for comparison, but Perl represents some numbers as 100 and others as 1e+308. 6724If in doubt, convert both arguments to Math::BigInt before comparing them as 6725strings: 6726 6727 use Test::More tests => 3; 6728 use Math::BigInt; 6729 6730 $x = Math::BigInt->new('1e56'); $y = 1e56; 6731 is($x,$y); # fails 6732 is($x->bsstr(),$y); # okay 6733 $y = Math::BigInt->new($y); 6734 is($x,$y); # okay 6735 6736Alternatively, simply use C<< <=> >> for comparisons, this always gets it 6737right. There is not yet a way to get a number automatically represented as a 6738string that matches exactly the way Perl represents it. 6739 6740See also the section about L<Infinity and Not a Number> for problems in 6741comparing NaNs. 6742 6743=item int() 6744 6745C<int()> returns (at least for Perl v5.7.1 and up) another Math::BigInt, not a 6746Perl scalar: 6747 6748 $x = Math::BigInt->new(123); 6749 $y = int($x); # 123 as a Math::BigInt 6750 $x = Math::BigFloat->new(123.45); 6751 $y = int($x); # 123 as a Math::BigFloat 6752 6753If you want a real Perl scalar, use C<numify()>: 6754 6755 $y = $x->numify(); # 123 as a scalar 6756 6757This is seldom necessary, though, because this is done automatically, like when 6758you access an array: 6759 6760 $z = $array[$x]; # does work automatically 6761 6762=item Modifying and = 6763 6764Beware of: 6765 6766 $x = Math::BigFloat->new(5); 6767 $y = $x; 6768 6769This makes a second reference to the B<same> object and stores it in $y. Thus 6770anything that modifies $x (except overloaded operators) also modifies $y, and 6771vice versa. Or in other words, C<=> is only safe if you modify your 6772Math::BigInt objects only via overloaded math. As soon as you use a method call 6773it breaks: 6774 6775 $x->bmul(2); 6776 print "$x, $y\n"; # prints '10, 10' 6777 6778If you want a true copy of $x, use: 6779 6780 $y = $x->copy(); 6781 6782You can also chain the calls like this, this first makes a copy and then 6783multiply it by 2: 6784 6785 $y = $x->copy()->bmul(2); 6786 6787See also the documentation for overload.pm regarding C<=>. 6788 6789=item Overloading -$x 6790 6791The following: 6792 6793 $x = -$x; 6794 6795is slower than 6796 6797 $x->bneg(); 6798 6799since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant 6800needs to preserve $x since it does not know that it later gets overwritten. 6801This makes a copy of $x and takes O(N), but $x->bneg() is O(1). 6802 6803=item Mixing different object types 6804 6805With overloaded operators, it is the first (dominating) operand that determines 6806which method is called. Here are some examples showing what actually gets 6807called in various cases. 6808 6809 use Math::BigInt; 6810 use Math::BigFloat; 6811 6812 $mbf = Math::BigFloat->new(5); 6813 $mbi2 = Math::BigInt->new(5); 6814 $mbi = Math::BigInt->new(2); 6815 # what actually gets called: 6816 $float = $mbf + $mbi; # $mbf->badd($mbi) 6817 $float = $mbf / $mbi; # $mbf->bdiv($mbi) 6818 $integer = $mbi + $mbf; # $mbi->badd($mbf) 6819 $integer = $mbi2 / $mbi; # $mbi2->bdiv($mbi) 6820 $integer = $mbi2 / $mbf; # $mbi2->bdiv($mbf) 6821 6822For instance, Math::BigInt->bdiv() always returns a Math::BigInt, regardless of 6823whether the second operant is a Math::BigFloat. To get a Math::BigFloat you 6824either need to call the operation manually, make sure each operand already is a 6825Math::BigFloat, or cast to that type via Math::BigFloat->new(): 6826 6827 $float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5 6828 6829Beware of casting the entire expression, as this would cast the 6830result, at which point it is too late: 6831 6832 $float = Math::BigFloat->new($mbi2 / $mbi); # = 2 6833 6834Beware also of the order of more complicated expressions like: 6835 6836 $integer = ($mbi2 + $mbi) / $mbf; # int / float => int 6837 $integer = $mbi2 / Math::BigFloat->new($mbi); # ditto 6838 6839If in doubt, break the expression into simpler terms, or cast all operands 6840to the desired resulting type. 6841 6842Scalar values are a bit different, since: 6843 6844 $float = 2 + $mbf; 6845 $float = $mbf + 2; 6846 6847both result in the proper type due to the way the overloaded math works. 6848 6849This section also applies to other overloaded math packages, like Math::String. 6850 6851One solution to you problem might be autoupgrading|upgrading. See the 6852pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this. 6853 6854=back 6855 6856=head1 BUGS 6857 6858Please report any bugs or feature requests to 6859C<bug-math-bigint at rt.cpan.org>, or through the web interface at 6860L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires login). 6861We will be notified, and then you'll automatically be notified of progress on 6862your bug as I make changes. 6863 6864=head1 SUPPORT 6865 6866You can find documentation for this module with the perldoc command. 6867 6868 perldoc Math::BigInt 6869 6870You can also look for information at: 6871 6872=over 4 6873 6874=item * RT: CPAN's request tracker 6875 6876L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt> 6877 6878=item * AnnoCPAN: Annotated CPAN documentation 6879 6880L<http://annocpan.org/dist/Math-BigInt> 6881 6882=item * CPAN Ratings 6883 6884L<https://cpanratings.perl.org/dist/Math-BigInt> 6885 6886=item * MetaCPAN 6887 6888L<https://metacpan.org/release/Math-BigInt> 6889 6890=item * CPAN Testers Matrix 6891 6892L<http://matrix.cpantesters.org/?dist=Math-BigInt> 6893 6894=item * The Bignum mailing list 6895 6896=over 4 6897 6898=item * Post to mailing list 6899 6900C<bignum at lists.scsys.co.uk> 6901 6902=item * View mailing list 6903 6904L<http://lists.scsys.co.uk/pipermail/bignum/> 6905 6906=item * Subscribe/Unsubscribe 6907 6908L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum> 6909 6910=back 6911 6912=back 6913 6914=head1 LICENSE 6915 6916This program is free software; you may redistribute it and/or modify it under 6917the same terms as Perl itself. 6918 6919=head1 SEE ALSO 6920 6921L<Math::BigFloat> and L<Math::BigRat> as well as the backends 6922L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>. 6923 6924The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest 6925because they solve the autoupgrading/downgrading issue, at least partly. 6926 6927=head1 AUTHORS 6928 6929=over 4 6930 6931=item * 6932 6933Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001. 6934 6935=item * 6936 6937Completely rewritten by Tels L<http://bloodgate.com>, 2001-2008. 6938 6939=item * 6940 6941Florian Ragwitz E<lt>flora@cpan.orgE<gt>, 2010. 6942 6943=item * 6944 6945Peter John Acklam E<lt>pjacklam@online.noE<gt>, 2011-. 6946 6947=back 6948 6949Many people contributed in one or more ways to the final beast, see the file 6950CREDITS for an (incomplete) list. If you miss your name, please drop me a 6951mail. Thank you! 6952 6953=cut 6954