1#include this file into another test for subclass testing...
2
3ok ($class->config()->{lib},$CL);
4
5use strict;
6
7my $z;
8
9while (<DATA>)
10  {
11  $_ =~ s/[\n\r]//g;	# remove newlines
12  $_ =~ s/#.*$//;	# remove comments
13  $_ =~ s/\s+$//;	# trailing spaces
14  next if /^$/;		# skip empty lines & comments
15  if (s/^&//)
16    {
17    $f = $_;
18    }
19  elsif (/^\$/)
20    {
21    $setup = $_; $setup =~ s/\$/\$${class}::/g;	# round_mode, div_scale
22    #print "\$setup== $setup\n";
23    }
24  else
25    {
26    if (m|^(.*?):(/.+)$|)
27      {
28      $ans = $2;
29      @args = split(/:/,$1,99);
30      }
31    else
32      {
33      @args = split(/:/,$_,99); $ans = pop(@args);
34      }
35    $try = "\$x = $class->new(\"$args[0]\");";
36    if ($f eq "fnorm")
37      {
38        $try .= "\$x;";
39      } elsif ($f eq "finf") {
40        $try .= "\$x->finf('$args[1]');";
41      } elsif ($f eq "is_inf") {
42        $try .= "\$x->is_inf('$args[1]');";
43      } elsif ($f eq "fone") {
44        $try .= "\$x->bone('$args[1]');";
45      } elsif ($f eq "fstr") {
46        $try .= "\$x->accuracy($args[1]); \$x->precision($args[2]);";
47        $try .= '$x->fstr();';
48      } elsif ($f eq "parts") {
49        # ->bstr() to see if an object is returned
50        $try .= '($a,$b) = $x->parts(); $a = $a->bstr(); $b = $b->bstr();';
51        $try .= '"$a $b";';
52      } elsif ($f eq "exponent") {
53        # ->bstr() to see if an object is returned
54        $try .= '$x->exponent()->bstr();';
55      } elsif ($f eq "mantissa") {
56        # ->bstr() to see if an object is returned
57        $try .= '$x->mantissa()->bstr();';
58      } elsif ($f =~ /^(numify|length|as_number|as_hex|as_bin)$/) {
59        $try .= "\$x->$f();";
60      # some unary ops (test the fxxx form, since that is done by AUTOLOAD)
61      } elsif ($f =~ /^f(nan|sstr|neg|floor|ceil|abs)$/) {
62        $try .= "\$x->f$1();";
63      # some is_xxx test function
64      } elsif ($f =~ /^is_(zero|one|negative|positive|odd|even|nan|int)$/) {
65        $try .= "\$x->$f();";
66      } elsif ($f eq "bpi") {
67        $try .= '$class->bpi($x);';
68      } elsif ($f eq "finc") {
69        $try .= '++$x;';
70      } elsif ($f eq "fdec") {
71        $try .= '--$x;';
72      }elsif ($f eq "fround") {
73        $try .= "$setup; \$x->fround($args[1]);";
74      } elsif ($f eq "ffround") {
75        $try .= "$setup; \$x->ffround($args[1]);";
76      } elsif ($f eq "fsqrt") {
77        $try .= "$setup; \$x->fsqrt();";
78      } elsif ($f eq "ffac") {
79        $try .= "$setup; \$x->ffac();";
80      } elsif ($f eq "flog") {
81        if (defined $args[1] && $args[1] ne '')
82          {
83          $try .= "\$y = $class->new($args[1]);";
84          $try .= "$setup; \$x->flog(\$y);";
85          }
86        else
87          {
88          $try .= "$setup; \$x->flog();";
89          }
90      }
91    else
92      {
93      $try .= "\$y = $class->new(\"$args[1]\");";
94
95      if ($f eq "bgcd")
96        {
97        if (defined $args[2])
98          {
99          $try .= " \$z = $class->new(\"$args[2]\"); ";
100          }
101        $try .= "$class\::bgcd(\$x, \$y";
102        $try .= ", \$z" if (defined $args[2]);
103        $try .= " );";
104        }
105      elsif ($f eq "blcm")
106        {
107        if (defined $args[2])
108          {
109          $try .= " \$z = $class->new(\"$args[2]\"); ";
110          }
111        $try .= "$class\::blcm(\$x, \$y";
112        $try .= ", \$z" if (defined $args[2]);
113        $try .= " );";
114      } elsif ($f eq "fcmp") {
115        $try .= '$x->fcmp($y);';
116      } elsif ($f eq "facmp") {
117        $try .= '$x->facmp($y);';
118      } elsif ($f eq "fpow") {
119        $try .= '$x ** $y;';
120      } elsif ($f eq "bnok") {
121        $try .= '$x->bnok($y);';
122      } elsif ($f eq "bcos") {
123        $try .= '$x->bcos($y);';
124      } elsif ($f eq "bsin") {
125        $try .= '$x->bsin($y);';
126      } elsif ($f eq "batan") {
127        $try .= '$x->batan($y);';
128      } elsif ($f eq "froot") {
129        $try .= "$setup; \$x->froot(\$y);";
130      } elsif ($f eq "fadd") {
131        $try .= '$x + $y;';
132      } elsif ($f eq "fsub") {
133        $try .= '$x - $y;';
134      } elsif ($f eq "fmul") {
135        $try .= '$x * $y;';
136      } elsif ($f eq "fdiv") {
137        $try .= "$setup; \$x / \$y;";
138      } elsif ($f eq "fdiv-list") {
139        $try .= "$setup; join(',',\$x->fdiv(\$y));";
140      } elsif ($f eq "frsft") {
141        $try .= '$x >> $y;';
142      } elsif ($f eq "flsft") {
143        $try .= '$x << $y;';
144      } elsif ($f eq "fmod") {
145        $try .= '$x % $y;';
146       } else {
147       # Functions with three arguments
148       $try .= "\$z = $class->new(\"$args[2]\");";
149
150       if( $f eq "bmodpow") {
151          $try .= '$x->bmodpow($y,$z);';
152         } elsif ($f eq "bmuladd"){
153          $try .= '$x->bmuladd($y,$z);';
154         } elsif ($f eq "batan2"){
155          $try .= '$x->batan2($y,$z);';
156         } else { warn "Unknown op '$f'"; }
157       }
158    }
159    # print "# Trying: '$try'\n";
160    $ans1 = eval $try;
161    print "# Error: $@\n" if $@;
162    if ($ans =~ m|^/(.*)$|)
163      {
164      my $pat = $1;
165      if ($ans1 =~ /$pat/)
166        {
167        ok (1,1);
168        }
169      else
170        {
171        print "# '$try' expected: /$pat/ got: '$ans1'\n" if !ok(1,0);
172        }
173      }
174    else
175      {
176      if ($ans eq "")
177        {
178        ok_undef ($ans1);
179        }
180      else
181        {
182        print "# Tried: '$try'\n" if !ok ($ans1, $ans);
183        if (ref($ans1) eq "$class")
184	  {
185	  # float numbers are normalized (for now), so mantissa shouldn't have
186	  # trailing zeros
187	  #print $ans1->_trailing_zeros(),"\n";
188          print "# Has trailing zeros after '$try'\n"
189	   if !ok ($CL->_zeros( $ans1->{_m}), 0);
190	  }
191        }
192      } # end pattern or string
193    }
194  } # end while
195
196# check whether $class->new( Math::BigInt->new()) destroys it
197# ($y == 12 in this case)
198$x = Math::BigInt->new(1200); $y = $class->new($x);
199ok ($y,1200); ok ($x,1200);
200
201###############################################################################
202# Really huge, big, ultra-mega-biggy-monster exponents
203# Technically, the exponents should not be limited (they are BigInts), but
204# practically there are a few places were they are limited to a Perl scalar.
205# This is sometimes for speed, sometimes because otherwise the number wouldn't
206# fit into your memory (just think of 1e123456789012345678901234567890 + 1!)
207# anyway. We don't test everything here, but let's make sure it just basically
208# works.
209
210my $monster = '1e1234567890123456789012345678901234567890';
211
212# new and exponent
213ok ($class->new($monster)->bsstr(),
214		'1e+1234567890123456789012345678901234567890');
215ok ($class->new($monster)->exponent(),
216		'1234567890123456789012345678901234567890');
217# cmp
218ok ($class->new($monster) > 0,1);
219
220# sub/mul
221ok ($class->new($monster)->bsub( $monster),0);
222ok ($class->new($monster)->bmul(2)->bsstr(),
223                '2e+1234567890123456789012345678901234567890');
224
225# mantissa
226$monster = '1234567890123456789012345678901234567890e2';
227ok ($class->new($monster)->mantissa(),
228		'123456789012345678901234567890123456789');
229
230###############################################################################
231# zero,inf,one,nan
232
233$x = $class->new(2); $x->fzero(); ok_undef ($x->{_a}); ok_undef ($x->{_p});
234$x = $class->new(2); $x->finf();  ok_undef ($x->{_a}); ok_undef ($x->{_p});
235$x = $class->new(2); $x->fone();  ok_undef ($x->{_a}); ok_undef ($x->{_p});
236$x = $class->new(2); $x->fnan();  ok_undef ($x->{_a}); ok_undef ($x->{_p});
237
238###############################################################################
239# bone/binf etc as plain calls (Lite failed them)
240
241ok ($class->fzero(),0);
242ok ($class->fone(),1);
243ok ($class->fone('+'),1);
244ok ($class->fone('-'),-1);
245ok ($class->fnan(),'NaN');
246ok ($class->finf(),'inf');
247ok ($class->finf('+'),'inf');
248ok ($class->finf('-'),'-inf');
249ok ($class->finf('-inf'),'-inf');
250
251$class->accuracy(undef); $class->precision(undef);	# reset
252
253###############################################################################
254# bug in bsstr()/numify() showed up in after-rounding in bdiv()
255
256$x = $class->new('0.008'); $y = $class->new(2);
257$x->bdiv(3,$y);
258ok ($x,'0.0027');
259
260###############################################################################
261# fsqrt() with set global A/P or A/P enabled on $x, also a test whether fsqrt()
262# correctly modifies $x
263
264
265$x = $class->new(12); $class->precision(-2); $x->fsqrt(); ok ($x,'3.46');
266
267$class->precision(undef);
268$x = $class->new(12); $class->precision(0); $x->fsqrt(); ok ($x,'3');
269
270$class->precision(-3); $x = $class->new(12); $x->fsqrt(); ok ($x,'3.464');
271
272{
273  no strict 'refs';
274  # A and P set => NaN
275  ${${class}.'::accuracy'} = 4; $x = $class->new(12);
276  $x->fsqrt(3); ok ($x,'NaN');
277  # supplied arg overrides set global
278  $class->precision(undef); $x = $class->new(12); $x->fsqrt(3); ok ($x,'3.46');
279  $class->accuracy(undef); $class->precision(undef); # reset for further tests
280}
281
282#############################################################################
283# can we call objectify (broken until v1.52)
284
285{
286  no strict;
287  $try =
288    '@args' . " = $class" . "::objectify(2,$class,4,5);".'join(" ",@args);';
289  $ans = eval $try;
290  ok ($ans,"$class 4 5");
291}
292
293#############################################################################
294# is_one('-') (broken until v1.64)
295
296ok ($class->new(-1)->is_one(),0);
297ok ($class->new(-1)->is_one('-'),1);
298
299#############################################################################
300# bug 1/0.5 leaving 2e-0 instead of 2e0
301
302ok ($class->new(1)->fdiv('0.5')->bsstr(),'2e+0');
303
304###############################################################################
305# [perl #30609] bug with $x -= $x not being 0, but 2*$x
306
307$x = $class->new(3);  $x -= $x; ok ($x, 0);
308$x = $class->new(-3); $x -= $x; ok ($x, 0);
309$x = $class->new(3);  $x += $x; ok ($x, 6);
310$x = $class->new(-3); $x += $x; ok ($x, -6);
311
312$x = $class->new('NaN'); $x -= $x; ok ($x->is_nan(), 1);
313$x = $class->new('inf'); $x -= $x; ok ($x->is_nan(), 1);
314$x = $class->new('-inf'); $x -= $x; ok ($x->is_nan(), 1);
315
316$x = $class->new('NaN'); $x += $x; ok ($x->is_nan(), 1);
317$x = $class->new('inf'); $x += $x; ok ($x->is_inf(), 1);
318$x = $class->new('-inf'); $x += $x; ok ($x->is_inf('-'), 1);
319
320$x = $class->new('3.14');  $x -= $x; ok ($x, 0);
321$x = $class->new('-3.14'); $x -= $x; ok ($x, 0);
322$x = $class->new('3.14');  $x += $x; ok ($x, '6.28');
323$x = $class->new('-3.14'); $x += $x; ok ($x, '-6.28');
324
325$x = $class->new('3.14');  $x *= $x; ok ($x, '9.8596');
326$x = $class->new('-3.14'); $x *= $x; ok ($x, '9.8596');
327$x = $class->new('3.14');  $x /= $x; ok ($x, '1');
328$x = $class->new('-3.14'); $x /= $x; ok ($x, '1');
329$x = $class->new('3.14');  $x %= $x; ok ($x, '0');
330$x = $class->new('-3.14'); $x %= $x; ok ($x, '0');
331
332###############################################################################
333# the following two were reported by "kenny" via hotmail.com:
334
335#perl -MMath::BigFloat -wle 'print Math::BigFloat->new(0)->bpow(".1")'
336#Use of uninitialized value in numeric le (<=) at BigFloat.pm line 1851.
337
338$x = $class->new(0); $y = $class->new('0.1');
339ok ($x ** $y, 0, 'no warnings and zero result');
340
341#perl -MMath::BigFloat -lwe 'print Math::BigFloat->new(".222222222222222222222222222222222222222222")->bceil()'
342#Use of uninitialized value in numeric le (<=) at BigFloat.pm line 1851.
343
344$x = $class->new(".222222222222222222222222222222222222222222");
345ok ($x->bceil(), 1, 'no warnings and one as result');
346
347###############################################################################
348# test **=, <<=, >>=
349
350# ((2^148)-1)/17
351$x = $class->new(2); $x **= 148; $x++; $x->bdiv(17, 60)->bfloor(); $x->accuracy(undef);
352ok ($x,"20988936657440586486151264256610222593863921");
353ok ($x->length(),length "20988936657440586486151264256610222593863921");
354
355$x = $class->new('2');
356my $y = $class->new('18');
357ok ($x <<= $y, 2 << 18);
358ok ($x, 2 << 18);
359ok ($x >>= $y, 2);
360ok ($x, 2);
361
362$x = $class->new('2');
363$y = $class->new('18.2');
364$x <<= $y;		# 2 * (2 ** 18.2);
365
366ok ($x->copy()->bfround(-9), '602248.763144685');
367ok ($x >>= $y, 2);	# 2 * (2 ** 18.2) / (2 ** 18.2) => 2
368ok ($x, 2);
369
3701; # all done
371
372###############################################################################
373# Perl 5.005 does not like ok ($x,undef)
374
375sub ok_undef
376  {
377  my $x = shift;
378
379  ok (1,1) and return if !defined $x;
380  ok ($x,'undef');
381  }
382
383__DATA__
384&bgcd
385inf:12:NaN
386-inf:12:NaN
38712:inf:NaN
38812:-inf:NaN
389inf:inf:NaN
390inf:-inf:NaN
391-inf:-inf:NaN
392abc:abc:NaN
393abc:+0:NaN
394+0:abc:NaN
395+0:+0:0
396+0:+1:1
397+1:+0:1
398+1:+1:1
399+2:+3:1
400+3:+2:1
401-3:+2:1
402-3:-2:1
403-144:-60:12
404144:-60:12
405144:60:12
406100:625:25
4074096:81:1
4081034:804:2
40927:90:56:1
41027:90:54:9
411&blcm
412abc:abc:NaN
413abc:+0:NaN
414+0:abc:NaN
415+0:+0:NaN
416+1:+0:0
417+0:+1:0
418+27:+90:270
419+1034:+804:415668
420$div_scale = 40;
421&bcos
4221.2:10:0.3623577545
4232.4:12:-0.737393715541
4240:10:1
4250:20:1
4261:10:0.5403023059
4271:12:0.540302305868
428&bsin
4291:10:0.8414709848
4300:10:0
4310:20:0
4322.1:12:0.863209366649
4331.2:13:0.9320390859672
4340.2:13:0.1986693307951
4353.2:12:-0.0583741434276
436&batan
437NaN:10:NaN
438inf:14:1.5707963267949
439-inf:14:-1.5707963267949
4400.2:13:0.1973955598499
4410.2:14:0.19739555984988
4420:10:0
4431:14:0.78539816339744
444-1:14:-0.78539816339744
445# test an argument X > 1
4462:14:1.1071487177941
447&batan2
448NaN:1:10:NaN
449NaN:NaN:10:NaN
4501:NaN:10:NaN
451inf:1:14:1.5707963267949
452-inf:1:14:-1.5707963267949
4530:-inf:14:3.1415926535898
454-1:-inf:14:-3.1415926535898
4551:-inf:14:3.1415926535898
4560:inf:14:0
457inf:-inf:14:2.3561944901923
458-inf:-inf:14:-2.3561944901923
459inf:+inf:14:0.7853981633974
460-inf:+inf:14:-0.7853981633974
4611:5:13:0.1973955598499
4621:5:14:0.19739555984988
4630:0:10:0
4640:1:14:0
4650:2:14:0
4661:0:14:1.5707963267949
4675:0:14:1.5707963267949
468-1:0:11:-1.5707963268
469-2:0:77:-1.5707963267948966192313216916397514420985846996875529104874722961539082031431
4702:0:77:1.5707963267948966192313216916397514420985846996875529104874722961539082031431
471-1:5:14:-0.19739555984988
4721:5:14:0.19739555984988
473-1:8:14:-0.12435499454676
4741:8:14:0.12435499454676
475-1:1:14:-0.78539816339744
476# test an argument X > 1 and one X < 1
4771:2:24:0.463647609000806116214256
4782:1:14:1.1071487177941
479-2:1:14:-1.1071487177941
480&bpi
481150:3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940813
48277:3.1415926535897932384626433832795028841971693993751058209749445923078164062862
483+0:3.141592653589793238462643383279502884197
48411:3.1415926536
485&bnok
486+inf:10:inf
487NaN:NaN:NaN
488NaN:1:NaN
4891:NaN:NaN
4901:1:1
491# k > n
4921:2:0
4932:3:0
494# k < 0
4951:-2:0
496# 7 over 3 = 35
4977:3:35
4987:6:1
499100:90:17310309456440
500&flog
5010::NaN
502-1::NaN
503-2::NaN
504# base > 0, base != 1
5052:-1:NaN
5062:0:NaN
5072:1:NaN
508# log(1) is always 1, regardless of $base
5091::0
5101:1:0
5111:2:0
5122::0.6931471805599453094172321214581765680755
5132.718281828::0.9999999998311266953289851340574956564911
514$div_scale = 20;
5152.718281828::0.99999999983112669533
516$div_scale = 15;
517123::4.81218435537242
51810::2.30258509299405
5191000::6.90775527898214
520100::4.60517018598809
5212::0.693147180559945
5223.1415::1.14470039286086
52312345::9.42100640177928
5240.001::-6.90775527898214
525# bug until v1.71:
52610:10:1
527100:100:1
528# reset for further tests
529$div_scale = 40;
5301::0
531&frsft
532NaNfrsft:2:NaN
5330:2:0
5341:1:0.5
5352:1:1
5364:1:2
537123:1:61.5
53832:3:4
539&flsft
540NaNflsft:0:NaN
5412:1:4
5424:3:32
5435:3:40
5441:2:4
5450:5:0
546&fnorm
5471:1
548-0:0
549fnormNaN:NaN
550+inf:inf
551-inf:-inf
552123:123
553-123.4567:-123.4567
554# invalid inputs
5551__2:NaN
5561E1__2:NaN
55711__2E2:NaN
558.2E-3.:NaN
5591e3e4:NaN
560# strange, but valid
561.2E2:20
5621.E3:1000
563# some inputs that result in zero
5640e0:0
565+0e0:0
566+0e+0:0
567-0e+0:0
5680e-0:0
569-0e-0:0
570+0e-0:0
571000:0
57200e2:0
57300e02:0
574000e002:0
575000e1230:0
57600e-3:0
57700e+3:0
57800e-03:0
57900e+03:0
580-000:0
581-00e2:0
582-00e02:0
583-000e002:0
584-000e1230:0
585-00e-3:0
586-00e+3:0
587-00e-03:0
588-00e+03:0
589&as_number
5900:0
5911:1
5921.2:1
5932.345:2
594-2:-2
595-123.456:-123
596-200:-200
597# test for bug in brsft() not handling cases that return 0
5980.000641:0
5990.0006412:0
6000.00064123:0
6010.000641234:0
6020.0006412345:0
6030.00064123456:0
6040.000641234567:0
6050.0006412345678:0
6060.00064123456789:0
6070.1:0
6080.01:0
6090.001:0
6100.0001:0
6110.00001:0
6120.000001:0
6130.0000001:0
6140.00000001:0
6150.000000001:0
6160.0000000001:0
6170.00000000001:0
6180.12345:0
6190.123456:0
6200.1234567:0
6210.12345678:0
6220.123456789:0
623&finf
6241:+:inf
6252:-:-inf
6263:abc:inf
627&as_hex
628+inf:inf
629-inf:-inf
630hexNaN:NaN
6310:0x0
6325:0x5
633-5:-0x5
634&as_bin
635+inf:inf
636-inf:-inf
637hexNaN:NaN
6380:0b0
6395:0b101
640-5:-0b101
641&numify
642# uses bsstr() so 5 => 5e+0 to be compatible w/ Perls output
6430:0e+1
644+1:1e+0
6451234:1234e+0
646NaN:NaN
647+inf:inf
648-inf:-inf
649-5:-5e+0
650100:1e+2
651-100:-1e+2
652&fnan
653abc:NaN
6542:NaN
655-2:NaN
6560:NaN
657&fone
6582:+:1
659-2:-:-1
660-2:+:1
6612:-:-1
6620::1
663-2::1
664abc::1
6652:abc:1
666&fsstr
667+inf:inf
668-inf:-inf
669abcfsstr:NaN
670-abcfsstr:NaN
6711234.567:1234567e-3
672123:123e+0
673-5:-5e+0
674-100:-1e+2
675&fstr
676+inf:::inf
677-inf:::-inf
678abcfstr:::NaN
6791234.567:9::1234.56700
6801234.567::-6:1234.567000
68112345:5::12345
6820.001234:6::0.00123400
6830.001234::-8:0.00123400
6840:4::0
6850::-4:0.0000
686&fnorm
687inf:inf
688+inf:inf
689-inf:-inf
690+infinity:NaN
691+-inf:NaN
692abc:NaN
693   1 a:NaN
6941bcd2:NaN
69511111b:NaN
696+1z:NaN
697-1z:NaN
6980e999:0
6990e-999:0
700-0e999:0
701-0e-999:0
7020:0
703+0:0
704+00:0
705+0_0_0:0
706000000_0000000_00000:0
707-0:0
708-0000:0
709+1:1
710+01:1
711+001:1
712+00000100000:100000
713123456789:123456789
714-1:-1
715-01:-1
716-001:-1
717-123456789:-123456789
718-00000100000:-100000
719123.456a:NaN
720123.456:123.456
7210.01:0.01
722.002:0.002
723+.2:0.2
724-0.0003:-0.0003
725-.0000000004:-0.0000000004
726123456E2:12345600
727123456E-2:1234.56
728-123456E2:-12345600
729-123456E-2:-1234.56
7301e1:10
7312e-11:0.00000000002
732# excercise _split
733  .02e-1:0.002
734   000001:1
735   -00001:-1
736   -1:-1
737  000.01:0.01
738   -000.0023:-0.0023
739  1.1e1:11
740-3e111:-3000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
741-4e-1111:-0.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004
742&fpow
743NaN:1:NaN
7441:NaN:NaN
745NaN:-1:NaN
746-1:NaN:NaN
747NaN:-21:NaN
748-21:NaN:NaN
749NaN:21:NaN
75021:NaN:NaN
7510:0:1
7520:1:0
7530:9:0
7540:-2:inf
7552:2:4
7561:2:1
7571:3:1
758-1:2:1
759-1:3:-1
760123.456:2:15241.383936
7612:-2:0.25
7622:-3:0.125
763128:-2:0.00006103515625
764abc:123.456:NaN
765123.456:abc:NaN
766+inf:123.45:inf
767-inf:123.45:-inf
768+inf:-123.45:inf
769-inf:-123.45:-inf
770-2:2:4
771-2:3:-8
772-2:4:16
773-2:5:-32
774-3:2:9
775-3:3:-27
776-3:4:81
777-3:5:-243
778# 2 ** 0.5 == sqrt(2)
779#     1.41..7 and not 1.4170 since fallback (bsqrt(9) is '3', not 3.0...0)
7802:0.5:1.41421356237309504880168872420969807857
781#2:0.2:1.148698354997035006798626946777927589444
782#6:1.5:14.6969384566990685891837044482353483518
783$div_scale = 20;
784#62.5:12.5:26447206647554886213592.3959144
785$div_scale = 40;
786&fneg
787fnegNaN:NaN
788+inf:-inf
789-inf:inf
790+0:0
791+1:-1
792-1:1
793+123456789:-123456789
794-123456789:123456789
795+123.456789:-123.456789
796-123456.789:123456.789
797&fabs
798fabsNaN:NaN
799+inf:inf
800-inf:inf
801+0:0
802+1:1
803-1:1
804+123456789:123456789
805-123456789:123456789
806+123.456789:123.456789
807-123456.789:123456.789
808&fround
809$round_mode = "trunc"
810+inf:5:inf
811-inf:5:-inf
8120:5:0
813NaNfround:5:NaN
814+10123456789:5:10123000000
815-10123456789:5:-10123000000
816+10123456789.123:5:10123000000
817-10123456789.123:5:-10123000000
818+10123456789:9:10123456700
819-10123456789:9:-10123456700
820+101234500:6:101234000
821-101234500:6:-101234000
822$round_mode = "zero"
823+20123456789:5:20123000000
824-20123456789:5:-20123000000
825+20123456789.123:5:20123000000
826-20123456789.123:5:-20123000000
827+20123456789:9:20123456800
828-20123456789:9:-20123456800
829+201234500:6:201234000
830-201234500:6:-201234000
831$round_mode = "+inf"
832+30123456789:5:30123000000
833-30123456789:5:-30123000000
834+30123456789.123:5:30123000000
835-30123456789.123:5:-30123000000
836+30123456789:9:30123456800
837-30123456789:9:-30123456800
838+301234500:6:301235000
839-301234500:6:-301234000
840$round_mode = "-inf"
841+40123456789:5:40123000000
842-40123456789:5:-40123000000
843+40123456789.123:5:40123000000
844-40123456789.123:5:-40123000000
845+40123456789:9:40123456800
846-40123456789:9:-40123456800
847+401234500:6:401234000
848-401234500:6:-401235000
849$round_mode = "odd"
850+50123456789:5:50123000000
851-50123456789:5:-50123000000
852+50123456789.123:5:50123000000
853-50123456789.123:5:-50123000000
854+50123456789:9:50123456800
855-50123456789:9:-50123456800
856+501234500:6:501235000
857-501234500:6:-501235000
858$round_mode = "even"
859+60123456789:5:60123000000
860-60123456789:5:-60123000000
861+60123456789:9:60123456800
862-60123456789:9:-60123456800
863+601234500:6:601234000
864-601234500:6:-601234000
865+60123456789.0123:5:60123000000
866-60123456789.0123:5:-60123000000
867$round_mode = "common"
868+60123456789:5:60123000000
869-60123456789:5:-60123000000
870+60123456789:6:60123500000
871-60123456789:6:-60123500000
872+60123456789:9:60123456800
873-60123456789:9:-60123456800
874+601234500:6:601235000
875-601234500:6:-601235000
876+601234400:6:601234000
877-601234400:6:-601234000
878+601234600:6:601235000
879-601234600:6:-601235000
880+601234300:6:601234000
881+60123456789.0123:5:60123000000
882-60123456789.0123:5:-60123000000
883&ffround
884$round_mode = "trunc"
885+inf:5:inf
886-inf:5:-inf
8870:5:0
888NaNffround:5:NaN
889+1.23:-1:1.2
890+1.234:-1:1.2
891+1.2345:-1:1.2
892+1.23:-2:1.23
893+1.234:-2:1.23
894+1.2345:-2:1.23
895+1.23:-3:1.230
896+1.234:-3:1.234
897+1.2345:-3:1.234
898-1.23:-1:-1.2
899+1.27:-1:1.2
900-1.27:-1:-1.2
901+1.25:-1:1.2
902-1.25:-1:-1.2
903+1.35:-1:1.3
904-1.35:-1:-1.3
905-0.0061234567890:-1:0.0
906-0.0061:-1:0.0
907-0.00612:-1:0.0
908-0.00612:-2:0.00
909-0.006:-1:0.0
910-0.006:-2:0.00
911-0.0006:-2:0.00
912-0.0006:-3:0.000
913-0.0065:-3:/-0\.006|-6e-03
914-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
915-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
9160.05:0:0
9170.5:0:0
9180.51:0:0
9190.41:0:0
920$round_mode = "zero"
921+2.23:-1:/2.2(?:0{5}\d+)?
922-2.23:-1:/-2.2(?:0{5}\d+)?
923+2.27:-1:/2.(?:3|29{5}\d+)
924-2.27:-1:/-2.(?:3|29{5}\d+)
925+2.25:-1:/2.2(?:0{5}\d+)?
926-2.25:-1:/-2.2(?:0{5}\d+)?
927+2.35:-1:/2.(?:3|29{5}\d+)
928-2.35:-1:/-2.(?:3|29{5}\d+)
929-0.0065:-1:0.0
930-0.0065:-2:/-0\.01|-1e-02
931-0.0065:-3:/-0\.006|-6e-03
932-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
933-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
9340.05:0:0
9350.5:0:0
9360.51:0:1
9370.41:0:0
938$round_mode = "+inf"
939+3.23:-1:/3.2(?:0{5}\d+)?
940-3.23:-1:/-3.2(?:0{5}\d+)?
941+3.27:-1:/3.(?:3|29{5}\d+)
942-3.27:-1:/-3.(?:3|29{5}\d+)
943+3.25:-1:/3.(?:3|29{5}\d+)
944-3.25:-1:/-3.2(?:0{5}\d+)?
945+3.35:-1:/3.(?:4|39{5}\d+)
946-3.35:-1:/-3.(?:3|29{5}\d+)
947-0.0065:-1:0.0
948-0.0065:-2:/-0\.01|-1e-02
949-0.0065:-3:/-0\.006|-6e-03
950-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
951-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
9520.05:0:0
9530.5:0:1
9540.51:0:1
9550.41:0:0
956$round_mode = "-inf"
957+4.23:-1:/4.2(?:0{5}\d+)?
958-4.23:-1:/-4.2(?:0{5}\d+)?
959+4.27:-1:/4.(?:3|29{5}\d+)
960-4.27:-1:/-4.(?:3|29{5}\d+)
961+4.25:-1:/4.2(?:0{5}\d+)?
962-4.25:-1:/-4.(?:3|29{5}\d+)
963+4.35:-1:/4.(?:3|29{5}\d+)
964-4.35:-1:/-4.(?:4|39{5}\d+)
965-0.0065:-1:0.0
966-0.0065:-2:/-0\.01|-1e-02
967-0.0065:-3:/-0\.007|-7e-03
968-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
969-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
9700.05:0:0
9710.5:0:0
9720.51:0:1
9730.41:0:0
974$round_mode = "odd"
975+5.23:-1:/5.2(?:0{5}\d+)?
976-5.23:-1:/-5.2(?:0{5}\d+)?
977+5.27:-1:/5.(?:3|29{5}\d+)
978-5.27:-1:/-5.(?:3|29{5}\d+)
979+5.25:-1:/5.(?:3|29{5}\d+)
980-5.25:-1:/-5.(?:3|29{5}\d+)
981+5.35:-1:/5.(?:3|29{5}\d+)
982-5.35:-1:/-5.(?:3|29{5}\d+)
983-0.0065:-1:0.0
984-0.0065:-2:/-0\.01|-1e-02
985-0.0065:-3:/-0\.007|-7e-03
986-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
987-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
9880.05:0:0
9890.5:0:1
9900.51:0:1
9910.41:0:0
992$round_mode = "even"
993+6.23:-1:/6.2(?:0{5}\d+)?
994-6.23:-1:/-6.2(?:0{5}\d+)?
995+6.27:-1:/6.(?:3|29{5}\d+)
996-6.27:-1:/-6.(?:3|29{5}\d+)
997+6.25:-1:/6.(?:2(?:0{5}\d+)?|29{5}\d+)
998-6.25:-1:/-6.(?:2(?:0{5}\d+)?|29{5}\d+)
999+6.35:-1:/6.(?:4|39{5}\d+|29{8}\d+)
1000-6.35:-1:/-6.(?:4|39{5}\d+|29{8}\d+)
1001-0.0065:-1:0.0
1002-0.0065:-2:/-0\.01|-1e-02
1003-0.0065:-3:/-0\.006|-7e-03
1004-0.0065:-4:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
1005-0.0065:-5:/-0\.006(?:5|49{5}\d+)|-6\.5e-03
10060.05:0:0
10070.5:0:0
10080.51:0:1
10090.41:0:0
10100.01234567:-3:0.012
10110.01234567:-4:0.0123
10120.01234567:-5:0.01235
10130.01234567:-6:0.012346
10140.01234567:-7:0.0123457
10150.01234567:-8:0.01234567
10160.01234567:-9:0.012345670
10170.01234567:-12:0.012345670000
1018&fcmp
1019fcmpNaN:fcmpNaN:
1020fcmpNaN:+0:
1021+0:fcmpNaN:
1022+0:+0:0
1023-1:+0:-1
1024+0:-1:1
1025+1:+0:1
1026+0:+1:-1
1027-1:+1:-1
1028+1:-1:1
1029-1:-1:0
1030+1:+1:0
1031-1.1:0:-1
1032+0:-1.1:1
1033+1.1:+0:1
1034+0:+1.1:-1
1035+123:+123:0
1036+123:+12:1
1037+12:+123:-1
1038-123:-123:0
1039-123:-12:-1
1040-12:-123:1
1041+123:+124:-1
1042+124:+123:1
1043-123:-124:1
1044-124:-123:-1
10450:0.01:-1
10460:0.0001:-1
10470:-0.0001:1
10480:-0.1:1
10490.1:0:1
10500.00001:0:1
1051-0.0001:0:-1
1052-0.1:0:-1
10530:0.0001234:-1
10540:-0.0001234:1
10550.0001234:0:1
1056-0.0001234:0:-1
10570.0001:0.0005:-1
10580.0005:0.0001:1
10590.005:0.0001:1
10600.001:0.0005:1
10610.000001:0.0005:-1
10620.00000123:0.0005:-1
10630.00512:0.0001:1
10640.005:0.000112:1
10650.00123:0.0005:1
10661.5:2:-1
10672:1.5:1
10681.54321:234:-1
1069234:1.54321:1
1070# infinity
1071-inf:5432112345:-1
1072+inf:5432112345:1
1073-inf:-5432112345:-1
1074+inf:-5432112345:1
1075-inf:54321.12345:-1
1076+inf:54321.12345:1
1077-inf:-54321.12345:-1
1078+inf:-54321.12345:1
1079+inf:+inf:0
1080-inf:-inf:0
1081+inf:-inf:1
1082-inf:+inf:-1
1083# return undef
1084+inf:NaN:
1085NaN:inf:
1086-inf:NaN:
1087NaN:-inf:
1088&facmp
1089fcmpNaN:fcmpNaN:
1090fcmpNaN:+0:
1091+0:fcmpNaN:
1092+0:+0:0
1093-1:+0:1
1094+0:-1:-1
1095+1:+0:1
1096+0:+1:-1
1097-1:+1:0
1098+1:-1:0
1099-1:-1:0
1100+1:+1:0
1101-1.1:0:1
1102+0:-1.1:-1
1103+1.1:+0:1
1104+0:+1.1:-1
1105+123:+123:0
1106+123:+12:1
1107+12:+123:-1
1108-123:-123:0
1109-123:-12:1
1110-12:-123:-1
1111+123:+124:-1
1112+124:+123:1
1113-123:-124:-1
1114-124:-123:1
11150:0.01:-1
11160:0.0001:-1
11170:-0.0001:-1
11180:-0.1:-1
11190.1:0:1
11200.00001:0:1
1121-0.0001:0:1
1122-0.1:0:1
11230:0.0001234:-1
11240:-0.0001234:-1
11250.0001234:0:1
1126-0.0001234:0:1
11270.0001:0.0005:-1
11280.0005:0.0001:1
11290.005:0.0001:1
11300.001:0.0005:1
11310.000001:0.0005:-1
11320.00000123:0.0005:-1
11330.00512:0.0001:1
11340.005:0.000112:1
11350.00123:0.0005:1
11361.5:2:-1
11372:1.5:1
11381.54321:234:-1
1139234:1.54321:1
1140# infinity
1141-inf:5432112345:1
1142+inf:5432112345:1
1143-inf:-5432112345:1
1144+inf:-5432112345:1
1145-inf:54321.12345:1
1146+inf:54321.12345:1
1147-inf:-54321.12345:1
1148+inf:-54321.12345:1
1149+inf:+inf:0
1150-inf:-inf:0
1151+inf:-inf:0
1152-inf:+inf:0
11535:inf:-1
1154-1:inf:-1
11555:-inf:-1
1156-1:-inf:-1
1157# return undef
1158+inf:facmpNaN:
1159facmpNaN:inf:
1160-inf:facmpNaN:
1161facmpNaN:-inf:
1162&fdec
1163fdecNaN:NaN
1164+inf:inf
1165-inf:-inf
1166+0:-1
1167+1:0
1168-1:-2
11691.23:0.23
1170-1.23:-2.23
1171100:99
1172101:100
1173-100:-101
1174-99:-100
1175-98:-99
117699:98
1177&finc
1178fincNaN:NaN
1179+inf:inf
1180-inf:-inf
1181+0:1
1182+1:2
1183-1:0
11841.23:2.23
1185-1.23:-0.23
1186100:101
1187-100:-99
1188-99:-98
1189-101:-100
119099:100
1191&fadd
1192abc:abc:NaN
1193abc:+0:NaN
1194+0:abc:NaN
1195+inf:-inf:NaN
1196-inf:+inf:NaN
1197+inf:+inf:inf
1198-inf:-inf:-inf
1199baddNaN:+inf:NaN
1200baddNaN:+inf:NaN
1201+inf:baddNaN:NaN
1202-inf:baddNaN:NaN
1203+0:+0:0
1204+1:+0:1
1205+0:+1:1
1206+1:+1:2
1207-1:+0:-1
1208+0:-1:-1
1209-1:-1:-2
1210-1:+1:0
1211+1:-1:0
1212+9:+1:10
1213+99:+1:100
1214+999:+1:1000
1215+9999:+1:10000
1216+99999:+1:100000
1217+999999:+1:1000000
1218+9999999:+1:10000000
1219+99999999:+1:100000000
1220+999999999:+1:1000000000
1221+9999999999:+1:10000000000
1222+99999999999:+1:100000000000
1223+10:-1:9
1224+100:-1:99
1225+1000:-1:999
1226+10000:-1:9999
1227+100000:-1:99999
1228+1000000:-1:999999
1229+10000000:-1:9999999
1230+100000000:-1:99999999
1231+1000000000:-1:999999999
1232+10000000000:-1:9999999999
1233+123456789:+987654321:1111111110
1234-123456789:+987654321:864197532
1235-123456789:-987654321:-1111111110
1236+123456789:-987654321:-864197532
12370.001234:0.0001234:0.0013574
1238&fsub
1239abc:abc:NaN
1240abc:+0:NaN
1241+0:abc:NaN
1242+inf:-inf:inf
1243-inf:+inf:-inf
1244+inf:+inf:NaN
1245-inf:-inf:NaN
1246baddNaN:+inf:NaN
1247baddNaN:+inf:NaN
1248+inf:baddNaN:NaN
1249-inf:baddNaN:NaN
1250+0:+0:0
1251+1:+0:1
1252+0:+1:-1
1253+1:+1:0
1254-1:+0:-1
1255+0:-1:1
1256-1:-1:0
1257-1:+1:-2
1258+1:-1:2
1259+9:+1:8
1260+99:+1:98
1261+999:+1:998
1262+9999:+1:9998
1263+99999:+1:99998
1264+999999:+1:999998
1265+9999999:+1:9999998
1266+99999999:+1:99999998
1267+999999999:+1:999999998
1268+9999999999:+1:9999999998
1269+99999999999:+1:99999999998
1270+10:-1:11
1271+100:-1:101
1272+1000:-1:1001
1273+10000:-1:10001
1274+100000:-1:100001
1275+1000000:-1:1000001
1276+10000000:-1:10000001
1277+100000000:-1:100000001
1278+1000000000:-1:1000000001
1279+10000000000:-1:10000000001
1280+123456789:+987654321:-864197532
1281-123456789:+987654321:-1111111110
1282-123456789:-987654321:864197532
1283+123456789:-987654321:1111111110
1284&bmuladd
1285abc:abc:0:NaN
1286abc:+0:0:NaN
1287+0:abc:0:NaN
1288+0:0:abc:NaN
1289NaNmul:+inf:0:NaN
1290NaNmul:-inf:0:NaN
1291-inf:NaNmul:0:NaN
1292+inf:NaNmul:0:NaN
1293+inf:+inf:0:inf
1294+inf:-inf:0:-inf
1295-inf:+inf:0:-inf
1296-inf:-inf:0:inf
1297+0:+0:0:0
1298+0:+1:0:0
1299+1:+0:0:0
1300+0:-1:0:0
1301-1:+0:0:0
1302123456789123456789:0:0:0
13030:123456789123456789:0:0
1304-1:-1:0:1
1305-1:-1:0:1
1306-1:+1:0:-1
1307+1:-1:0:-1
1308+1:+1:0:1
1309+2:+3:0:6
1310-2:+3:0:-6
1311+2:-3:0:-6
1312-2:-3:0:6
1313111:111:0:12321
131410101:10101:0:102030201
13151001001:1001001:0:1002003002001
1316100010001:100010001:0:10002000300020001
131710000100001:10000100001:0:100002000030000200001
131811111111111:9:0:99999999999
131922222222222:9:0:199999999998
132033333333333:9:0:299999999997
132144444444444:9:0:399999999996
132255555555555:9:0:499999999995
132366666666666:9:0:599999999994
132477777777777:9:0:699999999993
132588888888888:9:0:799999999992
132699999999999:9:0:899999999991
132711111111111:9:1:100000000000
132822222222222:9:1:199999999999
132933333333333:9:1:299999999998
133044444444444:9:1:399999999997
133155555555555:9:1:499999999996
133266666666666:9:1:599999999995
133377777777777:9:1:699999999994
133488888888888:9:1:799999999993
133599999999999:9:1:899999999992
1336-3:-4:-5:7
13373:-4:-5:-17
1338-3:4:-5:-17
13393:4:-5:7
1340-3:4:5:-7
13413:-4:5:-7
13429999999999999999999:10000000000000000000:1234567890:99999999999999999990000000001234567890
13433.2:5.7:8.9:27.14
1344-3.2:5.197:6.05:-10.5804
1345&bmodpow
13463:4:8:1
13473:4:7:4
13483:4:7:4
134977777:777:123456789:99995084
13503.2:6.2:5.2:2.970579856718063040273642739529400818
1351&fmul
1352abc:abc:NaN
1353abc:+0:NaN
1354+0:abc:NaN
1355+inf:NaNmul:NaN
1356+inf:NaNmul:NaN
1357NaNmul:+inf:NaN
1358NaNmul:-inf:NaN
1359+inf:+inf:inf
1360+inf:-inf:-inf
1361+inf:-inf:-inf
1362+inf:+inf:inf
1363+inf:123.34:inf
1364+inf:-123.34:-inf
1365-inf:123.34:-inf
1366-inf:-123.34:inf
1367123.34:+inf:inf
1368-123.34:+inf:-inf
1369123.34:-inf:-inf
1370-123.34:-inf:inf
1371+0:+0:0
1372+0:+1:0
1373+1:+0:0
1374+0:-1:0
1375-1:+0:0
1376+123456789123456789:+0:0
1377+0:+123456789123456789:0
1378-1:-1:1
1379-1:+1:-1
1380+1:-1:-1
1381+1:+1:1
1382+2:+3:6
1383-2:+3:-6
1384+2:-3:-6
1385-2:-3:6
1386+111:+111:12321
1387+10101:+10101:102030201
1388+1001001:+1001001:1002003002001
1389+100010001:+100010001:10002000300020001
1390+10000100001:+10000100001:100002000030000200001
1391+11111111111:+9:99999999999
1392+22222222222:+9:199999999998
1393+33333333333:+9:299999999997
1394+44444444444:+9:399999999996
1395+55555555555:+9:499999999995
1396+66666666666:+9:599999999994
1397+77777777777:+9:699999999993
1398+88888888888:+9:799999999992
1399+99999999999:+9:899999999991
14006:120:720
140110:10000:100000
1402&fdiv-list
14030:0:NaN,NaN
14040:1:0,0
14059:4:2.25,1
14069:5:1.8,4
1407# bug in v1.74 with bdiv in list context, when $y is 1 or -1
14082.1:-1:-2.1,0
14092.1:1:2.1,0
1410-2.1:-1:2.1,0
1411-2.1:1:-2.1,0
1412&fdiv
1413$div_scale = 40; $round_mode = 'even'
1414abc:abc:NaN
1415abc:+1:abc:NaN
1416+1:abc:NaN
1417-1:abc:NaN
14180:abc:NaN
1419+0:+0:NaN
1420+0:+1:0
1421+1:+0:inf
1422+3214:+0:inf
1423+0:-1:0
1424-1:+0:-inf
1425-3214:+0:-inf
1426+1:+1:1
1427-1:-1:1
1428+1:-1:-1
1429-1:+1:-1
1430+1:+2:0.5
1431+2:+1:2
1432123:+inf:0
1433123:-inf:0
1434+10:+5:2
1435+100:+4:25
1436+1000:+8:125
1437+10000:+16:625
1438+10000:-16:-625
1439+999999999999:+9:111111111111
1440+999999999999:+99:10101010101
1441+999999999999:+999:1001001001
1442+999999999999:+9999:100010001
1443+999999999999999:+99999:10000100001
1444+1000000000:+9:111111111.1111111111111111111111111111111
1445+2000000000:+9:222222222.2222222222222222222222222222222
1446+3000000000:+9:333333333.3333333333333333333333333333333
1447+4000000000:+9:444444444.4444444444444444444444444444444
1448+5000000000:+9:555555555.5555555555555555555555555555556
1449+6000000000:+9:666666666.6666666666666666666666666666667
1450+7000000000:+9:777777777.7777777777777777777777777777778
1451+8000000000:+9:888888888.8888888888888888888888888888889
1452+9000000000:+9:1000000000
1453+35500000:+113:314159.2920353982300884955752212389380531
1454+71000000:+226:314159.2920353982300884955752212389380531
1455+106500000:+339:314159.2920353982300884955752212389380531
1456+1000000000:+3:333333333.3333333333333333333333333333333
14572:25.024996000799840031993601279744051189762:0.07992009269196593320152084692285869265447
1458123456:1:123456
1459$div_scale = 20
1460+1000000000:+9:111111111.11111111111
1461+2000000000:+9:222222222.22222222222
1462+3000000000:+9:333333333.33333333333
1463+4000000000:+9:444444444.44444444444
1464+5000000000:+9:555555555.55555555556
1465+6000000000:+9:666666666.66666666667
1466+7000000000:+9:777777777.77777777778
1467+8000000000:+9:888888888.88888888889
1468+9000000000:+9:1000000000
14691:10:0.1
14701:100:0.01
14711:1000:0.001
14721:10000:0.0001
14731:504:0.001984126984126984127
14742:1.987654321:1.0062111801179738436
1475123456789.123456789123456789123456789:1:123456789.12345678912
1476# the next two cases are the "old" behaviour, but are now (>v0.01) different
1477#+35500000:+113:314159.292035398230088
1478#+71000000:+226:314159.292035398230088
1479+35500000:+113:314159.29203539823009
1480+71000000:+226:314159.29203539823009
1481+106500000:+339:314159.29203539823009
1482+1000000000:+3:333333333.33333333333
1483$div_scale = 1
1484# round to accuracy 1 after bdiv
1485+124:+3:40
1486123456789.1234:1:100000000
1487# reset scale for further tests
1488$div_scale = 40
1489&fmod
1490+9:4:1
1491+9:5:4
1492+9000:56:40
1493+56:9000:56
1494# inf handling, see table in doc
14950:inf:0
14960:-inf:0
14975:inf:5
14985:-inf:5
1499-5:inf:-5
1500-5:-inf:-5
1501inf:5:0
1502-inf:5:0
1503inf:-5:0
1504-inf:-5:0
15055:5:0
1506-5:-5:0
1507inf:inf:NaN
1508-inf:-inf:NaN
1509-inf:inf:NaN
1510inf:-inf:NaN
15118:0:8
1512inf:0:inf
1513# exceptions to reminder rule
1514-inf:0:-inf
1515-8:0:-8
15160:0:NaN
1517abc:abc:NaN
1518abc:1:abc:NaN
15191:abc:NaN
15200:0:NaN
15210:1:0
15221:0:1
15230:-1:0
1524-1:0:-1
15251:1:0
1526-1:-1:0
15271:-1:0
1528-1:1:0
15291:2:1
15302:1:0
15311000000000:9:1
15322000000000:9:2
15333000000000:9:3
15344000000000:9:4
15355000000000:9:5
15366000000000:9:6
15377000000000:9:7
15388000000000:9:8
15399000000000:9:0
154035500000:113:33
154171000000:226:66
1542106500000:339:99
15431000000000:3:1
154410:5:0
1545100:4:0
15461000:8:0
154710000:16:0
1548999999999999:9:0
1549999999999999:99:0
1550999999999999:999:0
1551999999999999:9999:0
1552999999999999999:99999:0
1553-9:+5:1
1554+9:-5:-1
1555-9:-5:-4
1556-5:3:1
1557-2:3:1
15584:3:1
15591:3:1
1560-5:-3:-2
1561-2:-3:-2
15624:-3:-2
15631:-3:-2
15644095:4095:0
1565100041000510123:3:0
1566152403346:12345:4321
156787654321:87654321:0
1568# now some floating point tests
1569123:2.5:0.5
15701230:2.5:0
1571123.4:2.5:0.9
1572123e1:25:5
1573-2.1:1:0.9
15742.1:1:0.1
1575-2.1:-1:-0.1
15762.1:-1:-0.9
1577-3:1:0
15783:1:0
1579-3:-1:0
15803:-1:0
1581&ffac
1582Nanfac:NaN
1583-1:NaN
1584+inf:inf
1585-inf:NaN
15860:1
15871:1
15882:2
15893:6
15904:24
15915:120
15926:720
159310:3628800
159411:39916800
159512:479001600
1596&froot
1597# sqrt()
1598+0:2:0
1599+1:2:1
1600-1:2:NaN
1601# -$x ** (1/2) => -$y, but not in froot()
1602-123.456:2:NaN
1603+inf:2:inf
1604-inf:2:NaN
16052:2:1.41421356237309504880168872420969807857
1606-2:2:NaN
16074:2:2
16089:2:3
160916:2:4
1610100:2:10
1611123.456:2:11.11107555549866648462149404118219234119
161215241.38393:2:123.4559999756998444766131352122991626468
16131.44:2:1.2
161412:2:3.464101615137754587054892683011744733886
16150.49:2:0.7
16160.0049:2:0.07
1617# invalid ones
16181:NaN:NaN
1619-1:NaN:NaN
16200:NaN:NaN
1621-inf:NaN:NaN
1622+inf:NaN:NaN
1623NaN:0:NaN
1624NaN:2:NaN
1625NaN:inf:NaN
1626NaN:inf:NaN
162712:-inf:NaN
162812:inf:NaN
1629+0:0:NaN
1630+1:0:NaN
1631-1:0:NaN
1632-2:0:NaN
1633-123.45:0:NaN
1634+inf:0:NaN
163512:1:12
1636-12:1:NaN
16378:-1:NaN
1638-8:-1:NaN
1639# cubic root
16408:3:2
1641-8:3:NaN
1642# fourths root
164316:4:2
164481:4:3
1645# see t/bigroot() for more tests
1646&fsqrt
1647+0:0
1648-1:NaN
1649-2:NaN
1650-16:NaN
1651-123.45:NaN
1652nanfsqrt:NaN
1653+inf:inf
1654-inf:NaN
16551:1
16562:1.41421356237309504880168872420969807857
16574:2
16589:3
165916:4
1660100:10
1661123.456:11.11107555549866648462149404118219234119
166215241.38393:123.4559999756998444766131352122991626468
16631.44:1.2
1664# sqrt(1.44) = 1.2, sqrt(e10) = e5 => 12e4
16651.44E10:120000
16662e10:141421.356237309504880168872420969807857
1667144e20:120000000000
1668# proved to be an endless loop under 7-9
166912:3.464101615137754587054892683011744733886
16700.49:0.7
16710.0049:0.07
1672&is_nan
1673123:0
1674abc:1
1675NaN:1
1676-123:0
1677&is_inf
1678+inf::1
1679-inf::1
1680abc::0
16811::0
1682NaN::0
1683-1::0
1684+inf:-:0
1685+inf:+:1
1686-inf:-:1
1687-inf:+:0
1688# it must be exactly /^[+-]inf$/
1689+infinity::0
1690-infinity::0
1691&is_odd
1692abc:0
16930:0
1694-1:1
1695-3:1
16961:1
16973:1
16981000001:1
16991000002:0
1700+inf:0
1701-inf:0
1702123.45:0
1703-123.45:0
17042:0
1705&is_int
1706NaNis_int:0
17070:1
17081:1
17092:1
1710-2:1
1711-1:1
1712-inf:0
1713+inf:0
1714123.4567:0
1715-0.1:0
1716-0.002:0
1717&is_even
1718abc:0
17190:1
1720-1:0
1721-3:0
17221:0
17233:0
17241000001:0
17251000002:1
17262:1
1727+inf:0
1728-inf:0
1729123.456:0
1730-123.456:0
17310.01:0
1732-0.01:0
1733120:1
17341200:1
1735-1200:1
1736&is_positive
17370:0
17381:1
1739-1:0
1740-123:0
1741NaN:0
1742-inf:0
1743+inf:1
1744&is_negative
17450:0
17461:0
1747-1:1
1748-123:1
1749NaN:0
1750-inf:1
1751+inf:0
1752&parts
17530:0 1
17541:1 0
1755123:123 0
1756-123:-123 0
1757-1200:-12 2
1758NaNparts:NaN NaN
1759+inf:inf inf
1760-inf:-inf inf
1761&exponent
17620:1
17631:0
1764123:0
1765-123:0
1766-1200:2
1767+inf:inf
1768-inf:inf
1769NaNexponent:NaN
1770&mantissa
17710:0
17721:1
1773123:123
1774-123:-123
1775-1200:-12
1776+inf:inf
1777-inf:-inf
1778NaNmantissa:NaN
1779&length
1780123:3
1781-123:3
17820:1
17831:1
178412345678901234567890:20
1785&is_zero
1786NaNzero:0
1787+inf:0
1788-inf:0
17890:1
1790-1:0
17911:0
1792&is_one
1793NaNone:0
1794+inf:0
1795-inf:0
17960:0
17972:0
17981:1
1799-1:0
1800-2:0
1801&ffloor
18020:0
1803abc:NaN
1804+inf:inf
1805-inf:-inf
18061:1
1807-51:-51
1808-51.2:-52
180912.2:12
18100.12345:0
18110.123456:0
18120.1234567:0
18130.12345678:0
18140.123456789:0
1815&fceil
18160:0
1817abc:NaN
1818+inf:inf
1819-inf:-inf
18201:1
1821-51:-51
1822-51.2:-51
182312.2:13
1824