1
2package Tie::File;
3require 5.005;
4use Carp ':DEFAULT', 'confess';
5use POSIX 'SEEK_SET';
6use Fcntl 'O_CREAT', 'O_RDWR', 'LOCK_EX', 'LOCK_SH', 'O_WRONLY', 'O_RDONLY';
7sub O_ACCMODE () { O_RDONLY | O_RDWR | O_WRONLY }
8
9
10$VERSION = "1.02";
11my $DEFAULT_MEMORY_SIZE = 1<<21;    # 2 megabytes
12my $DEFAULT_AUTODEFER_THRESHHOLD = 3; # 3 records
13my $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD = 65536; # 16 disk blocksful
14
15my %good_opt = map {$_ => 1, "-$_" => 1}
16                 qw(memory dw_size mode recsep discipline
17                    autodefer autochomp autodefer_threshhold concurrent);
18
19sub TIEARRAY {
20  if (@_ % 2 != 0) {
21    croak "usage: tie \@array, $_[0], filename, [option => value]...";
22  }
23  my ($pack, $file, %opts) = @_;
24
25  # transform '-foo' keys into 'foo' keys
26  for my $key (keys %opts) {
27    unless ($good_opt{$key}) {
28      croak("$pack: Unrecognized option '$key'\n");
29    }
30    my $okey = $key;
31    if ($key =~ s/^-+//) {
32      $opts{$key} = delete $opts{$okey};
33    }
34  }
35
36  if ($opts{concurrent}) {
37    croak("$pack: concurrent access not supported yet\n");
38  }
39
40  unless (defined $opts{memory}) {
41    # default is the larger of the default cache size and the
42    # deferred-write buffer size (if specified)
43    $opts{memory} = $DEFAULT_MEMORY_SIZE;
44    $opts{memory} = $opts{dw_size}
45      if defined $opts{dw_size} && $opts{dw_size} > $DEFAULT_MEMORY_SIZE;
46    # Dora Winifred Read
47  }
48  $opts{dw_size} = $opts{memory} unless defined $opts{dw_size};
49  if ($opts{dw_size} > $opts{memory}) {
50      croak("$pack: dw_size may not be larger than total memory allocation\n");
51  }
52  # are we in deferred-write mode?
53  $opts{defer} = 0 unless defined $opts{defer};
54  $opts{deferred} = {};         # no records are presently deferred
55  $opts{deferred_s} = 0;        # count of total bytes in ->{deferred}
56  $opts{deferred_max} = -1;     # empty
57
58  # What's a good way to arrange that this class can be overridden?
59  $opts{cache} = Tie::File::Cache->new($opts{memory});
60
61  # autodeferment is enabled by default
62  $opts{autodefer} = 1 unless defined $opts{autodefer};
63  $opts{autodeferring} = 0;     # but is not initially active
64  $opts{ad_history} = [];
65  $opts{autodefer_threshhold} = $DEFAULT_AUTODEFER_THRESHHOLD
66    unless defined $opts{autodefer_threshhold};
67  $opts{autodefer_filelen_threshhold} = $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD
68    unless defined $opts{autodefer_filelen_threshhold};
69
70  $opts{offsets} = [0];
71  $opts{filename} = $file;
72  unless (defined $opts{recsep}) {
73    $opts{recsep} = _default_recsep();
74  }
75  $opts{recseplen} = length($opts{recsep});
76  if ($opts{recseplen} == 0) {
77    croak "Empty record separator not supported by $pack";
78  }
79
80  $opts{autochomp} = 1 unless defined $opts{autochomp};
81
82  $opts{mode} = O_CREAT|O_RDWR unless defined $opts{mode};
83  $opts{rdonly} = (($opts{mode} & O_ACCMODE) == O_RDONLY);
84  $opts{sawlastrec} = undef;
85
86  my $fh;
87
88  if (UNIVERSAL::isa($file, 'GLOB')) {
89    # We use 1 here on the theory that some systems
90    # may not indicate failure if we use 0.
91    # MSWin32 does not indicate failure with 0, but I don't know if
92    # it will indicate failure with 1 or not.
93    unless (seek $file, 1, SEEK_SET) {
94      croak "$pack: your filehandle does not appear to be seekable";
95    }
96    seek $file, 0, SEEK_SET;    # put it back
97    $fh = $file;                # setting binmode is the user's problem
98  } elsif (ref $file) {
99    croak "usage: tie \@array, $pack, filename, [option => value]...";
100  } else {
101    # $fh = \do { local *FH };  # XXX this is buggy
102    if ($] < 5.006) {
103	# perl 5.005 and earlier don't autovivify filehandles
104	require Symbol;
105	$fh = Symbol::gensym();
106    }
107    sysopen $fh, $file, $opts{mode}, 0666 or return;
108    binmode $fh;
109    ++$opts{ourfh};
110  }
111  { my $ofh = select $fh; $| = 1; select $ofh } # autoflush on write
112  if (defined $opts{discipline} && $] >= 5.006) {
113    # This avoids a compile-time warning under 5.005
114    eval 'binmode($fh, $opts{discipline})';
115    croak $@ if $@ =~ /unknown discipline/i;
116    die if $@;
117  }
118  $opts{fh} = $fh;
119
120  bless \%opts => $pack;
121}
122
123sub FETCH {
124  my ($self, $n) = @_;
125  my $rec;
126
127  # check the defer buffer
128  $rec = $self->{deferred}{$n} if exists $self->{deferred}{$n};
129  $rec = $self->_fetch($n) unless defined $rec;
130
131  # inlined _chomp1
132  substr($rec, - $self->{recseplen}) = ""
133    if defined $rec && $self->{autochomp};
134  $rec;
135}
136
137# Chomp many records in-place; return nothing useful
138sub _chomp {
139  my $self = shift;
140  return unless $self->{autochomp};
141  if ($self->{autochomp}) {
142    for (@_) {
143      next unless defined;
144      substr($_, - $self->{recseplen}) = "";
145    }
146  }
147}
148
149# Chomp one record in-place; return modified record
150sub _chomp1 {
151  my ($self, $rec) = @_;
152  return $rec unless $self->{autochomp};
153  return unless defined $rec;
154  substr($rec, - $self->{recseplen}) = "";
155  $rec;
156}
157
158sub _fetch {
159  my ($self, $n) = @_;
160
161  # check the record cache
162  { my $cached = $self->{cache}->lookup($n);
163    return $cached if defined $cached;
164  }
165
166  if ($#{$self->{offsets}} < $n) {
167    return if $self->{eof};  # request for record beyond end of file
168    my $o = $self->_fill_offsets_to($n);
169    # If it's still undefined, there is no such record, so return 'undef'
170    return unless defined $o;
171  }
172
173  my $fh = $self->{FH};
174  $self->_seek($n);             # we can do this now that offsets is populated
175  my $rec = $self->_read_record;
176
177# If we happen to have just read the first record, check to see if
178# the length of the record matches what 'tell' says.  If not, Tie::File
179# won't work, and should drop dead.
180#
181#  if ($n == 0 && defined($rec) && tell($self->{fh}) != length($rec)) {
182#    if (defined $self->{discipline}) {
183#      croak "I/O discipline $self->{discipline} not supported";
184#    } else {
185#      croak "File encoding not supported";
186#    }
187#  }
188
189  $self->{cache}->insert($n, $rec) if defined $rec && not $self->{flushing};
190  $rec;
191}
192
193sub STORE {
194  my ($self, $n, $rec) = @_;
195  die "STORE called from _check_integrity!" if $DIAGNOSTIC;
196
197  $self->_fixrecs($rec);
198
199  if ($self->{autodefer}) {
200    $self->_annotate_ad_history($n);
201  }
202
203  return $self->_store_deferred($n, $rec) if $self->_is_deferring;
204
205
206  # We need this to decide whether the new record will fit
207  # It incidentally populates the offsets table
208  # Note we have to do this before we alter the cache
209  # 20020324 Wait, but this DOES alter the cache.  TODO BUG?
210  my $oldrec = $self->_fetch($n);
211
212  if (not defined $oldrec) {
213    # We're storing a record beyond the end of the file
214    $self->_extend_file_to($n+1);
215    $oldrec = $self->{recsep};
216  }
217#  return if $oldrec eq $rec;    # don't bother
218  my $len_diff = length($rec) - length($oldrec);
219
220  # length($oldrec) here is not consistent with text mode  TODO XXX BUG
221  $self->_mtwrite($rec, $self->{offsets}[$n], length($oldrec));
222  $self->_oadjust([$n, 1, $rec]);
223  $self->{cache}->update($n, $rec);
224}
225
226sub _store_deferred {
227  my ($self, $n, $rec) = @_;
228  $self->{cache}->remove($n);
229  my $old_deferred = $self->{deferred}{$n};
230
231  if (defined $self->{deferred_max} && $n > $self->{deferred_max}) {
232    $self->{deferred_max} = $n;
233  }
234  $self->{deferred}{$n} = $rec;
235
236  my $len_diff = length($rec);
237  $len_diff -= length($old_deferred) if defined $old_deferred;
238  $self->{deferred_s} += $len_diff;
239  $self->{cache}->adj_limit(-$len_diff);
240  if ($self->{deferred_s} > $self->{dw_size}) {
241    $self->_flush;
242  } elsif ($self->_cache_too_full) {
243    $self->_cache_flush;
244  }
245}
246
247# Remove a single record from the deferred-write buffer without writing it
248# The record need not be present
249sub _delete_deferred {
250  my ($self, $n) = @_;
251  my $rec = delete $self->{deferred}{$n};
252  return unless defined $rec;
253
254  if (defined $self->{deferred_max}
255      && $n == $self->{deferred_max}) {
256    undef $self->{deferred_max};
257  }
258
259  $self->{deferred_s} -= length $rec;
260  $self->{cache}->adj_limit(length $rec);
261}
262
263sub FETCHSIZE {
264  my $self = shift;
265  my $n = $self->{eof} ? $#{$self->{offsets}} : $self->_fill_offsets;
266
267  my $top_deferred = $self->_defer_max;
268  $n = $top_deferred+1 if defined $top_deferred && $n < $top_deferred+1;
269  $n;
270}
271
272sub STORESIZE {
273  my ($self, $len) = @_;
274
275  if ($self->{autodefer}) {
276    $self->_annotate_ad_history('STORESIZE');
277  }
278
279  my $olen = $self->FETCHSIZE;
280  return if $len == $olen;      # Woo-hoo!
281
282  # file gets longer
283  if ($len > $olen) {
284    if ($self->_is_deferring) {
285      for ($olen .. $len-1) {
286        $self->_store_deferred($_, $self->{recsep});
287      }
288    } else {
289      $self->_extend_file_to($len);
290    }
291    return;
292  }
293
294  # file gets shorter
295  if ($self->_is_deferring) {
296    # TODO maybe replace this with map-plus-assignment?
297    for (grep $_ >= $len, keys %{$self->{deferred}}) {
298      $self->_delete_deferred($_);
299    }
300    $self->{deferred_max} = $len-1;
301  }
302
303  $self->_seek($len);
304  $self->_chop_file;
305  $#{$self->{offsets}} = $len;
306#  $self->{offsets}[0] = 0;      # in case we just chopped this
307
308  $self->{cache}->remove(grep $_ >= $len, $self->{cache}->ckeys);
309}
310
311### OPTIMIZE ME
312### It should not be necessary to do FETCHSIZE
313### Just seek to the end of the file.
314sub PUSH {
315  my $self = shift;
316  $self->SPLICE($self->FETCHSIZE, scalar(@_), @_);
317
318  # No need to return:
319  #  $self->FETCHSIZE;  # because av.c takes care of this for me
320}
321
322sub POP {
323  my $self = shift;
324  my $size = $self->FETCHSIZE;
325  return if $size == 0;
326#  print STDERR "# POPPITY POP POP POP\n";
327  scalar $self->SPLICE($size-1, 1);
328}
329
330sub SHIFT {
331  my $self = shift;
332  scalar $self->SPLICE(0, 1);
333}
334
335sub UNSHIFT {
336  my $self = shift;
337  $self->SPLICE(0, 0, @_);
338  # $self->FETCHSIZE; # av.c takes care of this for me
339}
340
341sub CLEAR {
342  my $self = shift;
343
344  if ($self->{autodefer}) {
345    $self->_annotate_ad_history('CLEAR');
346  }
347
348  $self->_seekb(0);
349  $self->_chop_file;
350    $self->{cache}->set_limit($self->{memory});
351    $self->{cache}->empty;
352  @{$self->{offsets}} = (0);
353  %{$self->{deferred}}= ();
354    $self->{deferred_s} = 0;
355    $self->{deferred_max} = -1;
356}
357
358sub EXTEND {
359  my ($self, $n) = @_;
360
361  # No need to pre-extend anything in this case
362  return if $self->_is_deferring;
363
364  $self->_fill_offsets_to($n);
365  $self->_extend_file_to($n);
366}
367
368sub DELETE {
369  my ($self, $n) = @_;
370
371  if ($self->{autodefer}) {
372    $self->_annotate_ad_history('DELETE');
373  }
374
375  my $lastrec = $self->FETCHSIZE-1;
376  my $rec = $self->FETCH($n);
377  $self->_delete_deferred($n) if $self->_is_deferring;
378  if ($n == $lastrec) {
379    $self->_seek($n);
380    $self->_chop_file;
381    $#{$self->{offsets}}--;
382    $self->{cache}->remove($n);
383    # perhaps in this case I should also remove trailing null records?
384    # 20020316
385    # Note that delete @a[-3..-1] deletes the records in the wrong order,
386    # so we only chop the very last one out of the file.  We could repair this
387    # by tracking deleted records inside the object.
388  } elsif ($n < $lastrec) {
389    $self->STORE($n, "");
390  }
391  $rec;
392}
393
394sub EXISTS {
395  my ($self, $n) = @_;
396  return 1 if exists $self->{deferred}{$n};
397  $n < $self->FETCHSIZE;
398}
399
400sub SPLICE {
401  my $self = shift;
402
403  if ($self->{autodefer}) {
404    $self->_annotate_ad_history('SPLICE');
405  }
406
407  $self->_flush if $self->_is_deferring; # move this up?
408  if (wantarray) {
409    $self->_chomp(my @a = $self->_splice(@_));
410    @a;
411  } else {
412    $self->_chomp1(scalar $self->_splice(@_));
413  }
414}
415
416sub DESTROY {
417  my $self = shift;
418  $self->flush if $self->_is_deferring;
419  $self->{cache}->delink if defined $self->{cache}; # break circular link
420  if ($self->{fh} and $self->{ourfh}) {
421      delete $self->{ourfh};
422      close delete $self->{fh};
423  }
424}
425
426sub _splice {
427  my ($self, $pos, $nrecs, @data) = @_;
428  my @result;
429
430  $pos = 0 unless defined $pos;
431
432  # Deal with negative and other out-of-range positions
433  # Also set default for $nrecs
434  {
435    my $oldsize = $self->FETCHSIZE;
436    $nrecs = $oldsize unless defined $nrecs;
437    my $oldpos = $pos;
438
439    if ($pos < 0) {
440      $pos += $oldsize;
441      if ($pos < 0) {
442        croak "Modification of non-creatable array value attempted, " .
443              "subscript $oldpos";
444      }
445    }
446
447    if ($pos > $oldsize) {
448      return unless @data;
449      $pos = $oldsize;          # This is what perl does for normal arrays
450    }
451
452    # The manual is very unclear here
453    if ($nrecs < 0) {
454      $nrecs = $oldsize - $pos + $nrecs;
455      $nrecs = 0 if $nrecs < 0;
456    }
457
458    # nrecs is too big---it really means "until the end"
459    # 20030507
460    if ($nrecs + $pos > $oldsize) {
461      $nrecs = $oldsize - $pos;
462    }
463  }
464
465  $self->_fixrecs(@data);
466  my $data = join '', @data;
467  my $datalen = length $data;
468  my $oldlen = 0;
469
470  # compute length of data being removed
471  for ($pos .. $pos+$nrecs-1) {
472    last unless defined $self->_fill_offsets_to($_);
473    my $rec = $self->_fetch($_);
474    last unless defined $rec;
475    push @result, $rec;
476
477    # Why don't we just use length($rec) here?
478    # Because that record might have come from the cache.  _splice
479    # might have been called to flush out the deferred-write records,
480    # and in this case length($rec) is the length of the record to be
481    # *written*, not the length of the actual record in the file.  But
482    # the offsets are still true. 20020322
483    $oldlen += $self->{offsets}[$_+1] - $self->{offsets}[$_]
484      if defined $self->{offsets}[$_+1];
485  }
486  $self->_fill_offsets_to($pos+$nrecs);
487
488  # Modify the file
489  $self->_mtwrite($data, $self->{offsets}[$pos], $oldlen);
490  # Adjust the offsets table
491  $self->_oadjust([$pos, $nrecs, @data]);
492
493  { # Take this read cache stuff out into a separate function
494    # You made a half-attempt to put it into _oadjust.
495    # Finish something like that up eventually.
496    # STORE also needs to do something similarish
497
498    # update the read cache, part 1
499    # modified records
500    for ($pos .. $pos+$nrecs-1) {
501      my $new = $data[$_-$pos];
502      if (defined $new) {
503        $self->{cache}->update($_, $new);
504      } else {
505        $self->{cache}->remove($_);
506      }
507    }
508
509    # update the read cache, part 2
510    # moved records - records past the site of the change
511    # need to be renumbered
512    # Maybe merge this with the previous block?
513    {
514      my @oldkeys = grep $_ >= $pos + $nrecs, $self->{cache}->ckeys;
515      my @newkeys = map $_-$nrecs+@data, @oldkeys;
516      $self->{cache}->rekey(\@oldkeys, \@newkeys);
517    }
518
519    # Now there might be too much data in the cache, if we spliced out
520    # some short records and spliced in some long ones.  If so, flush
521    # the cache.
522    $self->_cache_flush;
523  }
524
525  # Yes, the return value of 'splice' *is* actually this complicated
526  wantarray ? @result : @result ? $result[-1] : undef;
527}
528
529
530# write data into the file
531# $data is the data to be written.
532# it should be written at position $pos, and should overwrite
533# exactly $len of the following bytes.
534# Note that if length($data) > $len, the subsequent bytes will have to
535# be moved up, and if length($data) < $len, they will have to
536# be moved down
537sub _twrite {
538  my ($self, $data, $pos, $len) = @_;
539
540  unless (defined $pos) {
541    die "\$pos was undefined in _twrite";
542  }
543
544  my $len_diff = length($data) - $len;
545
546  if ($len_diff == 0) {          # Woo-hoo!
547    my $fh = $self->{fh};
548    $self->_seekb($pos);
549    $self->_write_record($data);
550    return;                     # well, that was easy.
551  }
552
553  # the two records are of different lengths
554  # our strategy here: rewrite the tail of the file,
555  # reading ahead one buffer at a time
556  # $bufsize is required to be at least as large as the data we're overwriting
557  my $bufsize = _bufsize($len_diff);
558  my ($writepos, $readpos) = ($pos, $pos+$len);
559  my $next_block;
560  my $more_data;
561
562  # Seems like there ought to be a way to avoid the repeated code
563  # and the special case here.  The read(1) is also a little weird.
564  # Think about this.
565  do {
566    $self->_seekb($readpos);
567    my $br = read $self->{fh}, $next_block, $bufsize;
568    $more_data = read $self->{fh}, my($dummy), 1;
569    $self->_seekb($writepos);
570    $self->_write_record($data);
571    $readpos += $br;
572    $writepos += length $data;
573    $data = $next_block;
574  } while $more_data;
575  $self->_seekb($writepos);
576  $self->_write_record($next_block);
577
578  # There might be leftover data at the end of the file
579  $self->_chop_file if $len_diff < 0;
580}
581
582# _iwrite(D, S, E)
583# Insert text D at position S.
584# Let C = E-S-|D|.  If C < 0; die.
585# Data in [S,S+C) is copied to [S+D,S+D+C) = [S+D,E).
586# Data in [S+C = E-D, E) is returned.  Data in [E, oo) is untouched.
587#
588# In a later version, don't read the entire intervening area into
589# memory at once; do the copying block by block.
590sub _iwrite {
591  my $self = shift;
592  my ($D, $s, $e) = @_;
593  my $d = length $D;
594  my $c = $e-$s-$d;
595  local *FH = $self->{fh};
596  confess "Not enough space to insert $d bytes between $s and $e"
597    if $c < 0;
598  confess "[$s,$e) is an invalid insertion range" if $e < $s;
599
600  $self->_seekb($s);
601  read FH, my $buf, $e-$s;
602
603  $D .= substr($buf, 0, $c, "");
604
605  $self->_seekb($s);
606  $self->_write_record($D);
607
608  return $buf;
609}
610
611# Like _twrite, but the data-pos-len triple may be repeated; you may
612# write several chunks.  All the writing will be done in
613# one pass.   Chunks SHALL be in ascending order and SHALL NOT overlap.
614sub _mtwrite {
615  my $self = shift;
616  my $unwritten = "";
617  my $delta = 0;
618
619  @_ % 3 == 0
620    or die "Arguments to _mtwrite did not come in groups of three";
621
622  while (@_) {
623    my ($data, $pos, $len) = splice @_, 0, 3;
624    my $end = $pos + $len;  # The OLD end of the segment to be replaced
625    $data = $unwritten . $data;
626    $delta -= length($unwritten);
627    $unwritten  = "";
628    $pos += $delta;             # This is where the data goes now
629    my $dlen = length $data;
630    $self->_seekb($pos);
631    if ($len >= $dlen) {        # the data will fit
632      $self->_write_record($data);
633      $delta += ($dlen - $len); # everything following moves down by this much
634      $data = ""; # All the data in the buffer has been written
635    } else {                    # won't fit
636      my $writable = substr($data, 0, $len - $delta, "");
637      $self->_write_record($writable);
638      $delta += ($dlen - $len); # everything following moves down by this much
639    }
640
641    # At this point we've written some but maybe not all of the data.
642    # There might be a gap to close up, or $data might still contain a
643    # bunch of unwritten data that didn't fit.
644    my $ndlen = length $data;
645    if ($delta == 0) {
646      $self->_write_record($data);
647    } elsif ($delta < 0) {
648      # upcopy (close up gap)
649      if (@_) {
650        $self->_upcopy($end, $end + $delta, $_[1] - $end);
651      } else {
652        $self->_upcopy($end, $end + $delta);
653      }
654    } else {
655      # downcopy (insert data that didn't fit; replace this data in memory
656      # with _later_ data that doesn't fit)
657      if (@_) {
658        $unwritten = $self->_downcopy($data, $end, $_[1] - $end);
659      } else {
660        # Make the file longer to accommodate the last segment that doesn't
661        $unwritten = $self->_downcopy($data, $end);
662      }
663    }
664  }
665}
666
667# Copy block of data of length $len from position $spos to position $dpos
668# $dpos must be <= $spos
669#
670# If $len is undefined, go all the way to the end of the file
671# and then truncate it ($spos - $dpos bytes will be removed)
672sub _upcopy {
673  my $blocksize = 8192;
674  my ($self, $spos, $dpos, $len) = @_;
675  if ($dpos > $spos) {
676    die "source ($spos) was upstream of destination ($dpos) in _upcopy";
677  } elsif ($dpos == $spos) {
678    return;
679  }
680
681  while (! defined ($len) || $len > 0) {
682    my $readsize = ! defined($len) ? $blocksize
683               : $len > $blocksize ? $blocksize
684               : $len;
685
686    my $fh = $self->{fh};
687    $self->_seekb($spos);
688    my $bytes_read = read $fh, my($data), $readsize;
689    $self->_seekb($dpos);
690    if ($data eq "") {
691      $self->_chop_file;
692      last;
693    }
694    $self->_write_record($data);
695    $spos += $bytes_read;
696    $dpos += $bytes_read;
697    $len -= $bytes_read if defined $len;
698  }
699}
700
701# Write $data into a block of length $len at position $pos,
702# moving everything in the block forwards to make room.
703# Instead of writing the last length($data) bytes from the block
704# (because there isn't room for them any longer) return them.
705#
706# Undefined $len means 'until the end of the file'
707sub _downcopy {
708  my $blocksize = 8192;
709  my ($self, $data, $pos, $len) = @_;
710  my $fh = $self->{fh};
711
712  while (! defined $len || $len > 0) {
713    my $readsize = ! defined($len) ? $blocksize
714      : $len > $blocksize? $blocksize : $len;
715    $self->_seekb($pos);
716    read $fh, my($old), $readsize;
717    my $last_read_was_short = length($old) < $readsize;
718    $data .= $old;
719    my $writable;
720    if ($last_read_was_short) {
721      # If last read was short, then $data now contains the entire rest
722      # of the file, so there's no need to write only one block of it
723      $writable = $data;
724      $data = "";
725    } else {
726      $writable = substr($data, 0, $readsize, "");
727    }
728    last if $writable eq "";
729    $self->_seekb($pos);
730    $self->_write_record($writable);
731    last if $last_read_was_short && $data eq "";
732    $len -= $readsize if defined $len;
733    $pos += $readsize;
734  }
735  return $data;
736}
737
738# Adjust the object data structures following an '_mtwrite'
739# Arguments are
740#  [$pos, $nrecs, @length]  items
741# indicating that $nrecs records were removed at $recpos (a record offset)
742# and replaced with records of length @length...
743# Arguments guarantee that $recpos is strictly increasing.
744# No return value
745sub _oadjust {
746  my $self = shift;
747  my $delta = 0;
748  my $delta_recs = 0;
749  my $prev_end = -1;
750  my %newkeys;
751
752  for (@_) {
753    my ($pos, $nrecs, @data) = @$_;
754    $pos += $delta_recs;
755
756    # Adjust the offsets of the records after the previous batch up
757    # to the first new one of this batch
758    for my $i ($prev_end+2 .. $pos - 1) {
759      $self->{offsets}[$i] += $delta;
760      $newkey{$i} = $i + $delta_recs;
761    }
762
763    $prev_end = $pos + @data - 1; # last record moved on this pass
764
765    # Remove the offsets for the removed records;
766    # replace with the offsets for the inserted records
767    my @newoff = ($self->{offsets}[$pos] + $delta);
768    for my $i (0 .. $#data) {
769      my $newlen = length $data[$i];
770      push @newoff, $newoff[$i] + $newlen;
771      $delta += $newlen;
772    }
773
774    for my $i ($pos .. $pos+$nrecs-1) {
775      last if $i+1 > $#{$self->{offsets}};
776      my $oldlen = $self->{offsets}[$i+1] - $self->{offsets}[$i];
777      $delta -= $oldlen;
778    }
779
780#    # also this data has changed, so update it in the cache
781#    for (0 .. $#data) {
782#      $self->{cache}->update($pos + $_, $data[$_]);
783#    }
784#    if ($delta_recs) {
785#      my @oldkeys = grep $_ >= $pos + @data, $self->{cache}->ckeys;
786#      my @newkeys = map $_ + $delta_recs, @oldkeys;
787#      $self->{cache}->rekey(\@oldkeys, \@newkeys);
788#    }
789
790    # replace old offsets with new
791    splice @{$self->{offsets}}, $pos, $nrecs+1, @newoff;
792    # What if we just spliced out the end of the offsets table?
793    # shouldn't we clear $self->{eof}?   Test for this XXX BUG TODO
794
795    $delta_recs += @data - $nrecs; # net change in total number of records
796  }
797
798  # The trailing records at the very end of the file
799  if ($delta) {
800    for my $i ($prev_end+2 .. $#{$self->{offsets}}) {
801      $self->{offsets}[$i] += $delta;
802    }
803  }
804
805  # If we scrubbed out all known offsets, regenerate the trivial table
806  # that knows that the file does indeed start at 0.
807  $self->{offsets}[0] = 0 unless @{$self->{offsets}};
808  # If the file got longer, the offsets table is no longer complete
809  # $self->{eof} = 0 if $delta_recs > 0;
810
811  # Now there might be too much data in the cache, if we spliced out
812  # some short records and spliced in some long ones.  If so, flush
813  # the cache.
814  $self->_cache_flush;
815}
816
817# If a record does not already end with the appropriate terminator
818# string, append one.
819sub _fixrecs {
820  my $self = shift;
821  for (@_) {
822    $_ = "" unless defined $_;
823    $_ .= $self->{recsep}
824      unless substr($_, - $self->{recseplen}) eq $self->{recsep};
825  }
826}
827
828
829################################################################
830#
831# Basic read, write, and seek
832#
833
834# seek to the beginning of record #$n
835# Assumes that the offsets table is already correctly populated
836#
837# Note that $n=-1 has a special meaning here: It means the start of
838# the last known record; this may or may not be the very last record
839# in the file, depending on whether the offsets table is fully populated.
840#
841sub _seek {
842  my ($self, $n) = @_;
843  my $o = $self->{offsets}[$n];
844  defined($o)
845    or confess("logic error: undefined offset for record $n");
846  seek $self->{fh}, $o, SEEK_SET
847    or confess "Couldn't seek filehandle: $!";  # "Should never happen."
848}
849
850# seek to byte $b in the file
851sub _seekb {
852  my ($self, $b) = @_;
853  seek $self->{fh}, $b, SEEK_SET
854    or die "Couldn't seek filehandle: $!";  # "Should never happen."
855}
856
857# populate the offsets table up to the beginning of record $n
858# return the offset of record $n
859sub _fill_offsets_to {
860  my ($self, $n) = @_;
861
862  return $self->{offsets}[$n] if $self->{eof};
863
864  my $fh = $self->{fh};
865  local *OFF = $self->{offsets};
866  my $rec;
867
868  until ($#OFF >= $n) {
869    $self->_seek(-1);           # tricky -- see comment at _seek
870    $rec = $self->_read_record;
871    if (defined $rec) {
872      push @OFF, int(tell $fh);  # Tels says that int() saves memory here
873    } else {
874      $self->{eof} = 1;
875      return;                   # It turns out there is no such record
876    }
877  }
878
879  # we have now read all the records up to record n-1,
880  # so we can return the offset of record n
881  $OFF[$n];
882}
883
884sub _fill_offsets {
885  my ($self) = @_;
886
887  my $fh = $self->{fh};
888  local *OFF = $self->{offsets};
889
890  $self->_seek(-1);           # tricky -- see comment at _seek
891
892  # Tels says that inlining read_record() would make this loop
893  # five times faster. 20030508
894  while ( defined $self->_read_record()) {
895    # int() saves us memory here
896    push @OFF, int(tell $fh);
897  }
898
899  $self->{eof} = 1;
900  $#OFF;
901}
902
903# assumes that $rec is already suitably terminated
904sub _write_record {
905  my ($self, $rec) = @_;
906  my $fh = $self->{fh};
907  local $\ = "";
908  print $fh $rec
909    or die "Couldn't write record: $!";  # "Should never happen."
910#  $self->{_written} += length($rec);
911}
912
913sub _read_record {
914  my $self = shift;
915  my $rec;
916  { local $/ = $self->{recsep};
917    my $fh = $self->{fh};
918    $rec = <$fh>;
919  }
920  return unless defined $rec;
921  if (substr($rec, -$self->{recseplen}) ne $self->{recsep}) {
922    # improperly terminated final record --- quietly fix it.
923#    my $ac = substr($rec, -$self->{recseplen});
924#    $ac =~ s/\n/\\n/g;
925    $self->{sawlastrec} = 1;
926    unless ($self->{rdonly}) {
927      local $\ = "";
928      my $fh = $self->{fh};
929      print $fh $self->{recsep};
930    }
931    $rec .= $self->{recsep};
932  }
933#  $self->{_read} += length($rec) if defined $rec;
934  $rec;
935}
936
937sub _rw_stats {
938  my $self = shift;
939  @{$self}{'_read', '_written'};
940}
941
942################################################################
943#
944# Read cache management
945
946sub _cache_flush {
947  my ($self) = @_;
948  $self->{cache}->reduce_size_to($self->{memory} - $self->{deferred_s});
949}
950
951sub _cache_too_full {
952  my $self = shift;
953  $self->{cache}->bytes + $self->{deferred_s} >= $self->{memory};
954}
955
956################################################################
957#
958# File custodial services
959#
960
961
962# We have read to the end of the file and have the offsets table
963# entirely populated.  Now we need to write a new record beyond
964# the end of the file.  We prepare for this by writing
965# empty records into the file up to the position we want
966#
967# assumes that the offsets table already contains the offset of record $n,
968# if it exists, and extends to the end of the file if not.
969sub _extend_file_to {
970  my ($self, $n) = @_;
971  $self->_seek(-1);             # position after the end of the last record
972  my $pos = $self->{offsets}[-1];
973
974  # the offsets table has one entry more than the total number of records
975  my $extras = $n - $#{$self->{offsets}};
976
977  # Todo : just use $self->{recsep} x $extras here?
978  while ($extras-- > 0) {
979    $self->_write_record($self->{recsep});
980    push @{$self->{offsets}}, int(tell $self->{fh});
981  }
982}
983
984# Truncate the file at the current position
985sub _chop_file {
986  my $self = shift;
987  truncate $self->{fh}, tell($self->{fh});
988}
989
990
991# compute the size of a buffer suitable for moving
992# all the data in a file forward $n bytes
993# ($n may be negative)
994# The result should be at least $n.
995sub _bufsize {
996  my $n = shift;
997  return 8192 if $n <= 0;
998  my $b = $n & ~8191;
999  $b += 8192 if $n & 8191;
1000  $b;
1001}
1002
1003################################################################
1004#
1005# Miscellaneous public methods
1006#
1007
1008# Lock the file
1009sub flock {
1010  my ($self, $op) = @_;
1011  unless (@_ <= 3) {
1012    my $pack = ref $self;
1013    croak "Usage: $pack\->flock([OPERATION])";
1014  }
1015  my $fh = $self->{fh};
1016  $op = LOCK_EX unless defined $op;
1017  my $locked = flock $fh, $op;
1018
1019  if ($locked && ($op & (LOCK_EX | LOCK_SH))) {
1020    # If you're locking the file, then presumably it's because
1021    # there might have been a write access by another process.
1022    # In that case, the read cache contents and the offsets table
1023    # might be invalid, so discard them.  20030508
1024    $self->{offsets} = [0];
1025    $self->{cache}->empty;
1026  }
1027
1028  $locked;
1029}
1030
1031# Get/set autochomp option
1032sub autochomp {
1033  my $self = shift;
1034  if (@_) {
1035    my $old = $self->{autochomp};
1036    $self->{autochomp} = shift;
1037    $old;
1038  } else {
1039    $self->{autochomp};
1040  }
1041}
1042
1043# Get offset table entries; returns offset of nth record
1044sub offset {
1045  my ($self, $n) = @_;
1046
1047  if ($#{$self->{offsets}} < $n) {
1048    return if $self->{eof};     # request for record beyond the end of file
1049    my $o = $self->_fill_offsets_to($n);
1050    # If it's still undefined, there is no such record, so return 'undef'
1051    return unless defined $o;
1052   }
1053
1054  $self->{offsets}[$n];
1055}
1056
1057sub discard_offsets {
1058  my $self = shift;
1059  $self->{offsets} = [0];
1060}
1061
1062################################################################
1063#
1064# Matters related to deferred writing
1065#
1066
1067# Defer writes
1068sub defer {
1069  my $self = shift;
1070  $self->_stop_autodeferring;
1071  @{$self->{ad_history}} = ();
1072  $self->{defer} = 1;
1073}
1074
1075# Flush deferred writes
1076#
1077# This could be better optimized to write the file in one pass, instead
1078# of one pass per block of records.  But that will require modifications
1079# to _twrite, so I should have a good _twrite test suite first.
1080sub flush {
1081  my $self = shift;
1082
1083  $self->_flush;
1084  $self->{defer} = 0;
1085}
1086
1087sub _old_flush {
1088  my $self = shift;
1089  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1090
1091  while (@writable) {
1092    # gather all consecutive records from the front of @writable
1093    my $first_rec = shift @writable;
1094    my $last_rec = $first_rec+1;
1095    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1096    --$last_rec;
1097    $self->_fill_offsets_to($last_rec);
1098    $self->_extend_file_to($last_rec);
1099    $self->_splice($first_rec, $last_rec-$first_rec+1,
1100                   @{$self->{deferred}}{$first_rec .. $last_rec});
1101  }
1102
1103  $self->_discard;               # clear out defered-write-cache
1104}
1105
1106sub _flush {
1107  my $self = shift;
1108  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1109  my @args;
1110  my @adjust;
1111
1112  while (@writable) {
1113    # gather all consecutive records from the front of @writable
1114    my $first_rec = shift @writable;
1115    my $last_rec = $first_rec+1;
1116    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1117    --$last_rec;
1118    my $end = $self->_fill_offsets_to($last_rec+1);
1119    if (not defined $end) {
1120      $self->_extend_file_to($last_rec);
1121      $end = $self->{offsets}[$last_rec];
1122    }
1123    my ($start) = $self->{offsets}[$first_rec];
1124    push @args,
1125         join("", @{$self->{deferred}}{$first_rec .. $last_rec}), # data
1126         $start,                                                  # position
1127         $end-$start;                                             # length
1128    push @adjust, [$first_rec, # starting at this position...
1129                   $last_rec-$first_rec+1,  # this many records...
1130                   # are replaced with these...
1131                   @{$self->{deferred}}{$first_rec .. $last_rec},
1132                  ];
1133  }
1134
1135  $self->_mtwrite(@args);  # write multiple record groups
1136  $self->_discard;               # clear out defered-write-cache
1137  $self->_oadjust(@adjust);
1138}
1139
1140# Discard deferred writes and disable future deferred writes
1141sub discard {
1142  my $self = shift;
1143  $self->_discard;
1144  $self->{defer} = 0;
1145}
1146
1147# Discard deferred writes, but retain old deferred writing mode
1148sub _discard {
1149  my $self = shift;
1150  %{$self->{deferred}} = ();
1151  $self->{deferred_s}  = 0;
1152  $self->{deferred_max}  = -1;
1153  $self->{cache}->set_limit($self->{memory});
1154}
1155
1156# Deferred writing is enabled, either explicitly ($self->{defer})
1157# or automatically ($self->{autodeferring})
1158sub _is_deferring {
1159  my $self = shift;
1160  $self->{defer} || $self->{autodeferring};
1161}
1162
1163# The largest record number of any deferred record
1164sub _defer_max {
1165  my $self = shift;
1166  return $self->{deferred_max} if defined $self->{deferred_max};
1167  my $max = -1;
1168  for my $key (keys %{$self->{deferred}}) {
1169    $max = $key if $key > $max;
1170  }
1171  $self->{deferred_max} = $max;
1172  $max;
1173}
1174
1175################################################################
1176#
1177# Matters related to autodeferment
1178#
1179
1180# Get/set autodefer option
1181sub autodefer {
1182  my $self = shift;
1183  if (@_) {
1184    my $old = $self->{autodefer};
1185    $self->{autodefer} = shift;
1186    if ($old) {
1187      $self->_stop_autodeferring;
1188      @{$self->{ad_history}} = ();
1189    }
1190    $old;
1191  } else {
1192    $self->{autodefer};
1193  }
1194}
1195
1196# The user is trying to store record #$n Record that in the history,
1197# and then enable (or disable) autodeferment if that seems useful.
1198# Note that it's OK for $n to be a non-number, as long as the function
1199# is prepared to deal with that.  Nobody else looks at the ad_history.
1200#
1201# Now, what does the ad_history mean, and what is this function doing?
1202# Essentially, the idea is to enable autodeferring when we see that the
1203# user has made three consecutive STORE calls to three consecutive records.
1204# ("Three" is actually ->{autodefer_threshhold}.)
1205# A STORE call for record #$n inserts $n into the autodefer history,
1206# and if the history contains three consecutive records, we enable
1207# autodeferment.  An ad_history of [X, Y] means that the most recent
1208# STOREs were for records X, X+1, ..., Y, in that order.
1209#
1210# Inserting a nonconsecutive number erases the history and starts over.
1211#
1212# Performing a special operation like SPLICE erases the history.
1213#
1214# There's one special case: CLEAR means that CLEAR was just called.
1215# In this case, we prime the history with [-2, -1] so that if the next
1216# write is for record 0, autodeferring goes on immediately.  This is for
1217# the common special case of "@a = (...)".
1218#
1219sub _annotate_ad_history {
1220  my ($self, $n) = @_;
1221  return unless $self->{autodefer}; # feature is disabled
1222  return if $self->{defer};     # already in explicit defer mode
1223  return unless $self->{offsets}[-1] >= $self->{autodefer_filelen_threshhold};
1224
1225  local *H = $self->{ad_history};
1226  if ($n eq 'CLEAR') {
1227    @H = (-2, -1);              # prime the history with fake records
1228    $self->_stop_autodeferring;
1229  } elsif ($n =~ /^\d+$/) {
1230    if (@H == 0) {
1231      @H =  ($n, $n);
1232    } else {                    # @H == 2
1233      if ($H[1] == $n-1) {      # another consecutive record
1234        $H[1]++;
1235        if ($H[1] - $H[0] + 1 >= $self->{autodefer_threshhold}) {
1236          $self->{autodeferring} = 1;
1237        }
1238      } else {                  # nonconsecutive- erase and start over
1239        @H = ($n, $n);
1240        $self->_stop_autodeferring;
1241      }
1242    }
1243  } else {                      # SPLICE or STORESIZE or some such
1244    @H = ();
1245    $self->_stop_autodeferring;
1246  }
1247}
1248
1249# If autodeferring was enabled, cut it out and discard the history
1250sub _stop_autodeferring {
1251  my $self = shift;
1252  if ($self->{autodeferring}) {
1253    $self->_flush;
1254  }
1255  $self->{autodeferring} = 0;
1256}
1257
1258################################################################
1259
1260
1261# This is NOT a method.  It is here for two reasons:
1262#  1. To factor a fairly complicated block out of the constructor
1263#  2. To provide access for the test suite, which need to be sure
1264#     files are being written properly.
1265sub _default_recsep {
1266  my $recsep = $/;
1267  if ($^O eq 'MSWin32') {       # Dos too?
1268    # Windows users expect files to be terminated with \r\n
1269    # But $/ is set to \n instead
1270    # Note that this also transforms \n\n into \r\n\r\n.
1271    # That is a feature.
1272    $recsep =~ s/\n/\r\n/g;
1273  }
1274  $recsep;
1275}
1276
1277# Utility function for _check_integrity
1278sub _ci_warn {
1279  my $msg = shift;
1280  $msg =~ s/\n/\\n/g;
1281  $msg =~ s/\r/\\r/g;
1282  print "# $msg\n";
1283}
1284
1285# Given a file, make sure the cache is consistent with the
1286# file contents and the internal data structures are consistent with
1287# each other.  Returns true if everything checks out, false if not
1288#
1289# The $file argument is no longer used.  It is retained for compatibility
1290# with the existing test suite.
1291sub _check_integrity {
1292  my ($self, $file, $warn) = @_;
1293  my $rsl = $self->{recseplen};
1294  my $rs  = $self->{recsep};
1295  my $good = 1;
1296  local *_;                     # local $_ does not work here
1297  local $DIAGNOSTIC = 1;
1298
1299  if (not defined $rs) {
1300    _ci_warn("recsep is undef!");
1301    $good = 0;
1302  } elsif ($rs eq "") {
1303    _ci_warn("recsep is empty!");
1304    $good = 0;
1305  } elsif ($rsl != length $rs) {
1306    my $ln = length $rs;
1307    _ci_warn("recsep <$rs> has length $ln, should be $rsl");
1308    $good = 0;
1309  }
1310
1311  if (not defined $self->{offsets}[0]) {
1312    _ci_warn("offset 0 is missing!");
1313    $good = 0;
1314
1315  } elsif ($self->{offsets}[0] != 0) {
1316    _ci_warn("rec 0: offset <$self->{offsets}[0]> s/b 0!");
1317    $good = 0;
1318  }
1319
1320  my $cached = 0;
1321  {
1322    local *F = $self->{fh};
1323    seek F, 0, SEEK_SET;
1324    local $. = 0;
1325    local $/ = $rs;
1326
1327    while (<F>) {
1328      my $n = $. - 1;
1329      my $cached = $self->{cache}->_produce($n);
1330      my $offset = $self->{offsets}[$.];
1331      my $ao = tell F;
1332      if (defined $offset && $offset != $ao) {
1333        _ci_warn("rec $n: offset <$offset> actual <$ao>");
1334        $good = 0;
1335      }
1336      if (defined $cached && $_ ne $cached && ! $self->{deferred}{$n}) {
1337        $good = 0;
1338        _ci_warn("rec $n: cached <$cached> actual <$_>");
1339      }
1340      if (defined $cached && substr($cached, -$rsl) ne $rs) {
1341        $good = 0;
1342        _ci_warn("rec $n in the cache is missing the record separator");
1343      }
1344      if (! defined $offset && $self->{eof}) {
1345        $good = 0;
1346        _ci_warn("The offset table was marked complete, but it is missing " .
1347                 "element $.");
1348      }
1349    }
1350    if (@{$self->{offsets}} > $.+1) {
1351        $good = 0;
1352        my $n = @{$self->{offsets}};
1353        _ci_warn("The offset table has $n items, but the file has only $.");
1354    }
1355
1356    my $deferring = $self->_is_deferring;
1357    for my $n ($self->{cache}->ckeys) {
1358      my $r = $self->{cache}->_produce($n);
1359      $cached += length($r);
1360      next if $n+1 <= $.;         # checked this already
1361      _ci_warn("spurious caching of record $n");
1362      $good = 0;
1363    }
1364    my $b = $self->{cache}->bytes;
1365    if ($cached != $b) {
1366      _ci_warn("cache size is $b, should be $cached");
1367      $good = 0;
1368    }
1369  }
1370
1371  # That cache has its own set of tests
1372  $good = 0 unless $self->{cache}->_check_integrity;
1373
1374  # Now let's check the deferbuffer
1375  # Unless deferred writing is enabled, it should be empty
1376  if (! $self->_is_deferring && %{$self->{deferred}}) {
1377    _ci_warn("deferred writing disabled, but deferbuffer nonempty");
1378    $good = 0;
1379  }
1380
1381  # Any record in the deferbuffer should *not* be present in the readcache
1382  my $deferred_s = 0;
1383  while (my ($n, $r) = each %{$self->{deferred}}) {
1384    $deferred_s += length($r);
1385    if (defined $self->{cache}->_produce($n)) {
1386      _ci_warn("record $n is in the deferbuffer *and* the readcache");
1387      $good = 0;
1388    }
1389    if (substr($r, -$rsl) ne $rs) {
1390      _ci_warn("rec $n in the deferbuffer is missing the record separator");
1391      $good = 0;
1392    }
1393  }
1394
1395  # Total size of deferbuffer should match internal total
1396  if ($deferred_s != $self->{deferred_s}) {
1397    _ci_warn("buffer size is $self->{deferred_s}, should be $deferred_s");
1398    $good = 0;
1399  }
1400
1401  # Total size of deferbuffer should not exceed the specified limit
1402  if ($deferred_s > $self->{dw_size}) {
1403    _ci_warn("buffer size is $self->{deferred_s} which exceeds the limit " .
1404             "of $self->{dw_size}");
1405    $good = 0;
1406  }
1407
1408  # Total size of cached data should not exceed the specified limit
1409  if ($deferred_s + $cached > $self->{memory}) {
1410    my $total = $deferred_s + $cached;
1411    _ci_warn("total stored data size is $total which exceeds the limit " .
1412             "of $self->{memory}");
1413    $good = 0;
1414  }
1415
1416  # Stuff related to autodeferment
1417  if (!$self->{autodefer} && @{$self->{ad_history}}) {
1418    _ci_warn("autodefer is disabled, but ad_history is nonempty");
1419    $good = 0;
1420  }
1421  if ($self->{autodeferring} && $self->{defer}) {
1422    _ci_warn("both autodeferring and explicit deferring are active");
1423    $good = 0;
1424  }
1425  if (@{$self->{ad_history}} == 0) {
1426    # That's OK, no additional tests required
1427  } elsif (@{$self->{ad_history}} == 2) {
1428    my @non_number = grep !/^-?\d+$/, @{$self->{ad_history}};
1429    if (@non_number) {
1430      my $msg;
1431      { local $" = ')(';
1432        $msg = "ad_history contains non-numbers (@{$self->{ad_history}})";
1433      }
1434      _ci_warn($msg);
1435      $good = 0;
1436    } elsif ($self->{ad_history}[1] < $self->{ad_history}[0]) {
1437      _ci_warn("ad_history has nonsensical values @{$self->{ad_history}}");
1438      $good = 0;
1439    }
1440  } else {
1441    _ci_warn("ad_history has bad length <@{$self->{ad_history}}>");
1442    $good = 0;
1443  }
1444
1445  $good;
1446}
1447
1448################################################################
1449#
1450# Tie::File::Cache
1451#
1452# Read cache
1453
1454package Tie::File::Cache;
1455$Tie::File::Cache::VERSION = $Tie::File::VERSION;
1456use Carp ':DEFAULT', 'confess';
1457
1458sub HEAP () { 0 }
1459sub HASH () { 1 }
1460sub MAX  () { 2 }
1461sub BYTES() { 3 }
1462#sub STAT () { 4 } # Array with request statistics for each record
1463#sub MISS () { 5 } # Total number of cache misses
1464#sub REQ  () { 6 } # Total number of cache requests
1465use strict 'vars';
1466
1467sub new {
1468  my ($pack, $max) = @_;
1469  local *_;
1470  croak "missing argument to ->new" unless defined $max;
1471  my $self = [];
1472  bless $self => $pack;
1473  @$self = (Tie::File::Heap->new($self), {}, $max, 0);
1474  $self;
1475}
1476
1477sub adj_limit {
1478  my ($self, $n) = @_;
1479  $self->[MAX] += $n;
1480}
1481
1482sub set_limit {
1483  my ($self, $n) = @_;
1484  $self->[MAX] = $n;
1485}
1486
1487# For internal use only
1488# Will be called by the heap structure to notify us that a certain
1489# piece of data has moved from one heap element to another.
1490# $k is the hash key of the item
1491# $n is the new index into the heap at which it is stored
1492# If $n is undefined, the item has been removed from the heap.
1493sub _heap_move {
1494  my ($self, $k, $n) = @_;
1495  if (defined $n) {
1496    $self->[HASH]{$k} = $n;
1497  } else {
1498    delete $self->[HASH]{$k};
1499  }
1500}
1501
1502sub insert {
1503  my ($self, $key, $val) = @_;
1504  local *_;
1505  croak "missing argument to ->insert" unless defined $key;
1506  unless (defined $self->[MAX]) {
1507    confess "undefined max" ;
1508  }
1509  confess "undefined val" unless defined $val;
1510  return if length($val) > $self->[MAX];
1511
1512#  if ($self->[STAT]) {
1513#    $self->[STAT][$key] = 1;
1514#    return;
1515#  }
1516
1517  my $oldnode = $self->[HASH]{$key};
1518  if (defined $oldnode) {
1519    my $oldval = $self->[HEAP]->set_val($oldnode, $val);
1520    $self->[BYTES] -= length($oldval);
1521  } else {
1522    $self->[HEAP]->insert($key, $val);
1523  }
1524  $self->[BYTES] += length($val);
1525  $self->flush if $self->[BYTES] > $self->[MAX];
1526}
1527
1528sub expire {
1529  my $self = shift;
1530  my $old_data = $self->[HEAP]->popheap;
1531  return unless defined $old_data;
1532  $self->[BYTES] -= length $old_data;
1533  $old_data;
1534}
1535
1536sub remove {
1537  my ($self, @keys) = @_;
1538  my @result;
1539
1540#  if ($self->[STAT]) {
1541#    for my $key (@keys) {
1542#      $self->[STAT][$key] = 0;
1543#    }
1544#    return;
1545#  }
1546
1547  for my $key (@keys) {
1548    next unless exists $self->[HASH]{$key};
1549    my $old_data = $self->[HEAP]->remove($self->[HASH]{$key});
1550    $self->[BYTES] -= length $old_data;
1551    push @result, $old_data;
1552  }
1553  @result;
1554}
1555
1556sub lookup {
1557  my ($self, $key) = @_;
1558  local *_;
1559  croak "missing argument to ->lookup" unless defined $key;
1560
1561#  if ($self->[STAT]) {
1562#    $self->[MISS]++  if $self->[STAT][$key]++ == 0;
1563#    $self->[REQ]++;
1564#    my $hit_rate = 1 - $self->[MISS] / $self->[REQ];
1565#    # Do some testing to determine this threshhold
1566#    $#$self = STAT - 1 if $hit_rate > 0.20;
1567#  }
1568
1569  if (exists $self->[HASH]{$key}) {
1570    $self->[HEAP]->lookup($self->[HASH]{$key});
1571  } else {
1572    return;
1573  }
1574}
1575
1576# For internal use only
1577sub _produce {
1578  my ($self, $key) = @_;
1579  my $loc = $self->[HASH]{$key};
1580  return unless defined $loc;
1581  $self->[HEAP][$loc][2];
1582}
1583
1584# For internal use only
1585sub _promote {
1586  my ($self, $key) = @_;
1587  $self->[HEAP]->promote($self->[HASH]{$key});
1588}
1589
1590sub empty {
1591  my ($self) = @_;
1592  %{$self->[HASH]} = ();
1593    $self->[BYTES] = 0;
1594    $self->[HEAP]->empty;
1595#  @{$self->[STAT]} = ();
1596#    $self->[MISS] = 0;
1597#    $self->[REQ] = 0;
1598}
1599
1600sub is_empty {
1601  my ($self) = @_;
1602  keys %{$self->[HASH]} == 0;
1603}
1604
1605sub update {
1606  my ($self, $key, $val) = @_;
1607  local *_;
1608  croak "missing argument to ->update" unless defined $key;
1609  if (length($val) > $self->[MAX]) {
1610    my ($oldval) = $self->remove($key);
1611    $self->[BYTES] -= length($oldval) if defined $oldval;
1612  } elsif (exists $self->[HASH]{$key}) {
1613    my $oldval = $self->[HEAP]->set_val($self->[HASH]{$key}, $val);
1614    $self->[BYTES] += length($val);
1615    $self->[BYTES] -= length($oldval) if defined $oldval;
1616  } else {
1617    $self->[HEAP]->insert($key, $val);
1618    $self->[BYTES] += length($val);
1619  }
1620  $self->flush;
1621}
1622
1623sub rekey {
1624  my ($self, $okeys, $nkeys) = @_;
1625  local *_;
1626  my %map;
1627  @map{@$okeys} = @$nkeys;
1628  croak "missing argument to ->rekey" unless defined $nkeys;
1629  croak "length mismatch in ->rekey arguments" unless @$nkeys == @$okeys;
1630  my %adjusted;                 # map new keys to heap indices
1631  # You should be able to cut this to one loop TODO XXX
1632  for (0 .. $#$okeys) {
1633    $adjusted{$nkeys->[$_]} = delete $self->[HASH]{$okeys->[$_]};
1634  }
1635  while (my ($nk, $ix) = each %adjusted) {
1636    # @{$self->[HASH]}{keys %adjusted} = values %adjusted;
1637    $self->[HEAP]->rekey($ix, $nk);
1638    $self->[HASH]{$nk} = $ix;
1639  }
1640}
1641
1642sub ckeys {
1643  my $self = shift;
1644  my @a = keys %{$self->[HASH]};
1645  @a;
1646}
1647
1648# Return total amount of cached data
1649sub bytes {
1650  my $self = shift;
1651  $self->[BYTES];
1652}
1653
1654# Expire oldest item from cache until cache size is smaller than $max
1655sub reduce_size_to {
1656  my ($self, $max) = @_;
1657  until ($self->[BYTES] <= $max) {
1658    # Note that Tie::File::Cache::expire has been inlined here
1659    my $old_data = $self->[HEAP]->popheap;
1660    return unless defined $old_data;
1661    $self->[BYTES] -= length $old_data;
1662  }
1663}
1664
1665# Why not just $self->reduce_size_to($self->[MAX])?
1666# Try this when things stabilize   TODO XXX
1667# If the cache is too full, expire the oldest records
1668sub flush {
1669  my $self = shift;
1670  $self->reduce_size_to($self->[MAX]) if $self->[BYTES] > $self->[MAX];
1671}
1672
1673# For internal use only
1674sub _produce_lru {
1675  my $self = shift;
1676  $self->[HEAP]->expire_order;
1677}
1678
1679BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1680
1681sub _check_integrity {          # For CACHE
1682  my $self = shift;
1683  my $good = 1;
1684
1685  # Test HEAP
1686  $self->[HEAP]->_check_integrity or $good = 0;
1687
1688  # Test HASH
1689  my $bytes = 0;
1690  for my $k (keys %{$self->[HASH]}) {
1691    if ($k ne '0' && $k !~ /^[1-9][0-9]*$/) {
1692      $good = 0;
1693      _ci_warn "Cache hash key <$k> is non-numeric";
1694    }
1695
1696    my $h = $self->[HASH]{$k};
1697    if (! defined $h) {
1698      $good = 0;
1699      _ci_warn "Heap index number for key $k is undefined";
1700    } elsif ($h == 0) {
1701      $good = 0;
1702      _ci_warn "Heap index number for key $k is zero";
1703    } else {
1704      my $j = $self->[HEAP][$h];
1705      if (! defined $j) {
1706        $good = 0;
1707        _ci_warn "Heap contents key $k (=> $h) are undefined";
1708      } else {
1709        $bytes += length($j->[2]);
1710        if ($k ne $j->[1]) {
1711          $good = 0;
1712          _ci_warn "Heap contents key $k (=> $h) is $j->[1], should be $k";
1713        }
1714      }
1715    }
1716  }
1717
1718  # Test BYTES
1719  if ($bytes != $self->[BYTES]) {
1720    $good = 0;
1721    _ci_warn "Total data in cache is $bytes, expected $self->[BYTES]";
1722  }
1723
1724  # Test MAX
1725  if ($bytes > $self->[MAX]) {
1726    $good = 0;
1727    _ci_warn "Total data in cache is $bytes, exceeds maximum $self->[MAX]";
1728  }
1729
1730  return $good;
1731}
1732
1733sub delink {
1734  my $self = shift;
1735  $self->[HEAP] = undef;        # Bye bye heap
1736}
1737
1738################################################################
1739#
1740# Tie::File::Heap
1741#
1742# Heap data structure for use by cache LRU routines
1743
1744package Tie::File::Heap;
1745use Carp ':DEFAULT', 'confess';
1746$Tie::File::Heap::VERSION = $Tie::File::Cache::VERSION;
1747sub SEQ () { 0 };
1748sub KEY () { 1 };
1749sub DAT () { 2 };
1750
1751sub new {
1752  my ($pack, $cache) = @_;
1753  die "$pack: Parent cache object $cache does not support _heap_move method"
1754    unless eval { $cache->can('_heap_move') };
1755  my $self = [[0,$cache,0]];
1756  bless $self => $pack;
1757}
1758
1759# Allocate a new sequence number, larger than all previously allocated numbers
1760sub _nseq {
1761  my $self = shift;
1762  $self->[0][0]++;
1763}
1764
1765sub _cache {
1766  my $self = shift;
1767  $self->[0][1];
1768}
1769
1770sub _nelts {
1771  my $self = shift;
1772  $self->[0][2];
1773}
1774
1775sub _nelts_inc {
1776  my $self = shift;
1777  ++$self->[0][2];
1778}
1779
1780sub _nelts_dec {
1781  my $self = shift;
1782  --$self->[0][2];
1783}
1784
1785sub is_empty {
1786  my $self = shift;
1787  $self->_nelts == 0;
1788}
1789
1790sub empty {
1791  my $self = shift;
1792  $#$self = 0;
1793  $self->[0][2] = 0;
1794  $self->[0][0] = 0;            # might as well reset the sequence numbers
1795}
1796
1797# notify the parent cache object that we moved something
1798sub _heap_move {
1799  my $self = shift;
1800  $self->_cache->_heap_move(@_);
1801}
1802
1803# Insert a piece of data into the heap with the indicated sequence number.
1804# The item with the smallest sequence number is always at the top.
1805# If no sequence number is specified, allocate a new one and insert the
1806# item at the bottom.
1807sub insert {
1808  my ($self, $key, $data, $seq) = @_;
1809  $seq = $self->_nseq unless defined $seq;
1810  $self->_insert_new([$seq, $key, $data]);
1811}
1812
1813# Insert a new, fresh item at the bottom of the heap
1814sub _insert_new {
1815  my ($self, $item) = @_;
1816  my $i = @$self;
1817  $i = int($i/2) until defined $self->[$i/2];
1818  $self->[$i] = $item;
1819  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1820  $self->_nelts_inc;
1821}
1822
1823# Insert [$data, $seq] pair at or below item $i in the heap.
1824# If $i is omitted, default to 1 (the top element.)
1825sub _insert {
1826  my ($self, $item, $i) = @_;
1827#  $self->_check_loc($i) if defined $i;
1828  $i = 1 unless defined $i;
1829  until (! defined $self->[$i]) {
1830    if ($self->[$i][SEQ] > $item->[SEQ]) { # inserted item is older
1831      ($self->[$i], $item) = ($item, $self->[$i]);
1832      $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1833    }
1834    # If either is undefined, go that way.  Otherwise, choose at random
1835    my $dir;
1836    $dir = 0 if !defined $self->[2*$i];
1837    $dir = 1 if !defined $self->[2*$i+1];
1838    $dir = int(rand(2)) unless defined $dir;
1839    $i = 2*$i + $dir;
1840  }
1841  $self->[$i] = $item;
1842  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1843  $self->_nelts_inc;
1844}
1845
1846# Remove the item at node $i from the heap, moving child items upwards.
1847# The item with the smallest sequence number is always at the top.
1848# Moving items upwards maintains this condition.
1849# Return the removed item.  Return undef if there was no item at node $i.
1850sub remove {
1851  my ($self, $i) = @_;
1852  $i = 1 unless defined $i;
1853  my $top = $self->[$i];
1854  return unless defined $top;
1855  while (1) {
1856    my $ii;
1857    my ($L, $R) = (2*$i, 2*$i+1);
1858
1859    # If either is undefined, go the other way.
1860    # Otherwise, go towards the smallest.
1861    last unless defined $self->[$L] || defined $self->[$R];
1862    $ii = $R if not defined $self->[$L];
1863    $ii = $L if not defined $self->[$R];
1864    unless (defined $ii) {
1865      $ii = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1866    }
1867
1868    $self->[$i] = $self->[$ii]; # Promote child to fill vacated spot
1869    $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1870    $i = $ii; # Fill new vacated spot
1871  }
1872  $self->[0][1]->_heap_move($top->[KEY], undef);
1873  undef $self->[$i];
1874  $self->_nelts_dec;
1875  return $top->[DAT];
1876}
1877
1878sub popheap {
1879  my $self = shift;
1880  $self->remove(1);
1881}
1882
1883# set the sequence number of the indicated item to a higher number
1884# than any other item in the heap, and bubble the item down to the
1885# bottom.
1886sub promote {
1887  my ($self, $n) = @_;
1888#  $self->_check_loc($n);
1889  $self->[$n][SEQ] = $self->_nseq;
1890  my $i = $n;
1891  while (1) {
1892    my ($L, $R) = (2*$i, 2*$i+1);
1893    my $dir;
1894    last unless defined $self->[$L] || defined $self->[$R];
1895    $dir = $R unless defined $self->[$L];
1896    $dir = $L unless defined $self->[$R];
1897    unless (defined $dir) {
1898      $dir = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1899    }
1900    @{$self}[$i, $dir] = @{$self}[$dir, $i];
1901    for ($i, $dir) {
1902      $self->[0][1]->_heap_move($self->[$_][KEY], $_) if defined $self->[$_];
1903    }
1904    $i = $dir;
1905  }
1906}
1907
1908# Return item $n from the heap, promoting its LRU status
1909sub lookup {
1910  my ($self, $n) = @_;
1911#  $self->_check_loc($n);
1912  my $val = $self->[$n];
1913  $self->promote($n);
1914  $val->[DAT];
1915}
1916
1917
1918# Assign a new value for node $n, promoting it to the bottom of the heap
1919sub set_val {
1920  my ($self, $n, $val) = @_;
1921#  $self->_check_loc($n);
1922  my $oval = $self->[$n][DAT];
1923  $self->[$n][DAT] = $val;
1924  $self->promote($n);
1925  return $oval;
1926}
1927
1928# The hash key has changed for an item;
1929# alter the heap's record of the hash key
1930sub rekey {
1931  my ($self, $n, $new_key) = @_;
1932#  $self->_check_loc($n);
1933  $self->[$n][KEY] = $new_key;
1934}
1935
1936sub _check_loc {
1937  my ($self, $n) = @_;
1938  unless (1 || defined $self->[$n]) {
1939    confess "_check_loc($n) failed";
1940  }
1941}
1942
1943BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1944
1945sub _check_integrity {
1946  my $self = shift;
1947  my $good = 1;
1948  my %seq;
1949
1950  unless (eval {$self->[0][1]->isa("Tie::File::Cache")}) {
1951    _ci_warn "Element 0 of heap corrupt";
1952    $good = 0;
1953  }
1954  $good = 0 unless $self->_satisfies_heap_condition(1);
1955  for my $i (2 .. $#{$self}) {
1956    my $p = int($i/2);          # index of parent node
1957    if (defined $self->[$i] && ! defined $self->[$p]) {
1958      _ci_warn "Element $i of heap defined, but parent $p isn't";
1959      $good = 0;
1960    }
1961
1962    if (defined $self->[$i]) {
1963      if ($seq{$self->[$i][SEQ]}) {
1964        my $seq = $self->[$i][SEQ];
1965        _ci_warn "Nodes $i and $seq{$seq} both have SEQ=$seq";
1966        $good = 0;
1967      } else {
1968        $seq{$self->[$i][SEQ]} = $i;
1969      }
1970    }
1971  }
1972
1973  return $good;
1974}
1975
1976sub _satisfies_heap_condition {
1977  my $self = shift;
1978  my $n = shift || 1;
1979  my $good = 1;
1980  for (0, 1) {
1981    my $c = $n*2 + $_;
1982    next unless defined $self->[$c];
1983    if ($self->[$n][SEQ] >= $self->[$c]) {
1984      _ci_warn "Node $n of heap does not predate node $c";
1985      $good = 0 ;
1986    }
1987    $good = 0 unless $self->_satisfies_heap_condition($c);
1988  }
1989  return $good;
1990}
1991
1992# Return a list of all the values, sorted by expiration order
1993sub expire_order {
1994  my $self = shift;
1995  my @nodes = sort {$a->[SEQ] <=> $b->[SEQ]} $self->_nodes;
1996  map { $_->[KEY] } @nodes;
1997}
1998
1999sub _nodes {
2000  my $self = shift;
2001  my $i = shift || 1;
2002  return unless defined $self->[$i];
2003  ($self->[$i], $self->_nodes($i*2), $self->_nodes($i*2+1));
2004}
2005
2006"Cogito, ergo sum.";  # don't forget to return a true value from the file
2007
2008__END__
2009
2010=head1 NAME
2011
2012Tie::File - Access the lines of a disk file via a Perl array
2013
2014=head1 SYNOPSIS
2015
2016 # This file documents Tie::File version 0.98
2017 use Tie::File;
2018
2019 tie @array, 'Tie::File', filename or die ...;
2020
2021 $array[13] = 'blah';     # line 13 of the file is now 'blah'
2022 print $array[42];        # display line 42 of the file
2023
2024 $n_recs = @array;        # how many records are in the file?
2025 $#array -= 2;            # chop two records off the end
2026
2027
2028 for (@array) {
2029   s/PERL/Perl/g;        # Replace PERL with Perl everywhere in the file
2030 }
2031
2032 # These are just like regular push, pop, unshift, shift, and splice
2033 # Except that they modify the file in the way you would expect
2034
2035 push @array, new recs...;
2036 my $r1 = pop @array;
2037 unshift @array, new recs...;
2038 my $r2 = shift @array;
2039 @old_recs = splice @array, 3, 7, new recs...;
2040
2041 untie @array;            # all finished
2042
2043
2044=head1 DESCRIPTION
2045
2046C<Tie::File> represents a regular text file as a Perl array.  Each
2047element in the array corresponds to a record in the file.  The first
2048line of the file is element 0 of the array; the second line is element
20491, and so on.
2050
2051The file is I<not> loaded into memory, so this will work even for
2052gigantic files.
2053
2054Changes to the array are reflected in the file immediately.
2055
2056Lazy people and beginners may now stop reading the manual.
2057
2058=head2 C<recsep>
2059
2060What is a 'record'?  By default, the meaning is the same as for the
2061C<E<lt>...E<gt>> operator: It's a string terminated by C<$/>, which is
2062probably C<"\n">.  (Minor exception: on DOS and Win32 systems, a
2063'record' is a string terminated by C<"\r\n">.)  You may change the
2064definition of "record" by supplying the C<recsep> option in the C<tie>
2065call:
2066
2067	tie @array, 'Tie::File', $file, recsep => 'es';
2068
2069This says that records are delimited by the string C<es>.  If the file
2070contained the following data:
2071
2072	Curse these pesky flies!\n
2073
2074then the C<@array> would appear to have four elements:
2075
2076	"Curse th"
2077	"e p"
2078	"ky fli"
2079	"!\n"
2080
2081An undefined value is not permitted as a record separator.  Perl's
2082special "paragraph mode" semantics (E<agrave> la C<$/ = "">) are not
2083emulated.
2084
2085Records read from the tied array do not have the record separator
2086string on the end; this is to allow
2087
2088	$array[17] .= "extra";
2089
2090to work as expected.
2091
2092(See L<"autochomp">, below.)  Records stored into the array will have
2093the record separator string appended before they are written to the
2094file, if they don't have one already.  For example, if the record
2095separator string is C<"\n">, then the following two lines do exactly
2096the same thing:
2097
2098	$array[17] = "Cherry pie";
2099	$array[17] = "Cherry pie\n";
2100
2101The result is that the contents of line 17 of the file will be
2102replaced with "Cherry pie"; a newline character will separate line 17
2103from line 18.  This means that this code will do nothing:
2104
2105	chomp $array[17];
2106
2107Because the C<chomp>ed value will have the separator reattached when
2108it is written back to the file.  There is no way to create a file
2109whose trailing record separator string is missing.
2110
2111Inserting records that I<contain> the record separator string is not
2112supported by this module.  It will probably produce a reasonable
2113result, but what this result will be may change in a future version.
2114Use 'splice' to insert records or to replace one record with several.
2115
2116=head2 C<autochomp>
2117
2118Normally, array elements have the record separator removed, so that if
2119the file contains the text
2120
2121	Gold
2122	Frankincense
2123	Myrrh
2124
2125the tied array will appear to contain C<("Gold", "Frankincense",
2126"Myrrh")>.  If you set C<autochomp> to a false value, the record
2127separator will not be removed.  If the file above was tied with
2128
2129	tie @gifts, "Tie::File", $gifts, autochomp => 0;
2130
2131then the array C<@gifts> would appear to contain C<("Gold\n",
2132"Frankincense\n", "Myrrh\n")>, or (on Win32 systems) C<("Gold\r\n",
2133"Frankincense\r\n", "Myrrh\r\n")>.
2134
2135=head2 C<mode>
2136
2137Normally, the specified file will be opened for read and write access,
2138and will be created if it does not exist.  (That is, the flags
2139C<O_RDWR | O_CREAT> are supplied in the C<open> call.)  If you want to
2140change this, you may supply alternative flags in the C<mode> option.
2141See L<Fcntl> for a listing of available flags.
2142For example:
2143
2144	# open the file if it exists, but fail if it does not exist
2145	use Fcntl 'O_RDWR';
2146	tie @array, 'Tie::File', $file, mode => O_RDWR;
2147
2148	# create the file if it does not exist
2149	use Fcntl 'O_RDWR', 'O_CREAT';
2150	tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;
2151
2152	# open an existing file in read-only mode
2153	use Fcntl 'O_RDONLY';
2154	tie @array, 'Tie::File', $file, mode => O_RDONLY;
2155
2156Opening the data file in write-only or append mode is not supported.
2157
2158=head2 C<memory>
2159
2160This is an upper limit on the amount of memory that C<Tie::File> will
2161consume at any time while managing the file.  This is used for two
2162things: managing the I<read cache> and managing the I<deferred write
2163buffer>.
2164
2165Records read in from the file are cached, to avoid having to re-read
2166them repeatedly.  If you read the same record twice, the first time it
2167will be stored in memory, and the second time it will be fetched from
2168the I<read cache>.  The amount of data in the read cache will not
2169exceed the value you specified for C<memory>.  If C<Tie::File> wants
2170to cache a new record, but the read cache is full, it will make room
2171by expiring the least-recently visited records from the read cache.
2172
2173The default memory limit is 2Mib.  You can adjust the maximum read
2174cache size by supplying the C<memory> option.  The argument is the
2175desired cache size, in bytes.
2176
2177 # I have a lot of memory, so use a large cache to speed up access
2178 tie @array, 'Tie::File', $file, memory => 20_000_000;
2179
2180Setting the memory limit to 0 will inhibit caching; records will be
2181fetched from disk every time you examine them.
2182
2183The C<memory> value is not an absolute or exact limit on the memory
2184used.  C<Tie::File> objects contains some structures besides the read
2185cache and the deferred write buffer, whose sizes are not charged
2186against C<memory>.
2187
2188The cache itself consumes about 310 bytes per cached record, so if
2189your file has many short records, you may want to decrease the cache
2190memory limit, or else the cache overhead may exceed the size of the
2191cached data.
2192
2193
2194=head2 C<dw_size>
2195
2196(This is an advanced feature.  Skip this section on first reading.)
2197
2198If you use deferred writing (See L<"Deferred Writing">, below) then
2199data you write into the array will not be written directly to the
2200file; instead, it will be saved in the I<deferred write buffer> to be
2201written out later.  Data in the deferred write buffer is also charged
2202against the memory limit you set with the C<memory> option.
2203
2204You may set the C<dw_size> option to limit the amount of data that can
2205be saved in the deferred write buffer.  This limit may not exceed the
2206total memory limit.  For example, if you set C<dw_size> to 1000 and
2207C<memory> to 2500, that means that no more than 1000 bytes of deferred
2208writes will be saved up.  The space available for the read cache will
2209vary, but it will always be at least 1500 bytes (if the deferred write
2210buffer is full) and it could grow as large as 2500 bytes (if the
2211deferred write buffer is empty.)
2212
2213If you don't specify a C<dw_size>, it defaults to the entire memory
2214limit.
2215
2216=head2 Option Format
2217
2218C<-mode> is a synonym for C<mode>.  C<-recsep> is a synonym for
2219C<recsep>.  C<-memory> is a synonym for C<memory>.  You get the
2220idea.
2221
2222=head1 Public Methods
2223
2224The C<tie> call returns an object, say C<$o>.  You may call
2225
2226	$rec = $o->FETCH($n);
2227	$o->STORE($n, $rec);
2228
2229to fetch or store the record at line C<$n>, respectively; similarly
2230the other tied array methods.  (See L<perltie> for details.)  You may
2231also call the following methods on this object:
2232
2233=head2 C<flock>
2234
2235	$o->flock(MODE)
2236
2237will lock the tied file.  C<MODE> has the same meaning as the second
2238argument to the Perl built-in C<flock> function; for example
2239C<LOCK_SH> or C<LOCK_EX | LOCK_NB>.  (These constants are provided by
2240the C<use Fcntl ':flock'> declaration.)
2241
2242C<MODE> is optional; the default is C<LOCK_EX>.
2243
2244C<Tie::File> maintains an internal table of the byte offset of each
2245record it has seen in the file.
2246
2247When you use C<flock> to lock the file, C<Tie::File> assumes that the
2248read cache is no longer trustworthy, because another process might
2249have modified the file since the last time it was read.  Therefore, a
2250successful call to C<flock> discards the contents of the read cache
2251and the internal record offset table.
2252
2253C<Tie::File> promises that the following sequence of operations will
2254be safe:
2255
2256	my $o = tie @array, "Tie::File", $filename;
2257	$o->flock;
2258
2259In particular, C<Tie::File> will I<not> read or write the file during
2260the C<tie> call.  (Exception: Using C<mode =E<gt> O_TRUNC> will, of
2261course, erase the file during the C<tie> call.  If you want to do this
2262safely, then open the file without C<O_TRUNC>, lock the file, and use
2263C<@array = ()>.)
2264
2265The best way to unlock a file is to discard the object and untie the
2266array.  It is probably unsafe to unlock the file without also untying
2267it, because if you do, changes may remain unwritten inside the object.
2268That is why there is no shortcut for unlocking.  If you really want to
2269unlock the file prematurely, you know what to do; if you don't know
2270what to do, then don't do it.
2271
2272All the usual warnings about file locking apply here.  In particular,
2273note that file locking in Perl is B<advisory>, which means that
2274holding a lock will not prevent anyone else from reading, writing, or
2275erasing the file; it only prevents them from getting another lock at
2276the same time.  Locks are analogous to green traffic lights: If you
2277have a green light, that does not prevent the idiot coming the other
2278way from plowing into you sideways; it merely guarantees to you that
2279the idiot does not also have a green light at the same time.
2280
2281=head2 C<autochomp>
2282
2283	my $old_value = $o->autochomp(0);    # disable autochomp option
2284	my $old_value = $o->autochomp(1);    #  enable autochomp option
2285
2286	my $ac = $o->autochomp();   # recover current value
2287
2288See L<"autochomp">, above.
2289
2290=head2 C<defer>, C<flush>, C<discard>, and C<autodefer>
2291
2292See L<"Deferred Writing">, below.
2293
2294=head2 C<offset>
2295
2296	$off = $o->offset($n);
2297
2298This method returns the byte offset of the start of the C<$n>th record
2299in the file.  If there is no such record, it returns an undefined
2300value.
2301
2302=head1 Tying to an already-opened filehandle
2303
2304If C<$fh> is a filehandle, such as is returned by C<IO::File> or one
2305of the other C<IO> modules, you may use:
2306
2307	tie @array, 'Tie::File', $fh, ...;
2308
2309Similarly if you opened that handle C<FH> with regular C<open> or
2310C<sysopen>, you may use:
2311
2312	tie @array, 'Tie::File', \*FH, ...;
2313
2314Handles that were opened write-only won't work.  Handles that were
2315opened read-only will work as long as you don't try to modify the
2316array.  Handles must be attached to seekable sources of data---that
2317means no pipes or sockets.  If C<Tie::File> can detect that you
2318supplied a non-seekable handle, the C<tie> call will throw an
2319exception.  (On Unix systems, it can detect this.)
2320
2321Note that Tie::File will only close any filehandles that it opened
2322internally.  If you passed it a filehandle as above, you "own" the
2323filehandle, and are responsible for closing it after you have untied
2324the @array.
2325
2326=head1 Deferred Writing
2327
2328(This is an advanced feature.  Skip this section on first reading.)
2329
2330Normally, modifying a C<Tie::File> array writes to the underlying file
2331immediately.  Every assignment like C<$a[3] = ...> rewrites as much of
2332the file as is necessary; typically, everything from line 3 through
2333the end will need to be rewritten.  This is the simplest and most
2334transparent behavior.  Performance even for large files is reasonably
2335good.
2336
2337However, under some circumstances, this behavior may be excessively
2338slow.  For example, suppose you have a million-record file, and you
2339want to do:
2340
2341	for (@FILE) {
2342	  $_ = "> $_";
2343	}
2344
2345The first time through the loop, you will rewrite the entire file,
2346from line 0 through the end.  The second time through the loop, you
2347will rewrite the entire file from line 1 through the end.  The third
2348time through the loop, you will rewrite the entire file from line 2 to
2349the end.  And so on.
2350
2351If the performance in such cases is unacceptable, you may defer the
2352actual writing, and then have it done all at once.  The following loop
2353will perform much better for large files:
2354
2355	(tied @a)->defer;
2356	for (@a) {
2357	  $_ = "> $_";
2358	}
2359	(tied @a)->flush;
2360
2361If C<Tie::File>'s memory limit is large enough, all the writing will
2362done in memory.  Then, when you call C<-E<gt>flush>, the entire file
2363will be rewritten in a single pass.
2364
2365(Actually, the preceding discussion is something of a fib.  You don't
2366need to enable deferred writing to get good performance for this
2367common case, because C<Tie::File> will do it for you automatically
2368unless you specifically tell it not to.  See L<"Autodeferring">,
2369below.)
2370
2371Calling C<-E<gt>flush> returns the array to immediate-write mode.  If
2372you wish to discard the deferred writes, you may call C<-E<gt>discard>
2373instead of C<-E<gt>flush>.  Note that in some cases, some of the data
2374will have been written already, and it will be too late for
2375C<-E<gt>discard> to discard all the changes.  Support for
2376C<-E<gt>discard> may be withdrawn in a future version of C<Tie::File>.
2377
2378Deferred writes are cached in memory up to the limit specified by the
2379C<dw_size> option (see above).  If the deferred-write buffer is full
2380and you try to write still more deferred data, the buffer will be
2381flushed.  All buffered data will be written immediately, the buffer
2382will be emptied, and the now-empty space will be used for future
2383deferred writes.
2384
2385If the deferred-write buffer isn't yet full, but the total size of the
2386buffer and the read cache would exceed the C<memory> limit, the oldest
2387records will be expired from the read cache until the total size is
2388under the limit.
2389
2390C<push>, C<pop>, C<shift>, C<unshift>, and C<splice> cannot be
2391deferred.  When you perform one of these operations, any deferred data
2392is written to the file and the operation is performed immediately.
2393This may change in a future version.
2394
2395If you resize the array with deferred writing enabled, the file will
2396be resized immediately, but deferred records will not be written.
2397This has a surprising consequence: C<@a = (...)> erases the file
2398immediately, but the writing of the actual data is deferred.  This
2399might be a bug.  If it is a bug, it will be fixed in a future version.
2400
2401=head2 Autodeferring
2402
2403C<Tie::File> tries to guess when deferred writing might be helpful,
2404and to turn it on and off automatically.
2405
2406	for (@a) {
2407	  $_ = "> $_";
2408	}
2409
2410In this example, only the first two assignments will be done
2411immediately; after this, all the changes to the file will be deferred
2412up to the user-specified memory limit.
2413
2414You should usually be able to ignore this and just use the module
2415without thinking about deferring.  However, special applications may
2416require fine control over which writes are deferred, or may require
2417that all writes be immediate.  To disable the autodeferment feature,
2418use
2419
2420	(tied @o)->autodefer(0);
2421
2422or
2423
2424       	tie @array, 'Tie::File', $file, autodefer => 0;
2425
2426
2427Similarly, C<-E<gt>autodefer(1)> re-enables autodeferment, and
2428C<-E<gt>autodefer()> recovers the current value of the autodefer setting.
2429
2430
2431=head1 CONCURRENT ACCESS TO FILES
2432
2433Caching and deferred writing are inappropriate if you want the same
2434file to be accessed simultaneously from more than one process.  Other
2435optimizations performed internally by this module are also
2436incompatible with concurrent access.  A future version of this module will
2437support a C<concurrent =E<gt> 1> option that enables safe concurrent access.
2438
2439Previous versions of this documentation suggested using C<memory
2440=E<gt> 0> for safe concurrent access.  This was mistaken.  Tie::File
2441will not support safe concurrent access before version 0.96.
2442
2443=head1 CAVEATS
2444
2445(That's Latin for 'warnings'.)
2446
2447=over 4
2448
2449=item *
2450
2451Reasonable effort was made to make this module efficient.  Nevertheless,
2452changing the size of a record in the middle of a large file will
2453always be fairly slow, because everything after the new record must be
2454moved.
2455
2456=item *
2457
2458The behavior of tied arrays is not precisely the same as for regular
2459arrays.  For example:
2460
2461	# This DOES print "How unusual!"
2462	undef $a[10];  print "How unusual!\n" if defined $a[10];
2463
2464C<undef>-ing a C<Tie::File> array element just blanks out the
2465corresponding record in the file.  When you read it back again, you'll
2466get the empty string, so the supposedly-C<undef>'ed value will be
2467defined.  Similarly, if you have C<autochomp> disabled, then
2468
2469	# This DOES print "How unusual!" if 'autochomp' is disabled
2470	undef $a[10];
2471        print "How unusual!\n" if $a[10];
2472
2473Because when C<autochomp> is disabled, C<$a[10]> will read back as
2474C<"\n"> (or whatever the record separator string is.)
2475
2476There are other minor differences, particularly regarding C<exists>
2477and C<delete>, but in general, the correspondence is extremely close.
2478
2479=item *
2480
2481I have supposed that since this module is concerned with file I/O,
2482almost all normal use of it will be heavily I/O bound.  This means
2483that the time to maintain complicated data structures inside the
2484module will be dominated by the time to actually perform the I/O.
2485When there was an opportunity to spend CPU time to avoid doing I/O, I
2486usually tried to take it.
2487
2488=item *
2489
2490You might be tempted to think that deferred writing is like
2491transactions, with C<flush> as C<commit> and C<discard> as
2492C<rollback>, but it isn't, so don't.
2493
2494=item *
2495
2496There is a large memory overhead for each record offset and for each
2497cache entry: about 310 bytes per cached data record, and about 21 bytes
2498per offset table entry.
2499
2500The per-record overhead will limit the maximum number of records you
2501can access per file. Note that I<accessing> the length of the array
2502via C<$x = scalar @tied_file> accesses B<all> records and stores their
2503offsets.  The same for C<foreach (@tied_file)>, even if you exit the
2504loop early.
2505
2506=back
2507
2508=head1 SUBCLASSING
2509
2510This version promises absolutely nothing about the internals, which
2511may change without notice.  A future version of the module will have a
2512well-defined and stable subclassing API.
2513
2514=head1 WHAT ABOUT C<DB_File>?
2515
2516People sometimes point out that L<DB_File> will do something similar,
2517and ask why C<Tie::File> module is necessary.
2518
2519There are a number of reasons that you might prefer C<Tie::File>.
2520A list is available at C<http://perl.plover.com/TieFile/why-not-DB_File>.
2521
2522=head1 AUTHOR
2523
2524Mark Jason Dominus
2525
2526To contact the author, send email to: C<mjd-perl-tiefile+@plover.com>
2527
2528To receive an announcement whenever a new version of this module is
2529released, send a blank email message to
2530C<mjd-perl-tiefile-subscribe@plover.com>.
2531
2532The most recent version of this module, including documentation and
2533any news of importance, will be available at
2534
2535	http://perl.plover.com/TieFile/
2536
2537
2538=head1 LICENSE
2539
2540C<Tie::File> version 0.96 is copyright (C) 2003 Mark Jason Dominus.
2541
2542This library is free software; you may redistribute it and/or modify
2543it under the same terms as Perl itself.
2544
2545These terms are your choice of any of (1) the Perl Artistic Licence,
2546or (2) version 2 of the GNU General Public License as published by the
2547Free Software Foundation, or (3) any later version of the GNU General
2548Public License.
2549
2550This library is distributed in the hope that it will be useful,
2551but WITHOUT ANY WARRANTY; without even the implied warranty of
2552MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
2553GNU General Public License for more details.
2554
2555You should have received a copy of the GNU General Public License
2556along with this library program; it should be in the file C<COPYING>.
2557If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
2558Fifth Floor, Boston, MA  02110-1301, USA
2559
2560For licensing inquiries, contact the author at:
2561
2562	Mark Jason Dominus
2563	255 S. Warnock St.
2564	Philadelphia, PA 19107
2565
2566=head1 WARRANTY
2567
2568C<Tie::File> version 0.98 comes with ABSOLUTELY NO WARRANTY.
2569For details, see the license.
2570
2571=head1 THANKS
2572
2573Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
2574core when I hadn't written it yet, and for generally being helpful,
2575supportive, and competent.  (Usually the rule is "choose any one.")
2576Also big thanks to Abhijit Menon-Sen for all of the same things.
2577
2578Special thanks to Craig Berry and Peter Prymmer (for VMS portability
2579help), Randy Kobes (for Win32 portability help), Clinton Pierce and
2580Autrijus Tang (for heroic eleventh-hour Win32 testing above and beyond
2581the call of duty), Michael G Schwern (for testing advice), and the
2582rest of the CPAN testers (for testing generally).
2583
2584Special thanks to Tels for suggesting several speed and memory
2585optimizations.
2586
2587Additional thanks to:
2588Edward Avis /
2589Mattia Barbon /
2590Tom Christiansen /
2591Gerrit Haase /
2592Gurusamy Sarathy /
2593Jarkko Hietaniemi (again) /
2594Nikola Knezevic /
2595John Kominetz /
2596Nick Ing-Simmons /
2597Tassilo von Parseval /
2598H. Dieter Pearcey /
2599Slaven Rezic /
2600Eric Roode /
2601Peter Scott /
2602Peter Somu /
2603Autrijus Tang (again) /
2604Tels (again) /
2605Juerd Waalboer /
2606Todd Rinaldo
2607
2608=head1 TODO
2609
2610More tests.  (Stuff I didn't think of yet.)
2611
2612Paragraph mode?
2613
2614Fixed-length mode.  Leave-blanks mode.
2615
2616Maybe an autolocking mode?
2617
2618For many common uses of the module, the read cache is a liability.
2619For example, a program that inserts a single record, or that scans the
2620file once, will have a cache hit rate of zero.  This suggests a major
2621optimization: The cache should be initially disabled.  Here's a hybrid
2622approach: Initially, the cache is disabled, but the cache code
2623maintains statistics about how high the hit rate would be *if* it were
2624enabled.  When it sees the hit rate get high enough, it enables
2625itself.  The STAT comments in this code are the beginning of an
2626implementation of this.
2627
2628Record locking with fcntl()?  Then the module might support an undo
2629log and get real transactions.  What a tour de force that would be.
2630
2631Keeping track of the highest cached record. This would allow reads-in-a-row
2632to skip the cache lookup faster (if reading from 1..N with empty cache at
2633start, the last cached value will be always N-1).
2634
2635More tests.
2636
2637=cut
2638
2639