1
2package Tie::File;
3require 5.005;
4use Carp ':DEFAULT', 'confess';
5use POSIX 'SEEK_SET';
6use Fcntl 'O_CREAT', 'O_RDWR', 'LOCK_EX', 'LOCK_SH', 'O_WRONLY', 'O_RDONLY';
7sub O_ACCMODE () { O_RDONLY | O_RDWR | O_WRONLY }
8
9
10$VERSION = "1.00";
11my $DEFAULT_MEMORY_SIZE = 1<<21;    # 2 megabytes
12my $DEFAULT_AUTODEFER_THRESHHOLD = 3; # 3 records
13my $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD = 65536; # 16 disk blocksful
14
15my %good_opt = map {$_ => 1, "-$_" => 1}
16                 qw(memory dw_size mode recsep discipline
17                    autodefer autochomp autodefer_threshhold concurrent);
18
19sub TIEARRAY {
20  if (@_ % 2 != 0) {
21    croak "usage: tie \@array, $_[0], filename, [option => value]...";
22  }
23  my ($pack, $file, %opts) = @_;
24
25  # transform '-foo' keys into 'foo' keys
26  for my $key (keys %opts) {
27    unless ($good_opt{$key}) {
28      croak("$pack: Unrecognized option '$key'\n");
29    }
30    my $okey = $key;
31    if ($key =~ s/^-+//) {
32      $opts{$key} = delete $opts{$okey};
33    }
34  }
35
36  if ($opts{concurrent}) {
37    croak("$pack: concurrent access not supported yet\n");
38  }
39
40  unless (defined $opts{memory}) {
41    # default is the larger of the default cache size and the
42    # deferred-write buffer size (if specified)
43    $opts{memory} = $DEFAULT_MEMORY_SIZE;
44    $opts{memory} = $opts{dw_size}
45      if defined $opts{dw_size} && $opts{dw_size} > $DEFAULT_MEMORY_SIZE;
46    # Dora Winifred Read
47  }
48  $opts{dw_size} = $opts{memory} unless defined $opts{dw_size};
49  if ($opts{dw_size} > $opts{memory}) {
50      croak("$pack: dw_size may not be larger than total memory allocation\n");
51  }
52  # are we in deferred-write mode?
53  $opts{defer} = 0 unless defined $opts{defer};
54  $opts{deferred} = {};         # no records are presently deferred
55  $opts{deferred_s} = 0;        # count of total bytes in ->{deferred}
56  $opts{deferred_max} = -1;     # empty
57
58  # What's a good way to arrange that this class can be overridden?
59  $opts{cache} = Tie::File::Cache->new($opts{memory});
60
61  # autodeferment is enabled by default
62  $opts{autodefer} = 1 unless defined $opts{autodefer};
63  $opts{autodeferring} = 0;     # but is not initially active
64  $opts{ad_history} = [];
65  $opts{autodefer_threshhold} = $DEFAULT_AUTODEFER_THRESHHOLD
66    unless defined $opts{autodefer_threshhold};
67  $opts{autodefer_filelen_threshhold} = $DEFAULT_AUTODEFER_FILELEN_THRESHHOLD
68    unless defined $opts{autodefer_filelen_threshhold};
69
70  $opts{offsets} = [0];
71  $opts{filename} = $file;
72  unless (defined $opts{recsep}) {
73    $opts{recsep} = _default_recsep();
74  }
75  $opts{recseplen} = length($opts{recsep});
76  if ($opts{recseplen} == 0) {
77    croak "Empty record separator not supported by $pack";
78  }
79
80  $opts{autochomp} = 1 unless defined $opts{autochomp};
81
82  $opts{mode} = O_CREAT|O_RDWR unless defined $opts{mode};
83  $opts{rdonly} = (($opts{mode} & O_ACCMODE) == O_RDONLY);
84  $opts{sawlastrec} = undef;
85
86  my $fh;
87
88  if (UNIVERSAL::isa($file, 'GLOB')) {
89    # We use 1 here on the theory that some systems
90    # may not indicate failure if we use 0.
91    # MSWin32 does not indicate failure with 0, but I don't know if
92    # it will indicate failure with 1 or not.
93    unless (seek $file, 1, SEEK_SET) {
94      croak "$pack: your filehandle does not appear to be seekable";
95    }
96    seek $file, 0, SEEK_SET;    # put it back
97    $fh = $file;                # setting binmode is the user's problem
98  } elsif (ref $file) {
99    croak "usage: tie \@array, $pack, filename, [option => value]...";
100  } else {
101    # $fh = \do { local *FH };  # XXX this is buggy
102    if ($] < 5.006) {
103	# perl 5.005 and earlier don't autovivify filehandles
104	require Symbol;
105	$fh = Symbol::gensym();
106    }
107    sysopen $fh, $file, $opts{mode}, 0666 or return;
108    binmode $fh;
109    ++$opts{ourfh};
110  }
111  { my $ofh = select $fh; $| = 1; select $ofh } # autoflush on write
112  if (defined $opts{discipline} && $] >= 5.006) {
113    # This avoids a compile-time warning under 5.005
114    eval 'binmode($fh, $opts{discipline})';
115    croak $@ if $@ =~ /unknown discipline/i;
116    die if $@;
117  }
118  $opts{fh} = $fh;
119
120  bless \%opts => $pack;
121}
122
123sub FETCH {
124  my ($self, $n) = @_;
125  my $rec;
126
127  # check the defer buffer
128  $rec = $self->{deferred}{$n} if exists $self->{deferred}{$n};
129  $rec = $self->_fetch($n) unless defined $rec;
130
131  # inlined _chomp1
132  substr($rec, - $self->{recseplen}) = ""
133    if defined $rec && $self->{autochomp};
134  $rec;
135}
136
137# Chomp many records in-place; return nothing useful
138sub _chomp {
139  my $self = shift;
140  return unless $self->{autochomp};
141  if ($self->{autochomp}) {
142    for (@_) {
143      next unless defined;
144      substr($_, - $self->{recseplen}) = "";
145    }
146  }
147}
148
149# Chomp one record in-place; return modified record
150sub _chomp1 {
151  my ($self, $rec) = @_;
152  return $rec unless $self->{autochomp};
153  return unless defined $rec;
154  substr($rec, - $self->{recseplen}) = "";
155  $rec;
156}
157
158sub _fetch {
159  my ($self, $n) = @_;
160
161  # check the record cache
162  { my $cached = $self->{cache}->lookup($n);
163    return $cached if defined $cached;
164  }
165
166  if ($#{$self->{offsets}} < $n) {
167    return if $self->{eof};  # request for record beyond end of file
168    my $o = $self->_fill_offsets_to($n);
169    # If it's still undefined, there is no such record, so return 'undef'
170    return unless defined $o;
171  }
172
173  my $fh = $self->{FH};
174  $self->_seek($n);             # we can do this now that offsets is populated
175  my $rec = $self->_read_record;
176
177# If we happen to have just read the first record, check to see if
178# the length of the record matches what 'tell' says.  If not, Tie::File
179# won't work, and should drop dead.
180#
181#  if ($n == 0 && defined($rec) && tell($self->{fh}) != length($rec)) {
182#    if (defined $self->{discipline}) {
183#      croak "I/O discipline $self->{discipline} not supported";
184#    } else {
185#      croak "File encoding not supported";
186#    }
187#  }
188
189  $self->{cache}->insert($n, $rec) if defined $rec && not $self->{flushing};
190  $rec;
191}
192
193sub STORE {
194  my ($self, $n, $rec) = @_;
195  die "STORE called from _check_integrity!" if $DIAGNOSTIC;
196
197  $self->_fixrecs($rec);
198
199  if ($self->{autodefer}) {
200    $self->_annotate_ad_history($n);
201  }
202
203  return $self->_store_deferred($n, $rec) if $self->_is_deferring;
204
205
206  # We need this to decide whether the new record will fit
207  # It incidentally populates the offsets table
208  # Note we have to do this before we alter the cache
209  # 20020324 Wait, but this DOES alter the cache.  TODO BUG?
210  my $oldrec = $self->_fetch($n);
211
212  if (not defined $oldrec) {
213    # We're storing a record beyond the end of the file
214    $self->_extend_file_to($n+1);
215    $oldrec = $self->{recsep};
216  }
217#  return if $oldrec eq $rec;    # don't bother
218  my $len_diff = length($rec) - length($oldrec);
219
220  # length($oldrec) here is not consistent with text mode  TODO XXX BUG
221  $self->_mtwrite($rec, $self->{offsets}[$n], length($oldrec));
222  $self->_oadjust([$n, 1, $rec]);
223  $self->{cache}->update($n, $rec);
224}
225
226sub _store_deferred {
227  my ($self, $n, $rec) = @_;
228  $self->{cache}->remove($n);
229  my $old_deferred = $self->{deferred}{$n};
230
231  if (defined $self->{deferred_max} && $n > $self->{deferred_max}) {
232    $self->{deferred_max} = $n;
233  }
234  $self->{deferred}{$n} = $rec;
235
236  my $len_diff = length($rec);
237  $len_diff -= length($old_deferred) if defined $old_deferred;
238  $self->{deferred_s} += $len_diff;
239  $self->{cache}->adj_limit(-$len_diff);
240  if ($self->{deferred_s} > $self->{dw_size}) {
241    $self->_flush;
242  } elsif ($self->_cache_too_full) {
243    $self->_cache_flush;
244  }
245}
246
247# Remove a single record from the deferred-write buffer without writing it
248# The record need not be present
249sub _delete_deferred {
250  my ($self, $n) = @_;
251  my $rec = delete $self->{deferred}{$n};
252  return unless defined $rec;
253
254  if (defined $self->{deferred_max}
255      && $n == $self->{deferred_max}) {
256    undef $self->{deferred_max};
257  }
258
259  $self->{deferred_s} -= length $rec;
260  $self->{cache}->adj_limit(length $rec);
261}
262
263sub FETCHSIZE {
264  my $self = shift;
265  my $n = $self->{eof} ? $#{$self->{offsets}} : $self->_fill_offsets;
266
267  my $top_deferred = $self->_defer_max;
268  $n = $top_deferred+1 if defined $top_deferred && $n < $top_deferred+1;
269  $n;
270}
271
272sub STORESIZE {
273  my ($self, $len) = @_;
274
275  if ($self->{autodefer}) {
276    $self->_annotate_ad_history('STORESIZE');
277  }
278
279  my $olen = $self->FETCHSIZE;
280  return if $len == $olen;      # Woo-hoo!
281
282  # file gets longer
283  if ($len > $olen) {
284    if ($self->_is_deferring) {
285      for ($olen .. $len-1) {
286        $self->_store_deferred($_, $self->{recsep});
287      }
288    } else {
289      $self->_extend_file_to($len);
290    }
291    return;
292  }
293
294  # file gets shorter
295  if ($self->_is_deferring) {
296    # TODO maybe replace this with map-plus-assignment?
297    for (grep $_ >= $len, keys %{$self->{deferred}}) {
298      $self->_delete_deferred($_);
299    }
300    $self->{deferred_max} = $len-1;
301  }
302
303  $self->_seek($len);
304  $self->_chop_file;
305  $#{$self->{offsets}} = $len;
306#  $self->{offsets}[0] = 0;      # in case we just chopped this
307
308  $self->{cache}->remove(grep $_ >= $len, $self->{cache}->ckeys);
309}
310
311### OPTIMIZE ME
312### It should not be necessary to do FETCHSIZE
313### Just seek to the end of the file.
314sub PUSH {
315  my $self = shift;
316  $self->SPLICE($self->FETCHSIZE, scalar(@_), @_);
317
318  # No need to return:
319  #  $self->FETCHSIZE;  # because av.c takes care of this for me
320}
321
322sub POP {
323  my $self = shift;
324  my $size = $self->FETCHSIZE;
325  return if $size == 0;
326#  print STDERR "# POPPITY POP POP POP\n";
327  scalar $self->SPLICE($size-1, 1);
328}
329
330sub SHIFT {
331  my $self = shift;
332  scalar $self->SPLICE(0, 1);
333}
334
335sub UNSHIFT {
336  my $self = shift;
337  $self->SPLICE(0, 0, @_);
338  # $self->FETCHSIZE; # av.c takes care of this for me
339}
340
341sub CLEAR {
342  my $self = shift;
343
344  if ($self->{autodefer}) {
345    $self->_annotate_ad_history('CLEAR');
346  }
347
348  $self->_seekb(0);
349  $self->_chop_file;
350    $self->{cache}->set_limit($self->{memory});
351    $self->{cache}->empty;
352  @{$self->{offsets}} = (0);
353  %{$self->{deferred}}= ();
354    $self->{deferred_s} = 0;
355    $self->{deferred_max} = -1;
356}
357
358sub EXTEND {
359  my ($self, $n) = @_;
360
361  # No need to pre-extend anything in this case
362  return if $self->_is_deferring;
363
364  $self->_fill_offsets_to($n);
365  $self->_extend_file_to($n);
366}
367
368sub DELETE {
369  my ($self, $n) = @_;
370
371  if ($self->{autodefer}) {
372    $self->_annotate_ad_history('DELETE');
373  }
374
375  my $lastrec = $self->FETCHSIZE-1;
376  my $rec = $self->FETCH($n);
377  $self->_delete_deferred($n) if $self->_is_deferring;
378  if ($n == $lastrec) {
379    $self->_seek($n);
380    $self->_chop_file;
381    $#{$self->{offsets}}--;
382    $self->{cache}->remove($n);
383    # perhaps in this case I should also remove trailing null records?
384    # 20020316
385    # Note that delete @a[-3..-1] deletes the records in the wrong order,
386    # so we only chop the very last one out of the file.  We could repair this
387    # by tracking deleted records inside the object.
388  } elsif ($n < $lastrec) {
389    $self->STORE($n, "");
390  }
391  $rec;
392}
393
394sub EXISTS {
395  my ($self, $n) = @_;
396  return 1 if exists $self->{deferred}{$n};
397  $n < $self->FETCHSIZE;
398}
399
400sub SPLICE {
401  my $self = shift;
402
403  if ($self->{autodefer}) {
404    $self->_annotate_ad_history('SPLICE');
405  }
406
407  $self->_flush if $self->_is_deferring; # move this up?
408  if (wantarray) {
409    $self->_chomp(my @a = $self->_splice(@_));
410    @a;
411  } else {
412    $self->_chomp1(scalar $self->_splice(@_));
413  }
414}
415
416sub DESTROY {
417  my $self = shift;
418  $self->flush if $self->_is_deferring;
419  $self->{cache}->delink if defined $self->{cache}; # break circular link
420  if ($self->{fh} and $self->{ourfh}) {
421      delete $self->{ourfh};
422      close delete $self->{fh};
423  }
424}
425
426sub _splice {
427  my ($self, $pos, $nrecs, @data) = @_;
428  my @result;
429
430  $pos = 0 unless defined $pos;
431
432  # Deal with negative and other out-of-range positions
433  # Also set default for $nrecs
434  {
435    my $oldsize = $self->FETCHSIZE;
436    $nrecs = $oldsize unless defined $nrecs;
437    my $oldpos = $pos;
438
439    if ($pos < 0) {
440      $pos += $oldsize;
441      if ($pos < 0) {
442        croak "Modification of non-creatable array value attempted, subscript $oldpos";
443      }
444    }
445
446    if ($pos > $oldsize) {
447      return unless @data;
448      $pos = $oldsize;          # This is what perl does for normal arrays
449    }
450
451    # The manual is very unclear here
452    if ($nrecs < 0) {
453      $nrecs = $oldsize - $pos + $nrecs;
454      $nrecs = 0 if $nrecs < 0;
455    }
456
457    # nrecs is too big---it really means "until the end"
458    # 20030507
459    if ($nrecs + $pos > $oldsize) {
460      $nrecs = $oldsize - $pos;
461    }
462  }
463
464  $self->_fixrecs(@data);
465  my $data = join '', @data;
466  my $datalen = length $data;
467  my $oldlen = 0;
468
469  # compute length of data being removed
470  for ($pos .. $pos+$nrecs-1) {
471    last unless defined $self->_fill_offsets_to($_);
472    my $rec = $self->_fetch($_);
473    last unless defined $rec;
474    push @result, $rec;
475
476    # Why don't we just use length($rec) here?
477    # Because that record might have come from the cache.  _splice
478    # might have been called to flush out the deferred-write records,
479    # and in this case length($rec) is the length of the record to be
480    # *written*, not the length of the actual record in the file.  But
481    # the offsets are still true. 20020322
482    $oldlen += $self->{offsets}[$_+1] - $self->{offsets}[$_]
483      if defined $self->{offsets}[$_+1];
484  }
485  $self->_fill_offsets_to($pos+$nrecs);
486
487  # Modify the file
488  $self->_mtwrite($data, $self->{offsets}[$pos], $oldlen);
489  # Adjust the offsets table
490  $self->_oadjust([$pos, $nrecs, @data]);
491
492  { # Take this read cache stuff out into a separate function
493    # You made a half-attempt to put it into _oadjust.
494    # Finish something like that up eventually.
495    # STORE also needs to do something similarish
496
497    # update the read cache, part 1
498    # modified records
499    for ($pos .. $pos+$nrecs-1) {
500      my $new = $data[$_-$pos];
501      if (defined $new) {
502        $self->{cache}->update($_, $new);
503      } else {
504        $self->{cache}->remove($_);
505      }
506    }
507
508    # update the read cache, part 2
509    # moved records - records past the site of the change
510    # need to be renumbered
511    # Maybe merge this with the previous block?
512    {
513      my @oldkeys = grep $_ >= $pos + $nrecs, $self->{cache}->ckeys;
514      my @newkeys = map $_-$nrecs+@data, @oldkeys;
515      $self->{cache}->rekey(\@oldkeys, \@newkeys);
516    }
517
518    # Now there might be too much data in the cache, if we spliced out
519    # some short records and spliced in some long ones.  If so, flush
520    # the cache.
521    $self->_cache_flush;
522  }
523
524  # Yes, the return value of 'splice' *is* actually this complicated
525  wantarray ? @result : @result ? $result[-1] : undef;
526}
527
528
529# write data into the file
530# $data is the data to be written.
531# it should be written at position $pos, and should overwrite
532# exactly $len of the following bytes.
533# Note that if length($data) > $len, the subsequent bytes will have to
534# be moved up, and if length($data) < $len, they will have to
535# be moved down
536sub _twrite {
537  my ($self, $data, $pos, $len) = @_;
538
539  unless (defined $pos) {
540    die "\$pos was undefined in _twrite";
541  }
542
543  my $len_diff = length($data) - $len;
544
545  if ($len_diff == 0) {          # Woo-hoo!
546    my $fh = $self->{fh};
547    $self->_seekb($pos);
548    $self->_write_record($data);
549    return;                     # well, that was easy.
550  }
551
552  # the two records are of different lengths
553  # our strategy here: rewrite the tail of the file,
554  # reading ahead one buffer at a time
555  # $bufsize is required to be at least as large as the data we're overwriting
556  my $bufsize = _bufsize($len_diff);
557  my ($writepos, $readpos) = ($pos, $pos+$len);
558  my $next_block;
559  my $more_data;
560
561  # Seems like there ought to be a way to avoid the repeated code
562  # and the special case here.  The read(1) is also a little weird.
563  # Think about this.
564  do {
565    $self->_seekb($readpos);
566    my $br = read $self->{fh}, $next_block, $bufsize;
567    $more_data = read $self->{fh}, my($dummy), 1;
568    $self->_seekb($writepos);
569    $self->_write_record($data);
570    $readpos += $br;
571    $writepos += length $data;
572    $data = $next_block;
573  } while $more_data;
574  $self->_seekb($writepos);
575  $self->_write_record($next_block);
576
577  # There might be leftover data at the end of the file
578  $self->_chop_file if $len_diff < 0;
579}
580
581# _iwrite(D, S, E)
582# Insert text D at position S.
583# Let C = E-S-|D|.  If C < 0; die.
584# Data in [S,S+C) is copied to [S+D,S+D+C) = [S+D,E).
585# Data in [S+C = E-D, E) is returned.  Data in [E, oo) is untouched.
586#
587# In a later version, don't read the entire intervening area into
588# memory at once; do the copying block by block.
589sub _iwrite {
590  my $self = shift;
591  my ($D, $s, $e) = @_;
592  my $d = length $D;
593  my $c = $e-$s-$d;
594  local *FH = $self->{fh};
595  confess "Not enough space to insert $d bytes between $s and $e"
596    if $c < 0;
597  confess "[$s,$e) is an invalid insertion range" if $e < $s;
598
599  $self->_seekb($s);
600  read FH, my $buf, $e-$s;
601
602  $D .= substr($buf, 0, $c, "");
603
604  $self->_seekb($s);
605  $self->_write_record($D);
606
607  return $buf;
608}
609
610# Like _twrite, but the data-pos-len triple may be repeated; you may
611# write several chunks.  All the writing will be done in
612# one pass.   Chunks SHALL be in ascending order and SHALL NOT overlap.
613sub _mtwrite {
614  my $self = shift;
615  my $unwritten = "";
616  my $delta = 0;
617
618  @_ % 3 == 0
619    or die "Arguments to _mtwrite did not come in groups of three";
620
621  while (@_) {
622    my ($data, $pos, $len) = splice @_, 0, 3;
623    my $end = $pos + $len;  # The OLD end of the segment to be replaced
624    $data = $unwritten . $data;
625    $delta -= length($unwritten);
626    $unwritten  = "";
627    $pos += $delta;             # This is where the data goes now
628    my $dlen = length $data;
629    $self->_seekb($pos);
630    if ($len >= $dlen) {        # the data will fit
631      $self->_write_record($data);
632      $delta += ($dlen - $len); # everything following moves down by this much
633      $data = ""; # All the data in the buffer has been written
634    } else {                    # won't fit
635      my $writable = substr($data, 0, $len - $delta, "");
636      $self->_write_record($writable);
637      $delta += ($dlen - $len); # everything following moves down by this much
638    }
639
640    # At this point we've written some but maybe not all of the data.
641    # There might be a gap to close up, or $data might still contain a
642    # bunch of unwritten data that didn't fit.
643    my $ndlen = length $data;
644    if ($delta == 0) {
645      $self->_write_record($data);
646    } elsif ($delta < 0) {
647      # upcopy (close up gap)
648      if (@_) {
649        $self->_upcopy($end, $end + $delta, $_[1] - $end);
650      } else {
651        $self->_upcopy($end, $end + $delta);
652      }
653    } else {
654      # downcopy (insert data that didn't fit; replace this data in memory
655      # with _later_ data that doesn't fit)
656      if (@_) {
657        $unwritten = $self->_downcopy($data, $end, $_[1] - $end);
658      } else {
659        # Make the file longer to accommodate the last segment that doesn't
660        $unwritten = $self->_downcopy($data, $end);
661      }
662    }
663  }
664}
665
666# Copy block of data of length $len from position $spos to position $dpos
667# $dpos must be <= $spos
668#
669# If $len is undefined, go all the way to the end of the file
670# and then truncate it ($spos - $dpos bytes will be removed)
671sub _upcopy {
672  my $blocksize = 8192;
673  my ($self, $spos, $dpos, $len) = @_;
674  if ($dpos > $spos) {
675    die "source ($spos) was upstream of destination ($dpos) in _upcopy";
676  } elsif ($dpos == $spos) {
677    return;
678  }
679
680  while (! defined ($len) || $len > 0) {
681    my $readsize = ! defined($len) ? $blocksize
682               : $len > $blocksize ? $blocksize
683               : $len;
684
685    my $fh = $self->{fh};
686    $self->_seekb($spos);
687    my $bytes_read = read $fh, my($data), $readsize;
688    $self->_seekb($dpos);
689    if ($data eq "") {
690      $self->_chop_file;
691      last;
692    }
693    $self->_write_record($data);
694    $spos += $bytes_read;
695    $dpos += $bytes_read;
696    $len -= $bytes_read if defined $len;
697  }
698}
699
700# Write $data into a block of length $len at position $pos,
701# moving everything in the block forwards to make room.
702# Instead of writing the last length($data) bytes from the block
703# (because there isn't room for them any longer) return them.
704#
705# Undefined $len means 'until the end of the file'
706sub _downcopy {
707  my $blocksize = 8192;
708  my ($self, $data, $pos, $len) = @_;
709  my $fh = $self->{fh};
710
711  while (! defined $len || $len > 0) {
712    my $readsize = ! defined($len) ? $blocksize
713      : $len > $blocksize? $blocksize : $len;
714    $self->_seekb($pos);
715    read $fh, my($old), $readsize;
716    my $last_read_was_short = length($old) < $readsize;
717    $data .= $old;
718    my $writable;
719    if ($last_read_was_short) {
720      # If last read was short, then $data now contains the entire rest
721      # of the file, so there's no need to write only one block of it
722      $writable = $data;
723      $data = "";
724    } else {
725      $writable = substr($data, 0, $readsize, "");
726    }
727    last if $writable eq "";
728    $self->_seekb($pos);
729    $self->_write_record($writable);
730    last if $last_read_was_short && $data eq "";
731    $len -= $readsize if defined $len;
732    $pos += $readsize;
733  }
734  return $data;
735}
736
737# Adjust the object data structures following an '_mtwrite'
738# Arguments are
739#  [$pos, $nrecs, @length]  items
740# indicating that $nrecs records were removed at $recpos (a record offset)
741# and replaced with records of length @length...
742# Arguments guarantee that $recpos is strictly increasing.
743# No return value
744sub _oadjust {
745  my $self = shift;
746  my $delta = 0;
747  my $delta_recs = 0;
748  my $prev_end = -1;
749  my %newkeys;
750
751  for (@_) {
752    my ($pos, $nrecs, @data) = @$_;
753    $pos += $delta_recs;
754
755    # Adjust the offsets of the records after the previous batch up
756    # to the first new one of this batch
757    for my $i ($prev_end+2 .. $pos - 1) {
758      $self->{offsets}[$i] += $delta;
759      $newkey{$i} = $i + $delta_recs;
760    }
761
762    $prev_end = $pos + @data - 1; # last record moved on this pass
763
764    # Remove the offsets for the removed records;
765    # replace with the offsets for the inserted records
766    my @newoff = ($self->{offsets}[$pos] + $delta);
767    for my $i (0 .. $#data) {
768      my $newlen = length $data[$i];
769      push @newoff, $newoff[$i] + $newlen;
770      $delta += $newlen;
771    }
772
773    for my $i ($pos .. $pos+$nrecs-1) {
774      last if $i+1 > $#{$self->{offsets}};
775      my $oldlen = $self->{offsets}[$i+1] - $self->{offsets}[$i];
776      $delta -= $oldlen;
777    }
778
779#    # also this data has changed, so update it in the cache
780#    for (0 .. $#data) {
781#      $self->{cache}->update($pos + $_, $data[$_]);
782#    }
783#    if ($delta_recs) {
784#      my @oldkeys = grep $_ >= $pos + @data, $self->{cache}->ckeys;
785#      my @newkeys = map $_ + $delta_recs, @oldkeys;
786#      $self->{cache}->rekey(\@oldkeys, \@newkeys);
787#    }
788
789    # replace old offsets with new
790    splice @{$self->{offsets}}, $pos, $nrecs+1, @newoff;
791    # What if we just spliced out the end of the offsets table?
792    # shouldn't we clear $self->{eof}?   Test for this XXX BUG TODO
793
794    $delta_recs += @data - $nrecs; # net change in total number of records
795  }
796
797  # The trailing records at the very end of the file
798  if ($delta) {
799    for my $i ($prev_end+2 .. $#{$self->{offsets}}) {
800      $self->{offsets}[$i] += $delta;
801    }
802  }
803
804  # If we scrubbed out all known offsets, regenerate the trivial table
805  # that knows that the file does indeed start at 0.
806  $self->{offsets}[0] = 0 unless @{$self->{offsets}};
807  # If the file got longer, the offsets table is no longer complete
808  # $self->{eof} = 0 if $delta_recs > 0;
809
810  # Now there might be too much data in the cache, if we spliced out
811  # some short records and spliced in some long ones.  If so, flush
812  # the cache.
813  $self->_cache_flush;
814}
815
816# If a record does not already end with the appropriate terminator
817# string, append one.
818sub _fixrecs {
819  my $self = shift;
820  for (@_) {
821    $_ = "" unless defined $_;
822    $_ .= $self->{recsep}
823      unless substr($_, - $self->{recseplen}) eq $self->{recsep};
824  }
825}
826
827
828################################################################
829#
830# Basic read, write, and seek
831#
832
833# seek to the beginning of record #$n
834# Assumes that the offsets table is already correctly populated
835#
836# Note that $n=-1 has a special meaning here: It means the start of
837# the last known record; this may or may not be the very last record
838# in the file, depending on whether the offsets table is fully populated.
839#
840sub _seek {
841  my ($self, $n) = @_;
842  my $o = $self->{offsets}[$n];
843  defined($o)
844    or confess("logic error: undefined offset for record $n");
845  seek $self->{fh}, $o, SEEK_SET
846    or confess "Couldn't seek filehandle: $!";  # "Should never happen."
847}
848
849# seek to byte $b in the file
850sub _seekb {
851  my ($self, $b) = @_;
852  seek $self->{fh}, $b, SEEK_SET
853    or die "Couldn't seek filehandle: $!";  # "Should never happen."
854}
855
856# populate the offsets table up to the beginning of record $n
857# return the offset of record $n
858sub _fill_offsets_to {
859  my ($self, $n) = @_;
860
861  return $self->{offsets}[$n] if $self->{eof};
862
863  my $fh = $self->{fh};
864  local *OFF = $self->{offsets};
865  my $rec;
866
867  until ($#OFF >= $n) {
868    $self->_seek(-1);           # tricky -- see comment at _seek
869    $rec = $self->_read_record;
870    if (defined $rec) {
871      push @OFF, int(tell $fh);  # Tels says that int() saves memory here
872    } else {
873      $self->{eof} = 1;
874      return;                   # It turns out there is no such record
875    }
876  }
877
878  # we have now read all the records up to record n-1,
879  # so we can return the offset of record n
880  $OFF[$n];
881}
882
883sub _fill_offsets {
884  my ($self) = @_;
885
886  my $fh = $self->{fh};
887  local *OFF = $self->{offsets};
888
889  $self->_seek(-1);           # tricky -- see comment at _seek
890
891  # Tels says that inlining read_record() would make this loop
892  # five times faster. 20030508
893  while ( defined $self->_read_record()) {
894    # int() saves us memory here
895    push @OFF, int(tell $fh);
896  }
897
898  $self->{eof} = 1;
899  $#OFF;
900}
901
902# assumes that $rec is already suitably terminated
903sub _write_record {
904  my ($self, $rec) = @_;
905  my $fh = $self->{fh};
906  local $\ = "";
907  print $fh $rec
908    or die "Couldn't write record: $!";  # "Should never happen."
909#  $self->{_written} += length($rec);
910}
911
912sub _read_record {
913  my $self = shift;
914  my $rec;
915  { local $/ = $self->{recsep};
916    my $fh = $self->{fh};
917    $rec = <$fh>;
918  }
919  return unless defined $rec;
920  if (substr($rec, -$self->{recseplen}) ne $self->{recsep}) {
921    # improperly terminated final record --- quietly fix it.
922#    my $ac = substr($rec, -$self->{recseplen});
923#    $ac =~ s/\n/\\n/g;
924    $self->{sawlastrec} = 1;
925    unless ($self->{rdonly}) {
926      local $\ = "";
927      my $fh = $self->{fh};
928      print $fh $self->{recsep};
929    }
930    $rec .= $self->{recsep};
931  }
932#  $self->{_read} += length($rec) if defined $rec;
933  $rec;
934}
935
936sub _rw_stats {
937  my $self = shift;
938  @{$self}{'_read', '_written'};
939}
940
941################################################################
942#
943# Read cache management
944
945sub _cache_flush {
946  my ($self) = @_;
947  $self->{cache}->reduce_size_to($self->{memory} - $self->{deferred_s});
948}
949
950sub _cache_too_full {
951  my $self = shift;
952  $self->{cache}->bytes + $self->{deferred_s} >= $self->{memory};
953}
954
955################################################################
956#
957# File custodial services
958#
959
960
961# We have read to the end of the file and have the offsets table
962# entirely populated.  Now we need to write a new record beyond
963# the end of the file.  We prepare for this by writing
964# empty records into the file up to the position we want
965#
966# assumes that the offsets table already contains the offset of record $n,
967# if it exists, and extends to the end of the file if not.
968sub _extend_file_to {
969  my ($self, $n) = @_;
970  $self->_seek(-1);             # position after the end of the last record
971  my $pos = $self->{offsets}[-1];
972
973  # the offsets table has one entry more than the total number of records
974  my $extras = $n - $#{$self->{offsets}};
975
976  # Todo : just use $self->{recsep} x $extras here?
977  while ($extras-- > 0) {
978    $self->_write_record($self->{recsep});
979    push @{$self->{offsets}}, int(tell $self->{fh});
980  }
981}
982
983# Truncate the file at the current position
984sub _chop_file {
985  my $self = shift;
986  truncate $self->{fh}, tell($self->{fh});
987}
988
989
990# compute the size of a buffer suitable for moving
991# all the data in a file forward $n bytes
992# ($n may be negative)
993# The result should be at least $n.
994sub _bufsize {
995  my $n = shift;
996  return 8192 if $n <= 0;
997  my $b = $n & ~8191;
998  $b += 8192 if $n & 8191;
999  $b;
1000}
1001
1002################################################################
1003#
1004# Miscellaneous public methods
1005#
1006
1007# Lock the file
1008sub flock {
1009  my ($self, $op) = @_;
1010  unless (@_ <= 3) {
1011    my $pack = ref $self;
1012    croak "Usage: $pack\->flock([OPERATION])";
1013  }
1014  my $fh = $self->{fh};
1015  $op = LOCK_EX unless defined $op;
1016  my $locked = flock $fh, $op;
1017
1018  if ($locked && ($op & (LOCK_EX | LOCK_SH))) {
1019    # If you're locking the file, then presumably it's because
1020    # there might have been a write access by another process.
1021    # In that case, the read cache contents and the offsets table
1022    # might be invalid, so discard them.  20030508
1023    $self->{offsets} = [0];
1024    $self->{cache}->empty;
1025  }
1026
1027  $locked;
1028}
1029
1030# Get/set autochomp option
1031sub autochomp {
1032  my $self = shift;
1033  if (@_) {
1034    my $old = $self->{autochomp};
1035    $self->{autochomp} = shift;
1036    $old;
1037  } else {
1038    $self->{autochomp};
1039  }
1040}
1041
1042# Get offset table entries; returns offset of nth record
1043sub offset {
1044  my ($self, $n) = @_;
1045
1046  if ($#{$self->{offsets}} < $n) {
1047    return if $self->{eof};     # request for record beyond the end of file
1048    my $o = $self->_fill_offsets_to($n);
1049    # If it's still undefined, there is no such record, so return 'undef'
1050    return unless defined $o;
1051   }
1052
1053  $self->{offsets}[$n];
1054}
1055
1056sub discard_offsets {
1057  my $self = shift;
1058  $self->{offsets} = [0];
1059}
1060
1061################################################################
1062#
1063# Matters related to deferred writing
1064#
1065
1066# Defer writes
1067sub defer {
1068  my $self = shift;
1069  $self->_stop_autodeferring;
1070  @{$self->{ad_history}} = ();
1071  $self->{defer} = 1;
1072}
1073
1074# Flush deferred writes
1075#
1076# This could be better optimized to write the file in one pass, instead
1077# of one pass per block of records.  But that will require modifications
1078# to _twrite, so I should have a good _twrite test suite first.
1079sub flush {
1080  my $self = shift;
1081
1082  $self->_flush;
1083  $self->{defer} = 0;
1084}
1085
1086sub _old_flush {
1087  my $self = shift;
1088  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1089
1090  while (@writable) {
1091    # gather all consecutive records from the front of @writable
1092    my $first_rec = shift @writable;
1093    my $last_rec = $first_rec+1;
1094    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1095    --$last_rec;
1096    $self->_fill_offsets_to($last_rec);
1097    $self->_extend_file_to($last_rec);
1098    $self->_splice($first_rec, $last_rec-$first_rec+1,
1099                   @{$self->{deferred}}{$first_rec .. $last_rec});
1100  }
1101
1102  $self->_discard;               # clear out defered-write-cache
1103}
1104
1105sub _flush {
1106  my $self = shift;
1107  my @writable = sort {$a<=>$b} (keys %{$self->{deferred}});
1108  my @args;
1109  my @adjust;
1110
1111  while (@writable) {
1112    # gather all consecutive records from the front of @writable
1113    my $first_rec = shift @writable;
1114    my $last_rec = $first_rec+1;
1115    ++$last_rec, shift @writable while @writable && $last_rec == $writable[0];
1116    --$last_rec;
1117    my $end = $self->_fill_offsets_to($last_rec+1);
1118    if (not defined $end) {
1119      $self->_extend_file_to($last_rec);
1120      $end = $self->{offsets}[$last_rec];
1121    }
1122    my ($start) = $self->{offsets}[$first_rec];
1123    push @args,
1124         join("", @{$self->{deferred}}{$first_rec .. $last_rec}), # data
1125         $start,                                                  # position
1126         $end-$start;                                             # length
1127    push @adjust, [$first_rec, # starting at this position...
1128                   $last_rec-$first_rec+1,  # this many records...
1129                   # are replaced with these...
1130                   @{$self->{deferred}}{$first_rec .. $last_rec},
1131                  ];
1132  }
1133
1134  $self->_mtwrite(@args);  # write multiple record groups
1135  $self->_discard;               # clear out defered-write-cache
1136  $self->_oadjust(@adjust);
1137}
1138
1139# Discard deferred writes and disable future deferred writes
1140sub discard {
1141  my $self = shift;
1142  $self->_discard;
1143  $self->{defer} = 0;
1144}
1145
1146# Discard deferred writes, but retain old deferred writing mode
1147sub _discard {
1148  my $self = shift;
1149  %{$self->{deferred}} = ();
1150  $self->{deferred_s}  = 0;
1151  $self->{deferred_max}  = -1;
1152  $self->{cache}->set_limit($self->{memory});
1153}
1154
1155# Deferred writing is enabled, either explicitly ($self->{defer})
1156# or automatically ($self->{autodeferring})
1157sub _is_deferring {
1158  my $self = shift;
1159  $self->{defer} || $self->{autodeferring};
1160}
1161
1162# The largest record number of any deferred record
1163sub _defer_max {
1164  my $self = shift;
1165  return $self->{deferred_max} if defined $self->{deferred_max};
1166  my $max = -1;
1167  for my $key (keys %{$self->{deferred}}) {
1168    $max = $key if $key > $max;
1169  }
1170  $self->{deferred_max} = $max;
1171  $max;
1172}
1173
1174################################################################
1175#
1176# Matters related to autodeferment
1177#
1178
1179# Get/set autodefer option
1180sub autodefer {
1181  my $self = shift;
1182  if (@_) {
1183    my $old = $self->{autodefer};
1184    $self->{autodefer} = shift;
1185    if ($old) {
1186      $self->_stop_autodeferring;
1187      @{$self->{ad_history}} = ();
1188    }
1189    $old;
1190  } else {
1191    $self->{autodefer};
1192  }
1193}
1194
1195# The user is trying to store record #$n Record that in the history,
1196# and then enable (or disable) autodeferment if that seems useful.
1197# Note that it's OK for $n to be a non-number, as long as the function
1198# is prepared to deal with that.  Nobody else looks at the ad_history.
1199#
1200# Now, what does the ad_history mean, and what is this function doing?
1201# Essentially, the idea is to enable autodeferring when we see that the
1202# user has made three consecutive STORE calls to three consecutive records.
1203# ("Three" is actually ->{autodefer_threshhold}.)
1204# A STORE call for record #$n inserts $n into the autodefer history,
1205# and if the history contains three consecutive records, we enable
1206# autodeferment.  An ad_history of [X, Y] means that the most recent
1207# STOREs were for records X, X+1, ..., Y, in that order.
1208#
1209# Inserting a nonconsecutive number erases the history and starts over.
1210#
1211# Performing a special operation like SPLICE erases the history.
1212#
1213# There's one special case: CLEAR means that CLEAR was just called.
1214# In this case, we prime the history with [-2, -1] so that if the next
1215# write is for record 0, autodeferring goes on immediately.  This is for
1216# the common special case of "@a = (...)".
1217#
1218sub _annotate_ad_history {
1219  my ($self, $n) = @_;
1220  return unless $self->{autodefer}; # feature is disabled
1221  return if $self->{defer};     # already in explicit defer mode
1222  return unless $self->{offsets}[-1] >= $self->{autodefer_filelen_threshhold};
1223
1224  local *H = $self->{ad_history};
1225  if ($n eq 'CLEAR') {
1226    @H = (-2, -1);              # prime the history with fake records
1227    $self->_stop_autodeferring;
1228  } elsif ($n =~ /^\d+$/) {
1229    if (@H == 0) {
1230      @H =  ($n, $n);
1231    } else {                    # @H == 2
1232      if ($H[1] == $n-1) {      # another consecutive record
1233        $H[1]++;
1234        if ($H[1] - $H[0] + 1 >= $self->{autodefer_threshhold}) {
1235          $self->{autodeferring} = 1;
1236        }
1237      } else {                  # nonconsecutive- erase and start over
1238        @H = ($n, $n);
1239        $self->_stop_autodeferring;
1240      }
1241    }
1242  } else {                      # SPLICE or STORESIZE or some such
1243    @H = ();
1244    $self->_stop_autodeferring;
1245  }
1246}
1247
1248# If autodeferring was enabled, cut it out and discard the history
1249sub _stop_autodeferring {
1250  my $self = shift;
1251  if ($self->{autodeferring}) {
1252    $self->_flush;
1253  }
1254  $self->{autodeferring} = 0;
1255}
1256
1257################################################################
1258
1259
1260# This is NOT a method.  It is here for two reasons:
1261#  1. To factor a fairly complicated block out of the constructor
1262#  2. To provide access for the test suite, which need to be sure
1263#     files are being written properly.
1264sub _default_recsep {
1265  my $recsep = $/;
1266  if ($^O eq 'MSWin32') {       # Dos too?
1267    # Windows users expect files to be terminated with \r\n
1268    # But $/ is set to \n instead
1269    # Note that this also transforms \n\n into \r\n\r\n.
1270    # That is a feature.
1271    $recsep =~ s/\n/\r\n/g;
1272  }
1273  $recsep;
1274}
1275
1276# Utility function for _check_integrity
1277sub _ci_warn {
1278  my $msg = shift;
1279  $msg =~ s/\n/\\n/g;
1280  $msg =~ s/\r/\\r/g;
1281  print "# $msg\n";
1282}
1283
1284# Given a file, make sure the cache is consistent with the
1285# file contents and the internal data structures are consistent with
1286# each other.  Returns true if everything checks out, false if not
1287#
1288# The $file argument is no longer used.  It is retained for compatibility
1289# with the existing test suite.
1290sub _check_integrity {
1291  my ($self, $file, $warn) = @_;
1292  my $rsl = $self->{recseplen};
1293  my $rs  = $self->{recsep};
1294  my $good = 1;
1295  local *_;                     # local $_ does not work here
1296  local $DIAGNOSTIC = 1;
1297
1298  if (not defined $rs) {
1299    _ci_warn("recsep is undef!");
1300    $good = 0;
1301  } elsif ($rs eq "") {
1302    _ci_warn("recsep is empty!");
1303    $good = 0;
1304  } elsif ($rsl != length $rs) {
1305    my $ln = length $rs;
1306    _ci_warn("recsep <$rs> has length $ln, should be $rsl");
1307    $good = 0;
1308  }
1309
1310  if (not defined $self->{offsets}[0]) {
1311    _ci_warn("offset 0 is missing!");
1312    $good = 0;
1313
1314  } elsif ($self->{offsets}[0] != 0) {
1315    _ci_warn("rec 0: offset <$self->{offsets}[0]> s/b 0!");
1316    $good = 0;
1317  }
1318
1319  my $cached = 0;
1320  {
1321    local *F = $self->{fh};
1322    seek F, 0, SEEK_SET;
1323    local $. = 0;
1324    local $/ = $rs;
1325
1326    while (<F>) {
1327      my $n = $. - 1;
1328      my $cached = $self->{cache}->_produce($n);
1329      my $offset = $self->{offsets}[$.];
1330      my $ao = tell F;
1331      if (defined $offset && $offset != $ao) {
1332        _ci_warn("rec $n: offset <$offset> actual <$ao>");
1333        $good = 0;
1334      }
1335      if (defined $cached && $_ ne $cached && ! $self->{deferred}{$n}) {
1336        $good = 0;
1337        _ci_warn("rec $n: cached <$cached> actual <$_>");
1338      }
1339      if (defined $cached && substr($cached, -$rsl) ne $rs) {
1340        $good = 0;
1341        _ci_warn("rec $n in the cache is missing the record separator");
1342      }
1343      if (! defined $offset && $self->{eof}) {
1344        $good = 0;
1345        _ci_warn("The offset table was marked complete, but it is missing element $.");
1346      }
1347    }
1348    if (@{$self->{offsets}} > $.+1) {
1349        $good = 0;
1350        my $n = @{$self->{offsets}};
1351        _ci_warn("The offset table has $n items, but the file has only $.");
1352    }
1353
1354    my $deferring = $self->_is_deferring;
1355    for my $n ($self->{cache}->ckeys) {
1356      my $r = $self->{cache}->_produce($n);
1357      $cached += length($r);
1358      next if $n+1 <= $.;         # checked this already
1359      _ci_warn("spurious caching of record $n");
1360      $good = 0;
1361    }
1362    my $b = $self->{cache}->bytes;
1363    if ($cached != $b) {
1364      _ci_warn("cache size is $b, should be $cached");
1365      $good = 0;
1366    }
1367  }
1368
1369  # That cache has its own set of tests
1370  $good = 0 unless $self->{cache}->_check_integrity;
1371
1372  # Now let's check the deferbuffer
1373  # Unless deferred writing is enabled, it should be empty
1374  if (! $self->_is_deferring && %{$self->{deferred}}) {
1375    _ci_warn("deferred writing disabled, but deferbuffer nonempty");
1376    $good = 0;
1377  }
1378
1379  # Any record in the deferbuffer should *not* be present in the readcache
1380  my $deferred_s = 0;
1381  while (my ($n, $r) = each %{$self->{deferred}}) {
1382    $deferred_s += length($r);
1383    if (defined $self->{cache}->_produce($n)) {
1384      _ci_warn("record $n is in the deferbuffer *and* the readcache");
1385      $good = 0;
1386    }
1387    if (substr($r, -$rsl) ne $rs) {
1388      _ci_warn("rec $n in the deferbuffer is missing the record separator");
1389      $good = 0;
1390    }
1391  }
1392
1393  # Total size of deferbuffer should match internal total
1394  if ($deferred_s != $self->{deferred_s}) {
1395    _ci_warn("buffer size is $self->{deferred_s}, should be $deferred_s");
1396    $good = 0;
1397  }
1398
1399  # Total size of deferbuffer should not exceed the specified limit
1400  if ($deferred_s > $self->{dw_size}) {
1401    _ci_warn("buffer size is $self->{deferred_s} which exceeds the limit of $self->{dw_size}");
1402    $good = 0;
1403  }
1404
1405  # Total size of cached data should not exceed the specified limit
1406  if ($deferred_s + $cached > $self->{memory}) {
1407    my $total = $deferred_s + $cached;
1408    _ci_warn("total stored data size is $total which exceeds the limit of $self->{memory}");
1409    $good = 0;
1410  }
1411
1412  # Stuff related to autodeferment
1413  if (!$self->{autodefer} && @{$self->{ad_history}}) {
1414    _ci_warn("autodefer is disabled, but ad_history is nonempty");
1415    $good = 0;
1416  }
1417  if ($self->{autodeferring} && $self->{defer}) {
1418    _ci_warn("both autodeferring and explicit deferring are active");
1419    $good = 0;
1420  }
1421  if (@{$self->{ad_history}} == 0) {
1422    # That's OK, no additional tests required
1423  } elsif (@{$self->{ad_history}} == 2) {
1424    my @non_number = grep !/^-?\d+$/, @{$self->{ad_history}};
1425    if (@non_number) {
1426      my $msg;
1427      { local $" = ')(';
1428        $msg = "ad_history contains non-numbers (@{$self->{ad_history}})";
1429      }
1430      _ci_warn($msg);
1431      $good = 0;
1432    } elsif ($self->{ad_history}[1] < $self->{ad_history}[0]) {
1433      _ci_warn("ad_history has nonsensical values @{$self->{ad_history}}");
1434      $good = 0;
1435    }
1436  } else {
1437    _ci_warn("ad_history has bad length <@{$self->{ad_history}}>");
1438    $good = 0;
1439  }
1440
1441  $good;
1442}
1443
1444################################################################
1445#
1446# Tie::File::Cache
1447#
1448# Read cache
1449
1450package Tie::File::Cache;
1451$Tie::File::Cache::VERSION = $Tie::File::VERSION;
1452use Carp ':DEFAULT', 'confess';
1453
1454sub HEAP () { 0 }
1455sub HASH () { 1 }
1456sub MAX  () { 2 }
1457sub BYTES() { 3 }
1458#sub STAT () { 4 } # Array with request statistics for each record
1459#sub MISS () { 5 } # Total number of cache misses
1460#sub REQ  () { 6 } # Total number of cache requests
1461use strict 'vars';
1462
1463sub new {
1464  my ($pack, $max) = @_;
1465  local *_;
1466  croak "missing argument to ->new" unless defined $max;
1467  my $self = [];
1468  bless $self => $pack;
1469  @$self = (Tie::File::Heap->new($self), {}, $max, 0);
1470  $self;
1471}
1472
1473sub adj_limit {
1474  my ($self, $n) = @_;
1475  $self->[MAX] += $n;
1476}
1477
1478sub set_limit {
1479  my ($self, $n) = @_;
1480  $self->[MAX] = $n;
1481}
1482
1483# For internal use only
1484# Will be called by the heap structure to notify us that a certain
1485# piece of data has moved from one heap element to another.
1486# $k is the hash key of the item
1487# $n is the new index into the heap at which it is stored
1488# If $n is undefined, the item has been removed from the heap.
1489sub _heap_move {
1490  my ($self, $k, $n) = @_;
1491  if (defined $n) {
1492    $self->[HASH]{$k} = $n;
1493  } else {
1494    delete $self->[HASH]{$k};
1495  }
1496}
1497
1498sub insert {
1499  my ($self, $key, $val) = @_;
1500  local *_;
1501  croak "missing argument to ->insert" unless defined $key;
1502  unless (defined $self->[MAX]) {
1503    confess "undefined max" ;
1504  }
1505  confess "undefined val" unless defined $val;
1506  return if length($val) > $self->[MAX];
1507
1508#  if ($self->[STAT]) {
1509#    $self->[STAT][$key] = 1;
1510#    return;
1511#  }
1512
1513  my $oldnode = $self->[HASH]{$key};
1514  if (defined $oldnode) {
1515    my $oldval = $self->[HEAP]->set_val($oldnode, $val);
1516    $self->[BYTES] -= length($oldval);
1517  } else {
1518    $self->[HEAP]->insert($key, $val);
1519  }
1520  $self->[BYTES] += length($val);
1521  $self->flush if $self->[BYTES] > $self->[MAX];
1522}
1523
1524sub expire {
1525  my $self = shift;
1526  my $old_data = $self->[HEAP]->popheap;
1527  return unless defined $old_data;
1528  $self->[BYTES] -= length $old_data;
1529  $old_data;
1530}
1531
1532sub remove {
1533  my ($self, @keys) = @_;
1534  my @result;
1535
1536#  if ($self->[STAT]) {
1537#    for my $key (@keys) {
1538#      $self->[STAT][$key] = 0;
1539#    }
1540#    return;
1541#  }
1542
1543  for my $key (@keys) {
1544    next unless exists $self->[HASH]{$key};
1545    my $old_data = $self->[HEAP]->remove($self->[HASH]{$key});
1546    $self->[BYTES] -= length $old_data;
1547    push @result, $old_data;
1548  }
1549  @result;
1550}
1551
1552sub lookup {
1553  my ($self, $key) = @_;
1554  local *_;
1555  croak "missing argument to ->lookup" unless defined $key;
1556
1557#  if ($self->[STAT]) {
1558#    $self->[MISS]++  if $self->[STAT][$key]++ == 0;
1559#    $self->[REQ]++;
1560#    my $hit_rate = 1 - $self->[MISS] / $self->[REQ];
1561#    # Do some testing to determine this threshhold
1562#    $#$self = STAT - 1 if $hit_rate > 0.20;
1563#  }
1564
1565  if (exists $self->[HASH]{$key}) {
1566    $self->[HEAP]->lookup($self->[HASH]{$key});
1567  } else {
1568    return;
1569  }
1570}
1571
1572# For internal use only
1573sub _produce {
1574  my ($self, $key) = @_;
1575  my $loc = $self->[HASH]{$key};
1576  return unless defined $loc;
1577  $self->[HEAP][$loc][2];
1578}
1579
1580# For internal use only
1581sub _promote {
1582  my ($self, $key) = @_;
1583  $self->[HEAP]->promote($self->[HASH]{$key});
1584}
1585
1586sub empty {
1587  my ($self) = @_;
1588  %{$self->[HASH]} = ();
1589    $self->[BYTES] = 0;
1590    $self->[HEAP]->empty;
1591#  @{$self->[STAT]} = ();
1592#    $self->[MISS] = 0;
1593#    $self->[REQ] = 0;
1594}
1595
1596sub is_empty {
1597  my ($self) = @_;
1598  keys %{$self->[HASH]} == 0;
1599}
1600
1601sub update {
1602  my ($self, $key, $val) = @_;
1603  local *_;
1604  croak "missing argument to ->update" unless defined $key;
1605  if (length($val) > $self->[MAX]) {
1606    my ($oldval) = $self->remove($key);
1607    $self->[BYTES] -= length($oldval) if defined $oldval;
1608  } elsif (exists $self->[HASH]{$key}) {
1609    my $oldval = $self->[HEAP]->set_val($self->[HASH]{$key}, $val);
1610    $self->[BYTES] += length($val);
1611    $self->[BYTES] -= length($oldval) if defined $oldval;
1612  } else {
1613    $self->[HEAP]->insert($key, $val);
1614    $self->[BYTES] += length($val);
1615  }
1616  $self->flush;
1617}
1618
1619sub rekey {
1620  my ($self, $okeys, $nkeys) = @_;
1621  local *_;
1622  my %map;
1623  @map{@$okeys} = @$nkeys;
1624  croak "missing argument to ->rekey" unless defined $nkeys;
1625  croak "length mismatch in ->rekey arguments" unless @$nkeys == @$okeys;
1626  my %adjusted;                 # map new keys to heap indices
1627  # You should be able to cut this to one loop TODO XXX
1628  for (0 .. $#$okeys) {
1629    $adjusted{$nkeys->[$_]} = delete $self->[HASH]{$okeys->[$_]};
1630  }
1631  while (my ($nk, $ix) = each %adjusted) {
1632    # @{$self->[HASH]}{keys %adjusted} = values %adjusted;
1633    $self->[HEAP]->rekey($ix, $nk);
1634    $self->[HASH]{$nk} = $ix;
1635  }
1636}
1637
1638sub ckeys {
1639  my $self = shift;
1640  my @a = keys %{$self->[HASH]};
1641  @a;
1642}
1643
1644# Return total amount of cached data
1645sub bytes {
1646  my $self = shift;
1647  $self->[BYTES];
1648}
1649
1650# Expire oldest item from cache until cache size is smaller than $max
1651sub reduce_size_to {
1652  my ($self, $max) = @_;
1653  until ($self->[BYTES] <= $max) {
1654    # Note that Tie::File::Cache::expire has been inlined here
1655    my $old_data = $self->[HEAP]->popheap;
1656    return unless defined $old_data;
1657    $self->[BYTES] -= length $old_data;
1658  }
1659}
1660
1661# Why not just $self->reduce_size_to($self->[MAX])?
1662# Try this when things stabilize   TODO XXX
1663# If the cache is too full, expire the oldest records
1664sub flush {
1665  my $self = shift;
1666  $self->reduce_size_to($self->[MAX]) if $self->[BYTES] > $self->[MAX];
1667}
1668
1669# For internal use only
1670sub _produce_lru {
1671  my $self = shift;
1672  $self->[HEAP]->expire_order;
1673}
1674
1675BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1676
1677sub _check_integrity {          # For CACHE
1678  my $self = shift;
1679  my $good = 1;
1680
1681  # Test HEAP
1682  $self->[HEAP]->_check_integrity or $good = 0;
1683
1684  # Test HASH
1685  my $bytes = 0;
1686  for my $k (keys %{$self->[HASH]}) {
1687    if ($k ne '0' && $k !~ /^[1-9][0-9]*$/) {
1688      $good = 0;
1689      _ci_warn "Cache hash key <$k> is non-numeric";
1690    }
1691
1692    my $h = $self->[HASH]{$k};
1693    if (! defined $h) {
1694      $good = 0;
1695      _ci_warn "Heap index number for key $k is undefined";
1696    } elsif ($h == 0) {
1697      $good = 0;
1698      _ci_warn "Heap index number for key $k is zero";
1699    } else {
1700      my $j = $self->[HEAP][$h];
1701      if (! defined $j) {
1702        $good = 0;
1703        _ci_warn "Heap contents key $k (=> $h) are undefined";
1704      } else {
1705        $bytes += length($j->[2]);
1706        if ($k ne $j->[1]) {
1707          $good = 0;
1708          _ci_warn "Heap contents key $k (=> $h) is $j->[1], should be $k";
1709        }
1710      }
1711    }
1712  }
1713
1714  # Test BYTES
1715  if ($bytes != $self->[BYTES]) {
1716    $good = 0;
1717    _ci_warn "Total data in cache is $bytes, expected $self->[BYTES]";
1718  }
1719
1720  # Test MAX
1721  if ($bytes > $self->[MAX]) {
1722    $good = 0;
1723    _ci_warn "Total data in cache is $bytes, exceeds maximum $self->[MAX]";
1724  }
1725
1726  return $good;
1727}
1728
1729sub delink {
1730  my $self = shift;
1731  $self->[HEAP] = undef;        # Bye bye heap
1732}
1733
1734################################################################
1735#
1736# Tie::File::Heap
1737#
1738# Heap data structure for use by cache LRU routines
1739
1740package Tie::File::Heap;
1741use Carp ':DEFAULT', 'confess';
1742$Tie::File::Heap::VERSION = $Tie::File::Cache::VERSION;
1743sub SEQ () { 0 };
1744sub KEY () { 1 };
1745sub DAT () { 2 };
1746
1747sub new {
1748  my ($pack, $cache) = @_;
1749  die "$pack: Parent cache object $cache does not support _heap_move method"
1750    unless eval { $cache->can('_heap_move') };
1751  my $self = [[0,$cache,0]];
1752  bless $self => $pack;
1753}
1754
1755# Allocate a new sequence number, larger than all previously allocated numbers
1756sub _nseq {
1757  my $self = shift;
1758  $self->[0][0]++;
1759}
1760
1761sub _cache {
1762  my $self = shift;
1763  $self->[0][1];
1764}
1765
1766sub _nelts {
1767  my $self = shift;
1768  $self->[0][2];
1769}
1770
1771sub _nelts_inc {
1772  my $self = shift;
1773  ++$self->[0][2];
1774}
1775
1776sub _nelts_dec {
1777  my $self = shift;
1778  --$self->[0][2];
1779}
1780
1781sub is_empty {
1782  my $self = shift;
1783  $self->_nelts == 0;
1784}
1785
1786sub empty {
1787  my $self = shift;
1788  $#$self = 0;
1789  $self->[0][2] = 0;
1790  $self->[0][0] = 0;            # might as well reset the sequence numbers
1791}
1792
1793# notify the parent cache object that we moved something
1794sub _heap_move {
1795  my $self = shift;
1796  $self->_cache->_heap_move(@_);
1797}
1798
1799# Insert a piece of data into the heap with the indicated sequence number.
1800# The item with the smallest sequence number is always at the top.
1801# If no sequence number is specified, allocate a new one and insert the
1802# item at the bottom.
1803sub insert {
1804  my ($self, $key, $data, $seq) = @_;
1805  $seq = $self->_nseq unless defined $seq;
1806  $self->_insert_new([$seq, $key, $data]);
1807}
1808
1809# Insert a new, fresh item at the bottom of the heap
1810sub _insert_new {
1811  my ($self, $item) = @_;
1812  my $i = @$self;
1813  $i = int($i/2) until defined $self->[$i/2];
1814  $self->[$i] = $item;
1815  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1816  $self->_nelts_inc;
1817}
1818
1819# Insert [$data, $seq] pair at or below item $i in the heap.
1820# If $i is omitted, default to 1 (the top element.)
1821sub _insert {
1822  my ($self, $item, $i) = @_;
1823#  $self->_check_loc($i) if defined $i;
1824  $i = 1 unless defined $i;
1825  until (! defined $self->[$i]) {
1826    if ($self->[$i][SEQ] > $item->[SEQ]) { # inserted item is older
1827      ($self->[$i], $item) = ($item, $self->[$i]);
1828      $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1829    }
1830    # If either is undefined, go that way.  Otherwise, choose at random
1831    my $dir;
1832    $dir = 0 if !defined $self->[2*$i];
1833    $dir = 1 if !defined $self->[2*$i+1];
1834    $dir = int(rand(2)) unless defined $dir;
1835    $i = 2*$i + $dir;
1836  }
1837  $self->[$i] = $item;
1838  $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1839  $self->_nelts_inc;
1840}
1841
1842# Remove the item at node $i from the heap, moving child items upwards.
1843# The item with the smallest sequence number is always at the top.
1844# Moving items upwards maintains this condition.
1845# Return the removed item.  Return undef if there was no item at node $i.
1846sub remove {
1847  my ($self, $i) = @_;
1848  $i = 1 unless defined $i;
1849  my $top = $self->[$i];
1850  return unless defined $top;
1851  while (1) {
1852    my $ii;
1853    my ($L, $R) = (2*$i, 2*$i+1);
1854
1855    # If either is undefined, go the other way.
1856    # Otherwise, go towards the smallest.
1857    last unless defined $self->[$L] || defined $self->[$R];
1858    $ii = $R if not defined $self->[$L];
1859    $ii = $L if not defined $self->[$R];
1860    unless (defined $ii) {
1861      $ii = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1862    }
1863
1864    $self->[$i] = $self->[$ii]; # Promote child to fill vacated spot
1865    $self->[0][1]->_heap_move($self->[$i][KEY], $i);
1866    $i = $ii; # Fill new vacated spot
1867  }
1868  $self->[0][1]->_heap_move($top->[KEY], undef);
1869  undef $self->[$i];
1870  $self->_nelts_dec;
1871  return $top->[DAT];
1872}
1873
1874sub popheap {
1875  my $self = shift;
1876  $self->remove(1);
1877}
1878
1879# set the sequence number of the indicated item to a higher number
1880# than any other item in the heap, and bubble the item down to the
1881# bottom.
1882sub promote {
1883  my ($self, $n) = @_;
1884#  $self->_check_loc($n);
1885  $self->[$n][SEQ] = $self->_nseq;
1886  my $i = $n;
1887  while (1) {
1888    my ($L, $R) = (2*$i, 2*$i+1);
1889    my $dir;
1890    last unless defined $self->[$L] || defined $self->[$R];
1891    $dir = $R unless defined $self->[$L];
1892    $dir = $L unless defined $self->[$R];
1893    unless (defined $dir) {
1894      $dir = $self->[$L][SEQ] < $self->[$R][SEQ] ? $L : $R;
1895    }
1896    @{$self}[$i, $dir] = @{$self}[$dir, $i];
1897    for ($i, $dir) {
1898      $self->[0][1]->_heap_move($self->[$_][KEY], $_) if defined $self->[$_];
1899    }
1900    $i = $dir;
1901  }
1902}
1903
1904# Return item $n from the heap, promoting its LRU status
1905sub lookup {
1906  my ($self, $n) = @_;
1907#  $self->_check_loc($n);
1908  my $val = $self->[$n];
1909  $self->promote($n);
1910  $val->[DAT];
1911}
1912
1913
1914# Assign a new value for node $n, promoting it to the bottom of the heap
1915sub set_val {
1916  my ($self, $n, $val) = @_;
1917#  $self->_check_loc($n);
1918  my $oval = $self->[$n][DAT];
1919  $self->[$n][DAT] = $val;
1920  $self->promote($n);
1921  return $oval;
1922}
1923
1924# The hash key has changed for an item;
1925# alter the heap's record of the hash key
1926sub rekey {
1927  my ($self, $n, $new_key) = @_;
1928#  $self->_check_loc($n);
1929  $self->[$n][KEY] = $new_key;
1930}
1931
1932sub _check_loc {
1933  my ($self, $n) = @_;
1934  unless (1 || defined $self->[$n]) {
1935    confess "_check_loc($n) failed";
1936  }
1937}
1938
1939BEGIN { *_ci_warn = \&Tie::File::_ci_warn }
1940
1941sub _check_integrity {
1942  my $self = shift;
1943  my $good = 1;
1944  my %seq;
1945
1946  unless (eval {$self->[0][1]->isa("Tie::File::Cache")}) {
1947    _ci_warn "Element 0 of heap corrupt";
1948    $good = 0;
1949  }
1950  $good = 0 unless $self->_satisfies_heap_condition(1);
1951  for my $i (2 .. $#{$self}) {
1952    my $p = int($i/2);          # index of parent node
1953    if (defined $self->[$i] && ! defined $self->[$p]) {
1954      _ci_warn "Element $i of heap defined, but parent $p isn't";
1955      $good = 0;
1956    }
1957
1958    if (defined $self->[$i]) {
1959      if ($seq{$self->[$i][SEQ]}) {
1960        my $seq = $self->[$i][SEQ];
1961        _ci_warn "Nodes $i and $seq{$seq} both have SEQ=$seq";
1962        $good = 0;
1963      } else {
1964        $seq{$self->[$i][SEQ]} = $i;
1965      }
1966    }
1967  }
1968
1969  return $good;
1970}
1971
1972sub _satisfies_heap_condition {
1973  my $self = shift;
1974  my $n = shift || 1;
1975  my $good = 1;
1976  for (0, 1) {
1977    my $c = $n*2 + $_;
1978    next unless defined $self->[$c];
1979    if ($self->[$n][SEQ] >= $self->[$c]) {
1980      _ci_warn "Node $n of heap does not predate node $c";
1981      $good = 0 ;
1982    }
1983    $good = 0 unless $self->_satisfies_heap_condition($c);
1984  }
1985  return $good;
1986}
1987
1988# Return a list of all the values, sorted by expiration order
1989sub expire_order {
1990  my $self = shift;
1991  my @nodes = sort {$a->[SEQ] <=> $b->[SEQ]} $self->_nodes;
1992  map { $_->[KEY] } @nodes;
1993}
1994
1995sub _nodes {
1996  my $self = shift;
1997  my $i = shift || 1;
1998  return unless defined $self->[$i];
1999  ($self->[$i], $self->_nodes($i*2), $self->_nodes($i*2+1));
2000}
2001
2002"Cogito, ergo sum.";  # don't forget to return a true value from the file
2003
2004__END__
2005
2006=head1 NAME
2007
2008Tie::File - Access the lines of a disk file via a Perl array
2009
2010=head1 SYNOPSIS
2011
2012	# This file documents Tie::File version 0.98
2013	use Tie::File;
2014
2015	tie @array, 'Tie::File', filename or die ...;
2016
2017	$array[13] = 'blah';     # line 13 of the file is now 'blah'
2018	print $array[42];        # display line 42 of the file
2019
2020	$n_recs = @array;        # how many records are in the file?
2021	$#array -= 2;            # chop two records off the end
2022
2023
2024	for (@array) {
2025	  s/PERL/Perl/g;         # Replace PERL with Perl everywhere in the file
2026	}
2027
2028	# These are just like regular push, pop, unshift, shift, and splice
2029	# Except that they modify the file in the way you would expect
2030
2031	push @array, new recs...;
2032	my $r1 = pop @array;
2033	unshift @array, new recs...;
2034	my $r2 = shift @array;
2035	@old_recs = splice @array, 3, 7, new recs...;
2036
2037	untie @array;            # all finished
2038
2039
2040=head1 DESCRIPTION
2041
2042C<Tie::File> represents a regular text file as a Perl array.  Each
2043element in the array corresponds to a record in the file.  The first
2044line of the file is element 0 of the array; the second line is element
20451, and so on.
2046
2047The file is I<not> loaded into memory, so this will work even for
2048gigantic files.
2049
2050Changes to the array are reflected in the file immediately.
2051
2052Lazy people and beginners may now stop reading the manual.
2053
2054=head2 C<recsep>
2055
2056What is a 'record'?  By default, the meaning is the same as for the
2057C<E<lt>...E<gt>> operator: It's a string terminated by C<$/>, which is
2058probably C<"\n">.  (Minor exception: on DOS and Win32 systems, a
2059'record' is a string terminated by C<"\r\n">.)  You may change the
2060definition of "record" by supplying the C<recsep> option in the C<tie>
2061call:
2062
2063	tie @array, 'Tie::File', $file, recsep => 'es';
2064
2065This says that records are delimited by the string C<es>.  If the file
2066contained the following data:
2067
2068	Curse these pesky flies!\n
2069
2070then the C<@array> would appear to have four elements:
2071
2072	"Curse th"
2073	"e p"
2074	"ky fli"
2075	"!\n"
2076
2077An undefined value is not permitted as a record separator.  Perl's
2078special "paragraph mode" semantics (E<agrave> la C<$/ = "">) are not
2079emulated.
2080
2081Records read from the tied array do not have the record separator
2082string on the end; this is to allow
2083
2084	$array[17] .= "extra";
2085
2086to work as expected.
2087
2088(See L<"autochomp">, below.)  Records stored into the array will have
2089the record separator string appended before they are written to the
2090file, if they don't have one already.  For example, if the record
2091separator string is C<"\n">, then the following two lines do exactly
2092the same thing:
2093
2094	$array[17] = "Cherry pie";
2095	$array[17] = "Cherry pie\n";
2096
2097The result is that the contents of line 17 of the file will be
2098replaced with "Cherry pie"; a newline character will separate line 17
2099from line 18.  This means that this code will do nothing:
2100
2101	chomp $array[17];
2102
2103Because the C<chomp>ed value will have the separator reattached when
2104it is written back to the file.  There is no way to create a file
2105whose trailing record separator string is missing.
2106
2107Inserting records that I<contain> the record separator string is not
2108supported by this module.  It will probably produce a reasonable
2109result, but what this result will be may change in a future version.
2110Use 'splice' to insert records or to replace one record with several.
2111
2112=head2 C<autochomp>
2113
2114Normally, array elements have the record separator removed, so that if
2115the file contains the text
2116
2117	Gold
2118	Frankincense
2119	Myrrh
2120
2121the tied array will appear to contain C<("Gold", "Frankincense",
2122"Myrrh")>.  If you set C<autochomp> to a false value, the record
2123separator will not be removed.  If the file above was tied with
2124
2125	tie @gifts, "Tie::File", $gifts, autochomp => 0;
2126
2127then the array C<@gifts> would appear to contain C<("Gold\n",
2128"Frankincense\n", "Myrrh\n")>, or (on Win32 systems) C<("Gold\r\n",
2129"Frankincense\r\n", "Myrrh\r\n")>.
2130
2131=head2 C<mode>
2132
2133Normally, the specified file will be opened for read and write access,
2134and will be created if it does not exist.  (That is, the flags
2135C<O_RDWR | O_CREAT> are supplied in the C<open> call.)  If you want to
2136change this, you may supply alternative flags in the C<mode> option.
2137See L<Fcntl> for a listing of available flags.
2138For example:
2139
2140	# open the file if it exists, but fail if it does not exist
2141	use Fcntl 'O_RDWR';
2142	tie @array, 'Tie::File', $file, mode => O_RDWR;
2143
2144	# create the file if it does not exist
2145	use Fcntl 'O_RDWR', 'O_CREAT';
2146	tie @array, 'Tie::File', $file, mode => O_RDWR | O_CREAT;
2147
2148	# open an existing file in read-only mode
2149	use Fcntl 'O_RDONLY';
2150	tie @array, 'Tie::File', $file, mode => O_RDONLY;
2151
2152Opening the data file in write-only or append mode is not supported.
2153
2154=head2 C<memory>
2155
2156This is an upper limit on the amount of memory that C<Tie::File> will
2157consume at any time while managing the file.  This is used for two
2158things: managing the I<read cache> and managing the I<deferred write
2159buffer>.
2160
2161Records read in from the file are cached, to avoid having to re-read
2162them repeatedly.  If you read the same record twice, the first time it
2163will be stored in memory, and the second time it will be fetched from
2164the I<read cache>.  The amount of data in the read cache will not
2165exceed the value you specified for C<memory>.  If C<Tie::File> wants
2166to cache a new record, but the read cache is full, it will make room
2167by expiring the least-recently visited records from the read cache.
2168
2169The default memory limit is 2Mib.  You can adjust the maximum read
2170cache size by supplying the C<memory> option.  The argument is the
2171desired cache size, in bytes.
2172
2173	# I have a lot of memory, so use a large cache to speed up access
2174	tie @array, 'Tie::File', $file, memory => 20_000_000;
2175
2176Setting the memory limit to 0 will inhibit caching; records will be
2177fetched from disk every time you examine them.
2178
2179The C<memory> value is not an absolute or exact limit on the memory
2180used.  C<Tie::File> objects contains some structures besides the read
2181cache and the deferred write buffer, whose sizes are not charged
2182against C<memory>.
2183
2184The cache itself consumes about 310 bytes per cached record, so if
2185your file has many short records, you may want to decrease the cache
2186memory limit, or else the cache overhead may exceed the size of the
2187cached data.
2188
2189
2190=head2 C<dw_size>
2191
2192(This is an advanced feature.  Skip this section on first reading.)
2193
2194If you use deferred writing (See L<"Deferred Writing">, below) then
2195data you write into the array will not be written directly to the
2196file; instead, it will be saved in the I<deferred write buffer> to be
2197written out later.  Data in the deferred write buffer is also charged
2198against the memory limit you set with the C<memory> option.
2199
2200You may set the C<dw_size> option to limit the amount of data that can
2201be saved in the deferred write buffer.  This limit may not exceed the
2202total memory limit.  For example, if you set C<dw_size> to 1000 and
2203C<memory> to 2500, that means that no more than 1000 bytes of deferred
2204writes will be saved up.  The space available for the read cache will
2205vary, but it will always be at least 1500 bytes (if the deferred write
2206buffer is full) and it could grow as large as 2500 bytes (if the
2207deferred write buffer is empty.)
2208
2209If you don't specify a C<dw_size>, it defaults to the entire memory
2210limit.
2211
2212=head2 Option Format
2213
2214C<-mode> is a synonym for C<mode>.  C<-recsep> is a synonym for
2215C<recsep>.  C<-memory> is a synonym for C<memory>.  You get the
2216idea.
2217
2218=head1 Public Methods
2219
2220The C<tie> call returns an object, say C<$o>.  You may call
2221
2222	$rec = $o->FETCH($n);
2223	$o->STORE($n, $rec);
2224
2225to fetch or store the record at line C<$n>, respectively; similarly
2226the other tied array methods.  (See L<perltie> for details.)  You may
2227also call the following methods on this object:
2228
2229=head2 C<flock>
2230
2231	$o->flock(MODE)
2232
2233will lock the tied file.  C<MODE> has the same meaning as the second
2234argument to the Perl built-in C<flock> function; for example
2235C<LOCK_SH> or C<LOCK_EX | LOCK_NB>.  (These constants are provided by
2236the C<use Fcntl ':flock'> declaration.)
2237
2238C<MODE> is optional; the default is C<LOCK_EX>.
2239
2240C<Tie::File> maintains an internal table of the byte offset of each
2241record it has seen in the file.
2242
2243When you use C<flock> to lock the file, C<Tie::File> assumes that the
2244read cache is no longer trustworthy, because another process might
2245have modified the file since the last time it was read.  Therefore, a
2246successful call to C<flock> discards the contents of the read cache
2247and the internal record offset table.
2248
2249C<Tie::File> promises that the following sequence of operations will
2250be safe:
2251
2252	my $o = tie @array, "Tie::File", $filename;
2253	$o->flock;
2254
2255In particular, C<Tie::File> will I<not> read or write the file during
2256the C<tie> call.  (Exception: Using C<mode =E<gt> O_TRUNC> will, of
2257course, erase the file during the C<tie> call.  If you want to do this
2258safely, then open the file without C<O_TRUNC>, lock the file, and use
2259C<@array = ()>.)
2260
2261The best way to unlock a file is to discard the object and untie the
2262array.  It is probably unsafe to unlock the file without also untying
2263it, because if you do, changes may remain unwritten inside the object.
2264That is why there is no shortcut for unlocking.  If you really want to
2265unlock the file prematurely, you know what to do; if you don't know
2266what to do, then don't do it.
2267
2268All the usual warnings about file locking apply here.  In particular,
2269note that file locking in Perl is B<advisory>, which means that
2270holding a lock will not prevent anyone else from reading, writing, or
2271erasing the file; it only prevents them from getting another lock at
2272the same time.  Locks are analogous to green traffic lights: If you
2273have a green light, that does not prevent the idiot coming the other
2274way from plowing into you sideways; it merely guarantees to you that
2275the idiot does not also have a green light at the same time.
2276
2277=head2 C<autochomp>
2278
2279	my $old_value = $o->autochomp(0);    # disable autochomp option
2280	my $old_value = $o->autochomp(1);    #  enable autochomp option
2281
2282	my $ac = $o->autochomp();   # recover current value
2283
2284See L<"autochomp">, above.
2285
2286=head2 C<defer>, C<flush>, C<discard>, and C<autodefer>
2287
2288See L<"Deferred Writing">, below.
2289
2290=head2 C<offset>
2291
2292	$off = $o->offset($n);
2293
2294This method returns the byte offset of the start of the C<$n>th record
2295in the file.  If there is no such record, it returns an undefined
2296value.
2297
2298=head1 Tying to an already-opened filehandle
2299
2300If C<$fh> is a filehandle, such as is returned by C<IO::File> or one
2301of the other C<IO> modules, you may use:
2302
2303	tie @array, 'Tie::File', $fh, ...;
2304
2305Similarly if you opened that handle C<FH> with regular C<open> or
2306C<sysopen>, you may use:
2307
2308	tie @array, 'Tie::File', \*FH, ...;
2309
2310Handles that were opened write-only won't work.  Handles that were
2311opened read-only will work as long as you don't try to modify the
2312array.  Handles must be attached to seekable sources of data---that
2313means no pipes or sockets.  If C<Tie::File> can detect that you
2314supplied a non-seekable handle, the C<tie> call will throw an
2315exception.  (On Unix systems, it can detect this.)
2316
2317Note that Tie::File will only close any filehandles that it opened
2318internally.  If you passed it a filehandle as above, you "own" the
2319filehandle, and are responsible for closing it after you have untied
2320the @array.
2321
2322=head1 Deferred Writing
2323
2324(This is an advanced feature.  Skip this section on first reading.)
2325
2326Normally, modifying a C<Tie::File> array writes to the underlying file
2327immediately.  Every assignment like C<$a[3] = ...> rewrites as much of
2328the file as is necessary; typically, everything from line 3 through
2329the end will need to be rewritten.  This is the simplest and most
2330transparent behavior.  Performance even for large files is reasonably
2331good.
2332
2333However, under some circumstances, this behavior may be excessively
2334slow.  For example, suppose you have a million-record file, and you
2335want to do:
2336
2337	for (@FILE) {
2338	  $_ = "> $_";
2339	}
2340
2341The first time through the loop, you will rewrite the entire file,
2342from line 0 through the end.  The second time through the loop, you
2343will rewrite the entire file from line 1 through the end.  The third
2344time through the loop, you will rewrite the entire file from line 2 to
2345the end.  And so on.
2346
2347If the performance in such cases is unacceptable, you may defer the
2348actual writing, and then have it done all at once.  The following loop
2349will perform much better for large files:
2350
2351	(tied @a)->defer;
2352	for (@a) {
2353	  $_ = "> $_";
2354	}
2355	(tied @a)->flush;
2356
2357If C<Tie::File>'s memory limit is large enough, all the writing will
2358done in memory.  Then, when you call C<-E<gt>flush>, the entire file
2359will be rewritten in a single pass.
2360
2361(Actually, the preceding discussion is something of a fib.  You don't
2362need to enable deferred writing to get good performance for this
2363common case, because C<Tie::File> will do it for you automatically
2364unless you specifically tell it not to.  See L<"Autodeferring">,
2365below.)
2366
2367Calling C<-E<gt>flush> returns the array to immediate-write mode.  If
2368you wish to discard the deferred writes, you may call C<-E<gt>discard>
2369instead of C<-E<gt>flush>.  Note that in some cases, some of the data
2370will have been written already, and it will be too late for
2371C<-E<gt>discard> to discard all the changes.  Support for
2372C<-E<gt>discard> may be withdrawn in a future version of C<Tie::File>.
2373
2374Deferred writes are cached in memory up to the limit specified by the
2375C<dw_size> option (see above).  If the deferred-write buffer is full
2376and you try to write still more deferred data, the buffer will be
2377flushed.  All buffered data will be written immediately, the buffer
2378will be emptied, and the now-empty space will be used for future
2379deferred writes.
2380
2381If the deferred-write buffer isn't yet full, but the total size of the
2382buffer and the read cache would exceed the C<memory> limit, the oldest
2383records will be expired from the read cache until the total size is
2384under the limit.
2385
2386C<push>, C<pop>, C<shift>, C<unshift>, and C<splice> cannot be
2387deferred.  When you perform one of these operations, any deferred data
2388is written to the file and the operation is performed immediately.
2389This may change in a future version.
2390
2391If you resize the array with deferred writing enabled, the file will
2392be resized immediately, but deferred records will not be written.
2393This has a surprising consequence: C<@a = (...)> erases the file
2394immediately, but the writing of the actual data is deferred.  This
2395might be a bug.  If it is a bug, it will be fixed in a future version.
2396
2397=head2 Autodeferring
2398
2399C<Tie::File> tries to guess when deferred writing might be helpful,
2400and to turn it on and off automatically.
2401
2402	for (@a) {
2403	  $_ = "> $_";
2404	}
2405
2406In this example, only the first two assignments will be done
2407immediately; after this, all the changes to the file will be deferred
2408up to the user-specified memory limit.
2409
2410You should usually be able to ignore this and just use the module
2411without thinking about deferring.  However, special applications may
2412require fine control over which writes are deferred, or may require
2413that all writes be immediate.  To disable the autodeferment feature,
2414use
2415
2416	(tied @o)->autodefer(0);
2417
2418or
2419
2420       	tie @array, 'Tie::File', $file, autodefer => 0;
2421
2422
2423Similarly, C<-E<gt>autodefer(1)> re-enables autodeferment, and
2424C<-E<gt>autodefer()> recovers the current value of the autodefer setting.
2425
2426
2427=head1 CONCURRENT ACCESS TO FILES
2428
2429Caching and deferred writing are inappropriate if you want the same
2430file to be accessed simultaneously from more than one process.  Other
2431optimizations performed internally by this module are also
2432incompatible with concurrent access.  A future version of this module will
2433support a C<concurrent =E<gt> 1> option that enables safe concurrent access.
2434
2435Previous versions of this documentation suggested using C<memory
2436=E<gt> 0> for safe concurrent access.  This was mistaken.  Tie::File
2437will not support safe concurrent access before version 0.96.
2438
2439=head1 CAVEATS
2440
2441(That's Latin for 'warnings'.)
2442
2443=over 4
2444
2445=item *
2446
2447Reasonable effort was made to make this module efficient.  Nevertheless,
2448changing the size of a record in the middle of a large file will
2449always be fairly slow, because everything after the new record must be
2450moved.
2451
2452=item *
2453
2454The behavior of tied arrays is not precisely the same as for regular
2455arrays.  For example:
2456
2457	# This DOES print "How unusual!"
2458	undef $a[10];  print "How unusual!\n" if defined $a[10];
2459
2460C<undef>-ing a C<Tie::File> array element just blanks out the
2461corresponding record in the file.  When you read it back again, you'll
2462get the empty string, so the supposedly-C<undef>'ed value will be
2463defined.  Similarly, if you have C<autochomp> disabled, then
2464
2465	# This DOES print "How unusual!" if 'autochomp' is disabled
2466	undef $a[10];
2467        print "How unusual!\n" if $a[10];
2468
2469Because when C<autochomp> is disabled, C<$a[10]> will read back as
2470C<"\n"> (or whatever the record separator string is.)
2471
2472There are other minor differences, particularly regarding C<exists>
2473and C<delete>, but in general, the correspondence is extremely close.
2474
2475=item *
2476
2477I have supposed that since this module is concerned with file I/O,
2478almost all normal use of it will be heavily I/O bound.  This means
2479that the time to maintain complicated data structures inside the
2480module will be dominated by the time to actually perform the I/O.
2481When there was an opportunity to spend CPU time to avoid doing I/O, I
2482usually tried to take it.
2483
2484=item *
2485
2486You might be tempted to think that deferred writing is like
2487transactions, with C<flush> as C<commit> and C<discard> as
2488C<rollback>, but it isn't, so don't.
2489
2490=item *
2491
2492There is a large memory overhead for each record offset and for each
2493cache entry: about 310 bytes per cached data record, and about 21 bytes per offset table entry.
2494
2495The per-record overhead will limit the maximum number of records you
2496can access per file. Note that I<accessing> the length of the array
2497via C<$x = scalar @tied_file> accesses B<all> records and stores their
2498offsets.  The same for C<foreach (@tied_file)>, even if you exit the
2499loop early.
2500
2501=back
2502
2503=head1 SUBCLASSING
2504
2505This version promises absolutely nothing about the internals, which
2506may change without notice.  A future version of the module will have a
2507well-defined and stable subclassing API.
2508
2509=head1 WHAT ABOUT C<DB_File>?
2510
2511People sometimes point out that L<DB_File> will do something similar,
2512and ask why C<Tie::File> module is necessary.
2513
2514There are a number of reasons that you might prefer C<Tie::File>.
2515A list is available at C<http://perl.plover.com/TieFile/why-not-DB_File>.
2516
2517=head1 AUTHOR
2518
2519Mark Jason Dominus
2520
2521To contact the author, send email to: C<mjd-perl-tiefile+@plover.com>
2522
2523To receive an announcement whenever a new version of this module is
2524released, send a blank email message to
2525C<mjd-perl-tiefile-subscribe@plover.com>.
2526
2527The most recent version of this module, including documentation and
2528any news of importance, will be available at
2529
2530	http://perl.plover.com/TieFile/
2531
2532
2533=head1 LICENSE
2534
2535C<Tie::File> version 0.96 is copyright (C) 2003 Mark Jason Dominus.
2536
2537This library is free software; you may redistribute it and/or modify
2538it under the same terms as Perl itself.
2539
2540These terms are your choice of any of (1) the Perl Artistic Licence,
2541or (2) version 2 of the GNU General Public License as published by the
2542Free Software Foundation, or (3) any later version of the GNU General
2543Public License.
2544
2545This library is distributed in the hope that it will be useful,
2546but WITHOUT ANY WARRANTY; without even the implied warranty of
2547MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
2548GNU General Public License for more details.
2549
2550You should have received a copy of the GNU General Public License
2551along with this library program; it should be in the file C<COPYING>.
2552If not, write to the Free Software Foundation, Inc., 51 Franklin Street,
2553Fifth Floor, Boston, MA  02110-1301, USA
2554
2555For licensing inquiries, contact the author at:
2556
2557	Mark Jason Dominus
2558	255 S. Warnock St.
2559	Philadelphia, PA 19107
2560
2561=head1 WARRANTY
2562
2563C<Tie::File> version 0.98 comes with ABSOLUTELY NO WARRANTY.
2564For details, see the license.
2565
2566=head1 THANKS
2567
2568Gigantic thanks to Jarkko Hietaniemi, for agreeing to put this in the
2569core when I hadn't written it yet, and for generally being helpful,
2570supportive, and competent.  (Usually the rule is "choose any one.")
2571Also big thanks to Abhijit Menon-Sen for all of the same things.
2572
2573Special thanks to Craig Berry and Peter Prymmer (for VMS portability
2574help), Randy Kobes (for Win32 portability help), Clinton Pierce and
2575Autrijus Tang (for heroic eleventh-hour Win32 testing above and beyond
2576the call of duty), Michael G Schwern (for testing advice), and the
2577rest of the CPAN testers (for testing generally).
2578
2579Special thanks to Tels for suggesting several speed and memory
2580optimizations.
2581
2582Additional thanks to:
2583Edward Avis /
2584Mattia Barbon /
2585Tom Christiansen /
2586Gerrit Haase /
2587Gurusamy Sarathy /
2588Jarkko Hietaniemi (again) /
2589Nikola Knezevic /
2590John Kominetz /
2591Nick Ing-Simmons /
2592Tassilo von Parseval /
2593H. Dieter Pearcey /
2594Slaven Rezic /
2595Eric Roode /
2596Peter Scott /
2597Peter Somu /
2598Autrijus Tang (again) /
2599Tels (again) /
2600Juerd Waalboer /
2601Todd Rinaldo
2602
2603=head1 TODO
2604
2605More tests.  (Stuff I didn't think of yet.)
2606
2607Paragraph mode?
2608
2609Fixed-length mode.  Leave-blanks mode.
2610
2611Maybe an autolocking mode?
2612
2613For many common uses of the module, the read cache is a liability.
2614For example, a program that inserts a single record, or that scans the
2615file once, will have a cache hit rate of zero.  This suggests a major
2616optimization: The cache should be initially disabled.  Here's a hybrid
2617approach: Initially, the cache is disabled, but the cache code
2618maintains statistics about how high the hit rate would be *if* it were
2619enabled.  When it sees the hit rate get high enough, it enables
2620itself.  The STAT comments in this code are the beginning of an
2621implementation of this.
2622
2623Record locking with fcntl()?  Then the module might support an undo
2624log and get real transactions.  What a tour de force that would be.
2625
2626Keeping track of the highest cached record. This would allow reads-in-a-row
2627to skip the cache lookup faster (if reading from 1..N with empty cache at
2628start, the last cached value will be always N-1).
2629
2630More tests.
2631
2632=cut
2633
2634