xref: /openbsd/gnu/usr.bin/perl/regen/mk_invlists.pl (revision 5dea098c)
1#!perl -w
2use 5.015;
3use strict;
4use warnings;
5use Unicode::UCD qw(prop_aliases
6                    prop_values
7                    prop_value_aliases
8                    prop_invlist
9                    prop_invmap search_invlist
10                    charprop
11                    num
12                    charblock
13                   );
14require './regen/regen_lib.pl';
15require './regen/charset_translations.pl';
16require './lib/unicore/UCD.pl';
17require './regen/mph.pl';
18use re "/aa";
19
20# This program outputs charclass_invlists.h, which contains various inversion
21# lists in the form of C arrays that are to be used as-is for inversion lists.
22# Thus, the lists it contains are essentially pre-compiled, and need only a
23# light-weight fast wrapper to make them usable at run-time.
24
25# As such, this code knows about the internal structure of these lists, and
26# any change made to that has to be done here as well.  A random number stored
27# in the headers is used to minimize the possibility of things getting
28# out-of-sync, or the wrong data structure being passed.  Currently that
29# random number is:
30
31my $VERSION_DATA_STRUCTURE_TYPE = 148565664;
32
33# charclass_invlists.h now also contains inversion maps and enum definitions
34# for those maps that have a finite number of possible values
35
36# integer or float (no exponent)
37my $integer_or_float_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x;
38
39# Also includes rationals
40my $numeric_re = qr! $integer_or_float_re | ^ -? \d+ / \d+ $ !x;
41
42# More than one code point may have the same code point as their fold.  This
43# gives the maximum number in the current Unicode release.  (The folded-to
44# code point is not included in this count.)  Most folds are pairs of code
45# points, like 'B' and 'b', so this number is at least one.
46my $max_fold_froms = 1;
47
48my %keywords;
49my $table_name_prefix = "UNI_";
50
51# Matches valid C language enum names: begins with ASCII alphabetic, then any
52# ASCII \w
53my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax;
54
55my $out_fh = open_new('charclass_invlists.h', '>',
56                      {style => '*', by => 'regen/mk_invlists.pl',
57                      from => "Unicode::UCD"});
58
59my $in_file_pound_if = "";
60
61my $max_hdr_len = 3;    # In headings, how wide a name is allowed?
62
63print $out_fh "/* See the generating file for comments */\n\n";
64
65print $out_fh <<'EOF';
66/* This gives the number of code points that can be in the bitmap of an ANYOF
67 * node.  The shift number must currently be one of: 8..12.  It can't be less
68 * than 8 (256) because some code relies on it being at least that.  Above 12
69 * (4096), and you start running into warnings that some data structure widths
70 * have been exceeded, though the test suite as of this writing still passes
71 * for up through 16, which is as high as anyone would ever want to go,
72 * encompassing all of the Unicode BMP, and thus including all the economically
73 * important world scripts.  At 12 most of them are: including Arabic,
74 * Cyrillic, Greek, Hebrew, Indian subcontinent, Latin, and Thai; but not Han,
75 * Japanese, nor Korean.  (The regarglen structure in regnodes.h is a U8, and
76 * the trie types TRIEC and AHOCORASICKC are larger than U8 for shift values
77 * above 12.)  Be sure to benchmark before changing, as larger sizes do
78 * significantly slow down the test suite */
79
80EOF
81
82my $num_anyof_code_points = '(1 << 8)';
83
84print $out_fh "#define NUM_ANYOF_CODE_POINTS   $num_anyof_code_points\n\n";
85
86$num_anyof_code_points = eval $num_anyof_code_points;
87
88no warnings 'once';
89print $out_fh <<"EOF";
90/* The precision to use in "%.*e" formats */
91#define PL_E_FORMAT_PRECISION $Unicode::UCD::e_precision
92EOF
93
94# enums that should be made public
95my %public_enums = (
96                    _Perl_SCX => 1
97                    );
98
99# The symbols generated by this program are all currently defined only in a
100# single dot c each.  The code knows where most of them go, but this hash
101# gives overrides for the exceptions to the typical place
102my %exceptions_to_where_to_define =
103                        (
104                            #_Perl_IVCF => 'PERL_IN_REGCOMP_C',
105                        );
106
107my %where_to_define_enums = ();
108
109my $applies_to_all_charsets_text = "all charsets";
110
111my %gcb_enums;
112my @gcb_short_enums;
113my %gcb_abbreviations;
114my %lb_enums;
115my @lb_short_enums;
116my %lb_abbreviations;
117my %wb_enums;
118my @wb_short_enums;
119my %wb_abbreviations;
120
121my @a2n;
122
123my %prop_name_aliases;
124# Invert this hash so that for each canonical name, we get a list of things
125# that map to it (excluding itself)
126foreach my $name (sort keys %Unicode::UCD::loose_property_name_of) {
127    my $canonical = $Unicode::UCD::loose_property_name_of{$name};
128    push @{$prop_name_aliases{$canonical}},  $name if $canonical ne $name;
129}
130
131# Output these tables in the same vicinity as each other, so that will get
132# paged in at about the same time.  These are also assumed to be the exact
133# same list as those properties used internally by perl.
134my %keep_together = (
135                        assigned => 1,
136                        ascii => 1,
137                        upper => 1,
138                        lower => 1,
139                        title => 1,
140                        cased => 1,
141                        uppercaseletter => 1,
142                        lowercaseletter => 1,
143                        titlecaseletter => 1,
144                        casedletter => 1,
145                        vertspace => 1,
146                        xposixalnum => 1,
147                        xposixalpha => 1,
148                        xposixblank => 1,
149                        xposixcntrl => 1,
150                        xposixdigit => 1,
151                        xposixgraph => 1,
152                        xposixlower => 1,
153                        xposixprint => 1,
154                        xposixpunct => 1,
155                        xposixspace => 1,
156                        xposixupper => 1,
157                        xposixword => 1,
158                        xposixxdigit => 1,
159                        posixalnum => 1,
160                        posixalpha => 1,
161                        posixblank => 1,
162                        posixcntrl => 1,
163                        posixdigit => 1,
164                        posixgraph => 1,
165                        posixlower => 1,
166                        posixprint => 1,
167                        posixpunct => 1,
168                        posixspace => 1,
169                        posixupper => 1,
170                        posixword => 1,
171                        posixxdigit => 1,
172                        _perl_any_folds => 1,
173                        _perl_folds_to_multi_char => 1,
174                        _perl_is_in_multi_char_fold => 1,
175                        _perl_non_final_folds => 1,
176                        _perl_idstart => 1,
177                        _perl_idcont => 1,
178                        _perl_charname_begin => 1,
179                        _perl_charname_continue => 1,
180                        _perl_problematic_locale_foldeds_start => 1,
181                        _perl_problematic_locale_folds => 1,
182                        _perl_quotemeta => 1,
183                    );
184my %perl_tags;  # So can find synonyms of the above properties
185
186my $unused_table_hdr = 'u';     # Heading for row or column for unused values
187
188sub uniques {
189    # Returns non-duplicated input values.  From "Perl Best Practices:
190    # Encapsulated Cleverness".  p. 455 in first edition.
191
192    my %seen;
193    return grep { ! $seen{$_}++ } @_;
194}
195
196sub caselessly { lc $a cmp lc $b }
197
198sub a2n($) {
199    my $cp = shift;
200
201    # Returns the input Unicode code point translated to native.
202
203    return $cp if $cp !~ $integer_or_float_re || $cp > 255;
204    return $a2n[$cp];
205}
206
207sub end_file_pound_if {
208    if ($in_file_pound_if) {
209        print $out_fh "\n#endif\t/* $in_file_pound_if */\n";
210        $in_file_pound_if = "";
211    }
212}
213
214sub end_charset_pound_if {
215    print $out_fh "\n" . get_conditional_compile_line_end();
216}
217
218sub switch_pound_if ($$;$) {
219    my $name = shift;
220    my $new_pound_if = shift;
221    my $charset = shift;
222
223    my @new_pound_if = ref ($new_pound_if)
224                       ? sort @$new_pound_if
225                       : $new_pound_if;
226
227    # Switch to new #if given by the 2nd argument.  If there is an override
228    # for this, it instead switches to that.  The 1st argument is the
229    # static's name, used only to check if there is an override for this
230    #
231    # The 'charset' parmameter, if present, is used to first end the charset
232    # #if if we actually do a switch, and then restart it afterwards.  This
233    # code, then assumes that the charset #if's are enclosed in the file ones.
234
235    if (exists $exceptions_to_where_to_define{$name}) {
236        @new_pound_if = $exceptions_to_where_to_define{$name};
237    }
238
239    foreach my $element (@new_pound_if) {
240
241        # regcomp.c is arranged so that the tables are not compiled in
242        # re_comp.c, but general enums and defines (which take no space) are
243        # compiled */
244        my $no_xsub = 1 if $name !~ /enum|define/
245                        && $element =~ / PERL_IN_ (?: REGCOMP ) _C /x;
246        $element = "defined($element)";
247        $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub;
248    }
249    $new_pound_if = join " || ", @new_pound_if;
250
251    # Change to the new one if different from old
252    if ($in_file_pound_if ne $new_pound_if) {
253
254        end_charset_pound_if() if defined $charset;
255
256        # Exit any current #if
257        if ($in_file_pound_if) {
258            end_file_pound_if;
259        }
260
261        $in_file_pound_if = $new_pound_if;
262        print $out_fh "\n#if $in_file_pound_if\n";
263
264        start_charset_pound_if ($charset, 1) if defined $charset;
265    }
266}
267
268sub start_charset_pound_if ($;$) {
269    print $out_fh "\n" . get_conditional_compile_line_start(shift, shift);
270}
271
272{   # Closure
273    my $fh;
274    my $in_doinit = 0;
275
276    sub output_table_header($$$;$@) {
277
278        # Output to $fh the heading for a table given by the other inputs
279
280        $fh = shift;
281        my ($type,      # typedef of table, like UV, UV*
282            $name,      # name of table
283            $comment,   # Optional comment to put on header line
284            @sizes      # Optional sizes of each array index.  If omitted,
285                        # there is a single index whose size is computed by
286                        # the C compiler.
287            ) = @_;
288
289        $type =~ s/ \s+ $ //x;
290
291        # If a the typedef is a ptr, add in an extra const
292        $type .= " const" if $type =~ / \* $ /x;
293
294        $comment = "" unless defined $comment;
295        $comment = "  /* $comment */" if $comment;
296
297        my $array_declaration;
298        if (@sizes) {
299            $array_declaration = "";
300            $array_declaration .= "[$_]" for @sizes;
301        }
302        else {
303            $array_declaration = '[]';
304        }
305
306        my $declaration = "$type ${name}$array_declaration";
307
308        # Things not matching this are static.  Otherwise, it is an external
309        # constant, initialized only under DOINIT.
310        #
311        # (Currently everything is static)
312        if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) {
313            $in_doinit = 0;
314            print $fh "\nstatic const $declaration = {$comment\n";
315        }
316        else {
317            $in_doinit = 1;
318            print $fh <<EOF;
319
320#    ifndef DOINIT
321
322EXTCONST $declaration;
323
324#    else
325
326EXTCONST $declaration = {$comment
327EOF
328        }
329    }
330
331    sub output_table_trailer() {
332
333        # Close out a table started by output_table_header()
334
335        print $fh "};\n";
336        if ($in_doinit) {
337            print $fh "\n#    endif  /* DOINIT */\n\n";
338            $in_doinit = 0;
339        }
340    }
341} # End closure
342
343
344sub output_invlist ($$;$) {
345    my $name = shift;
346    my $invlist = shift;     # Reference to inversion list array
347    my $charset = shift // "";  # name of character set for comment
348
349    die "No inversion list for $name" unless defined $invlist
350                                             && ref $invlist eq 'ARRAY';
351
352    # Output the inversion list $invlist using the name $name for it.
353    # It is output in the exact internal form for inversion lists.
354
355    # Is the last element of the header 0, or 1 ?
356    my $zero_or_one = 0;
357    if (@$invlist && $invlist->[0] != 0) {
358        unshift @$invlist, 0;
359        $zero_or_one = 1;
360    }
361
362    $charset = "for $charset" if $charset;
363    output_table_header($out_fh, "UV", "${name}_invlist", $charset);
364
365    my $count = @$invlist;
366    print $out_fh <<EOF;
367\t$count,\t/* Number of elements */
368\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */
369\t$zero_or_one,\t/* 0 if the list starts at 0;
370\t\t   1 if it starts at the element beyond 0 */
371EOF
372
373    # The main body are the UVs passed in to this routine.  Do the final
374    # element separately
375    for my $i (0 .. @$invlist - 1) {
376        printf $out_fh "\t0x%X", $invlist->[$i];
377        print $out_fh "," if $i < @$invlist - 1;
378        print $out_fh "\n";
379    }
380
381    output_table_trailer();
382}
383
384sub output_invmap ($$$$$$$) {
385    my $name = shift;
386    my $invmap = shift;     # Reference to inversion map array
387    my $prop_name = shift;
388    my $input_format = shift;   # The inversion map's format
389    my $default = shift;        # The property value for code points who
390                                # otherwise don't have a value specified.
391    my $extra_enums = shift;    # comma-separated list of our additions to the
392                                # property's standard possible values
393    my $charset = shift // "";  # name of character set for comment
394
395    # Output the inversion map $invmap for property $prop_name, but use $name
396    # as the actual data structure's name.
397
398    my $count = @$invmap;
399
400    my $output_format;
401    my $invmap_declaration_type;
402    my $enum_declaration_type;
403    my $aux_declaration_type;
404    my %enums;
405    my $name_prefix;
406
407    if ($input_format =~ / ^ [as] l? $ /x) {
408        $prop_name = (prop_aliases($prop_name))[1]
409     // $prop_name =~ s/^_Perl_//r; # Get full name
410        my $short_name = (prop_aliases($prop_name))[0] // $prop_name;
411        my @input_enums;
412
413        # Find all the possible input values.  These become the enum names
414        # that comprise the inversion map.  For inputs that don't have sub
415        # lists, we can just get the unique values.  Otherwise, we have to
416        # expand the sublists first.
417        if ($input_format !~ / ^ a /x) {
418            if ($input_format ne 'sl') {
419                @input_enums = sort caselessly uniques(@$invmap);
420            }
421            else {
422                foreach my $element (@$invmap) {
423                    if (ref $element) {
424                        push @input_enums, @$element;
425                    }
426                    else {
427                        push @input_enums, $element;
428                    }
429                }
430                @input_enums = sort caselessly uniques(@input_enums);
431            }
432        }
433
434        # The internal enums come last, and in the order specified.
435        #
436        # The internal one named EDGE is also used a marker.  Any ones that
437        # come after it are used in the algorithms below, and so must be
438        # defined, even if the release of Unicode this is being compiled for
439        # doesn't use them.   But since no code points are assigned to them in
440        # such a release, those values will never be accessed.  We collapse
441        # all of them into a single placholder row and a column.  The
442        # algorithms below will fill in those cells with essentially garbage,
443        # but they are never read, so it doesn't matter.  This allows the
444        # algorithm to remain the same from release to release.
445        #
446        # In one case, regexec.c also uses a placeholder which must be defined
447        # here, and we put it in the unused row and column as its value is
448        # never read.
449        #
450        my @enums = @input_enums;
451        my @extras;
452        my @unused_enums;
453        my $unused_enum_value = @enums;
454        if ($extra_enums ne "") {
455            @extras = split /,/, $extra_enums;
456            my $seen_EDGE = 0;
457
458            # Don't add if already there.
459            foreach my $this_extra (@extras) {
460                next if grep { $_ eq $this_extra } @enums;
461                if ($this_extra eq 'EDGE') {
462                    push @enums, $this_extra;
463                    $seen_EDGE = 1;
464                }
465                elsif ($seen_EDGE) {
466                    push @unused_enums, $this_extra;
467                }
468                else {
469                    push @enums, $this_extra;
470                }
471            }
472
473            @unused_enums = sort caselessly @unused_enums;
474            $unused_enum_value = @enums;    # All unused have the same value,
475                                            # one beyond the final used one
476        }
477
478        # These properties have extra tables written out for them that we want
479        # to make as compact and legible as possible.  So we find short names
480        # for their property values.  For non-official ones we will need to
481        # add a legend at the top of the table to say what the abbreviation
482        # stands for.
483        my $property_needs_table_re = qr/ ^  _Perl_ (?: GCB | LB | WB ) $ /x;
484
485        my %short_enum_name;
486        my %need_explanation;   # For non-official abbreviations, we will need
487                                # to explain what the one we come up with
488                                # stands for
489        my $type = lc $prop_name;
490        if ($name =~ $property_needs_table_re) {
491            my @short_names;  # List of already used abbreviations, so we
492                              # don't duplicate
493            for my $enum (@enums) {
494                my $short_enum;
495                my $is_official_name = 0;
496
497                # Special case this wb property value to make the
498                # name more clear
499                if ($enum eq 'Perl_Tailored_HSpace') {
500                    $short_enum = 'hs';
501                }
502                else {
503
504                    # Use the official short name, if found.
505                    ($short_enum) = prop_value_aliases($type, $enum);
506                    if ( defined $short_enum) {
507                        $is_official_name = 1;
508                    }
509                    else {
510                        # But if there is no official name, use the name that
511                        # came from the data (if any).  Otherwise, the name
512                        # had to come from the extras list.  There are two
513                        # types of values in that list.
514                        #
515                        # First are those enums that are not part of the
516                        # property, but are defined by the code in this file.
517                        # By convention these have all-caps names.  We use the
518                        # lowercased name for these.
519                        #
520                        # Second are enums that are needed to get the
521                        # algorithms below to work and/or to get regexec.c to
522                        # compile, but don't exist in all Unicode releases.
523                        # These are handled outside this loop as
524                        # 'unused_enums' (as they are unused they all get
525                        # collapsed into a single column, and their names
526                        # don't matter)
527                        if (grep { $_ eq $enum } @input_enums) {
528                            $short_enum = $enum
529                        }
530                        else {
531                            $short_enum = lc $enum;
532                        }
533                    }
534
535                    # If our short name is too long, or we already know that
536                    # the name is an abbreviation, truncate to make sure it's
537                    # short enough, and remember that we did this so we can
538                    # later add a comment in the generated file
539                    if (length $short_enum > $max_hdr_len) {
540                        # First try using just the uppercase letters of the name;
541                        # if it is something like FooBar, FB is a better
542                        # abbreviation than Foo.  That's not the case if it is
543                        # entirely lowercase.
544                        my $uc = $short_enum;
545                        $uc =~ s/[[:^upper:]]//g;
546                        $short_enum = $uc if length $uc > 1
547                                          && length $uc < length $short_enum;
548
549                        $short_enum = substr($short_enum, 0, $max_hdr_len);
550                        $is_official_name = 0;
551                    }
552                }
553
554                # If the name we are to display conflicts, try another.
555                if (grep { $_ eq $short_enum } @short_names) {
556                    $is_official_name = 0;
557                    do { # The increment operator on strings doesn't work on
558                         # those containing an '_', so get rid of any final
559                         # portion.
560                        $short_enum =~ s/_//g;
561                        $short_enum++;
562                    } while grep { $_ eq $short_enum } @short_names;
563                }
564
565                push @short_names, $short_enum;
566                $short_enum_name{$enum} = $short_enum;
567                $need_explanation{$enum} = $short_enum unless $is_official_name;
568            }
569        } # End of calculating short enum names for certain properties
570
571        # Assign a value to each element of the enum type we are creating.
572        # The default value always gets 0; the others are arbitrarily
573        # assigned, but for the properties which have the extra table, it is
574        # in the order we have computed above so the rows and columns appear
575        # alphabetically by heading abbreviation.
576        my $enum_val = 0;
577        my $canonical_default = prop_value_aliases($prop_name, $default);
578        $default = $canonical_default if defined $canonical_default;
579        $enums{$default} = $enum_val++;
580
581        for my $enum (sort { ($name =~ $property_needs_table_re)
582                             ?     lc $short_enum_name{$a}
583                               cmp lc $short_enum_name{$b}
584                             : lc $a cmp lc $b
585                           } @enums)
586        {
587            $enums{$enum} = $enum_val++ unless exists $enums{$enum};
588        }
589
590        # Now calculate the data for the special tables output for these
591        # properties.
592        if ($name =~ $property_needs_table_re) {
593
594            # The data includes the hashes %gcb_enums, %lb_enums, etc.
595            # Similarly we calculate column headings for the tables.
596            #
597            # We use string evals to allow the same code to work on
598            # all the tables
599
600            # Skip if we've already done this code, which populated
601            # this hash
602            if (eval "! \%${type}_enums") {
603
604                # For each enum in the type ...
605                foreach my $enum (keys %enums) {
606                    my $value = $enums{$enum};
607                    my $short_enum = $short_enum_name{$enum};
608
609                    # Remember the mapping from the property value
610                    # (enum) name to its value.
611                    eval "\$${type}_enums{$enum} = $value";
612                    die $@ if $@;
613
614                    # Remember the inverse mapping to the short name
615                    # so that we can properly label the generated
616                    # table's rows and columns
617                    eval "\$${type}_short_enums[$value] = '$short_enum'";
618                    die $@ if $@;
619
620                    # And note the abbreviations that need explanation
621                    if ($need_explanation{$enum}) {
622                        eval "\$${type}_abbreviations{$short_enum} = '$enum'";
623                        die $@ if $@;
624                    }
625                }
626
627                # Each unused enum has the same value.  They all are collapsed
628                # into one row and one column, named $unused_table_hdr.
629                if (@unused_enums) {
630                    eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'";
631                    die $@ if $@;
632
633                    foreach my $enum (@unused_enums) {
634                        eval "\$${type}_enums{$enum} = $unused_enum_value";
635                        die $@ if $@;
636                    }
637                }
638            }
639        }
640
641        # The short property names tend to be two lower case letters, but it
642        # looks better for those if they are upper. XXX
643        $short_name = uc($short_name) if length($short_name) < 3
644                                || substr($short_name, 0, 1) =~ /[[:lower:]]/;
645        $name_prefix = "${short_name}_";
646
647        # Start the enum definition for this map
648        my @enum_definition;
649        my @enum_list;
650        foreach my $enum (keys %enums) {
651            $enum_list[$enums{$enum}] = $enum;
652        }
653        foreach my $i (0 .. @enum_list - 1) {
654            push @enum_definition, ",\n" if $i > 0;
655
656            my $name = $enum_list[$i];
657            push @enum_definition, "\t${name_prefix}$name = $i";
658        }
659        if (@unused_enums) {
660            foreach my $unused (@unused_enums) {
661                push @enum_definition,
662                            ",\n\t${name_prefix}$unused = $unused_enum_value";
663            }
664        }
665
666        # For an 'l' property, we need extra enums, because some of the
667        # elements are lists.  Each such distinct list is placed in its own
668        # auxiliary map table.  Here, we go through the inversion map, and for
669        # each distinct list found, create an enum value for it, numbered -1,
670        # -2, ....
671        my %multiples;
672        my $aux_table_prefix = "AUX_TABLE_";
673        if ($input_format =~ /l/) {
674            foreach my $element (@$invmap) {
675
676                # A regular scalar is not one of the lists we're looking for
677                # at this stage.
678                next unless ref $element;
679
680                my $joined;
681                if ($input_format =~ /a/) { # These are already ordered
682                    $joined = join ",", @$element;
683                }
684                else {
685                    $joined = join ",", sort caselessly @$element;
686                }
687                my $already_found = exists $multiples{$joined};
688
689                my $i;
690                if ($already_found) {   # Use any existing one
691                    $i = $multiples{$joined};
692                }
693                else {  # Otherwise increment to get a new table number
694                    $i = keys(%multiples) + 1;
695                    $multiples{$joined} = $i;
696                }
697
698                # This changes the inversion map for this entry to not be the
699                # list
700                $element = "use_$aux_table_prefix$i";
701
702                # And add to the enum values
703                if (! $already_found) {
704                    push @enum_definition, ",\n\t${name_prefix}$element = -$i";
705                }
706            }
707        }
708
709        $enum_declaration_type = "${name_prefix}enum";
710
711        # Finished with the enum definition.  Inversion map stuff is used only
712        # by regexec or utf-8 (if it is for code points) , unless it is in the
713        # enum exception list
714        my $where = (exists $where_to_define_enums{$name})
715                    ? $where_to_define_enums{$name}
716                    : ($input_format =~ /a/)
717                       ? 'PERL_IN_UTF8_C'
718                       : 'PERL_IN_REGEXEC_C';
719
720        if (! exists $public_enums{$name}) {
721            switch_pound_if($name, $where, $charset);
722        }
723        else {
724            end_charset_pound_if;
725            end_file_pound_if;
726            start_charset_pound_if($charset, 1);
727        }
728
729        # If the enum only contains one element, that is a dummy, default one
730        if (scalar @enum_definition > 1) {
731
732            # Currently unneeded
733            #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ",
734            #                                   ..scalar keys %enums, "\n";
735
736            if ($input_format =~ /l/) {
737                print $out_fh
738                "\n",
739                "/* Negative enum values indicate the need to use an",
740                    " auxiliary table\n",
741                " * consisting of the list of enums this one expands to.",
742                    "  The absolute\n",
743                " * values of the negative enums are indices into a table",
744                    " of the auxiliary\n",
745                " * tables' addresses */";
746            }
747            print $out_fh "\ntypedef enum {\n";
748            print $out_fh join "", @enum_definition;
749            print $out_fh "\n";
750            print $out_fh "} $enum_declaration_type;\n";
751        }
752
753        switch_pound_if($name, $where, $charset);
754
755        # The inversion lists here have to be UV because inversion lists are
756        # capable of storing any code point, and even though the the ones here
757        # are only Unicode ones, which need just 21 bits, they are linked to
758        # directly, rather than copied.  The inversion map and aux tables also
759        # only need be 21 bits, and so we can get away with declaring them
760        # 32-bits to save a little space and memory (on some 64-bit
761        # platforms), as they are copied.
762        $invmap_declaration_type = ($input_format =~ /s/)
763                                 ? $enum_declaration_type
764                                 : "I32";
765        $aux_declaration_type = ($input_format =~ /s/)
766                                 ? $enum_declaration_type
767                                 : "U32";
768
769        $output_format = "${name_prefix}%s";
770
771        # If there are auxiliary tables, output them.
772        if (%multiples) {
773
774            print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n";
775
776            # Invert keys and values
777            my %inverted_mults;
778            while (my ($key, $value) = each %multiples) {
779                $inverted_mults{$value} = $key;
780            }
781
782            # Output them in sorted order
783            my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults;
784
785            # Keep track of how big each aux table is
786            my @aux_counts;
787
788            # Output each aux table.
789            foreach my $table_number (@sorted_table_list) {
790                my $table = $inverted_mults{$table_number};
791                output_table_header($out_fh,
792                                $aux_declaration_type,
793                                "$name_prefix$aux_table_prefix$table_number");
794
795                # Earlier, we joined the elements of this table together with
796                # a comma
797                my @elements = split ",", $table;
798
799                $aux_counts[$table_number] = scalar @elements;
800                for my $i (0 .. @elements - 1) {
801                    print $out_fh  ",\n" if $i > 0;
802                    if ($input_format =~ /a/) {
803                        printf $out_fh "\t0x%X", $elements[$i];
804                    }
805                    else {
806                        print $out_fh "\t${name_prefix}$elements[$i]";
807                    }
808                }
809
810                print $out_fh "\n";
811                output_table_trailer();
812            }
813
814            # Output the table that is indexed by the absolute value of the
815            # aux table enum and contains pointers to the tables output just
816            # above
817            output_table_header($out_fh, "$aux_declaration_type *",
818                                   "${name_prefix}${aux_table_prefix}ptrs");
819            print $out_fh "\tNULL,\t/* Placeholder */\n";
820            for my $i (1 .. @sorted_table_list) {
821                print $out_fh  ",\n" if $i > 1;
822                print $out_fh  "\t$name_prefix$aux_table_prefix$i";
823            }
824            print $out_fh "\n";
825            output_table_trailer();
826
827            print $out_fh
828              "\n/* Parallel table to the above, giving the number of elements"
829            . " in each table\n * pointed to */\n";
830            output_table_header($out_fh, "U8",
831                                   "${name_prefix}${aux_table_prefix}lengths");
832            print $out_fh "\t0,\t/* Placeholder */\n";
833            for my $i (1 .. @sorted_table_list) {
834                print $out_fh ",\n" if $i > 1;
835                print $out_fh
836                    "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */";
837            }
838            print $out_fh "\n";
839            output_table_trailer();
840        } # End of outputting the auxiliary and associated tables
841
842        # The scx property used in regexec.c needs a specialized table which
843        # is most convenient to output here, while the data structures set up
844        # above are still extant.  This table contains the code point that is
845        # the zero digit of each script, indexed by script enum value.
846        if (lc $short_name eq 'scx') {
847            my @decimals_invlist = prop_invlist("Numeric_Type=Decimal");
848            my %script_zeros;
849
850            # Find all the decimal digits.  The 0 of each range is always the
851            # 0th element, except in some early Unicode releases, so check for
852            # that.
853            for (my $i = 0; $i < @decimals_invlist; $i += 2) {
854                my $code_point = $decimals_invlist[$i];
855                next if num(chr($code_point)) ne '0';
856
857                # Turn the scripts this zero is in into a list.
858                my @scripts = split ",",
859                  charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok');
860                $code_point = sprintf("0x%x", $code_point);
861
862                foreach my $script (@scripts) {
863                    if (! exists $script_zeros{$script}) {
864                        $script_zeros{$script} = $code_point;
865                    }
866                    elsif (ref $script_zeros{$script}) {
867                        push $script_zeros{$script}->@*, $code_point;
868                    }
869                    else {  # Turn into a list if this is the 2nd zero of the
870                            # script
871                        my $existing = $script_zeros{$script};
872                        undef $script_zeros{$script};
873                        push $script_zeros{$script}->@*, $existing, $code_point;
874                    }
875                }
876            }
877
878            # @script_zeros contains the zero, sorted by the script's enum
879            # value
880            my @script_zeros;
881            foreach my $script (keys %script_zeros) {
882                my $enum_value = $enums{$script};
883                $script_zeros[$enum_value] = $script_zeros{$script};
884            }
885
886            print $out_fh
887            "\n/* This table, indexed by the script enum, gives the zero"
888          . " code point for that\n * script; 0 if the script has multiple"
889          . " digit sequences.  Scripts without a\n * digit sequence use"
890          . " ASCII [0-9], hence are marked '0' */\n";
891            output_table_header($out_fh, "UV", "script_zeros");
892            for my $i (0 .. @script_zeros - 1) {
893                my $code_point = $script_zeros[$i];
894                if (defined $code_point) {
895                    $code_point = " 0" if ref $code_point;
896                    print $out_fh "\t$code_point";
897                }
898                elsif (lc $enum_list[$i] eq 'inherited') {
899                    print $out_fh "\t 0";
900                }
901                else {  # The only digits a script without its own set accepts
902                        # is [0-9]
903                    print $out_fh "\t'0'";
904                }
905                print $out_fh "," if $i < @script_zeros - 1;
906                print $out_fh "\t/* $enum_list[$i] */";
907                print $out_fh "\n";
908            }
909            output_table_trailer();
910        } # End of special handling of scx
911    }
912    else {
913        die "'$input_format' invmap() format for '$prop_name' unimplemented";
914    }
915
916    die "No inversion map for $prop_name" unless defined $invmap
917                                             && ref $invmap eq 'ARRAY'
918                                             && $count;
919
920    # Now output the inversion map proper
921    $charset = "for $charset" if $charset;
922    output_table_header($out_fh, $invmap_declaration_type,
923                                    "${name}_invmap",
924                                    $charset);
925
926    # The main body are the scalars passed in to this routine.
927    for my $i (0 .. $count - 1) {
928        my $element = $invmap->[$i];
929        my $full_element_name = prop_value_aliases($prop_name, $element);
930        if ($input_format =~ /a/ && $element !~ /\D/) {
931            $element = ($element == 0)
932                       ? 0
933                       : sprintf("0x%X", $element);
934        }
935        else {
936        $element = $full_element_name if defined $full_element_name;
937        $element = $name_prefix . $element;
938        }
939        print $out_fh "\t$element";
940        print $out_fh "," if $i < $count - 1;
941        print $out_fh  "\n";
942    }
943    output_table_trailer();
944}
945
946sub mk_invlist_from_sorted_cp_list {
947
948    # Returns an inversion list constructed from the sorted input array of
949    # code points
950
951    my $list_ref = shift;
952
953    return unless @$list_ref;
954
955    # Initialize to just the first element
956    my @invlist = ( $list_ref->[0], $list_ref->[0] + 1);
957
958    # For each succeeding element, if it extends the previous range, adjust
959    # up, otherwise add it.
960    for my $i (1 .. @$list_ref - 1) {
961        if ($invlist[-1] == $list_ref->[$i]) {
962            $invlist[-1]++;
963        }
964        else {
965            push @invlist, $list_ref->[$i], $list_ref->[$i] + 1;
966        }
967    }
968    return @invlist;
969}
970
971# Read in the Case Folding rules, and construct arrays of code points for the
972# properties we need.
973my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding");
974die "Could not find inversion map for Case_Folding" unless defined $format;
975die "Incorrect format '$format' for Case_Folding inversion map"
976                                                    unless $format eq 'al'
977                                                           || $format eq 'a';
978sub _Perl_IVCF {
979
980    # This creates a map of the inversion of case folding. i.e., given a
981    # character, it gives all the other characters that fold to it.
982    #
983    # Inversion maps function kind of like a hash, with the inversion list
984    # specifying the buckets (keys) and the inversion maps specifying the
985    # contents of the corresponding bucket.  Effectively this function just
986    # swaps the keys and values of the case fold hash.  But there are
987    # complications.  Most importantly, More than one character can each have
988    # the same fold.  This is solved by having a list of characters that fold
989    # to a given one.
990
991    my %new;
992
993    # Go through the inversion list.
994    for (my $i = 0; $i < @$cp_ref; $i++) {
995
996        # Skip if nothing folds to this
997        next if $folds_ref->[$i] == 0;
998
999        # This entry which is valid from here to up (but not including) the
1000        # next entry is for the next $count characters, so that, for example,
1001        # A-Z is represented by one entry.
1002        my $cur_list = $cp_ref->[$i];
1003        my $count = $cp_ref->[$i+1] - $cur_list;
1004
1005        # The fold of [$i] can be not just a single character, but a sequence
1006        # of multiple ones.  We deal with those here by just creating a string
1007        # consisting of them.  Otherwise, we use the single code point [$i]
1008        # folds to.
1009        my $cur_map = (ref $folds_ref->[$i])
1010                       ? join "", map { chr } $folds_ref->[$i]->@*
1011                       : $folds_ref->[$i];
1012
1013        # Expand out this range
1014        while ($count > 0) {
1015            push @{$new{$cur_map}}, $cur_list;
1016
1017            # A multiple-character fold is a string, and shouldn't need
1018            # incrementing anyway
1019            if (ref $folds_ref->[$i]) {
1020                die sprintf("Case fold for %x is multiple chars; should have"
1021                          . " a count of 1, but instead it was $count", $count)
1022                                                            unless $count == 1;
1023            }
1024            else {
1025                $cur_map++;
1026                $cur_list++;
1027            }
1028            $count--;
1029        }
1030    }
1031
1032    # Now go through and make some adjustments.  We add synthetic entries for
1033    # three cases.
1034    # 1) If the fold of a Latin1-range character is above that range, some
1035    #    coding in regexec.c can be saved by creating a reverse map here.  The
1036    #    impetus for this is that U+B5 (MICRO SIGN) folds to the Greek small
1037    #    mu (U+3BC).  That fold isn't done at regex pattern compilation time
1038    #    if it means that the pattern would have to be translated into UTF-8,
1039    #    whose operation is slower.  At run time, having this reverse
1040    #    translation eliminates some special cases in the code.
1041    # 2) Two or more code points can fold to the same multiple character,
1042    #    sequence, as U+FB05 and U+FB06 both fold to 'st'.  This code is only
1043    #    for single character folds, but FB05 and FB06 are single characters
1044    #    that are equivalent folded, so we add entries so that they are
1045    #    considered to fold to each other
1046    # 3) If two or more above-Latin1 code points fold to the same Latin1 range
1047    #    one, we also add entries so that they are considered to fold to each
1048    #    other.  This is so that under /aa or /l matching, where folding to
1049    #    their Latin1 range code point is illegal, they still can fold to each
1050    #    other.  This situation happens in Unicode 3.0.1, but probably no
1051    #    other version.
1052    foreach my $fold (keys %new) {
1053        my $folds_to_string = $fold =~ /\D/;
1054
1055        # If the bucket contains only one element, convert from an array to a
1056        # scalar
1057        if (scalar $new{$fold}->@* == 1) {
1058            $new{$fold} = $new{$fold}[0];
1059
1060            # Handle case 1) above: if there were a Latin1 range code point
1061            # whose fold is above that range, this creates an extra entry that
1062            # maps the other direction, and would save some special case code.
1063            # (The one current case of this is handled in the else clause
1064            # below.)
1065            $new{$new{$fold}} = $fold if $new{$fold} < 256 && $fold > 255;
1066        }
1067        else {
1068
1069            # Handle case 1) when there are multiple things that fold to an
1070            # above-Latin1 code point, at least one of which is in Latin1.
1071            if (! $folds_to_string && $fold > 255) {
1072                foreach my $cp ($new{$fold}->@*) {
1073                    if ($cp < 256) {
1074                        my @new_entry = grep { $_ != $cp } $new{$fold}->@*;
1075                        push @new_entry, $fold;
1076                        $new{$cp}->@* = @new_entry;
1077                    }
1078                }
1079            }
1080
1081            # Otherwise, sort numerically.  This places the highest code point
1082            # in the list at the tail end.  This is because Unicode keeps the
1083            # lowercase code points as higher ordinals than the uppercase, at
1084            # least for the ones that matter so far.  These are synthetic
1085            # entries, and we want to predictably have the lowercase (which is
1086            # more likely to be what gets folded to) in the same corresponding
1087            # position, so that other code can rely on that.  If some new
1088            # version of Unicode came along that violated this, we might have
1089            # to change so that the sort is based on upper vs lower instead.
1090            # (The lower-comes-after isn't true of native EBCDIC, but here we
1091            # are dealing strictly with Unicode values).
1092            @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@*
1093                                                        unless $folds_to_string;
1094            # We will be working with a copy of this sorted entry.
1095            my @source_list = $new{$fold}->@*;
1096            if (! $folds_to_string) {
1097
1098                # This handles situation 2) listed above, which only arises if
1099                # what is being folded-to (the fold) is in the Latin1 range.
1100                if ($fold > 255 ) {
1101                    undef @source_list;
1102                }
1103                else {
1104                    # And it only arises if there are two or more folders that
1105                    # fold to it above Latin1.  We look at just those.
1106                    @source_list = grep { $_ > 255 } @source_list;
1107                    undef @source_list if @source_list == 1;
1108                }
1109            }
1110
1111            # Here, we've found the items we want to set up synthetic folds
1112            # for.  Add entries so that each folds to each other.
1113            foreach my $cp (@source_list) {
1114                my @rest = grep { $cp != $_ } @source_list;
1115                if (@rest == 1) {
1116                    $new{$cp} = $rest[0];
1117                }
1118                else {
1119                    push @{$new{$cp}}, @rest;
1120                }
1121            }
1122        }
1123
1124        # We don't otherwise deal with multiple-character folds
1125        delete $new{$fold} if $folds_to_string;
1126    }
1127
1128
1129    # Now we have a hash that is the inversion of the case fold property.
1130    # First find the maximum number of code points that fold to the same one.
1131    foreach my $fold_to (keys %new) {
1132        if (ref $new{$fold_to}) {
1133            my $folders_count = scalar @{$new{$fold_to}};
1134            $max_fold_froms = $folders_count if $folders_count > $max_fold_froms;
1135        }
1136    }
1137
1138    # Then convert the hash to an inversion map.
1139    my @sorted_folds = sort { $a <=> $b } keys %new;
1140    my (@invlist, @invmap);
1141
1142    # We know that nothing folds to the controls (whose ordinals start at 0).
1143    # And the first real entries are the lowest in the hash.
1144    push @invlist, 0, $sorted_folds[0];
1145    push @invmap, 0, $new{$sorted_folds[0]};
1146
1147    # Go through the remainder of the hash keys (which are the folded code
1148    # points)
1149    for (my $i = 1; $i < @sorted_folds; $i++) {
1150
1151        # Get the current one, and the one prior to it.
1152        my $fold = $sorted_folds[$i];
1153        my $prev_fold = $sorted_folds[$i-1];
1154
1155        # If the current one is not just 1 away from the prior one, we close
1156        # out the range containing the previous fold, and know that the gap
1157        # doesn't have anything that folds.
1158        if ($fold - 1 != $prev_fold) {
1159            push @invlist, $prev_fold + 1;
1160            push @invmap, 0;
1161
1162            # And start a new range
1163            push @invlist, $fold;
1164            push @invmap, $new{$fold};
1165        }
1166        elsif ($new{$fold} - 1 != $new{$prev_fold}) {
1167
1168            # Here the current fold is just 1 greater than the previous, but
1169            # the new map isn't correspondingly 1 greater than the previous,
1170            # the old range is ended, but since there is no gap, we don't have
1171            # to insert anything else.
1172            push @invlist, $fold;
1173            push @invmap, $new{$fold};
1174
1175        } # else { Otherwise, this new entry just extends the previous }
1176
1177        die "In IVCF: $invlist[-1] <= $invlist[-2]"
1178                                               if $invlist[-1] <= $invlist[-2];
1179    }
1180
1181    # And add an entry that indicates that everything above this, to infinity,
1182    # does not have a case fold.
1183    push @invlist, $sorted_folds[-1] + 1;
1184    push @invmap, 0;
1185
1186    push @invlist, 0x110000;
1187    push @invmap, 0;
1188
1189    # All Unicode versions have some places where multiple code points map to
1190    # the same one, so the format always has an 'l'
1191    return \@invlist, \@invmap, 'al', $default;
1192}
1193
1194sub prop_name_for_cmp ($) { # Sort helper
1195    my $name = shift;
1196
1197    # Returns the input lowercased, with non-alphas removed, as well as
1198    # everything starting with a comma
1199
1200    $name =~ s/,.*//;
1201    $name =~ s/[[:^alpha:]]//g;
1202    return lc $name;
1203}
1204
1205sub UpperLatin1 {
1206    my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]);
1207    return \@return;
1208}
1209
1210sub _Perl_CCC_non0_non230 {
1211
1212    # Create an inversion list of code points with non-zero canonical
1213    # combining class that also don't have 230 as the class number.  This is
1214    # part of a Unicode Standard rule
1215
1216    my @nonzeros = prop_invlist("ccc=0");
1217    shift @nonzeros;    # Invert so is "ccc != 0"
1218
1219    my @return;
1220
1221    # Expand into list of code points, while excluding those with ccc == 230
1222    for (my $i = 0; $i < @nonzeros; $i += 2) {
1223        my $upper = ($i + 1) < @nonzeros
1224                    ? $nonzeros[$i+1] - 1      # In range
1225                    : $Unicode::UCD::MAX_CP;  # To infinity.
1226        for my $j ($nonzeros[$i] .. $upper) {
1227            my @ccc_names = prop_value_aliases("ccc", charprop($j, "ccc"));
1228
1229            # Final element in @ccc_names will be all numeric
1230            push @return, $j if $ccc_names[-1] != 230;
1231        }
1232    }
1233
1234    @return = sort { $a <=> $b } @return;
1235    @return = mk_invlist_from_sorted_cp_list(\@return);
1236    return \@return;
1237}
1238
1239sub output_table_common {
1240
1241    # Common subroutine to actually output the generated rules table.
1242
1243    my ($property,
1244        $table_value_defines_ref,
1245        $table_ref,
1246        $names_ref,
1247        $abbreviations_ref) = @_;
1248    my $size = @$table_ref;
1249
1250    # Output the #define list, sorted by numeric value
1251    if ($table_value_defines_ref) {
1252        my $max_name_length = 0;
1253        my @defines;
1254
1255        # Put in order, and at the same time find the longest name
1256        while (my ($enum, $value) = each %$table_value_defines_ref) {
1257            $defines[$value] = $enum;
1258
1259            my $length = length $enum;
1260            $max_name_length = $length if $length > $max_name_length;
1261        }
1262
1263        print $out_fh "\n";
1264
1265        # Output, so that the values are vertically aligned in a column after
1266        # the longest name
1267        foreach my $i (0 .. @defines - 1) {
1268            next unless defined $defines[$i];
1269            printf $out_fh "#define %-*s  %2d\n",
1270                                      $max_name_length,
1271                                       $defines[$i],
1272                                          $i;
1273        }
1274    }
1275
1276    my $column_width = 2;   # We currently allow 2 digits for the number
1277
1278    # Being above a U8 is not currently handled
1279    my $table_type = 'U8';
1280
1281    # If a name is longer than the width set aside for a column, its column
1282    # needs to have increased spacing so that the name doesn't get truncated
1283    # nor run into an adjacent column
1284    my @spacers;
1285
1286    # Is there a row and column for unused values in this release?
1287    my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr;
1288
1289    for my $i (0 .. $size - 1) {
1290        no warnings 'numeric';
1291        $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width);
1292    }
1293
1294    output_table_header($out_fh, $table_type, "${property}_table", undef,
1295                        $size, $size);
1296
1297    # Calculate the column heading line
1298    my $header_line = "/* "
1299                    . (" " x $max_hdr_len)  # We let the row heading meld to
1300                                            # the '*/' for those that are at
1301                                            # the max
1302                    . " " x 3;    # Space for '*/ '
1303    # Now each column
1304    for my $i (0 .. $size - 1) {
1305        $header_line .= sprintf "%s%*s",
1306                                $spacers[$i],
1307                                    $column_width + 1, # 1 for the ','
1308                                     $names_ref->[$i];
1309    }
1310    $header_line .= " */\n";
1311
1312    # If we have annotations, output it now.
1313    if ($has_unused || scalar %$abbreviations_ref) {
1314        my $text = "";
1315        foreach my $abbr (sort caselessly keys %$abbreviations_ref) {
1316            $text .= "; " if $text;
1317            $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'";
1318        }
1319        if ($has_unused) {
1320            $text .= "; $unused_table_hdr stands for 'unused in this Unicode"
1321                   . " release (and the data in its row and column are garbage)"
1322        }
1323
1324        my $indent = " " x 3;
1325        $text = $indent . "/* $text */";
1326
1327        # Wrap the text so that it is no wider than the table, which the
1328        # header line gives.
1329        my $output_width = length $header_line;
1330        while (length $text > $output_width) {
1331            my $cur_line = substr($text, 0, $output_width);
1332
1333            # Find the first blank back from the right end to wrap at.
1334            for (my $i = $output_width -1; $i > 0; $i--) {
1335                if (substr($text, $i, 1) eq " ") {
1336                    print $out_fh substr($text, 0, $i), "\n";
1337
1338                    # Set so will look at just the remaining tail (which will
1339                    # be indented and have a '*' after the indent
1340                    $text = $indent . " * " . substr($text, $i + 1);
1341                    last;
1342                }
1343            }
1344        }
1345
1346        # And any remaining
1347        print $out_fh $text, "\n" if $text;
1348    }
1349
1350    # We calculated the header line earlier just to get its width so that we
1351    # could make sure the annotations fit into that.
1352    print $out_fh $header_line;
1353
1354    # Now output the bulk of the table.
1355    for my $i (0 .. $size - 1) {
1356
1357        # First the row heading.
1358        printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i];
1359        print $out_fh "{";  # Then the brace for this row
1360
1361        # Then each column
1362        for my $j (0 .. $size -1) {
1363            print $out_fh $spacers[$j];
1364            printf $out_fh "%*d", $column_width, $table_ref->[$i][$j];
1365            print $out_fh "," if $j < $size - 1;
1366        }
1367        print $out_fh " }";
1368        print $out_fh "," if $i < $size - 1;
1369        print $out_fh "\n";
1370    }
1371
1372    output_table_trailer();
1373}
1374
1375sub output_GCB_table() {
1376
1377    # Create and output the pair table for use in determining Grapheme Cluster
1378    # Breaks, given in http://www.unicode.org/reports/tr29/.
1379    my %gcb_actions = (
1380        GCB_NOBREAK                      => 0,
1381        GCB_BREAKABLE                    => 1,
1382        GCB_RI_then_RI                   => 2,   # Rules 12 and 13
1383        GCB_EX_then_EM                   => 3,   # Rule 10
1384        GCB_Maybe_Emoji_NonBreak         => 4,
1385    );
1386
1387    # The table is constructed in reverse order of the rules, to make the
1388    # lower-numbered, higher priority ones override the later ones, as the
1389    # algorithm stops at the earliest matching rule
1390
1391    my @gcb_table;
1392    my $table_size = @gcb_short_enums;
1393
1394    # Otherwise, break everywhere.
1395    # GB99   Any ÷  Any
1396    for my $i (0 .. $table_size - 1) {
1397        for my $j (0 .. $table_size - 1) {
1398            $gcb_table[$i][$j] = 1;
1399        }
1400    }
1401
1402    # Do not break within emoji flag sequences. That is, do not break between
1403    # regional indicator (RI) symbols if there is an odd number of RI
1404    # characters before the break point.  Must be resolved in runtime code.
1405    #
1406    # GB12 sot (RI RI)* RI × RI
1407    # GB13 [^RI] (RI RI)* RI × RI
1408    $gcb_table[$gcb_enums{'Regional_Indicator'}]
1409              [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI};
1410
1411    # Post 11.0: GB11  \p{Extended_Pictographic} Extend* ZWJ
1412    #                                               × \p{Extended_Pictographic}
1413    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'ExtPict_XX'}] =
1414                                         $gcb_actions{GCB_Maybe_Emoji_NonBreak};
1415
1416    # This and the rule GB10 obsolete starting with Unicode 11.0, can be left
1417    # in as there are no code points that match, so the code won't ever get
1418    # executed.
1419    # Do not break within emoji modifier sequences or emoji zwj sequences.
1420    # Pre 11.0: GB11  ZWJ  × ( Glue_After_Zwj | E_Base_GAZ )
1421    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0;
1422    $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0;
1423
1424    # GB10  ( E_Base | E_Base_GAZ ) Extend* ×  E_Modifier
1425    $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}]
1426                                                = $gcb_actions{GCB_EX_then_EM};
1427    $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0;
1428    $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0;
1429
1430    # Do not break before extending characters or ZWJ.
1431    # Do not break before SpacingMarks, or after Prepend characters.
1432    # GB9b  Prepend  ×
1433    # GB9a  × SpacingMark
1434    # GB9   ×  ( Extend | ZWJ )
1435    for my $i (0 .. @gcb_table - 1) {
1436        $gcb_table[$gcb_enums{'Prepend'}][$i] = 0;
1437        $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0;
1438        $gcb_table[$i][$gcb_enums{'Extend'}] = 0;
1439        $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0;
1440    }
1441
1442    # Do not break Hangul syllable sequences.
1443    # GB8  ( LVT | T)  ×  T
1444    $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0;
1445    $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0;
1446
1447    # GB7  ( LV | V )  ×  ( V | T )
1448    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0;
1449    $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0;
1450    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0;
1451    $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0;
1452
1453    # GB6  L  ×  ( L | V | LV | LVT )
1454    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0;
1455    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0;
1456    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0;
1457    $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0;
1458
1459    # Do not break between a CR and LF. Otherwise, break before and after
1460    # controls.
1461    # GB5   ÷  ( Control | CR | LF )
1462    # GB4  ( Control | CR | LF )  ÷
1463    for my $i (0 .. @gcb_table - 1) {
1464        $gcb_table[$i][$gcb_enums{'Control'}] = 1;
1465        $gcb_table[$i][$gcb_enums{'CR'}] = 1;
1466        $gcb_table[$i][$gcb_enums{'LF'}] = 1;
1467        $gcb_table[$gcb_enums{'Control'}][$i] = 1;
1468        $gcb_table[$gcb_enums{'CR'}][$i] = 1;
1469        $gcb_table[$gcb_enums{'LF'}][$i] = 1;
1470    }
1471
1472    # GB3  CR  ×  LF
1473    $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0;
1474
1475    # Break at the start and end of text, unless the text is empty
1476    # GB1  sot  ÷
1477    # GB2   ÷  eot
1478    for my $i (0 .. @gcb_table - 1) {
1479        $gcb_table[$i][$gcb_enums{'EDGE'}] = 1;
1480        $gcb_table[$gcb_enums{'EDGE'}][$i] = 1;
1481    }
1482    $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0;
1483
1484    output_table_common('GCB', \%gcb_actions,
1485                        \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations);
1486}
1487
1488sub output_LB_table() {
1489
1490    # Create and output the enums, #defines, and pair table for use in
1491    # determining Line Breaks.  This uses the default line break algorithm,
1492    # given in http://www.unicode.org/reports/tr14/, but tailored by example 7
1493    # in that page, as the Unicode-furnished tests assume that tailoring.
1494
1495    # The result is really just true or false.  But we follow along with tr14,
1496    # creating a rule which is false for something like X SP* X.  That gets
1497    # encoding 2.  The rest of the actions are synthetic ones that indicate
1498    # some context handling is required.  These each are added to the
1499    # underlying 0, 1, or 2, instead of replacing them, so that the underlying
1500    # value can be retrieved.  Actually only rules from 7 through 18 (which
1501    # are the ones where space matter) are possible to have 2 added to them.
1502    # The others below add just 0 or 1.  It might be possible for one
1503    # synthetic rule to be added to another, yielding a larger value.  This
1504    # doesn't happen in the Unicode 8.0 rule set, and as you can see from the
1505    # names of the middle grouping below, it is impossible for that to occur
1506    # for them because they all start with mutually exclusive classes.  That
1507    # the final rule can't be added to any of the others isn't obvious from
1508    # its name, so it is assigned a power of 2 higher than the others can get
1509    # to so any addition would preserve all data.  (And the code will reach an
1510    # assert(0) on debugging builds should this happen.)
1511    my %lb_actions = (
1512        LB_NOBREAK                      => 0,
1513        LB_BREAKABLE                    => 1,
1514        LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2,
1515
1516        LB_CM_ZWJ_foo                   => 3,   # Rule 9
1517        LB_SP_foo                       => 6,   # Rule 18
1518        LB_PR_or_PO_then_OP_or_HY       => 9,   # Rule 25
1519        LB_SY_or_IS_then_various        => 11,  # Rule 25
1520        LB_HY_or_BA_then_foo            => 13,  # Rule 21
1521        LB_RI_then_RI	                => 15,  # Rule 30a
1522
1523        LB_various_then_PO_or_PR        => (1<<5),  # Rule 25
1524    );
1525
1526    # Construct the LB pair table.  This is based on the rules in
1527    # http://www.unicode.org/reports/tr14/, but modified as those rules are
1528    # designed for someone taking a string of text and sequentially going
1529    # through it to find the break opportunities, whereas, Perl requires
1530    # determining if a given random spot is a break opportunity, without
1531    # knowing all the entire string before it.
1532    #
1533    # The table is constructed in reverse order of the rules, to make the
1534    # lower-numbered, higher priority ones override the later ones, as the
1535    # algorithm stops at the earliest matching rule
1536
1537    my @lb_table;
1538    my $table_size = @lb_short_enums;
1539
1540    # LB31. Break everywhere else
1541    for my $i (0 .. $table_size - 1) {
1542        for my $j (0 .. $table_size - 1) {
1543            $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'};
1544        }
1545    }
1546
1547    # LB30b Do not break between an emoji base (or potential emoji) and an
1548    # emoji modifier.
1549
1550    # EB × EM
1551    # [\p{Extended_Pictographic}&\p{Cn}] × EM
1552    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}]
1553                                                = $lb_actions{'LB_NOBREAK'};
1554    $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1555                      [$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'};
1556
1557    # LB30a Break between two regional indicator symbols if and only if there
1558    # are an even number of regional indicators preceding the position of the
1559    # break.
1560    # sot (RI RI)* RI × RI
1561    # [^RI] (RI RI)* RI × RI
1562    $lb_table[$lb_enums{'Regional_Indicator'}]
1563             [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'};
1564
1565    # LB30 Do not break between letters, numbers, or ordinary symbols and
1566    # non-East-Asian opening punctuation nor non-East-Asian closing
1567    # parentheses.
1568
1569    # (AL | HL | NU) × [OP-[\p{ea=F}\p{ea=W}\p{ea=H}]]
1570    # (what we call CP and OP here have already been modified by mktables to
1571    # exclude the ea items
1572    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}]
1573                                                = $lb_actions{'LB_NOBREAK'};
1574    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}]
1575                                                = $lb_actions{'LB_NOBREAK'};
1576    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}]
1577                                                = $lb_actions{'LB_NOBREAK'};
1578
1579    # [CP-[\p{ea=F}\p{ea=W}\p{ea=H}]] × (AL | HL | NU)
1580    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}]
1581                                                = $lb_actions{'LB_NOBREAK'};
1582    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}]
1583                                                = $lb_actions{'LB_NOBREAK'};
1584    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}]
1585                                                = $lb_actions{'LB_NOBREAK'};
1586
1587    # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”).
1588    # IS × (AL | HL)
1589    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}]
1590                                                = $lb_actions{'LB_NOBREAK'};
1591    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1592                                                = $lb_actions{'LB_NOBREAK'};
1593
1594    # LB28 Do not break between alphabetics (“at”).
1595    # (AL | HL) × (AL | HL)
1596    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}]
1597                                                = $lb_actions{'LB_NOBREAK'};
1598    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}]
1599                                                = $lb_actions{'LB_NOBREAK'};
1600    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}]
1601                                                = $lb_actions{'LB_NOBREAK'};
1602    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}]
1603                                                = $lb_actions{'LB_NOBREAK'};
1604
1605    # LB27 Treat a Korean Syllable Block the same as ID.
1606    # (JL | JV | JT | H2 | H3) × PO
1607    $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}]
1608                                                = $lb_actions{'LB_NOBREAK'};
1609    $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}]
1610                                                = $lb_actions{'LB_NOBREAK'};
1611    $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}]
1612                                                = $lb_actions{'LB_NOBREAK'};
1613    $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}]
1614                                                = $lb_actions{'LB_NOBREAK'};
1615    $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}]
1616                                                = $lb_actions{'LB_NOBREAK'};
1617
1618    # PR × (JL | JV | JT | H2 | H3)
1619    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}]
1620                                                = $lb_actions{'LB_NOBREAK'};
1621    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}]
1622                                                = $lb_actions{'LB_NOBREAK'};
1623    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}]
1624                                                = $lb_actions{'LB_NOBREAK'};
1625    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}]
1626                                                = $lb_actions{'LB_NOBREAK'};
1627    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}]
1628                                                = $lb_actions{'LB_NOBREAK'};
1629
1630    # LB26 Do not break a Korean syllable.
1631    # JL × (JL | JV | H2 | H3)
1632    $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'};
1633    $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1634    $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'};
1635    $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'};
1636
1637    # (JV | H2) × (JV | JT)
1638    $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1639    $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'};
1640    $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1641    $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1642
1643    # (JT | H3) × JT
1644    $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1645    $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'};
1646
1647    # LB25 Do not break between the following pairs of classes relevant to
1648    # numbers, as tailored by example 7 in
1649    # http://www.unicode.org/reports/tr14/#Examples
1650    # We follow that tailoring because Unicode's test cases expect it
1651    # (PR | PO) × ( OP | HY )? NU
1652    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}]
1653                                                = $lb_actions{'LB_NOBREAK'};
1654    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}]
1655                                                = $lb_actions{'LB_NOBREAK'};
1656
1657        # Given that (OP | HY )? is optional, we have to test for it in code.
1658        # We add in the action (instead of overriding) for this, so that in
1659        # the code we can recover the underlying break value.
1660    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}]
1661                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1662    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'East_Asian_OP'}]
1663                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1664    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}]
1665                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1666    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}]
1667                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1668    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}]
1669                                    += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'};
1670
1671    # ( OP | HY ) × NU
1672    $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}]
1673                                                = $lb_actions{'LB_NOBREAK'};
1674    $lb_table[$lb_enums{'East_Asian_OP'}][$lb_enums{'Numeric'}]
1675                                                = $lb_actions{'LB_NOBREAK'};
1676    $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}]
1677                                                = $lb_actions{'LB_NOBREAK'};
1678
1679    # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP )
1680    # which can be rewritten as:
1681    # NU (SY | IS)* × (NU | SY | IS | CL | CP )
1682    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}]
1683                                                = $lb_actions{'LB_NOBREAK'};
1684    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}]
1685                                                = $lb_actions{'LB_NOBREAK'};
1686    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}]
1687                                                = $lb_actions{'LB_NOBREAK'};
1688    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}]
1689                                                = $lb_actions{'LB_NOBREAK'};
1690    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}]
1691                                                = $lb_actions{'LB_NOBREAK'};
1692    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'East_Asian_CP'}]
1693                                                = $lb_actions{'LB_NOBREAK'};
1694
1695        # Like earlier where we have to test in code, we add in the action so
1696        # that we can recover the underlying values.  This is done in rules
1697        # below, as well.  The code assumes that we haven't added 2 actions.
1698        # Shoul a later Unicode release break that assumption, then tests
1699        # should start failing.
1700    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}]
1701                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1702    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}]
1703                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1704    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}]
1705                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1706    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}]
1707                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1708    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}]
1709                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1710    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'East_Asian_CP'}]
1711                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1712    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}]
1713                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1714    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}]
1715                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1716    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}]
1717                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1718    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}]
1719                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1720    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}]
1721                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1722    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'East_Asian_CP'}]
1723                                    += $lb_actions{'LB_SY_or_IS_then_various'};
1724
1725    # NU (NU | SY | IS)* (CL | CP)? × (PO | PR)
1726    # which can be rewritten as:
1727    # NU (SY | IS)* (CL | CP)? × (PO | PR)
1728    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}]
1729                                                = $lb_actions{'LB_NOBREAK'};
1730    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}]
1731                                                = $lb_actions{'LB_NOBREAK'};
1732
1733    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}]
1734                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1735    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Postfix_Numeric'}]
1736                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1737    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}]
1738                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1739    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}]
1740                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1741    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}]
1742                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1743
1744    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}]
1745                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1746    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Prefix_Numeric'}]
1747                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1748    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}]
1749                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1750    $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}]
1751                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1752    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}]
1753                                    += $lb_actions{'LB_various_then_PO_or_PR'};
1754
1755    # LB24 Do not break between numeric prefix/postfix and letters, or between
1756    # letters and prefix/postfix.
1757    # (PR | PO) × (AL | HL)
1758    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}]
1759                                                = $lb_actions{'LB_NOBREAK'};
1760    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1761                                                = $lb_actions{'LB_NOBREAK'};
1762    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}]
1763                                                = $lb_actions{'LB_NOBREAK'};
1764    $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}]
1765                                                = $lb_actions{'LB_NOBREAK'};
1766
1767    # (AL | HL) × (PR | PO)
1768    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}]
1769                                                = $lb_actions{'LB_NOBREAK'};
1770    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}]
1771                                                = $lb_actions{'LB_NOBREAK'};
1772    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}]
1773                                                = $lb_actions{'LB_NOBREAK'};
1774    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}]
1775                                                = $lb_actions{'LB_NOBREAK'};
1776
1777    # LB23a Do not break between numeric prefixes and ideographs, or between
1778    # ideographs and numeric postfixes.
1779    # PR × (ID | EB | EM)
1780    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}]
1781                                                = $lb_actions{'LB_NOBREAK'};
1782    $lb_table[$lb_enums{'Prefix_Numeric'}]
1783        [$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1784                                                = $lb_actions{'LB_NOBREAK'};
1785    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}]
1786                                                = $lb_actions{'LB_NOBREAK'};
1787    $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}]
1788                                                = $lb_actions{'LB_NOBREAK'};
1789
1790    # (ID | EB | EM) × PO
1791    $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}]
1792                                                = $lb_actions{'LB_NOBREAK'};
1793    $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}]
1794                 [$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'};
1795    $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}]
1796                                                = $lb_actions{'LB_NOBREAK'};
1797    $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}]
1798                                                = $lb_actions{'LB_NOBREAK'};
1799
1800    # LB23 Do not break between digits and letters
1801    # (AL | HL) × NU
1802    $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}]
1803                                                = $lb_actions{'LB_NOBREAK'};
1804    $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}]
1805                                                = $lb_actions{'LB_NOBREAK'};
1806
1807    # NU × (AL | HL)
1808    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}]
1809                                                = $lb_actions{'LB_NOBREAK'};
1810    $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}]
1811                                                = $lb_actions{'LB_NOBREAK'};
1812
1813    # LB22 Do not break before ellipses
1814    for my $i (0 .. @lb_table - 1) {
1815        $lb_table[$i][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'};
1816    }
1817
1818    # LB21b Don’t break between Solidus and Hebrew letters.
1819    # SY × HL
1820    $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}]
1821                                                = $lb_actions{'LB_NOBREAK'};
1822
1823    # LB21a Don't break after Hebrew + Hyphen.
1824    # HL (HY | BA) ×
1825    for my $i (0 .. @lb_table - 1) {
1826        $lb_table[$lb_enums{'Hyphen'}][$i]
1827                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
1828        $lb_table[$lb_enums{'Break_After'}][$i]
1829                                        += $lb_actions{'LB_HY_or_BA_then_foo'};
1830    }
1831
1832    # LB21 Do not break before hyphen-minus, other hyphens, fixed-width
1833    # spaces, small kana, and other non-starters, or after acute accents.
1834    # × BA
1835    # × HY
1836    # × NS
1837    # BB ×
1838    for my $i (0 .. @lb_table - 1) {
1839        $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'};
1840        $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'};
1841        $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'};
1842        $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'};
1843    }
1844
1845    # LB20 Break before and after unresolved CB.
1846    # ÷ CB
1847    # CB ÷
1848    # Conditional breaks should be resolved external to the line breaking
1849    # rules. However, the default action is to treat unresolved CB as breaking
1850    # before and after.
1851    for my $i (0 .. @lb_table - 1) {
1852        $lb_table[$i][$lb_enums{'Contingent_Break'}]
1853                                                = $lb_actions{'LB_BREAKABLE'};
1854        $lb_table[$lb_enums{'Contingent_Break'}][$i]
1855                                                = $lb_actions{'LB_BREAKABLE'};
1856    }
1857
1858    # LB19 Do not break before or after quotation marks, such as ‘ ” ’.
1859    # × QU
1860    # QU ×
1861    for my $i (0 .. @lb_table - 1) {
1862        $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'};
1863        $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'};
1864    }
1865
1866    # LB18 Break after spaces
1867    # SP ÷
1868    for my $i (0 .. @lb_table - 1) {
1869        $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'};
1870    }
1871
1872    # LB17 Do not break within ‘——’, even with intervening spaces.
1873    # B2 SP* × B2
1874    $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}]
1875                           = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1876
1877    # LB16 Do not break between closing punctuation and a nonstarter even with
1878    # intervening spaces.
1879    # (CL | CP) SP* × NS
1880    $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}]
1881                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1882    $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}]
1883                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1884    $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Nonstarter'}]
1885                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1886
1887
1888    # LB15 Do not break within ‘”[’, even with intervening spaces.
1889    # QU SP* × OP
1890    $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}]
1891                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1892    $lb_table[$lb_enums{'Quotation'}][$lb_enums{'East_Asian_OP'}]
1893                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1894
1895    # LB14 Do not break after ‘[’, even after spaces.
1896    # OP SP* ×
1897    for my $i (0 .. @lb_table - 1) {
1898        $lb_table[$lb_enums{'Open_Punctuation'}][$i]
1899                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1900        $lb_table[$lb_enums{'East_Asian_OP'}][$i]
1901                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1902    }
1903
1904    # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as
1905    # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples
1906    # [^NU] × CL
1907    # [^NU] × CP
1908    # × EX
1909    # [^NU] × IS
1910    # [^NU] × SY
1911    for my $i (0 .. @lb_table - 1) {
1912        $lb_table[$i][$lb_enums{'Exclamation'}]
1913                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1914
1915        next if $i == $lb_enums{'Numeric'};
1916
1917        $lb_table[$i][$lb_enums{'Close_Punctuation'}]
1918                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1919        $lb_table[$i][$lb_enums{'Close_Parenthesis'}]
1920                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1921        $lb_table[$i][$lb_enums{'East_Asian_CP'}]
1922                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1923        $lb_table[$i][$lb_enums{'Infix_Numeric'}]
1924                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1925        $lb_table[$i][$lb_enums{'Break_Symbols'}]
1926                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1927    }
1928
1929    # LB12a Do not break before NBSP and related characters, except after
1930    # spaces and hyphens.
1931    # [^SP BA HY] × GL
1932    for my $i (0 .. @lb_table - 1) {
1933        next if    $i == $lb_enums{'Space'}
1934                || $i == $lb_enums{'Break_After'}
1935                || $i == $lb_enums{'Hyphen'};
1936
1937        # We don't break, but if a property above has said don't break even
1938        # with space between, don't override that (also in the next few rules)
1939        next if $lb_table[$i][$lb_enums{'Glue'}]
1940                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1941        $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'};
1942    }
1943
1944    # LB12 Do not break after NBSP and related characters.
1945    # GL ×
1946    for my $i (0 .. @lb_table - 1) {
1947        next if $lb_table[$lb_enums{'Glue'}][$i]
1948                            == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1949        $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'};
1950    }
1951
1952    # LB11 Do not break before or after Word joiner and related characters.
1953    # × WJ
1954    # WJ ×
1955    for my $i (0 .. @lb_table - 1) {
1956        if ($lb_table[$i][$lb_enums{'Word_Joiner'}]
1957                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1958        {
1959            $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'};
1960        }
1961        if ($lb_table[$lb_enums{'Word_Joiner'}][$i]
1962                        != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
1963        {
1964            $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'};
1965        }
1966    }
1967
1968    # Special case this here to avoid having to do a special case in the code,
1969    # by making this the same as other things with a SP in front of them that
1970    # don't break, we avoid an extra test
1971    $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}]
1972                            = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'};
1973
1974    # LB9 and LB10 are done in the same loop
1975    #
1976    # LB9 Do not break a combining character sequence; treat it as if it has
1977    # the line breaking class of the base character in all of the
1978    # higher-numbered rules.  Treat ZWJ as if it were CM
1979    # Treat X (CM|ZWJ)* as if it were X.
1980    # where X is any line break class except BK, CR, LF, NL, SP, or ZW.
1981
1982    # LB10 Treat any remaining combining mark or ZWJ as AL.  This catches the
1983    # case where a CM or ZWJ is the first character on the line or follows SP,
1984    # BK, CR, LF, NL, or ZW.
1985    for my $i (0 .. @lb_table - 1) {
1986
1987        # When the CM or ZWJ is the first in the pair, we don't know without
1988        # looking behind whether the CM or ZWJ is going to attach to an
1989        # earlier character, or not.  So have to figure this out at runtime in
1990        # the code
1991        $lb_table[$lb_enums{'Combining_Mark'}][$i]
1992                                        = $lb_actions{'LB_CM_ZWJ_foo'};
1993        $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'};
1994
1995        if (   $i == $lb_enums{'Mandatory_Break'}
1996            || $i == $lb_enums{'EDGE'}
1997            || $i == $lb_enums{'Carriage_Return'}
1998            || $i == $lb_enums{'Line_Feed'}
1999            || $i == $lb_enums{'Next_Line'}
2000            || $i == $lb_enums{'Space'}
2001            || $i == $lb_enums{'ZWSpace'})
2002        {
2003            # For these classes, a following CM doesn't combine, and should do
2004            # whatever 'Alphabetic' would do.
2005            $lb_table[$i][$lb_enums{'Combining_Mark'}]
2006                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
2007            $lb_table[$i][$lb_enums{'ZWJ'}]
2008                                    = $lb_table[$i][$lb_enums{'Alphabetic'}];
2009        }
2010        else {
2011            # For these classes, the CM or ZWJ combines, so doesn't break,
2012            # inheriting the type of nobreak from the master character.
2013            if ($lb_table[$i][$lb_enums{'Combining_Mark'}]
2014                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
2015            {
2016                $lb_table[$i][$lb_enums{'Combining_Mark'}]
2017                                        = $lb_actions{'LB_NOBREAK'};
2018            }
2019            if ($lb_table[$i][$lb_enums{'ZWJ'}]
2020                            != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'})
2021            {
2022                $lb_table[$i][$lb_enums{'ZWJ'}]
2023                                        = $lb_actions{'LB_NOBREAK'};
2024            }
2025        }
2026    }
2027
2028    # LB8a Do not break after a zero width joiner
2029    # ZWJ ×
2030    for my $i (0 .. @lb_table - 1) {
2031        $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'};
2032    }
2033
2034    # LB8 Break before any character following a zero-width space, even if one
2035    # or more spaces intervene.
2036    # ZW SP* ÷
2037    for my $i (0 .. @lb_table - 1) {
2038        $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'};
2039    }
2040
2041    # Because of LB8-10, we need to look at context for "SP x", and this must
2042    # be done in the code.  So override the existing rules for that, by adding
2043    # a constant to get new rules that tell the code it needs to look at
2044    # context.  By adding this action instead of replacing the existing one,
2045    # we can get back to the original rule if necessary.
2046    for my $i (0 .. @lb_table - 1) {
2047        $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'};
2048    }
2049
2050    # LB7 Do not break before spaces or zero width space.
2051    # × SP
2052    # × ZW
2053    for my $i (0 .. @lb_table - 1) {
2054        $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'};
2055        $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'};
2056    }
2057
2058    # LB6 Do not break before hard line breaks.
2059    # × ( BK | CR | LF | NL )
2060    for my $i (0 .. @lb_table - 1) {
2061        $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'};
2062        $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'};
2063        $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'};
2064        $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'};
2065    }
2066
2067    # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks.
2068    # CR × LF
2069    # CR !
2070    # LF !
2071    # NL !
2072    for my $i (0 .. @lb_table - 1) {
2073        $lb_table[$lb_enums{'Carriage_Return'}][$i]
2074                                = $lb_actions{'LB_BREAKABLE'};
2075        $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'};
2076        $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'};
2077    }
2078    $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}]
2079                            = $lb_actions{'LB_NOBREAK'};
2080
2081    # LB4 Always break after hard line breaks.
2082    # BK !
2083    for my $i (0 .. @lb_table - 1) {
2084        $lb_table[$lb_enums{'Mandatory_Break'}][$i]
2085                                = $lb_actions{'LB_BREAKABLE'};
2086    }
2087
2088    # LB3 Always break at the end of text.
2089    # ! eot
2090    # LB2 Never break at the start of text.
2091    # sot ×
2092    for my $i (0 .. @lb_table - 1) {
2093        $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'};
2094        $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'};
2095    }
2096
2097    # LB1 Assign a line breaking class to each code point of the input.
2098    # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes
2099    # depending on criteria outside the scope of this algorithm.
2100    #
2101    # In the absence of such criteria all characters with a specific
2102    # combination of original class and General_Category property value are
2103    # resolved as follows:
2104    # Original 	   Resolved  General_Category
2105    # AI, SG, XX      AL      Any
2106    # SA              CM      Only Mn or Mc
2107    # SA              AL      Any except Mn and Mc
2108    # CJ              NS      Any
2109    #
2110    # This is done in mktables, so we never see any of the remapped-from
2111    # classes.
2112
2113    output_table_common('LB', \%lb_actions,
2114                        \@lb_table, \@lb_short_enums, \%lb_abbreviations);
2115}
2116
2117sub output_WB_table() {
2118
2119    # Create and output the enums, #defines, and pair table for use in
2120    # determining Word Breaks, given in http://www.unicode.org/reports/tr29/.
2121
2122    # This uses the same mechanism in the other bounds tables generated by
2123    # this file.  The actions that could override a 0 or 1 are added to those
2124    # numbers; the actions that clearly don't depend on the underlying rule
2125    # simply overwrite
2126    my %wb_actions = (
2127        WB_NOBREAK                      => 0,
2128        WB_BREAKABLE                    => 1,
2129        WB_hs_then_hs                   => 2,
2130        WB_Ex_or_FO_or_ZWJ_then_foo	=> 3,
2131        WB_DQ_then_HL	                => 4,
2132        WB_HL_then_DQ	                => 6,
2133        WB_LE_or_HL_then_MB_or_ML_or_SQ	=> 8,
2134        WB_MB_or_ML_or_SQ_then_LE_or_HL	=> 10,
2135        WB_MB_or_MN_or_SQ_then_NU	=> 12,
2136        WB_NU_then_MB_or_MN_or_SQ	=> 14,
2137        WB_RI_then_RI	                => 16,
2138    );
2139
2140    # Construct the WB pair table.
2141    # The table is constructed in reverse order of the rules, to make the
2142    # lower-numbered, higher priority ones override the later ones, as the
2143    # algorithm stops at the earliest matching rule
2144
2145    my @wb_table;
2146    my $table_size = @wb_short_enums;
2147
2148    # Otherwise, break everywhere (including around ideographs).
2149    # WB99  Any  ÷  Any
2150    for my $i (0 .. $table_size - 1) {
2151        for my $j (0 .. $table_size - 1) {
2152            $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'};
2153        }
2154    }
2155
2156    # Do not break within emoji flag sequences. That is, do not break between
2157    # regional indicator (RI) symbols if there is an odd number of RI
2158    # characters before the break point.
2159    # WB16  [^RI] (RI RI)* RI × RI
2160    # WB15   sot    (RI RI)* RI × RI
2161    $wb_table[$wb_enums{'Regional_Indicator'}]
2162             [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'};
2163
2164    # Do not break within emoji modifier sequences.
2165    # WB14  ( E_Base | EBG )  ×  E_Modifier
2166    $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}]
2167                                                    = $wb_actions{'WB_NOBREAK'};
2168    $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}]
2169                                                    = $wb_actions{'WB_NOBREAK'};
2170
2171    # Do not break from extenders.
2172    # WB13b  ExtendNumLet  ×  (ALetter | Hebrew_Letter | Numeric | Katakana)
2173    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}]
2174                                                = $wb_actions{'WB_NOBREAK'};
2175    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtPict_LE'}]
2176                                                = $wb_actions{'WB_NOBREAK'};
2177    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}]
2178                                                = $wb_actions{'WB_NOBREAK'};
2179    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}]
2180                                                = $wb_actions{'WB_NOBREAK'};
2181    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}]
2182                                                = $wb_actions{'WB_NOBREAK'};
2183
2184    # WB13a  (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet)
2185    #        × ExtendNumLet
2186    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}]
2187                                                = $wb_actions{'WB_NOBREAK'};
2188    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtendNumLet'}]
2189                                                = $wb_actions{'WB_NOBREAK'};
2190    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}]
2191                                                = $wb_actions{'WB_NOBREAK'};
2192    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}]
2193                                                = $wb_actions{'WB_NOBREAK'};
2194    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}]
2195                                                = $wb_actions{'WB_NOBREAK'};
2196    $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}]
2197                                                = $wb_actions{'WB_NOBREAK'};
2198
2199    # Do not break between Katakana.
2200    # WB13  Katakana  ×  Katakana
2201    $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}]
2202                                                = $wb_actions{'WB_NOBREAK'};
2203
2204    # Do not break within sequences, such as “3.2” or “3,456.789”.
2205    # WB12  Numeric  ×  (MidNum | MidNumLet | Single_Quote) Numeric
2206    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}]
2207                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2208    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}]
2209                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2210    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}]
2211                                    += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'};
2212
2213    # WB11  Numeric (MidNum | (MidNumLet | Single_Quote))  ×  Numeric
2214    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}]
2215                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2216    $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}]
2217                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2218    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}]
2219                                    += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'};
2220
2221    # Do not break within sequences of digits, or digits adjacent to letters
2222    # (“3a”, or “A3”).
2223    # WB10  Numeric  ×  (ALetter | Hebrew_Letter)
2224    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}]
2225                                                = $wb_actions{'WB_NOBREAK'};
2226    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtPict_LE'}]
2227                                                = $wb_actions{'WB_NOBREAK'};
2228    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}]
2229                                                = $wb_actions{'WB_NOBREAK'};
2230
2231    # WB9  (ALetter | Hebrew_Letter)  ×  Numeric
2232    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}]
2233                                                = $wb_actions{'WB_NOBREAK'};
2234    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Numeric'}]
2235                                                = $wb_actions{'WB_NOBREAK'};
2236    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}]
2237                                                = $wb_actions{'WB_NOBREAK'};
2238
2239    # WB8  Numeric  ×  Numeric
2240    $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}]
2241                                                = $wb_actions{'WB_NOBREAK'};
2242
2243    # Do not break letters across certain punctuation.
2244    # WB7c  Hebrew_Letter Double_Quote  ×  Hebrew_Letter
2245    $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}]
2246                                            += $wb_actions{'WB_DQ_then_HL'};
2247
2248    # WB7b  Hebrew_Letter  ×  Double_Quote Hebrew_Letter
2249    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}]
2250                                            += $wb_actions{'WB_HL_then_DQ'};
2251
2252    # WB7a  Hebrew_Letter  ×  Single_Quote
2253    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2254                                                = $wb_actions{'WB_NOBREAK'};
2255
2256    # WB7  (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote)
2257    #       × (ALetter | Hebrew_Letter)
2258    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}]
2259                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2260    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ExtPict_LE'}]
2261                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2262    $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}]
2263                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2264    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}]
2265                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2266    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ExtPict_LE'}]
2267                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2268    $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}]
2269                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2270    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}]
2271                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2272    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ExtPict_LE'}]
2273                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2274    $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}]
2275                            += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'};
2276
2277    # WB6  (ALetter | Hebrew_Letter)  ×  (MidLetter | MidNumLet
2278    #       | Single_Quote) (ALetter | Hebrew_Letter)
2279    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}]
2280                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2281    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidNumLet'}]
2282                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2283    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}]
2284                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2285    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}]
2286                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2287    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidLetter'}]
2288                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2289    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}]
2290                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2291    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}]
2292                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2293    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Single_Quote'}]
2294                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2295    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}]
2296                            += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'};
2297
2298    # Do not break between most letters.
2299    # WB5  (ALetter | Hebrew_Letter)  ×  (ALetter | Hebrew_Letter)
2300    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}]
2301                                                    = $wb_actions{'WB_NOBREAK'};
2302    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ALetter'}]
2303                                                    = $wb_actions{'WB_NOBREAK'};
2304    $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}]
2305                                                    = $wb_actions{'WB_NOBREAK'};
2306    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Hebrew_Letter'}]
2307                                                    = $wb_actions{'WB_NOBREAK'};
2308    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}]
2309                                                    = $wb_actions{'WB_NOBREAK'};
2310    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtPict_LE'}]
2311                                                    = $wb_actions{'WB_NOBREAK'};
2312    $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}]
2313                                                    = $wb_actions{'WB_NOBREAK'};
2314    $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtPict_LE'}]
2315                                                    = $wb_actions{'WB_NOBREAK'};
2316
2317    # Ignore Format and Extend characters, except after sot, CR, LF, and
2318    # Newline.  This also has the effect of: Any × (Format | Extend | ZWJ)
2319    # WB4  X (Extend | Format | ZWJ)* → X
2320    for my $i (0 .. @wb_table - 1) {
2321        $wb_table[$wb_enums{'Extend'}][$i]
2322                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2323        $wb_table[$wb_enums{'Format'}][$i]
2324                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2325        $wb_table[$wb_enums{'ZWJ'}][$i]
2326                                = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'};
2327    }
2328    for my $i (0 .. @wb_table - 1) {
2329        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2330        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2331        $wb_table[$i][$wb_enums{'ZWJ'}]    = $wb_actions{'WB_NOBREAK'};
2332    }
2333
2334    # Implied is that these attach to the character before them, except for
2335    # the characters that mark the end of a region of text.  The rules below
2336    # override the ones set up here, for all the characters that need
2337    # overriding.
2338    for my $i (0 .. @wb_table - 1) {
2339        $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'};
2340        $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'};
2341    }
2342
2343    # Keep horizontal whitespace together
2344    # Use perl's tailoring instead
2345    # WB3d WSegSpace × WSegSpace
2346    #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}]
2347    #                                               = $wb_actions{'WB_NOBREAK'};
2348
2349    # Do not break within emoji zwj sequences.
2350    # WB3c ZWJ × ( Glue_After_Zwj | EBG )
2351    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}]
2352                                                = $wb_actions{'WB_NOBREAK'};
2353    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}]
2354                                                = $wb_actions{'WB_NOBREAK'};
2355    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_XX'}]
2356                                                = $wb_actions{'WB_NOBREAK'};
2357    $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_LE'}]
2358                                                = $wb_actions{'WB_NOBREAK'};
2359
2360    # Break before and after newlines
2361    # WB3b     ÷  (Newline | CR | LF)
2362    # WB3a  (Newline | CR | LF)  ÷
2363    # et. al.
2364    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2365        for my $j (0 .. @wb_table - 1) {
2366            $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'};
2367            $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'};
2368        }
2369    }
2370
2371    # But do not break within white space.
2372    # WB3  CR  ×  LF
2373    # et.al.
2374    for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2375        for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') {
2376            $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'};
2377        }
2378    }
2379
2380    # And do not break horizontal space followed by Extend or Format or ZWJ
2381    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}]
2382                                                    = $wb_actions{'WB_NOBREAK'};
2383    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}]
2384                                                    = $wb_actions{'WB_NOBREAK'};
2385    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}]
2386                                                    = $wb_actions{'WB_NOBREAK'};
2387    $wb_table[$wb_enums{'Perl_Tailored_HSpace'}]
2388              [$wb_enums{'Perl_Tailored_HSpace'}]
2389                                                = $wb_actions{'WB_hs_then_hs'};
2390
2391    # Break at the start and end of text, unless the text is empty
2392    # WB2  Any  ÷  eot
2393    # WB1  sot  ÷  Any
2394    for my $i (0 .. @wb_table - 1) {
2395        $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'};
2396        $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'};
2397    }
2398    $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0;
2399
2400    output_table_common('WB', \%wb_actions,
2401                        \@wb_table, \@wb_short_enums, \%wb_abbreviations);
2402}
2403
2404sub sanitize_name ($) {
2405    # Change the non-word characters in the input string to standardized word
2406    # equivalents
2407    #
2408    my $sanitized = shift;
2409    $sanitized =~ s/=/__/;
2410    $sanitized =~ s/&/_AMP_/;
2411    $sanitized =~ s/\./_DOT_/;
2412    $sanitized =~ s/-/_MINUS_/;
2413    $sanitized =~ s!/!_SLASH_!;
2414
2415    return $sanitized;
2416}
2417
2418sub token_name
2419{
2420    my $name = sanitize_name(shift);
2421    warn "$name contains non-word" if $name =~ /\W/;
2422
2423    return "$table_name_prefix\U$name"
2424}
2425
2426switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C');
2427
2428output_invlist("Latin1", [ 0, 256 ]);
2429output_invlist("AboveLatin1", [ 256 ]);
2430
2431if ($num_anyof_code_points == 256) {    # Same as Latin1
2432    print $out_fh
2433            "\nstatic const UV * const InBitmap_invlist = Latin1_invlist;\n";
2434}
2435else {
2436    output_invlist("InBitmap", [ 0, $num_anyof_code_points ]);
2437}
2438
2439end_file_pound_if;
2440
2441# We construct lists for all the POSIX and backslash sequence character
2442# classes in two forms:
2443#   1) ones which match only in the ASCII range
2444#   2) ones which match either in the Latin1 range, or the entire Unicode range
2445#
2446# These get compiled in, and hence affect the memory footprint of every Perl
2447# program, even those not using Unicode.  To minimize the size, currently
2448# the Latin1 version is generated for the beyond ASCII range except for those
2449# lists that are quite small for the entire range, such as for \s, which is 22
2450# UVs long plus 4 UVs (currently) for the header.
2451#
2452# To save even more memory, the ASCII versions could be derived from the
2453# larger ones at runtime, saving some memory (minus the expense of the machine
2454# instructions to do so), but these are all small anyway, so their total is
2455# about 100 UVs.
2456#
2457# In the list of properties below that get generated, the L1 prefix is a fake
2458# property that means just the Latin1 range of the full property (whose name
2459# has an X prefix instead of L1).
2460#
2461# An initial & means to use the subroutine from this file instead of an
2462# official inversion list.
2463
2464# Below is the list of property names to generate.  '&' means to use the
2465# subroutine to generate the inversion list instead of the generic code
2466# below.  Some properties have a comma-separated list after the name,
2467# These are extra enums to add to those found in the Unicode tables.
2468no warnings 'qw';
2469                        # Ignore non-alpha in sort
2470my @props;
2471push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw(
2472                    &UpperLatin1
2473                    _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,ExtPict_XX
2474                    _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner,East_Asian_CP,East_Asian_OP,Unassigned_Extended_Pictographic_Ideographic
2475                    _Perl_SB,EDGE,SContinue,CR,Extend,LF
2476                    _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,ExtPict_XX,ExtPict_LE
2477                    _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID
2478                    Lowercase_Mapping
2479                    Titlecase_Mapping
2480                    Uppercase_Mapping
2481                    Simple_Case_Folding
2482                    Case_Folding
2483                    &_Perl_IVCF
2484                    &_Perl_CCC_non0_non230
2485                );
2486                # NOTE that the convention is that extra enum values come
2487                # after the property name, separated by commas, with the enums
2488                # that aren't ever defined by Unicode (with some exceptions)
2489                # containing at least 4 all-uppercase characters.
2490
2491                # Some of the enums are current official property values that
2492                # are needed for the rules in constructing certain tables in
2493                # this file, and perhaps in regexec.c as well.  They are here
2494                # so that things don't crash when compiled on earlier Unicode
2495                # releases where they don't exist.  Thus the rules that use
2496                # them still get compiled, but no code point actually uses
2497                # them, hence they won't get exercized on such Unicode
2498                # versions, but the code will still compile and run, though
2499                # may not give the precise results that those versions would
2500                # expect, but reasonable results nonetheless.
2501                #
2502                # Other enums are due to the fact that Unicode has in more
2503                # recent versions added criteria to the rules in these extra
2504                # tables that are based on factors outside the property
2505                # values.  And those have to be accounted for, essentially by
2506                # here splitting certain enum equivalence classes based on
2507                # those extra rules.
2508                #
2509                # EDGE is supposed to be a boundary between some types of
2510                # enums, but khw thinks that isn't valid any more.
2511
2512my @bin_props;
2513my @perl_prop_synonyms;
2514my %enums;
2515my @deprecated_messages = "";   # Element [0] is a placeholder
2516my %deprecated_tags;
2517
2518my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x;
2519
2520# Create another hash that maps floating point x.yyEzz representation to what
2521# %stricter_to_file_of does for the equivalent rational.  A typical entry in
2522# the latter hash is
2523#
2524#    'nv=1/2' => 'Nv/1_2',
2525#
2526# From that, this loop creates an entry
2527#
2528#    'nv=5.00e-01' => 'Nv/1_2',
2529#
2530# %stricter_to_file_of contains far more than just the rationals.  Instead we
2531# use %Unicode::UCD::nv_floating_to_rational which should have an entry for each
2532# nv in the former hash.
2533my %floating_to_file_of;
2534foreach my $key (keys %Unicode::UCD::nv_floating_to_rational) {
2535    my $value = $Unicode::UCD::nv_floating_to_rational{$key};
2536    $floating_to_file_of{$key} = $Unicode::UCD::stricter_to_file_of{"nv=$value"};
2537}
2538
2539# Properties that are specified with a prop=value syntax
2540my @equals_properties;
2541
2542# Collect all the binary properties from data in lib/unicore
2543# Sort so that complements come after the main table, and the shortest
2544# names first, finally alphabetically.  Also, sort together the tables we want
2545# to be kept together, and prefer those with 'posix' in their names, which is
2546# what the C code is expecting their names to be.
2547foreach my $property (sort
2548        {   exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2549         or $b =~ /posix/i <=> $a =~ /posix/i
2550         or $b =~ /perl/i <=> $a =~ /perl/i
2551         or $a =~ $float_e_format <=> $b =~ $float_e_format
2552         or $a =~ /!/ <=> $b =~ /!/
2553         or length $a <=> length $b
2554         or $a cmp $b
2555        }   keys %Unicode::UCD::loose_to_file_of,
2556            keys %Unicode::UCD::stricter_to_file_of,
2557            keys %floating_to_file_of
2558) {
2559
2560    # These two hashes map properties to values that can be considered to
2561    # be checksums.  If two properties have the same checksum, they have
2562    # identical entries.  Otherwise they differ in some way.
2563    my $tag = $Unicode::UCD::loose_to_file_of{$property};
2564    $tag = $Unicode::UCD::stricter_to_file_of{$property} unless defined $tag;
2565    $tag = $floating_to_file_of{$property} unless defined $tag;
2566
2567    # The tag may contain an '!' meaning it is identical to the one formed
2568    # by removing the !, except that it is inverted.
2569    my $inverted = $tag =~ s/!//;
2570
2571    # This hash is lacking the property name
2572    $property = "nv=$property" if $property =~ $float_e_format;
2573
2574    # The list of 'prop=value' entries that this single entry expands to
2575    my @this_entries;
2576
2577    # Split 'property=value' on the equals sign, with $lhs being the whole
2578    # thing if there is no '='
2579    my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x;
2580
2581    # $lhs then becomes the property name.
2582    my $prop_value = $rhs =~ s/ ^ = //rx;
2583
2584    push @equals_properties, $lhs if $prop_value ne "";
2585
2586    # See if there are any synonyms for this property.
2587    if (exists $prop_name_aliases{$lhs}) {
2588
2589        # If so, do the combinatorics so that a new entry is added for
2590        # each legal property combined with the property value (which is
2591        # $rhs)
2592        foreach my $alias (@{$prop_name_aliases{$lhs}}) {
2593
2594            # But, there are some ambiguities, like 'script' is a synonym
2595            # for 'sc', and 'sc' can stand alone, meaning something
2596            # entirely different than 'script'.  'script' cannot stand
2597            # alone.  Don't add if the potential new lhs is in the hash of
2598            # stand-alone properties.
2599            no warnings 'once';
2600            next if $rhs eq "" &&  grep { $alias eq $_ }
2601                                    keys %Unicode::UCD::loose_property_to_file_of;
2602
2603            my $new_entry = $alias . $rhs;
2604            push @this_entries, $new_entry;
2605        }
2606    }
2607
2608    # Above, we added the synonyms for the base entry we're now
2609    # processing.  But we haven't dealt with it yet.  If we already have a
2610    # property with the identical characteristics, this becomes just a
2611    # synonym for it.
2612
2613    if (exists $enums{$tag}) {
2614        push @this_entries, $property;
2615    }
2616    else { # Otherwise, create a new entry.
2617
2618        # Add to the list of properties to generate inversion lists for.
2619        push @bin_props, uc $property;
2620
2621        # Create a rule for the parser
2622        if (! exists $keywords{$property}) {
2623            $keywords{$property} = token_name($property);
2624        }
2625
2626        # And create an enum for it.
2627        $enums{$tag} = $table_name_prefix . uc sanitize_name($property);
2628
2629        $perl_tags{$tag} = 1 if exists $keep_together{lc $property};
2630
2631        # Some properties are deprecated.  This hash tells us so, and the
2632        # warning message to raise if they are used.
2633        if (exists $Unicode::UCD::why_deprecated{$tag}) {
2634            $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages;
2635            push @deprecated_messages, $Unicode::UCD::why_deprecated{$tag};
2636        }
2637
2638        # Our sort above should have made sure that we see the
2639        # non-inverted version first, but this makes sure.
2640        warn "$property is inverted!!!" if $inverted;
2641    }
2642
2643    # Everything else is #defined to be the base enum, inversion is
2644    # indicated by negating the value.
2645    my $defined_to = "";
2646    $defined_to .= "-" if $inverted;
2647    $defined_to .= $enums{$tag};
2648
2649    # Go through the entries that evaluate to this.
2650    @this_entries = uniques @this_entries;
2651    foreach my $define (@this_entries) {
2652
2653        # There is a rule for the parser for each.
2654        $keywords{$define} = $defined_to;
2655
2656        # And a #define for all simple names equivalent to a perl property,
2657        # except those that begin with 'is' or 'in';
2658        if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) {
2659            push @perl_prop_synonyms, "#define "
2660                                    . $table_name_prefix
2661                                    . uc(sanitize_name($define))
2662                                    . "   $defined_to";
2663        }
2664    }
2665}
2666
2667@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a}
2668                   or $a cmp $b
2669                  } @bin_props;
2670@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms));
2671push @props, @bin_props;
2672
2673foreach my $prop (@props) {
2674
2675    # For the Latin1 properties, we change to use the eXtended version of the
2676    # base property, then go through the result and get rid of everything not
2677    # in Latin1 (above 255).  Actually, we retain the element for the range
2678    # that crosses the 255/256 boundary if it is one that matches the
2679    # property.  For example, in the Word property, there is a range of code
2680    # points that start at U+00F8 and goes through U+02C1.  Instead of
2681    # artificially cutting that off at 256 because 256 is the first code point
2682    # above Latin1, we let the range go to its natural ending.  That gives us
2683    # extra information with no added space taken.  But if the range that
2684    # crosses the boundary is one that doesn't match the property, we don't
2685    # start a new range above 255, as that could be construed as going to
2686    # infinity.  For example, the Upper property doesn't include the character
2687    # at 255, but does include the one at 256.  We don't include the 256 one.
2688    my $prop_name = $prop;
2689    my $is_local_sub = $prop_name =~ s/^&//;
2690    my $extra_enums = "";
2691    $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x;
2692    my $lookup_prop = $prop_name;
2693    $prop_name = sanitize_name($prop_name);
2694    $prop_name = $table_name_prefix . $prop_name
2695                                if grep { lc $lookup_prop eq lc $_ } @bin_props;
2696    my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/
2697                    or $lookup_prop =~ s/^L1//);
2698    my $nonl1_only = 0;
2699    $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only;
2700    ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x;
2701
2702    for my $charset (get_supported_code_pages()) {
2703        @a2n = @{get_a2n($charset)};
2704
2705        my @invlist;
2706        my @invmap;
2707        my $map_format = 0;;
2708        my $map_default;
2709        my $maps_to_code_point = 0;
2710        my $to_adjust = 0;
2711        my $same_in_all_code_pages;
2712        if ($is_local_sub) {
2713            my @return = eval $lookup_prop;
2714            die $@ if $@;
2715            my $invlist_ref = shift @return;
2716            @invlist = @$invlist_ref;
2717            if (@return) {  # If has other values returned , must be an
2718                            # inversion map
2719                my $invmap_ref = shift @return;
2720                @invmap = @$invmap_ref;
2721                $map_format = shift @return;
2722                $map_default = shift @return;
2723            }
2724        }
2725        else {
2726            @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok');
2727            if (! @invlist) {
2728
2729                # If couldn't find a non-empty inversion list, see if it is
2730                # instead an inversion map
2731                my ($list_ref, $map_ref, $format, $default)
2732                          = prop_invmap($lookup_prop, '_perl_core_internal_ok');
2733                if (! $list_ref) {
2734                    # An empty return here could mean an unknown property, or
2735                    # merely that the original inversion list is empty.  Call
2736                    # in scalar context to differentiate
2737                    my $count = prop_invlist($lookup_prop,
2738                                             '_perl_core_internal_ok');
2739                    if (defined $count) {
2740                        # Short-circuit an empty inversion list.
2741                        output_invlist($prop_name, \@invlist, $charset);
2742                        last;
2743                    }
2744                    die "Could not find inversion list for '$lookup_prop'"
2745                }
2746                else {
2747                    @invlist = @$list_ref;
2748                    @invmap = @$map_ref;
2749                    $map_format = $format;
2750                    $map_default = $default;
2751                }
2752            }
2753        }
2754
2755        if ($map_format) {
2756            $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x;
2757            $to_adjust = $map_format =~ /a/;
2758        }
2759
2760        # Re-order the Unicode code points to native ones for this platform.
2761        # This is only needed for code points below 256, because native code
2762        # points are only in that range.  For inversion maps of properties
2763        # where the mappings are adjusted (format =~ /a/), this reordering
2764        # could mess up the adjustment pattern that was in the input, so that
2765        # has to be dealt with.
2766        #
2767        # And inversion maps that map to code points need to eventually have
2768        # all those code points remapped to native, and it's better to do that
2769        # here, going through the whole list not just those below 256.  This
2770        # is because some inversion maps have adjustments (format =~ /a/)
2771        # which may be affected by the reordering.  This code needs to be done
2772        # both for when we are translating the inversion lists for < 256, and
2773        # for the inversion maps for everything.  By doing both in this loop,
2774        # we can share that code.
2775        #
2776        # So, we go through everything for an inversion map to code points;
2777        # otherwise, we can skip any remapping at all if we are going to
2778        # output only the above-Latin1 values, or if the range spans the whole
2779        # of 0..256, as the remap will also include all of 0..256  (256 not
2780        # 255 because a re-ordering could cause 256 to need to be in the same
2781        # range as 255.)
2782        if (       (@invmap && $maps_to_code_point)
2783            || (    @invlist
2784                &&  $invlist[0] < 256
2785                && (    $invlist[0] != 0
2786                    || (scalar @invlist != 1 && $invlist[1] < 256))))
2787        {
2788            $same_in_all_code_pages = 0;
2789            if (! @invmap) {    # Straight inversion list
2790                # Look at all the ranges that start before 257.
2791                my @latin1_list;
2792                while (@invlist) {
2793                    last if $invlist[0] > 256;
2794                    my $upper = @invlist > 1
2795                                ? $invlist[1] - 1      # In range
2796
2797                                # To infinity.  You may want to stop much much
2798                                # earlier; going this high may expose perl
2799                                # deficiencies with very large numbers.
2800                                : 256;
2801                    for my $j ($invlist[0] .. $upper) {
2802                        push @latin1_list, a2n($j);
2803                    }
2804
2805                    shift @invlist; # Shift off the range that's in the list
2806                    shift @invlist; # Shift off the range not in the list
2807                }
2808
2809                # Here @invlist contains all the ranges in the original that
2810                # start at code points above 256, and @latin1_list contains
2811                # all the native code points for ranges that start with a
2812                # Unicode code point below 257.  We sort the latter and
2813                # convert it to inversion list format.  Then simply prepend it
2814                # to the list of the higher code points.
2815                @latin1_list = sort { $a <=> $b } @latin1_list;
2816                @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list);
2817                unshift @invlist, @latin1_list;
2818            }
2819            else {  # Is an inversion map
2820
2821                # This is a similar procedure as plain inversion list, but has
2822                # multiple buckets.  A plain inversion list just has two
2823                # buckets, 1) 'in' the list; and 2) 'not' in the list, and we
2824                # pretty much can ignore the 2nd bucket, as it is completely
2825                # defined by the 1st.  But here, what we do is create buckets
2826                # which contain the code points that map to each, translated
2827                # to native and turned into an inversion list.  Thus each
2828                # bucket is an inversion list of native code points that map
2829                # to it or don't map to it.  We use these to create an
2830                # inversion map for the whole property.
2831
2832                # As mentioned earlier, we use this procedure to not just
2833                # remap the inversion list to native values, but also the maps
2834                # of code points to native ones.  In the latter case we have
2835                # to look at the whole of the inversion map (or at least to
2836                # above Unicode; as the maps of code points above that should
2837                # all be to the default).
2838                my $upper_limit = (! $maps_to_code_point)
2839                                   ? 256
2840                                   : (Unicode::UCD::UnicodeVersion() eq '1.1.5')
2841                                      ? 0xFFFF
2842                                      : 0x10FFFF;
2843
2844                my %mapped_lists;   # A hash whose keys are the buckets.
2845                while (@invlist) {
2846                    last if $invlist[0] > $upper_limit;
2847
2848                    # This shouldn't actually happen, as prop_invmap() returns
2849                    # an extra element at the end that is beyond $upper_limit
2850                    die "inversion map (for $prop_name) that extends to"
2851                      . " infinity is unimplemented" unless @invlist > 1;
2852
2853                    my $bucket;
2854
2855                    # A hash key can't be a ref (we are only expecting arrays
2856                    # of scalars here), so convert any such to a string that
2857                    # will be converted back later (using a vertical tab as
2858                    # the separator).
2859                    if (ref $invmap[0]) {
2860                        $bucket = join "\cK", map { a2n($_) }  @{$invmap[0]};
2861                    }
2862                    elsif (   $maps_to_code_point
2863                           && $invmap[0] =~ $integer_or_float_re)
2864                    {
2865
2866                        # Do convert to native for maps to single code points.
2867                        # There are some properties that have a few outlier
2868                        # maps that aren't code points, so the above test
2869                        # skips those.  0 is never remapped.
2870                        $bucket = $invmap[0] == 0 ? 0 : a2n($invmap[0]);
2871                    } else {
2872                        $bucket = $invmap[0];
2873                    }
2874
2875                    # We now have the bucket that all code points in the range
2876                    # map to, though possibly they need to be adjusted.  Go
2877                    # through the range and put each translated code point in
2878                    # it into its bucket.
2879                    my $base_map = $invmap[0];
2880                    for my $j ($invlist[0] .. $invlist[1] - 1) {
2881                        if ($to_adjust
2882                               # The 1st code point doesn't need adjusting
2883                            && $j > $invlist[0]
2884
2885                               # Skip any non-numeric maps: these are outliers
2886                               # that aren't code points.
2887                            && $base_map =~ $integer_or_float_re
2888
2889                               #  'ne' because the default can be a string
2890                            && $base_map ne $map_default)
2891                        {
2892                            # We adjust, by incrementing each the bucket and
2893                            # the map.  For code point maps, translate to
2894                            # native
2895                            $base_map++;
2896                            $bucket = ($maps_to_code_point)
2897                                      ? a2n($base_map)
2898                                      : $base_map;
2899                        }
2900
2901                        # Add the native code point to the bucket for the
2902                        # current map
2903                        push @{$mapped_lists{$bucket}}, a2n($j);
2904                    } # End of loop through all code points in the range
2905
2906                    # Get ready for the next range
2907                    shift @invlist;
2908                    shift @invmap;
2909                } # End of loop through all ranges in the map.
2910
2911                # Here, @invlist and @invmap retain all the ranges from the
2912                # originals that start with code points above $upper_limit.
2913                # Each bucket in %mapped_lists contains all the code points
2914                # that map to that bucket.  If the bucket is for a map to a
2915                # single code point, the bucket has been converted to native.
2916                # If something else (including multiple code points), no
2917                # conversion is done.
2918                #
2919                # Now we recreate the inversion map into %xlated, but this
2920                # time for the native character set.
2921                my %xlated;
2922                foreach my $bucket (keys %mapped_lists) {
2923
2924                    # Sort and convert this bucket to an inversion list.  The
2925                    # result will be that ranges that start with even-numbered
2926                    # indexes will be for code points that map to this bucket;
2927                    # odd ones map to some other bucket, and are discarded
2928                    # below.
2929                    @{$mapped_lists{$bucket}}
2930                                    = sort{ $a <=> $b} @{$mapped_lists{$bucket}};
2931                    @{$mapped_lists{$bucket}}
2932                     = mk_invlist_from_sorted_cp_list(
2933                                                    \@{$mapped_lists{$bucket}});
2934
2935                    # Add each even-numbered range in the bucket to %xlated;
2936                    # so that the keys of %xlated become the range start code
2937                    # points, and the values are their corresponding maps.
2938                    while (@{$mapped_lists{$bucket}}) {
2939                        my $range_start = $mapped_lists{$bucket}->[0];
2940                        if ($bucket =~ /\cK/) {
2941                            @{$xlated{$range_start}} = split /\cK/, $bucket;
2942                        }
2943                        else {
2944                            # If adjusting, and there is more than one thing
2945                            # that maps to the same thing, they must be split
2946                            # so that later the adjusting doesn't think the
2947                            # subsequent items can go away because of the
2948                            # adjusting.
2949                            my $range_end = (     $to_adjust
2950                                               && $bucket != $map_default)
2951                                            ? $mapped_lists{$bucket}->[1] - 1
2952                                            : $range_start;
2953                            for my $i ($range_start .. $range_end) {
2954                                $xlated{$i} = $bucket;
2955                            }
2956                        }
2957                        shift @{$mapped_lists{$bucket}}; # Discard odd ranges
2958                        shift @{$mapped_lists{$bucket}}; # Get ready for next
2959                                                         # iteration
2960                    }
2961                } # End of loop through all the buckets.
2962
2963                # Here %xlated's keys are the range starts of all the code
2964                # points in the inversion map.  Construct an inversion list
2965                # from them.
2966                my @new_invlist = sort { $a <=> $b } keys %xlated;
2967
2968                # If the list is adjusted, we want to munge this list so that
2969                # we only have one entry for where consecutive code points map
2970                # to consecutive values.  We just skip the subsequent entries
2971                # where this is the case.
2972                if ($to_adjust) {
2973                    my @temp;
2974                    for my $i (0 .. @new_invlist - 1) {
2975                        next if $i > 0
2976                                && $new_invlist[$i-1] + 1 == $new_invlist[$i]
2977                                && $xlated{$new_invlist[$i-1]}
2978                                                        =~ $integer_or_float_re
2979                                && $xlated{$new_invlist[$i]}
2980                                                        =~ $integer_or_float_re
2981                                && $xlated{$new_invlist[$i-1]} + 1
2982                                                 == $xlated{$new_invlist[$i]};
2983                        push @temp, $new_invlist[$i];
2984                    }
2985                    @new_invlist = @temp;
2986                }
2987
2988                # The inversion map comes from %xlated's values.  We can
2989                # unshift each onto the front of the untouched portion, in
2990                # reverse order of the portion we did process.
2991                foreach my $start (reverse @new_invlist) {
2992                    unshift @invmap, $xlated{$start};
2993                }
2994
2995                # Finally prepend the inversion list we have just constructed
2996                # to the one that contains anything we didn't process.
2997                unshift @invlist, @new_invlist;
2998            }
2999        }
3000        elsif (@invmap) {   # inversion maps can't cope with this variable
3001                            # being true, even if it could be true
3002            $same_in_all_code_pages = 0;
3003        }
3004        else {
3005            $same_in_all_code_pages = 1;
3006        }
3007
3008        # prop_invmap() returns an extra final entry, which we can now
3009        # discard.
3010        if (@invmap) {
3011            pop @invlist;
3012            pop @invmap;
3013        }
3014
3015        if ($l1_only) {
3016            die "Unimplemented to do a Latin-1 only inversion map" if @invmap;
3017            for my $i (0 .. @invlist - 1 - 1) {
3018                if ($invlist[$i] > 255) {
3019
3020                    # In an inversion list, even-numbered elements give the code
3021                    # points that begin ranges that match the property;
3022                    # odd-numbered give ones that begin ranges that don't match.
3023                    # If $i is odd, we are at the first code point above 255 that
3024                    # doesn't match, which means the range it is ending does
3025                    # match, and crosses the 255/256 boundary.  We want to
3026                    # include this ending point, so increment $i, so the
3027                    # splice below includes it.  Conversely, if $i is even, it
3028                    # is the first code point above 255 that matches, which
3029                    # means there was no matching range that crossed the
3030                    # boundary, and we don't want to include this code point,
3031                    # so splice before it.
3032                    $i++ if $i % 2 != 0;
3033
3034                    # Remove everything past this.
3035                    splice @invlist, $i;
3036                    splice @invmap, $i if @invmap;
3037                    last;
3038                }
3039            }
3040        }
3041        elsif ($nonl1_only) {
3042            my $found_nonl1 = 0;
3043            for my $i (0 .. @invlist - 1 - 1) {
3044                next if $invlist[$i] < 256;
3045
3046                # Here, we have the first element in the array that indicates an
3047                # element above Latin1.  Get rid of all previous ones.
3048                splice @invlist, 0, $i;
3049                splice @invmap, 0, $i if @invmap;
3050
3051                # If this one's index is not divisible by 2, it means that this
3052                # element is inverting away from being in the list, which means
3053                # all code points from 256 to this one are in this list (or
3054                # map to the default for inversion maps)
3055                if ($i % 2 != 0) {
3056                    unshift @invlist, 256;
3057                    unshift @invmap, $map_default if @invmap;
3058                }
3059                $found_nonl1 = 1;
3060                last;
3061            }
3062            if (! $found_nonl1) {
3063                warn "No non-Latin1 code points in $prop_name";
3064                output_invlist($prop_name, []);
3065                last;
3066            }
3067        }
3068
3069        switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C');
3070        start_charset_pound_if($charset, 1) unless $same_in_all_code_pages;
3071
3072        output_invlist($prop_name, \@invlist, ($same_in_all_code_pages)
3073                                              ? $applies_to_all_charsets_text
3074                                              : $charset);
3075
3076        if (@invmap) {
3077            output_invmap($prop_name, \@invmap, $lookup_prop, $map_format,
3078                          $map_default, $extra_enums, $charset);
3079        }
3080
3081        last if $same_in_all_code_pages;
3082        end_charset_pound_if;
3083    }
3084}
3085
3086print $out_fh "\nconst char * const deprecated_property_msgs[] = {\n\t";
3087print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages;
3088print $out_fh "\n};\n";
3089
3090switch_pound_if ('binary_invlist_enum', 'PERL_IN_REGCOMP_C');
3091
3092my @enums = sort values %enums;
3093
3094# Save a copy of these before modification
3095my @invlist_names = map { "${_}_invlist" } @enums;
3096
3097# Post-process the enums for deprecated properties.
3098if (scalar keys %deprecated_tags) {
3099    my $seen_deprecated = 0;
3100    foreach my $enum (@enums) {
3101        if (grep { $_ eq $enum } keys %deprecated_tags) {
3102
3103            # Change the enum name for this deprecated property to a
3104            # munged one to act as a placeholder in the typedef.  Then
3105            # make the real name be a #define whose value is such that
3106            # its modulus with the number of enums yields the index into
3107            # the table occupied by the placeholder.  And so that dividing
3108            # the #define value by the table length gives an index into
3109            # the table of deprecation messages for the corresponding
3110            # warning.
3111            my $revised_enum = "${enum}_perl_aux";
3112            if (! $seen_deprecated) {
3113                $seen_deprecated = 1;
3114                print $out_fh "\n";
3115            }
3116            print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n";
3117            $enum = $revised_enum;
3118        }
3119    }
3120}
3121
3122print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,",
3123              " /* So no real value is zero */\n\t";
3124print $out_fh join ",\n\t", @enums;
3125print $out_fh "\n";
3126print $out_fh "} binary_invlist_enum;\n";
3127print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n";
3128
3129switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C');
3130
3131output_table_header($out_fh, "UV *", "uni_prop_ptrs");
3132print $out_fh "\tNULL,\t/* Placeholder */\n";
3133print $out_fh "\t";
3134print $out_fh join ",\n\t", @invlist_names;
3135print $out_fh "\n";
3136
3137output_table_trailer();
3138
3139switch_pound_if ('synonym defines', 'PERL_IN_REGCOMP_C');
3140
3141print $out_fh join "\n", "\n",
3142                         #'#    ifdef DOINIT',
3143                         #"\n",
3144                         "/* Synonyms for perl properties */",
3145                         @perl_prop_synonyms,
3146                         #"\n",
3147                         #"#    endif  /* DOINIT */",
3148                         "\n";
3149
3150switch_pound_if ('Valid property_values', 'PERL_IN_REGCOMP_C');
3151
3152# Each entry is a pointer to a table of property values for some property.
3153# (Other properties may share this table.  The next two data structures allow
3154# this sharing to be implemented.)
3155my @values_tables = "NULL /* Placeholder so zero index is an error */";
3156
3157# Keys are all the values of a property, strung together.  The value of each
3158# key is its index in @values_tables.  This is because many properties have
3159# the same values, and this allows the data to appear just once.
3160my %joined_values;
3161
3162# #defines for indices into @values_tables, so can have synonyms resolved by
3163# the C compiler.
3164my @values_indices;
3165
3166# Go through each property which is specifiable by \p{prop=value}, and create
3167# a hash with the keys being the canonicalized short property names, and the
3168# values for each property being all possible values that it can take on.
3169# Both the full value and its short, canonicalized into lc, sans punctuation
3170# version are included.
3171my %all_values;
3172for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) }
3173                 uniques @equals_properties)
3174{
3175    # Get and canonicalize the short name for this property.
3176    my ($short_name) = prop_aliases($property);
3177    $short_name = lc $short_name;
3178    $short_name =~ s/[ _-]//g;
3179
3180    # Now look at each value this property can take on
3181    foreach my $value (prop_values($short_name)) {
3182
3183        # And for each value, look at each synonym for it
3184        foreach my $alias (prop_value_aliases($short_name, $value)) {
3185
3186            # Add each synonym
3187            push @{$all_values{$short_name}}, $alias;
3188
3189            # As well as its canonicalized name.  khw made the decision to not
3190            # support the grandfathered L_ Gc property value
3191            $alias = lc $alias;
3192            $alias =~ s/[ _-]//g unless $alias =~ $numeric_re;
3193            push @{$all_values{$short_name}}, $alias;
3194        }
3195    }
3196}
3197
3198# Also include the old style block names, using the recipe given in
3199# Unicode::UCD
3200foreach my $block (prop_values('block')) {
3201    push @{$all_values{'blk'}}, charblock((prop_invlist("block=$block"))[0]);
3202}
3203
3204# Now create output tables for each property in @equals_properties (the keys
3205# in %all_values) each containing that property's possible values as computed
3206# just above.
3207PROPERTY:
3208for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3209                         or $a cmp $b } keys %all_values)
3210{
3211    @{$all_values{$property}} = uniques(@{$all_values{$property}});
3212
3213    # String together the values for this property, sorted.  This string forms
3214    # a list definition, with each value as an entry in it, indented on a new
3215    # line.  The sorting is used to find properties that take on the exact
3216    # same values to share this string.
3217    my $joined = "\t\"";
3218    $joined .= join "\",\n\t\"",
3219                sort { ($a =~ $numeric_re && $b =~ $numeric_re)
3220                        ? eval $a <=> eval $b
3221                        :    prop_name_for_cmp($a) cmp prop_name_for_cmp($b)
3222                          or $a cmp $b
3223                        } @{$all_values{$property}};
3224    # And add a trailing marker
3225    $joined .= "\",\n\tNULL\n";
3226
3227    my $table_name = $table_name_prefix . $property . "_values";
3228    my $index_name = "${table_name}_index";
3229
3230    # Add a rule for the parser that is just an empty value.  It will need to
3231    # know to look up empty things in the prop_value_ptrs[] table.
3232
3233    $keywords{"$property="} = $index_name;
3234    if (exists $prop_name_aliases{$property}) {
3235        foreach my $alias (@{$prop_name_aliases{$property}}) {
3236            $keywords{"$alias="} = $index_name;
3237        }
3238    }
3239
3240    # Also create rules for the synonyms of this property to point to the same
3241    # thing
3242
3243    # If this property's values are the same as one we've already computed,
3244    # use that instead of creating a duplicate.  But we add a #define to point
3245    # to the proper one.
3246    if (exists $joined_values{$joined}) {
3247        push @values_indices, "#define $index_name  $joined_values{$joined}\n";
3248        next PROPERTY;
3249    }
3250
3251    # And this property, now known to have unique values from any other seen
3252    # so far is about to be pushed onto @values_tables.  Its index is the
3253    # current count.
3254    push @values_indices, "#define $index_name  "
3255                         . scalar @values_tables . "\n";
3256    $joined_values{$joined} = $index_name;
3257    push @values_tables, $table_name;
3258
3259    # Create the table for this set of values.
3260    output_table_header($out_fh, "char *", $table_name);
3261    print $out_fh $joined;
3262    output_table_trailer();
3263} # End of loop through the properties, and their values
3264
3265# We have completely determined the table of the unique property values
3266output_table_header($out_fh, "char * const *",
3267                             "${table_name_prefix}prop_value_ptrs");
3268print $out_fh join ",\n", @values_tables;
3269print $out_fh "\n";
3270output_table_trailer();
3271
3272# And the #defines for the indices in it
3273print $out_fh "\n\n", join "", @values_indices;
3274
3275switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C');
3276
3277output_GCB_table();
3278output_LB_table();
3279output_WB_table();
3280
3281end_file_pound_if;
3282
3283print $out_fh <<"EOF";
3284
3285/* More than one code point may have the same code point as their fold.  This
3286 * gives the maximum number in the current Unicode release.  (The folded-to
3287 * code point is not included in this count.)  For example, both 'S' and
3288 * \\x{17F} fold to 's', so the number for that fold is 2.  Another way to
3289 * look at it is the maximum length of all the IVCF_AUX_TABLE's */
3290#define MAX_FOLD_FROMS $max_fold_froms
3291EOF
3292
3293my $sources_list = "lib/unicore/mktables.lst";
3294my @sources = qw(regen/mk_invlists.pl
3295                 lib/unicore/mktables
3296                 lib/Unicode/UCD.pm
3297                 regen/charset_translations.pl
3298                 regen/mk_PL_charclass.pl
3299               );
3300{
3301    # Depend on mktables’ own sources.  It’s a shorter list of files than
3302    # those that Unicode::UCD uses.
3303    if (! open my $mktables_list, '<', $sources_list) {
3304
3305          # This should force a rebuild once $sources_list exists
3306          push @sources, $sources_list;
3307    }
3308    else {
3309        while(<$mktables_list>) {
3310            last if /===/;
3311            chomp;
3312            push @sources, "lib/unicore/$_" if /^[^#]/;
3313        }
3314    }
3315}
3316
3317read_only_bottom_close_and_rename($out_fh, \@sources);
3318
3319my %name_to_index;
3320for my $i (0 .. @enums - 1) {
3321    my $loose_name = $enums[$i] =~ s/^$table_name_prefix//r;
3322    $loose_name = lc $loose_name;
3323    $loose_name =~ s/__/=/;
3324    $loose_name =~ s/_dot_/./;
3325    $loose_name =~ s/_slash_/\//g;
3326    $name_to_index{$loose_name} = $i + 1;
3327}
3328# unsanitize, exclude &, maybe add these before sanitize
3329for my $i (0 .. @perl_prop_synonyms - 1) {
3330    my $loose_name_pair = $perl_prop_synonyms[$i] =~ s/#\s*define\s*//r;
3331    $loose_name_pair =~ s/\b$table_name_prefix//g;
3332    $loose_name_pair = lc $loose_name_pair;
3333    $loose_name_pair =~ s/__/=/g;
3334    $loose_name_pair =~ s/_dot_/./g;
3335    $loose_name_pair =~ s/_slash_/\//g;
3336    my ($synonym, $primary) = split / +/, $loose_name_pair;
3337    $name_to_index{$synonym} = $name_to_index{$primary};
3338}
3339
3340my $uni_pl = open_new('lib/unicore/uni_keywords.pl', '>',
3341                      {style => '*', by => 'regen/mk_invlists.pl',
3342                      from => "Unicode::UCD"});
3343{
3344    print $uni_pl "\%Unicode::UCD::uni_prop_ptrs_indices = (\n";
3345    for my $name (sort keys %name_to_index) {
3346        print $uni_pl "    '$name' => $name_to_index{$name},\n";
3347    }
3348    print $uni_pl ");\n\n1;\n";
3349}
3350
3351read_only_bottom_close_and_rename($uni_pl, \@sources);
3352
3353if (my $file= $ENV{DUMP_KEYWORDS_FILE}) {
3354    require Data::Dumper;
3355
3356    open my $ofh, ">", $file
3357        or die "Failed to open DUMP_KEYWORDS_FILE '$file' for write: $!";
3358    print $ofh Data::Dumper->new([\%keywords],['*keywords'])
3359                           ->Sortkeys(1)->Useqq(1)->Dump();
3360    close $ofh;
3361    print "Wrote keywords to '$file'.\n";
3362}
3363
3364my $keywords_fh = open_new('uni_keywords.h', '>',
3365                  {style => '*', by => 'regen/mk_invlists.pl',
3366                  from => "mph.pl"});
3367
3368print $keywords_fh "\n#if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)\n\n";
3369
3370my $mph= MinimalPerfectHash->new(
3371    source_hash => \%keywords,
3372    match_name => "match_uniprop",
3373    simple_split => $ENV{SIMPLE_SPLIT} // 0,
3374    randomize_squeeze => $ENV{RANDOMIZE_SQUEEZE} // 1,
3375    max_same_in_squeeze => $ENV{MAX_SAME} // 5,
3376    srand_seed => (lc($ENV{SRAND_SEED}//"") eq "auto")
3377                  ? undef
3378                  : $ENV{SRAND_SEED} // 1785235451, # I let perl pick a number
3379);
3380$mph->make_mph_with_split_keys();
3381print $keywords_fh $mph->make_algo();
3382
3383print $keywords_fh "\n#endif /* #if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD) */\n";
3384
3385push @sources, 'regen/mph.pl';
3386read_only_bottom_close_and_rename($keywords_fh, \@sources);
3387