1#!perl -w 2use 5.015; 3use strict; 4use warnings; 5use Unicode::UCD qw(prop_aliases 6 prop_values 7 prop_value_aliases 8 prop_invlist 9 prop_invmap search_invlist 10 charprop 11 num 12 charblock 13 ); 14require './regen/regen_lib.pl'; 15require './regen/charset_translations.pl'; 16require './lib/unicore/UCD.pl'; 17require './regen/mph.pl'; 18use re "/aa"; 19 20# This program outputs charclass_invlists.h, which contains various inversion 21# lists in the form of C arrays that are to be used as-is for inversion lists. 22# Thus, the lists it contains are essentially pre-compiled, and need only a 23# light-weight fast wrapper to make them usable at run-time. 24 25# As such, this code knows about the internal structure of these lists, and 26# any change made to that has to be done here as well. A random number stored 27# in the headers is used to minimize the possibility of things getting 28# out-of-sync, or the wrong data structure being passed. Currently that 29# random number is: 30 31my $VERSION_DATA_STRUCTURE_TYPE = 148565664; 32 33# charclass_invlists.h now also contains inversion maps and enum definitions 34# for those maps that have a finite number of possible values 35 36# integer or float (no exponent) 37my $integer_or_float_re = qr/ ^ -? \d+ (:? \. \d+ )? $ /x; 38 39# Also includes rationals 40my $numeric_re = qr! $integer_or_float_re | ^ -? \d+ / \d+ $ !x; 41 42# More than one code point may have the same code point as their fold. This 43# gives the maximum number in the current Unicode release. (The folded-to 44# code point is not included in this count.) Most folds are pairs of code 45# points, like 'B' and 'b', so this number is at least one. 46my $max_fold_froms = 1; 47 48my %keywords; 49my $table_name_prefix = "UNI_"; 50 51# Matches valid C language enum names: begins with ASCII alphabetic, then any 52# ASCII \w 53my $enum_name_re = qr / ^ [[:alpha:]] \w* $ /ax; 54 55my $out_fh = open_new('charclass_invlists.h', '>', 56 {style => '*', by => 'regen/mk_invlists.pl', 57 from => "Unicode::UCD"}); 58 59my $in_file_pound_if = ""; 60 61my $max_hdr_len = 3; # In headings, how wide a name is allowed? 62 63print $out_fh "/* See the generating file for comments */\n\n"; 64 65print $out_fh <<'EOF'; 66/* This gives the number of code points that can be in the bitmap of an ANYOF 67 * node. The shift number must currently be one of: 8..12. It can't be less 68 * than 8 (256) because some code relies on it being at least that. Above 12 69 * (4096), and you start running into warnings that some data structure widths 70 * have been exceeded, though the test suite as of this writing still passes 71 * for up through 16, which is as high as anyone would ever want to go, 72 * encompassing all of the Unicode BMP, and thus including all the economically 73 * important world scripts. At 12 most of them are: including Arabic, 74 * Cyrillic, Greek, Hebrew, Indian subcontinent, Latin, and Thai; but not Han, 75 * Japanese, nor Korean. (The regarglen structure in regnodes.h is a U8, and 76 * the trie types TRIEC and AHOCORASICKC are larger than U8 for shift values 77 * above 12.) Be sure to benchmark before changing, as larger sizes do 78 * significantly slow down the test suite */ 79 80EOF 81 82my $num_anyof_code_points = '(1 << 8)'; 83 84print $out_fh "#define NUM_ANYOF_CODE_POINTS $num_anyof_code_points\n\n"; 85 86$num_anyof_code_points = eval $num_anyof_code_points; 87 88no warnings 'once'; 89print $out_fh <<"EOF"; 90/* The precision to use in "%.*e" formats */ 91#define PL_E_FORMAT_PRECISION $Unicode::UCD::e_precision 92EOF 93 94# enums that should be made public 95my %public_enums = ( 96 _Perl_SCX => 1 97 ); 98 99# The symbols generated by this program are all currently defined only in a 100# single dot c each. The code knows where most of them go, but this hash 101# gives overrides for the exceptions to the typical place 102my %exceptions_to_where_to_define = 103 ( 104 #_Perl_IVCF => 'PERL_IN_REGCOMP_C', 105 ); 106 107my %where_to_define_enums = (); 108 109my $applies_to_all_charsets_text = "all charsets"; 110 111my %gcb_enums; 112my @gcb_short_enums; 113my %gcb_abbreviations; 114my %lb_enums; 115my @lb_short_enums; 116my %lb_abbreviations; 117my %wb_enums; 118my @wb_short_enums; 119my %wb_abbreviations; 120 121my @a2n; 122 123my %prop_name_aliases; 124# Invert this hash so that for each canonical name, we get a list of things 125# that map to it (excluding itself) 126foreach my $name (sort keys %Unicode::UCD::loose_property_name_of) { 127 my $canonical = $Unicode::UCD::loose_property_name_of{$name}; 128 push @{$prop_name_aliases{$canonical}}, $name if $canonical ne $name; 129} 130 131# Output these tables in the same vicinity as each other, so that will get 132# paged in at about the same time. These are also assumed to be the exact 133# same list as those properties used internally by perl. 134my %keep_together = ( 135 assigned => 1, 136 ascii => 1, 137 upper => 1, 138 lower => 1, 139 title => 1, 140 cased => 1, 141 uppercaseletter => 1, 142 lowercaseletter => 1, 143 titlecaseletter => 1, 144 casedletter => 1, 145 vertspace => 1, 146 xposixalnum => 1, 147 xposixalpha => 1, 148 xposixblank => 1, 149 xposixcntrl => 1, 150 xposixdigit => 1, 151 xposixgraph => 1, 152 xposixlower => 1, 153 xposixprint => 1, 154 xposixpunct => 1, 155 xposixspace => 1, 156 xposixupper => 1, 157 xposixword => 1, 158 xposixxdigit => 1, 159 posixalnum => 1, 160 posixalpha => 1, 161 posixblank => 1, 162 posixcntrl => 1, 163 posixdigit => 1, 164 posixgraph => 1, 165 posixlower => 1, 166 posixprint => 1, 167 posixpunct => 1, 168 posixspace => 1, 169 posixupper => 1, 170 posixword => 1, 171 posixxdigit => 1, 172 _perl_any_folds => 1, 173 _perl_folds_to_multi_char => 1, 174 _perl_is_in_multi_char_fold => 1, 175 _perl_non_final_folds => 1, 176 _perl_idstart => 1, 177 _perl_idcont => 1, 178 _perl_charname_begin => 1, 179 _perl_charname_continue => 1, 180 _perl_problematic_locale_foldeds_start => 1, 181 _perl_problematic_locale_folds => 1, 182 _perl_quotemeta => 1, 183 ); 184my %perl_tags; # So can find synonyms of the above properties 185 186my $unused_table_hdr = 'u'; # Heading for row or column for unused values 187 188sub uniques { 189 # Returns non-duplicated input values. From "Perl Best Practices: 190 # Encapsulated Cleverness". p. 455 in first edition. 191 192 my %seen; 193 return grep { ! $seen{$_}++ } @_; 194} 195 196sub caselessly { lc $a cmp lc $b } 197 198sub a2n($) { 199 my $cp = shift; 200 201 # Returns the input Unicode code point translated to native. 202 203 return $cp if $cp !~ $integer_or_float_re || $cp > 255; 204 return $a2n[$cp]; 205} 206 207sub end_file_pound_if { 208 if ($in_file_pound_if) { 209 print $out_fh "\n#endif\t/* $in_file_pound_if */\n"; 210 $in_file_pound_if = ""; 211 } 212} 213 214sub end_charset_pound_if { 215 print $out_fh "\n" . get_conditional_compile_line_end(); 216} 217 218sub switch_pound_if ($$;$) { 219 my $name = shift; 220 my $new_pound_if = shift; 221 my $charset = shift; 222 223 my @new_pound_if = ref ($new_pound_if) 224 ? sort @$new_pound_if 225 : $new_pound_if; 226 227 # Switch to new #if given by the 2nd argument. If there is an override 228 # for this, it instead switches to that. The 1st argument is the 229 # static's name, used only to check if there is an override for this 230 # 231 # The 'charset' parmameter, if present, is used to first end the charset 232 # #if if we actually do a switch, and then restart it afterwards. This 233 # code, then assumes that the charset #if's are enclosed in the file ones. 234 235 if (exists $exceptions_to_where_to_define{$name}) { 236 @new_pound_if = $exceptions_to_where_to_define{$name}; 237 } 238 239 foreach my $element (@new_pound_if) { 240 241 # regcomp.c is arranged so that the tables are not compiled in 242 # re_comp.c, but general enums and defines (which take no space) are 243 # compiled */ 244 my $no_xsub = 1 if $name !~ /enum|define/ 245 && $element =~ / PERL_IN_ (?: REGCOMP ) _C /x; 246 $element = "defined($element)"; 247 $element = "($element && ! defined(PERL_IN_XSUB_RE))" if $no_xsub; 248 } 249 $new_pound_if = join " || ", @new_pound_if; 250 251 # Change to the new one if different from old 252 if ($in_file_pound_if ne $new_pound_if) { 253 254 end_charset_pound_if() if defined $charset; 255 256 # Exit any current #if 257 if ($in_file_pound_if) { 258 end_file_pound_if; 259 } 260 261 $in_file_pound_if = $new_pound_if; 262 print $out_fh "\n#if $in_file_pound_if\n"; 263 264 start_charset_pound_if ($charset, 1) if defined $charset; 265 } 266} 267 268sub start_charset_pound_if ($;$) { 269 print $out_fh "\n" . get_conditional_compile_line_start(shift, shift); 270} 271 272{ # Closure 273 my $fh; 274 my $in_doinit = 0; 275 276 sub output_table_header($$$;$@) { 277 278 # Output to $fh the heading for a table given by the other inputs 279 280 $fh = shift; 281 my ($type, # typedef of table, like UV, UV* 282 $name, # name of table 283 $comment, # Optional comment to put on header line 284 @sizes # Optional sizes of each array index. If omitted, 285 # there is a single index whose size is computed by 286 # the C compiler. 287 ) = @_; 288 289 $type =~ s/ \s+ $ //x; 290 291 # If a the typedef is a ptr, add in an extra const 292 $type .= " const" if $type =~ / \* $ /x; 293 294 $comment = "" unless defined $comment; 295 $comment = " /* $comment */" if $comment; 296 297 my $array_declaration; 298 if (@sizes) { 299 $array_declaration = ""; 300 $array_declaration .= "[$_]" for @sizes; 301 } 302 else { 303 $array_declaration = '[]'; 304 } 305 306 my $declaration = "$type ${name}$array_declaration"; 307 308 # Things not matching this are static. Otherwise, it is an external 309 # constant, initialized only under DOINIT. 310 # 311 # (Currently everything is static) 312 if ($in_file_pound_if !~ / PERL_IN_ (?: ) _C /x) { 313 $in_doinit = 0; 314 print $fh "\nstatic const $declaration = {$comment\n"; 315 } 316 else { 317 $in_doinit = 1; 318 print $fh <<EOF; 319 320# ifndef DOINIT 321 322EXTCONST $declaration; 323 324# else 325 326EXTCONST $declaration = {$comment 327EOF 328 } 329 } 330 331 sub output_table_trailer() { 332 333 # Close out a table started by output_table_header() 334 335 print $fh "};\n"; 336 if ($in_doinit) { 337 print $fh "\n# endif /* DOINIT */\n\n"; 338 $in_doinit = 0; 339 } 340 } 341} # End closure 342 343 344sub output_invlist ($$;$) { 345 my $name = shift; 346 my $invlist = shift; # Reference to inversion list array 347 my $charset = shift // ""; # name of character set for comment 348 349 die "No inversion list for $name" unless defined $invlist 350 && ref $invlist eq 'ARRAY'; 351 352 # Output the inversion list $invlist using the name $name for it. 353 # It is output in the exact internal form for inversion lists. 354 355 # Is the last element of the header 0, or 1 ? 356 my $zero_or_one = 0; 357 if (@$invlist && $invlist->[0] != 0) { 358 unshift @$invlist, 0; 359 $zero_or_one = 1; 360 } 361 362 $charset = "for $charset" if $charset; 363 output_table_header($out_fh, "UV", "${name}_invlist", $charset); 364 365 my $count = @$invlist; 366 print $out_fh <<EOF; 367\t$count,\t/* Number of elements */ 368\t$VERSION_DATA_STRUCTURE_TYPE, /* Version and data structure type */ 369\t$zero_or_one,\t/* 0 if the list starts at 0; 370\t\t 1 if it starts at the element beyond 0 */ 371EOF 372 373 # The main body are the UVs passed in to this routine. Do the final 374 # element separately 375 for my $i (0 .. @$invlist - 1) { 376 printf $out_fh "\t0x%X", $invlist->[$i]; 377 print $out_fh "," if $i < @$invlist - 1; 378 print $out_fh "\n"; 379 } 380 381 output_table_trailer(); 382} 383 384sub output_invmap ($$$$$$$) { 385 my $name = shift; 386 my $invmap = shift; # Reference to inversion map array 387 my $prop_name = shift; 388 my $input_format = shift; # The inversion map's format 389 my $default = shift; # The property value for code points who 390 # otherwise don't have a value specified. 391 my $extra_enums = shift; # comma-separated list of our additions to the 392 # property's standard possible values 393 my $charset = shift // ""; # name of character set for comment 394 395 # Output the inversion map $invmap for property $prop_name, but use $name 396 # as the actual data structure's name. 397 398 my $count = @$invmap; 399 400 my $output_format; 401 my $invmap_declaration_type; 402 my $enum_declaration_type; 403 my $aux_declaration_type; 404 my %enums; 405 my $name_prefix; 406 407 if ($input_format =~ / ^ [as] l? $ /x) { 408 $prop_name = (prop_aliases($prop_name))[1] 409 // $prop_name =~ s/^_Perl_//r; # Get full name 410 my $short_name = (prop_aliases($prop_name))[0] // $prop_name; 411 my @input_enums; 412 413 # Find all the possible input values. These become the enum names 414 # that comprise the inversion map. For inputs that don't have sub 415 # lists, we can just get the unique values. Otherwise, we have to 416 # expand the sublists first. 417 if ($input_format !~ / ^ a /x) { 418 if ($input_format ne 'sl') { 419 @input_enums = sort caselessly uniques(@$invmap); 420 } 421 else { 422 foreach my $element (@$invmap) { 423 if (ref $element) { 424 push @input_enums, @$element; 425 } 426 else { 427 push @input_enums, $element; 428 } 429 } 430 @input_enums = sort caselessly uniques(@input_enums); 431 } 432 } 433 434 # The internal enums come last, and in the order specified. 435 # 436 # The internal one named EDGE is also used a marker. Any ones that 437 # come after it are used in the algorithms below, and so must be 438 # defined, even if the release of Unicode this is being compiled for 439 # doesn't use them. But since no code points are assigned to them in 440 # such a release, those values will never be accessed. We collapse 441 # all of them into a single placholder row and a column. The 442 # algorithms below will fill in those cells with essentially garbage, 443 # but they are never read, so it doesn't matter. This allows the 444 # algorithm to remain the same from release to release. 445 # 446 # In one case, regexec.c also uses a placeholder which must be defined 447 # here, and we put it in the unused row and column as its value is 448 # never read. 449 # 450 my @enums = @input_enums; 451 my @extras; 452 my @unused_enums; 453 my $unused_enum_value = @enums; 454 if ($extra_enums ne "") { 455 @extras = split /,/, $extra_enums; 456 my $seen_EDGE = 0; 457 458 # Don't add if already there. 459 foreach my $this_extra (@extras) { 460 next if grep { $_ eq $this_extra } @enums; 461 if ($this_extra eq 'EDGE') { 462 push @enums, $this_extra; 463 $seen_EDGE = 1; 464 } 465 elsif ($seen_EDGE) { 466 push @unused_enums, $this_extra; 467 } 468 else { 469 push @enums, $this_extra; 470 } 471 } 472 473 @unused_enums = sort caselessly @unused_enums; 474 $unused_enum_value = @enums; # All unused have the same value, 475 # one beyond the final used one 476 } 477 478 # These properties have extra tables written out for them that we want 479 # to make as compact and legible as possible. So we find short names 480 # for their property values. For non-official ones we will need to 481 # add a legend at the top of the table to say what the abbreviation 482 # stands for. 483 my $property_needs_table_re = qr/ ^ _Perl_ (?: GCB | LB | WB ) $ /x; 484 485 my %short_enum_name; 486 my %need_explanation; # For non-official abbreviations, we will need 487 # to explain what the one we come up with 488 # stands for 489 my $type = lc $prop_name; 490 if ($name =~ $property_needs_table_re) { 491 my @short_names; # List of already used abbreviations, so we 492 # don't duplicate 493 for my $enum (@enums) { 494 my $short_enum; 495 my $is_official_name = 0; 496 497 # Special case this wb property value to make the 498 # name more clear 499 if ($enum eq 'Perl_Tailored_HSpace') { 500 $short_enum = 'hs'; 501 } 502 else { 503 504 # Use the official short name, if found. 505 ($short_enum) = prop_value_aliases($type, $enum); 506 if ( defined $short_enum) { 507 $is_official_name = 1; 508 } 509 else { 510 # But if there is no official name, use the name that 511 # came from the data (if any). Otherwise, the name 512 # had to come from the extras list. There are two 513 # types of values in that list. 514 # 515 # First are those enums that are not part of the 516 # property, but are defined by the code in this file. 517 # By convention these have all-caps names. We use the 518 # lowercased name for these. 519 # 520 # Second are enums that are needed to get the 521 # algorithms below to work and/or to get regexec.c to 522 # compile, but don't exist in all Unicode releases. 523 # These are handled outside this loop as 524 # 'unused_enums' (as they are unused they all get 525 # collapsed into a single column, and their names 526 # don't matter) 527 if (grep { $_ eq $enum } @input_enums) { 528 $short_enum = $enum 529 } 530 else { 531 $short_enum = lc $enum; 532 } 533 } 534 535 # If our short name is too long, or we already know that 536 # the name is an abbreviation, truncate to make sure it's 537 # short enough, and remember that we did this so we can 538 # later add a comment in the generated file 539 if (length $short_enum > $max_hdr_len) { 540 # First try using just the uppercase letters of the name; 541 # if it is something like FooBar, FB is a better 542 # abbreviation than Foo. That's not the case if it is 543 # entirely lowercase. 544 my $uc = $short_enum; 545 $uc =~ s/[[:^upper:]]//g; 546 $short_enum = $uc if length $uc > 1 547 && length $uc < length $short_enum; 548 549 $short_enum = substr($short_enum, 0, $max_hdr_len); 550 $is_official_name = 0; 551 } 552 } 553 554 # If the name we are to display conflicts, try another. 555 if (grep { $_ eq $short_enum } @short_names) { 556 $is_official_name = 0; 557 do { # The increment operator on strings doesn't work on 558 # those containing an '_', so get rid of any final 559 # portion. 560 $short_enum =~ s/_//g; 561 $short_enum++; 562 } while grep { $_ eq $short_enum } @short_names; 563 } 564 565 push @short_names, $short_enum; 566 $short_enum_name{$enum} = $short_enum; 567 $need_explanation{$enum} = $short_enum unless $is_official_name; 568 } 569 } # End of calculating short enum names for certain properties 570 571 # Assign a value to each element of the enum type we are creating. 572 # The default value always gets 0; the others are arbitrarily 573 # assigned, but for the properties which have the extra table, it is 574 # in the order we have computed above so the rows and columns appear 575 # alphabetically by heading abbreviation. 576 my $enum_val = 0; 577 my $canonical_default = prop_value_aliases($prop_name, $default); 578 $default = $canonical_default if defined $canonical_default; 579 $enums{$default} = $enum_val++; 580 581 for my $enum (sort { ($name =~ $property_needs_table_re) 582 ? lc $short_enum_name{$a} 583 cmp lc $short_enum_name{$b} 584 : lc $a cmp lc $b 585 } @enums) 586 { 587 $enums{$enum} = $enum_val++ unless exists $enums{$enum}; 588 } 589 590 # Now calculate the data for the special tables output for these 591 # properties. 592 if ($name =~ $property_needs_table_re) { 593 594 # The data includes the hashes %gcb_enums, %lb_enums, etc. 595 # Similarly we calculate column headings for the tables. 596 # 597 # We use string evals to allow the same code to work on 598 # all the tables 599 600 # Skip if we've already done this code, which populated 601 # this hash 602 if (eval "! \%${type}_enums") { 603 604 # For each enum in the type ... 605 foreach my $enum (keys %enums) { 606 my $value = $enums{$enum}; 607 my $short_enum = $short_enum_name{$enum}; 608 609 # Remember the mapping from the property value 610 # (enum) name to its value. 611 eval "\$${type}_enums{$enum} = $value"; 612 die $@ if $@; 613 614 # Remember the inverse mapping to the short name 615 # so that we can properly label the generated 616 # table's rows and columns 617 eval "\$${type}_short_enums[$value] = '$short_enum'"; 618 die $@ if $@; 619 620 # And note the abbreviations that need explanation 621 if ($need_explanation{$enum}) { 622 eval "\$${type}_abbreviations{$short_enum} = '$enum'"; 623 die $@ if $@; 624 } 625 } 626 627 # Each unused enum has the same value. They all are collapsed 628 # into one row and one column, named $unused_table_hdr. 629 if (@unused_enums) { 630 eval "\$${type}_short_enums['$unused_enum_value'] = '$unused_table_hdr'"; 631 die $@ if $@; 632 633 foreach my $enum (@unused_enums) { 634 eval "\$${type}_enums{$enum} = $unused_enum_value"; 635 die $@ if $@; 636 } 637 } 638 } 639 } 640 641 # The short property names tend to be two lower case letters, but it 642 # looks better for those if they are upper. XXX 643 $short_name = uc($short_name) if length($short_name) < 3 644 || substr($short_name, 0, 1) =~ /[[:lower:]]/; 645 $name_prefix = "${short_name}_"; 646 647 # Start the enum definition for this map 648 my @enum_definition; 649 my @enum_list; 650 foreach my $enum (keys %enums) { 651 $enum_list[$enums{$enum}] = $enum; 652 } 653 foreach my $i (0 .. @enum_list - 1) { 654 push @enum_definition, ",\n" if $i > 0; 655 656 my $name = $enum_list[$i]; 657 push @enum_definition, "\t${name_prefix}$name = $i"; 658 } 659 if (@unused_enums) { 660 foreach my $unused (@unused_enums) { 661 push @enum_definition, 662 ",\n\t${name_prefix}$unused = $unused_enum_value"; 663 } 664 } 665 666 # For an 'l' property, we need extra enums, because some of the 667 # elements are lists. Each such distinct list is placed in its own 668 # auxiliary map table. Here, we go through the inversion map, and for 669 # each distinct list found, create an enum value for it, numbered -1, 670 # -2, .... 671 my %multiples; 672 my $aux_table_prefix = "AUX_TABLE_"; 673 if ($input_format =~ /l/) { 674 foreach my $element (@$invmap) { 675 676 # A regular scalar is not one of the lists we're looking for 677 # at this stage. 678 next unless ref $element; 679 680 my $joined; 681 if ($input_format =~ /a/) { # These are already ordered 682 $joined = join ",", @$element; 683 } 684 else { 685 $joined = join ",", sort caselessly @$element; 686 } 687 my $already_found = exists $multiples{$joined}; 688 689 my $i; 690 if ($already_found) { # Use any existing one 691 $i = $multiples{$joined}; 692 } 693 else { # Otherwise increment to get a new table number 694 $i = keys(%multiples) + 1; 695 $multiples{$joined} = $i; 696 } 697 698 # This changes the inversion map for this entry to not be the 699 # list 700 $element = "use_$aux_table_prefix$i"; 701 702 # And add to the enum values 703 if (! $already_found) { 704 push @enum_definition, ",\n\t${name_prefix}$element = -$i"; 705 } 706 } 707 } 708 709 $enum_declaration_type = "${name_prefix}enum"; 710 711 # Finished with the enum definition. Inversion map stuff is used only 712 # by regexec or utf-8 (if it is for code points) , unless it is in the 713 # enum exception list 714 my $where = (exists $where_to_define_enums{$name}) 715 ? $where_to_define_enums{$name} 716 : ($input_format =~ /a/) 717 ? 'PERL_IN_UTF8_C' 718 : 'PERL_IN_REGEXEC_C'; 719 720 if (! exists $public_enums{$name}) { 721 switch_pound_if($name, $where, $charset); 722 } 723 else { 724 end_charset_pound_if; 725 end_file_pound_if; 726 start_charset_pound_if($charset, 1); 727 } 728 729 # If the enum only contains one element, that is a dummy, default one 730 if (scalar @enum_definition > 1) { 731 732 # Currently unneeded 733 #print $out_fh "\n#define ${name_prefix}ENUM_COUNT ", 734 # ..scalar keys %enums, "\n"; 735 736 if ($input_format =~ /l/) { 737 print $out_fh 738 "\n", 739 "/* Negative enum values indicate the need to use an", 740 " auxiliary table\n", 741 " * consisting of the list of enums this one expands to.", 742 " The absolute\n", 743 " * values of the negative enums are indices into a table", 744 " of the auxiliary\n", 745 " * tables' addresses */"; 746 } 747 print $out_fh "\ntypedef enum {\n"; 748 print $out_fh join "", @enum_definition; 749 print $out_fh "\n"; 750 print $out_fh "} $enum_declaration_type;\n"; 751 } 752 753 switch_pound_if($name, $where, $charset); 754 755 # The inversion lists here have to be UV because inversion lists are 756 # capable of storing any code point, and even though the the ones here 757 # are only Unicode ones, which need just 21 bits, they are linked to 758 # directly, rather than copied. The inversion map and aux tables also 759 # only need be 21 bits, and so we can get away with declaring them 760 # 32-bits to save a little space and memory (on some 64-bit 761 # platforms), as they are copied. 762 $invmap_declaration_type = ($input_format =~ /s/) 763 ? $enum_declaration_type 764 : "I32"; 765 $aux_declaration_type = ($input_format =~ /s/) 766 ? $enum_declaration_type 767 : "U32"; 768 769 $output_format = "${name_prefix}%s"; 770 771 # If there are auxiliary tables, output them. 772 if (%multiples) { 773 774 print $out_fh "\n#define HAS_${name_prefix}AUX_TABLES\n"; 775 776 # Invert keys and values 777 my %inverted_mults; 778 while (my ($key, $value) = each %multiples) { 779 $inverted_mults{$value} = $key; 780 } 781 782 # Output them in sorted order 783 my @sorted_table_list = sort { $a <=> $b } keys %inverted_mults; 784 785 # Keep track of how big each aux table is 786 my @aux_counts; 787 788 # Output each aux table. 789 foreach my $table_number (@sorted_table_list) { 790 my $table = $inverted_mults{$table_number}; 791 output_table_header($out_fh, 792 $aux_declaration_type, 793 "$name_prefix$aux_table_prefix$table_number"); 794 795 # Earlier, we joined the elements of this table together with 796 # a comma 797 my @elements = split ",", $table; 798 799 $aux_counts[$table_number] = scalar @elements; 800 for my $i (0 .. @elements - 1) { 801 print $out_fh ",\n" if $i > 0; 802 if ($input_format =~ /a/) { 803 printf $out_fh "\t0x%X", $elements[$i]; 804 } 805 else { 806 print $out_fh "\t${name_prefix}$elements[$i]"; 807 } 808 } 809 810 print $out_fh "\n"; 811 output_table_trailer(); 812 } 813 814 # Output the table that is indexed by the absolute value of the 815 # aux table enum and contains pointers to the tables output just 816 # above 817 output_table_header($out_fh, "$aux_declaration_type *", 818 "${name_prefix}${aux_table_prefix}ptrs"); 819 print $out_fh "\tNULL,\t/* Placeholder */\n"; 820 for my $i (1 .. @sorted_table_list) { 821 print $out_fh ",\n" if $i > 1; 822 print $out_fh "\t$name_prefix$aux_table_prefix$i"; 823 } 824 print $out_fh "\n"; 825 output_table_trailer(); 826 827 print $out_fh 828 "\n/* Parallel table to the above, giving the number of elements" 829 . " in each table\n * pointed to */\n"; 830 output_table_header($out_fh, "U8", 831 "${name_prefix}${aux_table_prefix}lengths"); 832 print $out_fh "\t0,\t/* Placeholder */\n"; 833 for my $i (1 .. @sorted_table_list) { 834 print $out_fh ",\n" if $i > 1; 835 print $out_fh 836 "\t$aux_counts[$i]\t/* $name_prefix$aux_table_prefix$i */"; 837 } 838 print $out_fh "\n"; 839 output_table_trailer(); 840 } # End of outputting the auxiliary and associated tables 841 842 # The scx property used in regexec.c needs a specialized table which 843 # is most convenient to output here, while the data structures set up 844 # above are still extant. This table contains the code point that is 845 # the zero digit of each script, indexed by script enum value. 846 if (lc $short_name eq 'scx') { 847 my @decimals_invlist = prop_invlist("Numeric_Type=Decimal"); 848 my %script_zeros; 849 850 # Find all the decimal digits. The 0 of each range is always the 851 # 0th element, except in some early Unicode releases, so check for 852 # that. 853 for (my $i = 0; $i < @decimals_invlist; $i += 2) { 854 my $code_point = $decimals_invlist[$i]; 855 next if num(chr($code_point)) ne '0'; 856 857 # Turn the scripts this zero is in into a list. 858 my @scripts = split ",", 859 charprop($code_point, "_Perl_SCX", '_perl_core_internal_ok'); 860 $code_point = sprintf("0x%x", $code_point); 861 862 foreach my $script (@scripts) { 863 if (! exists $script_zeros{$script}) { 864 $script_zeros{$script} = $code_point; 865 } 866 elsif (ref $script_zeros{$script}) { 867 push $script_zeros{$script}->@*, $code_point; 868 } 869 else { # Turn into a list if this is the 2nd zero of the 870 # script 871 my $existing = $script_zeros{$script}; 872 undef $script_zeros{$script}; 873 push $script_zeros{$script}->@*, $existing, $code_point; 874 } 875 } 876 } 877 878 # @script_zeros contains the zero, sorted by the script's enum 879 # value 880 my @script_zeros; 881 foreach my $script (keys %script_zeros) { 882 my $enum_value = $enums{$script}; 883 $script_zeros[$enum_value] = $script_zeros{$script}; 884 } 885 886 print $out_fh 887 "\n/* This table, indexed by the script enum, gives the zero" 888 . " code point for that\n * script; 0 if the script has multiple" 889 . " digit sequences. Scripts without a\n * digit sequence use" 890 . " ASCII [0-9], hence are marked '0' */\n"; 891 output_table_header($out_fh, "UV", "script_zeros"); 892 for my $i (0 .. @script_zeros - 1) { 893 my $code_point = $script_zeros[$i]; 894 if (defined $code_point) { 895 $code_point = " 0" if ref $code_point; 896 print $out_fh "\t$code_point"; 897 } 898 elsif (lc $enum_list[$i] eq 'inherited') { 899 print $out_fh "\t 0"; 900 } 901 else { # The only digits a script without its own set accepts 902 # is [0-9] 903 print $out_fh "\t'0'"; 904 } 905 print $out_fh "," if $i < @script_zeros - 1; 906 print $out_fh "\t/* $enum_list[$i] */"; 907 print $out_fh "\n"; 908 } 909 output_table_trailer(); 910 } # End of special handling of scx 911 } 912 else { 913 die "'$input_format' invmap() format for '$prop_name' unimplemented"; 914 } 915 916 die "No inversion map for $prop_name" unless defined $invmap 917 && ref $invmap eq 'ARRAY' 918 && $count; 919 920 # Now output the inversion map proper 921 $charset = "for $charset" if $charset; 922 output_table_header($out_fh, $invmap_declaration_type, 923 "${name}_invmap", 924 $charset); 925 926 # The main body are the scalars passed in to this routine. 927 for my $i (0 .. $count - 1) { 928 my $element = $invmap->[$i]; 929 my $full_element_name = prop_value_aliases($prop_name, $element); 930 if ($input_format =~ /a/ && $element !~ /\D/) { 931 $element = ($element == 0) 932 ? 0 933 : sprintf("0x%X", $element); 934 } 935 else { 936 $element = $full_element_name if defined $full_element_name; 937 $element = $name_prefix . $element; 938 } 939 print $out_fh "\t$element"; 940 print $out_fh "," if $i < $count - 1; 941 print $out_fh "\n"; 942 } 943 output_table_trailer(); 944} 945 946sub mk_invlist_from_sorted_cp_list { 947 948 # Returns an inversion list constructed from the sorted input array of 949 # code points 950 951 my $list_ref = shift; 952 953 return unless @$list_ref; 954 955 # Initialize to just the first element 956 my @invlist = ( $list_ref->[0], $list_ref->[0] + 1); 957 958 # For each succeeding element, if it extends the previous range, adjust 959 # up, otherwise add it. 960 for my $i (1 .. @$list_ref - 1) { 961 if ($invlist[-1] == $list_ref->[$i]) { 962 $invlist[-1]++; 963 } 964 else { 965 push @invlist, $list_ref->[$i], $list_ref->[$i] + 1; 966 } 967 } 968 return @invlist; 969} 970 971# Read in the Case Folding rules, and construct arrays of code points for the 972# properties we need. 973my ($cp_ref, $folds_ref, $format, $default) = prop_invmap("Case_Folding"); 974die "Could not find inversion map for Case_Folding" unless defined $format; 975die "Incorrect format '$format' for Case_Folding inversion map" 976 unless $format eq 'al' 977 || $format eq 'a'; 978sub _Perl_IVCF { 979 980 # This creates a map of the inversion of case folding. i.e., given a 981 # character, it gives all the other characters that fold to it. 982 # 983 # Inversion maps function kind of like a hash, with the inversion list 984 # specifying the buckets (keys) and the inversion maps specifying the 985 # contents of the corresponding bucket. Effectively this function just 986 # swaps the keys and values of the case fold hash. But there are 987 # complications. Most importantly, More than one character can each have 988 # the same fold. This is solved by having a list of characters that fold 989 # to a given one. 990 991 my %new; 992 993 # Go through the inversion list. 994 for (my $i = 0; $i < @$cp_ref; $i++) { 995 996 # Skip if nothing folds to this 997 next if $folds_ref->[$i] == 0; 998 999 # This entry which is valid from here to up (but not including) the 1000 # next entry is for the next $count characters, so that, for example, 1001 # A-Z is represented by one entry. 1002 my $cur_list = $cp_ref->[$i]; 1003 my $count = $cp_ref->[$i+1] - $cur_list; 1004 1005 # The fold of [$i] can be not just a single character, but a sequence 1006 # of multiple ones. We deal with those here by just creating a string 1007 # consisting of them. Otherwise, we use the single code point [$i] 1008 # folds to. 1009 my $cur_map = (ref $folds_ref->[$i]) 1010 ? join "", map { chr } $folds_ref->[$i]->@* 1011 : $folds_ref->[$i]; 1012 1013 # Expand out this range 1014 while ($count > 0) { 1015 push @{$new{$cur_map}}, $cur_list; 1016 1017 # A multiple-character fold is a string, and shouldn't need 1018 # incrementing anyway 1019 if (ref $folds_ref->[$i]) { 1020 die sprintf("Case fold for %x is multiple chars; should have" 1021 . " a count of 1, but instead it was $count", $count) 1022 unless $count == 1; 1023 } 1024 else { 1025 $cur_map++; 1026 $cur_list++; 1027 } 1028 $count--; 1029 } 1030 } 1031 1032 # Now go through and make some adjustments. We add synthetic entries for 1033 # three cases. 1034 # 1) If the fold of a Latin1-range character is above that range, some 1035 # coding in regexec.c can be saved by creating a reverse map here. The 1036 # impetus for this is that U+B5 (MICRO SIGN) folds to the Greek small 1037 # mu (U+3BC). That fold isn't done at regex pattern compilation time 1038 # if it means that the pattern would have to be translated into UTF-8, 1039 # whose operation is slower. At run time, having this reverse 1040 # translation eliminates some special cases in the code. 1041 # 2) Two or more code points can fold to the same multiple character, 1042 # sequence, as U+FB05 and U+FB06 both fold to 'st'. This code is only 1043 # for single character folds, but FB05 and FB06 are single characters 1044 # that are equivalent folded, so we add entries so that they are 1045 # considered to fold to each other 1046 # 3) If two or more above-Latin1 code points fold to the same Latin1 range 1047 # one, we also add entries so that they are considered to fold to each 1048 # other. This is so that under /aa or /l matching, where folding to 1049 # their Latin1 range code point is illegal, they still can fold to each 1050 # other. This situation happens in Unicode 3.0.1, but probably no 1051 # other version. 1052 foreach my $fold (keys %new) { 1053 my $folds_to_string = $fold =~ /\D/; 1054 1055 # If the bucket contains only one element, convert from an array to a 1056 # scalar 1057 if (scalar $new{$fold}->@* == 1) { 1058 $new{$fold} = $new{$fold}[0]; 1059 1060 # Handle case 1) above: if there were a Latin1 range code point 1061 # whose fold is above that range, this creates an extra entry that 1062 # maps the other direction, and would save some special case code. 1063 # (The one current case of this is handled in the else clause 1064 # below.) 1065 $new{$new{$fold}} = $fold if $new{$fold} < 256 && $fold > 255; 1066 } 1067 else { 1068 1069 # Handle case 1) when there are multiple things that fold to an 1070 # above-Latin1 code point, at least one of which is in Latin1. 1071 if (! $folds_to_string && $fold > 255) { 1072 foreach my $cp ($new{$fold}->@*) { 1073 if ($cp < 256) { 1074 my @new_entry = grep { $_ != $cp } $new{$fold}->@*; 1075 push @new_entry, $fold; 1076 $new{$cp}->@* = @new_entry; 1077 } 1078 } 1079 } 1080 1081 # Otherwise, sort numerically. This places the highest code point 1082 # in the list at the tail end. This is because Unicode keeps the 1083 # lowercase code points as higher ordinals than the uppercase, at 1084 # least for the ones that matter so far. These are synthetic 1085 # entries, and we want to predictably have the lowercase (which is 1086 # more likely to be what gets folded to) in the same corresponding 1087 # position, so that other code can rely on that. If some new 1088 # version of Unicode came along that violated this, we might have 1089 # to change so that the sort is based on upper vs lower instead. 1090 # (The lower-comes-after isn't true of native EBCDIC, but here we 1091 # are dealing strictly with Unicode values). 1092 @{$new{$fold}} = sort { $a <=> $b } $new{$fold}->@* 1093 unless $folds_to_string; 1094 # We will be working with a copy of this sorted entry. 1095 my @source_list = $new{$fold}->@*; 1096 if (! $folds_to_string) { 1097 1098 # This handles situation 2) listed above, which only arises if 1099 # what is being folded-to (the fold) is in the Latin1 range. 1100 if ($fold > 255 ) { 1101 undef @source_list; 1102 } 1103 else { 1104 # And it only arises if there are two or more folders that 1105 # fold to it above Latin1. We look at just those. 1106 @source_list = grep { $_ > 255 } @source_list; 1107 undef @source_list if @source_list == 1; 1108 } 1109 } 1110 1111 # Here, we've found the items we want to set up synthetic folds 1112 # for. Add entries so that each folds to each other. 1113 foreach my $cp (@source_list) { 1114 my @rest = grep { $cp != $_ } @source_list; 1115 if (@rest == 1) { 1116 $new{$cp} = $rest[0]; 1117 } 1118 else { 1119 push @{$new{$cp}}, @rest; 1120 } 1121 } 1122 } 1123 1124 # We don't otherwise deal with multiple-character folds 1125 delete $new{$fold} if $folds_to_string; 1126 } 1127 1128 1129 # Now we have a hash that is the inversion of the case fold property. 1130 # First find the maximum number of code points that fold to the same one. 1131 foreach my $fold_to (keys %new) { 1132 if (ref $new{$fold_to}) { 1133 my $folders_count = scalar @{$new{$fold_to}}; 1134 $max_fold_froms = $folders_count if $folders_count > $max_fold_froms; 1135 } 1136 } 1137 1138 # Then convert the hash to an inversion map. 1139 my @sorted_folds = sort { $a <=> $b } keys %new; 1140 my (@invlist, @invmap); 1141 1142 # We know that nothing folds to the controls (whose ordinals start at 0). 1143 # And the first real entries are the lowest in the hash. 1144 push @invlist, 0, $sorted_folds[0]; 1145 push @invmap, 0, $new{$sorted_folds[0]}; 1146 1147 # Go through the remainder of the hash keys (which are the folded code 1148 # points) 1149 for (my $i = 1; $i < @sorted_folds; $i++) { 1150 1151 # Get the current one, and the one prior to it. 1152 my $fold = $sorted_folds[$i]; 1153 my $prev_fold = $sorted_folds[$i-1]; 1154 1155 # If the current one is not just 1 away from the prior one, we close 1156 # out the range containing the previous fold, and know that the gap 1157 # doesn't have anything that folds. 1158 if ($fold - 1 != $prev_fold) { 1159 push @invlist, $prev_fold + 1; 1160 push @invmap, 0; 1161 1162 # And start a new range 1163 push @invlist, $fold; 1164 push @invmap, $new{$fold}; 1165 } 1166 elsif ($new{$fold} - 1 != $new{$prev_fold}) { 1167 1168 # Here the current fold is just 1 greater than the previous, but 1169 # the new map isn't correspondingly 1 greater than the previous, 1170 # the old range is ended, but since there is no gap, we don't have 1171 # to insert anything else. 1172 push @invlist, $fold; 1173 push @invmap, $new{$fold}; 1174 1175 } # else { Otherwise, this new entry just extends the previous } 1176 1177 die "In IVCF: $invlist[-1] <= $invlist[-2]" 1178 if $invlist[-1] <= $invlist[-2]; 1179 } 1180 1181 # And add an entry that indicates that everything above this, to infinity, 1182 # does not have a case fold. 1183 push @invlist, $sorted_folds[-1] + 1; 1184 push @invmap, 0; 1185 1186 push @invlist, 0x110000; 1187 push @invmap, 0; 1188 1189 # All Unicode versions have some places where multiple code points map to 1190 # the same one, so the format always has an 'l' 1191 return \@invlist, \@invmap, 'al', $default; 1192} 1193 1194sub prop_name_for_cmp ($) { # Sort helper 1195 my $name = shift; 1196 1197 # Returns the input lowercased, with non-alphas removed, as well as 1198 # everything starting with a comma 1199 1200 $name =~ s/,.*//; 1201 $name =~ s/[[:^alpha:]]//g; 1202 return lc $name; 1203} 1204 1205sub UpperLatin1 { 1206 my @return = mk_invlist_from_sorted_cp_list([ 128 .. 255 ]); 1207 return \@return; 1208} 1209 1210sub _Perl_CCC_non0_non230 { 1211 1212 # Create an inversion list of code points with non-zero canonical 1213 # combining class that also don't have 230 as the class number. This is 1214 # part of a Unicode Standard rule 1215 1216 my @nonzeros = prop_invlist("ccc=0"); 1217 shift @nonzeros; # Invert so is "ccc != 0" 1218 1219 my @return; 1220 1221 # Expand into list of code points, while excluding those with ccc == 230 1222 for (my $i = 0; $i < @nonzeros; $i += 2) { 1223 my $upper = ($i + 1) < @nonzeros 1224 ? $nonzeros[$i+1] - 1 # In range 1225 : $Unicode::UCD::MAX_CP; # To infinity. 1226 for my $j ($nonzeros[$i] .. $upper) { 1227 my @ccc_names = prop_value_aliases("ccc", charprop($j, "ccc")); 1228 1229 # Final element in @ccc_names will be all numeric 1230 push @return, $j if $ccc_names[-1] != 230; 1231 } 1232 } 1233 1234 @return = sort { $a <=> $b } @return; 1235 @return = mk_invlist_from_sorted_cp_list(\@return); 1236 return \@return; 1237} 1238 1239sub output_table_common { 1240 1241 # Common subroutine to actually output the generated rules table. 1242 1243 my ($property, 1244 $table_value_defines_ref, 1245 $table_ref, 1246 $names_ref, 1247 $abbreviations_ref) = @_; 1248 my $size = @$table_ref; 1249 1250 # Output the #define list, sorted by numeric value 1251 if ($table_value_defines_ref) { 1252 my $max_name_length = 0; 1253 my @defines; 1254 1255 # Put in order, and at the same time find the longest name 1256 while (my ($enum, $value) = each %$table_value_defines_ref) { 1257 $defines[$value] = $enum; 1258 1259 my $length = length $enum; 1260 $max_name_length = $length if $length > $max_name_length; 1261 } 1262 1263 print $out_fh "\n"; 1264 1265 # Output, so that the values are vertically aligned in a column after 1266 # the longest name 1267 foreach my $i (0 .. @defines - 1) { 1268 next unless defined $defines[$i]; 1269 printf $out_fh "#define %-*s %2d\n", 1270 $max_name_length, 1271 $defines[$i], 1272 $i; 1273 } 1274 } 1275 1276 my $column_width = 2; # We currently allow 2 digits for the number 1277 1278 # Being above a U8 is not currently handled 1279 my $table_type = 'U8'; 1280 1281 # If a name is longer than the width set aside for a column, its column 1282 # needs to have increased spacing so that the name doesn't get truncated 1283 # nor run into an adjacent column 1284 my @spacers; 1285 1286 # Is there a row and column for unused values in this release? 1287 my $has_unused = $names_ref->[$size-1] eq $unused_table_hdr; 1288 1289 for my $i (0 .. $size - 1) { 1290 no warnings 'numeric'; 1291 $spacers[$i] = " " x (length($names_ref->[$i]) - $column_width); 1292 } 1293 1294 output_table_header($out_fh, $table_type, "${property}_table", undef, 1295 $size, $size); 1296 1297 # Calculate the column heading line 1298 my $header_line = "/* " 1299 . (" " x $max_hdr_len) # We let the row heading meld to 1300 # the '*/' for those that are at 1301 # the max 1302 . " " x 3; # Space for '*/ ' 1303 # Now each column 1304 for my $i (0 .. $size - 1) { 1305 $header_line .= sprintf "%s%*s", 1306 $spacers[$i], 1307 $column_width + 1, # 1 for the ',' 1308 $names_ref->[$i]; 1309 } 1310 $header_line .= " */\n"; 1311 1312 # If we have annotations, output it now. 1313 if ($has_unused || scalar %$abbreviations_ref) { 1314 my $text = ""; 1315 foreach my $abbr (sort caselessly keys %$abbreviations_ref) { 1316 $text .= "; " if $text; 1317 $text .= "'$abbr' stands for '$abbreviations_ref->{$abbr}'"; 1318 } 1319 if ($has_unused) { 1320 $text .= "; $unused_table_hdr stands for 'unused in this Unicode" 1321 . " release (and the data in its row and column are garbage)" 1322 } 1323 1324 my $indent = " " x 3; 1325 $text = $indent . "/* $text */"; 1326 1327 # Wrap the text so that it is no wider than the table, which the 1328 # header line gives. 1329 my $output_width = length $header_line; 1330 while (length $text > $output_width) { 1331 my $cur_line = substr($text, 0, $output_width); 1332 1333 # Find the first blank back from the right end to wrap at. 1334 for (my $i = $output_width -1; $i > 0; $i--) { 1335 if (substr($text, $i, 1) eq " ") { 1336 print $out_fh substr($text, 0, $i), "\n"; 1337 1338 # Set so will look at just the remaining tail (which will 1339 # be indented and have a '*' after the indent 1340 $text = $indent . " * " . substr($text, $i + 1); 1341 last; 1342 } 1343 } 1344 } 1345 1346 # And any remaining 1347 print $out_fh $text, "\n" if $text; 1348 } 1349 1350 # We calculated the header line earlier just to get its width so that we 1351 # could make sure the annotations fit into that. 1352 print $out_fh $header_line; 1353 1354 # Now output the bulk of the table. 1355 for my $i (0 .. $size - 1) { 1356 1357 # First the row heading. 1358 printf $out_fh "/* %-*s*/ ", $max_hdr_len, $names_ref->[$i]; 1359 print $out_fh "{"; # Then the brace for this row 1360 1361 # Then each column 1362 for my $j (0 .. $size -1) { 1363 print $out_fh $spacers[$j]; 1364 printf $out_fh "%*d", $column_width, $table_ref->[$i][$j]; 1365 print $out_fh "," if $j < $size - 1; 1366 } 1367 print $out_fh " }"; 1368 print $out_fh "," if $i < $size - 1; 1369 print $out_fh "\n"; 1370 } 1371 1372 output_table_trailer(); 1373} 1374 1375sub output_GCB_table() { 1376 1377 # Create and output the pair table for use in determining Grapheme Cluster 1378 # Breaks, given in http://www.unicode.org/reports/tr29/. 1379 my %gcb_actions = ( 1380 GCB_NOBREAK => 0, 1381 GCB_BREAKABLE => 1, 1382 GCB_RI_then_RI => 2, # Rules 12 and 13 1383 GCB_EX_then_EM => 3, # Rule 10 1384 GCB_Maybe_Emoji_NonBreak => 4, 1385 ); 1386 1387 # The table is constructed in reverse order of the rules, to make the 1388 # lower-numbered, higher priority ones override the later ones, as the 1389 # algorithm stops at the earliest matching rule 1390 1391 my @gcb_table; 1392 my $table_size = @gcb_short_enums; 1393 1394 # Otherwise, break everywhere. 1395 # GB99 Any ÷ Any 1396 for my $i (0 .. $table_size - 1) { 1397 for my $j (0 .. $table_size - 1) { 1398 $gcb_table[$i][$j] = 1; 1399 } 1400 } 1401 1402 # Do not break within emoji flag sequences. That is, do not break between 1403 # regional indicator (RI) symbols if there is an odd number of RI 1404 # characters before the break point. Must be resolved in runtime code. 1405 # 1406 # GB12 sot (RI RI)* RI × RI 1407 # GB13 [^RI] (RI RI)* RI × RI 1408 $gcb_table[$gcb_enums{'Regional_Indicator'}] 1409 [$gcb_enums{'Regional_Indicator'}] = $gcb_actions{GCB_RI_then_RI}; 1410 1411 # Post 11.0: GB11 \p{Extended_Pictographic} Extend* ZWJ 1412 # × \p{Extended_Pictographic} 1413 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'ExtPict_XX'}] = 1414 $gcb_actions{GCB_Maybe_Emoji_NonBreak}; 1415 1416 # This and the rule GB10 obsolete starting with Unicode 11.0, can be left 1417 # in as there are no code points that match, so the code won't ever get 1418 # executed. 1419 # Do not break within emoji modifier sequences or emoji zwj sequences. 1420 # Pre 11.0: GB11 ZWJ × ( Glue_After_Zwj | E_Base_GAZ ) 1421 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'Glue_After_Zwj'}] = 0; 1422 $gcb_table[$gcb_enums{'ZWJ'}][$gcb_enums{'E_Base_GAZ'}] = 0; 1423 1424 # GB10 ( E_Base | E_Base_GAZ ) Extend* × E_Modifier 1425 $gcb_table[$gcb_enums{'Extend'}][$gcb_enums{'E_Modifier'}] 1426 = $gcb_actions{GCB_EX_then_EM}; 1427 $gcb_table[$gcb_enums{'E_Base'}][$gcb_enums{'E_Modifier'}] = 0; 1428 $gcb_table[$gcb_enums{'E_Base_GAZ'}][$gcb_enums{'E_Modifier'}] = 0; 1429 1430 # Do not break before extending characters or ZWJ. 1431 # Do not break before SpacingMarks, or after Prepend characters. 1432 # GB9b Prepend × 1433 # GB9a × SpacingMark 1434 # GB9 × ( Extend | ZWJ ) 1435 for my $i (0 .. @gcb_table - 1) { 1436 $gcb_table[$gcb_enums{'Prepend'}][$i] = 0; 1437 $gcb_table[$i][$gcb_enums{'SpacingMark'}] = 0; 1438 $gcb_table[$i][$gcb_enums{'Extend'}] = 0; 1439 $gcb_table[$i][$gcb_enums{'ZWJ'}] = 0; 1440 } 1441 1442 # Do not break Hangul syllable sequences. 1443 # GB8 ( LVT | T) × T 1444 $gcb_table[$gcb_enums{'LVT'}][$gcb_enums{'T'}] = 0; 1445 $gcb_table[$gcb_enums{'T'}][$gcb_enums{'T'}] = 0; 1446 1447 # GB7 ( LV | V ) × ( V | T ) 1448 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'V'}] = 0; 1449 $gcb_table[$gcb_enums{'LV'}][$gcb_enums{'T'}] = 0; 1450 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'V'}] = 0; 1451 $gcb_table[$gcb_enums{'V'}][$gcb_enums{'T'}] = 0; 1452 1453 # GB6 L × ( L | V | LV | LVT ) 1454 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'L'}] = 0; 1455 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'V'}] = 0; 1456 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LV'}] = 0; 1457 $gcb_table[$gcb_enums{'L'}][$gcb_enums{'LVT'}] = 0; 1458 1459 # Do not break between a CR and LF. Otherwise, break before and after 1460 # controls. 1461 # GB5 ÷ ( Control | CR | LF ) 1462 # GB4 ( Control | CR | LF ) ÷ 1463 for my $i (0 .. @gcb_table - 1) { 1464 $gcb_table[$i][$gcb_enums{'Control'}] = 1; 1465 $gcb_table[$i][$gcb_enums{'CR'}] = 1; 1466 $gcb_table[$i][$gcb_enums{'LF'}] = 1; 1467 $gcb_table[$gcb_enums{'Control'}][$i] = 1; 1468 $gcb_table[$gcb_enums{'CR'}][$i] = 1; 1469 $gcb_table[$gcb_enums{'LF'}][$i] = 1; 1470 } 1471 1472 # GB3 CR × LF 1473 $gcb_table[$gcb_enums{'CR'}][$gcb_enums{'LF'}] = 0; 1474 1475 # Break at the start and end of text, unless the text is empty 1476 # GB1 sot ÷ 1477 # GB2 ÷ eot 1478 for my $i (0 .. @gcb_table - 1) { 1479 $gcb_table[$i][$gcb_enums{'EDGE'}] = 1; 1480 $gcb_table[$gcb_enums{'EDGE'}][$i] = 1; 1481 } 1482 $gcb_table[$gcb_enums{'EDGE'}][$gcb_enums{'EDGE'}] = 0; 1483 1484 output_table_common('GCB', \%gcb_actions, 1485 \@gcb_table, \@gcb_short_enums, \%gcb_abbreviations); 1486} 1487 1488sub output_LB_table() { 1489 1490 # Create and output the enums, #defines, and pair table for use in 1491 # determining Line Breaks. This uses the default line break algorithm, 1492 # given in http://www.unicode.org/reports/tr14/, but tailored by example 7 1493 # in that page, as the Unicode-furnished tests assume that tailoring. 1494 1495 # The result is really just true or false. But we follow along with tr14, 1496 # creating a rule which is false for something like X SP* X. That gets 1497 # encoding 2. The rest of the actions are synthetic ones that indicate 1498 # some context handling is required. These each are added to the 1499 # underlying 0, 1, or 2, instead of replacing them, so that the underlying 1500 # value can be retrieved. Actually only rules from 7 through 18 (which 1501 # are the ones where space matter) are possible to have 2 added to them. 1502 # The others below add just 0 or 1. It might be possible for one 1503 # synthetic rule to be added to another, yielding a larger value. This 1504 # doesn't happen in the Unicode 8.0 rule set, and as you can see from the 1505 # names of the middle grouping below, it is impossible for that to occur 1506 # for them because they all start with mutually exclusive classes. That 1507 # the final rule can't be added to any of the others isn't obvious from 1508 # its name, so it is assigned a power of 2 higher than the others can get 1509 # to so any addition would preserve all data. (And the code will reach an 1510 # assert(0) on debugging builds should this happen.) 1511 my %lb_actions = ( 1512 LB_NOBREAK => 0, 1513 LB_BREAKABLE => 1, 1514 LB_NOBREAK_EVEN_WITH_SP_BETWEEN => 2, 1515 1516 LB_CM_ZWJ_foo => 3, # Rule 9 1517 LB_SP_foo => 6, # Rule 18 1518 LB_PR_or_PO_then_OP_or_HY => 9, # Rule 25 1519 LB_SY_or_IS_then_various => 11, # Rule 25 1520 LB_HY_or_BA_then_foo => 13, # Rule 21 1521 LB_RI_then_RI => 15, # Rule 30a 1522 1523 LB_various_then_PO_or_PR => (1<<5), # Rule 25 1524 ); 1525 1526 # Construct the LB pair table. This is based on the rules in 1527 # http://www.unicode.org/reports/tr14/, but modified as those rules are 1528 # designed for someone taking a string of text and sequentially going 1529 # through it to find the break opportunities, whereas, Perl requires 1530 # determining if a given random spot is a break opportunity, without 1531 # knowing all the entire string before it. 1532 # 1533 # The table is constructed in reverse order of the rules, to make the 1534 # lower-numbered, higher priority ones override the later ones, as the 1535 # algorithm stops at the earliest matching rule 1536 1537 my @lb_table; 1538 my $table_size = @lb_short_enums; 1539 1540 # LB31. Break everywhere else 1541 for my $i (0 .. $table_size - 1) { 1542 for my $j (0 .. $table_size - 1) { 1543 $lb_table[$i][$j] = $lb_actions{'LB_BREAKABLE'}; 1544 } 1545 } 1546 1547 # LB30b Do not break between an emoji base (or potential emoji) and an 1548 # emoji modifier. 1549 1550 # EB × EM 1551 # [\p{Extended_Pictographic}&\p{Cn}] × EM 1552 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'E_Modifier'}] 1553 = $lb_actions{'LB_NOBREAK'}; 1554 $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}] 1555 [$lb_enums{'E_Modifier'}] = $lb_actions{'LB_NOBREAK'}; 1556 1557 # LB30a Break between two regional indicator symbols if and only if there 1558 # are an even number of regional indicators preceding the position of the 1559 # break. 1560 # sot (RI RI)* RI × RI 1561 # [^RI] (RI RI)* RI × RI 1562 $lb_table[$lb_enums{'Regional_Indicator'}] 1563 [$lb_enums{'Regional_Indicator'}] = $lb_actions{'LB_RI_then_RI'}; 1564 1565 # LB30 Do not break between letters, numbers, or ordinary symbols and 1566 # non-East-Asian opening punctuation nor non-East-Asian closing 1567 # parentheses. 1568 1569 # (AL | HL | NU) × [OP-[\p{ea=F}\p{ea=W}\p{ea=H}]] 1570 # (what we call CP and OP here have already been modified by mktables to 1571 # exclude the ea items 1572 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Open_Punctuation'}] 1573 = $lb_actions{'LB_NOBREAK'}; 1574 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Open_Punctuation'}] 1575 = $lb_actions{'LB_NOBREAK'}; 1576 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Open_Punctuation'}] 1577 = $lb_actions{'LB_NOBREAK'}; 1578 1579 # [CP-[\p{ea=F}\p{ea=W}\p{ea=H}]] × (AL | HL | NU) 1580 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Alphabetic'}] 1581 = $lb_actions{'LB_NOBREAK'}; 1582 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Hebrew_Letter'}] 1583 = $lb_actions{'LB_NOBREAK'}; 1584 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Numeric'}] 1585 = $lb_actions{'LB_NOBREAK'}; 1586 1587 # LB29 Do not break between numeric punctuation and alphabetics (“e.g.”). 1588 # IS × (AL | HL) 1589 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Alphabetic'}] 1590 = $lb_actions{'LB_NOBREAK'}; 1591 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Hebrew_Letter'}] 1592 = $lb_actions{'LB_NOBREAK'}; 1593 1594 # LB28 Do not break between alphabetics (“at”). 1595 # (AL | HL) × (AL | HL) 1596 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Alphabetic'}] 1597 = $lb_actions{'LB_NOBREAK'}; 1598 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Alphabetic'}] 1599 = $lb_actions{'LB_NOBREAK'}; 1600 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Hebrew_Letter'}] 1601 = $lb_actions{'LB_NOBREAK'}; 1602 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Hebrew_Letter'}] 1603 = $lb_actions{'LB_NOBREAK'}; 1604 1605 # LB27 Treat a Korean Syllable Block the same as ID. 1606 # (JL | JV | JT | H2 | H3) × PO 1607 $lb_table[$lb_enums{'JL'}][$lb_enums{'Postfix_Numeric'}] 1608 = $lb_actions{'LB_NOBREAK'}; 1609 $lb_table[$lb_enums{'JV'}][$lb_enums{'Postfix_Numeric'}] 1610 = $lb_actions{'LB_NOBREAK'}; 1611 $lb_table[$lb_enums{'JT'}][$lb_enums{'Postfix_Numeric'}] 1612 = $lb_actions{'LB_NOBREAK'}; 1613 $lb_table[$lb_enums{'H2'}][$lb_enums{'Postfix_Numeric'}] 1614 = $lb_actions{'LB_NOBREAK'}; 1615 $lb_table[$lb_enums{'H3'}][$lb_enums{'Postfix_Numeric'}] 1616 = $lb_actions{'LB_NOBREAK'}; 1617 1618 # PR × (JL | JV | JT | H2 | H3) 1619 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JL'}] 1620 = $lb_actions{'LB_NOBREAK'}; 1621 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JV'}] 1622 = $lb_actions{'LB_NOBREAK'}; 1623 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'JT'}] 1624 = $lb_actions{'LB_NOBREAK'}; 1625 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H2'}] 1626 = $lb_actions{'LB_NOBREAK'}; 1627 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'H3'}] 1628 = $lb_actions{'LB_NOBREAK'}; 1629 1630 # LB26 Do not break a Korean syllable. 1631 # JL × (JL | JV | H2 | H3) 1632 $lb_table[$lb_enums{'JL'}][$lb_enums{'JL'}] = $lb_actions{'LB_NOBREAK'}; 1633 $lb_table[$lb_enums{'JL'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; 1634 $lb_table[$lb_enums{'JL'}][$lb_enums{'H2'}] = $lb_actions{'LB_NOBREAK'}; 1635 $lb_table[$lb_enums{'JL'}][$lb_enums{'H3'}] = $lb_actions{'LB_NOBREAK'}; 1636 1637 # (JV | H2) × (JV | JT) 1638 $lb_table[$lb_enums{'JV'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; 1639 $lb_table[$lb_enums{'H2'}][$lb_enums{'JV'}] = $lb_actions{'LB_NOBREAK'}; 1640 $lb_table[$lb_enums{'JV'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; 1641 $lb_table[$lb_enums{'H2'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; 1642 1643 # (JT | H3) × JT 1644 $lb_table[$lb_enums{'JT'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; 1645 $lb_table[$lb_enums{'H3'}][$lb_enums{'JT'}] = $lb_actions{'LB_NOBREAK'}; 1646 1647 # LB25 Do not break between the following pairs of classes relevant to 1648 # numbers, as tailored by example 7 in 1649 # http://www.unicode.org/reports/tr14/#Examples 1650 # We follow that tailoring because Unicode's test cases expect it 1651 # (PR | PO) × ( OP | HY )? NU 1652 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Numeric'}] 1653 = $lb_actions{'LB_NOBREAK'}; 1654 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Numeric'}] 1655 = $lb_actions{'LB_NOBREAK'}; 1656 1657 # Given that (OP | HY )? is optional, we have to test for it in code. 1658 # We add in the action (instead of overriding) for this, so that in 1659 # the code we can recover the underlying break value. 1660 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Open_Punctuation'}] 1661 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; 1662 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'East_Asian_OP'}] 1663 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; 1664 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Open_Punctuation'}] 1665 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; 1666 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hyphen'}] 1667 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; 1668 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hyphen'}] 1669 += $lb_actions{'LB_PR_or_PO_then_OP_or_HY'}; 1670 1671 # ( OP | HY ) × NU 1672 $lb_table[$lb_enums{'Open_Punctuation'}][$lb_enums{'Numeric'}] 1673 = $lb_actions{'LB_NOBREAK'}; 1674 $lb_table[$lb_enums{'East_Asian_OP'}][$lb_enums{'Numeric'}] 1675 = $lb_actions{'LB_NOBREAK'}; 1676 $lb_table[$lb_enums{'Hyphen'}][$lb_enums{'Numeric'}] 1677 = $lb_actions{'LB_NOBREAK'}; 1678 1679 # NU (NU | SY | IS)* × (NU | SY | IS | CL | CP ) 1680 # which can be rewritten as: 1681 # NU (SY | IS)* × (NU | SY | IS | CL | CP ) 1682 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Numeric'}] 1683 = $lb_actions{'LB_NOBREAK'}; 1684 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Break_Symbols'}] 1685 = $lb_actions{'LB_NOBREAK'}; 1686 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Infix_Numeric'}] 1687 = $lb_actions{'LB_NOBREAK'}; 1688 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Punctuation'}] 1689 = $lb_actions{'LB_NOBREAK'}; 1690 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Close_Parenthesis'}] 1691 = $lb_actions{'LB_NOBREAK'}; 1692 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'East_Asian_CP'}] 1693 = $lb_actions{'LB_NOBREAK'}; 1694 1695 # Like earlier where we have to test in code, we add in the action so 1696 # that we can recover the underlying values. This is done in rules 1697 # below, as well. The code assumes that we haven't added 2 actions. 1698 # Shoul a later Unicode release break that assumption, then tests 1699 # should start failing. 1700 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Numeric'}] 1701 += $lb_actions{'LB_SY_or_IS_then_various'}; 1702 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Break_Symbols'}] 1703 += $lb_actions{'LB_SY_or_IS_then_various'}; 1704 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Infix_Numeric'}] 1705 += $lb_actions{'LB_SY_or_IS_then_various'}; 1706 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Punctuation'}] 1707 += $lb_actions{'LB_SY_or_IS_then_various'}; 1708 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Close_Parenthesis'}] 1709 += $lb_actions{'LB_SY_or_IS_then_various'}; 1710 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'East_Asian_CP'}] 1711 += $lb_actions{'LB_SY_or_IS_then_various'}; 1712 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Numeric'}] 1713 += $lb_actions{'LB_SY_or_IS_then_various'}; 1714 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Break_Symbols'}] 1715 += $lb_actions{'LB_SY_or_IS_then_various'}; 1716 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Infix_Numeric'}] 1717 += $lb_actions{'LB_SY_or_IS_then_various'}; 1718 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Punctuation'}] 1719 += $lb_actions{'LB_SY_or_IS_then_various'}; 1720 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Close_Parenthesis'}] 1721 += $lb_actions{'LB_SY_or_IS_then_various'}; 1722 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'East_Asian_CP'}] 1723 += $lb_actions{'LB_SY_or_IS_then_various'}; 1724 1725 # NU (NU | SY | IS)* (CL | CP)? × (PO | PR) 1726 # which can be rewritten as: 1727 # NU (SY | IS)* (CL | CP)? × (PO | PR) 1728 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Postfix_Numeric'}] 1729 = $lb_actions{'LB_NOBREAK'}; 1730 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Prefix_Numeric'}] 1731 = $lb_actions{'LB_NOBREAK'}; 1732 1733 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Postfix_Numeric'}] 1734 += $lb_actions{'LB_various_then_PO_or_PR'}; 1735 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Postfix_Numeric'}] 1736 += $lb_actions{'LB_various_then_PO_or_PR'}; 1737 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Postfix_Numeric'}] 1738 += $lb_actions{'LB_various_then_PO_or_PR'}; 1739 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Postfix_Numeric'}] 1740 += $lb_actions{'LB_various_then_PO_or_PR'}; 1741 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Postfix_Numeric'}] 1742 += $lb_actions{'LB_various_then_PO_or_PR'}; 1743 1744 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Prefix_Numeric'}] 1745 += $lb_actions{'LB_various_then_PO_or_PR'}; 1746 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Prefix_Numeric'}] 1747 += $lb_actions{'LB_various_then_PO_or_PR'}; 1748 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Prefix_Numeric'}] 1749 += $lb_actions{'LB_various_then_PO_or_PR'}; 1750 $lb_table[$lb_enums{'Infix_Numeric'}][$lb_enums{'Prefix_Numeric'}] 1751 += $lb_actions{'LB_various_then_PO_or_PR'}; 1752 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Prefix_Numeric'}] 1753 += $lb_actions{'LB_various_then_PO_or_PR'}; 1754 1755 # LB24 Do not break between numeric prefix/postfix and letters, or between 1756 # letters and prefix/postfix. 1757 # (PR | PO) × (AL | HL) 1758 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Alphabetic'}] 1759 = $lb_actions{'LB_NOBREAK'}; 1760 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Hebrew_Letter'}] 1761 = $lb_actions{'LB_NOBREAK'}; 1762 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Alphabetic'}] 1763 = $lb_actions{'LB_NOBREAK'}; 1764 $lb_table[$lb_enums{'Postfix_Numeric'}][$lb_enums{'Hebrew_Letter'}] 1765 = $lb_actions{'LB_NOBREAK'}; 1766 1767 # (AL | HL) × (PR | PO) 1768 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Prefix_Numeric'}] 1769 = $lb_actions{'LB_NOBREAK'}; 1770 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Prefix_Numeric'}] 1771 = $lb_actions{'LB_NOBREAK'}; 1772 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Postfix_Numeric'}] 1773 = $lb_actions{'LB_NOBREAK'}; 1774 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Postfix_Numeric'}] 1775 = $lb_actions{'LB_NOBREAK'}; 1776 1777 # LB23a Do not break between numeric prefixes and ideographs, or between 1778 # ideographs and numeric postfixes. 1779 # PR × (ID | EB | EM) 1780 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'Ideographic'}] 1781 = $lb_actions{'LB_NOBREAK'}; 1782 $lb_table[$lb_enums{'Prefix_Numeric'}] 1783 [$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}] 1784 = $lb_actions{'LB_NOBREAK'}; 1785 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Base'}] 1786 = $lb_actions{'LB_NOBREAK'}; 1787 $lb_table[$lb_enums{'Prefix_Numeric'}][$lb_enums{'E_Modifier'}] 1788 = $lb_actions{'LB_NOBREAK'}; 1789 1790 # (ID | EB | EM) × PO 1791 $lb_table[$lb_enums{'Ideographic'}][$lb_enums{'Postfix_Numeric'}] 1792 = $lb_actions{'LB_NOBREAK'}; 1793 $lb_table[$lb_enums{'Unassigned_Extended_Pictographic_Ideographic'}] 1794 [$lb_enums{'Postfix_Numeric'}] = $lb_actions{'LB_NOBREAK'}; 1795 $lb_table[$lb_enums{'E_Base'}][$lb_enums{'Postfix_Numeric'}] 1796 = $lb_actions{'LB_NOBREAK'}; 1797 $lb_table[$lb_enums{'E_Modifier'}][$lb_enums{'Postfix_Numeric'}] 1798 = $lb_actions{'LB_NOBREAK'}; 1799 1800 # LB23 Do not break between digits and letters 1801 # (AL | HL) × NU 1802 $lb_table[$lb_enums{'Alphabetic'}][$lb_enums{'Numeric'}] 1803 = $lb_actions{'LB_NOBREAK'}; 1804 $lb_table[$lb_enums{'Hebrew_Letter'}][$lb_enums{'Numeric'}] 1805 = $lb_actions{'LB_NOBREAK'}; 1806 1807 # NU × (AL | HL) 1808 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Alphabetic'}] 1809 = $lb_actions{'LB_NOBREAK'}; 1810 $lb_table[$lb_enums{'Numeric'}][$lb_enums{'Hebrew_Letter'}] 1811 = $lb_actions{'LB_NOBREAK'}; 1812 1813 # LB22 Do not break before ellipses 1814 for my $i (0 .. @lb_table - 1) { 1815 $lb_table[$i][$lb_enums{'Inseparable'}] = $lb_actions{'LB_NOBREAK'}; 1816 } 1817 1818 # LB21b Don’t break between Solidus and Hebrew letters. 1819 # SY × HL 1820 $lb_table[$lb_enums{'Break_Symbols'}][$lb_enums{'Hebrew_Letter'}] 1821 = $lb_actions{'LB_NOBREAK'}; 1822 1823 # LB21a Don't break after Hebrew + Hyphen. 1824 # HL (HY | BA) × 1825 for my $i (0 .. @lb_table - 1) { 1826 $lb_table[$lb_enums{'Hyphen'}][$i] 1827 += $lb_actions{'LB_HY_or_BA_then_foo'}; 1828 $lb_table[$lb_enums{'Break_After'}][$i] 1829 += $lb_actions{'LB_HY_or_BA_then_foo'}; 1830 } 1831 1832 # LB21 Do not break before hyphen-minus, other hyphens, fixed-width 1833 # spaces, small kana, and other non-starters, or after acute accents. 1834 # × BA 1835 # × HY 1836 # × NS 1837 # BB × 1838 for my $i (0 .. @lb_table - 1) { 1839 $lb_table[$i][$lb_enums{'Break_After'}] = $lb_actions{'LB_NOBREAK'}; 1840 $lb_table[$i][$lb_enums{'Hyphen'}] = $lb_actions{'LB_NOBREAK'}; 1841 $lb_table[$i][$lb_enums{'Nonstarter'}] = $lb_actions{'LB_NOBREAK'}; 1842 $lb_table[$lb_enums{'Break_Before'}][$i] = $lb_actions{'LB_NOBREAK'}; 1843 } 1844 1845 # LB20 Break before and after unresolved CB. 1846 # ÷ CB 1847 # CB ÷ 1848 # Conditional breaks should be resolved external to the line breaking 1849 # rules. However, the default action is to treat unresolved CB as breaking 1850 # before and after. 1851 for my $i (0 .. @lb_table - 1) { 1852 $lb_table[$i][$lb_enums{'Contingent_Break'}] 1853 = $lb_actions{'LB_BREAKABLE'}; 1854 $lb_table[$lb_enums{'Contingent_Break'}][$i] 1855 = $lb_actions{'LB_BREAKABLE'}; 1856 } 1857 1858 # LB19 Do not break before or after quotation marks, such as ‘ ” ’. 1859 # × QU 1860 # QU × 1861 for my $i (0 .. @lb_table - 1) { 1862 $lb_table[$i][$lb_enums{'Quotation'}] = $lb_actions{'LB_NOBREAK'}; 1863 $lb_table[$lb_enums{'Quotation'}][$i] = $lb_actions{'LB_NOBREAK'}; 1864 } 1865 1866 # LB18 Break after spaces 1867 # SP ÷ 1868 for my $i (0 .. @lb_table - 1) { 1869 $lb_table[$lb_enums{'Space'}][$i] = $lb_actions{'LB_BREAKABLE'}; 1870 } 1871 1872 # LB17 Do not break within ‘——’, even with intervening spaces. 1873 # B2 SP* × B2 1874 $lb_table[$lb_enums{'Break_Both'}][$lb_enums{'Break_Both'}] 1875 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1876 1877 # LB16 Do not break between closing punctuation and a nonstarter even with 1878 # intervening spaces. 1879 # (CL | CP) SP* × NS 1880 $lb_table[$lb_enums{'Close_Punctuation'}][$lb_enums{'Nonstarter'}] 1881 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1882 $lb_table[$lb_enums{'Close_Parenthesis'}][$lb_enums{'Nonstarter'}] 1883 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1884 $lb_table[$lb_enums{'East_Asian_CP'}][$lb_enums{'Nonstarter'}] 1885 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1886 1887 1888 # LB15 Do not break within ‘”[’, even with intervening spaces. 1889 # QU SP* × OP 1890 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'Open_Punctuation'}] 1891 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1892 $lb_table[$lb_enums{'Quotation'}][$lb_enums{'East_Asian_OP'}] 1893 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1894 1895 # LB14 Do not break after ‘[’, even after spaces. 1896 # OP SP* × 1897 for my $i (0 .. @lb_table - 1) { 1898 $lb_table[$lb_enums{'Open_Punctuation'}][$i] 1899 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1900 $lb_table[$lb_enums{'East_Asian_OP'}][$i] 1901 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1902 } 1903 1904 # LB13 Do not break before ‘]’ or ‘!’ or ‘;’ or ‘/’, even after spaces, as 1905 # tailored by example 7 in http://www.unicode.org/reports/tr14/#Examples 1906 # [^NU] × CL 1907 # [^NU] × CP 1908 # × EX 1909 # [^NU] × IS 1910 # [^NU] × SY 1911 for my $i (0 .. @lb_table - 1) { 1912 $lb_table[$i][$lb_enums{'Exclamation'}] 1913 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1914 1915 next if $i == $lb_enums{'Numeric'}; 1916 1917 $lb_table[$i][$lb_enums{'Close_Punctuation'}] 1918 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1919 $lb_table[$i][$lb_enums{'Close_Parenthesis'}] 1920 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1921 $lb_table[$i][$lb_enums{'East_Asian_CP'}] 1922 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1923 $lb_table[$i][$lb_enums{'Infix_Numeric'}] 1924 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1925 $lb_table[$i][$lb_enums{'Break_Symbols'}] 1926 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1927 } 1928 1929 # LB12a Do not break before NBSP and related characters, except after 1930 # spaces and hyphens. 1931 # [^SP BA HY] × GL 1932 for my $i (0 .. @lb_table - 1) { 1933 next if $i == $lb_enums{'Space'} 1934 || $i == $lb_enums{'Break_After'} 1935 || $i == $lb_enums{'Hyphen'}; 1936 1937 # We don't break, but if a property above has said don't break even 1938 # with space between, don't override that (also in the next few rules) 1939 next if $lb_table[$i][$lb_enums{'Glue'}] 1940 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1941 $lb_table[$i][$lb_enums{'Glue'}] = $lb_actions{'LB_NOBREAK'}; 1942 } 1943 1944 # LB12 Do not break after NBSP and related characters. 1945 # GL × 1946 for my $i (0 .. @lb_table - 1) { 1947 next if $lb_table[$lb_enums{'Glue'}][$i] 1948 == $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1949 $lb_table[$lb_enums{'Glue'}][$i] = $lb_actions{'LB_NOBREAK'}; 1950 } 1951 1952 # LB11 Do not break before or after Word joiner and related characters. 1953 # × WJ 1954 # WJ × 1955 for my $i (0 .. @lb_table - 1) { 1956 if ($lb_table[$i][$lb_enums{'Word_Joiner'}] 1957 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) 1958 { 1959 $lb_table[$i][$lb_enums{'Word_Joiner'}] = $lb_actions{'LB_NOBREAK'}; 1960 } 1961 if ($lb_table[$lb_enums{'Word_Joiner'}][$i] 1962 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) 1963 { 1964 $lb_table[$lb_enums{'Word_Joiner'}][$i] = $lb_actions{'LB_NOBREAK'}; 1965 } 1966 } 1967 1968 # Special case this here to avoid having to do a special case in the code, 1969 # by making this the same as other things with a SP in front of them that 1970 # don't break, we avoid an extra test 1971 $lb_table[$lb_enums{'Space'}][$lb_enums{'Word_Joiner'}] 1972 = $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}; 1973 1974 # LB9 and LB10 are done in the same loop 1975 # 1976 # LB9 Do not break a combining character sequence; treat it as if it has 1977 # the line breaking class of the base character in all of the 1978 # higher-numbered rules. Treat ZWJ as if it were CM 1979 # Treat X (CM|ZWJ)* as if it were X. 1980 # where X is any line break class except BK, CR, LF, NL, SP, or ZW. 1981 1982 # LB10 Treat any remaining combining mark or ZWJ as AL. This catches the 1983 # case where a CM or ZWJ is the first character on the line or follows SP, 1984 # BK, CR, LF, NL, or ZW. 1985 for my $i (0 .. @lb_table - 1) { 1986 1987 # When the CM or ZWJ is the first in the pair, we don't know without 1988 # looking behind whether the CM or ZWJ is going to attach to an 1989 # earlier character, or not. So have to figure this out at runtime in 1990 # the code 1991 $lb_table[$lb_enums{'Combining_Mark'}][$i] 1992 = $lb_actions{'LB_CM_ZWJ_foo'}; 1993 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_CM_ZWJ_foo'}; 1994 1995 if ( $i == $lb_enums{'Mandatory_Break'} 1996 || $i == $lb_enums{'EDGE'} 1997 || $i == $lb_enums{'Carriage_Return'} 1998 || $i == $lb_enums{'Line_Feed'} 1999 || $i == $lb_enums{'Next_Line'} 2000 || $i == $lb_enums{'Space'} 2001 || $i == $lb_enums{'ZWSpace'}) 2002 { 2003 # For these classes, a following CM doesn't combine, and should do 2004 # whatever 'Alphabetic' would do. 2005 $lb_table[$i][$lb_enums{'Combining_Mark'}] 2006 = $lb_table[$i][$lb_enums{'Alphabetic'}]; 2007 $lb_table[$i][$lb_enums{'ZWJ'}] 2008 = $lb_table[$i][$lb_enums{'Alphabetic'}]; 2009 } 2010 else { 2011 # For these classes, the CM or ZWJ combines, so doesn't break, 2012 # inheriting the type of nobreak from the master character. 2013 if ($lb_table[$i][$lb_enums{'Combining_Mark'}] 2014 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) 2015 { 2016 $lb_table[$i][$lb_enums{'Combining_Mark'}] 2017 = $lb_actions{'LB_NOBREAK'}; 2018 } 2019 if ($lb_table[$i][$lb_enums{'ZWJ'}] 2020 != $lb_actions{'LB_NOBREAK_EVEN_WITH_SP_BETWEEN'}) 2021 { 2022 $lb_table[$i][$lb_enums{'ZWJ'}] 2023 = $lb_actions{'LB_NOBREAK'}; 2024 } 2025 } 2026 } 2027 2028 # LB8a Do not break after a zero width joiner 2029 # ZWJ × 2030 for my $i (0 .. @lb_table - 1) { 2031 $lb_table[$lb_enums{'ZWJ'}][$i] = $lb_actions{'LB_NOBREAK'}; 2032 } 2033 2034 # LB8 Break before any character following a zero-width space, even if one 2035 # or more spaces intervene. 2036 # ZW SP* ÷ 2037 for my $i (0 .. @lb_table - 1) { 2038 $lb_table[$lb_enums{'ZWSpace'}][$i] = $lb_actions{'LB_BREAKABLE'}; 2039 } 2040 2041 # Because of LB8-10, we need to look at context for "SP x", and this must 2042 # be done in the code. So override the existing rules for that, by adding 2043 # a constant to get new rules that tell the code it needs to look at 2044 # context. By adding this action instead of replacing the existing one, 2045 # we can get back to the original rule if necessary. 2046 for my $i (0 .. @lb_table - 1) { 2047 $lb_table[$lb_enums{'Space'}][$i] += $lb_actions{'LB_SP_foo'}; 2048 } 2049 2050 # LB7 Do not break before spaces or zero width space. 2051 # × SP 2052 # × ZW 2053 for my $i (0 .. @lb_table - 1) { 2054 $lb_table[$i][$lb_enums{'Space'}] = $lb_actions{'LB_NOBREAK'}; 2055 $lb_table[$i][$lb_enums{'ZWSpace'}] = $lb_actions{'LB_NOBREAK'}; 2056 } 2057 2058 # LB6 Do not break before hard line breaks. 2059 # × ( BK | CR | LF | NL ) 2060 for my $i (0 .. @lb_table - 1) { 2061 $lb_table[$i][$lb_enums{'Mandatory_Break'}] = $lb_actions{'LB_NOBREAK'}; 2062 $lb_table[$i][$lb_enums{'Carriage_Return'}] = $lb_actions{'LB_NOBREAK'}; 2063 $lb_table[$i][$lb_enums{'Line_Feed'}] = $lb_actions{'LB_NOBREAK'}; 2064 $lb_table[$i][$lb_enums{'Next_Line'}] = $lb_actions{'LB_NOBREAK'}; 2065 } 2066 2067 # LB5 Treat CR followed by LF, as well as CR, LF, and NL as hard line breaks. 2068 # CR × LF 2069 # CR ! 2070 # LF ! 2071 # NL ! 2072 for my $i (0 .. @lb_table - 1) { 2073 $lb_table[$lb_enums{'Carriage_Return'}][$i] 2074 = $lb_actions{'LB_BREAKABLE'}; 2075 $lb_table[$lb_enums{'Line_Feed'}][$i] = $lb_actions{'LB_BREAKABLE'}; 2076 $lb_table[$lb_enums{'Next_Line'}][$i] = $lb_actions{'LB_BREAKABLE'}; 2077 } 2078 $lb_table[$lb_enums{'Carriage_Return'}][$lb_enums{'Line_Feed'}] 2079 = $lb_actions{'LB_NOBREAK'}; 2080 2081 # LB4 Always break after hard line breaks. 2082 # BK ! 2083 for my $i (0 .. @lb_table - 1) { 2084 $lb_table[$lb_enums{'Mandatory_Break'}][$i] 2085 = $lb_actions{'LB_BREAKABLE'}; 2086 } 2087 2088 # LB3 Always break at the end of text. 2089 # ! eot 2090 # LB2 Never break at the start of text. 2091 # sot × 2092 for my $i (0 .. @lb_table - 1) { 2093 $lb_table[$i][$lb_enums{'EDGE'}] = $lb_actions{'LB_BREAKABLE'}; 2094 $lb_table[$lb_enums{'EDGE'}][$i] = $lb_actions{'LB_NOBREAK'}; 2095 } 2096 2097 # LB1 Assign a line breaking class to each code point of the input. 2098 # Resolve AI, CB, CJ, SA, SG, and XX into other line breaking classes 2099 # depending on criteria outside the scope of this algorithm. 2100 # 2101 # In the absence of such criteria all characters with a specific 2102 # combination of original class and General_Category property value are 2103 # resolved as follows: 2104 # Original Resolved General_Category 2105 # AI, SG, XX AL Any 2106 # SA CM Only Mn or Mc 2107 # SA AL Any except Mn and Mc 2108 # CJ NS Any 2109 # 2110 # This is done in mktables, so we never see any of the remapped-from 2111 # classes. 2112 2113 output_table_common('LB', \%lb_actions, 2114 \@lb_table, \@lb_short_enums, \%lb_abbreviations); 2115} 2116 2117sub output_WB_table() { 2118 2119 # Create and output the enums, #defines, and pair table for use in 2120 # determining Word Breaks, given in http://www.unicode.org/reports/tr29/. 2121 2122 # This uses the same mechanism in the other bounds tables generated by 2123 # this file. The actions that could override a 0 or 1 are added to those 2124 # numbers; the actions that clearly don't depend on the underlying rule 2125 # simply overwrite 2126 my %wb_actions = ( 2127 WB_NOBREAK => 0, 2128 WB_BREAKABLE => 1, 2129 WB_hs_then_hs => 2, 2130 WB_Ex_or_FO_or_ZWJ_then_foo => 3, 2131 WB_DQ_then_HL => 4, 2132 WB_HL_then_DQ => 6, 2133 WB_LE_or_HL_then_MB_or_ML_or_SQ => 8, 2134 WB_MB_or_ML_or_SQ_then_LE_or_HL => 10, 2135 WB_MB_or_MN_or_SQ_then_NU => 12, 2136 WB_NU_then_MB_or_MN_or_SQ => 14, 2137 WB_RI_then_RI => 16, 2138 ); 2139 2140 # Construct the WB pair table. 2141 # The table is constructed in reverse order of the rules, to make the 2142 # lower-numbered, higher priority ones override the later ones, as the 2143 # algorithm stops at the earliest matching rule 2144 2145 my @wb_table; 2146 my $table_size = @wb_short_enums; 2147 2148 # Otherwise, break everywhere (including around ideographs). 2149 # WB99 Any ÷ Any 2150 for my $i (0 .. $table_size - 1) { 2151 for my $j (0 .. $table_size - 1) { 2152 $wb_table[$i][$j] = $wb_actions{'WB_BREAKABLE'}; 2153 } 2154 } 2155 2156 # Do not break within emoji flag sequences. That is, do not break between 2157 # regional indicator (RI) symbols if there is an odd number of RI 2158 # characters before the break point. 2159 # WB16 [^RI] (RI RI)* RI × RI 2160 # WB15 sot (RI RI)* RI × RI 2161 $wb_table[$wb_enums{'Regional_Indicator'}] 2162 [$wb_enums{'Regional_Indicator'}] = $wb_actions{'WB_RI_then_RI'}; 2163 2164 # Do not break within emoji modifier sequences. 2165 # WB14 ( E_Base | EBG ) × E_Modifier 2166 $wb_table[$wb_enums{'E_Base'}][$wb_enums{'E_Modifier'}] 2167 = $wb_actions{'WB_NOBREAK'}; 2168 $wb_table[$wb_enums{'E_Base_GAZ'}][$wb_enums{'E_Modifier'}] 2169 = $wb_actions{'WB_NOBREAK'}; 2170 2171 # Do not break from extenders. 2172 # WB13b ExtendNumLet × (ALetter | Hebrew_Letter | Numeric | Katakana) 2173 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ALetter'}] 2174 = $wb_actions{'WB_NOBREAK'}; 2175 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtPict_LE'}] 2176 = $wb_actions{'WB_NOBREAK'}; 2177 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Hebrew_Letter'}] 2178 = $wb_actions{'WB_NOBREAK'}; 2179 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Numeric'}] 2180 = $wb_actions{'WB_NOBREAK'}; 2181 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'Katakana'}] 2182 = $wb_actions{'WB_NOBREAK'}; 2183 2184 # WB13a (ALetter | Hebrew_Letter | Numeric | Katakana | ExtendNumLet) 2185 # × ExtendNumLet 2186 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ExtendNumLet'}] 2187 = $wb_actions{'WB_NOBREAK'}; 2188 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtendNumLet'}] 2189 = $wb_actions{'WB_NOBREAK'}; 2190 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtendNumLet'}] 2191 = $wb_actions{'WB_NOBREAK'}; 2192 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtendNumLet'}] 2193 = $wb_actions{'WB_NOBREAK'}; 2194 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'ExtendNumLet'}] 2195 = $wb_actions{'WB_NOBREAK'}; 2196 $wb_table[$wb_enums{'ExtendNumLet'}][$wb_enums{'ExtendNumLet'}] 2197 = $wb_actions{'WB_NOBREAK'}; 2198 2199 # Do not break between Katakana. 2200 # WB13 Katakana × Katakana 2201 $wb_table[$wb_enums{'Katakana'}][$wb_enums{'Katakana'}] 2202 = $wb_actions{'WB_NOBREAK'}; 2203 2204 # Do not break within sequences, such as “3.2” or “3,456.789”. 2205 # WB12 Numeric × (MidNum | MidNumLet | Single_Quote) Numeric 2206 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNumLet'}] 2207 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; 2208 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'MidNum'}] 2209 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; 2210 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Single_Quote'}] 2211 += $wb_actions{'WB_NU_then_MB_or_MN_or_SQ'}; 2212 2213 # WB11 Numeric (MidNum | (MidNumLet | Single_Quote)) × Numeric 2214 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Numeric'}] 2215 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; 2216 $wb_table[$wb_enums{'MidNum'}][$wb_enums{'Numeric'}] 2217 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; 2218 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Numeric'}] 2219 += $wb_actions{'WB_MB_or_MN_or_SQ_then_NU'}; 2220 2221 # Do not break within sequences of digits, or digits adjacent to letters 2222 # (“3a”, or “A3”). 2223 # WB10 Numeric × (ALetter | Hebrew_Letter) 2224 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ALetter'}] 2225 = $wb_actions{'WB_NOBREAK'}; 2226 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'ExtPict_LE'}] 2227 = $wb_actions{'WB_NOBREAK'}; 2228 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Hebrew_Letter'}] 2229 = $wb_actions{'WB_NOBREAK'}; 2230 2231 # WB9 (ALetter | Hebrew_Letter) × Numeric 2232 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Numeric'}] 2233 = $wb_actions{'WB_NOBREAK'}; 2234 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Numeric'}] 2235 = $wb_actions{'WB_NOBREAK'}; 2236 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Numeric'}] 2237 = $wb_actions{'WB_NOBREAK'}; 2238 2239 # WB8 Numeric × Numeric 2240 $wb_table[$wb_enums{'Numeric'}][$wb_enums{'Numeric'}] 2241 = $wb_actions{'WB_NOBREAK'}; 2242 2243 # Do not break letters across certain punctuation. 2244 # WB7c Hebrew_Letter Double_Quote × Hebrew_Letter 2245 $wb_table[$wb_enums{'Double_Quote'}][$wb_enums{'Hebrew_Letter'}] 2246 += $wb_actions{'WB_DQ_then_HL'}; 2247 2248 # WB7b Hebrew_Letter × Double_Quote Hebrew_Letter 2249 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Double_Quote'}] 2250 += $wb_actions{'WB_HL_then_DQ'}; 2251 2252 # WB7a Hebrew_Letter × Single_Quote 2253 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}] 2254 = $wb_actions{'WB_NOBREAK'}; 2255 2256 # WB7 (ALetter | Hebrew_Letter) (MidLetter | MidNumLet | Single_Quote) 2257 # × (ALetter | Hebrew_Letter) 2258 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ALetter'}] 2259 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2260 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'ExtPict_LE'}] 2261 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2262 $wb_table[$wb_enums{'MidNumLet'}][$wb_enums{'Hebrew_Letter'}] 2263 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2264 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ALetter'}] 2265 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2266 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'ExtPict_LE'}] 2267 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2268 $wb_table[$wb_enums{'MidLetter'}][$wb_enums{'Hebrew_Letter'}] 2269 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2270 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ALetter'}] 2271 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2272 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'ExtPict_LE'}] 2273 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2274 $wb_table[$wb_enums{'Single_Quote'}][$wb_enums{'Hebrew_Letter'}] 2275 += $wb_actions{'WB_MB_or_ML_or_SQ_then_LE_or_HL'}; 2276 2277 # WB6 (ALetter | Hebrew_Letter) × (MidLetter | MidNumLet 2278 # | Single_Quote) (ALetter | Hebrew_Letter) 2279 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidNumLet'}] 2280 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2281 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidNumLet'}] 2282 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2283 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidNumLet'}] 2284 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2285 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'MidLetter'}] 2286 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2287 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'MidLetter'}] 2288 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2289 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'MidLetter'}] 2290 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2291 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Single_Quote'}] 2292 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2293 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Single_Quote'}] 2294 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2295 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Single_Quote'}] 2296 += $wb_actions{'WB_LE_or_HL_then_MB_or_ML_or_SQ'}; 2297 2298 # Do not break between most letters. 2299 # WB5 (ALetter | Hebrew_Letter) × (ALetter | Hebrew_Letter) 2300 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'ALetter'}] 2301 = $wb_actions{'WB_NOBREAK'}; 2302 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ALetter'}] 2303 = $wb_actions{'WB_NOBREAK'}; 2304 $wb_table[$wb_enums{'ALetter'}][$wb_enums{'Hebrew_Letter'}] 2305 = $wb_actions{'WB_NOBREAK'}; 2306 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'Hebrew_Letter'}] 2307 = $wb_actions{'WB_NOBREAK'}; 2308 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ALetter'}] 2309 = $wb_actions{'WB_NOBREAK'}; 2310 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'ExtPict_LE'}] 2311 = $wb_actions{'WB_NOBREAK'}; 2312 $wb_table[$wb_enums{'Hebrew_Letter'}][$wb_enums{'Hebrew_Letter'}] 2313 = $wb_actions{'WB_NOBREAK'}; 2314 $wb_table[$wb_enums{'ExtPict_LE'}][$wb_enums{'ExtPict_LE'}] 2315 = $wb_actions{'WB_NOBREAK'}; 2316 2317 # Ignore Format and Extend characters, except after sot, CR, LF, and 2318 # Newline. This also has the effect of: Any × (Format | Extend | ZWJ) 2319 # WB4 X (Extend | Format | ZWJ)* → X 2320 for my $i (0 .. @wb_table - 1) { 2321 $wb_table[$wb_enums{'Extend'}][$i] 2322 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; 2323 $wb_table[$wb_enums{'Format'}][$i] 2324 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; 2325 $wb_table[$wb_enums{'ZWJ'}][$i] 2326 = $wb_actions{'WB_Ex_or_FO_or_ZWJ_then_foo'}; 2327 } 2328 for my $i (0 .. @wb_table - 1) { 2329 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'}; 2330 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'}; 2331 $wb_table[$i][$wb_enums{'ZWJ'}] = $wb_actions{'WB_NOBREAK'}; 2332 } 2333 2334 # Implied is that these attach to the character before them, except for 2335 # the characters that mark the end of a region of text. The rules below 2336 # override the ones set up here, for all the characters that need 2337 # overriding. 2338 for my $i (0 .. @wb_table - 1) { 2339 $wb_table[$i][$wb_enums{'Extend'}] = $wb_actions{'WB_NOBREAK'}; 2340 $wb_table[$i][$wb_enums{'Format'}] = $wb_actions{'WB_NOBREAK'}; 2341 } 2342 2343 # Keep horizontal whitespace together 2344 # Use perl's tailoring instead 2345 # WB3d WSegSpace × WSegSpace 2346 #$wb_table[$wb_enums{'WSegSpace'}][$wb_enums{'WSegSpace'}] 2347 # = $wb_actions{'WB_NOBREAK'}; 2348 2349 # Do not break within emoji zwj sequences. 2350 # WB3c ZWJ × ( Glue_After_Zwj | EBG ) 2351 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'Glue_After_Zwj'}] 2352 = $wb_actions{'WB_NOBREAK'}; 2353 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'E_Base_GAZ'}] 2354 = $wb_actions{'WB_NOBREAK'}; 2355 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_XX'}] 2356 = $wb_actions{'WB_NOBREAK'}; 2357 $wb_table[$wb_enums{'ZWJ'}][$wb_enums{'ExtPict_LE'}] 2358 = $wb_actions{'WB_NOBREAK'}; 2359 2360 # Break before and after newlines 2361 # WB3b ÷ (Newline | CR | LF) 2362 # WB3a (Newline | CR | LF) ÷ 2363 # et. al. 2364 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { 2365 for my $j (0 .. @wb_table - 1) { 2366 $wb_table[$j][$wb_enums{$i}] = $wb_actions{'WB_BREAKABLE'}; 2367 $wb_table[$wb_enums{$i}][$j] = $wb_actions{'WB_BREAKABLE'}; 2368 } 2369 } 2370 2371 # But do not break within white space. 2372 # WB3 CR × LF 2373 # et.al. 2374 for my $i ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { 2375 for my $j ('CR', 'LF', 'Newline', 'Perl_Tailored_HSpace') { 2376 $wb_table[$wb_enums{$i}][$wb_enums{$j}] = $wb_actions{'WB_NOBREAK'}; 2377 } 2378 } 2379 2380 # And do not break horizontal space followed by Extend or Format or ZWJ 2381 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Extend'}] 2382 = $wb_actions{'WB_NOBREAK'}; 2383 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'Format'}] 2384 = $wb_actions{'WB_NOBREAK'}; 2385 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}][$wb_enums{'ZWJ'}] 2386 = $wb_actions{'WB_NOBREAK'}; 2387 $wb_table[$wb_enums{'Perl_Tailored_HSpace'}] 2388 [$wb_enums{'Perl_Tailored_HSpace'}] 2389 = $wb_actions{'WB_hs_then_hs'}; 2390 2391 # Break at the start and end of text, unless the text is empty 2392 # WB2 Any ÷ eot 2393 # WB1 sot ÷ Any 2394 for my $i (0 .. @wb_table - 1) { 2395 $wb_table[$i][$wb_enums{'EDGE'}] = $wb_actions{'WB_BREAKABLE'}; 2396 $wb_table[$wb_enums{'EDGE'}][$i] = $wb_actions{'WB_BREAKABLE'}; 2397 } 2398 $wb_table[$wb_enums{'EDGE'}][$wb_enums{'EDGE'}] = 0; 2399 2400 output_table_common('WB', \%wb_actions, 2401 \@wb_table, \@wb_short_enums, \%wb_abbreviations); 2402} 2403 2404sub sanitize_name ($) { 2405 # Change the non-word characters in the input string to standardized word 2406 # equivalents 2407 # 2408 my $sanitized = shift; 2409 $sanitized =~ s/=/__/; 2410 $sanitized =~ s/&/_AMP_/; 2411 $sanitized =~ s/\./_DOT_/; 2412 $sanitized =~ s/-/_MINUS_/; 2413 $sanitized =~ s!/!_SLASH_!; 2414 2415 return $sanitized; 2416} 2417 2418sub token_name 2419{ 2420 my $name = sanitize_name(shift); 2421 warn "$name contains non-word" if $name =~ /\W/; 2422 2423 return "$table_name_prefix\U$name" 2424} 2425 2426switch_pound_if ('ALL', 'PERL_IN_REGCOMP_C'); 2427 2428output_invlist("Latin1", [ 0, 256 ]); 2429output_invlist("AboveLatin1", [ 256 ]); 2430 2431if ($num_anyof_code_points == 256) { # Same as Latin1 2432 print $out_fh 2433 "\nstatic const UV * const InBitmap_invlist = Latin1_invlist;\n"; 2434} 2435else { 2436 output_invlist("InBitmap", [ 0, $num_anyof_code_points ]); 2437} 2438 2439end_file_pound_if; 2440 2441# We construct lists for all the POSIX and backslash sequence character 2442# classes in two forms: 2443# 1) ones which match only in the ASCII range 2444# 2) ones which match either in the Latin1 range, or the entire Unicode range 2445# 2446# These get compiled in, and hence affect the memory footprint of every Perl 2447# program, even those not using Unicode. To minimize the size, currently 2448# the Latin1 version is generated for the beyond ASCII range except for those 2449# lists that are quite small for the entire range, such as for \s, which is 22 2450# UVs long plus 4 UVs (currently) for the header. 2451# 2452# To save even more memory, the ASCII versions could be derived from the 2453# larger ones at runtime, saving some memory (minus the expense of the machine 2454# instructions to do so), but these are all small anyway, so their total is 2455# about 100 UVs. 2456# 2457# In the list of properties below that get generated, the L1 prefix is a fake 2458# property that means just the Latin1 range of the full property (whose name 2459# has an X prefix instead of L1). 2460# 2461# An initial & means to use the subroutine from this file instead of an 2462# official inversion list. 2463 2464# Below is the list of property names to generate. '&' means to use the 2465# subroutine to generate the inversion list instead of the generic code 2466# below. Some properties have a comma-separated list after the name, 2467# These are extra enums to add to those found in the Unicode tables. 2468no warnings 'qw'; 2469 # Ignore non-alpha in sort 2470my @props; 2471push @props, sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } qw( 2472 &UpperLatin1 2473 _Perl_GCB,EDGE,E_Base,E_Base_GAZ,E_Modifier,Glue_After_Zwj,LV,Prepend,Regional_Indicator,SpacingMark,ZWJ,ExtPict_XX 2474 _Perl_LB,EDGE,Close_Parenthesis,Hebrew_Letter,Next_Line,Regional_Indicator,ZWJ,Contingent_Break,E_Base,E_Modifier,H2,H3,JL,JT,JV,Word_Joiner,East_Asian_CP,East_Asian_OP,Unassigned_Extended_Pictographic_Ideographic 2475 _Perl_SB,EDGE,SContinue,CR,Extend,LF 2476 _Perl_WB,Perl_Tailored_HSpace,EDGE,UNKNOWN,CR,Double_Quote,E_Base,E_Base_GAZ,E_Modifier,Extend,Glue_After_Zwj,Hebrew_Letter,LF,MidNumLet,Newline,Regional_Indicator,Single_Quote,ZWJ,ExtPict_XX,ExtPict_LE 2477 _Perl_SCX,Latin,Inherited,Unknown,Kore,Jpan,Hanb,INVALID 2478 Lowercase_Mapping 2479 Titlecase_Mapping 2480 Uppercase_Mapping 2481 Simple_Case_Folding 2482 Case_Folding 2483 &_Perl_IVCF 2484 &_Perl_CCC_non0_non230 2485 ); 2486 # NOTE that the convention is that extra enum values come 2487 # after the property name, separated by commas, with the enums 2488 # that aren't ever defined by Unicode (with some exceptions) 2489 # containing at least 4 all-uppercase characters. 2490 2491 # Some of the enums are current official property values that 2492 # are needed for the rules in constructing certain tables in 2493 # this file, and perhaps in regexec.c as well. They are here 2494 # so that things don't crash when compiled on earlier Unicode 2495 # releases where they don't exist. Thus the rules that use 2496 # them still get compiled, but no code point actually uses 2497 # them, hence they won't get exercized on such Unicode 2498 # versions, but the code will still compile and run, though 2499 # may not give the precise results that those versions would 2500 # expect, but reasonable results nonetheless. 2501 # 2502 # Other enums are due to the fact that Unicode has in more 2503 # recent versions added criteria to the rules in these extra 2504 # tables that are based on factors outside the property 2505 # values. And those have to be accounted for, essentially by 2506 # here splitting certain enum equivalence classes based on 2507 # those extra rules. 2508 # 2509 # EDGE is supposed to be a boundary between some types of 2510 # enums, but khw thinks that isn't valid any more. 2511 2512my @bin_props; 2513my @perl_prop_synonyms; 2514my %enums; 2515my @deprecated_messages = ""; # Element [0] is a placeholder 2516my %deprecated_tags; 2517 2518my $float_e_format = qr/ ^ -? \d \. \d+ e [-+] \d+ $ /x; 2519 2520# Create another hash that maps floating point x.yyEzz representation to what 2521# %stricter_to_file_of does for the equivalent rational. A typical entry in 2522# the latter hash is 2523# 2524# 'nv=1/2' => 'Nv/1_2', 2525# 2526# From that, this loop creates an entry 2527# 2528# 'nv=5.00e-01' => 'Nv/1_2', 2529# 2530# %stricter_to_file_of contains far more than just the rationals. Instead we 2531# use %Unicode::UCD::nv_floating_to_rational which should have an entry for each 2532# nv in the former hash. 2533my %floating_to_file_of; 2534foreach my $key (keys %Unicode::UCD::nv_floating_to_rational) { 2535 my $value = $Unicode::UCD::nv_floating_to_rational{$key}; 2536 $floating_to_file_of{$key} = $Unicode::UCD::stricter_to_file_of{"nv=$value"}; 2537} 2538 2539# Properties that are specified with a prop=value syntax 2540my @equals_properties; 2541 2542# Collect all the binary properties from data in lib/unicore 2543# Sort so that complements come after the main table, and the shortest 2544# names first, finally alphabetically. Also, sort together the tables we want 2545# to be kept together, and prefer those with 'posix' in their names, which is 2546# what the C code is expecting their names to be. 2547foreach my $property (sort 2548 { exists $keep_together{lc $b} <=> exists $keep_together{lc $a} 2549 or $b =~ /posix/i <=> $a =~ /posix/i 2550 or $b =~ /perl/i <=> $a =~ /perl/i 2551 or $a =~ $float_e_format <=> $b =~ $float_e_format 2552 or $a =~ /!/ <=> $b =~ /!/ 2553 or length $a <=> length $b 2554 or $a cmp $b 2555 } keys %Unicode::UCD::loose_to_file_of, 2556 keys %Unicode::UCD::stricter_to_file_of, 2557 keys %floating_to_file_of 2558) { 2559 2560 # These two hashes map properties to values that can be considered to 2561 # be checksums. If two properties have the same checksum, they have 2562 # identical entries. Otherwise they differ in some way. 2563 my $tag = $Unicode::UCD::loose_to_file_of{$property}; 2564 $tag = $Unicode::UCD::stricter_to_file_of{$property} unless defined $tag; 2565 $tag = $floating_to_file_of{$property} unless defined $tag; 2566 2567 # The tag may contain an '!' meaning it is identical to the one formed 2568 # by removing the !, except that it is inverted. 2569 my $inverted = $tag =~ s/!//; 2570 2571 # This hash is lacking the property name 2572 $property = "nv=$property" if $property =~ $float_e_format; 2573 2574 # The list of 'prop=value' entries that this single entry expands to 2575 my @this_entries; 2576 2577 # Split 'property=value' on the equals sign, with $lhs being the whole 2578 # thing if there is no '=' 2579 my ($lhs, $rhs) = $property =~ / ( [^=]* ) ( =? .*) /x; 2580 2581 # $lhs then becomes the property name. 2582 my $prop_value = $rhs =~ s/ ^ = //rx; 2583 2584 push @equals_properties, $lhs if $prop_value ne ""; 2585 2586 # See if there are any synonyms for this property. 2587 if (exists $prop_name_aliases{$lhs}) { 2588 2589 # If so, do the combinatorics so that a new entry is added for 2590 # each legal property combined with the property value (which is 2591 # $rhs) 2592 foreach my $alias (@{$prop_name_aliases{$lhs}}) { 2593 2594 # But, there are some ambiguities, like 'script' is a synonym 2595 # for 'sc', and 'sc' can stand alone, meaning something 2596 # entirely different than 'script'. 'script' cannot stand 2597 # alone. Don't add if the potential new lhs is in the hash of 2598 # stand-alone properties. 2599 no warnings 'once'; 2600 next if $rhs eq "" && grep { $alias eq $_ } 2601 keys %Unicode::UCD::loose_property_to_file_of; 2602 2603 my $new_entry = $alias . $rhs; 2604 push @this_entries, $new_entry; 2605 } 2606 } 2607 2608 # Above, we added the synonyms for the base entry we're now 2609 # processing. But we haven't dealt with it yet. If we already have a 2610 # property with the identical characteristics, this becomes just a 2611 # synonym for it. 2612 2613 if (exists $enums{$tag}) { 2614 push @this_entries, $property; 2615 } 2616 else { # Otherwise, create a new entry. 2617 2618 # Add to the list of properties to generate inversion lists for. 2619 push @bin_props, uc $property; 2620 2621 # Create a rule for the parser 2622 if (! exists $keywords{$property}) { 2623 $keywords{$property} = token_name($property); 2624 } 2625 2626 # And create an enum for it. 2627 $enums{$tag} = $table_name_prefix . uc sanitize_name($property); 2628 2629 $perl_tags{$tag} = 1 if exists $keep_together{lc $property}; 2630 2631 # Some properties are deprecated. This hash tells us so, and the 2632 # warning message to raise if they are used. 2633 if (exists $Unicode::UCD::why_deprecated{$tag}) { 2634 $deprecated_tags{$enums{$tag}} = scalar @deprecated_messages; 2635 push @deprecated_messages, $Unicode::UCD::why_deprecated{$tag}; 2636 } 2637 2638 # Our sort above should have made sure that we see the 2639 # non-inverted version first, but this makes sure. 2640 warn "$property is inverted!!!" if $inverted; 2641 } 2642 2643 # Everything else is #defined to be the base enum, inversion is 2644 # indicated by negating the value. 2645 my $defined_to = ""; 2646 $defined_to .= "-" if $inverted; 2647 $defined_to .= $enums{$tag}; 2648 2649 # Go through the entries that evaluate to this. 2650 @this_entries = uniques @this_entries; 2651 foreach my $define (@this_entries) { 2652 2653 # There is a rule for the parser for each. 2654 $keywords{$define} = $defined_to; 2655 2656 # And a #define for all simple names equivalent to a perl property, 2657 # except those that begin with 'is' or 'in'; 2658 if (exists $perl_tags{$tag} && $property !~ / ^ i[ns] | = /x) { 2659 push @perl_prop_synonyms, "#define " 2660 . $table_name_prefix 2661 . uc(sanitize_name($define)) 2662 . " $defined_to"; 2663 } 2664 } 2665} 2666 2667@bin_props = sort { exists $keep_together{lc $b} <=> exists $keep_together{lc $a} 2668 or $a cmp $b 2669 } @bin_props; 2670@perl_prop_synonyms = sort(uniques(@perl_prop_synonyms)); 2671push @props, @bin_props; 2672 2673foreach my $prop (@props) { 2674 2675 # For the Latin1 properties, we change to use the eXtended version of the 2676 # base property, then go through the result and get rid of everything not 2677 # in Latin1 (above 255). Actually, we retain the element for the range 2678 # that crosses the 255/256 boundary if it is one that matches the 2679 # property. For example, in the Word property, there is a range of code 2680 # points that start at U+00F8 and goes through U+02C1. Instead of 2681 # artificially cutting that off at 256 because 256 is the first code point 2682 # above Latin1, we let the range go to its natural ending. That gives us 2683 # extra information with no added space taken. But if the range that 2684 # crosses the boundary is one that doesn't match the property, we don't 2685 # start a new range above 255, as that could be construed as going to 2686 # infinity. For example, the Upper property doesn't include the character 2687 # at 255, but does include the one at 256. We don't include the 256 one. 2688 my $prop_name = $prop; 2689 my $is_local_sub = $prop_name =~ s/^&//; 2690 my $extra_enums = ""; 2691 $extra_enums = $1 if $prop_name =~ s/, ( .* ) //x; 2692 my $lookup_prop = $prop_name; 2693 $prop_name = sanitize_name($prop_name); 2694 $prop_name = $table_name_prefix . $prop_name 2695 if grep { lc $lookup_prop eq lc $_ } @bin_props; 2696 my $l1_only = ($lookup_prop =~ s/^L1Posix/XPosix/ 2697 or $lookup_prop =~ s/^L1//); 2698 my $nonl1_only = 0; 2699 $nonl1_only = $lookup_prop =~ s/^NonL1// unless $l1_only; 2700 ($lookup_prop, my $has_suffixes) = $lookup_prop =~ / (.*) ( , .* )? /x; 2701 2702 for my $charset (get_supported_code_pages()) { 2703 @a2n = @{get_a2n($charset)}; 2704 2705 my @invlist; 2706 my @invmap; 2707 my $map_format = 0;; 2708 my $map_default; 2709 my $maps_to_code_point = 0; 2710 my $to_adjust = 0; 2711 my $same_in_all_code_pages; 2712 if ($is_local_sub) { 2713 my @return = eval $lookup_prop; 2714 die $@ if $@; 2715 my $invlist_ref = shift @return; 2716 @invlist = @$invlist_ref; 2717 if (@return) { # If has other values returned , must be an 2718 # inversion map 2719 my $invmap_ref = shift @return; 2720 @invmap = @$invmap_ref; 2721 $map_format = shift @return; 2722 $map_default = shift @return; 2723 } 2724 } 2725 else { 2726 @invlist = prop_invlist($lookup_prop, '_perl_core_internal_ok'); 2727 if (! @invlist) { 2728 2729 # If couldn't find a non-empty inversion list, see if it is 2730 # instead an inversion map 2731 my ($list_ref, $map_ref, $format, $default) 2732 = prop_invmap($lookup_prop, '_perl_core_internal_ok'); 2733 if (! $list_ref) { 2734 # An empty return here could mean an unknown property, or 2735 # merely that the original inversion list is empty. Call 2736 # in scalar context to differentiate 2737 my $count = prop_invlist($lookup_prop, 2738 '_perl_core_internal_ok'); 2739 if (defined $count) { 2740 # Short-circuit an empty inversion list. 2741 output_invlist($prop_name, \@invlist, $charset); 2742 last; 2743 } 2744 die "Could not find inversion list for '$lookup_prop'" 2745 } 2746 else { 2747 @invlist = @$list_ref; 2748 @invmap = @$map_ref; 2749 $map_format = $format; 2750 $map_default = $default; 2751 } 2752 } 2753 } 2754 2755 if ($map_format) { 2756 $maps_to_code_point = $map_format =~ / a ($ | [^r] ) /x; 2757 $to_adjust = $map_format =~ /a/; 2758 } 2759 2760 # Re-order the Unicode code points to native ones for this platform. 2761 # This is only needed for code points below 256, because native code 2762 # points are only in that range. For inversion maps of properties 2763 # where the mappings are adjusted (format =~ /a/), this reordering 2764 # could mess up the adjustment pattern that was in the input, so that 2765 # has to be dealt with. 2766 # 2767 # And inversion maps that map to code points need to eventually have 2768 # all those code points remapped to native, and it's better to do that 2769 # here, going through the whole list not just those below 256. This 2770 # is because some inversion maps have adjustments (format =~ /a/) 2771 # which may be affected by the reordering. This code needs to be done 2772 # both for when we are translating the inversion lists for < 256, and 2773 # for the inversion maps for everything. By doing both in this loop, 2774 # we can share that code. 2775 # 2776 # So, we go through everything for an inversion map to code points; 2777 # otherwise, we can skip any remapping at all if we are going to 2778 # output only the above-Latin1 values, or if the range spans the whole 2779 # of 0..256, as the remap will also include all of 0..256 (256 not 2780 # 255 because a re-ordering could cause 256 to need to be in the same 2781 # range as 255.) 2782 if ( (@invmap && $maps_to_code_point) 2783 || ( @invlist 2784 && $invlist[0] < 256 2785 && ( $invlist[0] != 0 2786 || (scalar @invlist != 1 && $invlist[1] < 256)))) 2787 { 2788 $same_in_all_code_pages = 0; 2789 if (! @invmap) { # Straight inversion list 2790 # Look at all the ranges that start before 257. 2791 my @latin1_list; 2792 while (@invlist) { 2793 last if $invlist[0] > 256; 2794 my $upper = @invlist > 1 2795 ? $invlist[1] - 1 # In range 2796 2797 # To infinity. You may want to stop much much 2798 # earlier; going this high may expose perl 2799 # deficiencies with very large numbers. 2800 : 256; 2801 for my $j ($invlist[0] .. $upper) { 2802 push @latin1_list, a2n($j); 2803 } 2804 2805 shift @invlist; # Shift off the range that's in the list 2806 shift @invlist; # Shift off the range not in the list 2807 } 2808 2809 # Here @invlist contains all the ranges in the original that 2810 # start at code points above 256, and @latin1_list contains 2811 # all the native code points for ranges that start with a 2812 # Unicode code point below 257. We sort the latter and 2813 # convert it to inversion list format. Then simply prepend it 2814 # to the list of the higher code points. 2815 @latin1_list = sort { $a <=> $b } @latin1_list; 2816 @latin1_list = mk_invlist_from_sorted_cp_list(\@latin1_list); 2817 unshift @invlist, @latin1_list; 2818 } 2819 else { # Is an inversion map 2820 2821 # This is a similar procedure as plain inversion list, but has 2822 # multiple buckets. A plain inversion list just has two 2823 # buckets, 1) 'in' the list; and 2) 'not' in the list, and we 2824 # pretty much can ignore the 2nd bucket, as it is completely 2825 # defined by the 1st. But here, what we do is create buckets 2826 # which contain the code points that map to each, translated 2827 # to native and turned into an inversion list. Thus each 2828 # bucket is an inversion list of native code points that map 2829 # to it or don't map to it. We use these to create an 2830 # inversion map for the whole property. 2831 2832 # As mentioned earlier, we use this procedure to not just 2833 # remap the inversion list to native values, but also the maps 2834 # of code points to native ones. In the latter case we have 2835 # to look at the whole of the inversion map (or at least to 2836 # above Unicode; as the maps of code points above that should 2837 # all be to the default). 2838 my $upper_limit = (! $maps_to_code_point) 2839 ? 256 2840 : (Unicode::UCD::UnicodeVersion() eq '1.1.5') 2841 ? 0xFFFF 2842 : 0x10FFFF; 2843 2844 my %mapped_lists; # A hash whose keys are the buckets. 2845 while (@invlist) { 2846 last if $invlist[0] > $upper_limit; 2847 2848 # This shouldn't actually happen, as prop_invmap() returns 2849 # an extra element at the end that is beyond $upper_limit 2850 die "inversion map (for $prop_name) that extends to" 2851 . " infinity is unimplemented" unless @invlist > 1; 2852 2853 my $bucket; 2854 2855 # A hash key can't be a ref (we are only expecting arrays 2856 # of scalars here), so convert any such to a string that 2857 # will be converted back later (using a vertical tab as 2858 # the separator). 2859 if (ref $invmap[0]) { 2860 $bucket = join "\cK", map { a2n($_) } @{$invmap[0]}; 2861 } 2862 elsif ( $maps_to_code_point 2863 && $invmap[0] =~ $integer_or_float_re) 2864 { 2865 2866 # Do convert to native for maps to single code points. 2867 # There are some properties that have a few outlier 2868 # maps that aren't code points, so the above test 2869 # skips those. 0 is never remapped. 2870 $bucket = $invmap[0] == 0 ? 0 : a2n($invmap[0]); 2871 } else { 2872 $bucket = $invmap[0]; 2873 } 2874 2875 # We now have the bucket that all code points in the range 2876 # map to, though possibly they need to be adjusted. Go 2877 # through the range and put each translated code point in 2878 # it into its bucket. 2879 my $base_map = $invmap[0]; 2880 for my $j ($invlist[0] .. $invlist[1] - 1) { 2881 if ($to_adjust 2882 # The 1st code point doesn't need adjusting 2883 && $j > $invlist[0] 2884 2885 # Skip any non-numeric maps: these are outliers 2886 # that aren't code points. 2887 && $base_map =~ $integer_or_float_re 2888 2889 # 'ne' because the default can be a string 2890 && $base_map ne $map_default) 2891 { 2892 # We adjust, by incrementing each the bucket and 2893 # the map. For code point maps, translate to 2894 # native 2895 $base_map++; 2896 $bucket = ($maps_to_code_point) 2897 ? a2n($base_map) 2898 : $base_map; 2899 } 2900 2901 # Add the native code point to the bucket for the 2902 # current map 2903 push @{$mapped_lists{$bucket}}, a2n($j); 2904 } # End of loop through all code points in the range 2905 2906 # Get ready for the next range 2907 shift @invlist; 2908 shift @invmap; 2909 } # End of loop through all ranges in the map. 2910 2911 # Here, @invlist and @invmap retain all the ranges from the 2912 # originals that start with code points above $upper_limit. 2913 # Each bucket in %mapped_lists contains all the code points 2914 # that map to that bucket. If the bucket is for a map to a 2915 # single code point, the bucket has been converted to native. 2916 # If something else (including multiple code points), no 2917 # conversion is done. 2918 # 2919 # Now we recreate the inversion map into %xlated, but this 2920 # time for the native character set. 2921 my %xlated; 2922 foreach my $bucket (keys %mapped_lists) { 2923 2924 # Sort and convert this bucket to an inversion list. The 2925 # result will be that ranges that start with even-numbered 2926 # indexes will be for code points that map to this bucket; 2927 # odd ones map to some other bucket, and are discarded 2928 # below. 2929 @{$mapped_lists{$bucket}} 2930 = sort{ $a <=> $b} @{$mapped_lists{$bucket}}; 2931 @{$mapped_lists{$bucket}} 2932 = mk_invlist_from_sorted_cp_list( 2933 \@{$mapped_lists{$bucket}}); 2934 2935 # Add each even-numbered range in the bucket to %xlated; 2936 # so that the keys of %xlated become the range start code 2937 # points, and the values are their corresponding maps. 2938 while (@{$mapped_lists{$bucket}}) { 2939 my $range_start = $mapped_lists{$bucket}->[0]; 2940 if ($bucket =~ /\cK/) { 2941 @{$xlated{$range_start}} = split /\cK/, $bucket; 2942 } 2943 else { 2944 # If adjusting, and there is more than one thing 2945 # that maps to the same thing, they must be split 2946 # so that later the adjusting doesn't think the 2947 # subsequent items can go away because of the 2948 # adjusting. 2949 my $range_end = ( $to_adjust 2950 && $bucket != $map_default) 2951 ? $mapped_lists{$bucket}->[1] - 1 2952 : $range_start; 2953 for my $i ($range_start .. $range_end) { 2954 $xlated{$i} = $bucket; 2955 } 2956 } 2957 shift @{$mapped_lists{$bucket}}; # Discard odd ranges 2958 shift @{$mapped_lists{$bucket}}; # Get ready for next 2959 # iteration 2960 } 2961 } # End of loop through all the buckets. 2962 2963 # Here %xlated's keys are the range starts of all the code 2964 # points in the inversion map. Construct an inversion list 2965 # from them. 2966 my @new_invlist = sort { $a <=> $b } keys %xlated; 2967 2968 # If the list is adjusted, we want to munge this list so that 2969 # we only have one entry for where consecutive code points map 2970 # to consecutive values. We just skip the subsequent entries 2971 # where this is the case. 2972 if ($to_adjust) { 2973 my @temp; 2974 for my $i (0 .. @new_invlist - 1) { 2975 next if $i > 0 2976 && $new_invlist[$i-1] + 1 == $new_invlist[$i] 2977 && $xlated{$new_invlist[$i-1]} 2978 =~ $integer_or_float_re 2979 && $xlated{$new_invlist[$i]} 2980 =~ $integer_or_float_re 2981 && $xlated{$new_invlist[$i-1]} + 1 2982 == $xlated{$new_invlist[$i]}; 2983 push @temp, $new_invlist[$i]; 2984 } 2985 @new_invlist = @temp; 2986 } 2987 2988 # The inversion map comes from %xlated's values. We can 2989 # unshift each onto the front of the untouched portion, in 2990 # reverse order of the portion we did process. 2991 foreach my $start (reverse @new_invlist) { 2992 unshift @invmap, $xlated{$start}; 2993 } 2994 2995 # Finally prepend the inversion list we have just constructed 2996 # to the one that contains anything we didn't process. 2997 unshift @invlist, @new_invlist; 2998 } 2999 } 3000 elsif (@invmap) { # inversion maps can't cope with this variable 3001 # being true, even if it could be true 3002 $same_in_all_code_pages = 0; 3003 } 3004 else { 3005 $same_in_all_code_pages = 1; 3006 } 3007 3008 # prop_invmap() returns an extra final entry, which we can now 3009 # discard. 3010 if (@invmap) { 3011 pop @invlist; 3012 pop @invmap; 3013 } 3014 3015 if ($l1_only) { 3016 die "Unimplemented to do a Latin-1 only inversion map" if @invmap; 3017 for my $i (0 .. @invlist - 1 - 1) { 3018 if ($invlist[$i] > 255) { 3019 3020 # In an inversion list, even-numbered elements give the code 3021 # points that begin ranges that match the property; 3022 # odd-numbered give ones that begin ranges that don't match. 3023 # If $i is odd, we are at the first code point above 255 that 3024 # doesn't match, which means the range it is ending does 3025 # match, and crosses the 255/256 boundary. We want to 3026 # include this ending point, so increment $i, so the 3027 # splice below includes it. Conversely, if $i is even, it 3028 # is the first code point above 255 that matches, which 3029 # means there was no matching range that crossed the 3030 # boundary, and we don't want to include this code point, 3031 # so splice before it. 3032 $i++ if $i % 2 != 0; 3033 3034 # Remove everything past this. 3035 splice @invlist, $i; 3036 splice @invmap, $i if @invmap; 3037 last; 3038 } 3039 } 3040 } 3041 elsif ($nonl1_only) { 3042 my $found_nonl1 = 0; 3043 for my $i (0 .. @invlist - 1 - 1) { 3044 next if $invlist[$i] < 256; 3045 3046 # Here, we have the first element in the array that indicates an 3047 # element above Latin1. Get rid of all previous ones. 3048 splice @invlist, 0, $i; 3049 splice @invmap, 0, $i if @invmap; 3050 3051 # If this one's index is not divisible by 2, it means that this 3052 # element is inverting away from being in the list, which means 3053 # all code points from 256 to this one are in this list (or 3054 # map to the default for inversion maps) 3055 if ($i % 2 != 0) { 3056 unshift @invlist, 256; 3057 unshift @invmap, $map_default if @invmap; 3058 } 3059 $found_nonl1 = 1; 3060 last; 3061 } 3062 if (! $found_nonl1) { 3063 warn "No non-Latin1 code points in $prop_name"; 3064 output_invlist($prop_name, []); 3065 last; 3066 } 3067 } 3068 3069 switch_pound_if ($prop_name, 'PERL_IN_REGCOMP_C'); 3070 start_charset_pound_if($charset, 1) unless $same_in_all_code_pages; 3071 3072 output_invlist($prop_name, \@invlist, ($same_in_all_code_pages) 3073 ? $applies_to_all_charsets_text 3074 : $charset); 3075 3076 if (@invmap) { 3077 output_invmap($prop_name, \@invmap, $lookup_prop, $map_format, 3078 $map_default, $extra_enums, $charset); 3079 } 3080 3081 last if $same_in_all_code_pages; 3082 end_charset_pound_if; 3083 } 3084} 3085 3086print $out_fh "\nconst char * const deprecated_property_msgs[] = {\n\t"; 3087print $out_fh join ",\n\t", map { "\"$_\"" } @deprecated_messages; 3088print $out_fh "\n};\n"; 3089 3090switch_pound_if ('binary_invlist_enum', 'PERL_IN_REGCOMP_C'); 3091 3092my @enums = sort values %enums; 3093 3094# Save a copy of these before modification 3095my @invlist_names = map { "${_}_invlist" } @enums; 3096 3097# Post-process the enums for deprecated properties. 3098if (scalar keys %deprecated_tags) { 3099 my $seen_deprecated = 0; 3100 foreach my $enum (@enums) { 3101 if (grep { $_ eq $enum } keys %deprecated_tags) { 3102 3103 # Change the enum name for this deprecated property to a 3104 # munged one to act as a placeholder in the typedef. Then 3105 # make the real name be a #define whose value is such that 3106 # its modulus with the number of enums yields the index into 3107 # the table occupied by the placeholder. And so that dividing 3108 # the #define value by the table length gives an index into 3109 # the table of deprecation messages for the corresponding 3110 # warning. 3111 my $revised_enum = "${enum}_perl_aux"; 3112 if (! $seen_deprecated) { 3113 $seen_deprecated = 1; 3114 print $out_fh "\n"; 3115 } 3116 print $out_fh "#define $enum ($revised_enum + (MAX_UNI_KEYWORD_INDEX * $deprecated_tags{$enum}))\n"; 3117 $enum = $revised_enum; 3118 } 3119 } 3120} 3121 3122print $out_fh "\ntypedef enum {\n\tPERL_BIN_PLACEHOLDER = 0,", 3123 " /* So no real value is zero */\n\t"; 3124print $out_fh join ",\n\t", @enums; 3125print $out_fh "\n"; 3126print $out_fh "} binary_invlist_enum;\n"; 3127print $out_fh "\n#define MAX_UNI_KEYWORD_INDEX $enums[-1]\n"; 3128 3129switch_pound_if ('binary_property_tables', 'PERL_IN_REGCOMP_C'); 3130 3131output_table_header($out_fh, "UV *", "uni_prop_ptrs"); 3132print $out_fh "\tNULL,\t/* Placeholder */\n"; 3133print $out_fh "\t"; 3134print $out_fh join ",\n\t", @invlist_names; 3135print $out_fh "\n"; 3136 3137output_table_trailer(); 3138 3139switch_pound_if ('synonym defines', 'PERL_IN_REGCOMP_C'); 3140 3141print $out_fh join "\n", "\n", 3142 #'# ifdef DOINIT', 3143 #"\n", 3144 "/* Synonyms for perl properties */", 3145 @perl_prop_synonyms, 3146 #"\n", 3147 #"# endif /* DOINIT */", 3148 "\n"; 3149 3150switch_pound_if ('Valid property_values', 'PERL_IN_REGCOMP_C'); 3151 3152# Each entry is a pointer to a table of property values for some property. 3153# (Other properties may share this table. The next two data structures allow 3154# this sharing to be implemented.) 3155my @values_tables = "NULL /* Placeholder so zero index is an error */"; 3156 3157# Keys are all the values of a property, strung together. The value of each 3158# key is its index in @values_tables. This is because many properties have 3159# the same values, and this allows the data to appear just once. 3160my %joined_values; 3161 3162# #defines for indices into @values_tables, so can have synonyms resolved by 3163# the C compiler. 3164my @values_indices; 3165 3166# Go through each property which is specifiable by \p{prop=value}, and create 3167# a hash with the keys being the canonicalized short property names, and the 3168# values for each property being all possible values that it can take on. 3169# Both the full value and its short, canonicalized into lc, sans punctuation 3170# version are included. 3171my %all_values; 3172for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) } 3173 uniques @equals_properties) 3174{ 3175 # Get and canonicalize the short name for this property. 3176 my ($short_name) = prop_aliases($property); 3177 $short_name = lc $short_name; 3178 $short_name =~ s/[ _-]//g; 3179 3180 # Now look at each value this property can take on 3181 foreach my $value (prop_values($short_name)) { 3182 3183 # And for each value, look at each synonym for it 3184 foreach my $alias (prop_value_aliases($short_name, $value)) { 3185 3186 # Add each synonym 3187 push @{$all_values{$short_name}}, $alias; 3188 3189 # As well as its canonicalized name. khw made the decision to not 3190 # support the grandfathered L_ Gc property value 3191 $alias = lc $alias; 3192 $alias =~ s/[ _-]//g unless $alias =~ $numeric_re; 3193 push @{$all_values{$short_name}}, $alias; 3194 } 3195 } 3196} 3197 3198# Also include the old style block names, using the recipe given in 3199# Unicode::UCD 3200foreach my $block (prop_values('block')) { 3201 push @{$all_values{'blk'}}, charblock((prop_invlist("block=$block"))[0]); 3202} 3203 3204# Now create output tables for each property in @equals_properties (the keys 3205# in %all_values) each containing that property's possible values as computed 3206# just above. 3207PROPERTY: 3208for my $property (sort { prop_name_for_cmp($a) cmp prop_name_for_cmp($b) 3209 or $a cmp $b } keys %all_values) 3210{ 3211 @{$all_values{$property}} = uniques(@{$all_values{$property}}); 3212 3213 # String together the values for this property, sorted. This string forms 3214 # a list definition, with each value as an entry in it, indented on a new 3215 # line. The sorting is used to find properties that take on the exact 3216 # same values to share this string. 3217 my $joined = "\t\""; 3218 $joined .= join "\",\n\t\"", 3219 sort { ($a =~ $numeric_re && $b =~ $numeric_re) 3220 ? eval $a <=> eval $b 3221 : prop_name_for_cmp($a) cmp prop_name_for_cmp($b) 3222 or $a cmp $b 3223 } @{$all_values{$property}}; 3224 # And add a trailing marker 3225 $joined .= "\",\n\tNULL\n"; 3226 3227 my $table_name = $table_name_prefix . $property . "_values"; 3228 my $index_name = "${table_name}_index"; 3229 3230 # Add a rule for the parser that is just an empty value. It will need to 3231 # know to look up empty things in the prop_value_ptrs[] table. 3232 3233 $keywords{"$property="} = $index_name; 3234 if (exists $prop_name_aliases{$property}) { 3235 foreach my $alias (@{$prop_name_aliases{$property}}) { 3236 $keywords{"$alias="} = $index_name; 3237 } 3238 } 3239 3240 # Also create rules for the synonyms of this property to point to the same 3241 # thing 3242 3243 # If this property's values are the same as one we've already computed, 3244 # use that instead of creating a duplicate. But we add a #define to point 3245 # to the proper one. 3246 if (exists $joined_values{$joined}) { 3247 push @values_indices, "#define $index_name $joined_values{$joined}\n"; 3248 next PROPERTY; 3249 } 3250 3251 # And this property, now known to have unique values from any other seen 3252 # so far is about to be pushed onto @values_tables. Its index is the 3253 # current count. 3254 push @values_indices, "#define $index_name " 3255 . scalar @values_tables . "\n"; 3256 $joined_values{$joined} = $index_name; 3257 push @values_tables, $table_name; 3258 3259 # Create the table for this set of values. 3260 output_table_header($out_fh, "char *", $table_name); 3261 print $out_fh $joined; 3262 output_table_trailer(); 3263} # End of loop through the properties, and their values 3264 3265# We have completely determined the table of the unique property values 3266output_table_header($out_fh, "char * const *", 3267 "${table_name_prefix}prop_value_ptrs"); 3268print $out_fh join ",\n", @values_tables; 3269print $out_fh "\n"; 3270output_table_trailer(); 3271 3272# And the #defines for the indices in it 3273print $out_fh "\n\n", join "", @values_indices; 3274 3275switch_pound_if('Boundary_pair_tables', 'PERL_IN_REGEXEC_C'); 3276 3277output_GCB_table(); 3278output_LB_table(); 3279output_WB_table(); 3280 3281end_file_pound_if; 3282 3283print $out_fh <<"EOF"; 3284 3285/* More than one code point may have the same code point as their fold. This 3286 * gives the maximum number in the current Unicode release. (The folded-to 3287 * code point is not included in this count.) For example, both 'S' and 3288 * \\x{17F} fold to 's', so the number for that fold is 2. Another way to 3289 * look at it is the maximum length of all the IVCF_AUX_TABLE's */ 3290#define MAX_FOLD_FROMS $max_fold_froms 3291EOF 3292 3293my $sources_list = "lib/unicore/mktables.lst"; 3294my @sources = qw(regen/mk_invlists.pl 3295 lib/unicore/mktables 3296 lib/Unicode/UCD.pm 3297 regen/charset_translations.pl 3298 regen/mk_PL_charclass.pl 3299 ); 3300{ 3301 # Depend on mktables’ own sources. It’s a shorter list of files than 3302 # those that Unicode::UCD uses. 3303 if (! open my $mktables_list, '<', $sources_list) { 3304 3305 # This should force a rebuild once $sources_list exists 3306 push @sources, $sources_list; 3307 } 3308 else { 3309 while(<$mktables_list>) { 3310 last if /===/; 3311 chomp; 3312 push @sources, "lib/unicore/$_" if /^[^#]/; 3313 } 3314 } 3315} 3316 3317read_only_bottom_close_and_rename($out_fh, \@sources); 3318 3319my %name_to_index; 3320for my $i (0 .. @enums - 1) { 3321 my $loose_name = $enums[$i] =~ s/^$table_name_prefix//r; 3322 $loose_name = lc $loose_name; 3323 $loose_name =~ s/__/=/; 3324 $loose_name =~ s/_dot_/./; 3325 $loose_name =~ s/_slash_/\//g; 3326 $name_to_index{$loose_name} = $i + 1; 3327} 3328# unsanitize, exclude &, maybe add these before sanitize 3329for my $i (0 .. @perl_prop_synonyms - 1) { 3330 my $loose_name_pair = $perl_prop_synonyms[$i] =~ s/#\s*define\s*//r; 3331 $loose_name_pair =~ s/\b$table_name_prefix//g; 3332 $loose_name_pair = lc $loose_name_pair; 3333 $loose_name_pair =~ s/__/=/g; 3334 $loose_name_pair =~ s/_dot_/./g; 3335 $loose_name_pair =~ s/_slash_/\//g; 3336 my ($synonym, $primary) = split / +/, $loose_name_pair; 3337 $name_to_index{$synonym} = $name_to_index{$primary}; 3338} 3339 3340my $uni_pl = open_new('lib/unicore/uni_keywords.pl', '>', 3341 {style => '*', by => 'regen/mk_invlists.pl', 3342 from => "Unicode::UCD"}); 3343{ 3344 print $uni_pl "\%Unicode::UCD::uni_prop_ptrs_indices = (\n"; 3345 for my $name (sort keys %name_to_index) { 3346 print $uni_pl " '$name' => $name_to_index{$name},\n"; 3347 } 3348 print $uni_pl ");\n\n1;\n"; 3349} 3350 3351read_only_bottom_close_and_rename($uni_pl, \@sources); 3352 3353if (my $file= $ENV{DUMP_KEYWORDS_FILE}) { 3354 require Data::Dumper; 3355 3356 open my $ofh, ">", $file 3357 or die "Failed to open DUMP_KEYWORDS_FILE '$file' for write: $!"; 3358 print $ofh Data::Dumper->new([\%keywords],['*keywords']) 3359 ->Sortkeys(1)->Useqq(1)->Dump(); 3360 close $ofh; 3361 print "Wrote keywords to '$file'.\n"; 3362} 3363 3364my $keywords_fh = open_new('uni_keywords.h', '>', 3365 {style => '*', by => 'regen/mk_invlists.pl', 3366 from => "mph.pl"}); 3367 3368print $keywords_fh "\n#if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD)\n\n"; 3369 3370my $mph= MinimalPerfectHash->new( 3371 source_hash => \%keywords, 3372 match_name => "match_uniprop", 3373 simple_split => $ENV{SIMPLE_SPLIT} // 0, 3374 randomize_squeeze => $ENV{RANDOMIZE_SQUEEZE} // 1, 3375 max_same_in_squeeze => $ENV{MAX_SAME} // 5, 3376 srand_seed => (lc($ENV{SRAND_SEED}//"") eq "auto") 3377 ? undef 3378 : $ENV{SRAND_SEED} // 1785235451, # I let perl pick a number 3379); 3380$mph->make_mph_with_split_keys(); 3381print $keywords_fh $mph->make_algo(); 3382 3383print $keywords_fh "\n#endif /* #if defined(PERL_CORE) || defined(PERL_EXT_RE_BUILD) */\n"; 3384 3385push @sources, 'regen/mph.pl'; 3386read_only_bottom_close_and_rename($keywords_fh, \@sources); 3387