xref: /openbsd/gnu/usr.bin/perl/time64.c (revision b39c5158)
1 /*
2 
3 Copyright (c) 2007-2008  Michael G Schwern
4 
5 This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6 
7 The MIT License:
8 
9 Permission is hereby granted, free of charge, to any person obtaining a copy
10 of this software and associated documentation files (the "Software"), to deal
11 in the Software without restriction, including without limitation the rights
12 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 copies of the Software, and to permit persons to whom the Software is
14 furnished to do so, subject to the following conditions:
15 
16 The above copyright notice and this permission notice shall be included in
17 all copies or substantial portions of the Software.
18 
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 THE SOFTWARE.
26 
27 */
28 
29 /*
30 
31 Programmers who have available to them 64-bit time values as a 'long
32 long' type can use localtime64_r() and gmtime64_r() which correctly
33 converts the time even on 32-bit systems. Whether you have 64-bit time
34 values will depend on the operating system.
35 
36 S_localtime64_r() is a 64-bit equivalent of localtime_r().
37 
38 S_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39 
40 */
41 
42 #include "time64.h"
43 
44 static const int days_in_month[2][12] = {
45     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46     {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47 };
48 
49 static const int julian_days_by_month[2][12] = {
50     {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51     {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52 };
53 
54 static const int length_of_year[2] = { 365, 366 };
55 
56 /* Number of days in a 400 year Gregorian cycle */
57 static const Year years_in_gregorian_cycle = 400;
58 static const int days_in_gregorian_cycle  = (365 * 400) + 100 - 4 + 1;
59 
60 /* 28 year calendar cycle between 2010 and 2037 */
61 #define SOLAR_CYCLE_LENGTH 28
62 static const int safe_years[SOLAR_CYCLE_LENGTH] = {
63     2016, 2017, 2018, 2019,
64     2020, 2021, 2022, 2023,
65     2024, 2025, 2026, 2027,
66     2028, 2029, 2030, 2031,
67     2032, 2033, 2034, 2035,
68     2036, 2037, 2010, 2011,
69     2012, 2013, 2014, 2015
70 };
71 
72 static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
73     5, 0, 1, 2,     /* 0       2016 - 2019 */
74     3, 5, 6, 0,     /* 4  */
75     1, 3, 4, 5,     /* 8  */
76     6, 1, 2, 3,     /* 12 */
77     4, 6, 0, 1,     /* 16 */
78     2, 4, 5, 6,     /* 20      2036, 2037, 2010, 2011 */
79     0, 2, 3, 4      /* 24      2012, 2013, 2014, 2015 */
80 };
81 
82 /* Let's assume people are going to be looking for dates in the future.
83    Let's provide some cheats so you can skip ahead.
84    This has a 4x speed boost when near 2008.
85 */
86 /* Number of days since epoch on Jan 1st, 2008 GMT */
87 #define CHEAT_DAYS  (1199145600 / 24 / 60 / 60)
88 #define CHEAT_YEARS 108
89 
90 #define IS_LEAP(n)	((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91 #define WRAP(a,b,m)	((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a))
92 
93 #ifdef USE_SYSTEM_LOCALTIME
94 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \
95     (a) <= SYSTEM_LOCALTIME_MAX &&              \
96     (a) >= SYSTEM_LOCALTIME_MIN                 \
97 )
98 #else
99 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0)
100 #endif
101 
102 #ifdef USE_SYSTEM_GMTIME
103 #    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \
104     (a) <= SYSTEM_GMTIME_MAX    &&              \
105     (a) >= SYSTEM_GMTIME_MIN                    \
106 )
107 #else
108 #    define SHOULD_USE_SYSTEM_GMTIME(a)         (0)
109 #endif
110 
111 /* Multi varadic macros are a C99 thing, alas */
112 #ifdef TIME_64_DEBUG
113 #    define TIME64_TRACE(format) (fprintf(stderr, format))
114 #    define TIME64_TRACE1(format, var1)    (fprintf(stderr, format, var1))
115 #    define TIME64_TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2))
116 #    define TIME64_TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3))
117 #else
118 #    define TIME64_TRACE(format) ((void)0)
119 #    define TIME64_TRACE1(format, var1) ((void)0)
120 #    define TIME64_TRACE2(format, var1, var2) ((void)0)
121 #    define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
122 #endif
123 
124 static int S_is_exception_century(Year year)
125 {
126     int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
127     TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
128 
129     return(is_exception);
130 }
131 
132 
133 static Time64_T S_timegm64(struct TM *date) {
134     int      days    = 0;
135     Time64_T seconds = 0;
136     Year     year;
137 
138     if( date->tm_year > 70 ) {
139         year = 70;
140         while( year < date->tm_year ) {
141             days += length_of_year[IS_LEAP(year)];
142             year++;
143         }
144     }
145     else if ( date->tm_year < 70 ) {
146         year = 69;
147         do {
148             days -= length_of_year[IS_LEAP(year)];
149             year--;
150         } while( year >= date->tm_year );
151     }
152 
153     days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
154     days += date->tm_mday - 1;
155 
156     /* Avoid overflowing the days integer */
157     seconds = days;
158     seconds = seconds * 60 * 60 * 24;
159 
160     seconds += date->tm_hour * 60 * 60;
161     seconds += date->tm_min * 60;
162     seconds += date->tm_sec;
163 
164     return(seconds);
165 }
166 
167 
168 #ifdef DEBUGGING
169 static int S_check_tm(struct TM *tm)
170 {
171     /* Don't forget leap seconds */
172     assert(tm->tm_sec >= 0);
173     assert(tm->tm_sec <= 61);
174 
175     assert(tm->tm_min >= 0);
176     assert(tm->tm_min <= 59);
177 
178     assert(tm->tm_hour >= 0);
179     assert(tm->tm_hour <= 23);
180 
181     assert(tm->tm_mday >= 1);
182     assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
183 
184     assert(tm->tm_mon  >= 0);
185     assert(tm->tm_mon  <= 11);
186 
187     assert(tm->tm_wday >= 0);
188     assert(tm->tm_wday <= 6);
189 
190     assert(tm->tm_yday >= 0);
191     assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
192 
193 #ifdef HAS_TM_TM_GMTOFF
194     assert(tm->tm_gmtoff >= -24 * 60 * 60);
195     assert(tm->tm_gmtoff <=  24 * 60 * 60);
196 #endif
197 
198     return 1;
199 }
200 #endif
201 
202 
203 /* The exceptional centuries without leap years cause the cycle to
204    shift by 16
205 */
206 static Year S_cycle_offset(Year year)
207 {
208     const Year start_year = 2000;
209     Year year_diff  = year - start_year;
210     Year exceptions;
211 
212     if( year > start_year )
213         year_diff--;
214 
215     exceptions  = year_diff / 100;
216     exceptions -= year_diff / 400;
217 
218     TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
219           year, exceptions, year_diff);
220 
221     return exceptions * 16;
222 }
223 
224 /* For a given year after 2038, pick the latest possible matching
225    year in the 28 year calendar cycle.
226 
227    A matching year...
228    1) Starts on the same day of the week.
229    2) Has the same leap year status.
230 
231    This is so the calendars match up.
232 
233    Also the previous year must match.  When doing Jan 1st you might
234    wind up on Dec 31st the previous year when doing a -UTC time zone.
235 
236    Finally, the next year must have the same start day of week.  This
237    is for Dec 31st with a +UTC time zone.
238    It doesn't need the same leap year status since we only care about
239    January 1st.
240 */
241 static int S_safe_year(Year year)
242 {
243     int safe_year;
244     Year year_cycle = year + S_cycle_offset(year);
245 
246     /* Change non-leap xx00 years to an equivalent */
247     if( S_is_exception_century(year) )
248         year_cycle += 11;
249 
250     /* Also xx01 years, since the previous year will be wrong */
251     if( S_is_exception_century(year - 1) )
252         year_cycle += 17;
253 
254     year_cycle %= SOLAR_CYCLE_LENGTH;
255     if( year_cycle < 0 )
256         year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
257 
258     assert( year_cycle >= 0 );
259     assert( year_cycle < SOLAR_CYCLE_LENGTH );
260     safe_year = safe_years[year_cycle];
261 
262     assert(safe_year <= 2037 && safe_year >= 2010);
263 
264     TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
265           year, year_cycle, safe_year);
266 
267     return safe_year;
268 }
269 
270 
271 static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
272     if( src == NULL ) {
273         memset(dest, 0, sizeof(*dest));
274     }
275     else {
276 #       ifdef USE_TM64
277             dest->tm_sec        = src->tm_sec;
278             dest->tm_min        = src->tm_min;
279             dest->tm_hour       = src->tm_hour;
280             dest->tm_mday       = src->tm_mday;
281             dest->tm_mon        = src->tm_mon;
282             dest->tm_year       = (Year)src->tm_year;
283             dest->tm_wday       = src->tm_wday;
284             dest->tm_yday       = src->tm_yday;
285             dest->tm_isdst      = src->tm_isdst;
286 
287 #           ifdef HAS_TM_TM_GMTOFF
288                 dest->tm_gmtoff  = src->tm_gmtoff;
289 #           endif
290 
291 #           ifdef HAS_TM_TM_ZONE
292                 dest->tm_zone  = src->tm_zone;
293 #           endif
294 
295 #       else
296             /* They're the same type */
297             memcpy(dest, src, sizeof(*dest));
298 #       endif
299     }
300 }
301 
302 
303 #ifndef HAS_LOCALTIME_R
304 /* Simulate localtime_r() to the best of our ability */
305 static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
306     dTHX;    /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
307     const struct tm *static_result = localtime(clock);
308 
309     assert(result != NULL);
310 
311     if( static_result == NULL ) {
312         memset(result, 0, sizeof(*result));
313         return NULL;
314     }
315     else {
316         memcpy(result, static_result, sizeof(*result));
317         return result;
318     }
319 }
320 #endif
321 
322 #ifndef HAS_GMTIME_R
323 /* Simulate gmtime_r() to the best of our ability */
324 static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
325     dTHX;    /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
326     const struct tm *static_result = gmtime(clock);
327 
328     assert(result != NULL);
329 
330     if( static_result == NULL ) {
331         memset(result, 0, sizeof(*result));
332         return NULL;
333     }
334     else {
335         memcpy(result, static_result, sizeof(*result));
336         return result;
337     }
338 }
339 #endif
340 
341 static struct TM *S_gmtime64_r (const Time64_T *in_time, struct TM *p)
342 {
343     int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
344     Time64_T v_tm_tday;
345     int leap;
346     Time64_T m;
347     Time64_T time = *in_time;
348     Year year = 70;
349     int cycles = 0;
350 
351     assert(p != NULL);
352 
353     /* Use the system gmtime() if time_t is small enough */
354     if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
355         time_t safe_time = (time_t)*in_time;
356         struct tm safe_date;
357         GMTIME_R(&safe_time, &safe_date);
358 
359         S_copy_little_tm_to_big_TM(&safe_date, p);
360         assert(S_check_tm(p));
361 
362         return p;
363     }
364 
365 #ifdef HAS_TM_TM_GMTOFF
366     p->tm_gmtoff = 0;
367 #endif
368     p->tm_isdst  = 0;
369 
370 #ifdef HAS_TM_TM_ZONE
371     p->tm_zone   = "UTC";
372 #endif
373 
374     v_tm_sec  = (int)fmod(time, 60.0);
375     time      = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
376     v_tm_min  = (int)fmod(time, 60.0);
377     time      = time >= 0 ? floor(time / 60.0) : ceil(time / 60.0);
378     v_tm_hour = (int)fmod(time, 24.0);
379     time      = time >= 0 ? floor(time / 24.0) : ceil(time / 24.0);
380     v_tm_tday = time;
381 
382     WRAP (v_tm_sec, v_tm_min, 60);
383     WRAP (v_tm_min, v_tm_hour, 60);
384     WRAP (v_tm_hour, v_tm_tday, 24);
385 
386     v_tm_wday = (int)fmod((v_tm_tday + 4.0), 7.0);
387     if (v_tm_wday < 0)
388         v_tm_wday += 7;
389     m = v_tm_tday;
390 
391     if (m >= CHEAT_DAYS) {
392         year = CHEAT_YEARS;
393         m -= CHEAT_DAYS;
394     }
395 
396     if (m >= 0) {
397         /* Gregorian cycles, this is huge optimization for distant times */
398         cycles = (int)floor(m / (Time64_T) days_in_gregorian_cycle);
399         if( cycles ) {
400             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
401             year += (cycles * years_in_gregorian_cycle);
402         }
403 
404         /* Years */
405         leap = IS_LEAP (year);
406         while (m >= (Time64_T) length_of_year[leap]) {
407             m -= (Time64_T) length_of_year[leap];
408             year++;
409             leap = IS_LEAP (year);
410         }
411 
412         /* Months */
413         v_tm_mon = 0;
414         while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
415             m -= (Time64_T) days_in_month[leap][v_tm_mon];
416             v_tm_mon++;
417         }
418     } else {
419         year--;
420 
421         /* Gregorian cycles */
422         cycles = (int)ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
423         if( cycles ) {
424             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
425             year += (cycles * years_in_gregorian_cycle);
426         }
427 
428         /* Years */
429         leap = IS_LEAP (year);
430         while (m < (Time64_T) -length_of_year[leap]) {
431             m += (Time64_T) length_of_year[leap];
432             year--;
433             leap = IS_LEAP (year);
434         }
435 
436         /* Months */
437         v_tm_mon = 11;
438         while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
439             m += (Time64_T) days_in_month[leap][v_tm_mon];
440             v_tm_mon--;
441         }
442         m += (Time64_T) days_in_month[leap][v_tm_mon];
443     }
444 
445     p->tm_year = year;
446     if( p->tm_year != year ) {
447 #ifdef EOVERFLOW
448         errno = EOVERFLOW;
449 #endif
450         return NULL;
451     }
452 
453     /* At this point m is less than a year so casting to an int is safe */
454     p->tm_mday = (int) m + 1;
455     p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
456     p->tm_sec  = v_tm_sec;
457     p->tm_min  = v_tm_min;
458     p->tm_hour = v_tm_hour;
459     p->tm_mon  = v_tm_mon;
460     p->tm_wday = v_tm_wday;
461 
462     assert(S_check_tm(p));
463 
464     return p;
465 }
466 
467 
468 static struct TM *S_localtime64_r (const Time64_T *time, struct TM *local_tm)
469 {
470     time_t safe_time;
471     struct tm safe_date;
472     struct TM gm_tm;
473     Year orig_year;
474     int month_diff;
475 
476     assert(local_tm != NULL);
477 
478     /* Use the system localtime() if time_t is small enough */
479     if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
480         safe_time = (time_t)*time;
481 
482         TIME64_TRACE1("Using system localtime for %lld\n", *time);
483 
484         LOCALTIME_R(&safe_time, &safe_date);
485 
486         S_copy_little_tm_to_big_TM(&safe_date, local_tm);
487         assert(S_check_tm(local_tm));
488 
489         return local_tm;
490     }
491 
492     if( S_gmtime64_r(time, &gm_tm) == NULL ) {
493         TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
494         return NULL;
495     }
496 
497     orig_year = gm_tm.tm_year;
498 
499     if (gm_tm.tm_year > (2037 - 1900) ||
500         gm_tm.tm_year < (1970 - 1900)
501        )
502     {
503         TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
504         gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
505     }
506 
507     safe_time = (time_t)S_timegm64(&gm_tm);
508     if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
509         TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
510         return NULL;
511     }
512 
513     S_copy_little_tm_to_big_TM(&safe_date, local_tm);
514 
515     local_tm->tm_year = orig_year;
516     if( local_tm->tm_year != orig_year ) {
517         TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
518               (Year)local_tm->tm_year, (Year)orig_year);
519 
520 #ifdef EOVERFLOW
521         errno = EOVERFLOW;
522 #endif
523         return NULL;
524     }
525 
526 
527     month_diff = local_tm->tm_mon - gm_tm.tm_mon;
528 
529     /*  When localtime is Dec 31st previous year and
530         gmtime is Jan 1st next year.
531     */
532     if( month_diff == 11 ) {
533         local_tm->tm_year--;
534     }
535 
536     /*  When localtime is Jan 1st, next year and
537         gmtime is Dec 31st, previous year.
538     */
539     if( month_diff == -11 ) {
540         local_tm->tm_year++;
541     }
542 
543     /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
544        in a non-leap xx00.  There is one point in the cycle
545        we can't account for which the safe xx00 year is a leap
546        year.  So we need to correct for Dec 31st comming out as
547        the 366th day of the year.
548     */
549     if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
550         local_tm->tm_yday--;
551 
552     assert(S_check_tm(local_tm));
553 
554     return local_tm;
555 }
556