xref: /openbsd/gnu/usr.bin/perl/time64.c (revision b8851fcc)
1 /*
2 
3 Copyright (c) 2007-2008  Michael G Schwern
4 
5 This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6 
7 The MIT License:
8 
9 Permission is hereby granted, free of charge, to any person obtaining a copy
10 of this software and associated documentation files (the "Software"), to deal
11 in the Software without restriction, including without limitation the rights
12 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 copies of the Software, and to permit persons to whom the Software is
14 furnished to do so, subject to the following conditions:
15 
16 The above copyright notice and this permission notice shall be included in
17 all copies or substantial portions of the Software.
18 
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 THE SOFTWARE.
26 
27 */
28 
29 /*
30 
31 Programmers who have available to them 64-bit time values as a 'long
32 long' type can use localtime64_r() and gmtime64_r() which correctly
33 converts the time even on 32-bit systems. Whether you have 64-bit time
34 values will depend on the operating system.
35 
36 Perl_localtime64_r() is a 64-bit equivalent of localtime_r().
37 
38 Perl_gmtime64_r() is a 64-bit equivalent of gmtime_r().
39 
40 */
41 
42 #include "EXTERN.h"
43 #define PERL_IN_TIME64_C
44 #include "perl.h"
45 #include "time64.h"
46 
47 static const char days_in_month[2][12] = {
48     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
49     {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
50 };
51 
52 static const short julian_days_by_month[2][12] = {
53     {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
54     {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
55 };
56 
57 static const short length_of_year[2] = { 365, 366 };
58 
59 /* Number of days in a 400 year Gregorian cycle */
60 static const Year years_in_gregorian_cycle = 400;
61 static const int days_in_gregorian_cycle  = (365 * 400) + 100 - 4 + 1;
62 
63 /* 28 year calendar cycle between 2010 and 2037 */
64 #define SOLAR_CYCLE_LENGTH 28
65 static const short safe_years[SOLAR_CYCLE_LENGTH] = {
66     2016, 2017, 2018, 2019,
67     2020, 2021, 2022, 2023,
68     2024, 2025, 2026, 2027,
69     2028, 2029, 2030, 2031,
70     2032, 2033, 2034, 2035,
71     2036, 2037, 2010, 2011,
72     2012, 2013, 2014, 2015
73 };
74 
75 /* Let's assume people are going to be looking for dates in the future.
76    Let's provide some cheats so you can skip ahead.
77    This has a 4x speed boost when near 2008.
78 */
79 /* Number of days since epoch on Jan 1st, 2008 GMT */
80 #define CHEAT_DAYS  (1199145600 / 24 / 60 / 60)
81 #define CHEAT_YEARS 108
82 
83 #define IS_LEAP(n)	((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
84 #undef WRAP /* some <termios.h> define this */
85 #define WRAP(a,b,m)	((a) = ((a) <  0  ) ? ((b)--, (a) + (m)) : (a))
86 
87 #ifdef USE_SYSTEM_LOCALTIME
88 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)  (       \
89     (a) <= SYSTEM_LOCALTIME_MAX &&              \
90     (a) >= SYSTEM_LOCALTIME_MIN                 \
91 )
92 #else
93 #    define SHOULD_USE_SYSTEM_LOCALTIME(a)      (0)
94 #endif
95 
96 #ifdef USE_SYSTEM_GMTIME
97 #    define SHOULD_USE_SYSTEM_GMTIME(a)     (       \
98     (a) <= SYSTEM_GMTIME_MAX    &&              \
99     (a) >= SYSTEM_GMTIME_MIN                    \
100 )
101 #else
102 #    define SHOULD_USE_SYSTEM_GMTIME(a)         (0)
103 #endif
104 
105 /* Multi varadic macros are a C99 thing, alas */
106 #ifdef TIME_64_DEBUG
107 #    define TIME64_TRACE(format) (fprintf(stderr, format))
108 #    define TIME64_TRACE1(format, var1)    (fprintf(stderr, format, var1))
109 #    define TIME64_TRACE2(format, var1, var2)    (fprintf(stderr, format, var1, var2))
110 #    define TIME64_TRACE3(format, var1, var2, var3)    (fprintf(stderr, format, var1, var2, var3))
111 #else
112 #    define TIME64_TRACE(format) ((void)0)
113 #    define TIME64_TRACE1(format, var1) ((void)0)
114 #    define TIME64_TRACE2(format, var1, var2) ((void)0)
115 #    define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
116 #endif
117 
118 static int S_is_exception_century(Year year)
119 {
120     int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
121     TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
122 
123     return(is_exception);
124 }
125 
126 
127 static Time64_T S_timegm64(struct TM *date) {
128     int      days    = 0;
129     Time64_T seconds = 0;
130     Year     year;
131 
132     if( date->tm_year > 70 ) {
133         year = 70;
134         while( year < date->tm_year ) {
135             days += length_of_year[IS_LEAP(year)];
136             year++;
137         }
138     }
139     else if ( date->tm_year < 70 ) {
140         year = 69;
141         do {
142             days -= length_of_year[IS_LEAP(year)];
143             year--;
144         } while( year >= date->tm_year );
145     }
146 
147     days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
148     days += date->tm_mday - 1;
149 
150     /* Avoid overflowing the days integer */
151     seconds = days;
152     seconds = seconds * 60 * 60 * 24;
153 
154     seconds += date->tm_hour * 60 * 60;
155     seconds += date->tm_min * 60;
156     seconds += date->tm_sec;
157 
158     return(seconds);
159 }
160 
161 
162 #ifdef DEBUGGING
163 static int S_check_tm(struct TM *tm)
164 {
165     /* Don't forget leap seconds */
166     assert(tm->tm_sec >= 0);
167     assert(tm->tm_sec <= 61);
168 
169     assert(tm->tm_min >= 0);
170     assert(tm->tm_min <= 59);
171 
172     assert(tm->tm_hour >= 0);
173     assert(tm->tm_hour <= 23);
174 
175     assert(tm->tm_mday >= 1);
176     assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
177 
178     assert(tm->tm_mon  >= 0);
179     assert(tm->tm_mon  <= 11);
180 
181     assert(tm->tm_wday >= 0);
182     assert(tm->tm_wday <= 6);
183 
184     assert(tm->tm_yday >= 0);
185     assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
186 
187 #ifdef HAS_TM_TM_GMTOFF
188     assert(tm->tm_gmtoff >= -24 * 60 * 60);
189     assert(tm->tm_gmtoff <=  24 * 60 * 60);
190 #endif
191 
192     return 1;
193 }
194 #endif
195 
196 
197 /* The exceptional centuries without leap years cause the cycle to
198    shift by 16
199 */
200 static Year S_cycle_offset(Year year)
201 {
202     const Year start_year = 2000;
203     Year year_diff  = year - start_year;
204     Year exceptions;
205 
206     if( year > start_year )
207         year_diff--;
208 
209     exceptions  = year_diff / 100;
210     exceptions -= year_diff / 400;
211 
212     TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
213           year, exceptions, year_diff);
214 
215     return exceptions * 16;
216 }
217 
218 /* For a given year after 2038, pick the latest possible matching
219    year in the 28 year calendar cycle.
220 
221    A matching year...
222    1) Starts on the same day of the week.
223    2) Has the same leap year status.
224 
225    This is so the calendars match up.
226 
227    Also the previous year must match.  When doing Jan 1st you might
228    wind up on Dec 31st the previous year when doing a -UTC time zone.
229 
230    Finally, the next year must have the same start day of week.  This
231    is for Dec 31st with a +UTC time zone.
232    It doesn't need the same leap year status since we only care about
233    January 1st.
234 */
235 static int S_safe_year(Year year)
236 {
237     int safe_year;
238     Year year_cycle = year + S_cycle_offset(year);
239 
240     /* Change non-leap xx00 years to an equivalent */
241     if( S_is_exception_century(year) )
242         year_cycle += 11;
243 
244     /* Also xx01 years, since the previous year will be wrong */
245     if( S_is_exception_century(year - 1) )
246         year_cycle += 17;
247 
248     year_cycle %= SOLAR_CYCLE_LENGTH;
249     if( year_cycle < 0 )
250         year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
251 
252     assert( year_cycle >= 0 );
253     assert( year_cycle < SOLAR_CYCLE_LENGTH );
254     safe_year = safe_years[year_cycle];
255 
256     assert(safe_year <= 2037 && safe_year >= 2010);
257 
258     TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
259           year, year_cycle, safe_year);
260 
261     return safe_year;
262 }
263 
264 
265 static void S_copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
266     assert(src);
267     assert(dest);
268 #ifdef USE_TM64
269     dest->tm_sec        = src->tm_sec;
270     dest->tm_min        = src->tm_min;
271     dest->tm_hour       = src->tm_hour;
272     dest->tm_mday       = src->tm_mday;
273     dest->tm_mon        = src->tm_mon;
274     dest->tm_year       = (Year)src->tm_year;
275     dest->tm_wday       = src->tm_wday;
276     dest->tm_yday       = src->tm_yday;
277     dest->tm_isdst      = src->tm_isdst;
278 
279 #  ifdef HAS_TM_TM_GMTOFF
280     dest->tm_gmtoff     = src->tm_gmtoff;
281 #  endif
282 
283 #  ifdef HAS_TM_TM_ZONE
284     dest->tm_zone       = src->tm_zone;
285 #  endif
286 
287 #else
288     /* They're the same type */
289     memcpy(dest, src, sizeof(*dest));
290 #endif
291 }
292 
293 
294 #ifndef HAS_LOCALTIME_R
295 /* Simulate localtime_r() to the best of our ability */
296 static struct tm * S_localtime_r(const time_t *clock, struct tm *result) {
297 #ifdef __VMS
298     dTHX;    /* the following is defined as Perl_my_localtime(aTHX_ ...) */
299 #endif
300     const struct tm *static_result = localtime(clock);
301 
302     assert(result != NULL);
303 
304     if( static_result == NULL ) {
305         memset(result, 0, sizeof(*result));
306         return NULL;
307     }
308     else {
309         memcpy(result, static_result, sizeof(*result));
310         return result;
311     }
312 }
313 #endif
314 
315 #ifndef HAS_GMTIME_R
316 /* Simulate gmtime_r() to the best of our ability */
317 static struct tm * S_gmtime_r(const time_t *clock, struct tm *result) {
318 #ifdef __VMS
319     dTHX;    /* the following is defined as Perl_my_localtime(aTHX_ ...) */
320 #endif
321     const struct tm *static_result = gmtime(clock);
322 
323     assert(result != NULL);
324 
325     if( static_result == NULL ) {
326         memset(result, 0, sizeof(*result));
327         return NULL;
328     }
329     else {
330         memcpy(result, static_result, sizeof(*result));
331         return result;
332     }
333 }
334 #endif
335 
336 struct TM *Perl_gmtime64_r (const Time64_T *in_time, struct TM *p)
337 {
338     int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
339     Time64_T v_tm_tday;
340     int leap;
341     Time64_T m;
342     Time64_T time = *in_time;
343     Year year = 70;
344     int cycles = 0;
345 
346     assert(p != NULL);
347 
348     /* Use the system gmtime() if time_t is small enough */
349     if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
350         time_t safe_time = (time_t)*in_time;
351         struct tm safe_date;
352         GMTIME_R(&safe_time, &safe_date);
353 
354         S_copy_little_tm_to_big_TM(&safe_date, p);
355         assert(S_check_tm(p));
356 
357         return p;
358     }
359 
360 #ifdef HAS_TM_TM_GMTOFF
361     p->tm_gmtoff = 0;
362 #endif
363     p->tm_isdst  = 0;
364 
365 #ifdef HAS_TM_TM_ZONE
366     p->tm_zone   = (char *)"UTC";
367 #endif
368 
369     v_tm_sec  = (int)Perl_fmod(time, 60.0);
370     time      = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
371     v_tm_min  = (int)Perl_fmod(time, 60.0);
372     time      = time >= 0 ? Perl_floor(time / 60.0) : Perl_ceil(time / 60.0);
373     v_tm_hour = (int)Perl_fmod(time, 24.0);
374     time      = time >= 0 ? Perl_floor(time / 24.0) : Perl_ceil(time / 24.0);
375     v_tm_tday = time;
376 
377     WRAP (v_tm_sec, v_tm_min, 60);
378     WRAP (v_tm_min, v_tm_hour, 60);
379     WRAP (v_tm_hour, v_tm_tday, 24);
380 
381     v_tm_wday = (int)Perl_fmod((v_tm_tday + 4.0), 7.0);
382     if (v_tm_wday < 0)
383         v_tm_wday += 7;
384     m = v_tm_tday;
385 
386     if (m >= CHEAT_DAYS) {
387         year = CHEAT_YEARS;
388         m -= CHEAT_DAYS;
389     }
390 
391     if (m >= 0) {
392         /* Gregorian cycles, this is huge optimization for distant times */
393         cycles = (int)Perl_floor(m / (Time64_T) days_in_gregorian_cycle);
394         if( cycles ) {
395             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
396             year += (cycles * years_in_gregorian_cycle);
397         }
398 
399         /* Years */
400         leap = IS_LEAP (year);
401         while (m >= (Time64_T) length_of_year[leap]) {
402             m -= (Time64_T) length_of_year[leap];
403             year++;
404             leap = IS_LEAP (year);
405         }
406 
407         /* Months */
408         v_tm_mon = 0;
409         while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
410             m -= (Time64_T) days_in_month[leap][v_tm_mon];
411             v_tm_mon++;
412         }
413     } else {
414         year--;
415 
416         /* Gregorian cycles */
417         cycles = (int)Perl_ceil((m / (Time64_T) days_in_gregorian_cycle) + 1);
418         if( cycles ) {
419             m -= (cycles * (Time64_T) days_in_gregorian_cycle);
420             year += (cycles * years_in_gregorian_cycle);
421         }
422 
423         /* Years */
424         leap = IS_LEAP (year);
425         while (m < (Time64_T) -length_of_year[leap]) {
426             m += (Time64_T) length_of_year[leap];
427             year--;
428             leap = IS_LEAP (year);
429         }
430 
431         /* Months */
432         v_tm_mon = 11;
433         while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
434             m += (Time64_T) days_in_month[leap][v_tm_mon];
435             v_tm_mon--;
436         }
437         m += (Time64_T) days_in_month[leap][v_tm_mon];
438     }
439 
440     p->tm_year = year;
441     if( p->tm_year != year ) {
442 #ifdef EOVERFLOW
443         errno = EOVERFLOW;
444 #endif
445         return NULL;
446     }
447 
448     /* At this point m is less than a year so casting to an int is safe */
449     p->tm_mday = (int) m + 1;
450     p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
451     p->tm_sec  = v_tm_sec;
452     p->tm_min  = v_tm_min;
453     p->tm_hour = v_tm_hour;
454     p->tm_mon  = v_tm_mon;
455     p->tm_wday = v_tm_wday;
456 
457     assert(S_check_tm(p));
458 
459     return p;
460 }
461 
462 
463 struct TM *Perl_localtime64_r (const Time64_T *time, struct TM *local_tm)
464 {
465     time_t safe_time;
466     struct tm safe_date;
467     struct TM gm_tm;
468     Year orig_year;
469     int month_diff;
470 
471     assert(local_tm != NULL);
472 
473     /* Use the system localtime() if time_t is small enough */
474     if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
475         safe_time = (time_t)*time;
476 
477         TIME64_TRACE1("Using system localtime for %lld\n", *time);
478 
479         LOCALTIME_R(&safe_time, &safe_date);
480 
481         S_copy_little_tm_to_big_TM(&safe_date, local_tm);
482         assert(S_check_tm(local_tm));
483 
484         return local_tm;
485     }
486 
487     if( Perl_gmtime64_r(time, &gm_tm) == NULL ) {
488         TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
489         return NULL;
490     }
491 
492     orig_year = gm_tm.tm_year;
493 
494     if (gm_tm.tm_year > (2037 - 1900) ||
495         gm_tm.tm_year < (1970 - 1900)
496        )
497     {
498         TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
499         gm_tm.tm_year = S_safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
500     }
501 
502     safe_time = (time_t)S_timegm64(&gm_tm);
503     if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
504         TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
505         return NULL;
506     }
507 
508     S_copy_little_tm_to_big_TM(&safe_date, local_tm);
509 
510     local_tm->tm_year = orig_year;
511     if( local_tm->tm_year != orig_year ) {
512         TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
513               (Year)local_tm->tm_year, (Year)orig_year);
514 
515 #ifdef EOVERFLOW
516         errno = EOVERFLOW;
517 #endif
518         return NULL;
519     }
520 
521 
522     month_diff = local_tm->tm_mon - gm_tm.tm_mon;
523 
524     /*  When localtime is Dec 31st previous year and
525         gmtime is Jan 1st next year.
526     */
527     if( month_diff == 11 ) {
528         local_tm->tm_year--;
529     }
530 
531     /*  When localtime is Jan 1st, next year and
532         gmtime is Dec 31st, previous year.
533     */
534     if( month_diff == -11 ) {
535         local_tm->tm_year++;
536     }
537 
538     /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
539        in a non-leap xx00.  There is one point in the cycle
540        we can't account for which the safe xx00 year is a leap
541        year.  So we need to correct for Dec 31st coming out as
542        the 366th day of the year.
543     */
544     if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
545         local_tm->tm_yday--;
546 
547     assert(S_check_tm(local_tm));
548 
549     return local_tm;
550 }
551