1*61e87b28Sderaadt /* $OpenBSD: fpu_div.c,v 1.3 2013/11/26 20:33:07 deraadt Exp $ */ 202b90beaSjason 302b90beaSjason /* 402b90beaSjason * Copyright (c) 1992, 1993 502b90beaSjason * The Regents of the University of California. All rights reserved. 602b90beaSjason * 702b90beaSjason * This software was developed by the Computer Systems Engineering group 802b90beaSjason * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 902b90beaSjason * contributed to Berkeley. 1002b90beaSjason * 1102b90beaSjason * All advertising materials mentioning features or use of this software 1202b90beaSjason * must display the following acknowledgement: 1302b90beaSjason * This product includes software developed by the University of 1402b90beaSjason * California, Lawrence Berkeley Laboratory. 1502b90beaSjason * 1602b90beaSjason * Redistribution and use in source and binary forms, with or without 1702b90beaSjason * modification, are permitted provided that the following conditions 1802b90beaSjason * are met: 1902b90beaSjason * 1. Redistributions of source code must retain the above copyright 2002b90beaSjason * notice, this list of conditions and the following disclaimer. 2102b90beaSjason * 2. Redistributions in binary form must reproduce the above copyright 2202b90beaSjason * notice, this list of conditions and the following disclaimer in the 2302b90beaSjason * documentation and/or other materials provided with the distribution. 2402b90beaSjason * 3. All advertising materials mentioning features or use of this software 2502b90beaSjason * must display the following acknowledgement: 2602b90beaSjason * This product includes software developed by the University of 2702b90beaSjason * California, Berkeley and its contributors. 2802b90beaSjason * 4. Neither the name of the University nor the names of its contributors 2902b90beaSjason * may be used to endorse or promote products derived from this software 3002b90beaSjason * without specific prior written permission. 3102b90beaSjason * 3202b90beaSjason * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3302b90beaSjason * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3402b90beaSjason * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3502b90beaSjason * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3602b90beaSjason * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3702b90beaSjason * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3802b90beaSjason * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3902b90beaSjason * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 4002b90beaSjason * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 4102b90beaSjason * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 4202b90beaSjason * SUCH DAMAGE. 4302b90beaSjason * 4402b90beaSjason * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93 4502b90beaSjason * $NetBSD: fpu_div.c,v 1.2 1994/11/20 20:52:38 deraadt Exp $ 4602b90beaSjason */ 4702b90beaSjason 4802b90beaSjason #if 0 4902b90beaSjason __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_div.c,v 1.3 2002/03/22 21:52:58 obrien Exp $"); 5002b90beaSjason #endif 5102b90beaSjason 5202b90beaSjason /* 5302b90beaSjason * Perform an FPU divide (return x / y). 5402b90beaSjason */ 5502b90beaSjason 5602b90beaSjason #include <sys/types.h> 5702b90beaSjason 5802b90beaSjason #include <machine/frame.h> 5902b90beaSjason #include <machine/fsr.h> 6002b90beaSjason 6102b90beaSjason #include "fpu_arith.h" 6202b90beaSjason #include "fpu_emu.h" 6302b90beaSjason #include "fpu_extern.h" 6402b90beaSjason 6502b90beaSjason /* 6602b90beaSjason * Division of normal numbers is done as follows: 6702b90beaSjason * 6802b90beaSjason * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. 6902b90beaSjason * If X and Y are the mantissas (1.bbbb's), the quotient is then: 7002b90beaSjason * 7102b90beaSjason * q = (X / Y) * 2^((x exponent) - (y exponent)) 7202b90beaSjason * 7302b90beaSjason * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) 7402b90beaSjason * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only 7502b90beaSjason * if X < Y. In that case, it will have to be shifted left one bit to 7602b90beaSjason * become a normal number, and the exponent decremented. Thus, the 7702b90beaSjason * desired exponent is: 7802b90beaSjason * 7902b90beaSjason * left_shift = x->fp_mant < y->fp_mant; 8002b90beaSjason * result_exp = x->fp_exp - y->fp_exp - left_shift; 8102b90beaSjason * 8202b90beaSjason * The quotient mantissa X/Y can then be computed one bit at a time 8302b90beaSjason * using the following algorithm: 8402b90beaSjason * 8502b90beaSjason * Q = 0; -- Initial quotient. 8602b90beaSjason * R = X; -- Initial remainder, 8702b90beaSjason * if (left_shift) -- but fixed up in advance. 8802b90beaSjason * R *= 2; 8902b90beaSjason * for (bit = FP_NMANT; --bit >= 0; R *= 2) { 9002b90beaSjason * if (R >= Y) { 9102b90beaSjason * Q |= 1 << bit; 9202b90beaSjason * R -= Y; 9302b90beaSjason * } 9402b90beaSjason * } 9502b90beaSjason * 9602b90beaSjason * The subtraction R -= Y always removes the uppermost bit from R (and 9702b90beaSjason * can sometimes remove additional lower-order 1 bits); this proof is 9802b90beaSjason * left to the reader. 9902b90beaSjason * 10002b90beaSjason * This loop correctly calculates the guard and round bits since they are 10102b90beaSjason * included in the expanded internal representation. The sticky bit 10202b90beaSjason * is to be set if and only if any other bits beyond guard and round 10302b90beaSjason * would be set. From the above it is obvious that this is true if and 10402b90beaSjason * only if the remainder R is nonzero when the loop terminates. 10502b90beaSjason * 10602b90beaSjason * Examining the loop above, we can see that the quotient Q is built 10702b90beaSjason * one bit at a time ``from the top down''. This means that we can 10802b90beaSjason * dispense with the multi-word arithmetic and just build it one word 10902b90beaSjason * at a time, writing each result word when it is done. 11002b90beaSjason * 11102b90beaSjason * Furthermore, since X and Y are both in [1.0,2.0), we know that, 11202b90beaSjason * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and 11302b90beaSjason * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 11402b90beaSjason * set, and R can be set initially to either X - Y (when X >= Y) or 11502b90beaSjason * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, 11602b90beaSjason * so we will simply calculate R - Y and see if that underflows. 11702b90beaSjason * This leads to the following revised version of the algorithm: 11802b90beaSjason * 11902b90beaSjason * R = X; 12002b90beaSjason * bit = FP_1; 12102b90beaSjason * D = R - Y; 12202b90beaSjason * if (D >= 0) { 12302b90beaSjason * result_exp = x->fp_exp - y->fp_exp; 12402b90beaSjason * R = D; 12502b90beaSjason * q = bit; 12602b90beaSjason * bit >>= 1; 12702b90beaSjason * } else { 12802b90beaSjason * result_exp = x->fp_exp - y->fp_exp - 1; 12902b90beaSjason * q = 0; 13002b90beaSjason * } 13102b90beaSjason * R <<= 1; 13202b90beaSjason * do { 13302b90beaSjason * D = R - Y; 13402b90beaSjason * if (D >= 0) { 13502b90beaSjason * q |= bit; 13602b90beaSjason * R = D; 13702b90beaSjason * } 13802b90beaSjason * R <<= 1; 13902b90beaSjason * } while ((bit >>= 1) != 0); 14002b90beaSjason * Q[0] = q; 14102b90beaSjason * for (i = 1; i < 4; i++) { 142*61e87b28Sderaadt * q = 0, bit = 1U << 31; 14302b90beaSjason * do { 14402b90beaSjason * D = R - Y; 14502b90beaSjason * if (D >= 0) { 14602b90beaSjason * q |= bit; 14702b90beaSjason * R = D; 14802b90beaSjason * } 14902b90beaSjason * R <<= 1; 15002b90beaSjason * } while ((bit >>= 1) != 0); 15102b90beaSjason * Q[i] = q; 15202b90beaSjason * } 15302b90beaSjason * 15402b90beaSjason * This can be refined just a bit further by moving the `R <<= 1' 15502b90beaSjason * calculations to the front of the do-loops and eliding the first one. 15602b90beaSjason * The process can be terminated immediately whenever R becomes 0, but 15702b90beaSjason * this is relatively rare, and we do not bother. 15802b90beaSjason */ 15902b90beaSjason 16002b90beaSjason struct fpn * 16102b90beaSjason __fpu_div(fe) 16202b90beaSjason struct fpemu *fe; 16302b90beaSjason { 16402b90beaSjason struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 16502b90beaSjason u_int q, bit; 16602b90beaSjason u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; 16702b90beaSjason FPU_DECL_CARRY 16802b90beaSjason 16902b90beaSjason /* 17002b90beaSjason * Since divide is not commutative, we cannot just use ORDER. 17102b90beaSjason * Check either operand for NaN first; if there is at least one, 17202b90beaSjason * order the signalling one (if only one) onto the right, then 17302b90beaSjason * return it. Otherwise we have the following cases: 17402b90beaSjason * 17502b90beaSjason * Inf / Inf = NaN, plus NV exception 17602b90beaSjason * Inf / num = Inf [i.e., return x] 17702b90beaSjason * Inf / 0 = Inf [i.e., return x] 17802b90beaSjason * 0 / Inf = 0 [i.e., return x] 17902b90beaSjason * 0 / num = 0 [i.e., return x] 18002b90beaSjason * 0 / 0 = NaN, plus NV exception 18102b90beaSjason * num / Inf = 0 18202b90beaSjason * num / num = num (do the divide) 18302b90beaSjason * num / 0 = Inf, plus DZ exception 18402b90beaSjason */ 18502b90beaSjason if (ISNAN(x) || ISNAN(y)) { 18602b90beaSjason ORDER(x, y); 18702b90beaSjason return (y); 18802b90beaSjason } 18902b90beaSjason if (ISINF(x) || ISZERO(x)) { 19002b90beaSjason if (x->fp_class == y->fp_class) 19102b90beaSjason return (__fpu_newnan(fe)); 19202b90beaSjason return (x); 19302b90beaSjason } 19402b90beaSjason 19502b90beaSjason /* all results at this point use XOR of operand signs */ 19602b90beaSjason x->fp_sign ^= y->fp_sign; 19702b90beaSjason if (ISINF(y)) { 19802b90beaSjason x->fp_class = FPC_ZERO; 19902b90beaSjason return (x); 20002b90beaSjason } 20102b90beaSjason if (ISZERO(y)) { 20202b90beaSjason fe->fe_cx = FSR_DZ; 20302b90beaSjason x->fp_class = FPC_INF; 20402b90beaSjason return (x); 20502b90beaSjason } 20602b90beaSjason 20702b90beaSjason /* 20802b90beaSjason * Macros for the divide. See comments at top for algorithm. 20902b90beaSjason * Note that we expand R, D, and Y here. 21002b90beaSjason */ 21102b90beaSjason 21202b90beaSjason #define SUBTRACT /* D = R - Y */ \ 21302b90beaSjason FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ 21402b90beaSjason FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) 21502b90beaSjason 21602b90beaSjason #define NONNEGATIVE /* D >= 0 */ \ 21702b90beaSjason ((int)d0 >= 0) 21802b90beaSjason 21902b90beaSjason #ifdef FPU_SHL1_BY_ADD 22002b90beaSjason #define SHL1 /* R <<= 1 */ \ 22102b90beaSjason FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ 22202b90beaSjason FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) 22302b90beaSjason #else 22402b90beaSjason #define SHL1 \ 22502b90beaSjason r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ 22602b90beaSjason r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 22702b90beaSjason #endif 22802b90beaSjason 22902b90beaSjason #define LOOP /* do ... while (bit >>= 1) */ \ 23002b90beaSjason do { \ 23102b90beaSjason SHL1; \ 23202b90beaSjason SUBTRACT; \ 23302b90beaSjason if (NONNEGATIVE) { \ 23402b90beaSjason q |= bit; \ 23502b90beaSjason r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ 23602b90beaSjason } \ 23702b90beaSjason } while ((bit >>= 1) != 0) 23802b90beaSjason 23902b90beaSjason #define WORD(r, i) /* calculate r->fp_mant[i] */ \ 24002b90beaSjason q = 0; \ 241*61e87b28Sderaadt bit = 1U << 31; \ 24202b90beaSjason LOOP; \ 24302b90beaSjason (x)->fp_mant[i] = q 24402b90beaSjason 24502b90beaSjason /* Setup. Note that we put our result in x. */ 24602b90beaSjason r0 = x->fp_mant[0]; 24702b90beaSjason r1 = x->fp_mant[1]; 24802b90beaSjason r2 = x->fp_mant[2]; 24902b90beaSjason r3 = x->fp_mant[3]; 25002b90beaSjason y0 = y->fp_mant[0]; 25102b90beaSjason y1 = y->fp_mant[1]; 25202b90beaSjason y2 = y->fp_mant[2]; 25302b90beaSjason y3 = y->fp_mant[3]; 25402b90beaSjason 25502b90beaSjason bit = FP_1; 25602b90beaSjason SUBTRACT; 25702b90beaSjason if (NONNEGATIVE) { 25802b90beaSjason x->fp_exp -= y->fp_exp; 25902b90beaSjason r0 = d0, r1 = d1, r2 = d2, r3 = d3; 26002b90beaSjason q = bit; 26102b90beaSjason bit >>= 1; 26202b90beaSjason } else { 26302b90beaSjason x->fp_exp -= y->fp_exp + 1; 26402b90beaSjason q = 0; 26502b90beaSjason } 26602b90beaSjason LOOP; 26702b90beaSjason x->fp_mant[0] = q; 26802b90beaSjason WORD(x, 1); 26902b90beaSjason WORD(x, 2); 27002b90beaSjason WORD(x, 3); 27102b90beaSjason x->fp_sticky = r0 | r1 | r2 | r3; 27202b90beaSjason 27302b90beaSjason return (x); 27402b90beaSjason } 275