xref: /openbsd/lib/libc/arch/sparc64/fpu/fpu_explode.c (revision 404b540a)
1 /*	$OpenBSD: fpu_explode.c,v 1.6 2006/12/23 23:40:49 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46  */
47 
48 #include <sys/cdefs.h>
49 #if 0
50 __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_explode.c,v 1.5 2002/05/11 21:20:04 jake Exp $");
51 #endif
52 
53 /*
54  * FPU subroutines: `explode' the machine's `packed binary' format numbers
55  * into our internal format.
56  */
57 
58 #include <sys/param.h>
59 
60 #include <machine/frame.h>
61 #include <machine/fsr.h>
62 #include <machine/ieee.h>
63 #include <machine/instr.h>
64 
65 #include "fpu_arith.h"
66 #include "fpu_emu.h"
67 #include "fpu_extern.h"
68 #include "fpu_reg.h"
69 
70 /*
71  * N.B.: in all of the following, we assume the FP format is
72  *
73  *	---------------------------
74  *	| s | exponent | fraction |
75  *	---------------------------
76  *
77  * (which represents -1**s * 1.fraction * 2**exponent), so that the
78  * sign bit is way at the top (bit 31), the exponent is next, and
79  * then the remaining bits mark the fraction.  A zero exponent means
80  * zero or denormalized (0.fraction rather than 1.fraction), and the
81  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
82  *
83  * Since the sign bit is always the topmost bit---this holds even for
84  * integers---we set that outside all the *tof functions.  Each function
85  * returns the class code for the new number (but note that we use
86  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
87  */
88 
89 /*
90  * int -> fpn.
91  */
92 int
93 __fpu_itof(fp, i)
94 	struct fpn *fp;
95 	u_int i;
96 {
97 
98 	if (i == 0)
99 		return (FPC_ZERO);
100 	/*
101 	 * The value FP_1 represents 2^FP_LG, so set the exponent
102 	 * there and let normalization fix it up.  Convert negative
103 	 * numbers to sign-and-magnitude.  Note that this relies on
104 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
105 	 */
106 	fp->fp_exp = FP_LG;
107 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
108 	fp->fp_mant[1] = 0;
109 	fp->fp_mant[2] = 0;
110 	fp->fp_mant[3] = 0;
111 	__fpu_norm(fp);
112 	return (FPC_NUM);
113 }
114 
115 /*
116  * uint -> fpn.
117  */
118 int
119 __fpu_uitof(fp, i)
120 	struct fpn *fp;
121 	u_int i;
122 {
123 
124 	if (i == 0)
125 		return (FPC_ZERO);
126 	/*
127 	 * The value FP_1 represents 2^FP_LG, so set the exponent
128 	 * there and let normalization fix it up.
129 	 * Note that this relies on fpu_norm()'s handling of
130 	 * `supernormals'; see fpu_subr.c.
131 	 */
132 	fp->fp_exp = FP_LG;
133 	fp->fp_mant[0] = i;
134 	fp->fp_mant[1] = 0;
135 	fp->fp_mant[2] = 0;
136 	fp->fp_mant[3] = 0;
137 	__fpu_norm(fp);
138 	return (FPC_NUM);
139 }
140 
141 /*
142  * 64-bit int -> fpn.
143  */
144 int
145 __fpu_xtof(fp, i)
146 	struct fpn *fp;
147 	u_int64_t i;
148 {
149 
150 	if (i == 0)
151 		return (FPC_ZERO);
152 	/*
153 	 * The value FP_1 represents 2^FP_LG, so set the exponent
154 	 * there and let normalization fix it up.  Convert negative
155 	 * numbers to sign-and-magnitude.  Note that this relies on
156 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
157 	 */
158 	fp->fp_exp = FP_LG2;
159 	i = ((int64_t)i < 0) ? -i : i;
160 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
161 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
162 	fp->fp_mant[2] = 0;
163 	fp->fp_mant[3] = 0;
164 	__fpu_norm(fp);
165 	return (FPC_NUM);
166 }
167 
168 /*
169  * 64-bit uint -> fpn.
170  */
171 int
172 __fpu_uxtof(fp, i)
173 	struct fpn *fp;
174 	u_int64_t i;
175 {
176 
177 	if (i == 0)
178 		return (FPC_ZERO);
179 	/*
180 	 * The value FP_1 represents 2^FP_LG, so set the exponent
181 	 * there and let normalization fix it up.
182 	 * Note that this relies on fpu_norm()'s handling of
183 	 * `supernormals'; see fpu_subr.c.
184 	 */
185 	fp->fp_exp = FP_LG2;
186 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
187 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
188 	fp->fp_mant[2] = 0;
189 	fp->fp_mant[3] = 0;
190 	__fpu_norm(fp);
191 	return (FPC_NUM);
192 }
193 
194 #define	mask(nbits) ((1L << (nbits)) - 1)
195 
196 /*
197  * All external floating formats convert to internal in the same manner,
198  * as defined here.  Note that only normals get an implied 1.0 inserted.
199  */
200 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
201 	if (exp == 0) { \
202 		if (allfrac == 0) \
203 			return (FPC_ZERO); \
204 		fp->fp_exp = 1 - expbias; \
205 		fp->fp_mant[0] = f0; \
206 		fp->fp_mant[1] = f1; \
207 		fp->fp_mant[2] = f2; \
208 		fp->fp_mant[3] = f3; \
209 		__fpu_norm(fp); \
210 		return (FPC_NUM); \
211 	} \
212 	if (exp == (2 * expbias + 1)) { \
213 		if (allfrac == 0) \
214 			return (FPC_INF); \
215 		fp->fp_mant[0] = f0; \
216 		fp->fp_mant[1] = f1; \
217 		fp->fp_mant[2] = f2; \
218 		fp->fp_mant[3] = f3; \
219 		return (FPC_QNAN); \
220 	} \
221 	fp->fp_exp = exp - expbias; \
222 	fp->fp_mant[0] = FP_1 | f0; \
223 	fp->fp_mant[1] = f1; \
224 	fp->fp_mant[2] = f2; \
225 	fp->fp_mant[3] = f3; \
226 	return (FPC_NUM)
227 
228 /*
229  * 32-bit single precision -> fpn.
230  * We assume a single occupies at most (64-FP_LG) bits in the internal
231  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
232  */
233 int
234 __fpu_stof(fp, i)
235 	struct fpn *fp;
236 	u_int i;
237 {
238 	int exp;
239 	u_int frac, f0, f1;
240 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
241 
242 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
243 	frac = i & mask(SNG_FRACBITS);
244 	f0 = frac >> SNG_SHIFT;
245 	f1 = frac << (32 - SNG_SHIFT);
246 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
247 }
248 
249 /*
250  * 64-bit double -> fpn.
251  * We assume this uses at most (96-FP_LG) bits.
252  */
253 int
254 __fpu_dtof(fp, i, j)
255 	struct fpn *fp;
256 	u_int i, j;
257 {
258 	int exp;
259 	u_int frac, f0, f1, f2;
260 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
261 
262 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
263 	frac = i & mask(DBL_FRACBITS - 32);
264 	f0 = frac >> DBL_SHIFT;
265 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
266 	f2 = j << (32 - DBL_SHIFT);
267 	frac |= j;
268 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
269 }
270 
271 /*
272  * 128-bit extended -> fpn.
273  */
274 int
275 __fpu_qtof(fp, i, j, k, l)
276 	struct fpn *fp;
277 	u_int i, j, k, l;
278 {
279 	int exp;
280 	u_int frac, f0, f1, f2, f3;
281 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
282 
283 	/*
284 	 * Note that ext and fpn `line up', hence no shifting needed.
285 	 */
286 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
287 	frac = i & mask(EXT_FRACBITS - 3 * 32);
288 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
289 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
290 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
291 	f3 = l << EXT_SHIFT;
292 	frac |= j | k | l;
293 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
294 }
295 
296 /*
297  * Explode the contents of a / regpair / regquad.
298  * If the input is a signalling NaN, an NV (invalid) exception
299  * will be set.  (Note that nothing but NV can occur until ALU
300  * operations are performed.)
301  */
302 void
303 __fpu_explode(fe, fp, type, reg)
304 	struct fpemu *fe;
305 	struct fpn *fp;
306 	int type, reg;
307 {
308 	u_int32_t s = 0/* XXX gcc */, *sp;
309 	u_int64_t l[2];
310 
311 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
312 		l[0] = __fpu_getreg64(reg & ~1);
313 		sp = (u_int32_t *)l;
314 		fp->fp_sign = sp[0] >> 31;
315 		fp->fp_sticky = 0;
316 		switch (type) {
317 			case FTYPE_LNG:
318 				s = __fpu_xtof(fp, l[0]);
319 				break;
320 			case FTYPE_DBL:
321 				s = __fpu_dtof(fp, sp[0], sp[1]);
322 				break;
323 			case FTYPE_EXT:
324 				l[1] = __fpu_getreg64((reg & ~1) + 2);
325 				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
326 				break;
327 			default:
328 #ifdef DIAGNOSTIC
329 				__utrap_panic("fpu_explode");
330 #endif
331 				break;
332 		}
333 	} else {
334 #ifdef DIAGNOSTIC
335 		if (type != FTYPE_SNG)
336 			__utrap_panic("fpu_explode");
337 #endif
338 		s = __fpu_getreg32(reg);
339 		fp->fp_sign = s >> 31;
340 		fp->fp_sticky = 0;
341 		s = __fpu_stof(fp, s);
342 	}
343 
344 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
345 		/*
346 		 * Input is a signalling NaN.  All operations that return
347 		 * an input NaN operand put it through a ``NaN conversion'',
348 		 * which basically just means ``turn on the quiet bit''.
349 		 * We do this here so that all NaNs internally look quiet
350 		 * (we can tell signalling ones by their class).
351 		 */
352 		fp->fp_mant[0] |= FP_QUIETBIT;
353 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
354 		s = FPC_SNAN;
355 	}
356 	fp->fp_class = s;
357 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
358 		((type == FTYPE_INT) ? 'i' :
359 			((type == FTYPE_SNG) ? 's' :
360 				((type == FTYPE_DBL) ? 'd' :
361 					((type == FTYPE_EXT) ? 'q' : '?')))),
362 		reg));
363 	DUMPFPN(FPE_REG, fp);
364 	DPRINTF(FPE_REG, ("\n"));
365 }
366