xref: /openbsd/lib/libc/arch/sparc64/fpu/fpu_explode.c (revision a6445c1d)
1 /*	$OpenBSD: fpu_explode.c,v 1.7 2012/12/05 23:19:59 deraadt Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
46  */
47 
48 #if 0
49 __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_explode.c,v 1.5 2002/05/11 21:20:04 jake Exp $");
50 #endif
51 
52 /*
53  * FPU subroutines: `explode' the machine's `packed binary' format numbers
54  * into our internal format.
55  */
56 
57 #include <sys/param.h>
58 
59 #include <machine/frame.h>
60 #include <machine/fsr.h>
61 #include <machine/ieee.h>
62 #include <machine/instr.h>
63 
64 #include "fpu_arith.h"
65 #include "fpu_emu.h"
66 #include "fpu_extern.h"
67 #include "fpu_reg.h"
68 
69 /*
70  * N.B.: in all of the following, we assume the FP format is
71  *
72  *	---------------------------
73  *	| s | exponent | fraction |
74  *	---------------------------
75  *
76  * (which represents -1**s * 1.fraction * 2**exponent), so that the
77  * sign bit is way at the top (bit 31), the exponent is next, and
78  * then the remaining bits mark the fraction.  A zero exponent means
79  * zero or denormalized (0.fraction rather than 1.fraction), and the
80  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
81  *
82  * Since the sign bit is always the topmost bit---this holds even for
83  * integers---we set that outside all the *tof functions.  Each function
84  * returns the class code for the new number (but note that we use
85  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
86  */
87 
88 /*
89  * int -> fpn.
90  */
91 int
92 __fpu_itof(fp, i)
93 	struct fpn *fp;
94 	u_int i;
95 {
96 
97 	if (i == 0)
98 		return (FPC_ZERO);
99 	/*
100 	 * The value FP_1 represents 2^FP_LG, so set the exponent
101 	 * there and let normalization fix it up.  Convert negative
102 	 * numbers to sign-and-magnitude.  Note that this relies on
103 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
104 	 */
105 	fp->fp_exp = FP_LG;
106 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
107 	fp->fp_mant[1] = 0;
108 	fp->fp_mant[2] = 0;
109 	fp->fp_mant[3] = 0;
110 	__fpu_norm(fp);
111 	return (FPC_NUM);
112 }
113 
114 /*
115  * uint -> fpn.
116  */
117 int
118 __fpu_uitof(fp, i)
119 	struct fpn *fp;
120 	u_int i;
121 {
122 
123 	if (i == 0)
124 		return (FPC_ZERO);
125 	/*
126 	 * The value FP_1 represents 2^FP_LG, so set the exponent
127 	 * there and let normalization fix it up.
128 	 * Note that this relies on fpu_norm()'s handling of
129 	 * `supernormals'; see fpu_subr.c.
130 	 */
131 	fp->fp_exp = FP_LG;
132 	fp->fp_mant[0] = i;
133 	fp->fp_mant[1] = 0;
134 	fp->fp_mant[2] = 0;
135 	fp->fp_mant[3] = 0;
136 	__fpu_norm(fp);
137 	return (FPC_NUM);
138 }
139 
140 /*
141  * 64-bit int -> fpn.
142  */
143 int
144 __fpu_xtof(fp, i)
145 	struct fpn *fp;
146 	u_int64_t i;
147 {
148 
149 	if (i == 0)
150 		return (FPC_ZERO);
151 	/*
152 	 * The value FP_1 represents 2^FP_LG, so set the exponent
153 	 * there and let normalization fix it up.  Convert negative
154 	 * numbers to sign-and-magnitude.  Note that this relies on
155 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
156 	 */
157 	fp->fp_exp = FP_LG2;
158 	i = ((int64_t)i < 0) ? -i : i;
159 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
160 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
161 	fp->fp_mant[2] = 0;
162 	fp->fp_mant[3] = 0;
163 	__fpu_norm(fp);
164 	return (FPC_NUM);
165 }
166 
167 /*
168  * 64-bit uint -> fpn.
169  */
170 int
171 __fpu_uxtof(fp, i)
172 	struct fpn *fp;
173 	u_int64_t i;
174 {
175 
176 	if (i == 0)
177 		return (FPC_ZERO);
178 	/*
179 	 * The value FP_1 represents 2^FP_LG, so set the exponent
180 	 * there and let normalization fix it up.
181 	 * Note that this relies on fpu_norm()'s handling of
182 	 * `supernormals'; see fpu_subr.c.
183 	 */
184 	fp->fp_exp = FP_LG2;
185 	fp->fp_mant[0] = (i >> 32) & 0xffffffff;
186 	fp->fp_mant[1] = (i >> 0)  & 0xffffffff;
187 	fp->fp_mant[2] = 0;
188 	fp->fp_mant[3] = 0;
189 	__fpu_norm(fp);
190 	return (FPC_NUM);
191 }
192 
193 #define	mask(nbits) ((1L << (nbits)) - 1)
194 
195 /*
196  * All external floating formats convert to internal in the same manner,
197  * as defined here.  Note that only normals get an implied 1.0 inserted.
198  */
199 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
200 	if (exp == 0) { \
201 		if (allfrac == 0) \
202 			return (FPC_ZERO); \
203 		fp->fp_exp = 1 - expbias; \
204 		fp->fp_mant[0] = f0; \
205 		fp->fp_mant[1] = f1; \
206 		fp->fp_mant[2] = f2; \
207 		fp->fp_mant[3] = f3; \
208 		__fpu_norm(fp); \
209 		return (FPC_NUM); \
210 	} \
211 	if (exp == (2 * expbias + 1)) { \
212 		if (allfrac == 0) \
213 			return (FPC_INF); \
214 		fp->fp_mant[0] = f0; \
215 		fp->fp_mant[1] = f1; \
216 		fp->fp_mant[2] = f2; \
217 		fp->fp_mant[3] = f3; \
218 		return (FPC_QNAN); \
219 	} \
220 	fp->fp_exp = exp - expbias; \
221 	fp->fp_mant[0] = FP_1 | f0; \
222 	fp->fp_mant[1] = f1; \
223 	fp->fp_mant[2] = f2; \
224 	fp->fp_mant[3] = f3; \
225 	return (FPC_NUM)
226 
227 /*
228  * 32-bit single precision -> fpn.
229  * We assume a single occupies at most (64-FP_LG) bits in the internal
230  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
231  */
232 int
233 __fpu_stof(fp, i)
234 	struct fpn *fp;
235 	u_int i;
236 {
237 	int exp;
238 	u_int frac, f0, f1;
239 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
240 
241 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
242 	frac = i & mask(SNG_FRACBITS);
243 	f0 = frac >> SNG_SHIFT;
244 	f1 = frac << (32 - SNG_SHIFT);
245 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
246 }
247 
248 /*
249  * 64-bit double -> fpn.
250  * We assume this uses at most (96-FP_LG) bits.
251  */
252 int
253 __fpu_dtof(fp, i, j)
254 	struct fpn *fp;
255 	u_int i, j;
256 {
257 	int exp;
258 	u_int frac, f0, f1, f2;
259 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
260 
261 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
262 	frac = i & mask(DBL_FRACBITS - 32);
263 	f0 = frac >> DBL_SHIFT;
264 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
265 	f2 = j << (32 - DBL_SHIFT);
266 	frac |= j;
267 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
268 }
269 
270 /*
271  * 128-bit extended -> fpn.
272  */
273 int
274 __fpu_qtof(fp, i, j, k, l)
275 	struct fpn *fp;
276 	u_int i, j, k, l;
277 {
278 	int exp;
279 	u_int frac, f0, f1, f2, f3;
280 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
281 
282 	/*
283 	 * Note that ext and fpn `line up', hence no shifting needed.
284 	 */
285 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
286 	frac = i & mask(EXT_FRACBITS - 3 * 32);
287 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
288 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
289 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
290 	f3 = l << EXT_SHIFT;
291 	frac |= j | k | l;
292 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
293 }
294 
295 /*
296  * Explode the contents of a / regpair / regquad.
297  * If the input is a signalling NaN, an NV (invalid) exception
298  * will be set.  (Note that nothing but NV can occur until ALU
299  * operations are performed.)
300  */
301 void
302 __fpu_explode(fe, fp, type, reg)
303 	struct fpemu *fe;
304 	struct fpn *fp;
305 	int type, reg;
306 {
307 	u_int32_t s = 0/* XXX gcc */, *sp;
308 	u_int64_t l[2];
309 
310 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
311 		l[0] = __fpu_getreg64(reg & ~1);
312 		sp = (u_int32_t *)l;
313 		fp->fp_sign = sp[0] >> 31;
314 		fp->fp_sticky = 0;
315 		switch (type) {
316 			case FTYPE_LNG:
317 				s = __fpu_xtof(fp, l[0]);
318 				break;
319 			case FTYPE_DBL:
320 				s = __fpu_dtof(fp, sp[0], sp[1]);
321 				break;
322 			case FTYPE_EXT:
323 				l[1] = __fpu_getreg64((reg & ~1) + 2);
324 				s = __fpu_qtof(fp, sp[0], sp[1], sp[2], sp[3]);
325 				break;
326 			default:
327 #ifdef DIAGNOSTIC
328 				__utrap_panic("fpu_explode");
329 #endif
330 				break;
331 		}
332 	} else {
333 #ifdef DIAGNOSTIC
334 		if (type != FTYPE_SNG)
335 			__utrap_panic("fpu_explode");
336 #endif
337 		s = __fpu_getreg32(reg);
338 		fp->fp_sign = s >> 31;
339 		fp->fp_sticky = 0;
340 		s = __fpu_stof(fp, s);
341 	}
342 
343 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
344 		/*
345 		 * Input is a signalling NaN.  All operations that return
346 		 * an input NaN operand put it through a ``NaN conversion'',
347 		 * which basically just means ``turn on the quiet bit''.
348 		 * We do this here so that all NaNs internally look quiet
349 		 * (we can tell signalling ones by their class).
350 		 */
351 		fp->fp_mant[0] |= FP_QUIETBIT;
352 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
353 		s = FPC_SNAN;
354 	}
355 	fp->fp_class = s;
356 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
357 		((type == FTYPE_INT) ? 'i' :
358 			((type == FTYPE_SNG) ? 's' :
359 				((type == FTYPE_DBL) ? 'd' :
360 					((type == FTYPE_EXT) ? 'q' : '?')))),
361 		reg));
362 	DUMPFPN(FPE_REG, fp);
363 	DPRINTF(FPE_REG, ("\n"));
364 }
365