xref: /openbsd/lib/libc/arch/sparc64/fpu/fpu_sqrt.c (revision 264ca280)
1 /*	$OpenBSD: fpu_sqrt.c,v 1.4 2014/09/12 22:04:18 kettenis Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
45  *	$NetBSD: fpu_sqrt.c,v 1.2 1994/11/20 20:52:46 deraadt Exp $
46  */
47 
48 #if 0
49 __FBSDID("$FreeBSD: src/lib/libc/sparc64/fpu/fpu_sqrt.c,v 1.3 2002/03/22 21:52:58 obrien Exp $");
50 #endif
51 
52 /*
53  * Perform an FPU square root (return sqrt(x)).
54  */
55 
56 #include <sys/types.h>
57 
58 #include <machine/frame.h>
59 
60 #include "fpu_arith.h"
61 #include "fpu_emu.h"
62 #include "fpu_extern.h"
63 
64 /*
65  * Our task is to calculate the square root of a floating point number x0.
66  * This number x normally has the form:
67  *
68  *		    exp
69  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
70  *
71  * This can be left as it stands, or the mantissa can be doubled and the
72  * exponent decremented:
73  *
74  *			  exp-1
75  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
76  *
77  * If the exponent `exp' is even, the square root of the number is best
78  * handled using the first form, and is by definition equal to:
79  *
80  *				exp/2
81  *	sqrt(x) = sqrt(mant) * 2
82  *
83  * If exp is odd, on the other hand, it is convenient to use the second
84  * form, giving:
85  *
86  *				    (exp-1)/2
87  *	sqrt(x) = sqrt(2 * mant) * 2
88  *
89  * In the first case, we have
90  *
91  *	1 <= mant < 2
92  *
93  * and therefore
94  *
95  *	sqrt(1) <= sqrt(mant) < sqrt(2)
96  *
97  * while in the second case we have
98  *
99  *	2 <= 2*mant < 4
100  *
101  * and therefore
102  *
103  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
104  *
105  * so that in any case, we are sure that
106  *
107  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
108  *
109  * or
110  *
111  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
112  *
113  * This root is therefore a properly formed mantissa for a floating
114  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
115  * as above.  This leaves us with the problem of finding the square root
116  * of a fixed-point number in the range [1..4).
117  *
118  * Though it may not be instantly obvious, the following square root
119  * algorithm works for any integer x of an even number of bits, provided
120  * that no overflows occur:
121  *
122  *	let q = 0
123  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
124  *		x *= 2			-- multiply by radix, for next digit
125  *		if x >= 2q + 2^k then	-- if adding 2^k does not
126  *			x -= 2q + 2^k	-- exceed the correct root,
127  *			q += 2^k	-- add 2^k and adjust x
128  *		fi
129  *	done
130  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
131  *
132  * If NBITS is odd (so that k is initially even), we can just add another
133  * zero bit at the top of x.  Doing so means that q is not going to acquire
134  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
135  * final value in x is not needed, or can be off by a factor of 2, this is
136  * equivalant to moving the `x *= 2' step to the bottom of the loop:
137  *
138  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
139  *
140  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
141  * (Since the algorithm is destructive on x, we will call x's initial
142  * value, for which q is some power of two times its square root, x0.)
143  *
144  * If we insert a loop invariant y = 2q, we can then rewrite this using
145  * C notation as:
146  *
147  *	q = y = 0; x = x0;
148  *	for (k = NBITS; --k >= 0;) {
149  * #if (NBITS is even)
150  *		x *= 2;
151  * #endif
152  *		t = y + (1 << k);
153  *		if (x >= t) {
154  *			x -= t;
155  *			q += 1 << k;
156  *			y += 1 << (k + 1);
157  *		}
158  * #if (NBITS is odd)
159  *		x *= 2;
160  * #endif
161  *	}
162  *
163  * If x0 is fixed point, rather than an integer, we can simply alter the
164  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
165  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
166  *
167  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
168  * integers, which adds some complication.  But note that q is built one
169  * bit at a time, from the top down, and is not used itself in the loop
170  * (we use 2q as held in y instead).  This means we can build our answer
171  * in an integer, one word at a time, which saves a bit of work.  Also,
172  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
173  * `new' bits in y and we can set them with an `or' operation rather than
174  * a full-blown multiword add.
175  *
176  * We are almost done, except for one snag.  We must prove that none of our
177  * intermediate calculations can overflow.  We know that x0 is in [1..4)
178  * and therefore the square root in q will be in [1..2), but what about x,
179  * y, and t?
180  *
181  * We know that y = 2q at the beginning of each loop.  (The relation only
182  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
183  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
184  * Furthermore, we can prove with a bit of work that x never exceeds y by
185  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
186  * an exercise to the reader, mostly because I have become tired of working
187  * on this comment.)
188  *
189  * If our floating point mantissas (which are of the form 1.frac) occupy
190  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
191  * In fact, we want even one more bit (for a carry, to avoid compares), or
192  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
193  * this, so we have some justification in assuming it.
194  */
195 struct fpn *
196 __fpu_sqrt(fe)
197 	struct fpemu *fe;
198 {
199 	struct fpn *x = &fe->fe_f1;
200 	u_int bit, q, tt;
201 	u_int x0, x1, x2, x3;
202 	u_int y0, y1, y2, y3;
203 	u_int d0, d1, d2, d3;
204 	int e;
205 
206 	/*
207 	 * Take care of special cases first.  In order:
208 	 *
209 	 *	sqrt(NaN) = NaN
210 	 *	sqrt(+0) = +0
211 	 *	sqrt(-0) = -0
212 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
213 	 *	sqrt(+Inf) = +Inf
214 	 *
215 	 * Then all that remains are numbers with mantissas in [1..2).
216 	 */
217 	if (ISNAN(x) || ISZERO(x))
218 		return (x);
219 	if (x->fp_sign)
220 		return (__fpu_newnan(fe));
221 	if (ISINF(x))
222 		return (x);
223 
224 	/*
225 	 * Calculate result exponent.  As noted above, this may involve
226 	 * doubling the mantissa.  We will also need to double x each
227 	 * time around the loop, so we define a macro for this here, and
228 	 * we break out the multiword mantissa.
229 	 */
230 #ifdef FPU_SHL1_BY_ADD
231 #define	DOUBLE_X { \
232 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
233 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
234 }
235 #else
236 #define	DOUBLE_X { \
237 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
238 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
239 }
240 #endif
241 #if (FP_NMANT & 1) != 0
242 # define ODD_DOUBLE	DOUBLE_X
243 # define EVEN_DOUBLE	/* nothing */
244 #else
245 # define ODD_DOUBLE	/* nothing */
246 # define EVEN_DOUBLE	DOUBLE_X
247 #endif
248 	x0 = x->fp_mant[0];
249 	x1 = x->fp_mant[1];
250 	x2 = x->fp_mant[2];
251 	x3 = x->fp_mant[3];
252 	e = x->fp_exp;
253 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
254 		DOUBLE_X;
255 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
256 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
257 
258 	/*
259 	 * Now calculate the mantissa root.  Since x is now in [1..4),
260 	 * we know that the first trip around the loop will definitely
261 	 * set the top bit in q, so we can do that manually and start
262 	 * the loop at the next bit down instead.  We must be sure to
263 	 * double x correctly while doing the `known q=1.0'.
264 	 *
265 	 * We do this one mantissa-word at a time, as noted above, to
266 	 * save work.  To avoid `(1U << 31) << 1', we also do the top bit
267 	 * outside of each per-word loop.
268 	 *
269 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
270 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
271 	 * is always a `new' one, this means that three of the `t?'s are
272 	 * just the corresponding `y?'; we use `#define's here for this.
273 	 * The variable `tt' holds the actual `t?' variable.
274 	 */
275 
276 	/* calculate q0 */
277 #define	t0 tt
278 	bit = FP_1;
279 	EVEN_DOUBLE;
280 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
281 		q = bit;
282 		x0 -= bit;
283 		y0 = bit << 1;
284 	/* } */
285 	ODD_DOUBLE;
286 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
287 		EVEN_DOUBLE;
288 		t0 = y0 | bit;		/* t = y + bit */
289 		if (x0 >= t0) {		/* if x >= t then */
290 			x0 -= t0;	/*	x -= t */
291 			q |= bit;	/*	q += bit */
292 			y0 |= bit << 1;	/*	y += bit << 1 */
293 		}
294 		ODD_DOUBLE;
295 	}
296 	x->fp_mant[0] = q;
297 #undef t0
298 
299 	/* calculate q1.  note (y0&1)==0. */
300 #define t0 y0
301 #define t1 tt
302 	q = 0;
303 	y1 = 0;
304 	bit = 1U << 31;
305 	EVEN_DOUBLE;
306 	t1 = bit;
307 	FPU_SUBS(d1, x1, t1);
308 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
309 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
310 		x0 = d0, x1 = d1;	/*	x -= t */
311 		q = bit;		/*	q += bit */
312 		y0 |= 1;		/*	y += bit << 1 */
313 	}
314 	ODD_DOUBLE;
315 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
316 		EVEN_DOUBLE;		/* as before */
317 		t1 = y1 | bit;
318 		FPU_SUBS(d1, x1, t1);
319 		FPU_SUBC(d0, x0, t0);
320 		if ((int)d0 >= 0) {
321 			x0 = d0, x1 = d1;
322 			q |= bit;
323 			y1 |= bit << 1;
324 		}
325 		ODD_DOUBLE;
326 	}
327 	x->fp_mant[1] = q;
328 #undef t1
329 
330 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
331 #define t1 y1
332 #define t2 tt
333 	q = 0;
334 	y2 = 0;
335 	bit = 1U << 31;
336 	EVEN_DOUBLE;
337 	t2 = bit;
338 	FPU_SUBS(d2, x2, t2);
339 	FPU_SUBCS(d1, x1, t1);
340 	FPU_SUBC(d0, x0, t0);
341 	if ((int)d0 >= 0) {
342 		x0 = d0, x1 = d1, x2 = d2;
343 		q |= bit;
344 		y1 |= 1;		/* now t1, y1 are set in concrete */
345 	}
346 	ODD_DOUBLE;
347 	while ((bit >>= 1) != 0) {
348 		EVEN_DOUBLE;
349 		t2 = y2 | bit;
350 		FPU_SUBS(d2, x2, t2);
351 		FPU_SUBCS(d1, x1, t1);
352 		FPU_SUBC(d0, x0, t0);
353 		if ((int)d0 >= 0) {
354 			x0 = d0, x1 = d1, x2 = d2;
355 			q |= bit;
356 			y2 |= bit << 1;
357 		}
358 		ODD_DOUBLE;
359 	}
360 	x->fp_mant[2] = q;
361 #undef t2
362 
363 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
364 #define t2 y2
365 #define t3 tt
366 	q = 0;
367 	y3 = 0;
368 	bit = 1U << 31;
369 	EVEN_DOUBLE;
370 	t3 = bit;
371 	FPU_SUBS(d3, x3, t3);
372 	FPU_SUBCS(d2, x2, t2);
373 	FPU_SUBCS(d1, x1, t1);
374 	FPU_SUBC(d0, x0, t0);
375 	if ((int)d0 >= 0) {
376 		x0 = d0, x1 = d1, x2 = d2, x3 = d3;
377 		q |= bit;
378 		y2 |= 1;
379 	}
380 	ODD_DOUBLE;
381 	while ((bit >>= 1) != 0) {
382 		EVEN_DOUBLE;
383 		t3 = y3 | bit;
384 		FPU_SUBS(d3, x3, t3);
385 		FPU_SUBCS(d2, x2, t2);
386 		FPU_SUBCS(d1, x1, t1);
387 		FPU_SUBC(d0, x0, t0);
388 		if ((int)d0 >= 0) {
389 			x0 = d0, x1 = d1, x2 = d2, x3 = d3;
390 			q |= bit;
391 			y3 |= bit << 1;
392 		}
393 		ODD_DOUBLE;
394 	}
395 	x->fp_mant[3] = q;
396 
397 	/*
398 	 * The result, which includes guard and round bits, is exact iff
399 	 * x is now zero; any nonzero bits in x represent sticky bits.
400 	 */
401 	x->fp_sticky = x0 | x1 | x2 | x3;
402 	return (x);
403 }
404