xref: /openbsd/lib/libc/arch/sparc64/gen/divrem.m4 (revision 3d8817e4)
1/*	$OpenBSD: divrem.m4,v 1.3 2011/03/12 18:50:07 deraadt Exp $	*/
2/*
3 * Copyright (c) 1992, 1993
4 *	The Regents of the University of California.  All rights reserved.
5 *
6 * This software was developed by the Computer Systems Engineering group
7 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
8 * contributed to Berkeley.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35/*
36 * Division and remainder, from Appendix E of the Sparc Version 8
37 * Architecture Manual, with fixes from Gordon Irlam.
38 */
39
40/*
41 * Input: dividend and divisor in %o0 and %o1 respectively.
42 *
43 * m4 parameters:
44 *  NAME	name of function to generate
45 *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
46 *  S		S=true => signed; S=false => unsigned
47 *
48 * Algorithm parameters:
49 *  N		how many bits per iteration we try to get (4)
50 *  WORDSIZE	total number of bits (32)
51 *
52 * Derived constants:
53 *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
54 *  TOPBITS	number of bits in the top `decade' of a number
55 *
56 * Important variables:
57 *  Q		the partial quotient under development (initially 0)
58 *  R		the remainder so far, initially the dividend
59 *  ITER	number of main division loop iterations required;
60 *		equal to ceil(log2(quotient) / N).  Note that this
61 *		is the log base (2^N) of the quotient.
62 *  V		the current comparand, initially divisor*2^(ITER*N-1)
63 *
64 * Cost:
65 *  Current estimate for non-large dividend is
66 *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
67 *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
68 *  different path, as the upper bits of the quotient must be developed
69 *  one bit at a time.
70 */
71
72define(N, `4')
73define(TWOSUPN, `16')
74define(WORDSIZE, `32')
75define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
76
77define(dividend, `%o0')
78define(divisor, `%o1')
79define(Q, `%o2')
80define(R, `%o3')
81define(ITER, `%o4')
82define(V, `%o5')
83
84/* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
85define(T, `%g1')
86define(SC, `%g5')
87ifelse(S, `true', `define(SIGN, `%g6')')
88
89/*
90 * This is the recursive definition for developing quotient digits.
91 *
92 * Parameters:
93 *  $1	the current depth, 1 <= $1 <= N
94 *  $2	the current accumulation of quotient bits
95 *  N	max depth
96 *
97 * We add a new bit to $2 and either recurse or insert the bits in
98 * the quotient.  R, Q, and V are inputs and outputs as defined above;
99 * the condition codes are expected to reflect the input R, and are
100 * modified to reflect the output R.
101 */
102define(DEVELOP_QUOTIENT_BITS,
103`	! depth $1, accumulated bits $2
104	bl	L.$1.eval(TWOSUPN+$2)
105	srl	V,1,V
106	! remainder is positive
107	subcc	R,V,R
108	ifelse($1, N,
109	`	b	9f
110		add	Q, ($2*2+1), Q
111	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
112L.$1.eval(TWOSUPN+$2):
113	! remainder is negative
114	addcc	R,V,R
115	ifelse($1, N,
116	`	b	9f
117		add	Q, ($2*2-1), Q
118	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
119	ifelse($1, 1, `9:')')
120
121#include <machine/asm.h>
122#include <machine/trap.h>
123
124FUNC(NAME)
125ifelse(S, `true',
126`	! compute sign of result; if neither is negative, no problem
127	orcc	divisor, dividend, %g0	! either negative?
128	bge	2f			! no, go do the divide
129	ifelse(OP, `div',
130		`xor	divisor, dividend, SIGN',
131		`mov	dividend, SIGN')	! compute sign in any case
132	tst	divisor
133	bge	1f
134	tst	dividend
135	! divisor is definitely negative; dividend might also be negative
136	bge	2f			! if dividend not negative...
137	neg	divisor			! in any case, make divisor nonneg
1381:	! dividend is negative, divisor is nonnegative
139	neg	dividend		! make dividend nonnegative
1402:
141')
142	! Ready to divide.  Compute size of quotient; scale comparand.
143	orcc	divisor, %g0, V
144	bnz	1f
145	mov	dividend, R
146
147		! Divide by zero trap.  If it returns, return 0 (about as
148		! wrong as possible, but that is what SunOS does...).
149		t	ST_DIV0
150		retl
151		clr	%o0
152
1531:
154	cmp	R, V			! if divisor exceeds dividend, done
155	blu	Lgot_result		! (and algorithm fails otherwise)
156	clr	Q
157	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
158	cmp	R, T
159	blu	Lnot_really_big
160	clr	ITER
161
162	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
163	! as our usual N-at-a-shot divide step will cause overflow and havoc.
164	! The number of bits in the result here is N*ITER+SC, where SC <= N.
165	! Compute ITER in an unorthodox manner: know we need to shift V into
166	! the top decade: so do not even bother to compare to R.'
167	1:
168		cmp	V, T
169		bgeu	3f
170		mov	1, SC
171		sll	V, N, V
172		b	1b
173		inc	ITER
174
175	! Now compute SC.
176	2:	addcc	V, V, V
177		bcc	Lnot_too_big
178		inc	SC
179
180		! We get here if the divisor overflowed while shifting.
181		! This means that R has the high-order bit set.
182		! Restore V and subtract from R.
183		sll	T, TOPBITS, T	! high order bit
184		srl	V, 1, V		! rest of V
185		add	V, T, V
186		b	Ldo_single_div
187		dec	SC
188
189	Lnot_too_big:
190	3:	cmp	V, R
191		blu	2b
192		nop
193		be	Ldo_single_div
194		nop
195	/* NB: these are commented out in the V8-Sparc manual as well */
196	/* (I do not understand this) */
197	! V > R: went too far: back up 1 step
198	!	srl	V, 1, V
199	!	dec	SC
200	! do single-bit divide steps
201	!
202	! We have to be careful here.  We know that R >= V, so we can do the
203	! first divide step without thinking.  BUT, the others are conditional,
204	! and are only done if R >= 0.  Because both R and V may have the high-
205	! order bit set in the first step, just falling into the regular
206	! division loop will mess up the first time around.
207	! So we unroll slightly...
208	Ldo_single_div:
209		deccc	SC
210		bl	Lend_regular_divide
211		nop
212		sub	R, V, R
213		mov	1, Q
214		b	Lend_single_divloop
215		nop
216	Lsingle_divloop:
217		sll	Q, 1, Q
218		bl	1f
219		srl	V, 1, V
220		! R >= 0
221		sub	R, V, R
222		b	2f
223		inc	Q
224	1:	! R < 0
225		add	R, V, R
226		dec	Q
227	2:
228	Lend_single_divloop:
229		deccc	SC
230		bge	Lsingle_divloop
231		tst	R
232		b,a	Lend_regular_divide
233
234Lnot_really_big:
2351:
236	sll	V, N, V
237	cmp	V, R
238	bleu	1b
239	inccc	ITER
240	be	Lgot_result
241	dec	ITER
242
243	tst	R	! set up for initial iteration
244Ldivloop:
245	sll	Q, N, Q
246	DEVELOP_QUOTIENT_BITS(1, 0)
247Lend_regular_divide:
248	deccc	ITER
249	bge	Ldivloop
250	tst	R
251	bl,a	Lgot_result
252	! non-restoring fixup here (one instruction only!)
253ifelse(OP, `div',
254`	dec	Q
255', `	add	R, divisor, R
256')
257
258Lgot_result:
259ifelse(S, `true',
260`	! check to see if answer should be < 0
261	tst	SIGN
262	bl,a	1f
263	ifelse(OP, `div', `neg Q', `neg R')
2641:')
265	retl
266	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
267