xref: /openbsd/lib/libc/hash/sha2.c (revision 5af055cd)
1 /*	$OpenBSD: sha2.c,v 1.24 2015/09/11 09:18:27 guenther Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 #include <sys/types.h>
38 
39 #include <string.h>
40 #include <sha2.h>
41 
42 /*
43  * UNROLLED TRANSFORM LOOP NOTE:
44  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
45  * loop version for the hash transform rounds (defined using macros
46  * later in this file).  Either define on the command line, for example:
47  *
48  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
49  *
50  * or define below:
51  *
52  *   #define SHA2_UNROLL_TRANSFORM
53  *
54  */
55 #ifndef SHA2_SMALL
56 #if defined(__amd64__) || defined(__i386__)
57 #define SHA2_UNROLL_TRANSFORM
58 #endif
59 #endif
60 
61 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
62 /*
63  * BYTE_ORDER NOTE:
64  *
65  * Please make sure that your system defines BYTE_ORDER.  If your
66  * architecture is little-endian, make sure it also defines
67  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
68  * equivilent.
69  *
70  * If your system does not define the above, then you can do so by
71  * hand like this:
72  *
73  *   #define LITTLE_ENDIAN 1234
74  *   #define BIG_ENDIAN    4321
75  *
76  * And for little-endian machines, add:
77  *
78  *   #define BYTE_ORDER LITTLE_ENDIAN
79  *
80  * Or for big-endian machines:
81  *
82  *   #define BYTE_ORDER BIG_ENDIAN
83  *
84  * The FreeBSD machine this was written on defines BYTE_ORDER
85  * appropriately by including <sys/types.h> (which in turn includes
86  * <machine/endian.h> where the appropriate definitions are actually
87  * made).
88  */
89 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
90 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
91 #endif
92 
93 
94 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
95 /* NOTE: Most of these are in sha2.h */
96 #define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
97 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
98 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
99 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
100 
101 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
102 #define BE_8_TO_32(dst, cp) do {					\
103 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
104 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
105 } while(0)
106 
107 #define BE_8_TO_64(dst, cp) do {					\
108 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
109 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
110 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
111 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
112 } while (0)
113 
114 #define BE_64_TO_8(cp, src) do {					\
115 	(cp)[0] = (src) >> 56;						\
116         (cp)[1] = (src) >> 48;						\
117 	(cp)[2] = (src) >> 40;						\
118 	(cp)[3] = (src) >> 32;						\
119 	(cp)[4] = (src) >> 24;						\
120 	(cp)[5] = (src) >> 16;						\
121 	(cp)[6] = (src) >> 8;						\
122 	(cp)[7] = (src);						\
123 } while (0)
124 
125 #define BE_32_TO_8(cp, src) do {					\
126 	(cp)[0] = (src) >> 24;						\
127 	(cp)[1] = (src) >> 16;						\
128 	(cp)[2] = (src) >> 8;						\
129 	(cp)[3] = (src);						\
130 } while (0)
131 
132 /*
133  * Macro for incrementally adding the unsigned 64-bit integer n to the
134  * unsigned 128-bit integer (represented using a two-element array of
135  * 64-bit words):
136  */
137 #define ADDINC128(w,n) do {						\
138 	(w)[0] += (u_int64_t)(n);					\
139 	if ((w)[0] < (n)) {						\
140 		(w)[1]++;						\
141 	}								\
142 } while (0)
143 
144 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
145 /*
146  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
147  *
148  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
149  *   S is a ROTATION) because the SHA-224/256/384/512 description document
150  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
151  *   same "backwards" definition.
152  */
153 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
154 #define R(b,x) 		((x) >> (b))
155 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
156 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
157 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
158 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
159 
160 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
161 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
162 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
163 
164 /* Four of six logical functions used in SHA-224 and SHA-256: */
165 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
166 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
167 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
168 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
169 
170 /* Four of six logical functions used in SHA-384 and SHA-512: */
171 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
172 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
173 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
174 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
175 
176 
177 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
178 /* Hash constant words K for SHA-224 and SHA-256: */
179 static const u_int32_t K256[64] = {
180 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
181 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
182 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
183 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
184 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
185 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
186 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
187 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
188 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
189 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
190 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
191 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
192 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
193 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
194 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
195 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
196 };
197 
198 /* Initial hash value H for SHA-224: */
199 static const u_int32_t sha224_initial_hash_value[8] = {
200 	0xc1059ed8UL,
201 	0x367cd507UL,
202 	0x3070dd17UL,
203 	0xf70e5939UL,
204 	0xffc00b31UL,
205 	0x68581511UL,
206 	0x64f98fa7UL,
207 	0xbefa4fa4UL
208 };
209 
210 /* Initial hash value H for SHA-256: */
211 static const u_int32_t sha256_initial_hash_value[8] = {
212 	0x6a09e667UL,
213 	0xbb67ae85UL,
214 	0x3c6ef372UL,
215 	0xa54ff53aUL,
216 	0x510e527fUL,
217 	0x9b05688cUL,
218 	0x1f83d9abUL,
219 	0x5be0cd19UL
220 };
221 
222 /* Hash constant words K for SHA-384 and SHA-512: */
223 static const u_int64_t K512[80] = {
224 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
225 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
226 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
227 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
228 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
229 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
230 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
231 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
232 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
233 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
234 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
235 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
236 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
237 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
238 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
239 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
240 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
241 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
242 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
243 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
244 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
245 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
246 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
247 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
248 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
249 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
250 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
251 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
252 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
253 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
254 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
255 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
256 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
257 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
258 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
259 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
260 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
261 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
262 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
263 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
264 };
265 
266 /* Initial hash value H for SHA-512 */
267 static const u_int64_t sha512_initial_hash_value[8] = {
268 	0x6a09e667f3bcc908ULL,
269 	0xbb67ae8584caa73bULL,
270 	0x3c6ef372fe94f82bULL,
271 	0xa54ff53a5f1d36f1ULL,
272 	0x510e527fade682d1ULL,
273 	0x9b05688c2b3e6c1fULL,
274 	0x1f83d9abfb41bd6bULL,
275 	0x5be0cd19137e2179ULL
276 };
277 
278 #if !defined(SHA2_SMALL)
279 /* Initial hash value H for SHA-384 */
280 static const u_int64_t sha384_initial_hash_value[8] = {
281 	0xcbbb9d5dc1059ed8ULL,
282 	0x629a292a367cd507ULL,
283 	0x9159015a3070dd17ULL,
284 	0x152fecd8f70e5939ULL,
285 	0x67332667ffc00b31ULL,
286 	0x8eb44a8768581511ULL,
287 	0xdb0c2e0d64f98fa7ULL,
288 	0x47b5481dbefa4fa4ULL
289 };
290 
291 /*** SHA-224: *********************************************************/
292 void
293 SHA224Init(SHA2_CTX *context)
294 {
295 	memcpy(context->state.st32, sha224_initial_hash_value,
296 	    sizeof(sha224_initial_hash_value));
297 	memset(context->buffer, 0, sizeof(context->buffer));
298 	context->bitcount[0] = 0;
299 }
300 DEF_WEAK(SHA224Init);
301 
302 MAKE_CLONE(SHA224Transform, SHA256Transform);
303 MAKE_CLONE(SHA224Update, SHA256Update);
304 MAKE_CLONE(SHA224Pad, SHA256Pad);
305 DEF_WEAK(SHA224Transform);
306 DEF_WEAK(SHA224Update);
307 DEF_WEAK(SHA224Pad);
308 
309 void
310 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
311 {
312 	SHA224Pad(context);
313 
314 #if BYTE_ORDER == LITTLE_ENDIAN
315 	int	i;
316 
317 	/* Convert TO host byte order */
318 	for (i = 0; i < 7; i++)
319 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
320 #else
321 	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
322 #endif
323 	explicit_bzero(context, sizeof(*context));
324 }
325 DEF_WEAK(SHA224Final);
326 #endif /* !defined(SHA2_SMALL) */
327 
328 /*** SHA-256: *********************************************************/
329 void
330 SHA256Init(SHA2_CTX *context)
331 {
332 	memcpy(context->state.st32, sha256_initial_hash_value,
333 	    sizeof(sha256_initial_hash_value));
334 	memset(context->buffer, 0, sizeof(context->buffer));
335 	context->bitcount[0] = 0;
336 }
337 DEF_WEAK(SHA256Init);
338 
339 #ifdef SHA2_UNROLL_TRANSFORM
340 
341 /* Unrolled SHA-256 round macros: */
342 
343 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
344 	BE_8_TO_32(W256[j], data);					    \
345 	data += 4;							    \
346 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
347 	(d) += T1;							    \
348 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
349 	j++;								    \
350 } while(0)
351 
352 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
353 	s0 = W256[(j+1)&0x0f];						    \
354 	s0 = sigma0_256(s0);						    \
355 	s1 = W256[(j+14)&0x0f];						    \
356 	s1 = sigma1_256(s1);						    \
357 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
358 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
359 	(d) += T1;							    \
360 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
361 	j++;								    \
362 } while(0)
363 
364 void
365 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
366 {
367 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
368 	u_int32_t	T1, W256[16];
369 	int		j;
370 
371 	/* Initialize registers with the prev. intermediate value */
372 	a = state[0];
373 	b = state[1];
374 	c = state[2];
375 	d = state[3];
376 	e = state[4];
377 	f = state[5];
378 	g = state[6];
379 	h = state[7];
380 
381 	j = 0;
382 	do {
383 		/* Rounds 0 to 15 (unrolled): */
384 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
385 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
386 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
387 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
388 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
389 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
390 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
391 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
392 	} while (j < 16);
393 
394 	/* Now for the remaining rounds up to 63: */
395 	do {
396 		ROUND256(a,b,c,d,e,f,g,h);
397 		ROUND256(h,a,b,c,d,e,f,g);
398 		ROUND256(g,h,a,b,c,d,e,f);
399 		ROUND256(f,g,h,a,b,c,d,e);
400 		ROUND256(e,f,g,h,a,b,c,d);
401 		ROUND256(d,e,f,g,h,a,b,c);
402 		ROUND256(c,d,e,f,g,h,a,b);
403 		ROUND256(b,c,d,e,f,g,h,a);
404 	} while (j < 64);
405 
406 	/* Compute the current intermediate hash value */
407 	state[0] += a;
408 	state[1] += b;
409 	state[2] += c;
410 	state[3] += d;
411 	state[4] += e;
412 	state[5] += f;
413 	state[6] += g;
414 	state[7] += h;
415 
416 	/* Clean up */
417 	a = b = c = d = e = f = g = h = T1 = 0;
418 }
419 
420 #else /* SHA2_UNROLL_TRANSFORM */
421 
422 void
423 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
424 {
425 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
426 	u_int32_t	T1, T2, W256[16];
427 	int		j;
428 
429 	/* Initialize registers with the prev. intermediate value */
430 	a = state[0];
431 	b = state[1];
432 	c = state[2];
433 	d = state[3];
434 	e = state[4];
435 	f = state[5];
436 	g = state[6];
437 	h = state[7];
438 
439 	j = 0;
440 	do {
441 		BE_8_TO_32(W256[j], data);
442 		data += 4;
443 		/* Apply the SHA-256 compression function to update a..h */
444 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445 		T2 = Sigma0_256(a) + Maj(a, b, c);
446 		h = g;
447 		g = f;
448 		f = e;
449 		e = d + T1;
450 		d = c;
451 		c = b;
452 		b = a;
453 		a = T1 + T2;
454 
455 		j++;
456 	} while (j < 16);
457 
458 	do {
459 		/* Part of the message block expansion: */
460 		s0 = W256[(j+1)&0x0f];
461 		s0 = sigma0_256(s0);
462 		s1 = W256[(j+14)&0x0f];
463 		s1 = sigma1_256(s1);
464 
465 		/* Apply the SHA-256 compression function to update a..h */
466 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
467 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
468 		T2 = Sigma0_256(a) + Maj(a, b, c);
469 		h = g;
470 		g = f;
471 		f = e;
472 		e = d + T1;
473 		d = c;
474 		c = b;
475 		b = a;
476 		a = T1 + T2;
477 
478 		j++;
479 	} while (j < 64);
480 
481 	/* Compute the current intermediate hash value */
482 	state[0] += a;
483 	state[1] += b;
484 	state[2] += c;
485 	state[3] += d;
486 	state[4] += e;
487 	state[5] += f;
488 	state[6] += g;
489 	state[7] += h;
490 
491 	/* Clean up */
492 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
493 }
494 
495 #endif /* SHA2_UNROLL_TRANSFORM */
496 DEF_WEAK(SHA256Transform);
497 
498 void
499 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
500 {
501 	size_t	freespace, usedspace;
502 
503 	/* Calling with no data is valid (we do nothing) */
504 	if (len == 0)
505 		return;
506 
507 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
508 	if (usedspace > 0) {
509 		/* Calculate how much free space is available in the buffer */
510 		freespace = SHA256_BLOCK_LENGTH - usedspace;
511 
512 		if (len >= freespace) {
513 			/* Fill the buffer completely and process it */
514 			memcpy(&context->buffer[usedspace], data, freespace);
515 			context->bitcount[0] += freespace << 3;
516 			len -= freespace;
517 			data += freespace;
518 			SHA256Transform(context->state.st32, context->buffer);
519 		} else {
520 			/* The buffer is not yet full */
521 			memcpy(&context->buffer[usedspace], data, len);
522 			context->bitcount[0] += len << 3;
523 			/* Clean up: */
524 			usedspace = freespace = 0;
525 			return;
526 		}
527 	}
528 	while (len >= SHA256_BLOCK_LENGTH) {
529 		/* Process as many complete blocks as we can */
530 		SHA256Transform(context->state.st32, data);
531 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
532 		len -= SHA256_BLOCK_LENGTH;
533 		data += SHA256_BLOCK_LENGTH;
534 	}
535 	if (len > 0) {
536 		/* There's left-overs, so save 'em */
537 		memcpy(context->buffer, data, len);
538 		context->bitcount[0] += len << 3;
539 	}
540 	/* Clean up: */
541 	usedspace = freespace = 0;
542 }
543 DEF_WEAK(SHA256Update);
544 
545 void
546 SHA256Pad(SHA2_CTX *context)
547 {
548 	unsigned int	usedspace;
549 
550 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
551 	if (usedspace > 0) {
552 		/* Begin padding with a 1 bit: */
553 		context->buffer[usedspace++] = 0x80;
554 
555 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
556 			/* Set-up for the last transform: */
557 			memset(&context->buffer[usedspace], 0,
558 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
559 		} else {
560 			if (usedspace < SHA256_BLOCK_LENGTH) {
561 				memset(&context->buffer[usedspace], 0,
562 				    SHA256_BLOCK_LENGTH - usedspace);
563 			}
564 			/* Do second-to-last transform: */
565 			SHA256Transform(context->state.st32, context->buffer);
566 
567 			/* Prepare for last transform: */
568 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
569 		}
570 	} else {
571 		/* Set-up for the last transform: */
572 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
573 
574 		/* Begin padding with a 1 bit: */
575 		*context->buffer = 0x80;
576 	}
577 	/* Store the length of input data (in bits) in big endian format: */
578 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
579 	    context->bitcount[0]);
580 
581 	/* Final transform: */
582 	SHA256Transform(context->state.st32, context->buffer);
583 
584 	/* Clean up: */
585 	usedspace = 0;
586 }
587 DEF_WEAK(SHA256Pad);
588 
589 void
590 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
591 {
592 	SHA256Pad(context);
593 
594 #if BYTE_ORDER == LITTLE_ENDIAN
595 	int	i;
596 
597 	/* Convert TO host byte order */
598 	for (i = 0; i < 8; i++)
599 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
600 #else
601 	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
602 #endif
603 	explicit_bzero(context, sizeof(*context));
604 }
605 DEF_WEAK(SHA256Final);
606 
607 
608 /*** SHA-512: *********************************************************/
609 void
610 SHA512Init(SHA2_CTX *context)
611 {
612 	memcpy(context->state.st64, sha512_initial_hash_value,
613 	    sizeof(sha512_initial_hash_value));
614 	memset(context->buffer, 0, sizeof(context->buffer));
615 	context->bitcount[0] = context->bitcount[1] =  0;
616 }
617 DEF_WEAK(SHA512Init);
618 
619 #ifdef SHA2_UNROLL_TRANSFORM
620 
621 /* Unrolled SHA-512 round macros: */
622 
623 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
624 	BE_8_TO_64(W512[j], data);					    \
625 	data += 8;							    \
626 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
627 	(d) += T1;							    \
628 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
629 	j++;								    \
630 } while(0)
631 
632 
633 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
634 	s0 = W512[(j+1)&0x0f];						    \
635 	s0 = sigma0_512(s0);						    \
636 	s1 = W512[(j+14)&0x0f];						    \
637 	s1 = sigma1_512(s1);						    \
638 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
639              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
640 	(d) += T1;							    \
641 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
642 	j++;								    \
643 } while(0)
644 
645 void
646 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
647 {
648 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
649 	u_int64_t	T1, W512[16];
650 	int		j;
651 
652 	/* Initialize registers with the prev. intermediate value */
653 	a = state[0];
654 	b = state[1];
655 	c = state[2];
656 	d = state[3];
657 	e = state[4];
658 	f = state[5];
659 	g = state[6];
660 	h = state[7];
661 
662 	j = 0;
663 	do {
664 		/* Rounds 0 to 15 (unrolled): */
665 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
666 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
667 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
668 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
669 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
670 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
671 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
672 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
673 	} while (j < 16);
674 
675 	/* Now for the remaining rounds up to 79: */
676 	do {
677 		ROUND512(a,b,c,d,e,f,g,h);
678 		ROUND512(h,a,b,c,d,e,f,g);
679 		ROUND512(g,h,a,b,c,d,e,f);
680 		ROUND512(f,g,h,a,b,c,d,e);
681 		ROUND512(e,f,g,h,a,b,c,d);
682 		ROUND512(d,e,f,g,h,a,b,c);
683 		ROUND512(c,d,e,f,g,h,a,b);
684 		ROUND512(b,c,d,e,f,g,h,a);
685 	} while (j < 80);
686 
687 	/* Compute the current intermediate hash value */
688 	state[0] += a;
689 	state[1] += b;
690 	state[2] += c;
691 	state[3] += d;
692 	state[4] += e;
693 	state[5] += f;
694 	state[6] += g;
695 	state[7] += h;
696 
697 	/* Clean up */
698 	a = b = c = d = e = f = g = h = T1 = 0;
699 }
700 
701 #else /* SHA2_UNROLL_TRANSFORM */
702 
703 void
704 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
705 {
706 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
707 	u_int64_t	T1, T2, W512[16];
708 	int		j;
709 
710 	/* Initialize registers with the prev. intermediate value */
711 	a = state[0];
712 	b = state[1];
713 	c = state[2];
714 	d = state[3];
715 	e = state[4];
716 	f = state[5];
717 	g = state[6];
718 	h = state[7];
719 
720 	j = 0;
721 	do {
722 		BE_8_TO_64(W512[j], data);
723 		data += 8;
724 		/* Apply the SHA-512 compression function to update a..h */
725 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
726 		T2 = Sigma0_512(a) + Maj(a, b, c);
727 		h = g;
728 		g = f;
729 		f = e;
730 		e = d + T1;
731 		d = c;
732 		c = b;
733 		b = a;
734 		a = T1 + T2;
735 
736 		j++;
737 	} while (j < 16);
738 
739 	do {
740 		/* Part of the message block expansion: */
741 		s0 = W512[(j+1)&0x0f];
742 		s0 = sigma0_512(s0);
743 		s1 = W512[(j+14)&0x0f];
744 		s1 =  sigma1_512(s1);
745 
746 		/* Apply the SHA-512 compression function to update a..h */
747 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
748 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
749 		T2 = Sigma0_512(a) + Maj(a, b, c);
750 		h = g;
751 		g = f;
752 		f = e;
753 		e = d + T1;
754 		d = c;
755 		c = b;
756 		b = a;
757 		a = T1 + T2;
758 
759 		j++;
760 	} while (j < 80);
761 
762 	/* Compute the current intermediate hash value */
763 	state[0] += a;
764 	state[1] += b;
765 	state[2] += c;
766 	state[3] += d;
767 	state[4] += e;
768 	state[5] += f;
769 	state[6] += g;
770 	state[7] += h;
771 
772 	/* Clean up */
773 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
774 }
775 
776 #endif /* SHA2_UNROLL_TRANSFORM */
777 DEF_WEAK(SHA512Transform);
778 
779 void
780 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
781 {
782 	size_t	freespace, usedspace;
783 
784 	/* Calling with no data is valid (we do nothing) */
785 	if (len == 0)
786 		return;
787 
788 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
789 	if (usedspace > 0) {
790 		/* Calculate how much free space is available in the buffer */
791 		freespace = SHA512_BLOCK_LENGTH - usedspace;
792 
793 		if (len >= freespace) {
794 			/* Fill the buffer completely and process it */
795 			memcpy(&context->buffer[usedspace], data, freespace);
796 			ADDINC128(context->bitcount, freespace << 3);
797 			len -= freespace;
798 			data += freespace;
799 			SHA512Transform(context->state.st64, context->buffer);
800 		} else {
801 			/* The buffer is not yet full */
802 			memcpy(&context->buffer[usedspace], data, len);
803 			ADDINC128(context->bitcount, len << 3);
804 			/* Clean up: */
805 			usedspace = freespace = 0;
806 			return;
807 		}
808 	}
809 	while (len >= SHA512_BLOCK_LENGTH) {
810 		/* Process as many complete blocks as we can */
811 		SHA512Transform(context->state.st64, data);
812 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
813 		len -= SHA512_BLOCK_LENGTH;
814 		data += SHA512_BLOCK_LENGTH;
815 	}
816 	if (len > 0) {
817 		/* There's left-overs, so save 'em */
818 		memcpy(context->buffer, data, len);
819 		ADDINC128(context->bitcount, len << 3);
820 	}
821 	/* Clean up: */
822 	usedspace = freespace = 0;
823 }
824 DEF_WEAK(SHA512Update);
825 
826 void
827 SHA512Pad(SHA2_CTX *context)
828 {
829 	unsigned int	usedspace;
830 
831 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
832 	if (usedspace > 0) {
833 		/* Begin padding with a 1 bit: */
834 		context->buffer[usedspace++] = 0x80;
835 
836 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
837 			/* Set-up for the last transform: */
838 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
839 		} else {
840 			if (usedspace < SHA512_BLOCK_LENGTH) {
841 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
842 			}
843 			/* Do second-to-last transform: */
844 			SHA512Transform(context->state.st64, context->buffer);
845 
846 			/* And set-up for the last transform: */
847 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
848 		}
849 	} else {
850 		/* Prepare for final transform: */
851 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
852 
853 		/* Begin padding with a 1 bit: */
854 		*context->buffer = 0x80;
855 	}
856 	/* Store the length of input data (in bits) in big endian format: */
857 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
858 	    context->bitcount[1]);
859 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
860 	    context->bitcount[0]);
861 
862 	/* Final transform: */
863 	SHA512Transform(context->state.st64, context->buffer);
864 
865 	/* Clean up: */
866 	usedspace = 0;
867 }
868 DEF_WEAK(SHA512Pad);
869 
870 void
871 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
872 {
873 	SHA512Pad(context);
874 
875 #if BYTE_ORDER == LITTLE_ENDIAN
876 	int	i;
877 
878 	/* Convert TO host byte order */
879 	for (i = 0; i < 8; i++)
880 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
881 #else
882 	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
883 #endif
884 	explicit_bzero(context, sizeof(*context));
885 }
886 DEF_WEAK(SHA512Final);
887 
888 #if !defined(SHA2_SMALL)
889 
890 /*** SHA-384: *********************************************************/
891 void
892 SHA384Init(SHA2_CTX *context)
893 {
894 	memcpy(context->state.st64, sha384_initial_hash_value,
895 	    sizeof(sha384_initial_hash_value));
896 	memset(context->buffer, 0, sizeof(context->buffer));
897 	context->bitcount[0] = context->bitcount[1] = 0;
898 }
899 DEF_WEAK(SHA384Init);
900 
901 MAKE_CLONE(SHA384Transform, SHA512Transform);
902 MAKE_CLONE(SHA384Update, SHA512Update);
903 MAKE_CLONE(SHA384Pad, SHA512Pad);
904 DEF_WEAK(SHA384Transform);
905 DEF_WEAK(SHA384Update);
906 DEF_WEAK(SHA384Pad);
907 
908 void
909 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
910 {
911 	SHA384Pad(context);
912 
913 #if BYTE_ORDER == LITTLE_ENDIAN
914 	int	i;
915 
916 	/* Convert TO host byte order */
917 	for (i = 0; i < 6; i++)
918 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
919 #else
920 	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
921 #endif
922 	/* Zero out state data */
923 	explicit_bzero(context, sizeof(*context));
924 }
925 DEF_WEAK(SHA384Final);
926 #endif /* !defined(SHA2_SMALL) */
927