1 /* $OpenBSD: sha2.c,v 1.24 2015/09/11 09:18:27 guenther Exp $ */ 2 3 /* 4 * FILE: sha2.c 5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com> 6 * 7 * Copyright (c) 2000-2001, Aaron D. Gifford 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the copyright holder nor the names of contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 35 */ 36 37 #include <sys/types.h> 38 39 #include <string.h> 40 #include <sha2.h> 41 42 /* 43 * UNROLLED TRANSFORM LOOP NOTE: 44 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 45 * loop version for the hash transform rounds (defined using macros 46 * later in this file). Either define on the command line, for example: 47 * 48 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 49 * 50 * or define below: 51 * 52 * #define SHA2_UNROLL_TRANSFORM 53 * 54 */ 55 #ifndef SHA2_SMALL 56 #if defined(__amd64__) || defined(__i386__) 57 #define SHA2_UNROLL_TRANSFORM 58 #endif 59 #endif 60 61 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ 62 /* 63 * BYTE_ORDER NOTE: 64 * 65 * Please make sure that your system defines BYTE_ORDER. If your 66 * architecture is little-endian, make sure it also defines 67 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 68 * equivilent. 69 * 70 * If your system does not define the above, then you can do so by 71 * hand like this: 72 * 73 * #define LITTLE_ENDIAN 1234 74 * #define BIG_ENDIAN 4321 75 * 76 * And for little-endian machines, add: 77 * 78 * #define BYTE_ORDER LITTLE_ENDIAN 79 * 80 * Or for big-endian machines: 81 * 82 * #define BYTE_ORDER BIG_ENDIAN 83 * 84 * The FreeBSD machine this was written on defines BYTE_ORDER 85 * appropriately by including <sys/types.h> (which in turn includes 86 * <machine/endian.h> where the appropriate definitions are actually 87 * made). 88 */ 89 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 90 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 91 #endif 92 93 94 /*** SHA-224/256/384/512 Various Length Definitions ***********************/ 95 /* NOTE: Most of these are in sha2.h */ 96 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8) 97 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) 98 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) 99 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) 100 101 /*** ENDIAN SPECIFIC COPY MACROS **************************************/ 102 #define BE_8_TO_32(dst, cp) do { \ 103 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ 104 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ 105 } while(0) 106 107 #define BE_8_TO_64(dst, cp) do { \ 108 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ 109 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ 110 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ 111 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ 112 } while (0) 113 114 #define BE_64_TO_8(cp, src) do { \ 115 (cp)[0] = (src) >> 56; \ 116 (cp)[1] = (src) >> 48; \ 117 (cp)[2] = (src) >> 40; \ 118 (cp)[3] = (src) >> 32; \ 119 (cp)[4] = (src) >> 24; \ 120 (cp)[5] = (src) >> 16; \ 121 (cp)[6] = (src) >> 8; \ 122 (cp)[7] = (src); \ 123 } while (0) 124 125 #define BE_32_TO_8(cp, src) do { \ 126 (cp)[0] = (src) >> 24; \ 127 (cp)[1] = (src) >> 16; \ 128 (cp)[2] = (src) >> 8; \ 129 (cp)[3] = (src); \ 130 } while (0) 131 132 /* 133 * Macro for incrementally adding the unsigned 64-bit integer n to the 134 * unsigned 128-bit integer (represented using a two-element array of 135 * 64-bit words): 136 */ 137 #define ADDINC128(w,n) do { \ 138 (w)[0] += (u_int64_t)(n); \ 139 if ((w)[0] < (n)) { \ 140 (w)[1]++; \ 141 } \ 142 } while (0) 143 144 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 145 /* 146 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 147 * 148 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 149 * S is a ROTATION) because the SHA-224/256/384/512 description document 150 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 151 * same "backwards" definition. 152 */ 153 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ 154 #define R(b,x) ((x) >> (b)) 155 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ 156 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 157 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 158 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 159 160 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ 161 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 162 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 163 164 /* Four of six logical functions used in SHA-224 and SHA-256: */ 165 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 166 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 167 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 168 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 169 170 /* Four of six logical functions used in SHA-384 and SHA-512: */ 171 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 172 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 173 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 174 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 175 176 177 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 178 /* Hash constant words K for SHA-224 and SHA-256: */ 179 static const u_int32_t K256[64] = { 180 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 181 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 182 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 183 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 184 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 185 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 186 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 187 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 188 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 189 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 190 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 191 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 192 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 193 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 194 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 195 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 196 }; 197 198 /* Initial hash value H for SHA-224: */ 199 static const u_int32_t sha224_initial_hash_value[8] = { 200 0xc1059ed8UL, 201 0x367cd507UL, 202 0x3070dd17UL, 203 0xf70e5939UL, 204 0xffc00b31UL, 205 0x68581511UL, 206 0x64f98fa7UL, 207 0xbefa4fa4UL 208 }; 209 210 /* Initial hash value H for SHA-256: */ 211 static const u_int32_t sha256_initial_hash_value[8] = { 212 0x6a09e667UL, 213 0xbb67ae85UL, 214 0x3c6ef372UL, 215 0xa54ff53aUL, 216 0x510e527fUL, 217 0x9b05688cUL, 218 0x1f83d9abUL, 219 0x5be0cd19UL 220 }; 221 222 /* Hash constant words K for SHA-384 and SHA-512: */ 223 static const u_int64_t K512[80] = { 224 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 225 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 226 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 227 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 228 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 229 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 230 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 231 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 232 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 233 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 234 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 235 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 236 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 237 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 238 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 239 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 240 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 241 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 242 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 243 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 244 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 245 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 246 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 247 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 248 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 249 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 250 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 251 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 252 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 253 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 254 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 255 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 256 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 257 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 258 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 259 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 260 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 261 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 262 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 263 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 264 }; 265 266 /* Initial hash value H for SHA-512 */ 267 static const u_int64_t sha512_initial_hash_value[8] = { 268 0x6a09e667f3bcc908ULL, 269 0xbb67ae8584caa73bULL, 270 0x3c6ef372fe94f82bULL, 271 0xa54ff53a5f1d36f1ULL, 272 0x510e527fade682d1ULL, 273 0x9b05688c2b3e6c1fULL, 274 0x1f83d9abfb41bd6bULL, 275 0x5be0cd19137e2179ULL 276 }; 277 278 #if !defined(SHA2_SMALL) 279 /* Initial hash value H for SHA-384 */ 280 static const u_int64_t sha384_initial_hash_value[8] = { 281 0xcbbb9d5dc1059ed8ULL, 282 0x629a292a367cd507ULL, 283 0x9159015a3070dd17ULL, 284 0x152fecd8f70e5939ULL, 285 0x67332667ffc00b31ULL, 286 0x8eb44a8768581511ULL, 287 0xdb0c2e0d64f98fa7ULL, 288 0x47b5481dbefa4fa4ULL 289 }; 290 291 /*** SHA-224: *********************************************************/ 292 void 293 SHA224Init(SHA2_CTX *context) 294 { 295 memcpy(context->state.st32, sha224_initial_hash_value, 296 sizeof(sha224_initial_hash_value)); 297 memset(context->buffer, 0, sizeof(context->buffer)); 298 context->bitcount[0] = 0; 299 } 300 DEF_WEAK(SHA224Init); 301 302 MAKE_CLONE(SHA224Transform, SHA256Transform); 303 MAKE_CLONE(SHA224Update, SHA256Update); 304 MAKE_CLONE(SHA224Pad, SHA256Pad); 305 DEF_WEAK(SHA224Transform); 306 DEF_WEAK(SHA224Update); 307 DEF_WEAK(SHA224Pad); 308 309 void 310 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context) 311 { 312 SHA224Pad(context); 313 314 #if BYTE_ORDER == LITTLE_ENDIAN 315 int i; 316 317 /* Convert TO host byte order */ 318 for (i = 0; i < 7; i++) 319 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 320 #else 321 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH); 322 #endif 323 explicit_bzero(context, sizeof(*context)); 324 } 325 DEF_WEAK(SHA224Final); 326 #endif /* !defined(SHA2_SMALL) */ 327 328 /*** SHA-256: *********************************************************/ 329 void 330 SHA256Init(SHA2_CTX *context) 331 { 332 memcpy(context->state.st32, sha256_initial_hash_value, 333 sizeof(sha256_initial_hash_value)); 334 memset(context->buffer, 0, sizeof(context->buffer)); 335 context->bitcount[0] = 0; 336 } 337 DEF_WEAK(SHA256Init); 338 339 #ifdef SHA2_UNROLL_TRANSFORM 340 341 /* Unrolled SHA-256 round macros: */ 342 343 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ 344 BE_8_TO_32(W256[j], data); \ 345 data += 4; \ 346 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ 347 (d) += T1; \ 348 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 349 j++; \ 350 } while(0) 351 352 #define ROUND256(a,b,c,d,e,f,g,h) do { \ 353 s0 = W256[(j+1)&0x0f]; \ 354 s0 = sigma0_256(s0); \ 355 s1 = W256[(j+14)&0x0f]; \ 356 s1 = sigma1_256(s1); \ 357 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ 358 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 359 (d) += T1; \ 360 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ 361 j++; \ 362 } while(0) 363 364 void 365 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 366 { 367 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 368 u_int32_t T1, W256[16]; 369 int j; 370 371 /* Initialize registers with the prev. intermediate value */ 372 a = state[0]; 373 b = state[1]; 374 c = state[2]; 375 d = state[3]; 376 e = state[4]; 377 f = state[5]; 378 g = state[6]; 379 h = state[7]; 380 381 j = 0; 382 do { 383 /* Rounds 0 to 15 (unrolled): */ 384 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 385 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 386 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 387 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 388 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 389 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 390 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 391 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 392 } while (j < 16); 393 394 /* Now for the remaining rounds up to 63: */ 395 do { 396 ROUND256(a,b,c,d,e,f,g,h); 397 ROUND256(h,a,b,c,d,e,f,g); 398 ROUND256(g,h,a,b,c,d,e,f); 399 ROUND256(f,g,h,a,b,c,d,e); 400 ROUND256(e,f,g,h,a,b,c,d); 401 ROUND256(d,e,f,g,h,a,b,c); 402 ROUND256(c,d,e,f,g,h,a,b); 403 ROUND256(b,c,d,e,f,g,h,a); 404 } while (j < 64); 405 406 /* Compute the current intermediate hash value */ 407 state[0] += a; 408 state[1] += b; 409 state[2] += c; 410 state[3] += d; 411 state[4] += e; 412 state[5] += f; 413 state[6] += g; 414 state[7] += h; 415 416 /* Clean up */ 417 a = b = c = d = e = f = g = h = T1 = 0; 418 } 419 420 #else /* SHA2_UNROLL_TRANSFORM */ 421 422 void 423 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH]) 424 { 425 u_int32_t a, b, c, d, e, f, g, h, s0, s1; 426 u_int32_t T1, T2, W256[16]; 427 int j; 428 429 /* Initialize registers with the prev. intermediate value */ 430 a = state[0]; 431 b = state[1]; 432 c = state[2]; 433 d = state[3]; 434 e = state[4]; 435 f = state[5]; 436 g = state[6]; 437 h = state[7]; 438 439 j = 0; 440 do { 441 BE_8_TO_32(W256[j], data); 442 data += 4; 443 /* Apply the SHA-256 compression function to update a..h */ 444 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 445 T2 = Sigma0_256(a) + Maj(a, b, c); 446 h = g; 447 g = f; 448 f = e; 449 e = d + T1; 450 d = c; 451 c = b; 452 b = a; 453 a = T1 + T2; 454 455 j++; 456 } while (j < 16); 457 458 do { 459 /* Part of the message block expansion: */ 460 s0 = W256[(j+1)&0x0f]; 461 s0 = sigma0_256(s0); 462 s1 = W256[(j+14)&0x0f]; 463 s1 = sigma1_256(s1); 464 465 /* Apply the SHA-256 compression function to update a..h */ 466 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 467 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 468 T2 = Sigma0_256(a) + Maj(a, b, c); 469 h = g; 470 g = f; 471 f = e; 472 e = d + T1; 473 d = c; 474 c = b; 475 b = a; 476 a = T1 + T2; 477 478 j++; 479 } while (j < 64); 480 481 /* Compute the current intermediate hash value */ 482 state[0] += a; 483 state[1] += b; 484 state[2] += c; 485 state[3] += d; 486 state[4] += e; 487 state[5] += f; 488 state[6] += g; 489 state[7] += h; 490 491 /* Clean up */ 492 a = b = c = d = e = f = g = h = T1 = T2 = 0; 493 } 494 495 #endif /* SHA2_UNROLL_TRANSFORM */ 496 DEF_WEAK(SHA256Transform); 497 498 void 499 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 500 { 501 size_t freespace, usedspace; 502 503 /* Calling with no data is valid (we do nothing) */ 504 if (len == 0) 505 return; 506 507 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 508 if (usedspace > 0) { 509 /* Calculate how much free space is available in the buffer */ 510 freespace = SHA256_BLOCK_LENGTH - usedspace; 511 512 if (len >= freespace) { 513 /* Fill the buffer completely and process it */ 514 memcpy(&context->buffer[usedspace], data, freespace); 515 context->bitcount[0] += freespace << 3; 516 len -= freespace; 517 data += freespace; 518 SHA256Transform(context->state.st32, context->buffer); 519 } else { 520 /* The buffer is not yet full */ 521 memcpy(&context->buffer[usedspace], data, len); 522 context->bitcount[0] += len << 3; 523 /* Clean up: */ 524 usedspace = freespace = 0; 525 return; 526 } 527 } 528 while (len >= SHA256_BLOCK_LENGTH) { 529 /* Process as many complete blocks as we can */ 530 SHA256Transform(context->state.st32, data); 531 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3; 532 len -= SHA256_BLOCK_LENGTH; 533 data += SHA256_BLOCK_LENGTH; 534 } 535 if (len > 0) { 536 /* There's left-overs, so save 'em */ 537 memcpy(context->buffer, data, len); 538 context->bitcount[0] += len << 3; 539 } 540 /* Clean up: */ 541 usedspace = freespace = 0; 542 } 543 DEF_WEAK(SHA256Update); 544 545 void 546 SHA256Pad(SHA2_CTX *context) 547 { 548 unsigned int usedspace; 549 550 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH; 551 if (usedspace > 0) { 552 /* Begin padding with a 1 bit: */ 553 context->buffer[usedspace++] = 0x80; 554 555 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { 556 /* Set-up for the last transform: */ 557 memset(&context->buffer[usedspace], 0, 558 SHA256_SHORT_BLOCK_LENGTH - usedspace); 559 } else { 560 if (usedspace < SHA256_BLOCK_LENGTH) { 561 memset(&context->buffer[usedspace], 0, 562 SHA256_BLOCK_LENGTH - usedspace); 563 } 564 /* Do second-to-last transform: */ 565 SHA256Transform(context->state.st32, context->buffer); 566 567 /* Prepare for last transform: */ 568 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 569 } 570 } else { 571 /* Set-up for the last transform: */ 572 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH); 573 574 /* Begin padding with a 1 bit: */ 575 *context->buffer = 0x80; 576 } 577 /* Store the length of input data (in bits) in big endian format: */ 578 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], 579 context->bitcount[0]); 580 581 /* Final transform: */ 582 SHA256Transform(context->state.st32, context->buffer); 583 584 /* Clean up: */ 585 usedspace = 0; 586 } 587 DEF_WEAK(SHA256Pad); 588 589 void 590 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context) 591 { 592 SHA256Pad(context); 593 594 #if BYTE_ORDER == LITTLE_ENDIAN 595 int i; 596 597 /* Convert TO host byte order */ 598 for (i = 0; i < 8; i++) 599 BE_32_TO_8(digest + i * 4, context->state.st32[i]); 600 #else 601 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH); 602 #endif 603 explicit_bzero(context, sizeof(*context)); 604 } 605 DEF_WEAK(SHA256Final); 606 607 608 /*** SHA-512: *********************************************************/ 609 void 610 SHA512Init(SHA2_CTX *context) 611 { 612 memcpy(context->state.st64, sha512_initial_hash_value, 613 sizeof(sha512_initial_hash_value)); 614 memset(context->buffer, 0, sizeof(context->buffer)); 615 context->bitcount[0] = context->bitcount[1] = 0; 616 } 617 DEF_WEAK(SHA512Init); 618 619 #ifdef SHA2_UNROLL_TRANSFORM 620 621 /* Unrolled SHA-512 round macros: */ 622 623 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ 624 BE_8_TO_64(W512[j], data); \ 625 data += 8; \ 626 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ 627 (d) += T1; \ 628 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 629 j++; \ 630 } while(0) 631 632 633 #define ROUND512(a,b,c,d,e,f,g,h) do { \ 634 s0 = W512[(j+1)&0x0f]; \ 635 s0 = sigma0_512(s0); \ 636 s1 = W512[(j+14)&0x0f]; \ 637 s1 = sigma1_512(s1); \ 638 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ 639 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 640 (d) += T1; \ 641 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ 642 j++; \ 643 } while(0) 644 645 void 646 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 647 { 648 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 649 u_int64_t T1, W512[16]; 650 int j; 651 652 /* Initialize registers with the prev. intermediate value */ 653 a = state[0]; 654 b = state[1]; 655 c = state[2]; 656 d = state[3]; 657 e = state[4]; 658 f = state[5]; 659 g = state[6]; 660 h = state[7]; 661 662 j = 0; 663 do { 664 /* Rounds 0 to 15 (unrolled): */ 665 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 666 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 667 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 668 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 669 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 670 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 671 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 672 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 673 } while (j < 16); 674 675 /* Now for the remaining rounds up to 79: */ 676 do { 677 ROUND512(a,b,c,d,e,f,g,h); 678 ROUND512(h,a,b,c,d,e,f,g); 679 ROUND512(g,h,a,b,c,d,e,f); 680 ROUND512(f,g,h,a,b,c,d,e); 681 ROUND512(e,f,g,h,a,b,c,d); 682 ROUND512(d,e,f,g,h,a,b,c); 683 ROUND512(c,d,e,f,g,h,a,b); 684 ROUND512(b,c,d,e,f,g,h,a); 685 } while (j < 80); 686 687 /* Compute the current intermediate hash value */ 688 state[0] += a; 689 state[1] += b; 690 state[2] += c; 691 state[3] += d; 692 state[4] += e; 693 state[5] += f; 694 state[6] += g; 695 state[7] += h; 696 697 /* Clean up */ 698 a = b = c = d = e = f = g = h = T1 = 0; 699 } 700 701 #else /* SHA2_UNROLL_TRANSFORM */ 702 703 void 704 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH]) 705 { 706 u_int64_t a, b, c, d, e, f, g, h, s0, s1; 707 u_int64_t T1, T2, W512[16]; 708 int j; 709 710 /* Initialize registers with the prev. intermediate value */ 711 a = state[0]; 712 b = state[1]; 713 c = state[2]; 714 d = state[3]; 715 e = state[4]; 716 f = state[5]; 717 g = state[6]; 718 h = state[7]; 719 720 j = 0; 721 do { 722 BE_8_TO_64(W512[j], data); 723 data += 8; 724 /* Apply the SHA-512 compression function to update a..h */ 725 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 726 T2 = Sigma0_512(a) + Maj(a, b, c); 727 h = g; 728 g = f; 729 f = e; 730 e = d + T1; 731 d = c; 732 c = b; 733 b = a; 734 a = T1 + T2; 735 736 j++; 737 } while (j < 16); 738 739 do { 740 /* Part of the message block expansion: */ 741 s0 = W512[(j+1)&0x0f]; 742 s0 = sigma0_512(s0); 743 s1 = W512[(j+14)&0x0f]; 744 s1 = sigma1_512(s1); 745 746 /* Apply the SHA-512 compression function to update a..h */ 747 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 748 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 749 T2 = Sigma0_512(a) + Maj(a, b, c); 750 h = g; 751 g = f; 752 f = e; 753 e = d + T1; 754 d = c; 755 c = b; 756 b = a; 757 a = T1 + T2; 758 759 j++; 760 } while (j < 80); 761 762 /* Compute the current intermediate hash value */ 763 state[0] += a; 764 state[1] += b; 765 state[2] += c; 766 state[3] += d; 767 state[4] += e; 768 state[5] += f; 769 state[6] += g; 770 state[7] += h; 771 772 /* Clean up */ 773 a = b = c = d = e = f = g = h = T1 = T2 = 0; 774 } 775 776 #endif /* SHA2_UNROLL_TRANSFORM */ 777 DEF_WEAK(SHA512Transform); 778 779 void 780 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) 781 { 782 size_t freespace, usedspace; 783 784 /* Calling with no data is valid (we do nothing) */ 785 if (len == 0) 786 return; 787 788 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 789 if (usedspace > 0) { 790 /* Calculate how much free space is available in the buffer */ 791 freespace = SHA512_BLOCK_LENGTH - usedspace; 792 793 if (len >= freespace) { 794 /* Fill the buffer completely and process it */ 795 memcpy(&context->buffer[usedspace], data, freespace); 796 ADDINC128(context->bitcount, freespace << 3); 797 len -= freespace; 798 data += freespace; 799 SHA512Transform(context->state.st64, context->buffer); 800 } else { 801 /* The buffer is not yet full */ 802 memcpy(&context->buffer[usedspace], data, len); 803 ADDINC128(context->bitcount, len << 3); 804 /* Clean up: */ 805 usedspace = freespace = 0; 806 return; 807 } 808 } 809 while (len >= SHA512_BLOCK_LENGTH) { 810 /* Process as many complete blocks as we can */ 811 SHA512Transform(context->state.st64, data); 812 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); 813 len -= SHA512_BLOCK_LENGTH; 814 data += SHA512_BLOCK_LENGTH; 815 } 816 if (len > 0) { 817 /* There's left-overs, so save 'em */ 818 memcpy(context->buffer, data, len); 819 ADDINC128(context->bitcount, len << 3); 820 } 821 /* Clean up: */ 822 usedspace = freespace = 0; 823 } 824 DEF_WEAK(SHA512Update); 825 826 void 827 SHA512Pad(SHA2_CTX *context) 828 { 829 unsigned int usedspace; 830 831 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; 832 if (usedspace > 0) { 833 /* Begin padding with a 1 bit: */ 834 context->buffer[usedspace++] = 0x80; 835 836 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { 837 /* Set-up for the last transform: */ 838 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); 839 } else { 840 if (usedspace < SHA512_BLOCK_LENGTH) { 841 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace); 842 } 843 /* Do second-to-last transform: */ 844 SHA512Transform(context->state.st64, context->buffer); 845 846 /* And set-up for the last transform: */ 847 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2); 848 } 849 } else { 850 /* Prepare for final transform: */ 851 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); 852 853 /* Begin padding with a 1 bit: */ 854 *context->buffer = 0x80; 855 } 856 /* Store the length of input data (in bits) in big endian format: */ 857 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], 858 context->bitcount[1]); 859 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], 860 context->bitcount[0]); 861 862 /* Final transform: */ 863 SHA512Transform(context->state.st64, context->buffer); 864 865 /* Clean up: */ 866 usedspace = 0; 867 } 868 DEF_WEAK(SHA512Pad); 869 870 void 871 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context) 872 { 873 SHA512Pad(context); 874 875 #if BYTE_ORDER == LITTLE_ENDIAN 876 int i; 877 878 /* Convert TO host byte order */ 879 for (i = 0; i < 8; i++) 880 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 881 #else 882 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH); 883 #endif 884 explicit_bzero(context, sizeof(*context)); 885 } 886 DEF_WEAK(SHA512Final); 887 888 #if !defined(SHA2_SMALL) 889 890 /*** SHA-384: *********************************************************/ 891 void 892 SHA384Init(SHA2_CTX *context) 893 { 894 memcpy(context->state.st64, sha384_initial_hash_value, 895 sizeof(sha384_initial_hash_value)); 896 memset(context->buffer, 0, sizeof(context->buffer)); 897 context->bitcount[0] = context->bitcount[1] = 0; 898 } 899 DEF_WEAK(SHA384Init); 900 901 MAKE_CLONE(SHA384Transform, SHA512Transform); 902 MAKE_CLONE(SHA384Update, SHA512Update); 903 MAKE_CLONE(SHA384Pad, SHA512Pad); 904 DEF_WEAK(SHA384Transform); 905 DEF_WEAK(SHA384Update); 906 DEF_WEAK(SHA384Pad); 907 908 void 909 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context) 910 { 911 SHA384Pad(context); 912 913 #if BYTE_ORDER == LITTLE_ENDIAN 914 int i; 915 916 /* Convert TO host byte order */ 917 for (i = 0; i < 6; i++) 918 BE_64_TO_8(digest + i * 8, context->state.st64[i]); 919 #else 920 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH); 921 #endif 922 /* Zero out state data */ 923 explicit_bzero(context, sizeof(*context)); 924 } 925 DEF_WEAK(SHA384Final); 926 #endif /* !defined(SHA2_SMALL) */ 927