1 /*	$OpenBSD: softfloat-specialize.h,v 1.2 2015/09/13 14:23:43 miod Exp $	*/
2 /*	$NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $	*/
3 
4 /* This is a derivative work. */
5 
6 /*
7 ===============================================================================
8 
9 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10 Arithmetic Package, Release 2a.
11 
12 Written by John R. Hauser.  This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704.  Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980.  The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
20 arithmetic/SoftFloat.html'.
21 
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
23 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
24 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
25 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
26 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
27 
28 Derivative works are acceptable, even for commercial purposes, so long as
29 (1) they include prominent notice that the work is derivative, and (2) they
30 include prominent notice akin to these four paragraphs for those parts of
31 this code that are retained.
32 
33 ===============================================================================
34 */
35 
36 #include <signal.h>
37 
38 /*
39 -------------------------------------------------------------------------------
40 Underflow tininess-detection mode, statically initialized to default value.
41 (The declaration in `softfloat.h' must match the `int8' type here.)
42 -------------------------------------------------------------------------------
43 */
44 #ifdef SOFTFLOAT_FOR_GCC
45 static
46 #endif
47 int8 float_detect_tininess = float_tininess_after_rounding;
48 
49 /*
50 -------------------------------------------------------------------------------
51 Raises the exceptions specified by `flags'.  Floating-point traps can be
52 defined here if desired.  It is currently not possible for such a trap to
53 substitute a result value.  If traps are not implemented, this routine
54 should be simply `float_exception_flags |= flags;'.
55 -------------------------------------------------------------------------------
56 */
57 fp_except float_exception_mask = 0;
58 void float_raise( fp_except flags )
59 {
60 
61     float_exception_flags |= flags;
62 
63     if ( flags & float_exception_mask ) {
64 	raise( SIGFPE );
65     }
66 }
67 DEF_STRONG(float_raise);
68 
69 /*
70 -------------------------------------------------------------------------------
71 Internal canonical NaN format.
72 -------------------------------------------------------------------------------
73 */
74 typedef struct {
75     flag sign;
76     bits64 high, low;
77 } commonNaNT;
78 
79 /*
80 -------------------------------------------------------------------------------
81 The pattern for a default generated single-precision NaN.
82 -------------------------------------------------------------------------------
83 */
84 #define float32_default_nan 0xFFFFFFFF
85 
86 /*
87 -------------------------------------------------------------------------------
88 Returns 1 if the single-precision floating-point value `a' is a NaN;
89 otherwise returns 0.
90 -------------------------------------------------------------------------------
91 */
92 #ifdef SOFTFLOAT_FOR_GCC
93 static
94 #endif
95 flag float32_is_nan( float32 a )
96 {
97 
98     return ( 0xFF000000 < (bits32) ( a<<1 ) );
99 
100 }
101 
102 /*
103 -------------------------------------------------------------------------------
104 Returns 1 if the single-precision floating-point value `a' is a signaling
105 NaN; otherwise returns 0.
106 -------------------------------------------------------------------------------
107 */
108 #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
109 static
110 #endif
111 flag float32_is_signaling_nan( float32 a )
112 {
113 
114     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
115 
116 }
117 
118 /*
119 -------------------------------------------------------------------------------
120 Returns the result of converting the single-precision floating-point NaN
121 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
122 exception is raised.
123 -------------------------------------------------------------------------------
124 */
125 static commonNaNT float32ToCommonNaN( float32 a )
126 {
127     commonNaNT z;
128 
129     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
130     z.sign = a>>31;
131     z.low = 0;
132     z.high = ( (bits64) a )<<41;
133     return z;
134 
135 }
136 
137 /*
138 -------------------------------------------------------------------------------
139 Returns the result of converting the canonical NaN `a' to the single-
140 precision floating-point format.
141 -------------------------------------------------------------------------------
142 */
143 static float32 commonNaNToFloat32( commonNaNT a )
144 {
145 
146     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
147 
148 }
149 
150 /*
151 -------------------------------------------------------------------------------
152 Takes two single-precision floating-point values `a' and `b', one of which
153 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
154 signaling NaN, the invalid exception is raised.
155 -------------------------------------------------------------------------------
156 */
157 static float32 propagateFloat32NaN( float32 a, float32 b )
158 {
159     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
160 
161     aIsNaN = float32_is_nan( a );
162     aIsSignalingNaN = float32_is_signaling_nan( a );
163     bIsNaN = float32_is_nan( b );
164     bIsSignalingNaN = float32_is_signaling_nan( b );
165     a |= 0x00400000;
166     b |= 0x00400000;
167     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
168     if ( aIsNaN ) {
169         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
170     }
171     else {
172         return b;
173     }
174 
175 }
176 
177 /*
178 -------------------------------------------------------------------------------
179 The pattern for a default generated double-precision NaN.
180 -------------------------------------------------------------------------------
181 */
182 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
183 
184 /*
185 -------------------------------------------------------------------------------
186 Returns 1 if the double-precision floating-point value `a' is a NaN;
187 otherwise returns 0.
188 -------------------------------------------------------------------------------
189 */
190 #ifdef SOFTFLOAT_FOR_GCC
191 static
192 #endif
193 flag float64_is_nan( float64 a )
194 {
195 
196     return ( LIT64( 0xFFE0000000000000 ) <
197 	     (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
198 
199 }
200 
201 /*
202 -------------------------------------------------------------------------------
203 Returns 1 if the double-precision floating-point value `a' is a signaling
204 NaN; otherwise returns 0.
205 -------------------------------------------------------------------------------
206 */
207 #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
208 static
209 #endif
210 flag float64_is_signaling_nan( float64 a )
211 {
212 
213     return
214            ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
215         && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
216 
217 }
218 
219 /*
220 -------------------------------------------------------------------------------
221 Returns the result of converting the double-precision floating-point NaN
222 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
223 exception is raised.
224 -------------------------------------------------------------------------------
225 */
226 static commonNaNT float64ToCommonNaN( float64 a )
227 {
228     commonNaNT z;
229 
230     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
231     z.sign = FLOAT64_DEMANGLE(a)>>63;
232     z.low = 0;
233     z.high = FLOAT64_DEMANGLE(a)<<12;
234     return z;
235 
236 }
237 
238 /*
239 -------------------------------------------------------------------------------
240 Returns the result of converting the canonical NaN `a' to the double-
241 precision floating-point format.
242 -------------------------------------------------------------------------------
243 */
244 static float64 commonNaNToFloat64( commonNaNT a )
245 {
246 
247     return FLOAT64_MANGLE(
248 	( ( (bits64) a.sign )<<63 )
249         | LIT64( 0x7FF8000000000000 )
250         | ( a.high>>12 ) );
251 
252 }
253 
254 /*
255 -------------------------------------------------------------------------------
256 Takes two double-precision floating-point values `a' and `b', one of which
257 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
258 signaling NaN, the invalid exception is raised.
259 -------------------------------------------------------------------------------
260 */
261 static float64 propagateFloat64NaN( float64 a, float64 b )
262 {
263     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
264 
265     aIsNaN = float64_is_nan( a );
266     aIsSignalingNaN = float64_is_signaling_nan( a );
267     bIsNaN = float64_is_nan( b );
268     bIsSignalingNaN = float64_is_signaling_nan( b );
269     a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
270     b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
271     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
272     if ( aIsNaN ) {
273         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
274     }
275     else {
276         return b;
277     }
278 
279 }
280 
281 #ifdef FLOATX80
282 
283 /*
284 -------------------------------------------------------------------------------
285 The pattern for a default generated extended double-precision NaN.  The
286 `high' and `low' values hold the most- and least-significant bits,
287 respectively.
288 -------------------------------------------------------------------------------
289 */
290 #define floatx80_default_nan_high 0xFFFF
291 #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
292 
293 /*
294 -------------------------------------------------------------------------------
295 Returns 1 if the extended double-precision floating-point value `a' is a
296 NaN; otherwise returns 0.
297 -------------------------------------------------------------------------------
298 */
299 flag floatx80_is_nan( floatx80 a )
300 {
301 
302     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
303 
304 }
305 
306 /*
307 -------------------------------------------------------------------------------
308 Returns 1 if the extended double-precision floating-point value `a' is a
309 signaling NaN; otherwise returns 0.
310 -------------------------------------------------------------------------------
311 */
312 flag floatx80_is_signaling_nan( floatx80 a )
313 {
314     bits64 aLow;
315 
316     aLow = a.low & ~ LIT64( 0x4000000000000000 );
317     return
318            ( ( a.high & 0x7FFF ) == 0x7FFF )
319         && (bits64) ( aLow<<1 )
320         && ( a.low == aLow );
321 
322 }
323 
324 /*
325 -------------------------------------------------------------------------------
326 Returns the result of converting the extended double-precision floating-
327 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
328 invalid exception is raised.
329 -------------------------------------------------------------------------------
330 */
331 static commonNaNT floatx80ToCommonNaN( floatx80 a )
332 {
333     commonNaNT z;
334 
335     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
336     z.sign = a.high>>15;
337     z.low = 0;
338     z.high = a.low<<1;
339     return z;
340 
341 }
342 
343 /*
344 -------------------------------------------------------------------------------
345 Returns the result of converting the canonical NaN `a' to the extended
346 double-precision floating-point format.
347 -------------------------------------------------------------------------------
348 */
349 static floatx80 commonNaNToFloatx80( commonNaNT a )
350 {
351     floatx80 z;
352 
353     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
354     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
355     return z;
356 
357 }
358 
359 /*
360 -------------------------------------------------------------------------------
361 Takes two extended double-precision floating-point values `a' and `b', one
362 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
363 `b' is a signaling NaN, the invalid exception is raised.
364 -------------------------------------------------------------------------------
365 */
366 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
367 {
368     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
369 
370     aIsNaN = floatx80_is_nan( a );
371     aIsSignalingNaN = floatx80_is_signaling_nan( a );
372     bIsNaN = floatx80_is_nan( b );
373     bIsSignalingNaN = floatx80_is_signaling_nan( b );
374     a.low |= LIT64( 0xC000000000000000 );
375     b.low |= LIT64( 0xC000000000000000 );
376     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
377     if ( aIsNaN ) {
378         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
379     }
380     else {
381         return b;
382     }
383 
384 }
385 
386 #endif
387 
388 #ifdef FLOAT128
389 
390 /*
391 -------------------------------------------------------------------------------
392 The pattern for a default generated quadruple-precision NaN.  The `high' and
393 `low' values hold the most- and least-significant bits, respectively.
394 -------------------------------------------------------------------------------
395 */
396 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
397 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
398 
399 /*
400 -------------------------------------------------------------------------------
401 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
402 otherwise returns 0.
403 -------------------------------------------------------------------------------
404 */
405 flag float128_is_nan( float128 a )
406 {
407 
408     return
409            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
410         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
411 
412 }
413 
414 /*
415 -------------------------------------------------------------------------------
416 Returns 1 if the quadruple-precision floating-point value `a' is a
417 signaling NaN; otherwise returns 0.
418 -------------------------------------------------------------------------------
419 */
420 flag float128_is_signaling_nan( float128 a )
421 {
422 
423     return
424            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
425         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
426 
427 }
428 
429 /*
430 -------------------------------------------------------------------------------
431 Returns the result of converting the quadruple-precision floating-point NaN
432 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
433 exception is raised.
434 -------------------------------------------------------------------------------
435 */
436 static commonNaNT float128ToCommonNaN( float128 a )
437 {
438     commonNaNT z;
439 
440     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
441     z.sign = a.high>>63;
442     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
443     return z;
444 
445 }
446 
447 /*
448 -------------------------------------------------------------------------------
449 Returns the result of converting the canonical NaN `a' to the quadruple-
450 precision floating-point format.
451 -------------------------------------------------------------------------------
452 */
453 static float128 commonNaNToFloat128( commonNaNT a )
454 {
455     float128 z;
456 
457     shift128Right( a.high, a.low, 16, &z.high, &z.low );
458     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
459     return z;
460 
461 }
462 
463 /*
464 -------------------------------------------------------------------------------
465 Takes two quadruple-precision floating-point values `a' and `b', one of
466 which is a NaN, and returns the appropriate NaN result.  If either `a' or
467 `b' is a signaling NaN, the invalid exception is raised.
468 -------------------------------------------------------------------------------
469 */
470 static float128 propagateFloat128NaN( float128 a, float128 b )
471 {
472     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
473 
474     aIsNaN = float128_is_nan( a );
475     aIsSignalingNaN = float128_is_signaling_nan( a );
476     bIsNaN = float128_is_nan( b );
477     bIsSignalingNaN = float128_is_signaling_nan( b );
478     a.high |= LIT64( 0x0000800000000000 );
479     b.high |= LIT64( 0x0000800000000000 );
480     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
481     if ( aIsNaN ) {
482         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
483     }
484     else {
485         return b;
486     }
487 
488 }
489 
490 #endif
491 
492