xref: /openbsd/lib/libcrypto/bn/bn_gcd.c (revision 97222edd)
15b37fcf3Sryker /* crypto/bn/bn_gcd.c */
25b37fcf3Sryker /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
35b37fcf3Sryker  * All rights reserved.
45b37fcf3Sryker  *
55b37fcf3Sryker  * This package is an SSL implementation written
65b37fcf3Sryker  * by Eric Young (eay@cryptsoft.com).
75b37fcf3Sryker  * The implementation was written so as to conform with Netscapes SSL.
85b37fcf3Sryker  *
95b37fcf3Sryker  * This library is free for commercial and non-commercial use as long as
105b37fcf3Sryker  * the following conditions are aheared to.  The following conditions
115b37fcf3Sryker  * apply to all code found in this distribution, be it the RC4, RSA,
125b37fcf3Sryker  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
135b37fcf3Sryker  * included with this distribution is covered by the same copyright terms
145b37fcf3Sryker  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
155b37fcf3Sryker  *
165b37fcf3Sryker  * Copyright remains Eric Young's, and as such any Copyright notices in
175b37fcf3Sryker  * the code are not to be removed.
185b37fcf3Sryker  * If this package is used in a product, Eric Young should be given attribution
195b37fcf3Sryker  * as the author of the parts of the library used.
205b37fcf3Sryker  * This can be in the form of a textual message at program startup or
215b37fcf3Sryker  * in documentation (online or textual) provided with the package.
225b37fcf3Sryker  *
235b37fcf3Sryker  * Redistribution and use in source and binary forms, with or without
245b37fcf3Sryker  * modification, are permitted provided that the following conditions
255b37fcf3Sryker  * are met:
265b37fcf3Sryker  * 1. Redistributions of source code must retain the copyright
275b37fcf3Sryker  *    notice, this list of conditions and the following disclaimer.
285b37fcf3Sryker  * 2. Redistributions in binary form must reproduce the above copyright
295b37fcf3Sryker  *    notice, this list of conditions and the following disclaimer in the
305b37fcf3Sryker  *    documentation and/or other materials provided with the distribution.
315b37fcf3Sryker  * 3. All advertising materials mentioning features or use of this software
325b37fcf3Sryker  *    must display the following acknowledgement:
335b37fcf3Sryker  *    "This product includes cryptographic software written by
345b37fcf3Sryker  *     Eric Young (eay@cryptsoft.com)"
355b37fcf3Sryker  *    The word 'cryptographic' can be left out if the rouines from the library
365b37fcf3Sryker  *    being used are not cryptographic related :-).
375b37fcf3Sryker  * 4. If you include any Windows specific code (or a derivative thereof) from
385b37fcf3Sryker  *    the apps directory (application code) you must include an acknowledgement:
395b37fcf3Sryker  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
405b37fcf3Sryker  *
415b37fcf3Sryker  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
425b37fcf3Sryker  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
435b37fcf3Sryker  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
445b37fcf3Sryker  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
455b37fcf3Sryker  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
465b37fcf3Sryker  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
475b37fcf3Sryker  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
485b37fcf3Sryker  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
495b37fcf3Sryker  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
505b37fcf3Sryker  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
515b37fcf3Sryker  * SUCH DAMAGE.
525b37fcf3Sryker  *
535b37fcf3Sryker  * The licence and distribution terms for any publically available version or
545b37fcf3Sryker  * derivative of this code cannot be changed.  i.e. this code cannot simply be
555b37fcf3Sryker  * copied and put under another distribution licence
565b37fcf3Sryker  * [including the GNU Public Licence.]
575b37fcf3Sryker  */
58da347917Sbeck /* ====================================================================
59da347917Sbeck  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60da347917Sbeck  *
61da347917Sbeck  * Redistribution and use in source and binary forms, with or without
62da347917Sbeck  * modification, are permitted provided that the following conditions
63da347917Sbeck  * are met:
64da347917Sbeck  *
65da347917Sbeck  * 1. Redistributions of source code must retain the above copyright
66da347917Sbeck  *    notice, this list of conditions and the following disclaimer.
67da347917Sbeck  *
68da347917Sbeck  * 2. Redistributions in binary form must reproduce the above copyright
69da347917Sbeck  *    notice, this list of conditions and the following disclaimer in
70da347917Sbeck  *    the documentation and/or other materials provided with the
71da347917Sbeck  *    distribution.
72da347917Sbeck  *
73da347917Sbeck  * 3. All advertising materials mentioning features or use of this
74da347917Sbeck  *    software must display the following acknowledgment:
75da347917Sbeck  *    "This product includes software developed by the OpenSSL Project
76da347917Sbeck  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77da347917Sbeck  *
78da347917Sbeck  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79da347917Sbeck  *    endorse or promote products derived from this software without
80da347917Sbeck  *    prior written permission. For written permission, please contact
81da347917Sbeck  *    openssl-core@openssl.org.
82da347917Sbeck  *
83da347917Sbeck  * 5. Products derived from this software may not be called "OpenSSL"
84da347917Sbeck  *    nor may "OpenSSL" appear in their names without prior written
85da347917Sbeck  *    permission of the OpenSSL Project.
86da347917Sbeck  *
87da347917Sbeck  * 6. Redistributions of any form whatsoever must retain the following
88da347917Sbeck  *    acknowledgment:
89da347917Sbeck  *    "This product includes software developed by the OpenSSL Project
90da347917Sbeck  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91da347917Sbeck  *
92da347917Sbeck  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93da347917Sbeck  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94da347917Sbeck  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95da347917Sbeck  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96da347917Sbeck  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97da347917Sbeck  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98da347917Sbeck  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99da347917Sbeck  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100da347917Sbeck  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101da347917Sbeck  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102da347917Sbeck  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103da347917Sbeck  * OF THE POSSIBILITY OF SUCH DAMAGE.
104da347917Sbeck  * ====================================================================
105da347917Sbeck  *
106da347917Sbeck  * This product includes cryptographic software written by Eric Young
107da347917Sbeck  * (eay@cryptsoft.com).  This product includes software written by Tim
108da347917Sbeck  * Hudson (tjh@cryptsoft.com).
109da347917Sbeck  *
110da347917Sbeck  */
1115b37fcf3Sryker 
1125b37fcf3Sryker #include "cryptlib.h"
1135b37fcf3Sryker #include "bn_lcl.h"
1145b37fcf3Sryker 
1155b37fcf3Sryker static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116ba5406e9Sbeck 
117da347917Sbeck int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
1185b37fcf3Sryker 	{
1195b37fcf3Sryker 	BIGNUM *a,*b,*t;
1205b37fcf3Sryker 	int ret=0;
1215b37fcf3Sryker 
122913ec974Sbeck 	bn_check_top(in_a);
123913ec974Sbeck 	bn_check_top(in_b);
124913ec974Sbeck 
125ba5406e9Sbeck 	BN_CTX_start(ctx);
126ba5406e9Sbeck 	a = BN_CTX_get(ctx);
127ba5406e9Sbeck 	b = BN_CTX_get(ctx);
128ba5406e9Sbeck 	if (a == NULL || b == NULL) goto err;
1295b37fcf3Sryker 
1305b37fcf3Sryker 	if (BN_copy(a,in_a) == NULL) goto err;
1315b37fcf3Sryker 	if (BN_copy(b,in_b) == NULL) goto err;
132da347917Sbeck 	a->neg = 0;
133da347917Sbeck 	b->neg = 0;
1345b37fcf3Sryker 
1355b37fcf3Sryker 	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
1365b37fcf3Sryker 	t=euclid(a,b);
1375b37fcf3Sryker 	if (t == NULL) goto err;
1385b37fcf3Sryker 
1395b37fcf3Sryker 	if (BN_copy(r,t) == NULL) goto err;
1405b37fcf3Sryker 	ret=1;
1415b37fcf3Sryker err:
142ba5406e9Sbeck 	BN_CTX_end(ctx);
1434fcf65c5Sdjm 	bn_check_top(r);
1445b37fcf3Sryker 	return(ret);
1455b37fcf3Sryker 	}
1465b37fcf3Sryker 
147913ec974Sbeck static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
1485b37fcf3Sryker 	{
1495b37fcf3Sryker 	BIGNUM *t;
1505b37fcf3Sryker 	int shifts=0;
1515b37fcf3Sryker 
152913ec974Sbeck 	bn_check_top(a);
153913ec974Sbeck 	bn_check_top(b);
154913ec974Sbeck 
155da347917Sbeck 	/* 0 <= b <= a */
156da347917Sbeck 	while (!BN_is_zero(b))
1575b37fcf3Sryker 		{
158da347917Sbeck 		/* 0 < b <= a */
1595b37fcf3Sryker 
1605b37fcf3Sryker 		if (BN_is_odd(a))
1615b37fcf3Sryker 			{
1625b37fcf3Sryker 			if (BN_is_odd(b))
1635b37fcf3Sryker 				{
1645b37fcf3Sryker 				if (!BN_sub(a,a,b)) goto err;
1655b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1665b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1675b37fcf3Sryker 					{ t=a; a=b; b=t; }
1685b37fcf3Sryker 				}
1695b37fcf3Sryker 			else		/* a odd - b even */
1705b37fcf3Sryker 				{
1715b37fcf3Sryker 				if (!BN_rshift1(b,b)) goto err;
1725b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1735b37fcf3Sryker 					{ t=a; a=b; b=t; }
1745b37fcf3Sryker 				}
1755b37fcf3Sryker 			}
1765b37fcf3Sryker 		else			/* a is even */
1775b37fcf3Sryker 			{
1785b37fcf3Sryker 			if (BN_is_odd(b))
1795b37fcf3Sryker 				{
1805b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1815b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1825b37fcf3Sryker 					{ t=a; a=b; b=t; }
1835b37fcf3Sryker 				}
1845b37fcf3Sryker 			else		/* a even - b even */
1855b37fcf3Sryker 				{
1865b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1875b37fcf3Sryker 				if (!BN_rshift1(b,b)) goto err;
1885b37fcf3Sryker 				shifts++;
1895b37fcf3Sryker 				}
1905b37fcf3Sryker 			}
191da347917Sbeck 		/* 0 <= b <= a */
1925b37fcf3Sryker 		}
193da347917Sbeck 
1945b37fcf3Sryker 	if (shifts)
1955b37fcf3Sryker 		{
1965b37fcf3Sryker 		if (!BN_lshift(a,a,shifts)) goto err;
1975b37fcf3Sryker 		}
1984fcf65c5Sdjm 	bn_check_top(a);
1995b37fcf3Sryker 	return(a);
2005b37fcf3Sryker err:
2015b37fcf3Sryker 	return(NULL);
2025b37fcf3Sryker 	}
2035b37fcf3Sryker 
204da347917Sbeck 
2055b37fcf3Sryker /* solves ax == 1 (mod n) */
2064fcf65c5Sdjm static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
2074fcf65c5Sdjm         const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
208*97222eddSmiod 
209da347917Sbeck BIGNUM *BN_mod_inverse(BIGNUM *in,
210da347917Sbeck 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
2115b37fcf3Sryker 	{
212da347917Sbeck 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
213da347917Sbeck 	BIGNUM *ret=NULL;
2145b37fcf3Sryker 	int sign;
2155b37fcf3Sryker 
2164fcf65c5Sdjm 	if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0))
2174fcf65c5Sdjm 		{
2184fcf65c5Sdjm 		return BN_mod_inverse_no_branch(in, a, n, ctx);
2194fcf65c5Sdjm 		}
2204fcf65c5Sdjm 
221913ec974Sbeck 	bn_check_top(a);
222913ec974Sbeck 	bn_check_top(n);
223913ec974Sbeck 
224ba5406e9Sbeck 	BN_CTX_start(ctx);
225ba5406e9Sbeck 	A = BN_CTX_get(ctx);
226ba5406e9Sbeck 	B = BN_CTX_get(ctx);
227ba5406e9Sbeck 	X = BN_CTX_get(ctx);
228ba5406e9Sbeck 	D = BN_CTX_get(ctx);
229ba5406e9Sbeck 	M = BN_CTX_get(ctx);
230ba5406e9Sbeck 	Y = BN_CTX_get(ctx);
231da347917Sbeck 	T = BN_CTX_get(ctx);
232da347917Sbeck 	if (T == NULL) goto err;
233ba5406e9Sbeck 
234913ec974Sbeck 	if (in == NULL)
2355b37fcf3Sryker 		R=BN_new();
236913ec974Sbeck 	else
237913ec974Sbeck 		R=in;
2385b37fcf3Sryker 	if (R == NULL) goto err;
2395b37fcf3Sryker 
240da347917Sbeck 	BN_one(X);
241da347917Sbeck 	BN_zero(Y);
242da347917Sbeck 	if (BN_copy(B,a) == NULL) goto err;
243da347917Sbeck 	if (BN_copy(A,n) == NULL) goto err;
244da347917Sbeck 	A->neg = 0;
245da347917Sbeck 	if (B->neg || (BN_ucmp(B, A) >= 0))
246da347917Sbeck 		{
247da347917Sbeck 		if (!BN_nnmod(B, B, A, ctx)) goto err;
248da347917Sbeck 		}
249da347917Sbeck 	sign = -1;
250da347917Sbeck 	/* From  B = a mod |n|,  A = |n|  it follows that
251da347917Sbeck 	 *
252da347917Sbeck 	 *      0 <= B < A,
253da347917Sbeck 	 *     -sign*X*a  ==  B   (mod |n|),
254da347917Sbeck 	 *      sign*Y*a  ==  A   (mod |n|).
255da347917Sbeck 	 */
256da347917Sbeck 
257da347917Sbeck 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
258da347917Sbeck 		{
259da347917Sbeck 		/* Binary inversion algorithm; requires odd modulus.
260da347917Sbeck 		 * This is faster than the general algorithm if the modulus
261da347917Sbeck 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
262da347917Sbeck 		 * sytems, but much more on 64-bit systems) */
263da347917Sbeck 		int shift;
2645b37fcf3Sryker 
2655b37fcf3Sryker 		while (!BN_is_zero(B))
2665b37fcf3Sryker 			{
267da347917Sbeck 			/*
268da347917Sbeck 			 *      0 < B < |n|,
269da347917Sbeck 			 *      0 < A <= |n|,
270da347917Sbeck 			 * (1) -sign*X*a  ==  B   (mod |n|),
271da347917Sbeck 			 * (2)  sign*Y*a  ==  A   (mod |n|)
272da347917Sbeck 			 */
273da347917Sbeck 
274da347917Sbeck 			/* Now divide  B  by the maximum possible power of two in the integers,
275da347917Sbeck 			 * and divide  X  by the same value mod |n|.
276da347917Sbeck 			 * When we're done, (1) still holds. */
277da347917Sbeck 			shift = 0;
278da347917Sbeck 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
279da347917Sbeck 				{
280da347917Sbeck 				shift++;
281da347917Sbeck 
282da347917Sbeck 				if (BN_is_odd(X))
283da347917Sbeck 					{
284da347917Sbeck 					if (!BN_uadd(X, X, n)) goto err;
285da347917Sbeck 					}
286da347917Sbeck 				/* now X is even, so we can easily divide it by two */
287da347917Sbeck 				if (!BN_rshift1(X, X)) goto err;
288da347917Sbeck 				}
289da347917Sbeck 			if (shift > 0)
290da347917Sbeck 				{
291da347917Sbeck 				if (!BN_rshift(B, B, shift)) goto err;
292da347917Sbeck 				}
293da347917Sbeck 
294da347917Sbeck 
295da347917Sbeck 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
296da347917Sbeck 			shift = 0;
297da347917Sbeck 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
298da347917Sbeck 				{
299da347917Sbeck 				shift++;
300da347917Sbeck 
301da347917Sbeck 				if (BN_is_odd(Y))
302da347917Sbeck 					{
303da347917Sbeck 					if (!BN_uadd(Y, Y, n)) goto err;
304da347917Sbeck 					}
305da347917Sbeck 				/* now Y is even */
306da347917Sbeck 				if (!BN_rshift1(Y, Y)) goto err;
307da347917Sbeck 				}
308da347917Sbeck 			if (shift > 0)
309da347917Sbeck 				{
310da347917Sbeck 				if (!BN_rshift(A, A, shift)) goto err;
311da347917Sbeck 				}
312da347917Sbeck 
313da347917Sbeck 
314da347917Sbeck 			/* We still have (1) and (2).
315da347917Sbeck 			 * Both  A  and  B  are odd.
316da347917Sbeck 			 * The following computations ensure that
317da347917Sbeck 			 *
318da347917Sbeck 			 *     0 <= B < |n|,
319da347917Sbeck 			 *      0 < A < |n|,
320da347917Sbeck 			 * (1) -sign*X*a  ==  B   (mod |n|),
321da347917Sbeck 			 * (2)  sign*Y*a  ==  A   (mod |n|),
322da347917Sbeck 			 *
323da347917Sbeck 			 * and that either  A  or  B  is even in the next iteration.
324da347917Sbeck 			 */
325da347917Sbeck 			if (BN_ucmp(B, A) >= 0)
326da347917Sbeck 				{
327da347917Sbeck 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
328da347917Sbeck 				if (!BN_uadd(X, X, Y)) goto err;
329da347917Sbeck 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
330da347917Sbeck 				 * actually makes the algorithm slower */
331da347917Sbeck 				if (!BN_usub(B, B, A)) goto err;
332da347917Sbeck 				}
333da347917Sbeck 			else
334da347917Sbeck 				{
335da347917Sbeck 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
336da347917Sbeck 				if (!BN_uadd(Y, Y, X)) goto err;
337da347917Sbeck 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
338da347917Sbeck 				if (!BN_usub(A, A, B)) goto err;
339da347917Sbeck 				}
340da347917Sbeck 			}
341da347917Sbeck 		}
342da347917Sbeck 	else
343da347917Sbeck 		{
344da347917Sbeck 		/* general inversion algorithm */
345da347917Sbeck 
346da347917Sbeck 		while (!BN_is_zero(B))
347da347917Sbeck 			{
348da347917Sbeck 			BIGNUM *tmp;
349da347917Sbeck 
350da347917Sbeck 			/*
351da347917Sbeck 			 *      0 < B < A,
352da347917Sbeck 			 * (*) -sign*X*a  ==  B   (mod |n|),
353da347917Sbeck 			 *      sign*Y*a  ==  A   (mod |n|)
354da347917Sbeck 			 */
355da347917Sbeck 
356da347917Sbeck 			/* (D, M) := (A/B, A%B) ... */
357da347917Sbeck 			if (BN_num_bits(A) == BN_num_bits(B))
358da347917Sbeck 				{
359da347917Sbeck 				if (!BN_one(D)) goto err;
360da347917Sbeck 				if (!BN_sub(M,A,B)) goto err;
361da347917Sbeck 				}
362da347917Sbeck 			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
363da347917Sbeck 				{
364da347917Sbeck 				/* A/B is 1, 2, or 3 */
365da347917Sbeck 				if (!BN_lshift1(T,B)) goto err;
366da347917Sbeck 				if (BN_ucmp(A,T) < 0)
367da347917Sbeck 					{
368da347917Sbeck 					/* A < 2*B, so D=1 */
369da347917Sbeck 					if (!BN_one(D)) goto err;
370da347917Sbeck 					if (!BN_sub(M,A,B)) goto err;
371da347917Sbeck 					}
372da347917Sbeck 				else
373da347917Sbeck 					{
374da347917Sbeck 					/* A >= 2*B, so D=2 or D=3 */
375da347917Sbeck 					if (!BN_sub(M,A,T)) goto err;
376da347917Sbeck 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
377da347917Sbeck 					if (BN_ucmp(A,D) < 0)
378da347917Sbeck 						{
379da347917Sbeck 						/* A < 3*B, so D=2 */
380da347917Sbeck 						if (!BN_set_word(D,2)) goto err;
381da347917Sbeck 						/* M (= A - 2*B) already has the correct value */
382da347917Sbeck 						}
383da347917Sbeck 					else
384da347917Sbeck 						{
385da347917Sbeck 						/* only D=3 remains */
386da347917Sbeck 						if (!BN_set_word(D,3)) goto err;
387da347917Sbeck 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
388da347917Sbeck 						if (!BN_sub(M,M,B)) goto err;
389da347917Sbeck 						}
390da347917Sbeck 					}
391da347917Sbeck 				}
392da347917Sbeck 			else
393da347917Sbeck 				{
3945b37fcf3Sryker 				if (!BN_div(D,M,A,B,ctx)) goto err;
395da347917Sbeck 				}
396da347917Sbeck 
397da347917Sbeck 			/* Now
398da347917Sbeck 			 *      A = D*B + M;
399da347917Sbeck 			 * thus we have
400da347917Sbeck 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
401da347917Sbeck 			 */
402da347917Sbeck 
403da347917Sbeck 			tmp=A; /* keep the BIGNUM object, the value does not matter */
404da347917Sbeck 
405da347917Sbeck 			/* (A, B) := (B, A mod B) ... */
4065b37fcf3Sryker 			A=B;
4075b37fcf3Sryker 			B=M;
408da347917Sbeck 			/* ... so we have  0 <= B < A  again */
4095b37fcf3Sryker 
410da347917Sbeck 			/* Since the former  M  is now  B  and the former  B  is now  A,
411da347917Sbeck 			 * (**) translates into
412da347917Sbeck 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
413da347917Sbeck 			 * i.e.
414da347917Sbeck 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
415da347917Sbeck 			 * Similarly, (*) translates into
416da347917Sbeck 			 *      -sign*X*a  ==  A          (mod |n|).
417da347917Sbeck 			 *
418da347917Sbeck 			 * Thus,
419da347917Sbeck 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
420da347917Sbeck 			 * i.e.
421da347917Sbeck 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
422da347917Sbeck 			 *
423da347917Sbeck 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
424da347917Sbeck 			 *      -sign*X*a  ==  B   (mod |n|),
425da347917Sbeck 			 *       sign*Y*a  ==  A   (mod |n|).
426da347917Sbeck 			 * Note that  X  and  Y  stay non-negative all the time.
427da347917Sbeck 			 */
428da347917Sbeck 
429da347917Sbeck 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
430da347917Sbeck 			if (BN_is_one(D))
431da347917Sbeck 				{
432da347917Sbeck 				if (!BN_add(tmp,X,Y)) goto err;
433da347917Sbeck 				}
434da347917Sbeck 			else
435da347917Sbeck 				{
436da347917Sbeck 				if (BN_is_word(D,2))
437da347917Sbeck 					{
438da347917Sbeck 					if (!BN_lshift1(tmp,X)) goto err;
439da347917Sbeck 					}
440da347917Sbeck 				else if (BN_is_word(D,4))
441da347917Sbeck 					{
442da347917Sbeck 					if (!BN_lshift(tmp,X,2)) goto err;
443da347917Sbeck 					}
444da347917Sbeck 				else if (D->top == 1)
445da347917Sbeck 					{
446da347917Sbeck 					if (!BN_copy(tmp,X)) goto err;
447da347917Sbeck 					if (!BN_mul_word(tmp,D->d[0])) goto err;
448da347917Sbeck 					}
449da347917Sbeck 				else
450da347917Sbeck 					{
451da347917Sbeck 					if (!BN_mul(tmp,D,X,ctx)) goto err;
452da347917Sbeck 					}
453da347917Sbeck 				if (!BN_add(tmp,tmp,Y)) goto err;
454da347917Sbeck 				}
455da347917Sbeck 
456da347917Sbeck 			M=Y; /* keep the BIGNUM object, the value does not matter */
4575b37fcf3Sryker 			Y=X;
458da347917Sbeck 			X=tmp;
4595b37fcf3Sryker 			sign = -sign;
4605b37fcf3Sryker 			}
461da347917Sbeck 		}
462da347917Sbeck 
463da347917Sbeck 	/*
464da347917Sbeck 	 * The while loop (Euclid's algorithm) ends when
465da347917Sbeck 	 *      A == gcd(a,n);
466da347917Sbeck 	 * we have
467da347917Sbeck 	 *       sign*Y*a  ==  A  (mod |n|),
468da347917Sbeck 	 * where  Y  is non-negative.
469da347917Sbeck 	 */
470da347917Sbeck 
4715b37fcf3Sryker 	if (sign < 0)
4725b37fcf3Sryker 		{
4735b37fcf3Sryker 		if (!BN_sub(Y,n,Y)) goto err;
4745b37fcf3Sryker 		}
475da347917Sbeck 	/* Now  Y*a  ==  A  (mod |n|).  */
476da347917Sbeck 
4775b37fcf3Sryker 
4785b37fcf3Sryker 	if (BN_is_one(A))
479da347917Sbeck 		{
480da347917Sbeck 		/* Y*a == 1  (mod |n|) */
481da347917Sbeck 		if (!Y->neg && BN_ucmp(Y,n) < 0)
482da347917Sbeck 			{
483da347917Sbeck 			if (!BN_copy(R,Y)) goto err;
484da347917Sbeck 			}
485da347917Sbeck 		else
486da347917Sbeck 			{
487da347917Sbeck 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
488da347917Sbeck 			}
489da347917Sbeck 		}
4905b37fcf3Sryker 	else
4915b37fcf3Sryker 		{
4925b37fcf3Sryker 		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
4935b37fcf3Sryker 		goto err;
4945b37fcf3Sryker 		}
4955b37fcf3Sryker 	ret=R;
4965b37fcf3Sryker err:
497913ec974Sbeck 	if ((ret == NULL) && (in == NULL)) BN_free(R);
498ba5406e9Sbeck 	BN_CTX_end(ctx);
4994fcf65c5Sdjm 	bn_check_top(ret);
5004fcf65c5Sdjm 	return(ret);
5014fcf65c5Sdjm 	}
5024fcf65c5Sdjm 
5034fcf65c5Sdjm 
5044fcf65c5Sdjm /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
5054fcf65c5Sdjm  * It does not contain branches that may leak sensitive information.
5064fcf65c5Sdjm  */
5074fcf65c5Sdjm static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
5084fcf65c5Sdjm 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
5094fcf65c5Sdjm 	{
5104fcf65c5Sdjm 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
5114fcf65c5Sdjm 	BIGNUM local_A, local_B;
5124fcf65c5Sdjm 	BIGNUM *pA, *pB;
5134fcf65c5Sdjm 	BIGNUM *ret=NULL;
5144fcf65c5Sdjm 	int sign;
5154fcf65c5Sdjm 
5164fcf65c5Sdjm 	bn_check_top(a);
5174fcf65c5Sdjm 	bn_check_top(n);
5184fcf65c5Sdjm 
5194fcf65c5Sdjm 	BN_CTX_start(ctx);
5204fcf65c5Sdjm 	A = BN_CTX_get(ctx);
5214fcf65c5Sdjm 	B = BN_CTX_get(ctx);
5224fcf65c5Sdjm 	X = BN_CTX_get(ctx);
5234fcf65c5Sdjm 	D = BN_CTX_get(ctx);
5244fcf65c5Sdjm 	M = BN_CTX_get(ctx);
5254fcf65c5Sdjm 	Y = BN_CTX_get(ctx);
5264fcf65c5Sdjm 	T = BN_CTX_get(ctx);
5274fcf65c5Sdjm 	if (T == NULL) goto err;
5284fcf65c5Sdjm 
5294fcf65c5Sdjm 	if (in == NULL)
5304fcf65c5Sdjm 		R=BN_new();
5314fcf65c5Sdjm 	else
5324fcf65c5Sdjm 		R=in;
5334fcf65c5Sdjm 	if (R == NULL) goto err;
5344fcf65c5Sdjm 
5354fcf65c5Sdjm 	BN_one(X);
5364fcf65c5Sdjm 	BN_zero(Y);
5374fcf65c5Sdjm 	if (BN_copy(B,a) == NULL) goto err;
5384fcf65c5Sdjm 	if (BN_copy(A,n) == NULL) goto err;
5394fcf65c5Sdjm 	A->neg = 0;
5404fcf65c5Sdjm 
5414fcf65c5Sdjm 	if (B->neg || (BN_ucmp(B, A) >= 0))
5424fcf65c5Sdjm 		{
5434fcf65c5Sdjm 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
5444fcf65c5Sdjm 	 	 * BN_div_no_branch will be called eventually.
5454fcf65c5Sdjm 	 	 */
5464fcf65c5Sdjm 		pB = &local_B;
5474fcf65c5Sdjm 		BN_with_flags(pB, B, BN_FLG_CONSTTIME);
5484fcf65c5Sdjm 		if (!BN_nnmod(B, pB, A, ctx)) goto err;
5494fcf65c5Sdjm 		}
5504fcf65c5Sdjm 	sign = -1;
5514fcf65c5Sdjm 	/* From  B = a mod |n|,  A = |n|  it follows that
5524fcf65c5Sdjm 	 *
5534fcf65c5Sdjm 	 *      0 <= B < A,
5544fcf65c5Sdjm 	 *     -sign*X*a  ==  B   (mod |n|),
5554fcf65c5Sdjm 	 *      sign*Y*a  ==  A   (mod |n|).
5564fcf65c5Sdjm 	 */
5574fcf65c5Sdjm 
5584fcf65c5Sdjm 	while (!BN_is_zero(B))
5594fcf65c5Sdjm 		{
5604fcf65c5Sdjm 		BIGNUM *tmp;
5614fcf65c5Sdjm 
5624fcf65c5Sdjm 		/*
5634fcf65c5Sdjm 		 *      0 < B < A,
5644fcf65c5Sdjm 		 * (*) -sign*X*a  ==  B   (mod |n|),
5654fcf65c5Sdjm 		 *      sign*Y*a  ==  A   (mod |n|)
5664fcf65c5Sdjm 		 */
5674fcf65c5Sdjm 
5684fcf65c5Sdjm 		/* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
5694fcf65c5Sdjm 	 	 * BN_div_no_branch will be called eventually.
5704fcf65c5Sdjm 	 	 */
5714fcf65c5Sdjm 		pA = &local_A;
5724fcf65c5Sdjm 		BN_with_flags(pA, A, BN_FLG_CONSTTIME);
5734fcf65c5Sdjm 
5744fcf65c5Sdjm 		/* (D, M) := (A/B, A%B) ... */
5754fcf65c5Sdjm 		if (!BN_div(D,M,pA,B,ctx)) goto err;
5764fcf65c5Sdjm 
5774fcf65c5Sdjm 		/* Now
5784fcf65c5Sdjm 		 *      A = D*B + M;
5794fcf65c5Sdjm 		 * thus we have
5804fcf65c5Sdjm 		 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
5814fcf65c5Sdjm 		 */
5824fcf65c5Sdjm 
5834fcf65c5Sdjm 		tmp=A; /* keep the BIGNUM object, the value does not matter */
5844fcf65c5Sdjm 
5854fcf65c5Sdjm 		/* (A, B) := (B, A mod B) ... */
5864fcf65c5Sdjm 		A=B;
5874fcf65c5Sdjm 		B=M;
5884fcf65c5Sdjm 		/* ... so we have  0 <= B < A  again */
5894fcf65c5Sdjm 
5904fcf65c5Sdjm 		/* Since the former  M  is now  B  and the former  B  is now  A,
5914fcf65c5Sdjm 		 * (**) translates into
5924fcf65c5Sdjm 		 *       sign*Y*a  ==  D*A + B    (mod |n|),
5934fcf65c5Sdjm 		 * i.e.
5944fcf65c5Sdjm 		 *       sign*Y*a - D*A  ==  B    (mod |n|).
5954fcf65c5Sdjm 		 * Similarly, (*) translates into
5964fcf65c5Sdjm 		 *      -sign*X*a  ==  A          (mod |n|).
5974fcf65c5Sdjm 		 *
5984fcf65c5Sdjm 		 * Thus,
5994fcf65c5Sdjm 		 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
6004fcf65c5Sdjm 		 * i.e.
6014fcf65c5Sdjm 		 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
6024fcf65c5Sdjm 		 *
6034fcf65c5Sdjm 		 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
6044fcf65c5Sdjm 		 *      -sign*X*a  ==  B   (mod |n|),
6054fcf65c5Sdjm 		 *       sign*Y*a  ==  A   (mod |n|).
6064fcf65c5Sdjm 		 * Note that  X  and  Y  stay non-negative all the time.
6074fcf65c5Sdjm 		 */
6084fcf65c5Sdjm 
6094fcf65c5Sdjm 		if (!BN_mul(tmp,D,X,ctx)) goto err;
6104fcf65c5Sdjm 		if (!BN_add(tmp,tmp,Y)) goto err;
6114fcf65c5Sdjm 
6124fcf65c5Sdjm 		M=Y; /* keep the BIGNUM object, the value does not matter */
6134fcf65c5Sdjm 		Y=X;
6144fcf65c5Sdjm 		X=tmp;
6154fcf65c5Sdjm 		sign = -sign;
6164fcf65c5Sdjm 		}
6174fcf65c5Sdjm 
6184fcf65c5Sdjm 	/*
6194fcf65c5Sdjm 	 * The while loop (Euclid's algorithm) ends when
6204fcf65c5Sdjm 	 *      A == gcd(a,n);
6214fcf65c5Sdjm 	 * we have
6224fcf65c5Sdjm 	 *       sign*Y*a  ==  A  (mod |n|),
6234fcf65c5Sdjm 	 * where  Y  is non-negative.
6244fcf65c5Sdjm 	 */
6254fcf65c5Sdjm 
6264fcf65c5Sdjm 	if (sign < 0)
6274fcf65c5Sdjm 		{
6284fcf65c5Sdjm 		if (!BN_sub(Y,n,Y)) goto err;
6294fcf65c5Sdjm 		}
6304fcf65c5Sdjm 	/* Now  Y*a  ==  A  (mod |n|).  */
6314fcf65c5Sdjm 
6324fcf65c5Sdjm 	if (BN_is_one(A))
6334fcf65c5Sdjm 		{
6344fcf65c5Sdjm 		/* Y*a == 1  (mod |n|) */
6354fcf65c5Sdjm 		if (!Y->neg && BN_ucmp(Y,n) < 0)
6364fcf65c5Sdjm 			{
6374fcf65c5Sdjm 			if (!BN_copy(R,Y)) goto err;
6384fcf65c5Sdjm 			}
6394fcf65c5Sdjm 		else
6404fcf65c5Sdjm 			{
6414fcf65c5Sdjm 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
6424fcf65c5Sdjm 			}
6434fcf65c5Sdjm 		}
6444fcf65c5Sdjm 	else
6454fcf65c5Sdjm 		{
6464fcf65c5Sdjm 		BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE);
6474fcf65c5Sdjm 		goto err;
6484fcf65c5Sdjm 		}
6494fcf65c5Sdjm 	ret=R;
6504fcf65c5Sdjm err:
6514fcf65c5Sdjm 	if ((ret == NULL) && (in == NULL)) BN_free(R);
6524fcf65c5Sdjm 	BN_CTX_end(ctx);
6534fcf65c5Sdjm 	bn_check_top(ret);
6545b37fcf3Sryker 	return(ret);
6555b37fcf3Sryker 	}
656