15b37fcf3Sryker /* crypto/bn/bn_gcd.c */ 25b37fcf3Sryker /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 35b37fcf3Sryker * All rights reserved. 45b37fcf3Sryker * 55b37fcf3Sryker * This package is an SSL implementation written 65b37fcf3Sryker * by Eric Young (eay@cryptsoft.com). 75b37fcf3Sryker * The implementation was written so as to conform with Netscapes SSL. 85b37fcf3Sryker * 95b37fcf3Sryker * This library is free for commercial and non-commercial use as long as 105b37fcf3Sryker * the following conditions are aheared to. The following conditions 115b37fcf3Sryker * apply to all code found in this distribution, be it the RC4, RSA, 125b37fcf3Sryker * lhash, DES, etc., code; not just the SSL code. The SSL documentation 135b37fcf3Sryker * included with this distribution is covered by the same copyright terms 145b37fcf3Sryker * except that the holder is Tim Hudson (tjh@cryptsoft.com). 155b37fcf3Sryker * 165b37fcf3Sryker * Copyright remains Eric Young's, and as such any Copyright notices in 175b37fcf3Sryker * the code are not to be removed. 185b37fcf3Sryker * If this package is used in a product, Eric Young should be given attribution 195b37fcf3Sryker * as the author of the parts of the library used. 205b37fcf3Sryker * This can be in the form of a textual message at program startup or 215b37fcf3Sryker * in documentation (online or textual) provided with the package. 225b37fcf3Sryker * 235b37fcf3Sryker * Redistribution and use in source and binary forms, with or without 245b37fcf3Sryker * modification, are permitted provided that the following conditions 255b37fcf3Sryker * are met: 265b37fcf3Sryker * 1. Redistributions of source code must retain the copyright 275b37fcf3Sryker * notice, this list of conditions and the following disclaimer. 285b37fcf3Sryker * 2. Redistributions in binary form must reproduce the above copyright 295b37fcf3Sryker * notice, this list of conditions and the following disclaimer in the 305b37fcf3Sryker * documentation and/or other materials provided with the distribution. 315b37fcf3Sryker * 3. All advertising materials mentioning features or use of this software 325b37fcf3Sryker * must display the following acknowledgement: 335b37fcf3Sryker * "This product includes cryptographic software written by 345b37fcf3Sryker * Eric Young (eay@cryptsoft.com)" 355b37fcf3Sryker * The word 'cryptographic' can be left out if the rouines from the library 365b37fcf3Sryker * being used are not cryptographic related :-). 375b37fcf3Sryker * 4. If you include any Windows specific code (or a derivative thereof) from 385b37fcf3Sryker * the apps directory (application code) you must include an acknowledgement: 395b37fcf3Sryker * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" 405b37fcf3Sryker * 415b37fcf3Sryker * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 425b37fcf3Sryker * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 435b37fcf3Sryker * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 445b37fcf3Sryker * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 455b37fcf3Sryker * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 465b37fcf3Sryker * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 475b37fcf3Sryker * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 485b37fcf3Sryker * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 495b37fcf3Sryker * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 505b37fcf3Sryker * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 515b37fcf3Sryker * SUCH DAMAGE. 525b37fcf3Sryker * 535b37fcf3Sryker * The licence and distribution terms for any publically available version or 545b37fcf3Sryker * derivative of this code cannot be changed. i.e. this code cannot simply be 555b37fcf3Sryker * copied and put under another distribution licence 565b37fcf3Sryker * [including the GNU Public Licence.] 575b37fcf3Sryker */ 58da347917Sbeck /* ==================================================================== 59da347917Sbeck * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. 60da347917Sbeck * 61da347917Sbeck * Redistribution and use in source and binary forms, with or without 62da347917Sbeck * modification, are permitted provided that the following conditions 63da347917Sbeck * are met: 64da347917Sbeck * 65da347917Sbeck * 1. Redistributions of source code must retain the above copyright 66da347917Sbeck * notice, this list of conditions and the following disclaimer. 67da347917Sbeck * 68da347917Sbeck * 2. Redistributions in binary form must reproduce the above copyright 69da347917Sbeck * notice, this list of conditions and the following disclaimer in 70da347917Sbeck * the documentation and/or other materials provided with the 71da347917Sbeck * distribution. 72da347917Sbeck * 73da347917Sbeck * 3. All advertising materials mentioning features or use of this 74da347917Sbeck * software must display the following acknowledgment: 75da347917Sbeck * "This product includes software developed by the OpenSSL Project 76da347917Sbeck * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 77da347917Sbeck * 78da347917Sbeck * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 79da347917Sbeck * endorse or promote products derived from this software without 80da347917Sbeck * prior written permission. For written permission, please contact 81da347917Sbeck * openssl-core@openssl.org. 82da347917Sbeck * 83da347917Sbeck * 5. Products derived from this software may not be called "OpenSSL" 84da347917Sbeck * nor may "OpenSSL" appear in their names without prior written 85da347917Sbeck * permission of the OpenSSL Project. 86da347917Sbeck * 87da347917Sbeck * 6. Redistributions of any form whatsoever must retain the following 88da347917Sbeck * acknowledgment: 89da347917Sbeck * "This product includes software developed by the OpenSSL Project 90da347917Sbeck * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 91da347917Sbeck * 92da347917Sbeck * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 93da347917Sbeck * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 94da347917Sbeck * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 95da347917Sbeck * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 96da347917Sbeck * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 97da347917Sbeck * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 98da347917Sbeck * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 99da347917Sbeck * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 100da347917Sbeck * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 101da347917Sbeck * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 102da347917Sbeck * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 103da347917Sbeck * OF THE POSSIBILITY OF SUCH DAMAGE. 104da347917Sbeck * ==================================================================== 105da347917Sbeck * 106da347917Sbeck * This product includes cryptographic software written by Eric Young 107da347917Sbeck * (eay@cryptsoft.com). This product includes software written by Tim 108da347917Sbeck * Hudson (tjh@cryptsoft.com). 109da347917Sbeck * 110da347917Sbeck */ 1115b37fcf3Sryker 1125b37fcf3Sryker #include "cryptlib.h" 1135b37fcf3Sryker #include "bn_lcl.h" 1145b37fcf3Sryker 1155b37fcf3Sryker static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); 116ba5406e9Sbeck 117da347917Sbeck int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) 1185b37fcf3Sryker { 1195b37fcf3Sryker BIGNUM *a,*b,*t; 1205b37fcf3Sryker int ret=0; 1215b37fcf3Sryker 122913ec974Sbeck bn_check_top(in_a); 123913ec974Sbeck bn_check_top(in_b); 124913ec974Sbeck 125ba5406e9Sbeck BN_CTX_start(ctx); 126ba5406e9Sbeck a = BN_CTX_get(ctx); 127ba5406e9Sbeck b = BN_CTX_get(ctx); 128ba5406e9Sbeck if (a == NULL || b == NULL) goto err; 1295b37fcf3Sryker 1305b37fcf3Sryker if (BN_copy(a,in_a) == NULL) goto err; 1315b37fcf3Sryker if (BN_copy(b,in_b) == NULL) goto err; 132da347917Sbeck a->neg = 0; 133da347917Sbeck b->neg = 0; 1345b37fcf3Sryker 1355b37fcf3Sryker if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; } 1365b37fcf3Sryker t=euclid(a,b); 1375b37fcf3Sryker if (t == NULL) goto err; 1385b37fcf3Sryker 1395b37fcf3Sryker if (BN_copy(r,t) == NULL) goto err; 1405b37fcf3Sryker ret=1; 1415b37fcf3Sryker err: 142ba5406e9Sbeck BN_CTX_end(ctx); 1434fcf65c5Sdjm bn_check_top(r); 1445b37fcf3Sryker return(ret); 1455b37fcf3Sryker } 1465b37fcf3Sryker 147913ec974Sbeck static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) 1485b37fcf3Sryker { 1495b37fcf3Sryker BIGNUM *t; 1505b37fcf3Sryker int shifts=0; 1515b37fcf3Sryker 152913ec974Sbeck bn_check_top(a); 153913ec974Sbeck bn_check_top(b); 154913ec974Sbeck 155da347917Sbeck /* 0 <= b <= a */ 156da347917Sbeck while (!BN_is_zero(b)) 1575b37fcf3Sryker { 158da347917Sbeck /* 0 < b <= a */ 1595b37fcf3Sryker 1605b37fcf3Sryker if (BN_is_odd(a)) 1615b37fcf3Sryker { 1625b37fcf3Sryker if (BN_is_odd(b)) 1635b37fcf3Sryker { 1645b37fcf3Sryker if (!BN_sub(a,a,b)) goto err; 1655b37fcf3Sryker if (!BN_rshift1(a,a)) goto err; 1665b37fcf3Sryker if (BN_cmp(a,b) < 0) 1675b37fcf3Sryker { t=a; a=b; b=t; } 1685b37fcf3Sryker } 1695b37fcf3Sryker else /* a odd - b even */ 1705b37fcf3Sryker { 1715b37fcf3Sryker if (!BN_rshift1(b,b)) goto err; 1725b37fcf3Sryker if (BN_cmp(a,b) < 0) 1735b37fcf3Sryker { t=a; a=b; b=t; } 1745b37fcf3Sryker } 1755b37fcf3Sryker } 1765b37fcf3Sryker else /* a is even */ 1775b37fcf3Sryker { 1785b37fcf3Sryker if (BN_is_odd(b)) 1795b37fcf3Sryker { 1805b37fcf3Sryker if (!BN_rshift1(a,a)) goto err; 1815b37fcf3Sryker if (BN_cmp(a,b) < 0) 1825b37fcf3Sryker { t=a; a=b; b=t; } 1835b37fcf3Sryker } 1845b37fcf3Sryker else /* a even - b even */ 1855b37fcf3Sryker { 1865b37fcf3Sryker if (!BN_rshift1(a,a)) goto err; 1875b37fcf3Sryker if (!BN_rshift1(b,b)) goto err; 1885b37fcf3Sryker shifts++; 1895b37fcf3Sryker } 1905b37fcf3Sryker } 191da347917Sbeck /* 0 <= b <= a */ 1925b37fcf3Sryker } 193da347917Sbeck 1945b37fcf3Sryker if (shifts) 1955b37fcf3Sryker { 1965b37fcf3Sryker if (!BN_lshift(a,a,shifts)) goto err; 1975b37fcf3Sryker } 1984fcf65c5Sdjm bn_check_top(a); 1995b37fcf3Sryker return(a); 2005b37fcf3Sryker err: 2015b37fcf3Sryker return(NULL); 2025b37fcf3Sryker } 2035b37fcf3Sryker 204da347917Sbeck 2055b37fcf3Sryker /* solves ax == 1 (mod n) */ 2064fcf65c5Sdjm static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, 2074fcf65c5Sdjm const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); 208*97222eddSmiod 209da347917Sbeck BIGNUM *BN_mod_inverse(BIGNUM *in, 210da347917Sbeck const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) 2115b37fcf3Sryker { 212da347917Sbeck BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; 213da347917Sbeck BIGNUM *ret=NULL; 2145b37fcf3Sryker int sign; 2155b37fcf3Sryker 2164fcf65c5Sdjm if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) 2174fcf65c5Sdjm { 2184fcf65c5Sdjm return BN_mod_inverse_no_branch(in, a, n, ctx); 2194fcf65c5Sdjm } 2204fcf65c5Sdjm 221913ec974Sbeck bn_check_top(a); 222913ec974Sbeck bn_check_top(n); 223913ec974Sbeck 224ba5406e9Sbeck BN_CTX_start(ctx); 225ba5406e9Sbeck A = BN_CTX_get(ctx); 226ba5406e9Sbeck B = BN_CTX_get(ctx); 227ba5406e9Sbeck X = BN_CTX_get(ctx); 228ba5406e9Sbeck D = BN_CTX_get(ctx); 229ba5406e9Sbeck M = BN_CTX_get(ctx); 230ba5406e9Sbeck Y = BN_CTX_get(ctx); 231da347917Sbeck T = BN_CTX_get(ctx); 232da347917Sbeck if (T == NULL) goto err; 233ba5406e9Sbeck 234913ec974Sbeck if (in == NULL) 2355b37fcf3Sryker R=BN_new(); 236913ec974Sbeck else 237913ec974Sbeck R=in; 2385b37fcf3Sryker if (R == NULL) goto err; 2395b37fcf3Sryker 240da347917Sbeck BN_one(X); 241da347917Sbeck BN_zero(Y); 242da347917Sbeck if (BN_copy(B,a) == NULL) goto err; 243da347917Sbeck if (BN_copy(A,n) == NULL) goto err; 244da347917Sbeck A->neg = 0; 245da347917Sbeck if (B->neg || (BN_ucmp(B, A) >= 0)) 246da347917Sbeck { 247da347917Sbeck if (!BN_nnmod(B, B, A, ctx)) goto err; 248da347917Sbeck } 249da347917Sbeck sign = -1; 250da347917Sbeck /* From B = a mod |n|, A = |n| it follows that 251da347917Sbeck * 252da347917Sbeck * 0 <= B < A, 253da347917Sbeck * -sign*X*a == B (mod |n|), 254da347917Sbeck * sign*Y*a == A (mod |n|). 255da347917Sbeck */ 256da347917Sbeck 257da347917Sbeck if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) 258da347917Sbeck { 259da347917Sbeck /* Binary inversion algorithm; requires odd modulus. 260da347917Sbeck * This is faster than the general algorithm if the modulus 261da347917Sbeck * is sufficiently small (about 400 .. 500 bits on 32-bit 262da347917Sbeck * sytems, but much more on 64-bit systems) */ 263da347917Sbeck int shift; 2645b37fcf3Sryker 2655b37fcf3Sryker while (!BN_is_zero(B)) 2665b37fcf3Sryker { 267da347917Sbeck /* 268da347917Sbeck * 0 < B < |n|, 269da347917Sbeck * 0 < A <= |n|, 270da347917Sbeck * (1) -sign*X*a == B (mod |n|), 271da347917Sbeck * (2) sign*Y*a == A (mod |n|) 272da347917Sbeck */ 273da347917Sbeck 274da347917Sbeck /* Now divide B by the maximum possible power of two in the integers, 275da347917Sbeck * and divide X by the same value mod |n|. 276da347917Sbeck * When we're done, (1) still holds. */ 277da347917Sbeck shift = 0; 278da347917Sbeck while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ 279da347917Sbeck { 280da347917Sbeck shift++; 281da347917Sbeck 282da347917Sbeck if (BN_is_odd(X)) 283da347917Sbeck { 284da347917Sbeck if (!BN_uadd(X, X, n)) goto err; 285da347917Sbeck } 286da347917Sbeck /* now X is even, so we can easily divide it by two */ 287da347917Sbeck if (!BN_rshift1(X, X)) goto err; 288da347917Sbeck } 289da347917Sbeck if (shift > 0) 290da347917Sbeck { 291da347917Sbeck if (!BN_rshift(B, B, shift)) goto err; 292da347917Sbeck } 293da347917Sbeck 294da347917Sbeck 295da347917Sbeck /* Same for A and Y. Afterwards, (2) still holds. */ 296da347917Sbeck shift = 0; 297da347917Sbeck while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ 298da347917Sbeck { 299da347917Sbeck shift++; 300da347917Sbeck 301da347917Sbeck if (BN_is_odd(Y)) 302da347917Sbeck { 303da347917Sbeck if (!BN_uadd(Y, Y, n)) goto err; 304da347917Sbeck } 305da347917Sbeck /* now Y is even */ 306da347917Sbeck if (!BN_rshift1(Y, Y)) goto err; 307da347917Sbeck } 308da347917Sbeck if (shift > 0) 309da347917Sbeck { 310da347917Sbeck if (!BN_rshift(A, A, shift)) goto err; 311da347917Sbeck } 312da347917Sbeck 313da347917Sbeck 314da347917Sbeck /* We still have (1) and (2). 315da347917Sbeck * Both A and B are odd. 316da347917Sbeck * The following computations ensure that 317da347917Sbeck * 318da347917Sbeck * 0 <= B < |n|, 319da347917Sbeck * 0 < A < |n|, 320da347917Sbeck * (1) -sign*X*a == B (mod |n|), 321da347917Sbeck * (2) sign*Y*a == A (mod |n|), 322da347917Sbeck * 323da347917Sbeck * and that either A or B is even in the next iteration. 324da347917Sbeck */ 325da347917Sbeck if (BN_ucmp(B, A) >= 0) 326da347917Sbeck { 327da347917Sbeck /* -sign*(X + Y)*a == B - A (mod |n|) */ 328da347917Sbeck if (!BN_uadd(X, X, Y)) goto err; 329da347917Sbeck /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that 330da347917Sbeck * actually makes the algorithm slower */ 331da347917Sbeck if (!BN_usub(B, B, A)) goto err; 332da347917Sbeck } 333da347917Sbeck else 334da347917Sbeck { 335da347917Sbeck /* sign*(X + Y)*a == A - B (mod |n|) */ 336da347917Sbeck if (!BN_uadd(Y, Y, X)) goto err; 337da347917Sbeck /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ 338da347917Sbeck if (!BN_usub(A, A, B)) goto err; 339da347917Sbeck } 340da347917Sbeck } 341da347917Sbeck } 342da347917Sbeck else 343da347917Sbeck { 344da347917Sbeck /* general inversion algorithm */ 345da347917Sbeck 346da347917Sbeck while (!BN_is_zero(B)) 347da347917Sbeck { 348da347917Sbeck BIGNUM *tmp; 349da347917Sbeck 350da347917Sbeck /* 351da347917Sbeck * 0 < B < A, 352da347917Sbeck * (*) -sign*X*a == B (mod |n|), 353da347917Sbeck * sign*Y*a == A (mod |n|) 354da347917Sbeck */ 355da347917Sbeck 356da347917Sbeck /* (D, M) := (A/B, A%B) ... */ 357da347917Sbeck if (BN_num_bits(A) == BN_num_bits(B)) 358da347917Sbeck { 359da347917Sbeck if (!BN_one(D)) goto err; 360da347917Sbeck if (!BN_sub(M,A,B)) goto err; 361da347917Sbeck } 362da347917Sbeck else if (BN_num_bits(A) == BN_num_bits(B) + 1) 363da347917Sbeck { 364da347917Sbeck /* A/B is 1, 2, or 3 */ 365da347917Sbeck if (!BN_lshift1(T,B)) goto err; 366da347917Sbeck if (BN_ucmp(A,T) < 0) 367da347917Sbeck { 368da347917Sbeck /* A < 2*B, so D=1 */ 369da347917Sbeck if (!BN_one(D)) goto err; 370da347917Sbeck if (!BN_sub(M,A,B)) goto err; 371da347917Sbeck } 372da347917Sbeck else 373da347917Sbeck { 374da347917Sbeck /* A >= 2*B, so D=2 or D=3 */ 375da347917Sbeck if (!BN_sub(M,A,T)) goto err; 376da347917Sbeck if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ 377da347917Sbeck if (BN_ucmp(A,D) < 0) 378da347917Sbeck { 379da347917Sbeck /* A < 3*B, so D=2 */ 380da347917Sbeck if (!BN_set_word(D,2)) goto err; 381da347917Sbeck /* M (= A - 2*B) already has the correct value */ 382da347917Sbeck } 383da347917Sbeck else 384da347917Sbeck { 385da347917Sbeck /* only D=3 remains */ 386da347917Sbeck if (!BN_set_word(D,3)) goto err; 387da347917Sbeck /* currently M = A - 2*B, but we need M = A - 3*B */ 388da347917Sbeck if (!BN_sub(M,M,B)) goto err; 389da347917Sbeck } 390da347917Sbeck } 391da347917Sbeck } 392da347917Sbeck else 393da347917Sbeck { 3945b37fcf3Sryker if (!BN_div(D,M,A,B,ctx)) goto err; 395da347917Sbeck } 396da347917Sbeck 397da347917Sbeck /* Now 398da347917Sbeck * A = D*B + M; 399da347917Sbeck * thus we have 400da347917Sbeck * (**) sign*Y*a == D*B + M (mod |n|). 401da347917Sbeck */ 402da347917Sbeck 403da347917Sbeck tmp=A; /* keep the BIGNUM object, the value does not matter */ 404da347917Sbeck 405da347917Sbeck /* (A, B) := (B, A mod B) ... */ 4065b37fcf3Sryker A=B; 4075b37fcf3Sryker B=M; 408da347917Sbeck /* ... so we have 0 <= B < A again */ 4095b37fcf3Sryker 410da347917Sbeck /* Since the former M is now B and the former B is now A, 411da347917Sbeck * (**) translates into 412da347917Sbeck * sign*Y*a == D*A + B (mod |n|), 413da347917Sbeck * i.e. 414da347917Sbeck * sign*Y*a - D*A == B (mod |n|). 415da347917Sbeck * Similarly, (*) translates into 416da347917Sbeck * -sign*X*a == A (mod |n|). 417da347917Sbeck * 418da347917Sbeck * Thus, 419da347917Sbeck * sign*Y*a + D*sign*X*a == B (mod |n|), 420da347917Sbeck * i.e. 421da347917Sbeck * sign*(Y + D*X)*a == B (mod |n|). 422da347917Sbeck * 423da347917Sbeck * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at 424da347917Sbeck * -sign*X*a == B (mod |n|), 425da347917Sbeck * sign*Y*a == A (mod |n|). 426da347917Sbeck * Note that X and Y stay non-negative all the time. 427da347917Sbeck */ 428da347917Sbeck 429da347917Sbeck /* most of the time D is very small, so we can optimize tmp := D*X+Y */ 430da347917Sbeck if (BN_is_one(D)) 431da347917Sbeck { 432da347917Sbeck if (!BN_add(tmp,X,Y)) goto err; 433da347917Sbeck } 434da347917Sbeck else 435da347917Sbeck { 436da347917Sbeck if (BN_is_word(D,2)) 437da347917Sbeck { 438da347917Sbeck if (!BN_lshift1(tmp,X)) goto err; 439da347917Sbeck } 440da347917Sbeck else if (BN_is_word(D,4)) 441da347917Sbeck { 442da347917Sbeck if (!BN_lshift(tmp,X,2)) goto err; 443da347917Sbeck } 444da347917Sbeck else if (D->top == 1) 445da347917Sbeck { 446da347917Sbeck if (!BN_copy(tmp,X)) goto err; 447da347917Sbeck if (!BN_mul_word(tmp,D->d[0])) goto err; 448da347917Sbeck } 449da347917Sbeck else 450da347917Sbeck { 451da347917Sbeck if (!BN_mul(tmp,D,X,ctx)) goto err; 452da347917Sbeck } 453da347917Sbeck if (!BN_add(tmp,tmp,Y)) goto err; 454da347917Sbeck } 455da347917Sbeck 456da347917Sbeck M=Y; /* keep the BIGNUM object, the value does not matter */ 4575b37fcf3Sryker Y=X; 458da347917Sbeck X=tmp; 4595b37fcf3Sryker sign = -sign; 4605b37fcf3Sryker } 461da347917Sbeck } 462da347917Sbeck 463da347917Sbeck /* 464da347917Sbeck * The while loop (Euclid's algorithm) ends when 465da347917Sbeck * A == gcd(a,n); 466da347917Sbeck * we have 467da347917Sbeck * sign*Y*a == A (mod |n|), 468da347917Sbeck * where Y is non-negative. 469da347917Sbeck */ 470da347917Sbeck 4715b37fcf3Sryker if (sign < 0) 4725b37fcf3Sryker { 4735b37fcf3Sryker if (!BN_sub(Y,n,Y)) goto err; 4745b37fcf3Sryker } 475da347917Sbeck /* Now Y*a == A (mod |n|). */ 476da347917Sbeck 4775b37fcf3Sryker 4785b37fcf3Sryker if (BN_is_one(A)) 479da347917Sbeck { 480da347917Sbeck /* Y*a == 1 (mod |n|) */ 481da347917Sbeck if (!Y->neg && BN_ucmp(Y,n) < 0) 482da347917Sbeck { 483da347917Sbeck if (!BN_copy(R,Y)) goto err; 484da347917Sbeck } 485da347917Sbeck else 486da347917Sbeck { 487da347917Sbeck if (!BN_nnmod(R,Y,n,ctx)) goto err; 488da347917Sbeck } 489da347917Sbeck } 4905b37fcf3Sryker else 4915b37fcf3Sryker { 4925b37fcf3Sryker BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE); 4935b37fcf3Sryker goto err; 4945b37fcf3Sryker } 4955b37fcf3Sryker ret=R; 4965b37fcf3Sryker err: 497913ec974Sbeck if ((ret == NULL) && (in == NULL)) BN_free(R); 498ba5406e9Sbeck BN_CTX_end(ctx); 4994fcf65c5Sdjm bn_check_top(ret); 5004fcf65c5Sdjm return(ret); 5014fcf65c5Sdjm } 5024fcf65c5Sdjm 5034fcf65c5Sdjm 5044fcf65c5Sdjm /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. 5054fcf65c5Sdjm * It does not contain branches that may leak sensitive information. 5064fcf65c5Sdjm */ 5074fcf65c5Sdjm static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, 5084fcf65c5Sdjm const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) 5094fcf65c5Sdjm { 5104fcf65c5Sdjm BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; 5114fcf65c5Sdjm BIGNUM local_A, local_B; 5124fcf65c5Sdjm BIGNUM *pA, *pB; 5134fcf65c5Sdjm BIGNUM *ret=NULL; 5144fcf65c5Sdjm int sign; 5154fcf65c5Sdjm 5164fcf65c5Sdjm bn_check_top(a); 5174fcf65c5Sdjm bn_check_top(n); 5184fcf65c5Sdjm 5194fcf65c5Sdjm BN_CTX_start(ctx); 5204fcf65c5Sdjm A = BN_CTX_get(ctx); 5214fcf65c5Sdjm B = BN_CTX_get(ctx); 5224fcf65c5Sdjm X = BN_CTX_get(ctx); 5234fcf65c5Sdjm D = BN_CTX_get(ctx); 5244fcf65c5Sdjm M = BN_CTX_get(ctx); 5254fcf65c5Sdjm Y = BN_CTX_get(ctx); 5264fcf65c5Sdjm T = BN_CTX_get(ctx); 5274fcf65c5Sdjm if (T == NULL) goto err; 5284fcf65c5Sdjm 5294fcf65c5Sdjm if (in == NULL) 5304fcf65c5Sdjm R=BN_new(); 5314fcf65c5Sdjm else 5324fcf65c5Sdjm R=in; 5334fcf65c5Sdjm if (R == NULL) goto err; 5344fcf65c5Sdjm 5354fcf65c5Sdjm BN_one(X); 5364fcf65c5Sdjm BN_zero(Y); 5374fcf65c5Sdjm if (BN_copy(B,a) == NULL) goto err; 5384fcf65c5Sdjm if (BN_copy(A,n) == NULL) goto err; 5394fcf65c5Sdjm A->neg = 0; 5404fcf65c5Sdjm 5414fcf65c5Sdjm if (B->neg || (BN_ucmp(B, A) >= 0)) 5424fcf65c5Sdjm { 5434fcf65c5Sdjm /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, 5444fcf65c5Sdjm * BN_div_no_branch will be called eventually. 5454fcf65c5Sdjm */ 5464fcf65c5Sdjm pB = &local_B; 5474fcf65c5Sdjm BN_with_flags(pB, B, BN_FLG_CONSTTIME); 5484fcf65c5Sdjm if (!BN_nnmod(B, pB, A, ctx)) goto err; 5494fcf65c5Sdjm } 5504fcf65c5Sdjm sign = -1; 5514fcf65c5Sdjm /* From B = a mod |n|, A = |n| it follows that 5524fcf65c5Sdjm * 5534fcf65c5Sdjm * 0 <= B < A, 5544fcf65c5Sdjm * -sign*X*a == B (mod |n|), 5554fcf65c5Sdjm * sign*Y*a == A (mod |n|). 5564fcf65c5Sdjm */ 5574fcf65c5Sdjm 5584fcf65c5Sdjm while (!BN_is_zero(B)) 5594fcf65c5Sdjm { 5604fcf65c5Sdjm BIGNUM *tmp; 5614fcf65c5Sdjm 5624fcf65c5Sdjm /* 5634fcf65c5Sdjm * 0 < B < A, 5644fcf65c5Sdjm * (*) -sign*X*a == B (mod |n|), 5654fcf65c5Sdjm * sign*Y*a == A (mod |n|) 5664fcf65c5Sdjm */ 5674fcf65c5Sdjm 5684fcf65c5Sdjm /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, 5694fcf65c5Sdjm * BN_div_no_branch will be called eventually. 5704fcf65c5Sdjm */ 5714fcf65c5Sdjm pA = &local_A; 5724fcf65c5Sdjm BN_with_flags(pA, A, BN_FLG_CONSTTIME); 5734fcf65c5Sdjm 5744fcf65c5Sdjm /* (D, M) := (A/B, A%B) ... */ 5754fcf65c5Sdjm if (!BN_div(D,M,pA,B,ctx)) goto err; 5764fcf65c5Sdjm 5774fcf65c5Sdjm /* Now 5784fcf65c5Sdjm * A = D*B + M; 5794fcf65c5Sdjm * thus we have 5804fcf65c5Sdjm * (**) sign*Y*a == D*B + M (mod |n|). 5814fcf65c5Sdjm */ 5824fcf65c5Sdjm 5834fcf65c5Sdjm tmp=A; /* keep the BIGNUM object, the value does not matter */ 5844fcf65c5Sdjm 5854fcf65c5Sdjm /* (A, B) := (B, A mod B) ... */ 5864fcf65c5Sdjm A=B; 5874fcf65c5Sdjm B=M; 5884fcf65c5Sdjm /* ... so we have 0 <= B < A again */ 5894fcf65c5Sdjm 5904fcf65c5Sdjm /* Since the former M is now B and the former B is now A, 5914fcf65c5Sdjm * (**) translates into 5924fcf65c5Sdjm * sign*Y*a == D*A + B (mod |n|), 5934fcf65c5Sdjm * i.e. 5944fcf65c5Sdjm * sign*Y*a - D*A == B (mod |n|). 5954fcf65c5Sdjm * Similarly, (*) translates into 5964fcf65c5Sdjm * -sign*X*a == A (mod |n|). 5974fcf65c5Sdjm * 5984fcf65c5Sdjm * Thus, 5994fcf65c5Sdjm * sign*Y*a + D*sign*X*a == B (mod |n|), 6004fcf65c5Sdjm * i.e. 6014fcf65c5Sdjm * sign*(Y + D*X)*a == B (mod |n|). 6024fcf65c5Sdjm * 6034fcf65c5Sdjm * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at 6044fcf65c5Sdjm * -sign*X*a == B (mod |n|), 6054fcf65c5Sdjm * sign*Y*a == A (mod |n|). 6064fcf65c5Sdjm * Note that X and Y stay non-negative all the time. 6074fcf65c5Sdjm */ 6084fcf65c5Sdjm 6094fcf65c5Sdjm if (!BN_mul(tmp,D,X,ctx)) goto err; 6104fcf65c5Sdjm if (!BN_add(tmp,tmp,Y)) goto err; 6114fcf65c5Sdjm 6124fcf65c5Sdjm M=Y; /* keep the BIGNUM object, the value does not matter */ 6134fcf65c5Sdjm Y=X; 6144fcf65c5Sdjm X=tmp; 6154fcf65c5Sdjm sign = -sign; 6164fcf65c5Sdjm } 6174fcf65c5Sdjm 6184fcf65c5Sdjm /* 6194fcf65c5Sdjm * The while loop (Euclid's algorithm) ends when 6204fcf65c5Sdjm * A == gcd(a,n); 6214fcf65c5Sdjm * we have 6224fcf65c5Sdjm * sign*Y*a == A (mod |n|), 6234fcf65c5Sdjm * where Y is non-negative. 6244fcf65c5Sdjm */ 6254fcf65c5Sdjm 6264fcf65c5Sdjm if (sign < 0) 6274fcf65c5Sdjm { 6284fcf65c5Sdjm if (!BN_sub(Y,n,Y)) goto err; 6294fcf65c5Sdjm } 6304fcf65c5Sdjm /* Now Y*a == A (mod |n|). */ 6314fcf65c5Sdjm 6324fcf65c5Sdjm if (BN_is_one(A)) 6334fcf65c5Sdjm { 6344fcf65c5Sdjm /* Y*a == 1 (mod |n|) */ 6354fcf65c5Sdjm if (!Y->neg && BN_ucmp(Y,n) < 0) 6364fcf65c5Sdjm { 6374fcf65c5Sdjm if (!BN_copy(R,Y)) goto err; 6384fcf65c5Sdjm } 6394fcf65c5Sdjm else 6404fcf65c5Sdjm { 6414fcf65c5Sdjm if (!BN_nnmod(R,Y,n,ctx)) goto err; 6424fcf65c5Sdjm } 6434fcf65c5Sdjm } 6444fcf65c5Sdjm else 6454fcf65c5Sdjm { 6464fcf65c5Sdjm BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE); 6474fcf65c5Sdjm goto err; 6484fcf65c5Sdjm } 6494fcf65c5Sdjm ret=R; 6504fcf65c5Sdjm err: 6514fcf65c5Sdjm if ((ret == NULL) && (in == NULL)) BN_free(R); 6524fcf65c5Sdjm BN_CTX_end(ctx); 6534fcf65c5Sdjm bn_check_top(ret); 6545b37fcf3Sryker return(ret); 6555b37fcf3Sryker } 656