xref: /openbsd/lib/libcrypto/bn/bn_gcd.c (revision da347917)
15b37fcf3Sryker /* crypto/bn/bn_gcd.c */
25b37fcf3Sryker /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
35b37fcf3Sryker  * All rights reserved.
45b37fcf3Sryker  *
55b37fcf3Sryker  * This package is an SSL implementation written
65b37fcf3Sryker  * by Eric Young (eay@cryptsoft.com).
75b37fcf3Sryker  * The implementation was written so as to conform with Netscapes SSL.
85b37fcf3Sryker  *
95b37fcf3Sryker  * This library is free for commercial and non-commercial use as long as
105b37fcf3Sryker  * the following conditions are aheared to.  The following conditions
115b37fcf3Sryker  * apply to all code found in this distribution, be it the RC4, RSA,
125b37fcf3Sryker  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
135b37fcf3Sryker  * included with this distribution is covered by the same copyright terms
145b37fcf3Sryker  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
155b37fcf3Sryker  *
165b37fcf3Sryker  * Copyright remains Eric Young's, and as such any Copyright notices in
175b37fcf3Sryker  * the code are not to be removed.
185b37fcf3Sryker  * If this package is used in a product, Eric Young should be given attribution
195b37fcf3Sryker  * as the author of the parts of the library used.
205b37fcf3Sryker  * This can be in the form of a textual message at program startup or
215b37fcf3Sryker  * in documentation (online or textual) provided with the package.
225b37fcf3Sryker  *
235b37fcf3Sryker  * Redistribution and use in source and binary forms, with or without
245b37fcf3Sryker  * modification, are permitted provided that the following conditions
255b37fcf3Sryker  * are met:
265b37fcf3Sryker  * 1. Redistributions of source code must retain the copyright
275b37fcf3Sryker  *    notice, this list of conditions and the following disclaimer.
285b37fcf3Sryker  * 2. Redistributions in binary form must reproduce the above copyright
295b37fcf3Sryker  *    notice, this list of conditions and the following disclaimer in the
305b37fcf3Sryker  *    documentation and/or other materials provided with the distribution.
315b37fcf3Sryker  * 3. All advertising materials mentioning features or use of this software
325b37fcf3Sryker  *    must display the following acknowledgement:
335b37fcf3Sryker  *    "This product includes cryptographic software written by
345b37fcf3Sryker  *     Eric Young (eay@cryptsoft.com)"
355b37fcf3Sryker  *    The word 'cryptographic' can be left out if the rouines from the library
365b37fcf3Sryker  *    being used are not cryptographic related :-).
375b37fcf3Sryker  * 4. If you include any Windows specific code (or a derivative thereof) from
385b37fcf3Sryker  *    the apps directory (application code) you must include an acknowledgement:
395b37fcf3Sryker  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
405b37fcf3Sryker  *
415b37fcf3Sryker  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
425b37fcf3Sryker  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
435b37fcf3Sryker  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
445b37fcf3Sryker  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
455b37fcf3Sryker  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
465b37fcf3Sryker  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
475b37fcf3Sryker  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
485b37fcf3Sryker  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
495b37fcf3Sryker  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
505b37fcf3Sryker  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
515b37fcf3Sryker  * SUCH DAMAGE.
525b37fcf3Sryker  *
535b37fcf3Sryker  * The licence and distribution terms for any publically available version or
545b37fcf3Sryker  * derivative of this code cannot be changed.  i.e. this code cannot simply be
555b37fcf3Sryker  * copied and put under another distribution licence
565b37fcf3Sryker  * [including the GNU Public Licence.]
575b37fcf3Sryker  */
58*da347917Sbeck /* ====================================================================
59*da347917Sbeck  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60*da347917Sbeck  *
61*da347917Sbeck  * Redistribution and use in source and binary forms, with or without
62*da347917Sbeck  * modification, are permitted provided that the following conditions
63*da347917Sbeck  * are met:
64*da347917Sbeck  *
65*da347917Sbeck  * 1. Redistributions of source code must retain the above copyright
66*da347917Sbeck  *    notice, this list of conditions and the following disclaimer.
67*da347917Sbeck  *
68*da347917Sbeck  * 2. Redistributions in binary form must reproduce the above copyright
69*da347917Sbeck  *    notice, this list of conditions and the following disclaimer in
70*da347917Sbeck  *    the documentation and/or other materials provided with the
71*da347917Sbeck  *    distribution.
72*da347917Sbeck  *
73*da347917Sbeck  * 3. All advertising materials mentioning features or use of this
74*da347917Sbeck  *    software must display the following acknowledgment:
75*da347917Sbeck  *    "This product includes software developed by the OpenSSL Project
76*da347917Sbeck  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77*da347917Sbeck  *
78*da347917Sbeck  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79*da347917Sbeck  *    endorse or promote products derived from this software without
80*da347917Sbeck  *    prior written permission. For written permission, please contact
81*da347917Sbeck  *    openssl-core@openssl.org.
82*da347917Sbeck  *
83*da347917Sbeck  * 5. Products derived from this software may not be called "OpenSSL"
84*da347917Sbeck  *    nor may "OpenSSL" appear in their names without prior written
85*da347917Sbeck  *    permission of the OpenSSL Project.
86*da347917Sbeck  *
87*da347917Sbeck  * 6. Redistributions of any form whatsoever must retain the following
88*da347917Sbeck  *    acknowledgment:
89*da347917Sbeck  *    "This product includes software developed by the OpenSSL Project
90*da347917Sbeck  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91*da347917Sbeck  *
92*da347917Sbeck  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93*da347917Sbeck  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94*da347917Sbeck  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95*da347917Sbeck  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96*da347917Sbeck  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97*da347917Sbeck  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98*da347917Sbeck  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99*da347917Sbeck  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100*da347917Sbeck  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101*da347917Sbeck  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102*da347917Sbeck  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103*da347917Sbeck  * OF THE POSSIBILITY OF SUCH DAMAGE.
104*da347917Sbeck  * ====================================================================
105*da347917Sbeck  *
106*da347917Sbeck  * This product includes cryptographic software written by Eric Young
107*da347917Sbeck  * (eay@cryptsoft.com).  This product includes software written by Tim
108*da347917Sbeck  * Hudson (tjh@cryptsoft.com).
109*da347917Sbeck  *
110*da347917Sbeck  */
1115b37fcf3Sryker 
1125b37fcf3Sryker #include "cryptlib.h"
1135b37fcf3Sryker #include "bn_lcl.h"
1145b37fcf3Sryker 
1155b37fcf3Sryker static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116ba5406e9Sbeck 
117*da347917Sbeck int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
1185b37fcf3Sryker 	{
1195b37fcf3Sryker 	BIGNUM *a,*b,*t;
1205b37fcf3Sryker 	int ret=0;
1215b37fcf3Sryker 
122913ec974Sbeck 	bn_check_top(in_a);
123913ec974Sbeck 	bn_check_top(in_b);
124913ec974Sbeck 
125ba5406e9Sbeck 	BN_CTX_start(ctx);
126ba5406e9Sbeck 	a = BN_CTX_get(ctx);
127ba5406e9Sbeck 	b = BN_CTX_get(ctx);
128ba5406e9Sbeck 	if (a == NULL || b == NULL) goto err;
1295b37fcf3Sryker 
1305b37fcf3Sryker 	if (BN_copy(a,in_a) == NULL) goto err;
1315b37fcf3Sryker 	if (BN_copy(b,in_b) == NULL) goto err;
132*da347917Sbeck 	a->neg = 0;
133*da347917Sbeck 	b->neg = 0;
1345b37fcf3Sryker 
1355b37fcf3Sryker 	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
1365b37fcf3Sryker 	t=euclid(a,b);
1375b37fcf3Sryker 	if (t == NULL) goto err;
1385b37fcf3Sryker 
1395b37fcf3Sryker 	if (BN_copy(r,t) == NULL) goto err;
1405b37fcf3Sryker 	ret=1;
1415b37fcf3Sryker err:
142ba5406e9Sbeck 	BN_CTX_end(ctx);
1435b37fcf3Sryker 	return(ret);
1445b37fcf3Sryker 	}
1455b37fcf3Sryker 
146913ec974Sbeck static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
1475b37fcf3Sryker 	{
1485b37fcf3Sryker 	BIGNUM *t;
1495b37fcf3Sryker 	int shifts=0;
1505b37fcf3Sryker 
151913ec974Sbeck 	bn_check_top(a);
152913ec974Sbeck 	bn_check_top(b);
153913ec974Sbeck 
154*da347917Sbeck 	/* 0 <= b <= a */
155*da347917Sbeck 	while (!BN_is_zero(b))
1565b37fcf3Sryker 		{
157*da347917Sbeck 		/* 0 < b <= a */
1585b37fcf3Sryker 
1595b37fcf3Sryker 		if (BN_is_odd(a))
1605b37fcf3Sryker 			{
1615b37fcf3Sryker 			if (BN_is_odd(b))
1625b37fcf3Sryker 				{
1635b37fcf3Sryker 				if (!BN_sub(a,a,b)) goto err;
1645b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1655b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1665b37fcf3Sryker 					{ t=a; a=b; b=t; }
1675b37fcf3Sryker 				}
1685b37fcf3Sryker 			else		/* a odd - b even */
1695b37fcf3Sryker 				{
1705b37fcf3Sryker 				if (!BN_rshift1(b,b)) goto err;
1715b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1725b37fcf3Sryker 					{ t=a; a=b; b=t; }
1735b37fcf3Sryker 				}
1745b37fcf3Sryker 			}
1755b37fcf3Sryker 		else			/* a is even */
1765b37fcf3Sryker 			{
1775b37fcf3Sryker 			if (BN_is_odd(b))
1785b37fcf3Sryker 				{
1795b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1805b37fcf3Sryker 				if (BN_cmp(a,b) < 0)
1815b37fcf3Sryker 					{ t=a; a=b; b=t; }
1825b37fcf3Sryker 				}
1835b37fcf3Sryker 			else		/* a even - b even */
1845b37fcf3Sryker 				{
1855b37fcf3Sryker 				if (!BN_rshift1(a,a)) goto err;
1865b37fcf3Sryker 				if (!BN_rshift1(b,b)) goto err;
1875b37fcf3Sryker 				shifts++;
1885b37fcf3Sryker 				}
1895b37fcf3Sryker 			}
190*da347917Sbeck 		/* 0 <= b <= a */
1915b37fcf3Sryker 		}
192*da347917Sbeck 
1935b37fcf3Sryker 	if (shifts)
1945b37fcf3Sryker 		{
1955b37fcf3Sryker 		if (!BN_lshift(a,a,shifts)) goto err;
1965b37fcf3Sryker 		}
1975b37fcf3Sryker 	return(a);
1985b37fcf3Sryker err:
1995b37fcf3Sryker 	return(NULL);
2005b37fcf3Sryker 	}
2015b37fcf3Sryker 
202*da347917Sbeck 
2035b37fcf3Sryker /* solves ax == 1 (mod n) */
204*da347917Sbeck BIGNUM *BN_mod_inverse(BIGNUM *in,
205*da347917Sbeck 	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
2065b37fcf3Sryker 	{
207*da347917Sbeck 	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
208*da347917Sbeck 	BIGNUM *ret=NULL;
2095b37fcf3Sryker 	int sign;
2105b37fcf3Sryker 
211913ec974Sbeck 	bn_check_top(a);
212913ec974Sbeck 	bn_check_top(n);
213913ec974Sbeck 
214ba5406e9Sbeck 	BN_CTX_start(ctx);
215ba5406e9Sbeck 	A = BN_CTX_get(ctx);
216ba5406e9Sbeck 	B = BN_CTX_get(ctx);
217ba5406e9Sbeck 	X = BN_CTX_get(ctx);
218ba5406e9Sbeck 	D = BN_CTX_get(ctx);
219ba5406e9Sbeck 	M = BN_CTX_get(ctx);
220ba5406e9Sbeck 	Y = BN_CTX_get(ctx);
221*da347917Sbeck 	T = BN_CTX_get(ctx);
222*da347917Sbeck 	if (T == NULL) goto err;
223ba5406e9Sbeck 
224913ec974Sbeck 	if (in == NULL)
2255b37fcf3Sryker 		R=BN_new();
226913ec974Sbeck 	else
227913ec974Sbeck 		R=in;
2285b37fcf3Sryker 	if (R == NULL) goto err;
2295b37fcf3Sryker 
230*da347917Sbeck 	BN_one(X);
231*da347917Sbeck 	BN_zero(Y);
232*da347917Sbeck 	if (BN_copy(B,a) == NULL) goto err;
233*da347917Sbeck 	if (BN_copy(A,n) == NULL) goto err;
234*da347917Sbeck 	A->neg = 0;
235*da347917Sbeck 	if (B->neg || (BN_ucmp(B, A) >= 0))
236*da347917Sbeck 		{
237*da347917Sbeck 		if (!BN_nnmod(B, B, A, ctx)) goto err;
238*da347917Sbeck 		}
239*da347917Sbeck 	sign = -1;
240*da347917Sbeck 	/* From  B = a mod |n|,  A = |n|  it follows that
241*da347917Sbeck 	 *
242*da347917Sbeck 	 *      0 <= B < A,
243*da347917Sbeck 	 *     -sign*X*a  ==  B   (mod |n|),
244*da347917Sbeck 	 *      sign*Y*a  ==  A   (mod |n|).
245*da347917Sbeck 	 */
246*da347917Sbeck 
247*da347917Sbeck 	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
248*da347917Sbeck 		{
249*da347917Sbeck 		/* Binary inversion algorithm; requires odd modulus.
250*da347917Sbeck 		 * This is faster than the general algorithm if the modulus
251*da347917Sbeck 		 * is sufficiently small (about 400 .. 500 bits on 32-bit
252*da347917Sbeck 		 * sytems, but much more on 64-bit systems) */
253*da347917Sbeck 		int shift;
2545b37fcf3Sryker 
2555b37fcf3Sryker 		while (!BN_is_zero(B))
2565b37fcf3Sryker 			{
257*da347917Sbeck 			/*
258*da347917Sbeck 			 *      0 < B < |n|,
259*da347917Sbeck 			 *      0 < A <= |n|,
260*da347917Sbeck 			 * (1) -sign*X*a  ==  B   (mod |n|),
261*da347917Sbeck 			 * (2)  sign*Y*a  ==  A   (mod |n|)
262*da347917Sbeck 			 */
263*da347917Sbeck 
264*da347917Sbeck 			/* Now divide  B  by the maximum possible power of two in the integers,
265*da347917Sbeck 			 * and divide  X  by the same value mod |n|.
266*da347917Sbeck 			 * When we're done, (1) still holds. */
267*da347917Sbeck 			shift = 0;
268*da347917Sbeck 			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
269*da347917Sbeck 				{
270*da347917Sbeck 				shift++;
271*da347917Sbeck 
272*da347917Sbeck 				if (BN_is_odd(X))
273*da347917Sbeck 					{
274*da347917Sbeck 					if (!BN_uadd(X, X, n)) goto err;
275*da347917Sbeck 					}
276*da347917Sbeck 				/* now X is even, so we can easily divide it by two */
277*da347917Sbeck 				if (!BN_rshift1(X, X)) goto err;
278*da347917Sbeck 				}
279*da347917Sbeck 			if (shift > 0)
280*da347917Sbeck 				{
281*da347917Sbeck 				if (!BN_rshift(B, B, shift)) goto err;
282*da347917Sbeck 				}
283*da347917Sbeck 
284*da347917Sbeck 
285*da347917Sbeck 			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
286*da347917Sbeck 			shift = 0;
287*da347917Sbeck 			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
288*da347917Sbeck 				{
289*da347917Sbeck 				shift++;
290*da347917Sbeck 
291*da347917Sbeck 				if (BN_is_odd(Y))
292*da347917Sbeck 					{
293*da347917Sbeck 					if (!BN_uadd(Y, Y, n)) goto err;
294*da347917Sbeck 					}
295*da347917Sbeck 				/* now Y is even */
296*da347917Sbeck 				if (!BN_rshift1(Y, Y)) goto err;
297*da347917Sbeck 				}
298*da347917Sbeck 			if (shift > 0)
299*da347917Sbeck 				{
300*da347917Sbeck 				if (!BN_rshift(A, A, shift)) goto err;
301*da347917Sbeck 				}
302*da347917Sbeck 
303*da347917Sbeck 
304*da347917Sbeck 			/* We still have (1) and (2).
305*da347917Sbeck 			 * Both  A  and  B  are odd.
306*da347917Sbeck 			 * The following computations ensure that
307*da347917Sbeck 			 *
308*da347917Sbeck 			 *     0 <= B < |n|,
309*da347917Sbeck 			 *      0 < A < |n|,
310*da347917Sbeck 			 * (1) -sign*X*a  ==  B   (mod |n|),
311*da347917Sbeck 			 * (2)  sign*Y*a  ==  A   (mod |n|),
312*da347917Sbeck 			 *
313*da347917Sbeck 			 * and that either  A  or  B  is even in the next iteration.
314*da347917Sbeck 			 */
315*da347917Sbeck 			if (BN_ucmp(B, A) >= 0)
316*da347917Sbeck 				{
317*da347917Sbeck 				/* -sign*(X + Y)*a == B - A  (mod |n|) */
318*da347917Sbeck 				if (!BN_uadd(X, X, Y)) goto err;
319*da347917Sbeck 				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
320*da347917Sbeck 				 * actually makes the algorithm slower */
321*da347917Sbeck 				if (!BN_usub(B, B, A)) goto err;
322*da347917Sbeck 				}
323*da347917Sbeck 			else
324*da347917Sbeck 				{
325*da347917Sbeck 				/*  sign*(X + Y)*a == A - B  (mod |n|) */
326*da347917Sbeck 				if (!BN_uadd(Y, Y, X)) goto err;
327*da347917Sbeck 				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
328*da347917Sbeck 				if (!BN_usub(A, A, B)) goto err;
329*da347917Sbeck 				}
330*da347917Sbeck 			}
331*da347917Sbeck 		}
332*da347917Sbeck 	else
333*da347917Sbeck 		{
334*da347917Sbeck 		/* general inversion algorithm */
335*da347917Sbeck 
336*da347917Sbeck 		while (!BN_is_zero(B))
337*da347917Sbeck 			{
338*da347917Sbeck 			BIGNUM *tmp;
339*da347917Sbeck 
340*da347917Sbeck 			/*
341*da347917Sbeck 			 *      0 < B < A,
342*da347917Sbeck 			 * (*) -sign*X*a  ==  B   (mod |n|),
343*da347917Sbeck 			 *      sign*Y*a  ==  A   (mod |n|)
344*da347917Sbeck 			 */
345*da347917Sbeck 
346*da347917Sbeck 			/* (D, M) := (A/B, A%B) ... */
347*da347917Sbeck 			if (BN_num_bits(A) == BN_num_bits(B))
348*da347917Sbeck 				{
349*da347917Sbeck 				if (!BN_one(D)) goto err;
350*da347917Sbeck 				if (!BN_sub(M,A,B)) goto err;
351*da347917Sbeck 				}
352*da347917Sbeck 			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
353*da347917Sbeck 				{
354*da347917Sbeck 				/* A/B is 1, 2, or 3 */
355*da347917Sbeck 				if (!BN_lshift1(T,B)) goto err;
356*da347917Sbeck 				if (BN_ucmp(A,T) < 0)
357*da347917Sbeck 					{
358*da347917Sbeck 					/* A < 2*B, so D=1 */
359*da347917Sbeck 					if (!BN_one(D)) goto err;
360*da347917Sbeck 					if (!BN_sub(M,A,B)) goto err;
361*da347917Sbeck 					}
362*da347917Sbeck 				else
363*da347917Sbeck 					{
364*da347917Sbeck 					/* A >= 2*B, so D=2 or D=3 */
365*da347917Sbeck 					if (!BN_sub(M,A,T)) goto err;
366*da347917Sbeck 					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
367*da347917Sbeck 					if (BN_ucmp(A,D) < 0)
368*da347917Sbeck 						{
369*da347917Sbeck 						/* A < 3*B, so D=2 */
370*da347917Sbeck 						if (!BN_set_word(D,2)) goto err;
371*da347917Sbeck 						/* M (= A - 2*B) already has the correct value */
372*da347917Sbeck 						}
373*da347917Sbeck 					else
374*da347917Sbeck 						{
375*da347917Sbeck 						/* only D=3 remains */
376*da347917Sbeck 						if (!BN_set_word(D,3)) goto err;
377*da347917Sbeck 						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
378*da347917Sbeck 						if (!BN_sub(M,M,B)) goto err;
379*da347917Sbeck 						}
380*da347917Sbeck 					}
381*da347917Sbeck 				}
382*da347917Sbeck 			else
383*da347917Sbeck 				{
3845b37fcf3Sryker 				if (!BN_div(D,M,A,B,ctx)) goto err;
385*da347917Sbeck 				}
386*da347917Sbeck 
387*da347917Sbeck 			/* Now
388*da347917Sbeck 			 *      A = D*B + M;
389*da347917Sbeck 			 * thus we have
390*da347917Sbeck 			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
391*da347917Sbeck 			 */
392*da347917Sbeck 
393*da347917Sbeck 			tmp=A; /* keep the BIGNUM object, the value does not matter */
394*da347917Sbeck 
395*da347917Sbeck 			/* (A, B) := (B, A mod B) ... */
3965b37fcf3Sryker 			A=B;
3975b37fcf3Sryker 			B=M;
398*da347917Sbeck 			/* ... so we have  0 <= B < A  again */
3995b37fcf3Sryker 
400*da347917Sbeck 			/* Since the former  M  is now  B  and the former  B  is now  A,
401*da347917Sbeck 			 * (**) translates into
402*da347917Sbeck 			 *       sign*Y*a  ==  D*A + B    (mod |n|),
403*da347917Sbeck 			 * i.e.
404*da347917Sbeck 			 *       sign*Y*a - D*A  ==  B    (mod |n|).
405*da347917Sbeck 			 * Similarly, (*) translates into
406*da347917Sbeck 			 *      -sign*X*a  ==  A          (mod |n|).
407*da347917Sbeck 			 *
408*da347917Sbeck 			 * Thus,
409*da347917Sbeck 			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
410*da347917Sbeck 			 * i.e.
411*da347917Sbeck 			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
412*da347917Sbeck 			 *
413*da347917Sbeck 			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
414*da347917Sbeck 			 *      -sign*X*a  ==  B   (mod |n|),
415*da347917Sbeck 			 *       sign*Y*a  ==  A   (mod |n|).
416*da347917Sbeck 			 * Note that  X  and  Y  stay non-negative all the time.
417*da347917Sbeck 			 */
418*da347917Sbeck 
419*da347917Sbeck 			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
420*da347917Sbeck 			if (BN_is_one(D))
421*da347917Sbeck 				{
422*da347917Sbeck 				if (!BN_add(tmp,X,Y)) goto err;
423*da347917Sbeck 				}
424*da347917Sbeck 			else
425*da347917Sbeck 				{
426*da347917Sbeck 				if (BN_is_word(D,2))
427*da347917Sbeck 					{
428*da347917Sbeck 					if (!BN_lshift1(tmp,X)) goto err;
429*da347917Sbeck 					}
430*da347917Sbeck 				else if (BN_is_word(D,4))
431*da347917Sbeck 					{
432*da347917Sbeck 					if (!BN_lshift(tmp,X,2)) goto err;
433*da347917Sbeck 					}
434*da347917Sbeck 				else if (D->top == 1)
435*da347917Sbeck 					{
436*da347917Sbeck 					if (!BN_copy(tmp,X)) goto err;
437*da347917Sbeck 					if (!BN_mul_word(tmp,D->d[0])) goto err;
438*da347917Sbeck 					}
439*da347917Sbeck 				else
440*da347917Sbeck 					{
441*da347917Sbeck 					if (!BN_mul(tmp,D,X,ctx)) goto err;
442*da347917Sbeck 					}
443*da347917Sbeck 				if (!BN_add(tmp,tmp,Y)) goto err;
444*da347917Sbeck 				}
445*da347917Sbeck 
446*da347917Sbeck 			M=Y; /* keep the BIGNUM object, the value does not matter */
4475b37fcf3Sryker 			Y=X;
448*da347917Sbeck 			X=tmp;
4495b37fcf3Sryker 			sign = -sign;
4505b37fcf3Sryker 			}
451*da347917Sbeck 		}
452*da347917Sbeck 
453*da347917Sbeck 	/*
454*da347917Sbeck 	 * The while loop (Euclid's algorithm) ends when
455*da347917Sbeck 	 *      A == gcd(a,n);
456*da347917Sbeck 	 * we have
457*da347917Sbeck 	 *       sign*Y*a  ==  A  (mod |n|),
458*da347917Sbeck 	 * where  Y  is non-negative.
459*da347917Sbeck 	 */
460*da347917Sbeck 
4615b37fcf3Sryker 	if (sign < 0)
4625b37fcf3Sryker 		{
4635b37fcf3Sryker 		if (!BN_sub(Y,n,Y)) goto err;
4645b37fcf3Sryker 		}
465*da347917Sbeck 	/* Now  Y*a  ==  A  (mod |n|).  */
466*da347917Sbeck 
4675b37fcf3Sryker 
4685b37fcf3Sryker 	if (BN_is_one(A))
469*da347917Sbeck 		{
470*da347917Sbeck 		/* Y*a == 1  (mod |n|) */
471*da347917Sbeck 		if (!Y->neg && BN_ucmp(Y,n) < 0)
472*da347917Sbeck 			{
473*da347917Sbeck 			if (!BN_copy(R,Y)) goto err;
474*da347917Sbeck 			}
475*da347917Sbeck 		else
476*da347917Sbeck 			{
477*da347917Sbeck 			if (!BN_nnmod(R,Y,n,ctx)) goto err;
478*da347917Sbeck 			}
479*da347917Sbeck 		}
4805b37fcf3Sryker 	else
4815b37fcf3Sryker 		{
4825b37fcf3Sryker 		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
4835b37fcf3Sryker 		goto err;
4845b37fcf3Sryker 		}
4855b37fcf3Sryker 	ret=R;
4865b37fcf3Sryker err:
487913ec974Sbeck 	if ((ret == NULL) && (in == NULL)) BN_free(R);
488ba5406e9Sbeck 	BN_CTX_end(ctx);
4895b37fcf3Sryker 	return(ret);
4905b37fcf3Sryker 	}
491